Sample records for advection amplifying flight

  1. The distribution of "time of flight" in 3D stationary chaotic advection

    Raynal, Florence


    The distributions of "time of flight" (time spent by a single fluid particle between two crossings of the Poincar\\'e section) are investigated for five different 3D stationary chaotic mixers. Above all, we study the large tails of those distributions, and show that mainly two types of behaviors are encountered. In the case of slipping walls, as expected, we obtain an exponential decay, which, however, does not scale with the Lyapunov exponent. Using a simple model, we suggest that this decay is related to the negative eigenvalues of the fixed points of the flow. When no-slip walls are considered, as predicted by the model, the behavior is radically dfferent, with a very large tail following a power law with an exponent close to -3.

  2. Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center

    Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark


    We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.

  3. Frontiers of chaotic advection

    Aref, Hassan; Budišić, Marko; Cartwright, Julyan H E; Clercx, Herman J H; Feudel, Ulrike; Golestanian, Ramin; Gouillart, Emmanuelle; Guer, Yves Le; van Heijst, GertJan F; Krasnopolskaya, Tatyana S; MacKay, Robert S; Meleshko, Vyacheslav V; Metcalfe, Guy; Mezić, Igor; de Moura, Alessandro P S; Omari, Kamal El; Piro, Oreste; Speetjens, Michel F M; Sturman, Rob; Thiffeault, Jean-Luc; Tuval, Idan


    We review the present position of and survey future perspectives in the physics of chaotic advection; the field that emerged three decades ago at the intersection of fluid mechanics and nonlinear dynamics, which encompasses a range of applications with length scales ranging from micrometers to hundreds of kilometers, including systems as diverse as mixing and thermal processing of viscous fluids, micro-fluidics, biological flows, and large-scale dispersion of pollutants in oceanographic and atmospheric flows.

  4. A generalized advection dispersion equation

    Abdon Atangana


    This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system when being included in its evolution rule; the notion is illustrated with the advection dispersion equation, which describes the groundwater pollution model. An uncertain derivative is defined; some properties of the operator are presented. The operator is used to generalize the advection dispersion equation. The generalized equation differs from the standard equation in four properties. The generalized equation is solved via the variational iteration technique. Some illustrative figures are presented.

  5. Topology preserving advection of implicit interfaces on Cartesian grids

    Qin, Zhipeng; Delaney, Keegan; Riaz, Amir; Balaras, Elias


    Accurate representation of implicit interface topology is important for the numerical computation of two phase flow on Cartesian grids. A new method is proposed for the construction of signed distance function by geometrically projecting interface topology onto the Cartesian grid using a multi-level projection framework. The method involves a stepwise improvement in the approximation to the signed distance function based on pointwise, piecewise and locally smooth reconstructions of the interface. We show that this approach provides accurate representation of the projected interface and its topology on the Cartesian grid, including the distance from the interface and the interface normal and curvature. The projected interface can be in the form of either a connected set of marker particles that evolve with Lagrangian advection, or a discrete set of points associated with an implicit interface that evolves with the advection of a scalar function. The signed distance function obtained with geometric projection is independent of the details of the scaler field, in contrast to the conventional approach where advection and reinitialization cannot be decoupled. As a result, errors introduced by reinitialization do not amplify advection errors, which leads to substantial improvement in both volume conservation and topology representation.

  6. Passive advection in nonlinear medium

    Chertkov, M


    Forced advection of passive tracer, $\\theta $, in nonlinear relaxational medium by large scale (Batchelor problem) incompressible velocity field at scales less than the correlation length of the flow and larger than the diffusion scale is considered. Effective theory explaining small scale scalar fluctuations is proven to be linear, asymptotic free (downscales from the scale of the pumping) and universal. Only three parameters are required to decribe exhaustively the small scale statistics of scalar difference: two velocity-dependent ones, average and dispersion ($\\bar{\\lambda}$ and $\\Delta $ respectively) of the exponential stretching rate of a trial line element, and fluctuations. $\\alpha $ is an explicit functional of potential chracterized medium nonlinearity and amplitude of $\\theta ^{2}$ flux pumped into the system. Structure functions show an extremely anomalous, intermittent behavior: $ \\sim r^{\\xi_{q}}, \\xi_{q} = \\min {q,\\sqrt{[

  7. Operational amplifiers

    Dostal, Jiri


    This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits

  8. Turbulent dynamo with advective magnetic helicity flux

    Del Sordo, Fabio; Brandenburg, Axel


    Many astrophysical bodies harbor magnetic fields that are thought to be sustained by dynamo processes. However, it has been argued that the production of large-scale magnetic fields by a mean-field dynamo is strongly suppressed at large magnetic Reynolds numbers owing to the conservation of magnetic helicity. This phenomenon is known as catastrophic quenching. Advection of magnetic field toward the outer boundaries and away from the dynamo is expected to alleviate such quenching. Examples are stellar and galactic winds. Such advection might be able to overcome the constraint imposed by the conservation of magnetic helicity, transporting a fraction of it outside the domain in which the dynamo operates. We study how the dynamo process is affected by advection. In particular, we study the relative roles played by advective and diffusive fluxes of magnetic helicity. We do this by performing direct numerical simulations of a turbulent dynamo of alpha^2 type driven by forced turbulence in a Cartesian domain in the ...

  9. Instabilities of advection-dominated accretion flows

    Chen, X


    Accretion disk instabilities are briefly reviewed. Some details are given to the short-wavelength thermal instabilities and the convective instabilities. Time-dependent calculations of two-dimensional advection-dominated accretion flows are presented.

  10. Instabilities of Advection-Dominated Accretion Flows

    Chen, Xingming


    Accretion disk instabilities are briefly reviewed. Some details are given to the short-wavelength thermal instabilities and the convective instabilities. Time-dependent calculations of two-dimensional advection-dominated accretion flows are presented.

  11. Discrete Lie Advection of Differential Forms

    Mullen, P; Pavlov, D; Durant, L; Tong, Y; Kanso, E; Marsden, J E; Desbrun, M


    In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartan's homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.

  12. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism.

    Prakash, A; Sharma, C; Singh, A; Kumar Singh, P; Kumar, A; Hagen, F; Govender, N P; Colombo, A L; Meis, J F; Chowdhary, A


    Candida auris is a multidrug-resistant nosocomial bloodstream pathogen that has been reported from Asian countries and South Africa. Herein, we studied the population structure and genetic relatedness among 104 global C. auris isolates from India, South Africa and Brazil using multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) fingerprinting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). RPB1, RPB2 and internal transcribed spacer (ITS) and D1/D2 regions of the ribosomal DNA were sequenced for MLST. Further, genetic variation and proteomic assessment was carried out using AFLP and MALDI-TOF MS, respectively. Both MLST and AFLP typing clearly demarcated two major clusters comprising Indian and Brazilian isolates. However, the South African isolates were randomly distributed, suggesting different genotypes. MALDI-TOF MS spectral profiling also revealed evidence of geographical clustering but did not correlate fully with the genotyping methods. Notably, overall the population structure of C. auris showed evidence of geographical clustering by all the three techniques analysed. Antifungal susceptibility testing by the CLSI microbroth dilution method revealed that fluconazole had limited activity against 87% of isolates (MIC90, 64 mg/L). Also, MIC90 of AMB was 4 mg/L. Candida auris is emerging as an important yeast pathogen globally and requires reproducible laboratory methods for identification and typing. Evaluation of MALDI-TOF MS as a typing method for this yeast is warranted. PMID:26548511

  13. Asymmetric spreading in highly advective, disordered environments

    Carpenter, John H.; Dahmen, Karin A.


    Spreading of bacteria in a highly advective, disordered environment is examined. Predictions of super-diffusive spreading for a simplified reaction-diffusion equation are tested. Concentration profiles display anomalous growth and super-diffusive spreading. A perturbation analysis yields a crossover time between diffusive and super-diffusive behavior. The time's dependence on the convection velocity and disorder is tested. Like the simplified equation, the full linear reaction-diffusion equat...

  14. Distributed Parallel Particle Advection using Work Requesting

    Muller, Cornelius; Camp, David; Hentschel, Bernd; Garth, Christoph


    Particle advection is an important vector field visualization technique that is difficult to apply to very large data sets in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results to an existing algorithm.

  15. Vertical structure of Advection dominated Accretion Flows

    Zeraatgari, Fateme Zahra


    We solve the set of hydrodynamic (HD) equations for optically thin Advection Dominated Accretion Flows (ADAFs) by assuming radially self-similar in spherical coordinate system $ (r, \\theta, \\phi) $. The disk is considered to be steady state and axi-symmetric. We define the boundary conditions at the pole and the equator of the disk and to avoid singularity at the rotation axis, the disk is taken to be symmetric with respect to this axis. Moreover, only the $ \\tau_{r \\phi} $ component of viscous stress tensor is assumed and we have set $ v_{\\theta} = 0 $. The main purpose of this study is to investigate the variation of dynamical quantities of the flow in the vertical direction by finding an analytical solution. As a consequence, we found that the advection parameter, $ f^{adv} $, varies along the $ \\theta $ direction and reaches to its maximum near the rotation axis. Our results also show that, in terms of no-outflow solution, thermal equilibrium still exists and consequently advection cooling can balance vis...

  16. An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields

    Särkimäki, Konsta; Decker, Joan; Varje, Jari; Kurki-Suonio, Taina


    Disruption-generated runaway electrons (RE) present an outstanding issue for ITER. The predictive computational studies of RE generation rely on orbit-averaged computations and, as such, they lack the effects from the magnetic field stochasticity. Since stochasiticity is naturally present in post-disruption plasma, and externally induced stochastization offers a prominent mechanism to mitigate RE avalanche, we present an advection-diffusion model that can be used to couple an orbit-following code to an orbit-averaged tool in order to capture the cross-field transport and to overcome the latter's limitation. The transport coefficients are evaluated via a Monte Carlo method. We show that the diffusion coefficient differs significantly from the well-known Rechester-Rosenbluth result. We also demonstrate the importance of including the advection: it has a two-fold role both in modelling transport barriers created by magnetic islands and in amplifying losses in regions where the islands are not present.

  17. Low cost instrumentation amplifier

    Sturman, J. C.


    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  18. Depletion of advection in turbulent scalar mixing

    Bos, Wouter J T; Fang, Le [LMFA, CNRS, Ecole centrale de Lyon, Universite de Lyon, Ecully (France); Rubinstein, Robert, E-mail: [Newport News, VA (United States)


    In turbulent scalar mixing the mean square advection is strongly suppressed with respect to its Gaussian estimate. This effect is particularly important in the small scales and related to the scales in which diffusion plays a role. The link with the generation of passive scalar fronts is discussed and it is argued that scalar fronts are the consequence of the underlying suppression of nonlinearity observed in a wide class of flows for which the dynamics are governed by quadratic nonlinearities or pseudo-nonlinearities.

  19. Gain ranging amplifier

    A gain ranging amplifier system is provided for use in the acquisition of data. Voltage offset compensation is utilized to correct errors in the gain ranging amplifier system caused by thermal drift and temperature dependent voltage offsets, both of which are associated with amplifiers in the gain ranging amplifier system

  20. A Computational Method for Sharp Interface Advection

    Roenby, Johan; Jasak, Hrvoje


    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists in two parts: First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face-interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple 2D and 3D interface advection problems ...

  1. Amplified Quantum Transforms

    Cornwell, David


    In this thesis we investigate two new Amplified Quantum Transforms. In particular we create and analyze the Amplified Quantum Fourier Transform (Amplified-QFT) and the Amplified-Haar Wavelet Transform. First, we provide a brief history of quantum mechanics and quantum computing. Second, we examine the Amplified-QFT in detail and compare it against the Quantum Fourier Transform (QFT) and Quantum Hidden Subgroup (QHS) algorithms for solving the Local Period Problem. We calculate the probabiliti...

  2. Portable musical instrument amplifier

    Christian, David E. (Danbury, CT)


    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  3. Amplifier for nuclear spectrometry

    The spectroscopy amplifier model AE-020 is designed to adjust suitable the pulses coming from nuclear radiation detectors. Due to is capacity and specifications, the amplifier can be used together with high and medium resolution spectroscopy system

  4. Thermal instability of advection-dominated disks against local perturbations

    Kato, S; Chen, X; Kato, Shoji; Abramowicz, Marek Artur; Chen, Xingming


    Thermal instability is examined for advection-dominated one-temperature accretion disks. We consider axisymmetric perturbations with short wavelength in the radial direction. The viscosity is assumed to be sufficiently small for the vertical hydrostatic balance to hold in perturbed states. The type of viscosity is given either by the \\alpha-viscosity or by a diffusion-type stress tensor. Optically thick disks are found to be in general more unstable than optically thin ones. When the thermal diffusion is present, the optically thin disks become stable, but the optically thick disks are still unstable. The instability of the advection-dominated disks is different from that of the geometrically thin disks without advection. In the case of no advection, the thermal mode behaves under no appreciable surface density change. In the case of advection-dominated disks, however, the thermal mode occurs with no appreciable pressure change (compared with the density change), when local perturbations are considered. The v...

  5. High voltage distributed amplifier

    Willems, D.; Bahl, I.; Wirsing, K.


    A high-voltage distributed amplifier implemented in GaAs MMIC technology has demonstrated good circuit performance over at least two octave bandwidth. This technique allows for very broadband amplifier operation with good efficiency in satellite, active-aperture radar, and battery-powered systems. Also, by increasing the number of FETs, the amplifier can be designed to match different voltage rails. The circuit does require a small amount of additional chip size over conventional distributed amplifiers but does not require power dividers or additional matching networks. This circuit configuration should find great use in broadband power amplifier design.

  6. Contribution of Advective and Non-advective Heat Fluxes to the Heat Budget of a Shallow Lagoon

    Rodríguez-Rodríguez Miguel


    Full Text Available The heat budget in a shallow lagoon has been established from field measurements at a bihourly scale. Information on the main advective and non-advective heat fluxes were collected during year 2003 at Nueva lagoon (Almería, Southern Spain. Heat storage data was obtained from a thermistor chain located in the deepest part of the lagoon and meteorological information was acquired using an automatic meteorological station placed near the lagoon's shore. In addition, estimation of evaporation was inferred from climatic approaches. Inputs of heat energy were dominated by radiative fluxes, with received net radiation accounting on average for around 95% of the non-advective total gains and radiation losses accounting for around 70% of the non-advective total losses. Sensible heat transfer from/to the atmosphere constituted the second energy input (4% and output (20%, although heat losses by evaporation were also significant. Conduction of heat into the sediments was a relatively constant form of energy loss but constitutes a minor contribution on the overall heat budget. Considerable variability was evident in non-advective heat fluxes at different time scales, from diel to seasonal. In relation to advective heat fluxes, groundwater and irrigation surpluses added to the heat storage of Nueva lagoon, whereas heat advected via precipitation was negligible.

  7. New complex variable meshless method for advection-diffusion problems

    Wang Jian-Fei; Cheng Yu-Min


    In this paper,an improved complex variable meshless method (ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square (ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for two-point boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.

  8. Anomalous scaling of a scalar field advected by turbulence

    Kraichnan, R.H. [Robert H. Kraichnan, Inc., Santa Fe, NM (United States)


    Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.

  9. Advection around ventilated U-shaped burrows: A model study

    Brand, Andreas; Lewandowski, JöRg; Hamann, Enrico; Nützmann, Gunnar


    Advective transport in the porous matrix of sediments surrounding burrows formed by fauna such as Chironomus plumosus has been generally neglected. A positron emission tomography study recently revealed that the pumping activity of the midge larvae can indeed induce fluid flow in the sediment. We present a numerical model study which explores the conditions at which advective transport in the sediment becomes relevant. A 0.15 m deep U-shaped burrow with a diameter of 0.002 m within the sediment was represented in a 3-D domain. Fluid flow in the burrow was calculated using the Navier-Stokes equation for incompressible laminar flow in the burrow, and flow in the sediment was described by Darcy's law. Nonreactive and reactive transport scenarios were simulated considering diffusion and advection. The pumping activity of the model larva results in considerable advective flow in the sediment at reasonable high permeabilities with flow velocities of up to 7.0 × 10-6 m s-1 close to the larva for a permeability of 3 × 10-12 m2. At permeabilities below 7 × 10-13 m2 advection is negligible compared to diffusion. Reactive transport simulations using first-order kinetics for oxygen revealed that advective flux into the sediment downstream of the pumping larva enhances sedimentary uptake, while the advective flux into the burrow upstream of the larvae inhibits diffusive sedimentary uptake. Despite the fact that both effects cancel each other with respect to total solute uptake, the advection-induced asymmetry in concentration distribution can lead to a heterogeneous solute and redox distribution in the sediment relevant to complex reaction networks.

  10. RF Power Amplifier Analysis

    M. Lokay; K. Pelikan


    The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  11. Amplifier improvement circuit

    Sturman, J.


    Stable input stage was designed for the use with a integrated circuit operational amplifier to provide improved performance as an instrumentation-type amplifier. The circuit provides high input impedance, stable gain, good common mode rejection, very low drift, and low output impedance.

  12. A finite element-boundary element method for advection-diffusion problems with variable advective fields and infinite domains

    Driessen, B.J.; Dohner, J.L.


