WorldWideScience

Sample records for advancing implementation science

  1. Advancing implementation science through measure development and evaluation: a study protocol.

    Science.gov (United States)

    Lewis, Cara C; Weiner, Bryan J; Stanick, Cameo; Fischer, Sarah M

    2015-07-22

    Significant gaps related to measurement issues are among the most critical barriers to advancing implementation science. Three issues motivated the study aims: (a) the lack of stakeholder involvement in defining pragmatic measure qualities; (b) the dearth of measures, particularly for implementation outcomes; and (c) unknown psychometric and pragmatic strength of existing measures. Aim 1: Establish a stakeholder-driven operationalization of pragmatic measures and develop reliable, valid rating criteria for assessing the construct. Aim 2: Develop reliable, valid, and pragmatic measures of three critical implementation outcomes, acceptability, appropriateness, and feasibility. Aim 3: Identify Consolidated Framework for Implementation Research and Implementation Outcome Framework-linked measures that demonstrate both psychometric and pragmatic strength. For Aim 1, we will conduct (a) interviews with stakeholder panelists (N = 7) and complete a literature review to populate pragmatic measure construct criteria, (b) Q-sort activities (N = 20) to clarify the internal structure of the definition, (c) Delphi activities (N = 20) to achieve consensus on the dimension priorities, (d) test-retest and inter-rater reliability assessments of the emergent rating system, and (e) known-groups validity testing of the top three prioritized pragmatic criteria. For Aim 2, our systematic development process involves domain delineation, item generation, substantive validity assessment, structural validity assessment, reliability assessment, and predictive validity assessment. We will also assess discriminant validity, known-groups validity, structural invariance, sensitivity to change, and other pragmatic features. For Aim 3, we will refine our established evidence-based assessment (EBA) criteria, extract the relevant data from the literature, rate each measure using the EBA criteria, and summarize the data. The study outputs of each aim are expected to have a positive impact

  2. Implementation Science: Why It Matters for the Future of Social Work

    Science.gov (United States)

    Cabassa, Leopoldo J.

    2016-01-01

    Bridging the gap between research and practice is a critical frontier for the future of social work. Integrating implementation science into social work can advance our profession's effort to bring research and practice closer together. Implementation science examines the factors, processes, and strategies that influence the uptake, use, and…

  3. Never the twain shall meet?--a comparison of implementation science and policy implementation research.

    Science.gov (United States)

    Nilsen, Per; Ståhl, Christian; Roback, Kerstin; Cairney, Paul

    2013-06-10

    Many of society's health problems require research-based knowledge acted on by healthcare practitioners together with implementation of political measures from governmental agencies. However, there has been limited knowledge exchange between implementation science and policy implementation research, which has been conducted since the early 1970s. Based on a narrative review of selective literature on implementation science and policy implementation research, the aim of this paper is to describe the characteristics of policy implementation research, analyze key similarities and differences between this field and implementation science, and discuss how knowledge assembled in policy implementation research could inform implementation science. Following a brief overview of policy implementation research, several aspects of the two fields were described and compared: the purpose and origins of the research; the characteristics of the research; the development and use of theory; determinants of change (independent variables); and the impact of implementation (dependent variables). The comparative analysis showed that there are many similarities between the two fields, yet there are also profound differences. Still, important learning may be derived from several aspects of policy implementation research, including issues related to the influence of the context of implementation and the values and norms of the implementers (the healthcare practitioners) on implementation processes. Relevant research on various associated policy topics, including The Advocacy Coalition Framework, Governance Theory, and Institutional Theory, may also contribute to improved understanding of the difficulties of implementing evidence in healthcare. Implementation science is at a relatively early stage of development, and advancement of the field would benefit from accounting for knowledge beyond the parameters of the immediate implementation science literature. There are many common issues in

  4. Never the twain shall meet? - a comparison of implementation science and policy implementation research

    Science.gov (United States)

    2013-01-01

    Background Many of society’s health problems require research-based knowledge acted on by healthcare practitioners together with implementation of political measures from governmental agencies. However, there has been limited knowledge exchange between implementation science and policy implementation research, which has been conducted since the early 1970s. Based on a narrative review of selective literature on implementation science and policy implementation research, the aim of this paper is to describe the characteristics of policy implementation research, analyze key similarities and differences between this field and implementation science, and discuss how knowledge assembled in policy implementation research could inform implementation science. Discussion Following a brief overview of policy implementation research, several aspects of the two fields were described and compared: the purpose and origins of the research; the characteristics of the research; the development and use of theory; determinants of change (independent variables); and the impact of implementation (dependent variables). The comparative analysis showed that there are many similarities between the two fields, yet there are also profound differences. Still, important learning may be derived from several aspects of policy implementation research, including issues related to the influence of the context of implementation and the values and norms of the implementers (the healthcare practitioners) on implementation processes. Relevant research on various associated policy topics, including The Advocacy Coalition Framework, Governance Theory, and Institutional Theory, may also contribute to improved understanding of the difficulties of implementing evidence in healthcare. Implementation science is at a relatively early stage of development, and advancement of the field would benefit from accounting for knowledge beyond the parameters of the immediate implementation science literature. Summary

  5. A multi-disciplinary approach to implementation science: the NIH-PEPFAR PMTCT implementation science alliance.

    Science.gov (United States)

    Sturke, Rachel; Harmston, Christine; Simonds, R J; Mofenson, Lynne M; Siberry, George K; Watts, D Heather; McIntyre, James; Anand, Nalini; Guay, Laura; Castor, Delivette; Brouwers, Pim; Nagel, Joan D

    2014-11-01

    In resource-limited countries, interventions to prevent mother-to-child HIV transmission (PMTCT) have not yet realized their full potential health impact, illustrating the common gap between the scientific proof of an intervention's efficacy and effectiveness and its successful implementation at scale into routine health services. For PMTCT, this gap results, in part, from inadequate adaptation of PMTCT interventions to the realities of the implementation environment, including client and health care worker behaviors and preferences, health care policies and systems, and infrastructure and resource constraints. Elimination of mother-to-child HIV transmission can only be achieved through understanding of key implementation barriers and successful adaptation of scientifically proven interventions to the local environment. Central to such efforts is implementation science (IS), which aims to investigate and address major bottlenecks that impede effective implementation and to test new approaches to identifying, understanding, and overcoming barriers to the adoption, adaptation, integration, scale-up, and sustainability of evidence-based interventions. Advancing IS will require deliberate and strategic efforts to facilitate collaboration, communication, and relationship-building among researchers, implementers, and policy-makers. To speed the translation of effective PMTCT interventions into practice and advance IS more broadly, the US National Institutes of Health, in collaboration with the President's Emergency Plan for AIDS Relief launched the National Institutes of Health/President's Emergency Plan for AIDS Relief PMTCT IS Alliance, comprised of IS researchers, PMTCT program implementers, and policy-makers as an innovative platform for interaction and coordination.

  6. Nurse Leaders' Experiences of Implementing Career Advancement Programs for Nurses in Iran.

    Science.gov (United States)

    Sheikhi, Mohammad Reza; Fallahi Khoshknab, Masoud; Mohammadi, Farahnaz; Oskouie, Fatemeh

    2015-02-24

    Career advancement programs are currently implemented in many countries. In Iran, the first career advancement program was Nurses' Career Advancement Pathway. The purpose of this study was to explore nurse leaders' experiences about implementing the Nurses' Career Advancement Pathway program in Iran. This exploratory qualitative study was conducted in 2013. Sixteen nurse managers were recruited from the teaching hospitals affiliated to Shahid Behesthi, Qazvin, and Iran Universities of Medical Sciences in Iran. Participants were recruited using purposive sampling method. Study data were collected through in-depth semi-structured interviews. The conventional content analysis approach was used for data analysis. participants' experiences about implementing the Nurses' Career Advancement Pathway fell into three main categories including: a) the shortcomings of performance evaluation, b) greater emphasis on point accumulation, c) the advancement-latitude mismatch. The Nurses' Career Advancement pathway has several shortcomings regarding both its content and its implementation. Therefore, it is recommended to revise the program.

  7. Nurse Leaders’ Experiences of Implementing Career Advancement Programs for Nurses in Iran

    Science.gov (United States)

    Sheikhi, Mohammad Reza; Khoshknab, Masoud Fallahi; Mohammadi, Farahnaz; Oskouie, Fatemeh

    2015-01-01

    Background and purpose: Career advancement programs are currently implemented in many countries. In Iran, the first career advancement program was Nurses’ Career Advancement Pathway. The purpose of this study was to explore nurse leaders’ experiences about implementing the Nurses’ Career Advancement Pathway program in Iran. Methods: This exploratory qualitative study was conducted in 2013. Sixteen nurse managers were recruited from the teaching hospitals affiliated to Shahid Behesthi, Qazvin, and Iran Universities of Medical Sciences in Iran. Participants were recruited using purposive sampling method. Study data were collected through in-depth semi-structured interviews. The conventional content analysis approach was used for data analysis. Results: participants’ experiences about implementing the Nurses’ Career Advancement Pathway fell into three main categories including: a) the shortcomings of performance evaluation, b) greater emphasis on point accumulation, c) the advancement-latitude mismatch. Conclusion: The Nurses’ Career Advancement pathway has several shortcomings regarding both its content and its implementation. Therefore, it is recommended to revise the program. PMID:26156907

  8. A content analysis of dissemination and implementation science resource initiatives: what types of resources do they offer to advance the field?

    Science.gov (United States)

    Darnell, Doyanne; Dorsey, Caitlin N; Melvin, Abigail; Chi, Jonathan; Lyon, Aaron R; Lewis, Cara C

    2017-11-21

    The recent growth in organized efforts to advance dissemination and implementation (D & I) science suggests a rapidly expanding community focused on the adoption and sustainment of evidence-based practices (EBPs). Although promising for the D & I of EBPs, the proliferation of initiatives is difficult for any one individual to navigate and summarize. Such proliferation may also result in redundant efforts or missed opportunities for participation and advancement. A review of existing D & I science resource initiatives and their unique merits would be a significant step for the field. The present study aimed to describe the global landscape of these organized efforts to advance D & I science. We conducted a content analysis between October 2015 and March 2016 to examine resources and characteristics of D & I science resource initiatives using public, web-based information. Included resource initiatives must have engaged in multiple efforts to advance D & I science beyond conferences, offered D & I science resources, and provided content in English. The sampling method included an Internet search using D & I terms and inquiry among internationally representative D & I science experts. Using a coding scheme based on a priori and grounded approaches, two authors consensus coded website information including interactive and non-interactive resources and information regarding accessibility (membership, cost, competitive application, and location). The vast majority (83%) of resource initiatives offered at least one of seven interactive resources (consultation/technical assistance, mentorship, workshops, workgroups, networking, conferences, and social media) and one of six non-interactive resources (resource library, news and updates from the field, archived talks or slides, links pages, grant writing resources, and funding opportunities). Non-interactive resources were most common, with some appearing frequently across resource initiatives (e.g., news and updates from the

  9. A content analysis of dissemination and implementation science resource initiatives: what types of resources do they offer to advance the field?

    Directory of Open Access Journals (Sweden)

    Doyanne Darnell

    2017-11-01

    Full Text Available Abstract Background The recent growth in organized efforts to advance dissemination and implementation (D & I science suggests a rapidly expanding community focused on the adoption and sustainment of evidence-based practices (EBPs. Although promising for the D & I of EBPs, the proliferation of initiatives is difficult for any one individual to navigate and summarize. Such proliferation may also result in redundant efforts or missed opportunities for participation and advancement. A review of existing D & I science resource initiatives and their unique merits would be a significant step for the field. The present study aimed to describe the global landscape of these organized efforts to advance D & I science. Methods We conducted a content analysis between October 2015 and March 2016 to examine resources and characteristics of D & I science resource initiatives using public, web-based information. Included resource initiatives must have engaged in multiple efforts to advance D & I science beyond conferences, offered D & I science resources, and provided content in English. The sampling method included an Internet search using D & I terms and inquiry among internationally representative D & I science experts. Using a coding scheme based on a priori and grounded approaches, two authors consensus coded website information including interactive and non-interactive resources and information regarding accessibility (membership, cost, competitive application, and location. Results The vast majority (83% of resource initiatives offered at least one of seven interactive resources (consultation/technical assistance, mentorship, workshops, workgroups, networking, conferences, and social media and one of six non-interactive resources (resource library, news and updates from the field, archived talks or slides, links pages, grant writing resources, and funding opportunities. Non-interactive resources were most common, with some appearing frequently across

  10. Impact of Initiatives to Implement Science Inquiry: A Comparative Study of the Turkish, Israeli, Swedish and Czech Science Education Systems

    Science.gov (United States)

    Heinz, Jana; Enghag, Margareta; Stuchlikova, Iva; Cakmakci, Gultekin; Peleg, Ran; Baram-Tsabari, Ayelet

    2017-01-01

    This empirical study investigates factors that influence the implementation of science inquiry in the education systems of Turkey, Israel, Sweden and the Czech Republic. Data was collected by means of recordings of science experts' discussions as part of an EU-funded project called Science-Teacher Education Advanced Methods (2009-2012). Results of…

  11. Harnessing Implementation Science to Increase the Impact of Health Equity Research.

    Science.gov (United States)

    Chinman, Matthew; Woodward, Eva N; Curran, Geoffrey M; Hausmann, Leslie R M

    2017-09-01

    Health disparities are differences in health or health care between groups based on social, economic, and/or environmental disadvantage. Disparity research often follows 3 steps: detecting (phase 1), understanding (phase 2), and reducing (phase 3), disparities. Although disparities have narrowed over time, many remain. We argue that implementation science could enhance disparities research by broadening the scope of phase 2 studies and offering rigorous methods to test disparity-reducing implementation strategies in phase 3 studies. We briefly review the focus of phase 2 and phase 3 disparities research. We then provide a decision tree and case examples to illustrate how implementation science frameworks and research designs could further enhance disparity research. Most health disparities research emphasizes patient and provider factors as predominant mechanisms underlying disparities. Applying implementation science frameworks like the Consolidated Framework for Implementation Research could help disparities research widen its scope in phase 2 studies and, in turn, develop broader disparities-reducing implementation strategies in phase 3 studies. Many phase 3 studies of disparity-reducing implementation strategies are similar to case studies, whose designs are not able to fully test causality. Implementation science research designs offer rigorous methods that could accelerate the pace at which equity is achieved in real-world practice. Disparities can be considered a "special case" of implementation challenges-when evidence-based clinical interventions are delivered to, and received by, vulnerable populations at lower rates. Bringing together health disparities research and implementation science could advance equity more than either could achieve on their own.

  12. Advanced compiler design and implementation

    CERN Document Server

    Muchnick, Steven S

    1997-01-01

    From the Foreword by Susan L. Graham: This book takes on the challenges of contemporary languages and architectures, and prepares the reader for the new compiling problems that will inevitably arise in the future. The definitive book on advanced compiler design This comprehensive, up-to-date work examines advanced issues in the design and implementation of compilers for modern processors. Written for professionals and graduate students, the book guides readers in designing and implementing efficient structures for highly optimizing compilers for real-world languages. Covering advanced issues in fundamental areas of compiler design, this book discusses a wide array of possible code optimizations, determining the relative importance of optimizations, and selecting the most effective methods of implementation. * Lays the foundation for understanding the major issues of advanced compiler design * Treats optimization in-depth * Uses four case studies of commercial compiling suites to illustrate different approache...