    In this paper a hybrid, finite element--boundary element method which can be used to solve for particle advection-diffusion in infinite domains with variable advective fields is presented. In previous work either boundary element, finite element, or difference methods have been used to solve for particle motion in advective-diffusive domains. These methods have a number of limitations. Due to the complexity of computing spatially dependent Green`s functions, the boundary element method is limited to domains containing only constant advective fields, and due to their inherent formulation, finite element and finite difference methods are limited to only domains of finite spatial extent. Thus, finite element and finite difference methods are limited to finite space problems for which the boundary element method is not, and the boundary element method is limited to constant advection field problems for which finite element and finite difference methods are not. In this paper it is proposed to split a domain into two sub-domains, and for each of these sub domains, apply the appropriate solution method; thereby, producing a method for the total infinite space, variable advective field domain.

  13. Semiconductor optical amplifiers

    Dutta, Niloy K


    This invaluable look provides a comprehensive treatment of design and applications of semiconductor optical amplifiers (SOA). SOA is an important component for optical communication systems. It has applications as in-line amplifiers and as functional devices in evolving optical networks. The functional applications of SOAs were first studied in the early 1990's, since then the diversity and scope of such applications have been steadily growing. This is the second edition of a book on Semiconductor Optical Amplifiers first published in 2006 by the same authors. Several chapters and sections rep

  14. Amplifying ribbon extensometer for measuring film and fabric strain

    Alley, V. L., Jr.; Mchatton, A. D.


    Variations of a low-cost amplifying linear threshold extensometer are presented in detail for high or low strain applications. Derivations of scale relationships and extraction forces are included with experimental correlations and analyses given on performance, attachment problems, gain selection, gage and base material compatibility, and zero setting techniques. Flight applications of unamplified gages on parawing deployment tests are noted. The amplified gages perform accurately in laboratory tests and further experience is needed on performance under dynamic environments.

  15. RF Power Amplifier Analysis

    M. Lokay


    Full Text Available The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  16. Noise in Optical Amplifiers

    Jeppesen, Palle


    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  17. Charge-sensitive amplifier

    Startsev V. I.; Yampolsky Ju. S.


    The authors consider design and circuit design techniques of reduction of the influence of the pyroelectric effect on operation of the charge sensitive amplifiers. The presented experimental results confirm the validity of the measures taken to reduce the impact of pyroelectric currents. Pyroelectric currents are caused by the influence of the temperature gradient on the piezoelectric sensor and on the output voltage of charge sensitive amplifiers.

  18. E-537 MWPC amplifier

    The design of a fast MWPC amplifier for the beam chambers and the absorber chamber is completed and all parts are on order. A prototype 16 channel board has been built and satisfactorily tested. Artwork is completed for the board and out to be photographed. The board fabrication contract has been let. Listed below is a summary of the amplifier characteristics as well as test results obtained with the prototype

  19. Electrospun Amplified Fiber Optics

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario


    A lot of research is focused on all-optical signal processing, aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for an efficient signal transmission. However, the complex fabrication methods, involving high-temperature processes performed in highly pure environment, slow down the fabrication and make amplified components expensive with respect to an ideal, ...

  20. Advecting Procedural Textures for 2D Flow Animation

    Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)


    This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.

  1. Fast multigrid solution of the advection problem with closed characteristics

    Yavneh, I. [Israel Inst. of Technology, Haifa (Israel); Venner, C.H. [Univ. of Twente, Enschede (Netherlands); Brandt, A. [Weizmann Inst. of Science, Rehovot (Israel)


    The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.

  2. Features of a rare advection-radiation fog event


    To investigate effects of atmospheric pollutants on fog nature, a comprehensive in situ observation project was implemented in the northern suburb of Nanjing, in December of 2006. For December 24-27 there occurred a heavy fog lasting 4 d in succession. This event is of rare characteristics, namely long persistence, high concentration, tall fog top, acid fog water and explosive growth. Detailed analysis along with the causes of the fog was presented. The evidence suggests that the fog was generated by nighttime radiative cooling, maintained and developed under effects of warm, wet advection. As a result, it is an advection-radiation fog event.

  3. Measuring groundwater transport through lake sediments by advection and diffusion

    A method for estimating low rates of groundwater inflow and outflow through the bottom sediments of surface waters was developed and tested. A one-dimensional advection-diffusion model was fitted to measured pore water profiles of two nonreactive solutes, tritiated water and chloride, and the advection rate was calculated by a nonlinear least squares technique. Using 3H profiles measured 0-0.5 m below the sediment-water interface, rates of groundwater advection into a lake through interbedded sands and gyttja were estimated to be about 1.0 m/year. In midlake locations underlain by soft organic gyttja, rates of advection were much lower (<0.1 m/year). Knowledge of the rate and direction of groundwater flow substantially altered the interpretation of pore water profiles within the sediments and the fluxes of solutes. This technique can be used to estimate flow rates less than 2 m/annum with minimal disturbance, without enclosing the sediments in a container, in a diversity of systems. (author)

  4. Fractional gradient and its application to the fractional advection equation

    D'Ovidio, M; Garra, R.


    In this paper we provide a definition of fractional gradient operators, related to directional derivatives. We develop a fractional vector calculus, providing a probabilistic interpretation and mathematical tools to treat multidimensional fractional differential equations. A first application is discussed in relation to the d-dimensional fractional advection-dispersion equation. We also study the connection with multidimensional L\\'evy processes.

  5. A micropower electrocardiogram amplifier.

    Fay, L; Misra, V; Sarpeshkar, R


    We introduce an electrocardiogram (EKG) preamplifier with a power consumption of 2.8 muW, 8.1 muVrms input-referred noise, and a common-mode rejection ratio of 90 dB. Compared to previously reported work, this amplifier represents a significant reduction in power with little compromise in signal quality. The improvement in performance may be attributed to many optimizations throughout the design including the use of subthreshold transistor operation to improve noise efficiency, gain-setting capacitors versus resistors, half-rail operation wherever possible, optimal power allocations among amplifier blocks, and the sizing of devices to improve matching and reduce noise. We envision that the micropower amplifier can be used as part of a wireless EKG monitoring system powered by rectified radio-frequency energy or other forms of energy harvesting like body vibration and body heat. PMID:23853270

  6. A vircator amplifier

    A cavity vircator has demonstrated that formation of a virtual cathode in a cavity can improve microwave production efficiency and narrow the radiation bandwidth. When the virtual cathode radiates the microwave fields grow from noise. For each cavity, there is only one or a limited number of allowable modes for a given frequency. In this paper, a novel device - a vircator amplifier is described. The device consists of a relativistic magnetron and a cavity vircator with both devices powered by a 1 MeV, 3 Ω, 65 ns FWHM pulser. The idea is to inject a signal from the magnetron before and during virtual cathode formation in a cavity. The injected signal should lock the frequency and enhance electron bunching and therefore improve efficiency further. Experiments underway to evaluate the amplifier operating characteristics are discussed. The applicability of vircator amplifiers to the next generation of high-power microwave devices are addressed

  7. Energetics of lateral eddy diffusion/advection:Part IV. Energetics of diffusion/advection in sigma coordinates and other coordinates

    HUANG Rui Xin


    Gravitational potential energy (GPE) source and sink due to stirring and cabbeling associated with sigma dif-fusion/advection is analyzed. It is shown that GPE source and sink is too big, and they are not closely linked to physical property distribution, such as temperature, salinity and velocity. Although the most frequently quoted advantage of sigma coordinate models are their capability of dealing with topography;the exces-sive amount of GPE source and sink due to stirring and cabbeling associated with sigma diffusion/advec-tion diagnosed from our analysis raises a very serious question whether the way lateral diffusion/advection simulated in the sigma coordinates model is physically acceptable. GPE source and sink in three coordinates is dramatically different in their magnitude and patterns. Overall, in terms of simulating lateral eddy diffu-sion and advection isopycnal coordinates is the best choice and sigma coordinates is the worst. The physical reason of the excessive GPE source and sink in sigma coordinates is further explored in details. However, even in the isopycnal coordinates, simulation based on the Eulerian coordinates can be contaminated by the numerical errors associated with the advection terms.

  8. Cellwise conservative unsplit advection for the volume of fluid method

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri


    We present a cellwise conservative unsplit (CCU) advection scheme for the volume of fluid method (VOF) in 2D. Contrary to other schemes based on explicit calculations of the flux balances, the CCU advection adopts a cellwise approach where the pre-images of the control volumes are traced...... improvements of the VOF method with the use of more precise interface representation techniques and the future extension of the CCU scheme to 3D are discussed. ©2014 Elsevier Inc. All rights reserved.......-order Runge–Kutta method, where intermediate velocities along pathlines are determined with quadratic temporal and bicubic spatial interpolations. The volumes of the donating regions are corrected in order to fulfill the discrete continuity of incompressible flows. Consequently, the calculation produces non...

  9. Advection equation analysed by two-timing method

    Vladimirov, V A


    The aim of this paper is to study and classify the multiplicity of distinguished limits and asymptotic solutions for the advection equation with a general oscillating velocity field with the systematic use of the two-timing method. Our results are: (i) the dimensionless advection equation contains two independent small parameters, which represent the ratio of two characteristic time-scales and the spatial amplitudes of oscillations; the scaling of the variables and parameters contains Strouhal number; (ii) an infinite sequence of distinguished limits has been identified; this sequence corresponds to the successive degenerations of a drift velocity; (iii) we have derived the averaged and oscillatory equations for the first four distinguished limits; derivations are performed up to the forth orders in small parameters; (v) we have shown, that each distinguish limit solution generates an infinite number of parametric solutions; these solutions differ from each other by the slow time-scale and the amplitude of pr...

  10. Cellwise conservative unsplit advection for the volume of fluid method

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri


    We present a cellwise conservative unsplit (CCU) advection scheme for the volume of fluid method (VOF) in 2D. Contrary to other schemes based on explicit calculations of the flux balances, the CCU advection adopts a cellwise approach where the pre-images of the control volumes are traced backwards through the flow map. The donating regions of the fluxes are calculated via the streaklines of the grid intersections, represented as polygonal chains whose vertices are determined by backward tracing of particles injected in the flow at different times. High order accuracy is obtained from the fourth-order Runge-Kutta method, where intermediate velocities along pathlines are determined with quadratic temporal and bicubic spatial interpolations. The volumes of the donating regions are corrected in order to fulfill the discrete continuity of incompressible flows. Consequently, the calculation produces non-overlapping donating regions and pre-images with conforming edges to their neighbors, resulting in the conservativeness and the boundedness (liquid volume fraction inside the interval [ 0 , 1 ]) of the CCU advection scheme. Finally, the update of the liquid volume fractions is computed from the intersections of the pre-image polygons with the reconstructed interfaces. The CCU scheme is tested on several benchmark tests for the VOF advection, together with the standard piecewise linear interface calculation (PLIC). The geometrical errors of the CCU compare favorably with other unsplit VOF-PLIC schemes. Finally, potential improvements of the VOF method with the use of more precise interface representation techniques and the future extension of the CCU scheme to 3D are discussed.

  11. Anomalous diffusion of a tracer advected by wave turbulence

    Balk, Alexander M.


    We consider the advection of a passive tracer when the velocity field is a superposition of random waves. Green's function for the turbulent transport (turbulent diffusion and turbulent drift) is derived. This Green's function is shown to imply sub-diffusive or super-diffusive behavior of the tracer. For the analysis we introduce the statistical near-identity transformation. The results are confirmed by numerical simulations.

  12. Oscillatory convection in binary mixtures: thermodiffusion, solutal buoyancy, and advection

    Jung, D.; Matura, P.; Luecke, M.


    The role of thermodiffusive generation of concentration fluctuations via the Soret effect, their contribution to the buoyancy forces that drive convection, the advective mixing effect of the latter, and the diffusive homogenisation are compared and elucidated for oscillatory convection. Numerically obtained solutions of the field equations in the form of spatially extended relaxed traveling waves, of standing waves, and of the transient growth of standing waves and their transition to traveli...

  13. Advection-Dominated Accretion with Infall and Outflows

    Beckert, Thomas


    We present self-similar solutions for advection-dominated accretion flows with radial viscous force in the presence of outflows from the accretion flow or infall. The axisymmetric flow is treated in variables integrated over polar sections and the effects of infall and outflows on the accretion flow are parametrised for possible configurations compatible with the self-similar solution. We investigate the resulting accretion flows for three different viscosity laws and derive upper limits on t...

  14. Lattice Boltzmann method for the fractional advection-diffusion equation

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.


    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  15. Intermittent distribution of tracers advected by a compressible random flow

    Bec, Jeremie; Gawedzki, Krzysztof; Horvai, Peter


    Multifractal properties of a tracer density passively advected by a compressible random velocity field are characterized. A relationship is established between the statistical properties of mass on the dynamical fractal attractor towards which the trajectories converge and large deviations of the stretching rates of the flow. In the framework of the compressible Kraichnan model, this result is illustrated by analytical calculations and confirmed by numerical simulations.

  16. Oceanic heat advection to the Arctic in the last Millennium

    Spielhagen, Robert F.; Werner, Kirstin; Aagaard-Sørensen, Steffen; Zamelczyk, Katarzyna; Kandiano, Evguenia; Budeus, Gereon; Husum, Katrine; Marchitto, Thomas M.; Hald, Morten


    EGU2011-8738 At present, the Arctic is responding faster to global warming than most other areas on earth, as indicated by rising air temperatures, melting glaciers and ice sheets and a decline of the sea ice cover. As part of the meridional overturning circulation which connects all ocean basins and influences global climate, northward flowing Atlantic Water is the major means of heat and salt advection towards the Arctic where it strongly affects the sea ice distribution. Records of its ...

  17. A 3-D tomographic retrieval approach with advection compensation for the air-borne limb-imager GLORIA

    J. Ungermann


    Full Text Available Infrared limb sounding from aircraft can provide 2-D curtains of multiple trace gas species. However, conventional limb sounders view perpendicular to the aircraft axis and are unable to resolve the observed airmass along their line-of-sight. GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere is a new remote sensing instrument that is able to adjust its horizontal view angle with respect to the aircraft flight direction from 45° to 135°. This will allow for tomographic measurements of mesoscale structures for a wide variety of atmospheric constituents.

    Many flights of the GLORIA instrument will not follow closed curves that allow measuring an airmass from all directions. Consequently, it is examined by means of simulations, what spatial resolution can be expected under ideal conditions from tomographic evaluation of measurements made during a straight flight. It is demonstrated that the achievable horizontal resolution in the line-of-sight direction could be reduced from over 200 km to around 70 km compared to conventional retrievals and that the tomographic retrieval is also more robust against horizontal gradients in retrieved quantities in this direction. In a second step, it is shown that the incorporation of channels exhibiting different optical depth can further enhance the spatial resolution of 3-D retrievals enabling the exploitation of spectral samples usually not used for limb sounding due to their opacity.

    A second problem for tomographic retrievals is that advection, which can be neglected for conventional retrievals, plays an important role for the time-scales involved in a tomographic measurement flight. This paper presents a method to diagnose the effect of a time-varying atmosphere on a 3-D retrieval and demonstrates an effective way to compensate for effects of advection by incorporating wind-fields from meteorological datasets as a priori information.


    Noe, J.B.


    A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)

  19. Principal modes in fiber amplifiers

    Fridman, Moti; Dubinskii, Mark; Friesem, Asher A; Davidson, Nir


    The dynamics of the state of polarization in single mode and multimode fiber amplifiers are presented. The experimental results reveal that although the state of polarizations at the output can vary over a large range when changing the temperatures of the fiber amplifiers, the variations are significantly reduced when resorting to the principal states of polarization in single mode fiber amplifiers and principal modes in multimode fiber amplifiers.

  20. Helical Fiber Amplifier

    Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew


    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  1. Non-linear thermal engineering, chaotic advection and mixing; Thermique non-lineaire, melange et advection chaotique



    This conference day was jointly organized by the `university group of thermal engineering (GUT)` and the French association of thermal engineers. This book of proceedings contains 7 papers entitled: `energy spectra of a passive scalar undergoing advection by a chaotic flow`; `analysis of chaotic behaviours: from topological characterization to modeling`; `temperature homogeneity by Lagrangian chaos in a direct current flow heat exchanger: numerical approach`; ` thermal instabilities in a mixed convection phenomenon: nonlinear dynamics`; `experimental characterization study of the 3-D Lagrangian chaos by thermal analogy`; `influence of coherent structures on the mixing of a passive scalar`; `evaluation of the performance index of a chaotic advection effect heat exchanger for a wide range of Reynolds numbers`. (J.S.)

  2. Radio Frequency Solid State Amplifiers

    Jacob, J


    Solid state amplifiers are being increasingly used instead of electronic vacuum tubes to feed accelerating cavities with radio frequency power in the 100 kW range. Power is obtained from the combination of hundreds of transistor amplifier modules. This paper summarizes a one hour lecture on solid state amplifiers for accelerator applications.

  3. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris


    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  4. A hybrid solution for advection-diffusion problems with variable advective fields and semi-infinite domains

    Driessen, B.J.; Dohner, J.L.


    In this paper a hybrid, finite element/boundary element method which can be used to solve for particle diffusion in semi-infinite domains containing geometric obstructions and a variable advective field is presented. In previous work either boundary element or finite element/difference methods were used to solve for particle concentrations in an advective domain. These methods of solution had a number of limitations. Due to limitations in computing spatially dependent Green`s functions, the boundary element method of solution was limited to domains containing only constant advective fields, and due to its inherent formulation, finite element/difference methods were limited to only domains of finite spatial extent. Thus, where the finite element solution was limited, the boundary element solution was not, and where the boundary element solution was limited, the finite element solution was not. In this paper it is proposed to split the total domain into two sub-domains where each method of solution is applicable. For each of these sub-domains, the appropriate solution method is used; thereby, producing a general method of solution for the total semi-infinite domain.

  5. Electronic amplifiers for automatic compensators

    Polonnikov, D Ye


    Electronic Amplifiers for Automatic Compensators presents the design and operation of electronic amplifiers for use in automatic control and measuring systems. This book is composed of eight chapters that consider the problems of constructing input and output circuits of amplifiers, suppression of interference and ensuring high sensitivity.This work begins with a survey of the operating principles of electronic amplifiers in automatic compensator systems. The succeeding chapters deal with circuit selection and the calculation and determination of the principal characteristics of amplifiers, as

  6. Simplified design of IC amplifiers

    Lenk, John


    Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif

  7. Building valve amplifiers

    Jones, Morgan


    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  8. Wideband amplifier design

    Hollister, Allen L


    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model


    Kabell, L.J.


    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  10. Quantum entanglement degrees amplifier

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu; Meng, Xiang-Dong; Li, Hong; Zhang, Si-Qi


    The quantum entangled degrees of entangled states become smaller with the transmission distance increasing, how to keep the purity of quantum entangled states is the puzzle in quantum communication. In the paper, we have designed a new type entanglement degrees amplifier by one-dimensional photonic crystal, which is similar as the relay station of classical electromagnetic communication. We find when the entangled states of two-photon and three-photon pass through photonic crystal, their entanglement degrees can be magnified, which make the entanglement states can be long range propagation and the quantum communication can be really realized.

  11. Subsurface barrier design alternatives for confinement and controlled advection flow

    Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described

  12. A rational function based scheme for solving advection equation

    Xiao, Feng [Gunma Univ., Kiryu (Japan). Faculty of Engineering; Yabe, Takashi


    A numerical scheme for solving advection equations is presented. The scheme is derived from a rational interpolation function. Some properties of the scheme with respect to convex-concave preserving and monotone preserving are discussed. We find that the scheme is attractive in surpressinging overshoots and undershoots even in the vicinities of discontinuity. The scheme can also be easily swicthed as the CIP (Cubic interpolated Pseudo-Particle) method to get a third-order accuracy in smooth region. Numbers of numerical tests are carried out to show the non-oscillatory and less diffusive nature of the scheme. (author).

  13. Waste dissolution with chemical reaction, diffusion and advection

    This paper extends the mass-transfer analysis to include the effect of advective transport in predicting the steady-state dissolution rate, with a chemical-reaction-rate boundary condition at the surface of a waste form of arbitrary shape. This new theory provides an analytic means of predicting the ground-water velocities at which dissolution rate in a geologic environment will be governed entirely to the chemical reaction rate. As an illustration, we consider the steady-state potential flow of ground water in porous rock surrounding a spherical waste solid. 3 refs., 2 figs




    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  15. Universal Signal Conditioning Amplifier

    Kinney, Frank


    The Technological Research and Development Authority (TRDA) and NASA-KSC entered into a cooperative agreement in March of 1994 to achieve the utilization and commercialization of a technology development for benefiting both the Space Program and U.S. industry on a "dual-use basis". The technology involved in this transfer is a new, unique Universal Conditioning Amplifier (USCA) used in connection with various types of transducers. The project was initiated in partnership with I-Net Corporation, Lockheed Martin Telemetry & Instrumentation (formerly Loral Test and Information Systems) and Brevard Community College. The project consists of designing, miniaturizing, manufacturing, and testing an existing prototype of USCA that was developed for NASA-KSC by the I-Net Corporation. The USCA is a rugged and field-installable self (or remotely)- programmable amplifier that works in combination with a tag random access memory (RAM) attached to various types of transducers. This summary report comprises performance evaluations, TRDA partnership tasks, a project summary, project milestones and results.

  16. Multiple anisotropic collisions for advection-diffusion Lattice Boltzmann schemes

    Ginzburg, Irina


    This paper develops a symmetrized framework for the analysis of the anisotropic advection-diffusion Lattice Boltzmann schemes. Two main approaches build the anisotropic diffusion coefficients either from the anisotropic anti-symmetric collision matrix or from the anisotropic symmetric equilibrium distribution. We combine and extend existing approaches for all commonly used velocity sets, prescribe most general equilibrium and build the diffusion and numerical-diffusion forms, then derive and compare solvability conditions, examine available anisotropy and stable velocity magnitudes in the presence of advection. Besides the deterioration of accuracy, the numerical diffusion dictates the stable velocity range. Three techniques are proposed for its elimination: (i) velocity-dependent relaxation entries; (ii) their combination with the coordinate-link equilibrium correction; and (iii) equilibrium correction for all links. Two first techniques are also available for the minimal (coordinate) velocity sets. Even then, the two-relaxation-times model with the isotropic rates often gains in effective stability and accuracy. The key point is that the symmetric collision mode does not modify the modeled diffusion tensor but it controls the effective accuracy and stability, via eigenvalue combinations of the opposite parity eigenmodes. We propose to reduce the eigenvalue spectrum by properly combining different anisotropic collision elements. The stability role of the symmetric, multiple-relaxation-times component, is further investigated with the exact von Neumann stability analysis developed in diffusion-dominant limit.

  17. Dense-gas dispersion advection-diffusion model

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  18. Moisture advection to the Arctic : forecasted, analysed and observed

    Dufour, Ambroise; Zolina, Olga


    Besides its contribution to the Arctic hydrological budget, moisture imports from mid-latitudes are also influential on shorter time scales since water vapour advection tends to occur together with extratropical cyclones. Influx of moisture to the Arctic cause the formation of clouds that have an immediate impact on the surface energy budget especially in winter. In the long run, inaccuracies in the description of cloud cover and phase lead to temperature biases in CMIP5 models. The ECMWF workshop on polar prediction has highlighted moisture advection as one of the problematic physical processes limiting the quality of forecasts. Verifying the accuracy of medium-term forecasts is of interest beyond weather prediction : it points to the ability of models to bring adequate quantities of moisture to the Arctic when they are less constrained by observations than in analyses. In this study, we have compared forecasted moisture flux fields with analyses and observations over the period 2000-2010. ECMWF's ERA-Interim provided the forecasts, extending to ten days. For the analyses, in addition to ERA-Interim, we used the Arctic System Reanalysis whose forecast model is optimized for the polar regions and runs at high resolution (30 km). Finally, the Integrated Global Radiosonde Archive data over the Arctic allowed a validation by observations.

  19. A cryogenic circulating advective multi-pass absorption cell

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 107 cm-3. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  20. A cryogenic circulating advective multi-pass absorption cell

    Stockett, M. H.; Lawler, J. E. [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706 (United States)


    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 10{sup 7} cm{sup -3}. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  1. Horizontal advection, diffusion and plankton spectra at the sea surface.

    Bracco, A.; Clayton, S.; Pasquero, C.


    Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, due to both a small number of suitable observations and to an incomplete understanding of the properties of reactive tracers in turbulent media. Abraham (1998) suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, Mahadevan and Campbell (2002) attributed the relative distributions of sea surface temperature and phytoplankton to small scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate: 1) the impact of the spatial scale of tracer supply; 2) the role played by coherent eddies on the distribution of tracers with different Rt; 3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.

  2. Chaotic advection in 2D anisotropic porous media

    Varghese, Stephen; Speetjens, Michel; Trieling, Ruben; Toschi, Federico


    Traditional methods for heat recovery from underground geothermal reservoirs employ a static system of injector-producer wells. Recent studies in literature have shown that using a well-devised pumping scheme, through actuation of multiple injector-producer wells, can dramatically enhance production rates due to the increased scalar / heat transport by means of chaotic advection. However the effect of reservoir anisotropy on kinematic mixing and heat transport is unknown and has to be incorporated and studied for practical deployment in the field. As a first step, we numerically investigate the effect of anisotropy (both magnitude and direction) on (chaotic) advection of passive tracers in a time-periodic Darcy flow within a 2D circular domain driven by periodically reoriented diametrically opposite source-sink pairs. Preliminary results indicate that anisotropy has a significant impact on the location, shape and size of coherent structures in the Poincare sections. This implies that the optimal operating parameters (well spacing, time period of well actuation) may vary strongly and must be carefully chosen so as to enhance subsurface transport. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of Netherlands Organisation for Scientific Research (NWO). This research program is co-financed by Shell Global Solutions International B.V.

  3. Super-diffusion versus competitive advection: a simulation

    Del Moro, D; Berrilli, F; Consolini, G; Lepreti, F; Gosic, M


    Magnetic element tracking is often used to study the transport and diffusion of the magnetic field on the solar photosphere. From the analysis of the displacement spectrum of these tracers, it has been recently agreed that a regime of super-diffusivity dominates the solar surface. Quite habitually this result is discussed in the framework of fully developed turbulence. But the debate whether the super-diffusivity is generated by a turbulent dispersion process, by the advection due to the convective pattern, or by even another process, is still open, as is the question about the amount of diffusivity at the scales relevant to the local dynamo process. To understand how such peculiar diffusion in the solar atmosphere takes places, we compared the results from two different data-sets (ground-based and space-borne) and developed a simulation of passive tracers advection by the deformation of a Voronoi network. The displacement spectra of the magnetic elements obtained by the data-sets are consistent in retrieving...

  4. Characterisation Of Low Noise Amplifier



    Amplification is one of the most basic and prevalent microwave circuit functions inmodern RF and microwave systems. Early microwave amplifiers relied on tubes, such asklystrons and traveling-wave tubes, or solid-state reflection amplifiers based on thenegative resistance characteristics of tunnel or varactor diodes. But due to the dramaticimprovements and innovations in solid-state technology that have occurred since the1970s, most RF and microwave amplifiers today use transistor devices such...

  5. Understanding Flight

    Anderson, David


    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  6. Modeling of semiconductor optical amplifiers

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther;

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  7. Amplified leak detection

    Mahony, James


    Leaks are one of the major concerns for oil and gas producers. But recently, a Calgary-based company developed a tool that can find natural gas leaks in wellbores. This has relieved the oil and gas producers because the optics of finding downhole leaks just got a little brighter. Since then, there have been continuous efforts to broaden and refine fiber optics based methods. This paper presents amplified leak detection using fiber optics to identify even the smallest liquid leaks downhole. At high volumes, detection of downhole leaks in liquids is not a problem but at lower flow rates, the leaks become harder to detect, and at very low flow rates, they might not be detected at all. Hifi Engineering Inc. has developed the LeakSonar fiber optic acoustic sensor array that is specifically designed to detect and locate fluid migration in wellbores, even through multiple strings of casing.

  8. Metatronic transistor amplifier

    Chettiar, Uday K.; Engheta, Nader


    Utilizing the notion of metamaterials, in recent years the concept of a circuit and lumped circuit elements have been extended to the optical domains, providing the paradigm of optical metatronics, i.e., metamaterial-inspired optical nanocircuitry, as a powerful tool for design and study of more complex systems at the nanoscale. In this paper we present a design for a new metatronic element, namely, a metatronic transistor that functions as an amplifier. As shown by our analytical and numerical paper here, this metatronic transistor provides gain as well as isolation between the input and output ports of such two-port device. The cascadability and fan-out aspects of this element are also explored.

  9. Thermally driven advection for radioxenon transport from an underground nuclear explosion

    Sun, Yunwei; Carrigan, Charles R.


    Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.

  10. Miracle Flights for Kids

    ... today Saving Lives One Flight At A Time Miracle Flights provides free flights to distant specialized care and valuable second opinions. Miracle Flights Through June 2016 Flights Coordinated: 101,862 ...

  11. Air Pollution Steady-State Advection-Diffusion Equation: The General Three-Dimensional Solution

    Bardo Bodmann; Tiziano Tirabassi; Marco Túllio Vilhena; Daniela Buske


    Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-...

  12. Advection of nematic liquid crystals by chaotic flow

    O'Naraigh, Lennon


    Consideration is given to the effects of inhomogeneous shear flow (both regular and chaotic) on nematic liquid crystals in a planar two-dimensional geometry. The Landau-de Gennes equation coupled to an externally-prescribed flow field is the basis for the study: this is solved numerically in a periodic spatial domain. The focus is on a limiting case where the advection is passive, such that variations in the liquid-crystal properties do not feed back into the equation of motion for the uid velocity. The numerical simulations demonstrate that the coarsening of the liquid-crystal domains is arrested by the ow. The nature of the arrest is different depending on whether the flow is regular or chaotic. For the specific case where tumbling is important, the flow has a strong effect on the the liquid-crystal morphology: this provides a mechanism for controlling the shape of the liquid-crystal domains.

  13. On the Structure of Advective Accretion Disks At High Luminosity

    Artemova, I V; Igumenshchev, I V; Novikov, I D; Artemova, Ioulia V.; Bisnovatyi-Kogan, Gennadi S.; Igumenshchev, Igor V.; Novikov, Igor D.


    Global solutions of optically thick advective accretion disks around blackholes are constructed. The solutions are obtained by solving numerically a setof ordinary differential equations corresponding to a steady axisymmetricgeometrically thin disk. We pay special attention to consistently satisfy theregularity conditions at singular points of the equations. For this reason weanalytically expand a solution at the singular point, and use coefficients ofthe expansion in our iterative numerical procedure. We obtain consistenttransonic solutions in a wide range of values of the viscosity parameter alphaand mass acretion rate. We compare two different form of viscosity: one takesthe shear stress to be proportional to the pressure, while the other uses theangular velocity gradient-dependent stress. We find that there are two singular points in solutions corresponding to thepressure-proportional shear stress. The inner singular point locates close tothe last stable orbit around black hole. This point changes its typ...

  14. Semiconductor DC amplifier AEP 1487

    A semiconductor dc amplifier has been designed with the object of achieving low drift without component selection or special temperature-balancing adjustments. Modulator and ac-amplifier techniques have been adopted in order to avoid the drifts that occur when transistors are directly coupled. The diode-ring modulator described in CREL-902 has been used as the input chopper. (author)

  15. Small signal microwave amplifier design

    Grosch, Theodore


    This book explains techniques and examples for designing stable amplifiers for high-frequency applications in which the signal is small and the amplifier circuit is linear. An in-depth discussion of linear network theory provides the foundation needed to develop actual designs. Examples throughout the book will show you how to apply the knowledge gained in each chapter leading to the complex design of low noise amplifiers. Many exercises at the end of each chapter will help students to practice their skills. The solutions to these design problems are available in an accompanying solutions book

  16. International Standardization Activities for Optical Amplifiers

    Haruo Okamura


    International standardization activities for Optical Amplifiers at IECTC86 and ITU-T SG15 are reviewed. Current discussions include Optical Amplifier safety guideline, Reliability standard, Rest methods of Noise and PMD, Definitions of Raman amplifier parameters and OA classification.

  17. Analytical solution for the advection-dispersion transport equation in layered media

    The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...

  18. Algebraic dynamics solution to and algebraic dynamics algorithm for nonlinear advection equation


    Algebraic dynamics approach and algebraic dynamics algorithm for the solution of nonlinear partial differential equations are applied to the nonlinear advection equa-tion. The results show that the approach is effective for the exact analytical solu-tion and the algorithm has higher precision than other existing algorithms in nu-merical computation for the nonlinear advection equation.

  19. Nucleosynthesis in Advective Accretion Disks Around Galactic and Extra-Galactic Black Holes

    Mukhopadhyay, B


    We compute the nucleosynthesis of materials inside advective disks around black holes. We show that composition of incoming matter can change significantly depending on the accretion rate and accretion disks. These works are improvements on the earlier works in thick accretion disks of Chakrabarti, Jin & Arnett (1987) in presence of advection in the flow.

  20. A Transformer Class E Amplifier

    Mikolajewski Miroslaw


    Full Text Available In a high-efficiency Class E ZVS resonant amplifier a matching and isolation transformer can replace some or even all inductive components of the amplifier thus simplifying the circuit and reducing its cost. In the paper a theoretical analysis, a design example and its experimental verification for a transformer Class E amplifier are presented. In the experimental amplifier with a transformer as the only inductive component in the circuit high efficiency ηMAX = 0.95 was achieved for supply voltage VI = 36 V, maximum output power POMAX = 100 W and the switching frequency f = 300 kHz. Measured parameters and waveforms showed a good agreement with theoretical predictions. Moreover, the relative bandwidth of the switching frequency was only 19% to obtain output power control from 4.8 W to POMAX with efficiency not less than 0.9 in the regulation range.

  1. TARC: Carlo Rubbia's Energy Amplifier

    Laurent Guiraud


    Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.