  13. An Official American Thoracic Society Research Statement: Implementation Science in Pulmonary, Critical Care, and Sleep Medicine.

    Science.gov (United States)

    Weiss, Curtis H; Krishnan, Jerry A; Au, David H; Bender, Bruce G; Carson, Shannon S; Cattamanchi, Adithya; Cloutier, Michelle M; Cooke, Colin R; Erickson, Karen; George, Maureen; Gerald, Joe K; Gerald, Lynn B; Goss, Christopher H; Gould, Michael K; Hyzy, Robert; Kahn, Jeremy M; Mittman, Brian S; Mosesón, Erika M; Mularski, Richard A; Parthasarathy, Sairam; Patel, Sanjay R; Rand, Cynthia S; Redeker, Nancy S; Reiss, Theodore F; Riekert, Kristin A; Rubenfeld, Gordon D; Tate, Judith A; Wilson, Kevin C; Thomson, Carey C

    2016-10-15

    Many advances in health care fail to reach patients. Implementation science is the study of novel approaches to mitigate this evidence-to-practice gap. The American Thoracic Society (ATS) created a multidisciplinary ad hoc committee to develop a research statement on implementation science in pulmonary, critical care, and sleep medicine. The committee used an iterative consensus process to define implementation science and review the use of conceptual frameworks to guide implementation science for the pulmonary, critical care, and sleep community and to explore how professional medical societies such as the ATS can promote implementation science. The committee defined implementation science as the study of the mechanisms by which effective health care interventions are either adopted or not adopted in clinical and community settings. The committee also distinguished implementation science from the act of implementation. Ideally, implementation science should include early and continuous stakeholder involvement and the use of conceptual frameworks (i.e., models to systematize the conduct of studies and standardize the communication of findings). Multiple conceptual frameworks are available, and we suggest the selection of one or more frameworks on the basis of the specific research question and setting. Professional medical societies such as the ATS can have an important role in promoting implementation science. Recommendations for professional societies to consider include: unifying implementation science activities through a single organizational structure, linking front-line clinicians with implementation scientists, seeking collaborations to prioritize and conduct implementation science studies, supporting implementation science projects through funding opportunities, working with research funding bodies to set the research agenda in the field, collaborating with external bodies responsible for health care delivery, disseminating results of implementation

  14. Implementation of advanced inbound models

    OpenAIRE

    Koskinen, Juha

    2016-01-01

    The present Master’s Thesis was assigned by company operating in telecommuni-cations industry. The target of the Master’s Thesis was to understand what the biggest benefits are in implementing advanced inbound models into use and why it sometimes takes a longer time to finalize the implementation than planned. In addition the thesis aimed at clarifying how the usage of advanced inbound models should be measured and what the key performance indicators are that can verify the information. The g...

  15. Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    OpenAIRE

    Lewis, Cara; Darnell, Doyanne; Kerns, Suzanne; Monroe-DeVita, Maria; Landes, Sara J.; Lyon, Aaron R.; Stanick, Cameo; Dorsey, Shannon; Locke, Jill; Marriott, Brigid; Puspitasari, Ajeng; Dorsey, Caitlin; Hendricks, Karin; Pierson, Andria; Fizur, Phil

    2016-01-01

    Table of contents Introduction to the 3rd Biennial Conference of the Society for Implementation Research Collaboration: advancing efficient methodologies through team science and community partnerships Cara Lewis, Doyanne Darnell, Suzanne Kerns, Maria Monroe-DeVita, Sara J. Landes, Aaron R. Lyon, Cameo Stanick, Shannon Dorsey, Jill Locke, Brigid Marriott, Ajeng Puspitasari, Caitlin Dorsey, Karin Hendricks, Andria Pierson, Phil Fizur, Katherine A. Comtois A1: A behavioral economic perspective ...

  16. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    Science.gov (United States)

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  17. The current state of funded NIH grants in implementation science in genomic medicine: a portfolio analysis.

    Science.gov (United States)

    Roberts, Megan C; Clyne, Mindy; Kennedy, Amy E; Chambers, David A; Khoury, Muin J

    2017-10-26

    PurposeImplementation science offers methods to evaluate the translation of genomic medicine research into practice. The extent to which the National Institutes of Health (NIH) human genomics grant portfolio includes implementation science is unknown. This brief report's objective is to describe recently funded implementation science studies in genomic medicine in the NIH grant portfolio, and identify remaining gaps.MethodsWe identified investigator-initiated NIH research grants on implementation science in genomic medicine (funding initiated 2012-2016). A codebook was adapted from the literature, three authors coded grants, and descriptive statistics were calculated for each code.ResultsForty-two grants fit the inclusion criteria (~1.75% of investigator-initiated genomics grants). The majority of included grants proposed qualitative and/or quantitative methods with cross-sectional study designs, and described clinical settings and primarily white, non-Hispanic study populations. Most grants were in oncology and examined genetic testing for risk assessment. Finally, grants lacked the use of implementation science frameworks, and most examined uptake of genomic medicine and/or assessed patient-centeredness.ConclusionWe identified large gaps in implementation science studies in genomic medicine in the funded NIH portfolio over the past 5 years. To move the genomics field forward, investigator-initiated research grants should employ rigorous implementation science methods within diverse settings and populations.Genetics in Medicine advance online publication, 26 October 2017; doi:10.1038/gim.2017.180.

  18. Perception of Science Standards' Effectiveness and Their Implementation by Science Teachers

    Science.gov (United States)

    Klieger, Aviva; Yakobovitch, Anat

    2011-06-01

    The introduction of standards into the education system poses numerous challenges and difficulties. As with any change, plans should be made for teachers to understand and implement the standards. This study examined science teachers' perceptions of the effectiveness of the standards for teaching and learning, and the extent and ease/difficulty of implementing science standards in different grades. The research used a mixed methods approach, combining qualitative and quantitative research methods. The research tools were questionnaires that were administered to elementary school science teachers. The majority of the teachers perceived the standards in science as effective for teaching and learning and only a small minority viewed them as restricting their pedagogical autonomy. Differences were found in the extent of implementation of the different standards and between different grades. The teachers perceived a different degree of difficulty in the implementation of the different standards. The standards experienced as easiest to implement were in the field of biology and materials, whereas the standards in earth sciences and the universe and technology were most difficult to implement, and are also those evaluated by the teachers as being implemented to the least extent. Exposure of teachers' perceptions on the effectiveness of standards and the implementation of the standards may aid policymakers in future planning of teachers' professional development for the implementation of standards.

  19. Flipped Classrooms for Advanced Science Courses

    Science.gov (United States)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  20. Advances in software science and technology

    CERN Document Server

    Ohno, Yoshio; Kamimura, Tsutomu

    1991-01-01

    Advances in Software Science and Technology, Volume 2 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into four parts encompassing 12 chapters, this volume begins with an overview of categorical frameworks that are widely used to represent data types in computer science. This text then provides an algorithm for generating vertices of a smoothed polygonal line from the vertices of a digital curve or polygonal curve whose position contains a certain amount of error. O

  1. The Value of Fidelity of Implementation Criteria to Evaluate School-Based Science Curriculum Innovations

    Science.gov (United States)

    Lee, Yew-Jin; Chue, Shien

    2013-10-01

    School-based curriculum innovations, including those in science education, are usually not adequately evaluated, if at all. Furthermore, current procedures and instruments for programme evaluations are often unable to support evidence-based decision-making. We suggest that adopting fidelity of implementation (FOI) criteria from healthcare research can both characterize and narrow the separation between programme intent and actual implementation, which is a mandatory stage of evaluation before determining overall programme value. We demonstrate how such a process could be applied by science educators using data from a secondary school in Singapore that had devised a new curriculum to promote interest, investigative processes, and knowledge in science. Results showed that there were ambivalent student responses to this programme, while there were high levels of science process skill instruction and close alignment with the intended lesson design. The implementation of this programme appeared to have a satisfactory overall level of FOI, but we also detected tensions between programme intent and everyday classroom teaching. If we want to advance science education, then our argument is that applying FOI criteria is necessary when evaluating all curricular innovations, not just those that originate from schools.

  2. Implementation science approaches for integrating eHealth research into practice and policy.

    Science.gov (United States)

    Glasgow, Russell E; Phillips, Siobhan M; Sanchez, Michael A

    2014-07-01

    To summarize key issues in the eHealth field from an implementation science perspective and to highlight illustrative processes, examples and key directions to help more rapidly integrate research, policy and practice. We present background on implementation science models and emerging principles; discuss implications for eHealth research; provide examples of practical designs, measures and exemplar studies that address key implementation science issues; and make recommendations for ways to more rapidly develop and test eHealth interventions as well as future research, policy and practice. The pace of eHealth research has generally not kept up with technological advances, and many of our designs, methods and funding mechanisms are incapable of providing the types of rapid and relevant information needed. Although there has been substantial eHealth research conducted with positive short-term results, several key implementation and dissemination issues such as representativeness, cost, unintended consequences, impact on health inequities, and sustainability have not been addressed or reported. Examples of studies in several of these areas are summarized to demonstrate this is possible. eHealth research that is intended to translate into policy and practice should be more contextual, report more on setting factors, employ more responsive and pragmatic designs and report results more transparently on issues important to potential adopting patients, clinicians and organizational decision makers. We outline an alternative development and assessment model, summarize implementation science findings that can help focus attention, and call for different types of more rapid and relevant research and funding mechanisms. Published by Elsevier Ireland Ltd.

  3. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    Science.gov (United States)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    -based systems, increase the accessibility and utility of science data, and to enable new observation measurements and information products. We will discuss the ESTO investment strategy for information technology development, the methods used to assess stakeholder needs and technology advancements, and technology partnerships to enhance the infusion for the resulting technology. We also describe specific investments and their potential impact on enabling NASA missions and scientific discovery. [1] "Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey", 2012: National Academies Press, http://www.nap.edu/catalog.php?record_id=13405 [2] "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space", 2010: NASA Tech Memo, http://science.nasa.gov/media/medialibrary/2010/07/01/Climate_Architecture_Final.pdf

  4. Egyptian Journal of Medical Laboratory Sciences: Advanced Search

    African Journals Online (AJOL)

    Egyptian Journal of Medical Laboratory Sciences: Advanced Search. Journal Home > Egyptian Journal of Medical Laboratory Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  5. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  6. Using implementation science as the core of the doctor of nursing practice inquiry project.

    Science.gov (United States)

    Riner, Mary E

    2015-01-01

    New knowledge in health care needs to be implemented for continuous practice improvement. Doctor of nursing practice (DNP) programs are designed to increase clinical practice knowledge and leadership skills of graduates. This article describes an implementation science course developed in a DNP program focused on advancing graduates' capacity for health systems leadership. Curriculum and course development are presented, and the course is mapped to depict how the course objectives and assignments were aligned with DNP Essentials. Course modules with rational are described, and examples of how students implemented assignments are provided. The challenges of integrating this course into the life of the school are discussed as well as steps taken to develop faculty for this capstone learning experience. This article describes a model of using implementation science to provide DNP students an experience in designing and managing an evidence-based practice change project. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Integration and Implementation Sciences: Building a New Specialization

    Directory of Open Access Journals (Sweden)

    Gabriele Bammer

    2005-12-01

    Full Text Available Developing a new specialization - Integration and Implementation Sciences - may be an effective way to draw together and significantly strengthen the theory and methods necessary to tackle complex societal issues and problems. This paper presents an argument for such a specialization, beginning with a brief review of calls for new research approaches that combine disciplines and interact more closely with policy and practice. It posits that the core elements of Integration and Implementation Sciences already exist, but that the field is currently characterized by fragmentation and marginalization. The paper then outlines three sets of characteristics that will delineate Integration and Implementation Sciences. First is that the specialization will aim to find better ways to deal with the defining elements of many current societal issues and problems: namely complexity, uncertainty, change, and imperfection. Second is that there will be three theoretical and methodological pillars for doing this: 1 systems thinking and complexity science, 2 participatory methods, and 3 knowledge management, exchange, and implementation. Third, operationally, Integration and Implementation Sciences will be grounded in practical application, and generally involve large-scale collaboration. The paper concludes by examining where Integration and Implementation Sciences would sit in universities, and outlines a program for further development of the field. An appendix provides examples of Integration and Implementation Sciences in action.

  8. Advances in welding science and technology

    International Nuclear Information System (INIS)

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1995-01-01

    Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments

  9. Intentional research design in implementation science: implications for the use of nomothetic and idiographic assessment.

    Science.gov (United States)

    Lyon, Aaron R; Connors, Elizabeth; Jensen-Doss, Amanda; Landes, Sara J; Lewis, Cara C; McLeod, Bryce D; Rutt, Christopher; Stanick, Cameo; Weiner, Bryan J

    2017-09-01

    The advancement of implementation science is dependent on identifying assessment strategies that can address implementation and clinical outcome variables in ways that are valid, relevant to stakeholders, and scalable. This paper presents a measurement agenda for implementation science that integrates the previously disparate assessment traditions of idiographic and nomothetic approaches. Although idiographic and nomothetic approaches are both used in implementation science, a review of the literature on this topic suggests that their selection can be indiscriminate, driven by convenience, and not explicitly tied to research study design. As a result, they are not typically combined deliberately or effectively. Thoughtful integration may simultaneously enhance both the rigor and relevance of assessments across multiple levels within health service systems. Background on nomothetic and idiographic assessment is provided as well as their potential to support research in implementation science. Drawing from an existing framework, seven structures (of various sequencing and weighting options) and five functions (Convergence, Complementarity, Expansion, Development, Sampling) for integrating conceptually distinct research methods are articulated as they apply to the deliberate, design-driven integration of nomothetic and idiographic assessment approaches. Specific examples and practical guidance are provided to inform research consistent with this framework. Selection and integration of idiographic and nomothetic assessments for implementation science research designs can be improved. The current paper argues for the deliberate application of a clear framework to improve the rigor and relevance of contemporary assessment strategies.

  10. Innovation in Citizen Science – Perspectives on Science-Policy Advances

    Directory of Open Access Journals (Sweden)

    Susanne Hecker

    2018-04-01

    Full Text Available Citizen science is growing as a field of research with contributions from diverse disciplines, promoting innovation in science, society, and policy. Inter- and transdisciplinary discussions and critical analyses are needed to use the current momentum to evaluate, demonstrate, and build on the advances that have been made in the past few years. This paper synthesizes results of discussions at the first international citizen science conference of the European Citizen Science Association (ECSA in 2016 in Berlin, Germany, and distills major points of the discourse into key recommendations. To enhance innovation in science, citizen science needs to clearly demonstrate its scientific benefit, branch out across disciplines, and foster active networking and new formats of collaboration, including true co-design with participants. For fostering policy advances, it is important to embrace opportunities for policy-relevant monitoring and policy development and to work with science funders to find adequate avenues and evaluation tools to support citizen science. From a society angle it is crucial to engage with societal actors in various formats that suit participants and to evaluate two-way learning outcomes as well as to develop the transformative role of science communication. We hope that these key perspectives will promote citizen science progress at the science-society-policy interface.