  2. New Packaging for Amplifier Slabs

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  3. Memory effects in chaotic advection of inertial particles

    A systematic investigation of the effect of the history force on particle advection is carried out for both heavy and light particles. General relations are given to identify parameter regions where the history force is expected to be comparable with the Stokes drag. As an illustrative example, a paradigmatic two-dimensional flow, the von Kármán flow is taken. For small (but not extremely small) particles all investigated dynamical properties turn out to heavily depend on the presence of memory when compared to the memoryless case: the history force generates a rather non-trivial dynamics that appears to weaken (but not to suppress) inertial effects, it enhances the overall contribution of viscosity. We explore the parameter space spanned by the particle size and the density ratio, and find a weaker tendency for accumulation in attractors and for caustics formation. The Lyapunov exponent of transients becomes larger with memory. Periodic attractors are found to have a very slow, t−1/2 type convergence towards the asymptotic form. We find that the concept of snapshot attractors is useful to understand this slow convergence: an ensemble of particles converges exponentially fast towards a snapshot attractor, which undergoes a slow shift for long times. (paper)

  4. Is the accretion flow in NGC 4258 advection-dominated?

    Lasota, J P; Chen, X; Krolik, J H; Narayan, R; Yi, I


    The mass of the central black hole in the active galaxy NGC 4258 (M106) has been measured to be M=3.6\\times10^7\\Msun (Miyoshi et al. 1995). The Eddington luminosity corresponding to this mass is L_E=4.5\\times10^{45} erg s^{-1}. By contrast the X-ray luminosity of the nucleus of NGC 4258 between 2-10 keV is (4\\pm 1)\\times10^{40}~{\\rm erg\\,s^{-1}} while the optical/UV luminosity is less than 1.5\\times10^{42} ~{\\rm erg\\,s^{-1}}. The luminosity of NGC 4258 is therefore extremely sub-Eddington, L\\sim10^{-5}L_E in X-rays and L\\sim3\\times10^{-4} L_E even if we take the maximum optical/UV luminosity. Assuming the usual accretion efficiency of 0.1 would imply accretion rates orders of magnitude lower than in Seyfert galaxies and quasars. We show that the properties of the AGN in NGC 4258 can be explained by an accretion flow in the form of a very hot, optically-thin plasma which advects most of the viscously generated thermal energy into the central black hole and radiates only a small fraction of the energy. In this ...

  5. Sediment transport in a surface-advected estuarine plume

    Yao, H. Y.; Leonardi, N.; Li, J. F.; Fagherazzi, S.


    The interplay between suspended-sediment transport and plume hydrodynamics in a surface-advected estuarine plume is studied using a three-dimensional numerical model. Our analysis focuses on the formation of a sediment-rich alongshore current and on the effect of sediments on the structure of the recirculating freshwater bulge. We introduce the ratio Y between the traveling time of sediment along the bulge edge and the settling timescale. When Y 1 the sediments are deposited within the bulge. We find that a critical range of settling velocities exist above which no transport in the costal current is allowed. Critical settling-velocity values increase with river discharge. Therefore, low magnitude and long-lasting floods promote sediment sorting in the continental shelf. We further find that, for a given flood duration, intermediate flood magnitudes at the limit between subcritical and supercritical flow maximize the alongshore sediment transport. Similarly, for a fixed input of water and sediments, intermediate discharge durations maximize alongshore sediment transport.

  6. Mass loss from advective accretion disc around rotating black holes

    Aktar, Ramiz; Nandi, Anuj


    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter, PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (${\\mathcal E}$) and specific angular momentum ($\\lambda$) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole ($a_k$) plays an important role in deciding the outflow rate $R_{\\dot m}$ (ratio of mass flux of outflow and inflow), in particular, $R_{\\dot m}$ is directly correlated with $a_k$ for the same set of inflow parameters. It is found that ...

  7. A generalized advection formalism for relativistic fluid simulations

    Call, Jay M; Tohline, Joel E [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Lehner, Luis, E-mail: tohline@lsu.ed [Perimeter Institute for Theoretical Physics, 31 Caroline St N Waterloo, Ontario N2 L 2Y5 (Canada)


    While it is possible to numerically evolve the relativistic fluid equations using any chosen coordinate mesh, typically there will be computational advantages associated with certain choices. For example, astrophysical flows that are governed by rotation tend to give rise to advection variables that are naturally conserved when a cylindrical mesh is used. On the other hand, Cartesian-like coordinates afford a more straightforward implementation of adaptive mesh refinement and avoid the appearance of coordinate singularities. Here we show how it may be possible to reap the benefits associated with multiple coordinate systems simultaneously in numerical simulations. This could be accomplished by implementing a hybrid numerical scheme: one that evolves a set of state variables adapted to one set of coordinates on a mesh defined by an alternative set of coordinates. We provide a formalism (a generalization of the much-used Valencia formulation) by which this can be done. We suggest that a preferred approach to modeling astrophysical flows that are dominated by rotation involves the evolution of inertial-frame cylindrical momenta (i.e. radial momentum, angular momentum and vertical momentum) and the Jacobi energy on a corotating Cartesian coordinate grid.

  8. Transistor oscillator and amplifier grids

    Weikle, Robert M., II; Kim, Moonil; Hacker, Jonathan B.; De Lisio, Michael P.; Popvić, Zoya B.; Rutledge, David B.


    Although quasi-optical techniques are applicable to a large variety of solid-state devices, special attention is given to transistors, which are attractive because they can be used as either amplifiers or oscillators. Experimental results for MESFET bar-grid and planar grid oscillators are presented. A MESFET grid amplifier that receives only vertically polarized waves at the input and radiates horizontally polarized waves at the output is discussed. These planar grids can be scaled for opera...




    Chaotic characteristics in the iteration of logistic map (one-dimensional discrete dynamic system) are simulatedand analyzed. The circuit implementation of a kind of chaotic amplifier model is based on the chaotic characteristicsthat chaos is sensitively dependent on its initial conditions, and the circuit simulation result is given using simulationprogram with integrated circuit emphasis for personal computer (PSPICE), and is compared with linear amplifier.Advantages and disadvantages of such a model are indicated.

  10. Casimir force on amplifying bodies

    Sambale, Agnes; Welsch, Dirk-Gunnar; Buhmann, Stefan Yoshi; Dung, Ho Trung


    Based on a unified approach to macroscopic QED that allows for the inclusion of amplification in a limited space and frequency range, we study the Casimir force as a Lorentz force on an arbitrary partially amplifying system of linearly locally responding (isotropic) magnetoelectric bodies. We demonstrate that the force on a weakly polarisable/magnetisable amplifying object in the presence of a purely absorbing environment can be expressed as a sum over the Casimir--Polder forces on the excite...



    Check in With Singapore Airlines, Check out With Paypal Singapore Airlines customers in the United States, Singapore and five other Asia Pacific countries and territories can now pay for their flights with PayPal on This facility will progressively be made available to the airline’s customers in up to 17 countries, making this the largest collaboration between PayPal and an Asian carrier to date.

  12. Computational space flight mechanics

    Weiland, Claus


    Computational Space Flight Mechanics presents numerical solutions for topics and problems within space flight mechanics. Topics include orbit determination, Lagrange's perturbation equations for disturbed Earth's orbits, the flight of a mass point in flight path coordinates, and more.

  13. Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.

    Mills, Brantley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.

  14. The contiguous domains of Arctic Ocean advection: Trails of life and death

    Wassmann, P.; Kosobokova, K. N.; Slagstad, D.; Drinkwater, K. F.; Hopcroft, R. R.; Moore, S. E.; Ellingsen, I.; Nelson, R. J.; Carmack, E.; Popova, E.; Berge, J.


    The central Arctic Ocean is not isolated, but tightly connected to the northern Pacific and Atlantic Oceans. Advection of nutrient-, detritus- and plankton-rich waters into the Arctic Ocean forms lengthy contiguous domains that connect subarctic with the arctic biota, supporting both primary production and higher trophic level consumers. In turn, the Arctic influences the physical, chemical and biological oceanography of adjacent subarctic waters through southward fluxes. However, exports of biomass out of the Arctic Ocean into both the Pacific and Atlantic Oceans are thought to be far smaller than the northward influx. Thus, Arctic Ocean ecosystems are net biomass beneficiaries through advection. The biotic impact of Atlantic- and Pacific-origin taxa in arctic waters depends on the total supply of allochthonously-produced biomass, their ability to survive as adults and their (unsuccessful) reproduction in the new environment. Thus, advective transport can be thought of as trails of life and death in the Arctic Ocean. Through direct and indirect (mammal stomachs, models) observations this overview presents information about the advection and fate of zooplankton in the Arctic Ocean, now and in the future. The main zooplankton organisms subjected to advection into and inside the Arctic Ocean are (a) oceanic expatriates of boreal Atlantic and Pacific origin, (b) oceanic Arctic residents and (c) neritic Arctic expatriates. As compared to the Pacific gateway the advective supply of zooplankton biomass through the Atlantic gateways is 2-3 times higher. Advection characterises how the main planktonic organisms interact along the contiguous domains and shows how the subarctic production regimes fuel life in the Arctic Ocean. The main differences in the advective regimes through the Pacific and Atlantic gateways are presented. The Arctic Ocean is, at least in some regions, a net heterotrophic ocean that - during the foreseeable global warming trend - will more and more rely

  15. Low-Noise Band-Pass Amplifier

    Kleinberg, L.


    Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.

  16. EMI-resilient amplifier circuits

    van der Horst, Marcel J; Linnenbank, André C


    This book enables circuit designers to reduce the errors introduced by the fundamental limitations and electromagnetic interference (EMI) in negative-feedback amplifiers.  The authors describe a systematic design approach for application specific negative-feedback amplifiers, with specified signal-to-error ratio (SER).  This approach enables designers to calculate noise, bandwidth, EMI, and the required bias parameters of the transistors used in  application specific amplifiers in order to meet the SER requirements.   ·         Describes design methods that incorporate electromagnetic interference (EMI) in the design of application specific negative-feedback amplifiers; ·         Provides designers with a structured methodology to avoid the use of trial and error in meeting signal-to-error ratio (SER) requirements; ·         Equips designers to increase EMI immunity of the amplifier itself, thus avoiding filtering at the input, reducing the number of components and avoiding detr...

  17. Spectroscopic amplifier for pin diode

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  18. A diffusive Fisher-KPP equation with free boundaries and time-periodic advections

    Sun, Ningkui; Lou, Bendong; Zhou, Maolin


    We consider a reaction-diffusion-advection equation of the form: $u_t=u_{xx}-\\beta(t)u_x+f(t,u)$ for $x\\in (g(t),h(t))$, where $\\beta(t)$ is a $T$-periodic function representing the intensity of the advection, $f(t,u)$ is a Fisher-KPP type of nonlinearity, $T$-periodic in $t$, $g(t)$ and $h(t)$ are two free boundaries satisfying Stefan conditions. This equation can be used to describe the population dynamics in time-periodic environment with advection. Its homogeneous version (that is, both $...

  19. Gaussian amplifier for nuclear spectrometry

    One of the major goals of nuclear spectrometry is the determination of the energy spectrum of a radioactive source. To measure this spectrum with electronic instrumentation one need to use a nuclear spectrometry chain of which the amplifier is part of, and whose filter shaping considerably influences the final energy resolution achieved. The amplifier released accomplishes a 7th order Gaussian filter shape with Taylor series approximation synthesized by the Shifted Companion Form and mounted using only electronic components availablein Brazil. The final version has been tested and the results showed a very good performance and the energy resolution achieved was equivalent to the imported models. (Author)

  20. Boundary value problemfor multidimensional fractional advection-dispersion equation

    Khasambiev Mokhammad Vakhaevich


    authors first considered the boundary value problem for stationary equation for mass transfer in super-diffusion conditions and abnormal advection. Then the solution of the problem is explicitly given. The solution is obtained by the Fourier’s method.The obtained results will be useful in liquid filtration theory in fractal medium and for modeling the temperature variations in the heated bar.

  1. Clay with Desiccation Cracks is an Advection Dominated Environment

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.


    , indicating deep soil evaporation. Daily fluctuation of the air temperature in the desiccation cracks supported thermally induced air convection within the cracks void and could explain the deep soil salinization process. Combination of all the abovementioned observations demonstrated that the formation of desiccation cracks network in dispersive clay sediments generates a bulk advection dominated environment for both air and water flow, and that the reference to clay sediments as "hydrologically safe" should to be reconsidered.

  2. Rigorous upper bounds for fluid and plasma transport due to passive advection

    The formulation of variational principles for transport due to passive advection is described. A detailed account of the work has been published elsewhere. In the present paper, the motivations, philosophy, and implications of the method are briefly discussed. 15 refs

  3. Sensitivity of Gcm Inm Ras To The Change of Humidity Advection Scheme

    Kostrykin, S. V.

    We study the influence of change the numerical scheme used for humidity advection in the GCM INM RAS on the model results. The previously used advection scheme of the second order ­ leap-frog was changed on the semi-lagrangian cip scheme of the third order. It has shown that the last scheme has excelent numerical properties among other common semi-lagrangian schemes dealing with precise advection of sharp gra- dients. The numerical expriments with GCM has shown that the main changes in the humidity and temperature fields has happend near tropopause. More closeness of the model fields obtained with new advection of humidity to the NCAR/NCEP reanalyses fields are shown.


    Many numerical methods use characteristic analysis to accommodate the advective component of transport. uch characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. eneralization of characteristic...


    Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...

  6. Kinetics and spatial organization in reactive systems with nonpassively advected reactants

    A reactive system under the influence of a turbulent flow leads to a diversity of kinetic regimes that result from the interplay between reaction, advection and drag forces. Inertial bias collects reactants preferentially in certain regions of the flow depending on their density, and this fact strongly determines the overall kinetic behaviour and the spatial organization of the reactive mixture. We present a Eulerian scheme for the advection terms in a kinetic mean-field model that is better suited to the study of nonpassively advected reactive systems than the original Lagrangian approach. We show two examples of these systems: first, a formal study of the typical binary diffusion-controlled reaction A+B →0, when the reactants are nonpassively advected; second, application to the study of plankton dynamics in the ocean that reproduces the well-known periodically sustained plankton blooms

  7. Particle transport in flow through porous media: advection, longitudinal dispersion, and filtration

    Mau, Russell Edgar


    A theoretical and experimental investigation of the transport parameters of particles flowing through porous media has been made. These parameters are the particle advective velocity, longitudinal dispersion coefficient, and filter coefficient. Both theoretical and experimental results are limited to flows with low Reynolds number (linear, laminar flow) and high Peclet number (advection dominates diffusion). The theoretical development used dimensionless numbers to define the transport par...

  8. A zoomable and adaptable hidden fine-mesh approach to solving advection-dispersion equations

    A zoomable and adaptable hidden fine-mesh approach (ZAHFMA), that can be used with either finite element or finite difference methods, is proposed to solve the advection-dispersion equation. The approach is based on automatic adaptation of zooming a hidden fine-mesh in the place where the sharp front locates. Preliminary results indicate that ZAHFMA used with finite element methods can handle the advection-dispersion problems with Peclet number ranging from 0 to ∞. 5 refs., 2 figs

  9. Numerical methods for advection-diffusion-reaction equations and medical applications

    Montecinos, Gino Ignacio


    The purpose of this thesis is twofold, firstly, the study of a relaxation procedure for numerically solving advection-diffusion-reaction equations, and secondly, a medical application. Concerning the first topic, we extend the applicability of the Cattaneo relaxation approach to reformulate time-dependent advection-diffusion-reaction equations, that may include stiff reactive terms, as hyperbolic balance laws with stiff source terms. The resulting systems of hyperbolic balance laws are solved...

  10. Evaluating two numerical advection schemes in HYCOM for eddy-resolving modelling of the Agulhas Current

    Backeberg, B. C.; Bertino, L.; J. A. Johannessen


    A 4th order advection scheme is applied in a nested eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) of the greater Agulhas Current system for the purpose of testing advanced numerics as a means for improving the model simulation for eventual operational implementation. Model validation techniques comparing sea surface height variations, sea level skewness and variogram analyses to satellite altimetry measurements quantify that generally the 4th order advection scheme improves the realism...

  11. Deterministic models of groundwater age, life expectancy and transit time distributions in advective-dispersive systems

    Cornaton, Fabien; Perrochet, Pierre


    The main objective of this dissertation consisted in the elaboration of a methodology to determine reservoir groundwater age, life expectancy, and transit time probability distributions in a deterministic manner, considering advective-dispersive transport in steady velocity fields. In the first section, it is shown that by modelling the statistical distribution of groundwater age at aquifer scale by means of the classical advection-dispersion equation (ADE) for a conservative and non-reactive...

  12. A wideband dc-coupled amplifier

    A method is described whereby an ac-coupled high-frequency amplifier and a dc-coupled low-frequency amplifier are connected in parallel in order to obtain a dc-coupled wideband amplifier. By using an operational amplifier which compares the output voltage with the input voltage, the low-frequency amplifier contributes to the overall gain only when the gain of the ac-coupled amplifier droops at low frequencies. Thus, no frequency splitting networks are necessary and the excellent low-frequency features of an operational amplifier are added to those of the ac-coupled wideband amplifier. As an example, a low noise amplifier is described which exhibits a hundredfold gain, a bandwidth from dc to 550 MHz, an input bias current of less than 1 nA, and an output voltage range of ±1 V

  13. Characterisation Of Low Noise Amplifier



    Full Text Available Amplification is one of the most basic and prevalent microwave circuit functions inmodern RF and microwave systems. Early microwave amplifiers relied on tubes, such asklystrons and traveling-wave tubes, or solid-state reflection amplifiers based on thenegative resistance characteristics of tunnel or varactor diodes. But due to the dramaticimprovements and innovations in solid-state technology that have occurred since the1970s, most RF and microwave amplifiers today use transistor devices such as Si or SiGeBJTs, GaAs HBTs, GaAs or InP FETs, or GaAs HEMTs. Microwave transistor amplifiersare rugged, low-cost, reliable, and can be easily integrated in both hybrid andmonolithic integrated circuitry. Transistor amplifiers can be used at frequencies inexcess of 100 GHz in a wide range of applications requiring small size, low-noise figure,broad bandwidth, and low to medium power capacity. Although microwave tubes are stillrequired for very high power and/or very high frequency applications, continuingimprovement in the performance of microwave transistors is steadily reducing the needfor microwave tubes

  14. Dielectric waveguide amplifiers and lasers

    Pollnau, M.


    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length o

  15. Low Cost RF Amplifier for Community TV

    Ch, Syafaruddin; Sasongko, Sudi Mariyanto Al; Made Budi Suksmadana, I.; Mustiko Okta Muvianto, Cahyo; Ariessaputra, Suthami


    he capability of television to deliver audio video makes this media become the most effective method to spread information. This paper presents an experiment of RF amplifier design having low-cost design and providing sufficient RF power particularly for community television. The RF amplifier consists of two stages of amplifier. The first stage amplifier was used to leverage output of TV modulator from 11dBm to enable to drive next stage amplifier. CAD simulation and fabrication were run to reach optimum RF amplifier design circuit. The associated circuit was made by determining stability circle, stability gain, and matching impedance. Hence, the average power of first stage RF amplifier was 24.68dBm achieved. The second stage used RF modules which was ready match to 50 ohm for both input and output port. The experiment results show that the RF amplifier may operate at frequency ranging from 174 to 230MHz. The average output power of the 2nd stage amplifier was 33.38 Watt with the overall gain of 20.54dB. The proposed RF amplifier is a cheap way to have a stable RF amplifier for community TV. The total budget for the designed RF amplifier is only a 1/5 compared to local design of final TV amplifier.

  16. Amplifying the evanescent field of free electrons

    So, J.-K.; Ou, J.-Y.; Adamo, G.; García de Abajo, F. J.; MacDonald, K. F.; Zheludev, N.I.


    We provide the first experimental demonstration that the evanescent field of free electrons can be amplified by a plasmonic nanolayer in much that same way as optical evanescent fields are amplified in the ‘poor-man’s superlens’.

  17. Amplifying free-electron evanescent fields

    So, J.-K.; Ou, J.-Y.; Adamo, G.; García de Abajo, F. J.; MacDonald, K. F.; Zheludev, N.I.


    We show experimentally for the first time that free-electron evanescent fields can be amplified by a plasmonic nanolayer in a manner analogous to the way in which optical fields are amplified in the poor-man's superlens.

  18. Analog circuit design designing high performance amplifiers

    Feucht, Dennis


    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  19. Compact dual channel spectroscopy amplifier cum discriminator

    A single width NIM module having two channels of spectroscopy amplifier cum discriminator has been developed for Nuclear Physics experiments at IUAC. Each channel contains a shaping amplifier along with logic circuits to generate the energy and timing information respectively

  20. Single conversion stage amplifier - SICAM

    Ljusev, P.


    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  1. European Research on THz Vacuum Amplifiers

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.; Di Carlo, A.; Dispenza, M.; Dolfi, D.; Durand, A.; Fiorello, A.; Gohier, A.; Guiset, P.; Korantia, M.; Krozer, V.; Legagneux, P.; Marchesin, R.; Megtert, S.; Bouamrane, F.; Mineo, M.; Paoloni, C.; Pham, K.; Schnell, J.P.; Secchi, A.; Tamburri, E.; Terranova, M.L.; Ulisse, G.; Zhurbenko, Vitaliy

    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players of the Eu...... European research, academy and industry in vacuum electronics. This paper describes the status of the project and progress towards the THz amplifier realization....

  2. Improved charge amplifier using hybrid hysteresis compensation

    Amin-Shahidi, Darya; Trumper, David L.


    We present a novel charge amplifier, with a robust feedback circuit and a method for compensating piezoelectric actuator's hysteresis at low frequencies. The amplifier uses a modified feedback circuit which improves robustness to the addition of series load impedance such as in cabling. We also describe a hybrid hysteresis compensation method for enabling the charge amplifier to reduce hysteresis at low frequencies. Experimental results demonstrate the utility of the new amplifier design.

  3. Quantum Theory of Laser Amplifiers.

    Mander, Gillian Linda

    Available from UMI in association with The British Library. Requires signed TDF. We calculate the input-output characteristics of a below threshold laser amplifier. Expressions are derived for the output second- and fourth-order spectral and temporal correlation functions in terms of the corresponding input quantities, and for the photocount first and second factorial moments for both homodyne and direct detection. The general results are applied to several cases of practical interest, including specific non-classical input states. We show that a maximum of twofold amplification is permitted if squeezing in the input is to survive at the output. Similarly, for preservation of photon antibunching in amplification we show that only very small gains are allowed. The model treated here provides a detailed example of the amplifier noise limitations imposed by quantum mechanics. In particular, we show that minimum noise occurs in a cavity that is asymmetric with respect to the mirror reflectivities. The latter part of this work treats the above threshold laser amplifier. The laser output is back-scattered from a moving target to provide a weak Doppler-shifted signal which re-enters the laser cavity and is amplified. We show that the three-level atomic lasing medium is equivalent to a two-level medium pumped by an inverted bath. We use the methods of quantum statistical analysis to obtain time -evolution equations for the c-number amplitudes of the laser and signal fields. We show that the results may be applied to the below threshold regime for appropriate values of the pump parameter. By considering the amplitude differential gain we show explicitly that the behaviour of the laser around threshold is characteristic of a second -order phase transition. We calculate the output intensity gain appropriate to a heterodyne detection process, and find good agreement between the predicted gain profiles and measured data for both carbon dioxide and argon-ion lasers.

  4. Compact, harmonic multiplying gyrotron amplifiers

    Guo, H.Z.; Granatstein, V.L.; Antonsen, T.M. Jr.; Levush, B.; Tate, J.; Chen, S.H. [Univ. of Maryland, College Park, MD (United States). Inst. for Plasma Research


    A compact, harmonic multiplying gyrotron traveling wave amplifier is being developed. The device is a three-stage tube with the output section running as a fourth harmonic gyro-TWT, the input section running as a fundamental gyro-TWT, and the middle operating at the second harmonic of the cyclotron frequency. Radiation is suppressed by servers between the sections. The operating beam of the tube is produced by a magnetron injection gun (MIG). A TE{sub 0n} mode selective interaction circuit consisting of mode converters and a filter waveguide is employed for both input and output sections to solve the mode competition problem, which is pervasive in gyro-TWT operation. The input section has an input coupler designed as a TE{sub 0n} mode launcher. It excites a signal at the fundamental cyclotron frequency (17.5 GHz), which is amplified in the first TWT interaction region. So far the device is similar to a two-stage harmonic gyro-TWT. The distinction is that in the three-stage device the second section will be optimized not for output power but for fourth harmonic bunching of the beam. A gyroklystron amplifier has also been designed. The configuration is similar to the gyro-TWT but with the traveling wave interaction structures replaced by mode selective special complex cavities. Cold test results of the wideband input coupler and the TE{sub 0n} mode selective interaction circuit have been obtained.

  5. SPS RF System Amplifier plant


    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  6. European Research on THz Vacuum Amplifiers

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.;


    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players of the Eu...

  7. NASA developments in solid state power amplifiers

    Leonard, Regis F.


    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  8. Solid state, S-band, power amplifier

    Digrindakis, M.


    The final design and specifications for a solid state, S-band, power amplifier is reported. Modifications from a previously proposed design were incorporated to improve efficiency and meet input overdrive and noise floor requirements. Reports on the system design, driver amplifier, power amplifier, and voltage and current limiter are included along with a discussion of the testing program.

  9. Solid state ku-band power amplifier

    Bowers, H. C.; Lockyear, W. H.


    The design, fabrication, and testing of two types of IMPATT diode reflection amplifiers and a transmission amplifier are given. The Ku-band IMPATT diode development is discussed. Circuitry and electrical performance of the final version of the Ku-band amplifier is described. Construction details and an outline and mounting drawing are presented.

  10. low pump power photonic crystal fibre amplifiers

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard


    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  11. Diagnosis of a Moist Thermodynamic Advection Parameter in Heavy-Rainfall Events

    WU Xiandu; RAN Lingkun; CHU Yanli


    A moist thermodynamic advection parameter, defined as an absolute value of the dot product of horizontal gradients of three-dimensional potential temperature advection and general potential temperature, is introduced to diagnose frontal heavy rainfall events in the north of China. It is shown that the parameter is closely related to observed 6-h accumulative surface rainfall and simulated cloud hydrometeors. Since the parameter is capable of describing the typical vertical structural characteristics of dynamic, thermodynamic and water vapor fields above a strong precipitation region near the front surface, it may serve as a physical tracker to detect precipitable weather systems near to a front.A tendency equation of the parameter was derived in Cartesian coordinates and calculated with the simulation output data of a heavy rainfall event. Results revealed that the advection of the parameter by the three-dimensional velocity vector, the covariance of potential temperature advection by local change of the velocity vector and general potential temperature, and the interaction between potential temperature advection and the source or sink of general potential temperature, accounted for local change in the parameter. This indicated that the parameter was determined by a combination of dynamic processes and cloud microphysical processes.

  12. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach

    In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon–Vey invariant for special flows for which the magnetic helicity is zero are also discussed. (paper)

  13. NIF/LMJ prototype amplifier mechanical design

    Amplifier prototypes for the National Ignition Facility and the Laser Megajoule will be tested at Lawrence Livermore National Laboratory. The prototype amplifier, which is an ensemble of modules from LLNL and Centre d'Etudes de Limeil-Valenton, is cassette-based with bottom access for maintenance. A sealed maintenance transfer vehicle which moves optical cassettes between the amplifier and the assembly cleanroom, and a vacuum gripper which holds laser slabs during cassette assembly will also be tested. The prototype amplifier will be used to verify amplifier optical performance, thermal recovery time, and cleanliness of mechanical operations

  14. An Implantable CMOS Amplifier for Nerve Signals

    Nielsen, Jannik Hammel; Lehmann, Torsten

    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. The amplifier is constructed in a fully differential topology to maximize noise rejection. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved....... A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard...

  15. Study on the ELDRS of bipolar linear operational amplifier

    Bipolar linear devices laboratory irradiation testing results are significantly different from the actual in flight exposure to the radiation. In this paper the total dose irradiation of operational amplifiers, and analysis upon the total dose response of these bipolar circuits under the different test conditions were investigated in the same experiment. Total dose tests of bipolar linear operational amplifiers show susceptible to dose rate, bias and room temperature annealing during exposure. The critical sensitive parameters of operational amplifier are input bias current, input offset current, input offset voltage, and open loop gain, which exhibits both bias and dose rate dependence. With calculating the change of each electrical parameter (Δpara) for each sample at 300 Gy radiation level, it has been found that ratio of the Δpara at low dose rate to the Δpara at high dose rate exceeds 2.46 times for any of the parameters. So these parts are considered to be ELDRS susceptible. After room temperature annealing, the main parameters have time dependence effect at low dose rate and without time dependent effect at high dose rate. (authors)

  16. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample

    Ebner, Pirmin Philipp; Schneebeli, Martin; Steinfeld, Aldo


    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray microtomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Cold saturated air at the inlet was blown into the snow samples and warmed up while flowing across the sample with a temperature gradient of around 50 K m-1. Changes of the porous ice structure were observed at mid-height of the snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.

  17. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.;


    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...... flows at steady state. However, greater pressure gradients are found in low-permeability soils. In transient cases, advective fluxes depend on the initial conditions and can be far greater than diffusive fluxes. In contrast to steady state conditions the transient case is sensitive to other model...

  18. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    Mazaheri, Alireza; Nishikawa, Hiroaki


    A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.


    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  20. High temperature charge amplifier for geothermal applications

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.


    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  1. Advection-diffusion model for the stagnation of normal grain growth in thin films

    Lou, C.; Player, M.A. [Department of Engineering, University of Aberdeen, Aberdeen (United Kingdom)


    This paper presents an advection-diffusion model to describe the stagnation of normal grain growth in thin films. The underlying advection-diffusion model describes grain growth in a two-dimensional topological-class/size space. Grain boundary grooving and the correlation between neighbouring grains are introduced into the model to represent stagnation. Grain boundary grooving causes the stagnation of grain growth, and the correlation between neighbouring grains accelerates the effects of stagnation. Numerical solution of continuity equations gives a grain size distribution that is close to log-normal, and fits experiments well. The time development of average grain size also shows the stagnation of grain growth. (author)

  2. Audio power amplifier design handbook

    Self, Douglas


    This book is essential for audio power amplifier designers and engineers for one simple enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Cro

  3. Cathode-follower power amplifier

    In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms

  4. High power RF solid state power amplifier system

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)


    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  5. A global spectral element model for poisson equations and advective flow over a sphere

    Mei, Huan; Wang, Faming; Zeng, Zhong; Qiu, Zhouhua; Yin, Linmao; Li, Liang


    A global spherical Fourier-Legendre spectral element method is proposed to solve Poisson equations and advective flow over a sphere. In the meridional direction, Legendre polynomials are used and the region is divided into several elements. In order to avoid coordinate singularities at the north and south poles in the meridional direction, Legendre-Gauss-Radau points are chosen at the elements involving the two poles. Fourier polynomials are applied in the zonal direction for its periodicity, with only one element. Then, the partial differential equations are solved on the longitude-latitude meshes without coordinate transformation between spherical and Cartesian coordinates. For verification of the proposed method, a few Poisson equations and advective flows are tested. Firstly, the method is found to be valid for test cases with smooth solution. The results of the Poisson equations demonstrate that the present method exhibits high accuracy and exponential convergence. Highprecision solutions are also obtained with near negligible numerical diffusion during the time evolution for advective flow with smooth shape. Secondly, the results of advective flow with non-smooth shape and deformational flow are also shown to be reasonable and effective. As a result, the present method is proved to be capable of solving flow through different types of elements, and thereby a desirable method with reliability and high accuracy for solving partial differential equations over a sphere.

  6. Development of Multigrid Methods for diffusion, Advection, and the incompressible Navier-Stokes Equations

    Gjesdal, Thor


    This thesis discusses the development and application of efficient numerical methods for the simulation of fluid flows, in particular the flow of incompressible fluids. The emphasis is on practical aspects of algorithm development and on application of the methods either to linear scalar model equations or to the non-linear incompressible Navier-Stokes equations. The first part deals with cell centred multigrid methods and linear correction scheme and presents papers on (1) generalization of the method to arbitrary sized grids for diffusion problems, (2) low order method for advection-diffusion problems, (3) attempt to extend the basic method to advection-diffusion problems, (4) Fourier smoothing analysis of multicolour relaxation schemes, and (5) analysis of high-order discretizations for advection terms. The second part discusses a multigrid based on pressure correction methods, non-linear full approximation scheme, and papers on (1) systematic comparison of the performance of different pressure correction smoothers and some other algorithmic variants, low to moderate Reynolds numbers, and (2) systematic study of implementation strategies for high order advection schemes, high-Re flow. An appendix contains Fortran 90 data structures for multigrid development. 160 refs., 26 figs., 22 tabs.

  7. Accuracy of spectral and finite difference schemes in 2D advection problems

    Naulin, V.; Nielsen, A.H.


    In this paper we investigate the accuracy of two numerical procedures commonly used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered fast, relatively easy to...

  8. An objective method for computing advective surface velocities from sequential infrared satellite images

    Emery, W. J.; Thomas, A. C.; Collins, M. J.; Crawford, W. R.; Mackas, D. L.


    Using cross correlations between sequential infrared satellite images, an objective technique is developed to compute advective sea surface velocities. Cross correlations are computed in 32 × 32 pixel search (second image) and 22 × 22 template (first image) windows from gradients of sea surface temperature computed from the satellite images. Velocity vectors, computed from sequential images of the British Columbia coastal ocean, generally appear coherent and consistent with the seasonal surface current in the region. During periods of strong wind forcing, as indicated by maps of sea level pressure, the image advective velocities are stronger and more coherent spatially and appear to cross surface temperature gradients; when winds are weaker, the advective velocities correspond better with the infrared temperature patterns, suggesting the increased contribution of the geostrophic current to the surface flow. Velocities determined from coincident, near-surface drogued (5-10 m) buoys, positioned every half hour by internal LORAN-C units in mid-June, show excellent agreement with the image advective velocities. In addition, conductivity, temperature, and depth (CTD) measurements (taken during the buoy tracking) confirm the homogeneity of the upper 10 m, and CTD-derived geostrophic currents are consistent with both buoy and sequential image displacement velocities.