  11. Dissemination, Implementation, and Improvement Science Research in Population Health: Opportunities for Public Health and CTSAs.

    Science.gov (United States)

    Kuo, Tony; Gase, Lauren N; Inkelas, Moira

    2015-12-01

    The complex, dynamic nature of health systems requires dissemination, implementation, and improvement (DII) sciences to effectively translate emerging knowledge into practice. Although they hold great promise for informing multisector policies and system-level changes, these methods are often not strategically used by public health. More than 120 stakeholders from Southern California, including the community, federal and local government, university, and health services were convened to identify key priorities and opportunities for public health departments and Clinical and Translational Science Awards programs (CTSAs) to advance DII sciences in population health. Participants identified challenges (mismatch of practice realities with narrowly focused research questions; lack of iterative learning) and solutions (using methods that fit the dynamic nature of the real world; aligning theories of change across sectors) for applying DII science research to public health problems. Pragmatic steps that public health and CTSAs can take to facilitate DII science research include: employing appropriate study designs; training scientists and practicing professionals in these methods; securing resources to advance this work; and supporting team science to solve complex-systems issues. Public health and CTSAs represent a unique model of practice for advancing DII research in population health. The partnership can inform policy and program development in local communities. © 2015 Wiley Periodicals, Inc.

  12. Advancing Water Science through Improved Cyberinfrastructure

    Science.gov (United States)

    Koch, B. J.; Miles, B.; Rai, A.; Ahalt, S.; Band, L. E.; Minsker, B.; Palmer, M.; Williams, M. R.; Idaszak, R.; Whitton, M. C.

    2012-12-01

    Major scientific advances are needed to help address impacts of climate change and increasing human-mediated environmental modification on the water cycle at global and local scales. However, such advances within the water sciences are limited in part by inadequate information infrastructures. For example, cyberinfrastructure (CI) includes the integrated computer hardware, software, networks, sensors, data, and human capital that enable scientific workflows to be carried out within and among individual research efforts and across varied disciplines. A coordinated transformation of existing CI and development of new CI could accelerate the productivity of water science by enabling greater discovery, access, and interoperability of data and models, and by freeing scientists to do science rather than create and manage technological tools. To elucidate specific ways in which improved CI could advance water science, three challenges confronting the water science community were evaluated: 1) How does ecohydrologic patch structure affect nitrogen transport and fate in watersheds?, 2) How can human-modified environments emulate natural water and nutrient cycling to enhance both human and ecosystem well-being?, 3) How do changes in climate affect water availability to support biodiversity and human needs? We assessed the approaches used by researchers to address components of these challenges, identified barriers imposed by limitations of current CI, and interviewed leaders in various water science subdisciplines to determine the most recent CI tools employed. Our preliminary findings revealed four areas where CI improvements are likely to stimulate scientific advances: 1) sensor networks, 2) data quality assurance/quality control, 3) data and modeling standards, 4) high performance computing. In addition, the full potential of a re-envisioned water science CI cannot be realized without a substantial training component. In light of these findings, we suggest that CI

  13. When complexity science meets implementation science: a theoretical and empirical analysis of systems change.

    Science.gov (United States)

    Braithwaite, Jeffrey; Churruca, Kate; Long, Janet C; Ellis, Louise A; Herkes, Jessica

    2018-04-30

    Implementation science has a core aim - to get evidence into practice. Early in the evidence-based medicine movement, this task was construed in linear terms, wherein the knowledge pipeline moved from evidence created in the laboratory through to clinical trials and, finally, via new tests, drugs, equipment, or procedures, into clinical practice. We now know that this straight-line thinking was naïve at best, and little more than an idealization, with multiple fractures appearing in the pipeline. The knowledge pipeline derives from a mechanistic and linear approach to science, which, while delivering huge advances in medicine over the last two centuries, is limited in its application to complex social systems such as healthcare. Instead, complexity science, a theoretical approach to understanding interconnections among agents and how they give rise to emergent, dynamic, systems-level behaviors, represents an increasingly useful conceptual framework for change. Herein, we discuss what implementation science can learn from complexity science, and tease out some of the properties of healthcare systems that enable or constrain the goals we have for better, more effective, more evidence-based care. Two Australian examples, one largely top-down, predicated on applying new standards across the country, and the other largely bottom-up, adopting medical emergency teams in over 200 hospitals, provide empirical support for a complexity-informed approach to implementation. The key lessons are that change can be stimulated in many ways, but a triggering mechanism is needed, such as legislation or widespread stakeholder agreement; that feedback loops are crucial to continue change momentum; that extended sweeps of time are involved, typically much longer than believed at the outset; and that taking a systems-informed, complexity approach, having regard for existing networks and socio-technical characteristics, is beneficial. Construing healthcare as a complex adaptive system

  14. A Statewide Partnership for Implementing Inquiry Science

    Science.gov (United States)

    Lytle, Charles

    The North Carolina Infrastructure for Science Education (NC-ISE) is a statewide partnership for implementing standards-based inquiry science using exemplary curriculum materials in the public schools of North Carolina. North Carolina is the 11th most populous state in the USA with 8,000,000 residents, 117 school districts and a geographic area of 48,718 miles. NC-ISE partners include the state education agency, local school systems, three branches of the University of North Carolina, the state mathematics and science education network, businesses, and business groups. The partnership, based upon the Science for All Children model developed by the National Science Resources Centre, was initiated in 1997 for improvement in teaching and learning of science and mathematics. This research-based model has been successfully implemented in several American states during the past decade. Where effectively implemented, the model has led to significant improvements in student interest and student learning. It has also helped reduce the achievement gap between minority and non-minority students and among students from different economic levels. A key program element of the program is an annual Leadership Institute that helps teams of administrators and teachers develop a five-year strategic plan for their local systems. Currently 33 of the117 local school systems have joined the NC-ISE Program and are in various stages of implementation of inquiry science in grades K-8.

  15. Advanced Science for Kids: Multicultural Assessment and Programming.

    Science.gov (United States)

    Bettac, Teresa; Huckabee, Colleen; Musser, Louise; Patton, Paulette; Yates, Joyce

    1997-01-01

    Describes Advanced Science for Kids (ASK), a multicultural approach to assessment and programming for a middle school advanced science program. ASK is designed to provide alternative approaches to identification and assessment, facilitate authentic instruction and assessment, and provide minority students with academic and social support as they…

  16. Advancing the science of Forest Hydrology

    Science.gov (United States)

    Devendra M. Amatya; R. Wayne Skaggs; Carl C. Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has...

  17. Advances in software science and technology

    CERN Document Server

    Hikita, Teruo; Kakuda, Hiroyasu

    1993-01-01

    Advances in Software Science and Technology, Volume 4 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into two parts encompassing 10 chapters, this volume begins with an overview of the historical survey of programming languages for vector/parallel computers in Japan and describes compiling methods for supercomputers in Japan. This text then explains the model of a Japanese software factory, which is presented by the logical configuration that has been satisfied by

  18. Advances in software science and technology

    CERN Document Server

    Kakuda, Hiroyasu; Ohno, Yoshio

    1992-01-01

    Advances in Software Science and Technology, Volume 3 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into two parts encompassing 11 chapters, this volume begins with an overview of the development of a system of writing tools called SUIKOU that analyzes a machine-readable Japanese document textually. This text then presents the conditioned attribute grammars (CAGs) and a system for evaluating them that can be applied to natural-language processing. Other chapters c

  19. Implementing the Next Generation Science Standards

    Science.gov (United States)

    Penuel, William R.; Harris, Christopher J.; DeBarger, Angela Haydel

    2015-01-01

    The Next Generation Science Standards embody a new vision for science education grounded in the idea that science is both a body of knowledge and a set of linked practices for developing knowledge. The authors describe strategies that they suggest school and district leaders consider when designing strategies to support NGSS implementation.

  20. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  1. Surviving the Implementation of a New Science Curriculum

    Science.gov (United States)

    Lowe, Beverly; Appleton, Ken

    2015-12-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.

  2. Advanced Methodologies for NASA Science Missions

    Science.gov (United States)

    Hurlburt, N. E.; Feigelson, E.; Mentzel, C.

    2017-12-01

    Most of NASA's commitment to computational space science involves the organization and processing of Big Data from space-based satellites, and the calculations of advanced physical models based on these datasets. But considerable thought is also needed on what computations are needed. The science questions addressed by space data are so diverse and complex that traditional analysis procedures are often inadequate. The knowledge and skills of the statistician, applied mathematician, and algorithmic computer scientist must be incorporated into programs that currently emphasize engineering and physical science. NASA's culture and administrative mechanisms take full cognizance that major advances in space science are driven by improvements in instrumentation. But it is less well recognized that new instruments and science questions give rise to new challenges in the treatment of satellite data after it is telemetered to the ground. These issues might be divided into two stages: data reduction through software pipelines developed within NASA mission centers; and science analysis that is performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad. Both stages benefit from the latest statistical and computational methods; in some cases, the science result is completely inaccessible using traditional procedures. This paper will review the current state of NASA and present example applications using modern methodologies.

  3. Advancing Alternative Analysis: Integration of Decision Science.

    Science.gov (United States)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  4. Praxeologies and Institutional Interactions in the Advanced Science Teacher Education

    DEFF Research Database (Denmark)

    Rasmussen, Klaus

    disciplines in conjunction. In particular the inquiry process of Study and Research Paths (SRP) is experimented as a promising design to bring about disciplinary interaction. SRP is internationally a very recent design, entirely new to Danish teacher education, and the thesis add to the knowledge of its......The present thesis consists of six papers that address three important aspects in mathematics and science teacher education: ‘Integrating two or more teaching disciplines’, ‘learning from practice’ and ‘interaction between institutions’. These aspects are studied in combination as they have...... unfolded in the context of developing and implementing a Danish education programme called the Advanced Science Teacher Education (ASTE), that aim to educate lower secondary school teachers, who among other things are to excel at interdisciplinarity. The essence of integrated teaching is elusive...

  5. Advanced statistical methods in data science

    CERN Document Server

    Chen, Jiahua; Lu, Xuewen; Yi, Grace; Yu, Hao

    2016-01-01

    This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a fu...

  6. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a lineari......This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process...... on pilot plant equipment on the department of Chemical Engineering DTU Lyngby....

  7. Advances in welding science - a perspective

    International Nuclear Information System (INIS)

    David, S.A.; Vitek, J.M.; Babu, S.S.; DebRoy, T.

    1995-01-01

    The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes

  8. Bridging the Gap between Research and Practice: Implementation Science

    Science.gov (United States)

    Olswang, Lesley B.; Prelock, Patricia A.

    2015-01-01

    Purpose: This article introduces implementation science, which focuses on research methods that promote the systematic application of research findings to practice. Method: The narrative defines implementation science and highlights the importance of moving research along the pipeline from basic science to practice as one way to facilitate…

  9. Advances in the material science of concrete

    National Research Council Canada - National Science Library

    Ideker, Jason H; Radlinska, Aleksandra

    2010-01-01

    ... Committee 236, Material Science of Concrete. The session focused on material science aspects of concrete with an emphasis placed on advances in understanding the fundamental scientific topics of cement-based materials, as well as the crucial...

  10. Advanced in Computer Science and its Applications

    CERN Document Server

    Yen, Neil; Park, James; CSA 2013

    2014-01-01

    The theme of CSA is focused on the various aspects of computer science and its applications for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of computer science and its applications. Therefore this book will be include the various theories and practical applications in computer science and its applications.

  11. Implementing Innovations in Global Women's, Children's, and Adolescents' Health: Realizing the Potential for Implementation Science.

    Science.gov (United States)

    Peterson, Herbert B; Haidar, Joumana; Fixsen, Dean; Ramaswamy, Rohit; Weiner, Bryan J; Leatherman, Sheila

    2018-03-01

    The launch of the United Nations Sustainable Development Goals and the new Secretary General's Global Strategy for Women's, Children's, and Adolescents' Health are a window of opportunity for improving the health and well-being of women, children, and adolescents in the United States and around the world. Realizing the full potential of this historic moment will require that we improve our ability to successfully implement life-saving and life-enhancing innovations, particularly in low-resource settings. Implementation science, a new and rapidly evolving field that addresses the "how-to" component of providing sustainable quality services at scale, can make an important contribution on this front. A synthesis of the implementation science evidence indicates that three interrelated factors are required for successful, sustainable outcomes at scale: 1) effective innovations, 2) effective implementation, and 3) enabling contexts. Implementation science addresses the interaction among these factors to help make innovations more usable, to build ongoing capacity to assure the effective implementation of these innovations, and to ensure enabling contexts to sustain their full and effective use in practice. Improving access to quality services will require transforming health care systems and, therefore, much of the focus of implementation science in global health is on improving the ability of health systems to serve as enabling contexts. The field of implementation science is inherently interdisciplinary and academe will need to respond by facilitating collaboration among scientists from relevant disciplines, including evaluation, improvement, and systems sciences. Platforms and programs to facilitate collaborations among researchers, practitioners, policymakers, and funders are likewise essential.

  12. Teaching implementation science in a new Master of Science Program in Germany: a survey of stakeholder expectations

    NARCIS (Netherlands)

    Ullrich, C.; Mahler, C.; Forstner, J.; Szecsenyi, J.; Wensing, M.

    2017-01-01

    BACKGROUND: Implementation science in healthcare is an evolving discipline in German-speaking countries. In 2015, the Medical Faculty of the University of Heidelberg, Germany, implemented a two-year full-time Master of Science program Health Services Research and Implementation Science. The

  13. From the Editor: An Introduction to the JSLHR Supplement on Implementation Science.

    Science.gov (United States)

    Paul, Rhea

    2015-12-01

    The JSLHR Supplement on Implementation Science is aimed at providing discussion and examples of research in implementation science, the study of methods designed to promote the incorporation of research findings into clinical practice. Practitioners in the language science area were invited to submit articles that address their experience with various aspects of implementation science. Six articles from several research groups comprise this supplement. Implementation science is an aspect of intervention research that merits consideration by communication disorders scientists. More extensive practice of implementation science will improve uptake of evidence-based practice in the clinical community.

  14. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1968-01-01

    Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations.Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapt

  15. Historical short stories as nature of science instruction in secondary science classrooms: Science teachers' implementation and students' reactions

    Science.gov (United States)

    Reid-Smith, Jennifer Ann

    This study explores the use of historical short stories as nature of science (NOS) instruction in thirteen secondary science classes. The stories focus on the development of science ideas and include statements and questions to draw students' and teachers' attention to key NOS ideas and misconceptions. This study used mixed methods to examine how teachers implement the stories, factors influencing teachers' implementation, the impact on students' NOS understanding, students' interest in the stories and factors correlated with their interest. Teachers' implementation decisions were influenced by their NOS understanding, curricula, time constraints, perceptions of student ability and resistance, and student goals. Teachers implementing stories at a high-level of effectiveness were more likely to make instructional decisions to mitigate constraints from the school environment and students. High-level implementers frequently referred to their learning goals for students as a rationale for implementing the stories even when facing constraints. Teachers implementing at a low-level of effectiveness were more likely to express that constraints inhibited effective implementation. Teachers at all levels of implementation expressed concern regarding the length of the stories and time required to fully implement the stories. Additionally, teachers at all levels of implementation expressed a desire for additional resources regarding effective story implementation and reading strategies. Evidence exists that the stories can be used to improve students' NOS understanding. However, under what conditions the stories are effective is still unclear. Students reported finding the stories more interesting than textbook readings and many students enjoyed learning about scientists and the development of science idea. Students' interest in the stories is correlated with their attitudes towards reading, views of effective science learning, attributions of academic success, and interest in

  16. Nursing implementation science: how evidence-based nursing requires evidence-based implementation.

    NARCIS (Netherlands)

    Achterberg, T. van; Schoonhoven, L.; Grol, R.P.T.M.

    2008-01-01

    PURPOSE: Evidence is not always used in practice, and many examples of problematic implementation of research into practice exist. The aim of this paper is to provide an introduction and overview of current developments in implementation science and to apply these to nursing. METHODS: We discuss a

  17. Operationalizing Social Work Science through Research-Practice Partnerships: Lessons from Implementation Science

    Science.gov (United States)

    Palinkas, Lawrence A.; He, Amy S.; Choy-Brown, Mimi; Hertel, Amy Locklear

    2017-01-01

    Recent efforts to identify and promote a distinct science for the discipline of social work have led to an ongoing debate regarding the nature and function of such a science. Central to this debate is a lack of consensus as to how to operationalize a social work science. Drawing from the field of implementation science and its application in…

  18. Gaps and strategies in developing health research capacity: experience from the Nigeria Implementation Science Alliance

    OpenAIRE

    Ezeanolue, Echezona E.; Menson, William Nii Ayitey; Patel, Dina; Aarons, Gregory; Olutola, Ayodotun; Obiefune, Michael; Dakum, Patrick; Okonkwo, Prosper; Gobir, Bola; Akinmurele, Timothy; Nwandu, Anthea; Khamofu, Hadiza; Oyeledun, Bolanle; Aina, Muyiwa; Eyo, Andy

    2018-01-01

    Background Despite being disproportionately burdened by preventable diseases than more advanced countries, low- and middle-income countries (LMICs) continue to trail behind other parts of the world in the number, quality and impact of scholarly activities by their health researchers. Our strategy at the Nigerian Implementation Science Alliance (NISA) is to utilise innovative platforms that catalyse collaboration, enhance communication between different stakeholders, and promote the uptake of ...

  19. Non-proliferation and advances in nuclear science

    International Nuclear Information System (INIS)

    Iyengar, P.K.

    1995-01-01

    So far, the non-proliferation treaty (NPT) has concentrated on safeguard regimes based on technologies relating to the production of uranium and plutonium in nuclear reactors, and on their potential diversion for use in nuclear weapons. As nuclear science advances, however, nuclear technology both peaceful and for weapons will change, and for the NPT to remain relevant, it must reflect these changes. At this juncture, when the NPT is coming up for review in a year's time, it is important for physicists to take a fresh look at recent advances in nuclear science, and inform the policy-makers and the public at large about their potential for impacting nuclear technology in the future. In this article a few such advances are highlighted and their implications for the NPT are considered. (author). 4 refs

  20. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  1. Emerging areas of science: Recommendations for Nursing Science Education from the Council for the Advancement of Nursing Science Idea Festival.

    Science.gov (United States)

    Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Heitkemper, Margaret M; Redeker, Nancy S; Titler, Marita G; McCarthy, Ann Marie; Stone, Patricia W; Moore, Shirley M; Alt-White, Anna C; Conley, Yvette P; Dunbar-Jacob, Jacqueline

    2015-01-01

    The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee (IFAC) to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2005 National Research Council report Advancing The Nation's Health Needs and the 2010 American Association of Colleges of Nursing Position Statement on the Research-Focused Doctorate Pathways to Excellence, the IFAC specifically addressed the capacity of PhD programs to prepare nursing scientists to conduct cutting-edge research in the following key emerging and priority areas of health sciences research: omics and the microbiome; health behavior, behavior change, and biobehavioral science; patient-reported outcomes; big data, e-science, and informatics; quantitative sciences; translation science; and health economics. The purpose of this article is to (a) describe IFAC activities, (b) summarize 2014 discussions hosted as part of the Idea Festival, and (c) present IFAC recommendations for incorporating these emerging areas of science and technology into research-focused doctoral programs committed to preparing graduates for lifelong, competitive careers in nursing science. The recommendations address clearer articulation of program focus areas; inclusion of foundational knowledge in emerging areas of science in core courses on nursing science and research methods; faculty composition; prerequisite student knowledge and skills; and in-depth, interdisciplinary training in supporting area of science content and methods. Copyright © 2015 Elsevier Inc

  2. Differentiating Science Instruction: Secondary science teachers' practices

    Science.gov (United States)

    Maeng, Jennifer L.; Bell, Randy L.

    2015-09-01

    This descriptive study investigated the implementation practices of secondary science teachers who differentiate instruction. Participants included seven high school science teachers purposefully selected from four different schools located in a mid-Atlantic state. Purposeful selection ensured participants included differentiated instruction (DI) in their lesson implementation. Data included semi-structured interviews and field notes from a minimum of four classroom observations, selected to capture the variety of differentiation strategies employed. These data were analyzed using a constant-comparative approach. Each classroom observation was scored using the validated Differentiated Instruction Implementation Matrix-Modified, which captured both the extent to which critical indicators of DI were present in teachers' instruction and the performance levels at which they engaged in these components of DI. Results indicated participants implemented a variety of differentiation strategies in their classrooms with varying proficiency. Evidence suggested all participants used instructional modifications that required little advance preparation to accommodate differences in students' interests and learning profile. Four of the seven participants implemented more complex instructional strategies that required substantial advance preparation by the teacher. Most significantly, this study provides practical strategies for in-service science teachers beginning to differentiate instruction and recommendations for professional development and preservice science teacher education.

  3. Assessing mathematics within advanced school science qualifications

    OpenAIRE

    McAlinden, Mary; Noyes, Andrew

    2017-01-01

    Following sustained discussion regarding the relationship between advanced mathematics and science learning in England, the government has pursued a reform agenda in which mathematics is embedded in national, high stakes A-level science qualifications and their assessments for 18-year-olds. For example, A-level Chemistry must incorporate the assessment of relevant mathematics for at least 20% of the qualification. Other sciences have different mandated percentages. This embedding policy is ru...

  4. Graduate performance of science education department in implementing conservation-based science teaching

    Science.gov (United States)

    Parmin; Savitri, E. N.; Amalia, A. V.; Pratama, M. R.

    2018-04-01

    This study aims to measure the performance of graduates in implementing conservation-based science teaching. The study employed a qualitative method by collecting the self-assessment data from alumni and the performance assessment from the headmasters of schools where the graduates are currently teaching. There are nine indicators of conservation insight examined in this study. The study concluded that the 78 alumni, who have become teachers when the study was conducted, perform well in implementing conservative science lessons.

  5. The ADVANCE Program: Targeting the Increase in the Participation and Advancement of Women in Academic Science and Engineering Careers

    Science.gov (United States)

    Esperanca, S.

    2003-12-01

    overcome barriers, and to encourage women to pursue academic geoscience careers as well as teach administrators how to recruit and retain qualified women in geoscience. The ADVANCE Fellows competition includes eligibility for women in three broad categories: early-career; career interruption; and trailing spouse. The first Fellows competition took place in 2002 and received over 150 applications throughout the Foundation. The Directorate of Geosciences (GEO) received 26 proposals, approximately 18% of the total number, and second only to the Directorate of Biological Sciences (BIO). Of the 26 proposals, 5 were in Atmospheric Sciences (ATM), 9 in Earth Sciences (EAR), and 12 in Ocean Sciences (OCE). Proposal pressure in the Fellows competition was roughly correlated with the number of women in the respective fields. In GEO, the number of proposals reflected broadly the representation of women as PIs in the various Divisions, where OCE has the largest number of female PIs, followed by EAR and ATM, respectively. Of the pool of applicants in 2002 and 2004, approximately 50% were PIs that applied in the early-career (post-doctoral) category, with the other 50% composed of about half for each of the two other categories (spouse relocation and career interruption). Over the next two years, NSF hopes to have a significant portfolio of awards to start deriving some information on successful models for promoting the increase in the representation of women at higher levels of the academic career. Feedback to the members of the ADVANCE Implementation Committee is strongly encouraged as we continue to try to improve this program to better answer the needs of women in academia.

  6. Advancing palliative and end-of-life science in cardiorespiratory populations: The contributions of nursing science.

    Science.gov (United States)

    Grady, Patricia A

    Nursing science has a critical role to inform practice, promote health, and improve the lives of individuals across the lifespan who face the challenges of advanced cardiorespiratory disease. Since 1997, the National Institute of Nursing Research (NINR) has focused attention on the importance of palliative and end-of-life care for advanced heart failure and advanced pulmonary disease through the publication of multiple funding opportunity announcements and by supporting a cadre of nurse scientists that will continue to address new priorities and future directions for advancing palliative and end-of-life science in cardiorespiratory populations. Published by Elsevier Inc.

  7. "Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators

    Science.gov (United States)

    Brain, D. A.; Schneider, N. M.; Beyer, R. A.

    2010-12-01

    Planetary science is a field that evolves rapidly, motivated by spacecraft mission results. Exciting new mission results are generally communicated rather quickly to the public in the form of press releases and news stories, but it can take several years for new advances to work their way into college textbooks. Yet it is important for students to have exposure to these new advances for a number of reasons. In some cases, new work renders older textbook knowledge incorrect or incomplete. In some cases, new discoveries make it possible to emphasize older textbook knowledge in a new way. In all cases, new advances provide exciting and accessible examples of the scientific process in action. To bridge the gap between textbooks and new advances in planetary sciences we have developed content on new discoveries for use by undergraduate instructors. Called 'Discoveries in Planetary Sciences', each new discovery is summarized in a 3-slide PowerPoint presentation. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts, and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/. Sixteen slide sets have been released so far covering topics spanning all sub-disciplines of planetary science. Results from the following spacecraft missions have been highlighted: MESSENGER, the Spirit and Opportunity rovers, Cassini, LCROSS, EPOXI, Chandrayan, Mars Reconnaissance Orbiter, Mars Express, and Venus Express. Additionally, new results from Earth-orbiting and ground-based observing platforms and programs such as Hubble, Keck, IRTF, the Catalina Sky Survey, HARPS, MEarth, Spitzer, and amateur astronomers have been highlighted. 4-5 new slide sets are

  8. Nurse Leaders? Experiences of Implementing Career Advancement Programs for Nurses in Iran

    OpenAIRE

    Sheikhi, Mohammad Reza; Khoshknab, Masoud Fallahi; Mohammadi, Farahnaz; Oskouie, Fatemeh

    2015-01-01

    Background and purpose: Career advancement programs are currently implemented in many countries. In Iran, the first career advancement program was Nurses? Career Advancement Pathway. The purpose of this study was to explore nurse leaders? experiences about implementing the Nurses? Career Advancement Pathway program in Iran. Methods: This exploratory qualitative study was conducted in 2013. Sixteen nurse managers were recruited from the teaching hospitals affiliated to Shahid Behesthi, Qazvin,...

  9. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    Science.gov (United States)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher

  10. Operational research as implementation science: definitions, challenges and research priorities.

    Science.gov (United States)

    Monks, Thomas

    2016-06-06

    Operational research (OR) is the discipline of using models, either quantitative or qualitative, to aid decision-making in complex implementation problems. The methods of OR have been used in healthcare since the 1950s in diverse areas such as emergency medicine and the interface between acute and community care; hospital performance; scheduling and management of patient home visits; scheduling of patient appointments; and many other complex implementation problems of an operational or logistical nature. To date, there has been limited debate about the role that operational research should take within implementation science. I detail three such roles for OR all grounded in upfront system thinking: structuring implementation problems, prospective evaluation of improvement interventions, and strategic reconfiguration. Case studies from mental health, emergency medicine, and stroke care are used to illustrate each role. I then describe the challenges for applied OR within implementation science at the organisational, interventional, and disciplinary levels. Two key challenges include the difficulty faced in achieving a position of mutual understanding between implementation scientists and research users and a stark lack of evaluation of OR interventions. To address these challenges, I propose a research agenda to evaluate applied OR through the lens of implementation science, the liberation of OR from the specialist research and consultancy environment, and co-design of models with service users. Operational research is a mature discipline that has developed a significant volume of methodology to improve health services. OR offers implementation scientists the opportunity to do more upfront system thinking before committing resources or taking risks. OR has three roles within implementation science: structuring an implementation problem, prospective evaluation of implementation problems, and a tool for strategic reconfiguration of health services. Challenges facing OR

  11. Uncovering Portuguese teachers’ difficulties in implementing sciences curriculum

    Directory of Open Access Journals (Sweden)

    Clara Vasconcelos

    2015-12-01

    Full Text Available Many countries recognize the positive and effective results of improving science education through the introduction of reforms in the sciences curriculum. However, some important issues are generally neglected like, for example, the involvement of the teachers in the reform process. Taking the sciences curriculum reform under analysis and benefitting from 10 years of teachers’ experiences in teaching sciences based on this curriculum, 19 semi-structure interviews were applied so as to identify the major difficulties felt by science teachers when implementing the Portuguese sciences curriculum in the third cycle of middle school (pupils’ age range of 12–15. Some of the difficulties depicted by the data analysis include: length of the curriculum, lack of time, unsuitable laboratory facilities, insufficient means and materials for experimental work, pupils’ indiscipline and little interest in learning sciences. Although less frequently mentioned, the lack of professional development was also referred to as a constraint that seems to play an essential role in this process. Some recommendations for improving the success of sciences curriculum reforms’ implementation are given: defining and conceptualizing curricular policies by relating the reality of both the schools and the science classrooms; reorganizing and restructuring pre-service teachers’ courses; organizing professional development courses for in-service teachers.

  12. Implementation science: the laboratory as a command centre.

    Science.gov (United States)

    Boeras, Debrah I; Nkengasong, John N; Peeling, Rosanna W

    2017-03-01

    Recent advances in point-of-care technologies to ensure universal access to affordable quality-assured diagnostics have the potential to transform patient management, surveillance programmes, and control of infectious diseases. Decentralization of testing can put tremendous stresses on fragile health systems if the laboratory is not involved in the planning, introduction, and scale-up strategies. The impact of investments in novel technologies can only be realized if these tests are evaluated, adopted, and scaled up within the healthcare system with appropriate planning and understanding of the local contexts in which these technologies will be used. In this digital age, the laboratory needs to take on the role of the Command Centre for technology introduction and implementation. Implementation science is needed to understand the political, cultural, economic, and behavioural context for technology introduction. The new paradigm should include: building a comprehensive system of laboratories and point-of-care testing sites to provide quality-assured diagnostic services with good laboratory-clinic interface to build trust in test results and linkage to care; building and coordinating a comprehensive national surveillance and communication system for disease control and global health emergencies; conducting research to monitor the impact of new tools and interventions on improving patient care.

  13. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    Science.gov (United States)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  14. The nature of advanced reasoning and science instruction

    Science.gov (United States)

    Lawson, Anton E.