    Relatively narrow forest stands such as the riparian Tamarisk bordering the Rio Grande are subject to dry air advection from the adjacent semi-desert environment. The transport of warm dry air into the canopy has a profound effect upon the spatial properties of the moisture field and associated lat...

  10. General Solution of a Fractional Diffusion-Advection Equation for Solar Cosmic-Ray Transport

    Rocca, M C; Plastino, A; De Paoli, A L


    In this effort we exactly solve the fractional diffusion-advection equation for solar cosmic-ray transport proposed in \\cite{LE2014} and give its {\\it general solution} in terms of hypergeometric distributions. Also, we regain all the results and approximations given in \\cite{LE2014} as {\\it particular cases} of our general solution.

  11. New Solution of a Fractional Diffusion-Advection Equation Using Ultradistributions

    Rocca, M C; Plastino, A R; De Paoli, A L


    In this paper we exactly solve the fractional diffusion-advection equation. For this purpose we use the Theoy of Ultradistributions of J. Sebastiao e Silva, to give a general solution for this equation. From this solution, we obtain several approximations as limiting cases of various situations of physical and astrophysical interest. One of them involves cosmic rays' diffusion.

  12. Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation

    Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-w...

  13. Process of advective diffusive enrichment using differential gradients and the effects of variations in relaxation times

    A multicomponent solution is considered in advective diffusion chambers between two half-permeable barriers. A mathematical model is developed to calculate the concentration fields in the chamber. A new enrichment process is proposed and assessed using a digital simulation of space-time dynamics, based on the analytical solution of the model

  14. Digital simulation of an enrichment process for solutions by means of an advection-diffusion chamber

    An ab-initio digital simulation of the space-time dynamics of the concentration field of a solute in an advection-diffusion chamber is done. Some questions related to the digital simulation of the concentration field using the analytical solution obtained in a previous paper are discussed

  15. Isoline retrieval: An optimal sounding method for validation of advected contours

    Mills, Peter


    The study of chaotic mixing is important for its potential to improve our understanding of fluid systems. Contour advection simulations provide a good model of the phenomenon by tracking the evolution of one or more contours or isolines of a trace substance to a high level of precision. The most accurate method of validating an advected contour is to divide the tracer concentration into discrete ranges and perform a maximum likelihood classification, a method that we term, "isoline retrieval." Conditional probabilities generated as a result provide excellent error characterization. In this study, a water vapour isoline of 0.001 mass-mixing-ratio is advected over five days in the upper troposphere and compared with high-resolution AMSU (Advanced Microwave Sounding Unit) satellite retrievals. The goal is to find the same fine-scale, chaotic mixing in the isoline retrievals as seen in the advection simulations. Some of the filaments generated by the simulations show up in the conditional probabilities as areas o...

  16. Satellite-advection based solar forecasting: lessons learned and progress towards probabalistic solar forecasting

    Rogers, M. A.


    Using satellite observations from GOES-E and GOES-W platforms in concert with GFS-derived cloud-level winds and a standalone radiative transfer model, an advection-derived forecast for surface GHI over the continental United States, with intercomparison between forecasts for four zones over the CONUS and Central Pacific with SURFRAD results. Primary sources for error in advection-based forecasts, primarily driven by false- or mistimed ramp events are discussed, with identification of error sources quantified along with techniques used to improve advection-based forecasts to approximately 10% MAE for designated surface locations. Development of a blended steering wind product utilizing NWP output combined with satellite-derived winds from AMV techniques to improve 0-1 hour advection forecasts will be discussed. Additionally, the use of two years' of solar forecast observations in the development of a prototype probablistic forecast for ramp events will be shown, with the intent of increasing the use of satellite-derived forecasts for grid operators and optimizing integration of renewable resources into the power grid. Elements of the work were developed under the 'Public-Private-Academic Partnership to Advance Solar Power Forecasting' project spearheaded by the National Center for Atmospheric Research.

  17. Shell model for time-correlated random advection of passive scalars

    Andersen, Ken Haste; Muratore-Ginanneschi, P.


    We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...


    Based on the no-outflow assumption, we investigate steady-state, axisymmetric, optically thin accretion flows in spherical coordinates. By comparing the vertically integrated advective cooling rate with the viscous heating rate, we find that the former is generally less than 30% of the latter, which indicates that the advective cooling itself cannot balance the viscous heating. As a consequence, for radiatively inefficient flows with low accretion rates such as M-dot ≲10−3 M-dot Edd, where M-dot Edd is the Eddington accretion rate, the viscous heating rate will be larger than the sum of the advective cooling rate and the radiative cooling one. Thus, no thermal equilibrium can be established under the no-outflow assumption. We therefore argue that in such cases outflows ought to occur and take away more than 70% of the thermal energy generated by viscous dissipation. Similarly, for optically thick flows with extremely large accretion rates such as M-dot ≳10 M-dot Edd, outflows should also occur owing to the limited advection and the low efficiency of radiative cooling. Our results may help to understand the mechanism of outflows found in observations and numerical simulations

  19. Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection

    Hoedjes, J.C.B.; Zuurbier, R.M.; Watts, J.C.


    Scintillometer measurements were collected over an irrigated wheat field in a semi-arid region in northwest Mexico. Conditions were unstable in the morning and stable during the afternoon, while latent heat fluxes remained high throughout the day. Regional advection was observed during near-neutral

  20. Spectrum of Optically Thin Advection Dominated Accretion Flow around a Black Hole Application to Sgr A*

    Manmoto, T; Kusunose, M


    The global structure of optically thin advection dominated accretion flows which are composed of two-temperature plasma around black holes is calculated. We adopt the full set of basic equations including the advective energy transport in the energy equation for the electrons. The spectra emitted by the optically thin accretion flows are also investigated. The radiation mechanisms which are taken into accout are bremsstrahlung, synchrotron emission, and Comptonization. The calculation of the spectra and that of the structure of the accretion flows are made to be completely consistent by calculating the radiative cooling rate at each radius. As a result of the advection domination for the ions, the heat transport from the ions to the electrons becomes practically zero and the radiative cooling balances with the advective heating in the energy equation of the electrons. Following up on the successful work of Narayan et al. (1995), we applied our model to the spectrum of Sgr A*. We find that the spectrum of Sgr ...

  1. Alteration of chaotic advection in blood flow around partial blockage zone: Role of hematocrit concentration

    Maiti, Soumyabrata; Chaudhury, Kaustav; DasGupta, Debabrata; Chakraborty, Suman


    Spatial distributions of particles carried by blood exhibit complex filamentary pattern under the combined effects of geometrical irregularities of the blood vessels and pulsating pumping by the heart. This signifies the existence of so called chaotic advection. In the present article, we argue that the understanding of such pathologically triggered chaotic advection is incomplete without giving due consideration to a major constituent of blood: abundant presence of red blood cells quantified by the hematocrit (HCT) concentration. We show that the hematocrit concentration in blood cells can alter the filamentary structures of the spatial distribution of advected particles in an intriguing manner. Our results reveal that there primarily are two major impacts of HCT concentrations towards dictating the chaotic dynamics of blood flow: changing the zone of influence of chaotic mixing and determining the enhancement of residence time of the advected particles away from the wall. This, in turn, may alter the extent of activation of platelets or other reactive biological entities, bearing immense consequence towards dictating the biophysical mechanisms behind possible life-threatening diseases originating in the circulatory system.

  2. Flight Test Engineering

    Pavlock, Kate Maureen


    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  3. High-efficiency solid state power amplifier

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)


    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.


    Trunev A. P.


    Full Text Available The article presents a project of the Yang-Mills amplifier. Amplifier model is a multilayer spherical shell with increasing density towards the center. In the center of the amplifier is the core of high-density material. It is shown that in such a system, the amplitude of the Yang-Mills waves rises from the periphery to the center of several orders of magnitude. The role of the Yang-Mills field in the processes occurring in the nuclei of galaxies, stars and planets is discussed. The data modeling to strengthen the Yang-Mills field in the bowels of the planet, with an atomic explosion, and in some special devices such as the voltaic pile. To describe the mechanism of amplification chromodynamics field used as accurate results in Yang-Mills theory and numerical models developed based on an average and the exact equations as well. Among the exact solutions of the special role played by the centralsymmetric metric describing the contribution of the Yang-Mills field in the speed of recession of galaxies. Among the approximate numerical models can be noted the eight-scalar model we have developed for the simulation of non-linear color oscillations and chaos in the Yang-Mills theory. Earlier models were investigated spatio-temporal oscillations of the YangMills theory in the case of three and eight colors. The results of numerical simulation show that the nonlinear interaction does not lead to a spatial mixing of colors as it might be in the case of turbulent diffusion. Depending on the system parameters there is a suppression of the amplitude of the oscillations the first three by five colors or vice versa. The kinetic energy fluctuations or shared equally between the color components, or dominated by the kinetic energy of repressed groups of colors. In the present study, we found that amplification chromodynamic field leads to a sharp increase in the amplitude of the suppressed color, which can lead to an increase in entropy, excitation of nuclear

  5. Enhanced Gain in Photonic Crystal Amplifiers

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann;


    study of a 1 QW photonic crystal amplifier. Net gain is achieved which enables laser oscillation in photonic crystal micro cavities. The ability to freely tailor the dispersion in a semiconductor optical amplifier makes it possible to raise the optical gain considerably over a certain bandwidth. These...... results are promising for short and efficient semiconductor optical amplifiers. This effect will also benefit other devices, such as mode locked lasers....

  6. Boundary value problem for one-dimensional fractional differential advection-dispersion equation

    Khasambiev Mokhammad Vakhaevich


    Full Text Available An equation commonly used to describe solute transport in aquifers has attracted more attention in recent years. After a formal study of some aspects of the advection-diffusion equation, basically from the mathematical point of view with the solution of a differential equation with fractional derivative, the main interest to this problem shifted onto physical aspects of the dynamical system, such as the total energy and the dynamical response. In this regard it should be pointed out that the interaction with environment is expressed in terms of stochastic arrow of time. This allows one also to reach a progress in one more issue. Formerly the equation of advection-diffusion was not obtained from any physical principles. However, mainly the success concerns linear fractional systems. In fact, there are many cases in which linear treatments are not sufficient. The more general systems described by nonlinear fractional differential equations have not been studied enough. The ordinary calculus brings out clearly that essentially new phenomena occur in nonlinear systems, which generally cannot occur in linear systems. Due to vast range of application of the fractional advection-dispersion equation, a lot of work has been done to find numerical solution and fundamental solution of this equation. The research on the analytical solution of initial-boundary problem for space-fractional advection-dispersion equation is relatively new and is still at an early stage of development. In this paper, we will take use of the method of variable separation to solve space-fractional advection-dispersion equation with initial boundary data.

  7. Reflection amplifiers in self-regulated learning

    Verpoorten, Dominique


    Verpoorten, D. (2012). Reflection amplifiers in self-regulated learning. Doctoral thesis. November, 9, 2012, Heerlen, The Netherlands: Open Universiteit (CELSTEC). Datawyse / Universitaire Pers Maastricht.

  8. Dynamics of Soliton Cascades in Fiber Amplifiers

    Arteaga-Sierra, F R; Agrawal, Govind P


    We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of input pulses.

  9. Ping-pong auto-zero amplifier with glitch reduction

    Larson, Mark R.


    A ping-pong amplifier with reduced glitching is described. The ping-pong amplifier includes a nulling amplifier coupled to a switching network. The switching network is used to auto-zero a ping amplifier within a ping-pong amplifier. The nulling amplifier drives the output of a ping amplifier to a proper output voltage level during auto-zeroing of the ping amplifier. By being at a proper output voltage level, glitches associated with transitioning between a ping amplifier and a pong amplifier are reduced or eliminated.

  10. Linearisation of RF Power Amplifiers

    Nielsen, Per Asbeck


    linearisation systems with focus on polar modulation feedback, and a chip oriented part focusing on integrating of separate building blocks of the system on a chip. The system oriented part of this thesis deals with analog feedback linearisation systems. The Polar modulation feedback system is compared with the...... more traditional Cartesian modulation feedback system in terms of loop settlement and dependencies between the feedback signals. A method to calculate the distortion functions of the linearisation system (AM/AM and AM/PM)based on the distortion functions of the power amplifier is presented. Also the...... polar loop architecture and it’s suitability to modern digital transmitters is discussed. A proposal of an architecture that is suitable for digital transmitters, which means that it has an interface to the digital back-end, defined by low-pass signals in polar form, is presented. Simulation guidelines...

  11. Transverse pumped laser amplifier architecture

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary


    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  12. Improving estimates of ecosystem metabolism by reducing effects of tidal advection on dissolved oxygen time series-Abstract

    Continuous time series of dissolved oxygen (DO) have been used to compute estimates of metabolism in aquatic ecosystems. Central to this open water or "Odum" method is the assumption that the DO time is not strongly affected by advection and that effects due to advection or mixin...

  13. Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions

    Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...

  14. Correcting temporal sampling error in radar-rainfall: Effect of advection parameters and rain storm characteristics on the correction accuracy

    Seo, Bong-Chul; Krajewski, Witold F.


    This study offers a method to correct for the radar temporal sampling error when determining radar-rainfall accumulations. The authors evaluate the correction effect with respect to multiple factors associated with storm advection, rainfall characteristics, and different rainfall accumulation time scales. The advection method presented in this study uses linear interpolation of static rain storm locations observed at two intermittent radar sampling times to correct for the missed rainfall accumulations. The advection correction is applied to the high space (0.5 km) and time (5-min) resolution radar-rainfall products provided by the Iowa Flood Center. We use the ground reference data from a high quality and high density rain gauge network distributed over the Turkey River basin in Iowa to evaluate the advection corrected rain fields. We base our evaluation on six rain events and examine the correction performance/improvement with respect to the advection discretization, spatial grid aggregation, rainfall basin coverage, and conditional average rainfall intensity. The results show that the 1-min advection discretization is sufficient to represent the observed distribution of storm velocities for the presented cases. Grid aggregation that is motivated by the need to expedite the computation may induce errors in estimating advection vectors. The authors found that while the advection correction tends to enhance the QPE accuracy for intense rain storms over small or isolated areas, it has little impact on the improvement of light rain estimation.

  15. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.


    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight...

  16. Manned Flight Simulator (MFS)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  17. Aircraft vertical profiling of variation of CO2 over a Canadian Boreal Forest Site: a role of advection in the changes in the atmospheric boundary layer CO2 content

    During the period of July 8-13, 2002, we collected vertical profiles by aircraft of meteorological variables and atmospheric CO2 over the OBS (old black spruce) site located in Boreal Ecosystem Research and Monitoring Sites in Northern Saskatchewan, Canada. We have used the data from the morning and afternoon flights to calculate the regional daily afternoon CO2 flux for the days July 8-11. These daily fluxes were then compared to those obtained by the boundary layer budget method and by the eddy covariance measurements on the tower at the OBS site. We identified the importance of changes in the CO2 concentration by advection to the flux estimates. In addition, we provide arguments to suggest that subseasonal temporal averaging might not, at least in some cases, eliminate advective bias contribution to the flux estimates. Because the advective influence is large and highly directional, even on seasonal and interannual timescales, it is advisable that flux estimates based on CO2 concentration change at a site contain dynamic description of an air parcel transport history

  18. Amplified spontaneous emission and its restraint in a terawatt Ti:sapphire amplifier


    Amplified spontaneous emission (ASE) and its restraint in a femtosecond Ti: sapphire chirped_pulse amplifier were investigated. The noises arising from ASE were effectively filtered out in the spatial, temporal and spectral domain. Pulses as short as 38 fs were amplified to peak power of 1.4 TW. The power ratio between the amplified femtosecond pulse and the ASE was higher than 106:1.

  19. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny;


    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  20. In Flight, Online

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.


    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  1. White flight or flight from poverty?

    Jego, C; Jego, Charles; Roehner, Bertrand M.


    The phenomenon of White flight is often illustrated by the case of Detroit whose population dropped from 1.80 million to 0.95 million between 1950 and 2000 while at the same time its Black and Hispanic component grew from 30 percent to 85 percent. But is this case really representative? The present paper shows that the phenomenon of White flight is in fact essentially a flight from poverty. As a confirmation, we show that the changes in White or Black populations are highly correlated which means that White flight is always paralleled by Black flight (and Hispanic flight as well). This broader interpretation of White flight accounts not only for the case of northern cities such as Cincinnati, Cleveland or Detroit, but for all population changes at county level, provided the population density is higher than a threshold of about 50 per square-kilometer which corresponds to moderately urbanized areas (as can be found in states like Indiana or Virginia for instance).

  2. A general-purpose pulse amplifier

    In the paper proposals are made for using the technique, known from analogue computation, for transforming nuclear pulses to the shape and size desired by the means of ''operational amplifiers''. By using this technique it is possible, by means of one fundamental amplifier but with different feedback networks, to have pre-amplifiers and head-amplifiers with different pulse-handling performances and optimized with respect to the parameter of greatest interest, such as linearity, stability or overloading characteristics. As this technique involves the use of parallel-feedback it is specially suited for pre-amplifiers since most detectors are current-generators. An amplifier fulfilling the requirements necessary for use as an operational amplifier is described. The most important specifications are: 90 db gain from DC-10 kHz, then falling approximately 20 db/decade until 15 MHz (30 db gain). Four tubes are used in the amplifier. For most pulse-handling applications a stabilized power-supply is unnecessary and the stability will depend solely on the stability of the feedback network used. (author)

  3. Self-pulsation in Raman fiber amplifiers

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten


    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  4. High efficiency, low magnetic field gyroklystron amplifiers

    The possibility of operating a gyroklystron amplifier at high efficiency and low magnetic field is considered. Two devices are discussed: A two cavity second harmonic TE02 gyroklystron amplifier operating at 19.7 GHz with subharmonic bunching, and a fundamental mode TE01 gyrotwistron at 16 GHz. The nonlinear efficiency is given for both devices



    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted for...