    Although the development of reasoning is recognized as an important goal of science instruction, its nature remains somewhat of a mystery. This article discusses two key questions: Does formal thought constitute a structured whole? And what role does propositional logic play in advanced reasoning? Aspects of a model of advanced reasoning are presented in which hypothesis generation and testing are viewed as central processes in intellectual development. It is argued that a number of important advanced reasoning schemata are linked by these processes and should be made a part of science instruction designed to improve students' reasoning abilities.Concerning students' development and use of formal reasoning, Linn (1982) calls for research into practical issues such as the roles of task-specific knowledge and individual differences in performance, roles not emphasized by Piaget in his theory and research. From a science teacher's point of view, this is good advice. Accordingly, this article will expand upon some of the issues raised by Linn in a discussion of the nature of advanced reasoning which attempts to reconcile the apparent contradiction between students' differential use of advanced reasoning schemata in varying contexts with the notion of a general stage of formal thought. Two key questions will be discussed: Does formal thought constitute a structured whole? And what role does propositional logic play in advanced reasoning? The underlying assumption of the present discussion is that, among other things, science instruction should concern itself with the improvement of students' reasoning abilities (cf. Arons, 1976; Arons & Karplus, 1976; Bady, 1979; Bauman, 1976; Educational Policies Commission, 1966; Herron, 1978; Karplus, 1979; Kohlberg & Mayer, 1972; Moshman & Thompson, 1981; Lawson, 1979; Levine & linn, 1977; Pallrand, 1977; Renner & Lawson, 1973; Sayre & Ball, 1975; Schneider & Renner, 1980; Wollman, 1978). The questions are of interest because to

  15. factors affecting implementation of practical activities in science

    African Journals Online (AJOL)

    Temechegn

    science education in some selected secondary and preparatory schools of Afar Region. ... Focusing on the Science and Technology Education is becoming common ... of their study while grade 11 is the stage at which students implement their ...

  16. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  17. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    Science.gov (United States)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  18. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1973-01-01

    Advances in Nuclear Science and Technology, Volume 7 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of irradiation-induced void swelling in austenitic stainless steels. This text then examines the importance of various transport processes for fission product redistribution, which depends on the diffusion data, the vaporization properties, and the solubility in the fuel matrix. Other chapters co

  19. Building capacity in implementation science research training at the University of Nairobi.

    Science.gov (United States)

    Osanjo, George O; Oyugi, Julius O; Kibwage, Isaac O; Mwanda, Walter O; Ngugi, Elizabeth N; Otieno, Fredrick C; Ndege, Wycliffe; Child, Mara; Farquhar, Carey; Penner, Jeremy; Talib, Zohray; Kiarie, James N

    2016-03-08

    Health care systems in sub-Saharan Africa, and globally, grapple with the problem of closing the gap between evidence-based health interventions and actual practice in health service settings. It is essential for health care systems, especially in low-resource settings, to increase capacity to implement evidence-based practices, by training professionals in implementation science. With support from the Medical Education Partnership Initiative, the University of Nairobi has developed a training program to build local capacity for implementation science. This paper describes how the University of Nairobi leveraged resources from the Medical Education Partnership to develop an institutional program that provides training and mentoring in implementation science, builds relationships between researchers and implementers, and identifies local research priorities for implementation science. The curriculum content includes core material in implementation science theory, methods, and experiences. The program adopts a team mentoring and supervision approach, in which fellows are matched with mentors at the University of Nairobi and partnering institutions: University of Washington, Seattle, and University of Maryland, Baltimore. A survey of program participants showed a high degree satisfaction with most aspects of the program, including the content, duration, and attachment sites. A key strength of the fellowship program is the partnership approach, which leverages innovative use of information technology to offer diverse perspectives, and a team model for mentorship and supervision. As health care systems and training institutions seek new approaches to increase capacity in implementation science, the University of Nairobi Implementation Science Fellowship program can be a model for health educators and administrators who wish to develop their program and curricula.

  20. Proceedings of the 1st symposium on advanced science research

    International Nuclear Information System (INIS)

    1995-09-01

    The 1st symposium on advanced science research was held in Tokai-mura, Ibaraki-ken, on 23-24 March, 1995, under the auspices of JAERI. Two hundred and sixty scientists attended the symposium; over 40% of the attendants were from universities and laboratories outside JAERI. This proceedings consists of 6 oral presentations of the research activities in the Advanced Science Research Center, 70 poster presentations on the field of basic science from both the inside and outside of JAERI and 2 panel discussions on the actinide physics and biocrystallography. (author)

  1. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1970-01-01

    Advances in Nuclear Science and Technology, Volume 5 presents the underlying principles and theory, as well as the practical applications of the advances in the nuclear field. This book reviews the specialized applications to such fields as space propulsion.Organized into six chapters, this volume begins with an overview of the design and objective of the Fast Flux Test Facility to provide fast flux irradiation testing facilities. This text then examines the problem in the design of nuclear reactors, which is the analysis of the spatial and temporal behavior of the neutron and temperature dist

  2. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1966-01-01

    Advances in Nuclear Science and Technology, Volume 3 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book presents the advances in the atomic energy field.Organized into six chapters, this volume begins with an overview of the use of pulsed neutron sources for the determination of the thermalization and diffusion properties of moderating as well as multiplying media. This text then examines the effect of nuclear radiation on electronic circuitry and its components. Other chapters consider radiation effects in various inorganic solids, with empha

  3. Referesher Course on Recent Advances in Chemical Science and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Referesher Course on Recent Advances in Chemical Science and Its Technological Applications. Information and Announcements Volume 15 Issue 9 September 2010 pp 860-861 ...

  4. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1976-01-01

    Advances in Nuclear Science and Technology, Volume 9 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of the possible consequences of a large-scale release of radioactivity from a nuclear reactor in the event of a serious accident. This text then discusses the extension of conventional perturbation techniques to multidimensional systems and to high-order approximations of the Boltzmann equation.

  5. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1972-01-01

    Advances in Nuclear Science and Technology, Volume 6 provides information pertinent to the fundamental aspects of nuclear science and technology. This book covers a variety of topics, including nuclear steam generator, oscillations, fast reactor fuel, gas centrifuge, thermal transport system, and fuel cycle.Organized into six chapters, this volume begins with an overview of the high standards of technical safety for Europe's first nuclear-propelled merchant ship. This text then examines the state of knowledge concerning qualitative results on the behavior of the solutions of the nonlinear poin

  6. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  7. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    International Nuclear Information System (INIS)

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R and D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  8. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  9. Advancing Water Science through Data Visualization

    Science.gov (United States)

    Li, X.; Troy, T.

    2014-12-01

    As water scientists, we are increasingly handling larger and larger datasets with many variables, making it easy to lose ourselves in the details. Advanced data visualization will play an increasingly significant role in propelling the development of water science in research, economy, policy and education. It can enable analysis within research and further data scientists' understanding of behavior and processes and can potentially affect how the public, whom we often want to inform, understands our work. Unfortunately for water scientists, data visualization is approached in an ad hoc manner when a more formal methodology or understanding could potentially significantly improve both research within the academy and outreach to the public. Firstly to broaden and deepen scientific understanding, data visualization can allow for more analyzed targets to be processed simultaneously and can represent the variables effectively, finding patterns, trends and relationships; thus it can even explores the new research direction or branch of water science. Depending on visualization, we can detect and separate the pivotal and trivial influential factors more clearly to assume and abstract the original complex target system. Providing direct visual perception of the differences between observation data and prediction results of models, data visualization allows researchers to quickly examine the quality of models in water science. Secondly data visualization can also improve public awareness and perhaps influence behavior. Offering decision makers clearer perspectives of potential profits of water, data visualization can amplify the economic value of water science and also increase relevant employment rates. Providing policymakers compelling visuals of the role of water for social and natural systems, data visualization can advance the water management and legislation of water conservation. By building the publics' own data visualization through apps and games about water

  10. Advancing perinatal patient safety through application of safety science principles using health IT.

    Science.gov (United States)

    Webb, Jennifer; Sorensen, Asta; Sommerness, Samantha; Lasater, Beth; Mistry, Kamila; Kahwati, Leila

    2017-12-19

    The use of health information technology (IT) has been shown to promote patient safety in Labor and Delivery (L&D) units. The use of health IT to apply safety science principles (e.g., standardization) to L&D unit processes may further advance perinatal safety. Semi-structured interviews were conducted with L&D units participating in the Agency for Healthcare Research and Quality's (AHRQ's) Safety Program for Perinatal Care (SPPC) to assess units' experience with program implementation. Analysis of interview transcripts was used to characterize the process and experience of using health IT for applying safety science principles to L&D unit processes. Forty-six L&D units from 10 states completed participation in SPPC program implementation; thirty-two (70%) reported the use of health IT as an enabling strategy for their local implementation. Health IT was used to improve standardization of processes, use of independent checks, and to facilitate learning from defects. L&D units standardized care processes through use of electronic health record (EHR)-based order sets and use of smart pumps and other technology to improve medication safety. Units also standardized EHR documentation, particularly related to electronic fetal monitoring (EFM) and shoulder dystocia. Cognitive aids and tools were integrated into EHR and care workflows to create independent checks such as checklists, risk assessments, and communication handoff tools. Units also used data from EHRs to monitor processes of care to learn from defects. Units experienced several challenges incorporating health IT, including obtaining organization approval, working with their busy IT departments, and retrieving standardized data from health IT systems. Use of health IT played an integral part in the planning and implementation of SPPC for participating L&D units. Use of health IT is an encouraging approach for incorporating safety science principles into care to improve perinatal safety and should be incorporated

  11. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for

  12. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, E.; Evans, K.; Caldwell, P.; Hoffman, F.; Jackson, C.; Van Dam, K.; Leung, R.; Martin, D.; Ostrouchov, G.; Tuminaro, R.; Ullrich, P.; Wild, S.; Williams, S.

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  13. Aims of advanced photon science research

    International Nuclear Information System (INIS)

    Kimura, Toyoaki

    2004-01-01

    The Advanced Photon Research Center (APRC) of Japan Atomic Energy Research Institute is pursing the research and development of advanced photon sources such as a compact, ultra-short, high intensity laser, x-ray laser, and a superconducting linac-based free electron laser (FEL) and their applications. These compact and high-intensity lasers have various capabilities of producing radiations with distinguishing characteristics of ultra-short pulse, high coherence, etc. Hence, they can provide novel means of research in the field of nuclear energy applications and industrial and medical technologies. It is important for us to promote these researches on these high-intensity laser applications comprehensively and effectively under the collaborations with nationwide universities and industry. From this point of view it is expected that the APRC plays a role as a COE for these researches. Through these research activities for development of high-intensity lasers and their applications, we will develop ''photon science and technology'' as a leading key technology in the 21st century and contribute the development of science and technology including nuclear energy technology and production of new industries. (author)

  14. Advancing prion science: guidance for the National Prion Research Program

    National Research Council Canada - National Science Library

    Erdtmann, Rick; Sivitz, Laura

    2004-01-01

    In Advancing Prion Science , the Institute of Medicine’s Committee on Transmissible Spongiform Encephalopathies Assessment of Relevant Science recommends priorities for research and investment to the Department of Defenseâ...

  15. Changing Epistemological Beliefs with Nature of Science Implementations

    Science.gov (United States)

    Johnson, Keith; Willoughby, Shannon

    2018-01-01

    This article discusses our investigation regarding nature of science (NOS) implementations and epistemological beliefs within an undergraduate introductory astronomy course. The five year study consists of two years of baseline data in which no explicit use of NOS material was implemented, then three years of subsequent data in which specific NOS…

  16. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  17. FINANCING OF SCIENCE ADVANCEMENT IN UKRAINE: EXISTENT PROBLEMS AND PROSPECTS OF THEIR SOLUTIONFINANCING OF SCIENCE ADVANCEMENT IN UKRAINE: EXISTENT PROBLEMS AND PROSPECTS OF THEIR SOLUTION

    Directory of Open Access Journals (Sweden)

    Tetiana Bogolib

    2016-11-01

    Full Text Available Science plays an important role of development of national economies of developed countries. Postindustrial society, society of knowledge is a society where scientific discoveries, scientific research results ensure economic growth, economic stability, economic exuberance. In such a society not goods, not movable and real property and not natural resources, including power, put together the main society wealth, but scientific discoveries, new knowledge. Countries, which gain primary income from scientific discoveries and high technologies, are prosperous in the modern world. The purpose of study. A solution of science problems in the modern world should become an important direction of a state’s attention to providing national security. Weakening of academic and technological as well as technological potential of the country, research reduction, mass closure of research institutes and centres, several-ford reduction in the volume of funding of science, outflow of specialists and intellectual property abroad for the last three years menace Ukraine with a loss of advanced positions in the world, degradation of knowledge-intensive industries, strengthening of external technological dependence and undermining of its defensive capacity. Such a situation predetermined the topic of our research, its main purpose – identification of problems of science financing and determination of ways to solve them. Research methods. When writing the article, a set of methods and approaches was used that allowed realizing a conceptual unity of the research. Dialectical, system, structural methods are used for the analysis of financing of the science advancement in Ukraine, existent problems of the science financing are generalized with the help of comparative and factorial methods; ways for improving financing of the science advancement are determined by using methods of scientific abstraction, synthesis, functional analysis. The results of the study. In Ukraine

  18. Framework for Leading Next Generation Science Standards Implementation

    Science.gov (United States)

    Stiles, Katherine; Mundry, Susan; DiRanna, Kathy

    2017-01-01

    In response to the need to develop leaders to guide the implementation of the Next Generation Science Standards (NGSS), the Carnegie Corporation of New York provided funding to WestEd to develop a framework that defines the leadership knowledge and actions needed to effectively implement the NGSS. The development of the framework entailed…

  19. The Science Advancement through Group Engagement Program: Leveling the Playing Field and Increasing Retention in Science

    Science.gov (United States)

    Hall, Donna M.; Curtin-Soydan, Amanda J.; Canelas, Dorian A.

    2014-01-01

    How can colleges and universities keep an open gateway to the science disciplines for the least experienced first-year science students while also maintaining high standards that challenge the students with the strongest possible high school backgrounds? The Science Advancement through Group Engagement (SAGE) project targets cohorts of less…

  20. Candidate functions for advanced technology implementation in the Columbus mission planning environment

    Science.gov (United States)

    Loomis, Audrey; Kellner, Albrecht

    1988-01-01

    The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.

  1. Forecasting the Success of Implementing Sensors Advanced Manufacturing Technology

    OpenAIRE

    Cheng-Shih Su; Shu-Chen Hsu

    2014-01-01

    This paper is presented fuzzy preference relations approach to forecast the success of implementing sensors advanced manufacturing technology (AMT). In the manufacturing environment, performance measurement is based on different quantitative and qualitative factors. This study proposes an analytic hierarchical prediction model based on fuzzy preference relations to help the organizations become aware of the essential factors affecting the AMT implementation, forecasting the chance of successf...

  2. Advancing the Science of Community-Level Interventions

    Science.gov (United States)

    Beehler, Sarah; Deutsch, Charles; Green, Lawrence W.; Hawe, Penelope; McLeroy, Kenneth; Miller, Robin Lin; Rapkin, Bruce D.; Schensul, Jean J.; Schulz, Amy J.; Trimble, Joseph E.