  6. Waveguide optical amplifier for telecom applications

    Taccheo, Stefano; Zannin, Marcelo; Ennser, Karin; Careglio, Davide; Solé Pareta, Josep; Aracil Rico, Javier


    In this paper we review progress in optical gain clamped waveguide amplifiers for applications to optical communications. We demonstrate that compact waveguide devices may offer advantages compared to standard fiber amplifiers. In particular we focus on the application of gain clamping and optical burst switching networks where physical impairments may occur due to variation of the input power. Peer Reviewed

  7. Particulate export vs lateral advection in the Antarctic Polar Front (Southern Pacific Ocean)

    Tesi, T.; Langone, L.; Ravaioli, M.; Capotondi, L.; Giglio, F.


    The overarching goal of our study was to describe and quantify the influence of lateral advection relative to the vertical export in the Antarctic Polar Front (Southern Pacific Ocean). In areas where lateral advection of particulate material is significant, budgets of bioactive elements can be inaccurate if fluxes through the water column and to the seabed are exclusively interpreted as passive sinking of particles. However, detailed information on the influence of lateral advection in the water column in the southern ocean is lacking. With this in mind, our study focused between the twilight zone (i.e. mesopelagic) and the benthic nepheloid layer to understand the relative importance of lateral flux with increasing water depth. Measurements were performed south of the Antarctic Polar Front for 1 year (January 10th 1999-January 3rd 2000) at 900, 1300, 2400, and 3700 m from the sea surface. The study was carried out using a 3.5 km long mooring line instrumented with sediment traps, current meters and sensors of temperature and conductivity. Sediment trap samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera taxonomy. High fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During no-productive periods, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~60 and ~90% of the material caught at 2400 and 3700 m, respectively. Samples collected during

  8. SEBAL-A: A Remote Sensing ET Algorithm that Accounts for Advection with Limited Data. Part I: Development and Validation

    Mcebisi Mkhwanazi


    Full Text Available The Surface Energy Balance Algorithm for Land (SEBAL is one of the remote sensing (RS models that are increasingly being used to determine evapotranspiration (ET. SEBAL is a widely used model, mainly due to the fact that it requires minimum weather data, and also no prior knowledge of surface characteristics is needed. However, it has been observed that it underestimates ET under advective conditions due to its disregard of advection as another source of energy available for evaporation. A modified SEBAL model was therefore developed in this study. An advection component, which is absent in the original SEBAL, was introduced such that the energy available for evapotranspiration was a sum of net radiation and advected heat energy. The improved SEBAL model was termed SEBAL-Advection or SEBAL-A. An important aspect of the improved model is the estimation of advected energy using minimal weather data. While other RS models would require hourly weather data to be able to account for advection (e.g., METRIC, SEBAL-A only requires daily averages of limited weather data, making it appropriate even in areas where weather data at short time steps may not be available. In this study, firstly, the original SEBAL model was evaluated under advective and non-advective conditions near Rocky Ford in southeastern Colorado, a semi-arid area where afternoon advection is common occurrence. The SEBAL model was found to incur large errors when there was advection (which was indicated by higher wind speed and warm and dry air. SEBAL-A was then developed and validated in the same area under standard surface conditions, which were described as healthy alfalfa with height of 40–60 cm, without water-stress. ET values estimated using the original and modified SEBAL were compared to large weighing lysimeter-measured ET values. When the SEBAL ET was compared to SEBAL-A ET values, the latter showed improved performance, with the ET Mean Bias Error (MBE reduced from −17

  9. mm-wave solid state amplifiers

    Wolfert, P. H.; Crowley, J. D.; Fank, F. B.

    The development of mm-wave amplifiers using InP Gunn diodes is reviewed including a low-noise eight-stage amplifier for replacement of a Ka-band TWTA and a three-stage amplifier for the 42.5 to 44.5 range with an output power of 100 mW and 20 dB associated gain. A detailed description of a three-stage amplifier for the 54 to 58 GHz range is given with 100 mW output power and 15 dB associated gain, a small signal gain of 30 dB and an N.F. of 15.5 to 16.5 dB. The design of a broad band, low-loss V-band circulator, which was used in the amplifier, is described.

  10. Detection of Non-Amplified Genomic DNA

    Corradini, Roberto


    This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...

  11. Semiconductor quantum-dot lasers and amplifiers

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.;


    We have produced GaAs-based quantum-dot edge-emitting lasers operating at 1.16 mu m with record-low transparency current, high output power, and high internal quantum efficiencies. We have also realized GaAs-based quantum-dot lasers emitting at 1.3 mu m, both high-power edge emitters and low-power...... biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...... surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier is...

  12. Radiation tolerant isolation amplifiers for temperature measurement

    This paper concentrates on the selection of radiation tolerant isolation amplifiers, which are suitable for the signal conditioners for cryogenic system in the Large Hadron Collider (LHC). The evolution and the results of different commercial isolation amplifiers' parameters under neutron and gamma radiation are presented. In most cases, the tested isolation amplifiers' input offset voltage, bias currents and output offset voltage hardly changed during the radiation. The DC gain in input stage was only affected for some isolation amplifiers with a small open loop gain. Transmission coefficient showed decrease for all the tested isolation amplifiers. Also, the DC output voltage increased and the ripple voltage decreased for all the build-in isolated regulators. In addition, results on 1B41 signal conditioner showed that it was tolerant to 7-8x1012 n/cm2, which was 50% higher than the expected dose in the LHC

  13. An Implantable CMOS Amplifier for Nerve Signals

    Nielsen, Jannik Hammel; Lehmann, Torsten


    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved. A continuous-time offset-compensation technique is utilized in order to minimize impact on...... the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0.5 μm CMOS single poly, n-well process. The prototype amplifier features a gain of 80 dB over a 3.6 kHz bandwidth, a CMRR of more than 87 dB and a...

  14. Design and performance of the beamlet amplifiers

    Erlandson, A.C.; Rotter, M.D.; Frank, M.D.; McCracken, R.W.


    In future laser systems, such as the National Ignition Facility (NIF), multi-segment amplifiers (MSAs) will be used to amplify the laser beam to the required levels. As a prototype of such a laser architecture, the authors have designed, built, and tested flash-lamp-pumped, Nd:Glass, Brewster-angle slab MSAs for the Beamlet project. In this article, they review the fundamentals of Nd:Glass amplifiers, describe the MSA geometry, discuss parameters that are important in amplifier design, and present our results on the characterization of the Beamlet MSAs. In particular, gain and beam steering measurements show that the Beamlet amplifiers meet all optical performance specifications and perform close to model predictions.

  15. Qubit readout with a directional parametric amplifier

    Sliwa, K. M.; Abdo, B.; Narla, A.; Shankar, S.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.


    Josephson junction based quantum limited parametric amplifiers play an essential role in superconducting qubit measurements. These measurements necessitate circulators and isolators between the amplifier and qubit to add directionality and/or isolation. Unfortunately, this extra hardware limits both quantum measurement efficiency and experimental scalability. Here we present a quantum-limited Josephson-junction-based directional amplifier (JDA) based on a novel coupling between two nominally identical Josephson parametric converters (JPCs). The device achieves a forward gain of 11 dB with a 15 MHz dynamical bandwidth, but higher gains are possible at the expense of bandwidth. We also present measurements of a transmon qubit made with the JDA, and show minimal measurement back-action despite the absence of any isolator or circulator before the amplifier. These results provide a first step toward realizing on-chip integration of qubits and parametric amplifiers. Work supported by: IARPA, ARO, and NSF.

  16. Design of an 1800nm Raman amplifier

    Svane, Ask Sebastian; Rottwitt, Karsten


    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase in...... transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...... performance of the amplifier is also investigated for both configurations. Our results show an on/off gain exceeding 20 dB at 1810 nm for which the obtained effective noise figure is below 3 dB....

  17. Numerical Solution of Advection-Diffusion Equation Using a Sixth-Order Compact Finite Difference Method

    Gurhan Gurarslan


    Full Text Available This study aims to produce numerical solutions of one-dimensional advection-diffusion equation using a sixth-order compact difference scheme in space and a fourth-order Runge-Kutta scheme in time. The suggested scheme here has been seen to be very accurate and a relatively flexible solution approach in solving the contaminant transport equation for Pe≤5. For the solution of the present equation, the combined technique has been used instead of conventional solution techniques. The accuracy and validity of the numerical model are verified through the presented results and the literature. The computed results showed that the use of the current method in the simulation is very applicable for the solution of the advection-diffusion equation. The present technique is seen to be a very reliable alternative to existing techniques for these kinds of applications.

  18. Reaction-diffusion-advection approach to spatially localized treadmilling aggregates of molecular motors

    Yochelis, Arik; Bar-On, Tomer; Gov, Nir S.


    Unconventional myosins belong to a class of molecular motors that walk processively inside cellular protrusions towards the tips, on top of actin filament. Surprisingly, in addition, they also form retrograde moving self-organized aggregates. The qualitative properties of these aggregates are recapitulated by a mass conserving reaction-diffusion-advection model and admit two distinct families of modes: traveling waves and pulse trains. Unlike the traveling waves that are generated by a linear instability, pulses are nonlinear structures that propagate on top of linearly stable uniform backgrounds. Asymptotic analysis of isolated pulses via a simplified reaction-diffusion-advection variant on large periodic domains, allows to draw qualitative trends for pulse properties, such as the amplitude, width, and propagation speed. The results agree well with numerical integrations and are related to available empirical observations.

  19. Chaotic Advection at the Pore Scale: Mechanisms, Upscaling and Implications for Macroscopic Transport

    Lester, D R; Metcalfe, Guy


    The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the porescale generate chaotic advection, involving exponential stretching and folding of fluid elements,the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit t...

  20. A Hybrid Advection Scheme for Conserving Angular Momentum on a Refined Cartesian Mesh

    Byerly, Zachary D; Tohline, Joel E; Marcello, Dominic C


    We test a new "hybrid" scheme for simulating dynamical fluid flows in which cylindrical components of the momentum are advected across a rotating Cartesian coordinate mesh. This hybrid scheme allows us to conserve angular momentum to machine precision while capitalizing on the advantages offered by a Cartesian mesh, such as a straightforward implementation of mesh refinement. Our test focuses on measuring the real and imaginary parts of the eigenfrequency of unstable axisymmetric modes that naturally arise in massless polytropic tori having a range of different aspect ratios, and quantifying the uncertainty in these measurements. Our measured eigenfrequencies show good agreement with the results obtained from the linear stability analysis of Kojima (1986) and from nonlinear hydrodynamic simulations performed on a cylindrical coordinate mesh by Woodward et al. (1994). When compared against results conducted with a traditional Cartesian advection scheme, the hybrid scheme achieves qualitative convergence at the...

  1. A balancing domain decomposition method by constraints for advection-diffusion problems

    Tu, Xuemin; Li, Jing


    The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A pre-conditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partially sub-assembled finite element problem is solved. A convergence rate estimate for the GMRES iteration is established, under the condition that the diameters of subdomains are small enough. It is independent of the number of subdomains and grows only slowly with the subdomain problem size. Numerical experiments for several two-dimensional advection-diffusion problems illustrate the fast convergence of the proposed algorithm.

  2. Object-oriented implementations of the MPDATA advection equation solver in C++, Python and Fortran

    Arabas, Sylwester; Jaruga, Anna; Fijałkowski, Maciej


    Three object-oriented implementations of a prototype solver of the advection equation are introduced. Presented programs are based on Blitz++ (C++), NumPy (Python), and Fortran's built-in array containers. The solvers include an implementation of the Multidimensional Positive-Definite Advective Transport Algorithm (MPDATA). The introduced codes exemplify how the application of object-oriented programming (OOP) techniques allows to reproduce the mathematical notation used in the literature within the program code. The introduced codes serve as a basis for discussion on the tradeoffs of the programming language choice. The main angles of comparison are code brevity and syntax clarity (and hence maintainability and auditability) as well as performance. In case of Python, a significant performance gain is observed when switching from the standard interpreter (CPython) to the PyPy implementation of Python. Entire source code of all three implementations is embedded in the text and is licensed under the terms of th...

  3. Perturbation analysis of steady and unsteady electrohydrodynamic chaotic advection inside translating drops

    Wu, Fan; Vainchtein, Dmitri; Ward, Thomas


    A drop translating in the presence of an electric field is studied analytically. The flow is a combination of a Hadamard-Rybczynski and a Taylor circulation due to the translation and electric field, respectively. We consider chaotic advection that is generated by (1) tilting and (2) time-dependent modulation of the electric field. For the analysis we consider small perturbations in time and space to what is otherwise an integrable flow. By using a robust analytical technique we find an adiabatic invariant (AI) for the system by averaging the equations of motion. The chaotic advection is due to quasirandom jumps of the AI after crossing the separatrix of the unperturbed flow. We demonstrate that the asymptotic analysis leads to a set of criteria that can be used to optimize stirring in these systems.

  4. Solutes and cells - aspects of advection-diffusion-reaction phenomena in biochips

    Vedel, Søren


    the overall title of the project is Solutes and cells — aspects of advection-diffusion-reaction phenomena in biochips. The work has consisted of several projects focusing on theory, and to some extend analysis of experimental data, with advection-diffusion-reaction phenomena of solutes as the...... recurring theme. Presented in this thesis is selected parts of the results obtained, which in some cases have also been published in peer-reviewed journals or presented at conferences and meetings, as listed in Sec. 1.2. The studies of the distributions of solutes are motivated by microbiological phenomena...... distributions, as well as the biological function that is achieved from these varying solute concentration fields. While the basic equations of solute transport have been known for one and a half century, the novelty of cell-controlled high-resolution experimental data on the biological systems obtained from e...

  5. Estimation and correction of advection effects with single and multiple, conventional and Doppler radars

    Gal-Chen, T.


    The laws of fluid motion are invariant under a Gallilean transformation. For a perfect observing system, the data analysis should, therefore, also be invariant under a Gallilean transformation. This invariance is often not preserved in practical observing systems. In this connection, it is often advisable to perform mesoscale analysis in a frame moving with respect to the earth's surface. In the present investigation the velocity of such a frame is referred to as an advection velocity. The investigation is concerned with remaining problems regarding the Gallilean transformation. The establishment of a frame of reference for the achievement of maximum coherence is considered, taking into account the case of given nonsimultaneous observations of scalars or Cartesian vectors. It is found that advection speed can be estimated objectively if a scalar or Cartesian vector can be observed directly and if, in addition, the time and position of each observation is approximately known.

  6. Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling

    Lanser, D.; Verwer, Jan


    Operator or time splitting is often used in the numerical solution of initial boundary value problems for differential equations. It is, for example, standard practice in computational air pollution modelling where we encounter systems of three-dimensional, time-dependent partial differential equations of the advection-diffusion-reaction type. For such systems little attention has been devoted to the analysis of splitting and to the question why splitting can work so well. From the theoretica...

  7. Advective loss of overwintering Calanus finmarchicus from the Faroe-Shetland Channel

    Rullyanto, Arief; Jonasdottir, Sigrun H.; Visser, Andre W.


    regionally important secondary producer. Using a high resolution hydrodynamic model, MIKE 3 FM, we simulate the overflow of deep water and estimate the associated loss rate of C. finmarchicus as a function of the water depth strata within which they reside. We estimate a net advective loss from the Norwegian...... is to be entrained into warmer waters of the North Atlantic Basin, a habitat that appears to be unsuitable for successful overwintering. (C) 2015 Elsevier Ltd. All rights reserved....

  8. Numerical Solution of Advection-Diffusion Equation Using a Sixth-Order Compact Finite Difference Method

    Gurhan Gurarslan; Halil Karahan; Devrim Alkaya; Murat Sari; Mutlu Yasar


    This study aims to produce numerical solutions of one-dimensional advection-diffusion equation using a sixth-order compact difference scheme in space and a fourth-order Runge-Kutta scheme in time. The suggested scheme here has been seen to be very accurate and a relatively flexible solution approach in solving the contaminant transport equation for Pe≤5. For the solution of the present equation, the combined technique has been used instead of conventional solution techniques. The accuracy and...

  9. Carbon dioxide seasonality in dynamically ventilated caves: the role of advective fluxes

    Lang, Marek; Faimon, Jiří; Godissart, Jean; Ek, Camille


    The seasonality in cave CO2 levels was studied based on (1) a new data set from the dynamically ventilated Comblain-au-Pont Cave (Dinant Karst Basin, Belgium), (2) archive data from Moravian Karst caves, and (3) published data from caves worldwide. A simplified dynamic model was proposed for testing the effect of all conceivable CO2 fluxes on cave CO2 levels. Considering generally accepted fluxes, i.e., the direct diffusive flux from soils/epikarst, the indirect flux derived from dripwater degassing, and the input/output fluxes linked to cave ventilation, gives the cave CO2 level maxima of 1.9 × 10-2 mol m-3 (i.e., ˜ 440 ppmv), which only slightly exceed external values. This indicates that an additional input CO2 flux is necessary for reaching usual cave CO2 level maxima. The modeling indicates that the additional flux could be a convective advective CO2 flux from soil/epikarst driven by airflow (cave ventilation) and enhanced soil/epikarstic CO2 concentrations. Such flux reaching up to 170 mol s-1 is capable of providing the cave CO2 level maxima up to 3 × 10-2 mol m-3 (70,000 ppmv). This value corresponds to the maxima known from caves worldwide. Based on cave geometry, three types of dynamic caves were distinguished: (1) the caves with the advective CO2 flux from soil/epikarst at downward airflow ventilation mode, (2) the caves with the advective soil/epikarstic flux at upward airflow ventilation mode, and (3) the caves without any soil/epikarstic advective flux. In addition to CO2 seasonality, the model explains both the short-term and seasonal variations in δ13C in cave air CO2.

  10. The role of a delay time on the spatial structure of chaotically advected reactive scalars

    Tzella, Alexandra; Haynes, Peter H.


    The stationary-state spatial structure of reacting scalar fields, chaotically advected by a two-dimensional large-scale flow, is examined for the case for which the reaction equations contain delay terms. Previous theoretical investigations have shown that, in the absence of delay terms and in a regime where diffusion can be neglected (large P\\'eclet number), the emergent spatial structures are filamental and characterized by a single scaling regime with a H\\"older exponent that depends on th...

  11. Modeling size segregation of bidisperse granular flow: the roles of segregation, advection, and diffusion

    Fan, Yi; Schlick, Conor; Isner, Austin; Ottino, Julio; Umbanhowar, Paul; Richard, Lueptow


    Segregation of granular materials composed of different-sized particles has important repercussions in various industrial processes and natural phenomena, but predicting size segregation remains a challenging problem. To address this problem, we have developed a theoretical model that captures the interplay between advection, segregation, and diffusion in size bidisperse granular materials. The fluxes associated with these three driving factors depend on the underlying kinematics, whose chara...

  12. Self-similar magnetic field penetration of a homogeneous collisionless plasma due to electron velocity advection

    The velocity advection, me(ve·∇)ve, terms in the momentum equation for electrons in a collisionless plasma are shown to introduce an effective resistivity on the currents drawn from a bounding cathode. This leads to nonlinear diffusive penetration of an externally driven magnetic field, which at time t and height y above the cathode, penetrates to a depth δ obeying the scaling δ∼(t/y)1/3

  13. An hr-adaptive discontinuous Galerkin method for advection-diffusion problems

    Antonietti, Paola F.; Houston, Paul


    We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre-processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection-diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed discretization error by clustering the nodes in the computational mesh where the analytical solution un...


    WU Zhou-hu


    In some cases, poisonous contaminants may be released from bottom sludge in open channels. The equation of advection and diffusion for the related problem was analyzed in this paper. The conditions for the definite solution to the equation were given. The analytic solution of poisonous gas concentration distribution was worked out. The reasonableness of this solution was discussed. The result is also of significance for other similar problems.

  15. On the cost of null-control of an artificial advection-diffusion problem

    Cornilleau, Pierre; Guerrero, Sergio


    In this paper we study the null-controllability of an artificial advection-diffusion system in dimension $n$. Using a spectral method, we prove that the control cost goes to zero exponentially when the viscosity vanishes and the control time is large enough. On the other hand, we prove that the control cost tends to infinity exponentially when the viscosity vanishes and the control time is small enough.

  16. A New Evapotranspiration Model Accounting for Advection and Its Validation during SMEX02

    Yongmin Yang; Hongbo Su; Renhua Zhang; Jianjun Wu; Jianwei Qi


    Based on the crop water stress index (CWSI) concept, a new model was proposed to account for advection to estimate evapotranspiration. Both local scale evaluation with sites observations and regional scale evaluation with a remote dataset from Landsat 7 ETM+ were carried out to assess the performance of this model. Local scale evaluation indicates that this newly developed model can effectively characterize the daily variations of evapotranspiration and the predicted results show good agreeme...

  17. A Comparative Study of Indoor Radon Contributed by Diffusive and Advective Transport through Intact Concrete

    Chauhan, R. P.; Kumar, Amit

    The present work is aimed that out of diffusive and advective transport which is dominant process for indoor radon entry under normal room conditions. For this purpose the radon diffusion coefficient and permeability of concrete were measured by specially designed experimental set up. The radon diffusion coefficient of concrete was measured by continuous radon monitor. The measured value was (3.78 ± 0.39)×10-8 m2/s and found independent of the radon gas concentration in source chamber. The radon permeability of concrete varied between 1.85×10-17 to 1.36×10-15 m2 for the bulk pressure difference fewer than 20 Pa to 73.3 kPa. From the measured diffusion coefficient and absolute permeability, the radon flux from the concrete surface having concentrations gradient 12-40 kBq/m3 and typical floor thickness 0.1 m was calculated by the application of Fick and Darcy laws. Using the measured flux attributable to diffusive and advective transport, the indoor radon concentration for a typical Indian model room having dimension (5×6×7) m3 was calculated under average room ventilation (0.63 h-1). The results showed that the contribution of diffusive transport through intact concrete is dominant over the advective transport, as expected from the low values of concrete permeability.

  18. Anisotropic Turbulent Advection of a Passive Vector Field: Effects of the Finite Correlation Time

    Antonov, N. V.; Gulitskiy, N. M.


    The turbulent passive advection under the environment (velocity) field with finite correlation time is studied. Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is investigated by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and prescribed pair correlation function. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to nontrivial fixed points of the RG equations and depend on the relation between the exponents in the energy energy spectrum ɛ ∝ k⊥1-ξ and the dispersion law ω ∝ k⊥2-η . The corresponding anomalous exponents are associated with the critical dimensions of tensor composite operators built solely of the passive vector field itself. In contrast to the well-known isotropic Kraichnan model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L. Due to the presence of the anisotropy in the model, all multiloop diagrams are equal to zero, thus this result is exact.

  19. Evaluating two numerical advection schemes in HYCOM for eddy-resolving modelling of the Agulhas Current

    B. C. Backeberg


    Full Text Available A 4th order advection scheme is applied in a nested eddy-resolving Hybrid Coordinate Ocean Model (HYCOM of the greater Agulhas Current system for the purpose of testing advanced numerics as a means for improving the model simulation for eventual operational implementation. Model validation techniques comparing sea surface height variations, sea level skewness and variogram analyses to satellite altimetry measurements quantify that generally the 4th order advection scheme improves the realism of the model simulation. The most striking improvement over the standard 2nd order momentum advection scheme, is that the Southern Agulhas Current is simulated as a well-defined meandering current, rather than a train of successive eddies. A better vertical structure and stronger poleward transports in the Agulhas Current core contribute toward a better southwestward penetration of the current, and its temperature field, implying a stronger Indo-Atlantic inter-ocean exchange. It is found that the transport, and hence this exchange, is sensitive to the occurrences of mesoscale features originating upstream in the Mozambique Channel and Southern East Madagascar Current, and that the improved HYCOM simulation is well suited for further studies of these inter-actions.

  20. Evaluating two numerical advection schemes in HYCOM for eddy-resolving modelling of the Agulhas Current

    B. C. Backeberg


    Full Text Available A 4th order advection scheme is applied in a nested eddy-resolving Hybrid Coordinate Ocean Model (HYCOM of the greater Agulhas Current system for the purpose of testing advanced numerics as a means for improving the model simulation for eventual operational implementation. Model validation techniques comparing sea surface height variations, sea level skewness and variogram analyses to satellite altimetry measurements quantify that generally the 4th order advection scheme improves the realism of the model simulation. The most striking improvement over the standard 2nd order momentum advection scheme, is that the southern Agulhas Current is simulated as a well-defined meandering current, rather than a train of successive eddies. A better vertical structure and stronger poleward transports in the Agulhas Current core contribute toward a better southwestward penetration of the current, and its temperature field, implying a stronger Indo-Atlantic inter-ocean exchange. It is found that the transport, and hence this exchange, is sensitive to the occurrences of mesoscale features originating upstream in the Mozambique Channel and southern East Madagascar Current, and that the improved HYCOM simulation is well suited for further studies of these inter-actions.

  1. Evaluating two numerical advection schemes in HYCOM for eddy-resolving modelling of the Agulhas Current

    Backeberg, B. C.; Bertino, L.; Johannessen, J. A.


    A 4th order advection scheme is applied in a nested eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) of the greater Agulhas Current system for the purpose of testing advanced numerics as a means for improving the model simulation for eventual operational implementation. Model validation techniques comparing sea surface height variations, sea level skewness and variogram analyses to satellite altimetry measurements quantify that generally the 4th order advection scheme improves the realism of the model simulation. The most striking improvement over the standard 2nd order momentum advection scheme, is that the southern Agulhas Current is simulated as a well-defined meandering current, rather than a train of successive eddies. A better vertical structure and stronger poleward transports in the Agulhas Current core contribute toward a better southwestward penetration of the current, and its temperature field, implying a stronger Indo-Atlantic inter-ocean exchange. It is found that the transport, and hence this exchange, is sensitive to the occurrences of mesoscale features originating upstream in the Mozambique Channel and southern East Madagascar Current, and that the improved HYCOM simulation is well suited for further studies of these inter-actions.

  2. Parallel simulation of particle transport in an advection field applied to volcanic explosive eruptions

    Künzli, Pierre; Tsunematsu, Kae; Albuquerque, Paul; Falcone, Jean-Luc; Chopard, Bastien; Bonadonna, Costanza


    Volcanic ash transport and dispersal models typically describe particle motion via a turbulent velocity field. Particles are advected inside this field from the moment they leave the vent of the volcano until they deposit on the ground. Several techniques exist to simulate particles in an advection field such as finite difference Eulerian, Lagrangian-puff or pure Lagrangian techniques. In this paper, we present a new flexible simulation tool called TETRAS (TEphra TRAnsport Simulator) based on a hybrid Eulerian-Lagrangian model. This scheme offers the advantages of being numerically stable with no numerical diffusion and easily parallelizable. It also allows us to output particle atmospheric concentration or ground mass load at any given time. The model is validated using the advection-diffusion analytical equation. We also obtained a good agreement with field observations of the tephra deposit associated with the 2450 BP Pululagua (Ecuador) and the 1996 Ruapehu (New Zealand) eruptions. As this kind of model can lead to computationally intensive simulations, a parallelization on a distributed memory architecture was developed. A related performance model, taking into account load imbalance, is proposed and its accuracy tested.

  3. Heat transfer enhancement utilizing chaotic advection in coiled tube heat exchangers

    The present study introduced a novel chaotic coil heat exchanger utilizing chaotic advection to enhance heat transfer at low Reynolds numbers. Using Lagrangian tracing of fluid particles and their sensitivity to the initial condition and fluid element calculations, it was shown that mixing was significantly increased due to the chaotic advection. Heat transfer performance in the coil and chaotic configuration was visualized by isotherms contours of temperature in different cross-sections. In order to evaluate the hydraulic-thermal performance of heat exchangers, Nusselt numbers and friction factor were calculated and comparison was made between the two configurations. Numerical calculations revealed that the chaotic coil configuration displayed heat transfer enhancement of 4–26% relative to the fully developed Nusselt numbers in the regular coil with only 5–8% change in the pressure drop. - Highlights: • A novel chaotic coil heat exchanger is introduced in this study. • It is shown that mixing is increased significantly due to the altered chaotic advection mechanism. • By increasing the Reynolds number, results show impressive enhancement in chaotic heat exchanger performance. • Reorientation in chaotic flow leads to higher pressure loss than that in the normal helical coil

  4. Advection-condensation of water vapor with coherent stirring: a stochastic approach

    Tsang, Yue-Kin; Vanneste, Jacques; Vallis, Geoffrey


    The dynamics of atmospheric water is an essential ingredient of weather and climate. Water vapor, in particular, is an important greenhouse gas whose distribution has a strong impact on climate. To gain insight into the factors controlling the distribution of atmospheric moisture, we study an advection-condensation model in which water vapor is passively advected by a prescribed velocity and condensation acts as a sink that maintains the specific humidity below a prescribed, spatially dependent saturation value. The velocity consists of two parts: a single vortex representing large-scale coherent flow (e.g. the Hadley cell) and a white noise component mimicking small-scale turbulence. Steady-state is achieved in the presence of a moisture source at a boundary. We formulate this model as a set of stochastic differential equations. In the fast advection limit, analytical expression for the water vapor distribution is obtained by matched asymptotics. This allows us to make various predictions including the dependence of total precipitation on the vortex strength. These analytical results are verified by Monte Carlo simulations. This work is supported by the UK EPSRC Grant EP/I028072/1 and the Feasibility Fund from the UK EPSRC Network ReCoVER.

  5. Some numerical studies of interface advection properties of level set method

    A Salih; S Ghosh Moulic


    In this paper, we discuss the results of a series of tests carried out to assess the level set methodology for capturing interfaces between two immiscible fluids. The tests are designed to investigate the accuracy of convection process, the preservation of interface shape, and the mass conservation properties of individual fluids. These test cases involve the advection of interfaces of different shapes exposed to translation, rotation, deformation, and shear flow. Prescribed solenoidal velocity fields are used and no attempt is made to couple the advection of the level set function with the momentum equations. For the solution of level set equation we have employed first-order upwind scheme, MacCormack method, second-order ENO scheme, and fifth-order WENO scheme. Our studies show that the level set method perform well when higher-order schemes are used for the solution of advection equation. However, for certain type of shearing and vortical velocity fields mass conservation is an issue on coarser meshes even with higher order schemes. Finer mesh must be used in such situations to reduce numerical diffusion.

  6. Biomechanics of bird flight.

    Tobalske, Bret W


    Power output is a unifying theme for bird flight and considerable progress has been accomplished recently in measuring muscular, metabolic and aerodynamic power in birds. The primary flight muscles of birds, the pectoralis and supracoracoideus, are designed for work and power output, with large stress (force per unit cross-sectional area) and strain (relative length change) per contraction. U-shaped curves describe how mechanical power output varies with flight speed, but the specific shapes and characteristic speeds of these curves differ according to morphology and flight style. New measures of induced, profile and parasite power should help to update existing mathematical models of flight. In turn, these improved models may serve to test behavioral and ecological processes. Unlike terrestrial locomotion that is generally characterized by discrete gaits, changes in wing kinematics and aerodynamics across flight speeds are gradual. Take-off flight performance scales with body size, but fully revealing the mechanisms responsible for this pattern awaits new study. Intermittent flight appears to reduce the power cost for flight, as some species flap-glide at slow speeds and flap-bound at fast speeds. It is vital to test the metabolic costs of intermittent flight to understand why some birds use intermittent bounds during slow flight. Maneuvering and stability are critical for flying birds, and design for maneuvering may impinge upon other aspects of flight performance. The tail contributes to lift and drag; it is also integral to maneuvering and stability. Recent studies have revealed that maneuvers are typically initiated during downstroke and involve bilateral asymmetry of force production in the pectoralis. Future study of maneuvering and stability should measure inertial and aerodynamic forces. It is critical for continued progress into the biomechanics of bird flight that experimental designs are developed in an ecological and evolutionary context. PMID:17766290

  7. The 60 GHz solid state power amplifier

    Mcclymonds, J.


    A new amplifier architecture was developed during this contract that is superior to any other solid state approach. The amplifier produced 6 watts with 4 percent efficiency over a 2 GHz band at 61.5 GHz. The unit was 7 x 9 x 3 inches in size, 5.5 pounds in weight, and the conduction cooling through the baseplate is suitable for use in space. The amplifier used high efficiency GaAs IMPATT diodes which were mounted in 1-diode circuits, called modules. Eighteen modules were used in the design, and power combining was accomplished with a proprietary passive component called a combiner plate.

  8. Laser Cooled High-Power Fiber Amplifier

    Nemova, Galina


    A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence ...

  9. Effect of Soliton Propagation in Fiber Amplifiers


    The propagation of optical solitons in fiber amplifiers is discussed by considering a model that includes linear high order dispersion, two-photon absorption, nonlinear high-order dispersion, self-induced Ramam and five-order nonlinear effects. Based on travelling wave method, the solutions of the nonlinear Schrdinger equations, and the influence on soliton propagation as well as high-order effect in the fiber amplifier are discussed in detail. It is found that because of existing five-order nonlinear effect, the solution is not of secant hyperbola type, but shows high gain state of the fiber amplifier which is very favourable to the propagation of solitons.

  10. Noise reduction in AC-coupled amplifiers

    Serrano Finetti, Roberto Ernesto; Pallàs Areny, Ramon


    AC-coupled amplifiers are noisier than dc-coupled amplifiers because of the thermal noise of the resistor(s) in the ac-coupling network and the increased contribution of the amplifier input noise current i(n). Both contributions, however, diminish if the corner frequency f(c) of the high-pass filter observed by the signal is lowered, the cost being a longer transient response. At the same time, the presence of large resistors in the ac-coupling network suggests that the use of FET-input ampli...