    2011-01-01

    Community interventions are complex social processes that need to move beyond single interventions and outcomes at individual levels of short-term change. A scientific paradigm is emerging that supports collaborative, multilevel, culturally situated community interventions aimed at creating sustainable community-level impact. This paradigm is rooted in a deep history of ecological and collaborative thinking across public health, psychology, anthropology, and other fields of social science. The new paradigm makes a number of primary assertions that affect conceptualization of health issues, intervention design, and intervention evaluation. To elaborate the paradigm and advance the science of community intervention, we offer suggestions for promoting a scientific agenda, developing collaborations among professionals and communities, and examining the culture of science. PMID:21680923

  3. Extending Differential Fault Analysis to Dynamic S-Box Advanced Encryption Standard Implementations

    Science.gov (United States)

    2014-09-18

    number. As a result decryption is a different function which relies on a different key to efficiently undo the work of encryption . RSA is the most...EXTENDING DIFFERENTIAL FAULT ANALYSIS TO DYNAMIC S-BOX ADVANCED ENCRYPTION STANDARD IMPLEMENTATIONS THESIS Bradley M. Flamm, Civilian AFIT-ENG-T-14-S...ADVANCED ENCRYPTION STANDARD IMPLEMENTATIONS THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of

  4. MS PHD'S PDP: Vision, Design, Implementation, and Outcomes of a Minority-Focused Earth System Sciences Program

    Science.gov (United States)

    Habtes, S. Y.; Mayo, M.; Ithier-Guzman, W.; Pyrtle, A. J.; Williamson Whitney, V.

    2007-05-01

    As minorities are predicted to comprise at least 33% of the US population by the year 2010, their representation in the STEM fields, including the ocean sciences, is still poorly established. In order to advance the goal of better decision making, the Ocean Sciences community must achieve greater levels of diversity in membership. To achieve this objective of greater diversity in the sciences, the Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science® Professional Development Program (MS PHD'S PDP), which was launched in 2003, is supported via grants from NASA's Office of Earth Science, and NSF's Directorate for Geosciences. The MS PHD'S PDP is designed to provide professional and mentoring experiences that facilitate the advancement of minorities committed to achieving outstanding Earth System Science careers. The MS PHD'S PDP is structured in three phases, connected by engagement in a virtual community, continuous peer and mentor to mentee interactions, and the professional support necessary for ensuring the educational success of the student participants. Since the pilot program in 2003, the MSPHD'S PDP, housed at the University of South Florida's College of Marine Science, has produced 4 cohorts of students. Seventy-five have completed the program; of those 6 have earned their doctoral degrees. Of the 45 current participants 10 are graduate students in Marine Science and 15 are still undergraduates, the remaining 10 participants are graduate students in other STEM fields. Since the implementation of the MSPHD'S PDP a total of 87 students and 33 scientist mentors have become part of the MSPHD'S virtual community, helping to improve the learning environment for current and future participants as well as build a community of minority students that encourages each other to pursue their academic degrees.

  5. Hiding in plain sight: communication theory in implementation science.

    Science.gov (United States)

    Manojlovich, Milisa; Squires, Janet E; Davies, Barbara; Graham, Ian D

    2015-04-23

    Poor communication among healthcare professionals is a pressing problem, contributing to widespread barriers to patient safety. The word "communication" means to share or make common. In the literature, two communication paradigms dominate: (1) communication as a transactional process responsible for information exchange, and (2) communication as a transformational process responsible for causing change. Implementation science has focused on information exchange attributes while largely ignoring transformational attributes of communication. In this paper, we debate the merits of encompassing both paradigms. We conducted a two-staged literature review searching for the concept of communication in implementation science to understand how communication is conceptualized. Twenty-seven theories, models, or frameworks were identified; only Rogers' Diffusion of Innovations theory provides a definition of communication and includes both communication paradigms. Most models (notable exceptions include Diffusion of Innovations, The Ottawa Model of Research Use, and Normalization Process Theory) describe communication as a transactional process. But thinking of communication solely as information transfer or exchange misrepresents reality. We recommend that implementation science theories (1) propose and test the concept of shared understanding when describing communication, (2) acknowledge that communication is multi-layered, identify at least a few layers, and posit how identified layers might affect the development of shared understanding, (3) acknowledge that communication occurs in a social context, providing a frame of reference for both individuals and groups, (4) acknowledge the unpredictability of communication (and healthcare processes in general), and (5) engage with and draw on work done by communication theorists. Implementation science literature has conceptualized communication as a transactional process (when communication has been mentioned at all), thereby

  6. Advice on the accelerated market implementation of advanced biofuels

    International Nuclear Information System (INIS)

    2008-04-01

    The Platform for Sustainable Mobility aims to promote the accelerated market introduction of more sustainable motor fuels and vehicle technology. The Platform distinguishes four transition paths: hybridization of the fleet of cars; implementation of biofuels; hydrogen-fuelled driving (driving on natural gas and biogas); intelligent transport systems (ITS). This advice involves part of the transition path for the implementation of biofuels, i.e. accelerated market introduction of advances biofuels. [mk] [nl

  7. Innovative Graduate Research Education for Advancement of Implementation Science in Adolescent Behavioral Health.

    Science.gov (United States)

    Burton, Donna L; Levin, Bruce Lubotsky; Massey, Tom; Baldwin, Julie; Williamson, Heather

    2016-04-01

    An innovative approach to research education that integrates the theory and principles of implementation science, participatory research, and service learning in the area of adolescent behavioral health is presented. Qualitative interviews and surveys of program participants have been conducted to assess the program's curricula, service-learning partnerships, student (scholar) satisfaction, and views of community partnerships and academic mentors. The Institute has experienced the successful completion of its first and second cohorts and enrollment of a third cohort of scholars. Community partners are utilizing results of service-learning projects to influence agency operations. Institute scholars have identified research and service learning experiences as key factors in the decision to apply to the Institute graduate certificate program. The availability of tuition support is identified as valuable but not ranked as the most important reason for scholar interest in the program. Academic mentors report positive relationships with community agencies. Future iterations of the program will expand options for distance learning and alternatives to traditional graduate education for community-based scholars. Community partner agency capacity for participation is expected to change over time. Methods are being identified to both sustain existing partnerships and develop new community partnership relationships.

  8. NT10: recent advances in carbon nanotube science and applications.

    Science.gov (United States)

    Dresselhaus, Mildred S

    2010-08-24

    A review of recent advances in carbon nanotube science and applications is presented in terms of what was learned at the NT10 11th International Conference on the Science and Application of Nanotubes held in Montreal, Canada, June 29-July 2, 2010.

  9. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science

    Directory of Open Access Journals (Sweden)

    Alexander Jeffery A

    2009-08-01

    Full Text Available Abstract Background Many interventions found to be effective in health services research studies fail to translate into meaningful patient care outcomes across multiple contexts. Health services researchers recognize the need to evaluate not only summative outcomes but also formative outcomes to assess the extent to which implementation is effective in a specific setting, prolongs sustainability, and promotes dissemination into other settings. Many implementation theories have been published to help promote effective implementation. However, they overlap considerably in the constructs included in individual theories, and a comparison of theories reveals that each is missing important constructs included in other theories. In addition, terminology and definitions are not consistent across theories. We describe the Consolidated Framework For Implementation Research (CFIR that offers an overarching typology to promote implementation theory development and verification about what works where and why across multiple contexts. Methods We used a snowball sampling approach to identify published theories that were evaluated to identify constructs based on strength of conceptual or empirical support for influence on implementation, consistency in definitions, alignment with our own findings, and potential for measurement. We combined constructs across published theories that had different labels but were redundant or overlapping in definition, and we parsed apart constructs that conflated underlying concepts. Results The CFIR is composed of five major domains: intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and the process of implementation. Eight constructs were identified related to the intervention (e.g., evidence strength and quality, four constructs were identified related to outer setting (e.g., patient needs and resources, 12 constructs were identified related to inner setting (e.g., culture

  10. Teaching implementation science in a new Master of Science Program in Germany: a survey of stakeholder expectations.

    Science.gov (United States)

    Ullrich, Charlotte; Mahler, Cornelia; Forstner, Johanna; Szecsenyi, Joachim; Wensing, Michel

    2017-04-27

    Implementation science in healthcare is an evolving discipline in German-speaking countries. In 2015, the Medical Faculty of the University of Heidelberg, Germany, implemented a two-year full-time Master of Science program Health Services Research and Implementation Science. The curriculum introduces implementation science in the context of a broader program that also covers health services research, healthcare systems, research methods, and generic academic skills. Our aim was to assess the expectations of different stakeholder groups regarding the master's program. An online survey listing desired competencies of prospective graduates was developed and administered to four groups: national experts in the field (including potential employers of graduates), teaching staff, enrolled students, and prospective students (N = 169). Competencies were extracted from the curriculum's module handbook. A five-point Likert scale was used for the assessment of 42 specific items. Data were analyzed descriptively. A total of 83 people participated in the survey (response rate 49%). The online survey showed a strong agreement across the groups concerning the desired competencies of graduates. About two-thirds of the listed competencies (27 items) were felt to be crucial or very important by 80% or more of participants, with little difference between stakeholder groups. Of the eight items specifically related to implementation in practice, six were in this category. Knowledge of implementation strategies (90% very important), knowledge of barriers and enablers of implementation (89%), and knowledge of evidence-based practice (89%) were the top priorities. The master's program is largely orientated towards the desired competencies of graduates according to students, teaching staff, and national experts.

  11. Science Fiction in Education: Case Studies from Classroom Implementations

    Science.gov (United States)

    Vrasidas, Charalambos; Avraamidou, Lucy; Theodoridou, Katerina; Themistokleous, Sotiris; Panaou, Petros

    2015-01-01

    This manuscript reports on findings from the implementation of the EU project "Science Fiction in Education" (Sci-Fi-Ed). The project provides teachers with tools, training, and guidance that will assist them in enhancing their teaching, making science more attractive to students, connecting it with real-life issues such as the…

  12. Advances in Meteoroid and Meteor Science

    CERN Document Server

    Trigo-Rodríguez, J. M; Llorca, J; Janches, D

    2008-01-01

    This volume is a compilation of articles that summarize the most recent results in meteor, meteoroid and related fields presented at the Meteoroids 2007 conference held at the impressive CosmoCaixa Science Museum in Barcelona, Spain. The conference took place between the 11th and the 15th of June and was organized by the Institute of Space Sciences (Consejo Superior de Investigaciones Científicas, CSIC) and the Institut d'Estudis Espacials de Catalunya (IEEC). Researchers in meteor science and supporting fields representing more than 20 countries participated at this international conference. The papers contained in this volume underwent the rigorous refereeing process, and they are good examples of the continuous progress being made in this research field. Technological advances in meteor and metoroid detection, the ever-increasing sophistication of computer modeling, and the proliferation of autonomous monitoring stations continue to create new niches for exciting research on meteoroids and their parent bo...

  13. The Role of Science and Technology in the Advancement of Women Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Hays, I.; Farhar, B.

    2000-10-12

    Participants at the 1995 Fourth World Conference on Women, held in Beijing, China, created a Platform for Action focusing on 12 critical areas of concern (poverty, education and training, health, violence, armed conflict, economy, decision-making, institutional mechanisms, human rights, the media, environment, and the girl child) and the serious barriers to women's health and well-being in each area. Subsequently, the Department of Energy funded a study, described here, that shows, in a literature review and in interviews with 15 women experts, how science and technology can be integral to women's advancement in each of the 12 critical areas. Among the study's conclusions are that differing perspectives exist (pro-science, relativist, and skeptical) on the role of science and technology in women's lives and that these differing perspectives may explain why communication is difficult among policy makers and with scientists about the role science and technology may play in the advancem ent of women worldwide. Recommendations call for women's involvement in the ethics of science; removal of institutional barriers to advancing women; greater accountability in use of resources; changes in science education; and increased dialogue among those with differing perspectives on the role of science and technology in the advancement of women.

  14. Scientific Discovery through Advanced Computing in Plasma Science

    Science.gov (United States)

    Tang, William

    2005-03-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations

  15. Advanced Placement Environmental Science and the Curriculum and Community Enterprise for Restoration Science (CCERS) Project in the New York City High School

    Science.gov (United States)

    Birney, Lauren; McNamara, Denise

    2018-01-01

    This paper explores the issue of social justice through the lens of equitable access to Advanced Placement courses in the City of New York High Schools, with focus on Advanced Placement Environmental Science. A critical component of the Advanced Placement Environmental Science course is the incorporation of environmental fieldwork. The National…

  16. Web Services Implementations at Land Process and Goddard Earth Sciences Distributed Active Archive Centers

    Science.gov (United States)

    Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.

    2007-12-01

    NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.

  17. Supporting Ngss-Congruent Instruction in Earth & Space Science Through Educator Implementation and Feedback: Refining the Dig Texas Blueprints

    Science.gov (United States)

    Jacobs, B. E.; Bohls-Graham, C. E.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; McIver, H.; Sergent, C.

    2015-12-01

    The development of the Next Generation Science Standards (NGSS) as a framework around which to guide K-12 science instruction has generated a call for rigorous curricula that meets the demand for developing a workforce with expertise in tackling modern Earth science challenges. The Diversity and Innovation in Geosciences (DIG) Texas Blueprints project addresses this need for quality, aligned curricula with educator-vetted, freely available resources carefully selected and compiled into three week thematic units that have been aligned with the Earth Science Literacy Principles and the NGSS. These units can then be packaged into customized blueprints for a year-long Earth & Space Science course that engages students in the relevant disciplinary core ideas, crosscutting concepts and science and engineering practices. As part of supporting NGSS-congruent instruction, each unit has extensive scaffolding notes for the learning activities selected for that unit. Designed with both the new and veteran teacher in mind, these scaffolding notes yield information regarding advanced teacher preparation, student prerequisite skills, and potential challenges that might arise during classroom implementation. Feedback from Texas high school teachers implementing the DIG Texas Blueprints in the classroom, in addition to that of university secondary education majors in a preparation course utilizing the blueprints, instigated the most recent revisions to these scaffolding notes. The DIG Texas Blueprints Educator Intern Team charged with these revisions then determined which learning activities became candidates for either inclusion in the refined units, retention as an additional resource, or elimination from the blueprints. This presentation will focus on the development of these scaffolding notes and their role in supporting congruence with the NGSS. A review of the second year of implementation of the blueprints and the feedback that generated the final revisions will be shared

  18. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    Science.gov (United States)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the

  19. The use of social science knowledge in implementing the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Bradbury, J.A.

    1989-01-01

    This study investigates the use of social science knowledge by the Office of Civilian Radioactive Waste Management (OCRWM), a division of the U.S. Department of Energy (DOE), in implementing the Nuclear Waste Policy Act of 1982. The use of social science is examined both generally and in relation to a body of knowledge most relevant to the program, the social science risk literature. The study is restricted to the use by headquarters staff in relation to the largest repository and Monitored Retrievable Storage (MRS) projects. The literature on knowledge utilization and the Sabatier framework on knowledge use and policy learning provide the theoretical framework for the study. The research adopts a multistrategy approach, collecting data from two sources: (1) program documents, policy guidance, and meeting records; and (2) interviews with OCRWM officials. The constructs knowledge and use are conceptualized in different ways, each of which forms the basis for a different analytic approach. The research findings showed a very limited use of social science, more especially by the first repository program. Two reasons are advanced. First, the agency has viewed social science knowledge through technical lens and has applied an approach suited to technical problems to its structuring of waste management policy problems. Second, the degree of societal conflict over nuclear power and nuclear waste has prevented a constructive dialogue among the parties and thus reduced the possibility of policy learning

  20. IVth Azores International Advanced School in Space Sciences

    CERN Document Server

    Santos, Nuno; Monteiro, Mário

    2018-01-01

    This book presents the proceedings of the IVth Azores International Advanced School in Space Sciences entitled "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds". The school addressed the topics at the forefront of scientific research being conducted in the fields of asteroseismology and exoplanetary science, two fields of modern astrophysics that share many synergies and resources. These proceedings comprise the contributions from 18 invited lecturers, including both monographic presentations and a number of hands-on tutorials.

  1. Directions in implementation research methods for behavioral and social science.

    Science.gov (United States)

    Irwin, Molly; Supplee, Lauren H

    2012-10-01

    There is a growing interest, by researchers, policymakers, and practitioners, in evidence-based policy and practice. As a result, more dollars are being invested in program evaluation in order to establish "what works," and in some cases, funding is specifically tied to those programs found to be effective. However, reproducing positive effects found in research requires more than simply adopting an evidence-based program. Implementation research can provide guidance on which components of an intervention matter most for program impacts and how implementation components can best be implemented. However, while the body of rigorous research on effective practices continues to grow, research on implementation lags behind. To address these issues, the Administration for Children and Families and federal partners convened a roundtable meeting entitled, Improving Implementation Research Methods for Behavioral and Social Science, in the fall of 2010. This special section of the Journal of Behavioral Health Services & Research includes papers from the roundtable and highlights the role implementation science can play in shedding light on the difficult task of taking evidence-based practices to scale.

  2. Implementation science: a reappraisal of our journal mission and scope

    NARCIS (Netherlands)

    Foy, R.; Sales, A.; Wensing, M.J.; Aarons, G.A.; Flottorp, S.; Kent, B.; Michie, S.; O'Connor, D.; Rogers, A.; Sevdalis, N.; Straus, S.; Wilson, P.

    2015-01-01

    The implementation of research findings into healthcare practice has become increasingly recognised as a major priority for researchers, service providers, research funders and policymakers over the past decade. Nine years after its establishment, Implementation Science, an international online open

  3. Implementing Curriculum-Embedded Formative Assessment in Primary School Science Classrooms

    Science.gov (United States)

    Hondrich, Annika Lena; Hertel, Silke; Adl-Amini, Katja; Klieme, Eckhard

    2016-01-01

    The implementation of formative assessment strategies is challenging for teachers. We evaluated teachers' implementation fidelity of a curriculum-embedded formative assessment programme for primary school science education, investigating both material-supported, direct application and subsequent transfer. Furthermore, the relationship between…

  4. Advances and synergy of high pressure sciences at synchrotron sources

    International Nuclear Information System (INIS)

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  5. Exploring a Century of Advancements in the Science of Learning

    Science.gov (United States)

    Murphy, P. Karen; Knight, Stephanie L.

    2016-01-01

    The past century has yielded a plethora of advancements in the science of learning, from expansions in the theoretical frames that undergird education research to cultural and contextual considerations in educational practice. The overarching purpose of this chapter is to explore and document the growth and development of the science of learning…

  6. Experiencing the Implementation of New Inquiry Science Curricula

    Science.gov (United States)

    Ower, Peter S.

    Using a phenomenological methodology, a cohort of four experienced science teachers was interviewed about their experience transitioning from traditional, teacher and fact-centered science curricula to inquiry-based curricula. Each teacher participated in two interviews that focused on their teaching backgrounds, their experience teaching the prior traditional curriculum, and their experience teaching the new inquiry-based curriculum. The findings are presented as a narrative of each teachers' experience with the new curriculum implementation. Analyzing the data revealed four key themes. 1) The teachers felt trapped by the old curriculum as it did not align with their positive views of teaching science through inquiry. 2) The teachers found a way to fit their beliefs and values into the old and new curriculum. This required changes to the curriculum. 3) The teachers attempted to make the science curriculum as meaningful as possible for their students. 4) The teachers experienced a balancing act between their beliefs and values and the various aspects of the curriculum. The revealed essence of the curriculum transition is one of freedom and reconciliation of their beliefs. The teachers experienced the implementation of the new curriculum as a way to ensure their values and beliefs of science education were embedded therein. They treated the new curriculum as a malleable structure to impart their grander ideas of science education (e.g. providing important skills for future careers, creating a sense of wonder, future problem solving) to the students. Their changes were aligned with the philosophy of the curriculum kits they were implementing. Thus, the fidelity of the curriculum's philosophy was not at risk even though the curriculum kits were not taught as written. This study showed that phenomenological methods are able to reveal the relationship between a teacher's prior experiences, values and beliefs and their current instructional philosophy in science

  7. National soft science research task item-organization and implementation

    International Nuclear Information System (INIS)

    Zhang Yiming

    2014-01-01

    nuclear fusion energy research development road suitable to China's situation. This report has obtained the high praise from the domestic fusion experts. At present, this item is waiting for the acceptance check organized by the Ministry of Science and Technology. It is the first time for the Division to take on such a large-scale national level soft task item. It started a good beginning for the Division to further carry out related subject research tasks and knowledge services such as the comparative analyses of the related subjects and international attractive advanced subjects in the near future, train professional talents, as well as to provide information support of making scientific research further at SWIP. This paper discussed how to organize, implement and fulfil a large-scale strategic soft science task item based on the practice and experience of the completed soft science task item. (author)

  8. Activities of the Research Institute for Advanced Computer Science

    Science.gov (United States)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  9. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  10. VIRTEX-5 Fpga Implementation of Advanced Encryption Standard Algorithm

    Science.gov (United States)

    Rais, Muhammad H.; Qasim, Syed M.

    2010-06-01

    In this paper, we present an implementation of Advanced Encryption Standard (AES) cryptographic algorithm using state-of-the-art Virtex-5 Field Programmable Gate Array (FPGA). The design is coded in Very High Speed Integrated Circuit Hardware Description Language (VHDL). Timing simulation is performed to verify the functionality of the designed circuit. Performance evaluation is also done in terms of throughput and area. The design implemented on Virtex-5 (XC5VLX50FFG676-3) FPGA achieves a maximum throughput of 4.34 Gbps utilizing a total of 399 slices.

  11. Interoperability at ESA Heliophysics Science Archives: IVOA, HAPI and other implementations

    Science.gov (United States)

    Martinez-Garcia, B.; Cook, J. P.; Perez, H.; Fernandez, M.; De Teodoro, P.; Osuna, P.; Arnaud, M.; Arviset, C.

    2017-12-01

    The data of ESA heliophysics science missions are preserved at the ESAC Science Data Centre (ESDC). The ESDC aims for the long term preservation of those data, which includes missions such as Ulysses, Soho, Proba-2, Cluster, Double Star, and in the future, Solar Orbiter. Scientists have access to these data through web services, command line and graphical user interfaces for each of the corresponding science mission archives. The International Virtual Observatory Alliance (IVOA) provides technical standards that allow interoperability among different systems that implement them. By adopting some IVOA standards, the ESA heliophysics archives are able to share their data with those tools and services that are VO-compatible. Implementation of those standards can be found in the existing archives: Ulysses Final Archive (UFA) and Soho Science Archive (SSA). They already make use of VOTable format definition and Simple Application Messaging Protocol (SAMP). For re-engineered or new archives, the implementation of services through Table Access Protocol (TAP) or Universal Worker Service (UWS) will leverage this interoperability. This will be the case for the Proba-2 Science Archive (P2SA) and the Solar Orbiter Archive (SOAR). We present here which IVOA standards were already used by the ESA Heliophysics archives in the past and the work on-going.

  12. Building Sustainable Professional Development Programs: Applying Strategies From Implementation Science to Translate Evidence Into Practice.

    Science.gov (United States)

    Baldwin, Constance D; Chandran, Latha; Gusic, Maryellen E

    2017-01-01

    Multisite and national professional development (PD) programs for educators are challenging to establish. Use of implementation science (IS) frameworks designed to convert evidence-based intervention methods into effective health care practice may help PD developers translate proven educational methods and models into successful, well-run programs. Implementation of the national Educational Scholars Program (ESP) is used to illustrate the value of the IS model. Four adaptable elements of IS are described: (1) replication of an evidence-based model, (2) systematic stages of implementation, (3) management of implementation using three implementation drivers, and (4) demonstration of program success through measures of fidelity to proven models and sustainability. Implementation of the ESP was grounded on five established principles and methods for successful PD. The process was conducted in four IS stages over 10 years: Exploration, Installation, Initial Implementation, and Full Implementation. To ensure effective and efficient processes, attention to IS implementation drivers helped to manage organizational relationships, build competence in faculty and scholars, and address leadership challenges. We describe the ESP's fidelity to evidence-based structures and methods, and offer three examples of sustainability efforts that enabled achievement of targeted program outcomes, including academic productivity, strong networking, and career advancement of scholars. Application of IS frameworks to program implementation may help other PD programs to translate evidence-based methods into interventions with enhanced impact. A PD program can follow systematic developmental stages and be operationalized by practical implementation drivers, thereby creating successful and sustainable interventions that promote the academic vitality of health professions educators.

  13. Tools for Implementing Science Practice in a Large Introductory Class

    Science.gov (United States)

    Prothero, W. A.

    2008-12-01

    Scientists must have in-depth background knowledge of their subject area and know where current knowledge can be advanced. They perform experiments that gather data to test new or existing theories, present their findings at meetings, publish their results, critically review the results of others, and respond to the reviews of their own work. In the context of a course, these activities correspond to learning the background material by listening to lectures or reading a text, formulating a problem, exploring data using student friendly data access and plotting software, giving brief talks to classmates in a small class or lab setting, writing a science paper or lab report, reviewing the writing of their peers, and receiving feedback (and grades) from their instructors and/or peers. These activities can be supported using course management software and online resources. The "LearningWithData" software system allows solid Earth (focused on plate tectonics) data exploration and plotting. Ocean data access, display, and plotting are also supported. Background material is delivered using animations and slide show type displays. Students are accountable for their learning through included homework assignments. Lab and small group activities provide support for data exploration and interpretation. Writing is most efficiently implemented using the "Calibrated Peer Review" method. This methodology is available at http://cpr.molsci.ucla.edu/. These methods have been successfully implemented in a large oceanography class at UCSB.

  14. Forecasting the Success of Implementing Sensors Advanced Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Cheng-Shih Su

    2014-08-01

    Full Text Available This paper is presented fuzzy preference relations approach to forecast the success of implementing sensors advanced manufacturing technology (AMT. In the manufacturing environment, performance measurement is based on different quantitative and qualitative factors. This study proposes an analytic hierarchical prediction model based on fuzzy preference relations to help the organizations become aware of the essential factors affecting the AMT implementation, forecasting the chance of successful implementing sensors AMT, as well as identifying the actions necessary before implementing sensors AMT. Then predicted success/failure values are obtained to enable organizations to decide whether to initiate sensors AMT, inhibit adoption or take remedial actions to increase the possibility of successful sensors AMT initiatives. This proposed approach is demonstrated with a real case study involving six influential factors assessed by nine evaluators solicited from a semiconductor engineering incorporation located in Taiwan.

  15. How Elementary Teachers' Beliefs About the Nature of Science Mediate Implementing Prescribed Science Curricula in Their Classrooms

    Science.gov (United States)

    Giglio, Kathleen Rose Fitzgerald

    This is an in depth study of two elementary school teachers, who are generalists because they teach multiple subjects to their classes, in addition to science, respectively in grade 3 and grade 6. The teachers taught and their students learned using a contemporary understanding of the nature of science (NOS), which they learned by actually doing science investigations, rather than being explicitly told about NOS (contrary to what some scholars claim). Neither teacher completed any formal/informal science training/experiences, especially connected to the construct NOS. Even though the teachers did not explicitly reference NOS in the classroom, their teaching about NOS was made possible through their implementation of the FOSS ( Full Option Science System) curriculum. Although their students enthusiastically demonstrated competence in both science process and content, as prescribed by the FOSS curriculum, the teachers' felt undermined by the state mandated assessments and the inclusion of student performance as a criterion for the state teacher evaluation system. This research was designed to answer the following questions: (1) What are elementary teachers' conceptions about NOS? (2) How are the teachers' NOS views manifested in their implementation of the FOSS program and their choices of instructional methods/materials? (3) What factors may have enhanced or hindered how the teachers sustained their NOS conceptions as they implemented the FOSS program? To explicate the relationship between teachers' views of NOS and the extent to which constructivist practices were employed in their science instruction, a multiple research methodology using grounded theory as the foundation and employing both quantitative and qualitative measures, was needed. Sources of quantitative data were written survey results using the Student Understanding of Science and Scientific Inquiry Questionnaire (SUSSI; Liang et al., 2008) Likert scale responses and constructed responses. Face

  16. Improving Science Attitude and Creative Thinking through Science Education Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Sener, Nilay; Türk, Cumhur; Tas, Erol

    2015-01-01

    The purpose of this study is to examine the effects of a science education project implemented in different learning environments on secondary school students' creative thinking skills and their attitudes to science lesson. Within this scope, a total of 50 students who participated in the nature education project in Samsun City in 2014 make up the…

  17. 1. international spring school and symposium on advances in materials science; contributed papers. Proceedings. V.2

    International Nuclear Information System (INIS)

    1994-03-01

    The first International Conference on Advances in Materials Science was held on 15-20 March, 1994 in Cairo. The specialists discussed advances in materials science formation, development and observation. The applications of materials science technique in the field of construction material, Moessbauer measurements, physico science, corrosion and mechanical alloying were discussed at the meeting. more than 700 papers were presented in the meeting

  18. 1. international spring school and symposium on advances in materials science; contributed papers. Proceedings. V.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The first International Conference on Advances in Materials Science was held on 15-20 March, 1994 in Cairo. The specialists discussed advances in materials science formation, development and observation. The applications of materials science technique in the field of construction material, Moessbauer measurements, physico science, corrosion and mechanical alloying were discussed at the meeting. more than 700 papers were presented in the meeting.

  19. NATO Advanced Research Institute on the Application of Systems Science to Energy Policy Planning

    CERN Document Server

    Cherniavsky, E; Laughton, M; Ruff, L

    1981-01-01

    The Advanced Research Institute (ARI) on "The Application of Systems Science to Energy Policy Planning" was held under the auspices of the NATO Special Programme Panel on Systems Science in collaboration with the National Center for Analysis of Energy Sys­ tems, Brookhaven National Laboratory, USA, as a part of the NATO Science Committee's continuous effort to promote the advancement of science through international cooperation. Advanced Research Institutes are sponsored by the NATO Science Committee for the purposes of bringing together senior scientists to seek consensus on an assessment of the present state of knowl­ edge on a specific topic and to make recommendations for future research directions. Meetings are structured to encourage inten­ sive group discussion. Invitees are carefully selected so that the group as a whole will contain the experience and expertise neces­ sary to make the conclusions valid and significant. A final report is published presenting the various viewpoints and conclusions....

  20. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1962-01-01

    Advances in Nuclear Science and Technology, Volume 1 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book covers a variety of topics, including nuclear power stations, graft polymerization, diffusion in uranium alloys, and conventional power plants.Organized into seven chapters, this volume begins with an overview of the three stages of the operation of a power plant, either nuclear or conventionally fueled. This text then examines the major problems that face the successful development of commercial nuclear power plants. Other chapters consider

  1. Advance Network Reservation and Provisioning for Science

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2009-07-10

    We are witnessing a new era that offers new opportunities to conduct scientific research with the help of recent advancements in computational and storage technologies. Computational intensive science spans multiple scientific domains, such as particle physics, climate modeling, and bio-informatics simulations. These large-scale applications necessitate collaborators to access very large data sets resulting from simulations performed in geographically distributed institutions. Furthermore, often scientific experimental facilities generate massive data sets that need to be transferred to validate the simulation data in remote collaborating sites. A major component needed to support these needs is the communication infrastructure which enables high performance visualization, large volume data analysis, and also provides access to computational resources. In order to provide high-speed on-demand data access between collaborating institutions, national governments support next generation research networks such as Internet 2 and ESnet (Energy Sciences Network). Delivering network-as-a-service that provides predictable performance, efficient resource utilization and better coordination between compute and storage resources is highly desirable. In this paper, we study network provisioning and advanced bandwidth reservation in ESnet for on-demand high performance data transfers. We present a novel approach for path finding in time-dependent transport networks with bandwidth guarantees. We plan to improve the current ESnet advance network reservation system, OSCARS [3], by presenting to the clients, the possible reservation options and alternatives for earliest completion time and shortest transfer duration. The Energy Sciences Network (ESnet) provides high bandwidth connections between research laboratories and academic institutions for data sharing and video/voice communication. The ESnet On-Demand Secure Circuits and Advance Reservation System (OSCARS) establishes

  2. Environmental Science Program at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Nico, Peter; A; Anastasio, Cort; Dodge, Cleveland; Fendorf, Scott; Francis, A.J.; Hubbard, Susan; Shuh, David; Tomutsa, Liviu; Tufano, Kate; Tyliszczak, Tolek; Werner, Michelle; Williams, Ken

    2006-04-05

    The Advanced Light Source (ALS) has a variety of capabilities that are applicable to very different types of environmental systems. Shown are the basic descriptions of four of the approximately 35 beam lines at the ALS. The complimentary capabilities of these four beam lines allow for investigations that range from a spatial scale of a few nanometers to several millimeters. The Environmental Science Program at the Advanced Light Source seeks to promote and assist environmental research, particularly on the four beam lines described in this report. Several short examples of the types of research conducted on these beam lines are also described.

  3. Changing epistemological beliefs with nature of science implementations

    Science.gov (United States)

    Johnson, Keith; Willoughby, Shannon

    2018-06-01

    This article discusses our investigation regarding nature of science (NOS) implementations and epistemological beliefs within an undergraduate introductory astronomy course. The five year study consists of two years of baseline data in which no explicit use of NOS material was implemented, then three years of subsequent data in which specific NOS material was integrated into the classroom. Our original study covered two years of baseline data and one year of treatment data. Two additional years of treatment course data have revealed intriguing new insights into our students' epistemic belief structure. To monitor the evolution of belief structures across each semester we used student pre-post data on the Epistemological Beliefs About the Physical Sciences (EBAPS) assessment. The collected data were also partitioned and analyzed according to the following variables: college (Letters of Science, Business, Education, etc.), degree (BA or BS), status (freshman, sophomore, etc.), and gender (male or female). We find that the treatment course no longer undergoes significant overall epistemic deterioration after a semester of instruction. We also acquire a more detailed analysis of these findings utilizing the aforementioned variables. Most notably, we see that this intervention had a pronounced positive impact on males and on students within the college of Education, Arts & Architecture, and those with no concentration. Lastly, whether or not students believe their ability to learn science is innate or malleable did not seem to change, remaining a rigid construct with student epistemologies.

  4. Changing epistemological beliefs with nature of science implementations

    Directory of Open Access Journals (Sweden)

    Keith Johnson

    2018-02-01

    Full Text Available This article discusses our investigation regarding nature of science (NOS implementations and epistemological beliefs within an undergraduate introductory astronomy course. The five year study consists of two years of baseline data in which no explicit use of NOS material was implemented, then three years of subsequent data in which specific NOS material was integrated into the classroom. Our original study covered two years of baseline data and one year of treatment data. Two additional years of treatment course data have revealed intriguing new insights into our students’ epistemic belief structure. To monitor the evolution of belief structures across each semester we used student pre-post data on the Epistemological Beliefs About the Physical Sciences (EBAPS assessment. The collected data were also partitioned and analyzed according to the following variables: college (Letters of Science, Business, Education, etc., degree (BA or BS, status (freshman, sophomore, etc., and gender (male or female. We find that the treatment course no longer undergoes significant overall epistemic deterioration after a semester of instruction. We also acquire a more detailed analysis of these findings utilizing the aforementioned variables. Most notably, we see that this intervention had a pronounced positive impact on males and on students within the college of Education, Arts & Architecture, and those with no concentration. Lastly, whether or not students believe their ability to learn science is innate or malleable did not seem to change, remaining a rigid construct with student epistemologies.

  5. The Advanced Communications Technology Satellite (ACTS) capabilities for serving science

    Science.gov (United States)

    Meyer, Thomas R.

    1990-01-01

    Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.

  6. The Implementation of Pedagogical Content Knowledge (PCK based Guided Inquiry on Science Teacher Students

    Directory of Open Access Journals (Sweden)

    Lulu Tunjung Biru

    2018-05-01

    Full Text Available The aim of this study is examining the learning of Integrated Sciences through PCK based guided inquiry on prospective science teacher students. This research method was descriptive qualitative involving 33 science teacher students who taking Integrated Science 1 Subject in academic year 2016/2017. The research instrument used was the observation sheet to know the implementation PCK based guided inquiry. The results showed that the implementation of the activities of lecturer and science teacher students during the learning process using PCK based guided inquiry was very good conducted.

  7. Translational science matters: forging partnerships between biomedical and behavioral science to advance the public's health.

    Science.gov (United States)

    Mensah, George A; Czajkowski, Susan M

    2018-03-29

    The prevention and effective treatment of many chronic diseases such as cardiovascular disease, cancer and diabetes are dependent on behaviors such as not smoking, adopting a physically-active lifestyle, eating a healthy diet, and adhering to prescribed medical and behavioral regimens. Yet adoption and maintenance of these behaviors pose major challenges for individuals, their families and communities, as well as clinicians and health care systems. These challenges can best be met through the integration of the biomedical and behavioral sciences that is achieved by the formation of strategic partnerships between researchers and practitioners in these disciplines to address pressing clinical and public health problems. The National Institutes of Health has supported a number of clinical trials and research initiatives that demonstrate the value of biomedical and behavioral science partnerships in translating fundamental discoveries into significant improvements in health outcomes. We review several such examples of collaborations between biomedical and behavioral researchers, describe key initiatives focused on advancing a transdisciplinary translational perspective, and outline areas which require insights, tools and findings from both the biomedical and behavioral sciences to advance the public's health.

  8. Instructional Support and Implementation Structure during Elementary Teachers' Science Education Simulation Use

    Science.gov (United States)

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-01-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results…

  9. The Manchester Fly Facility: Implementing an objective-driven long-term science communication initiative.

    Science.gov (United States)

    Patel, Sanjai; Prokop, Andreas

    2017-10-01

    Science communication is increasingly important for scientists, although research, teaching and administration activities tend to eat up our time already, and budgets for science communication are usually low. It appears impossible to combine all these tasks and, in addition, to develop engagement activities to a quality and impact that would make the efforts worth their while. Here we argue that these challenges are easier addressed when centering science communication initiatives on a long-term vision with a view to eventually forming outreach networks where the load can be shared whilst being driven to higher momentum. As one example, we explain the science communication initiative of the Manchester Fly Facility. It aims to promote public awareness of research using the model organism Drosophila, which is a timely, economic and most efficient experimental strategy to drive discovery processes in the biomedical sciences and must have a firm place in the portfolios of funding organisations. Although this initiative by the Manchester Fly Facility is sustained on a low budget, its long-term vision has allowed gradual development into a multifaceted initiative: (1) targeting university students via resources and strategies for the advanced training in fly genetics; (2) targeting the general public via science fairs, educational YouTube videos, school visits, teacher seminars and the droso4schools project; (3) disseminating and marketing strategies and resources to the public as well as fellow scientists via dedicated websites, blogs, journal articles, conference presentations and workshops - with a view to gradually forming networks of drosophilists that will have a greater potential to drive the science communication objective to momentum and impact. Here we explain the rationales and implementation strategies for our various science communication activities - which are similarly applicable to other model animals and other areas of academic science - and share our

  10. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1975-01-01

    Advances in Nuclear Science and Technology, Volume 8 discusses the development of nuclear power in several countries throughout the world. This book discusses the world's largest program of land-based electricity production in the United States.Organized into six chapters, this volume begins with an overview of the phenomenon of quasi-exponential behavior by examining two mathematical models of the neutron field. This text then discusses the finite element method, which is a method for obtaining approximate solutions to integral or differential equations. Other chapters consider the status of

  11. Advanced information science and object-oriented technology for information management applications

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, J.R.; Swietlik, C.E.

    1996-10-01

    The role of the military has been undergoing rapid change since the fall of the Berlin Wall. The kinds of missions the US military has been asked to participate in have often fallen into the category of {open_quotes}Military Operations Other Than War{close_quotes} and those involving military responses have been more of a surgical nature directed against different kinds of threats, like rogue states or in response to terrorist actions. As a result, the requirements on the military planner and analyst have also had to change dramatically. For example, preparing response options now requires rapid turnaround and a highly flexible simulation capability. This in turn requires that the planner or analyst have access to sophisticated information science and simulation technologies. In this paper, we shall discuss how advanced information science and object-oriented technologies can be used in advanced information management applications. We shall also discuss how these technologies and tools can be applied to DoD applications by presenting examples with a system developed at Argonne, the Dynamic Information Architecture System (DIAS). DIAS has been developed to exploit advanced information science and simulation technologies to provide tools for future planners and analysts.

  12. Implementation science: a reappraisal of our journal mission and scope.

    Science.gov (United States)

    Foy, Robbie; Sales, Anne; Wensing, Michel; Aarons, Gregory A; Flottorp, Signe; Kent, Bridie; Michie, Susan; O'Connor, Denise; Rogers, Anne; Sevdalis, Nick; Straus, Sharon; Wilson, Paul

    2015-04-17

    The implementation of research findings into healthcare practice has become increasingly recognised as a major priority for researchers, service providers, research funders and policymakers over the past decade. Nine years after its establishment, Implementation Science, an international online open access journal, currently publishes over 150 articles each year. This is fewer than 30% of those submitted for publication. The majority of manuscript rejections occur at the point of initial editorial screening, frequently because we judge them to fall outside of journal scope. There are a number of common reasons as to why manuscripts are rejected on grounds of scope. Furthermore, as the field of implementation research has evolved and our journal submissions have risen, we have, out of necessity, had to become more selective in what we publish. We have also expanded our scope, particularly around patient-mediated and population health interventions, and will monitor the impact of such changes. We hope this editorial on our evolving priorities and common reasons for rejection without peer review will help authors to better judge the relevance of their papers to Implementation Science.

  13. Implementation of advanced finite element technology in structural analysis computer codes

    International Nuclear Information System (INIS)

    Kohli, T.D.; Wiley, J.W.; Koss, P.W.

    1975-01-01

    Advances in finite element technology over the last several years have been rapid and have largely outstripped the ability of general purpose programs in the public domain to assimilate them. As a result, it has become the burden of the structural analyst to incorporate these advances himself. This paper discusses the implementation and extension of specific technological advances in Bechtel structural analysis programs. In general these advances belong in two categories: (1) the finite elements themselves and (2) equation solution algorithms. Improvements in the finite elements involve increased accuracy of the elements and extension of their applicability to various specialized modelling situations. Improvements in solution algorithms have been almost exclusively aimed at expanding problem solving capacity. (Auth.)

  14. SUPPORTING TEACHERS IN IMPLEMENTING FORMATIVE ASSESSMENT PRACTICES IN EARTH SYSTEMS SCIENCE

    Science.gov (United States)

    Harris, C. J.; Penuel, W. R.; Haydel Debarger, A.; Blank, J. G.

    2009-12-01

    automatic to teachers and students. Routines function as classroom norms, governing how students and teachers interact with subject matter (i.e., the way ideas are elicited, taken up, and revised). We use the qualifier teaching because we view good classroom assessment as seamless with instruction. Each teaching routine defines a sequence of instructional moves, supported by classroom network technology, for creating formative assessment opportunities that address 3 goals: (1) Increase student-teacher and student-student communication;(2) Motivate students to participate and learn from discussion, investigation, and reading; and (3) Provide real-time feedback for the teacher who can then adjust instruction. We report on key features of our support system for helping teachers develop proficiency with using formative assessment to inform instruction and advance learning in Earth Systems science. We also present preliminary findings from the implementation of the support system with a test group of teachers in a large, urban school district. Findings highlight the promise of teaching routines as an important resource for structuring student opportunities to showcase their thinking.

  15. The Study of Literacy Reinforcement of Science Teachers in Implementing 2013 Curriculum

    Science.gov (United States)

    Dewi, W. S.; Festiyed, F.; Hamdi, H.; Sari, S. Y.

    2018-04-01

    This research aims to study and collect data comprehensively, new and actual about science literacy to improve the ability of educators in implementing the 2013 Curriculum at Junior High School Padang Pariaman District. The specific benefit of this research is to give description and to know the problem of science literacy problem in interaction among teacher, curriculum, facilities and infrastructure, evaluation, learning technology and students. This study uses explorative in deep study approach, studying and collecting data comprehensively from the interaction of education process components (curriculum, educator, learner, facilities and infrastructure, learning media technology, and evaluation) that influence the science literacy. This research was conducted in the districts of Padang Pariaman consisting of 17 subdistricts and 84 junior high schools managed by the government and private. The sample of this research is science teachers of Padang Pariaman District with sampling technique is stratified random sampling. The instrument used in this study is a questionnaire to the respondents. Research questionnaire data are processed by percentage techniques (quantitative). The results of this study explain that the understanding of science teachers in Padang Pariaman District towards the implementation of 2013 Curriculum is still lacking. The science teachers of Padang Pariaman District have not understood the scientific approach and the effectiveness of 2013 Curriculum in shaping the character of the students. To improve the understanding of the implementation of Curriculum 2013, it is necessary to strengthen the literacy toward science teachers at the Junior High School level in Padang Pariaman District.

  16. Advanced Metering Implementations - A Perspective from Federal Sector

    Energy Technology Data Exchange (ETDEWEB)

    Eaarni, Shankar

    2014-08-11

    Federal mandate (EPACT 2005) requires that federal buildings install advanced electrical meters-meters capable of providing data at least daily and measuring the consumption of electricity at least hourly. This work presents selected advanced metering implementations to understand some of the existing practices related to data capture and to understand how the data is being translated into information and knowledge that can be used to improve building energy and operational performance to meet federal energy reduction mandates. This study highlights case studies to represent some of the various actions that are being taken based on the data that are being collected to improve overall energy performance of these buildings. Some of these actions include- individualized tenant billing and energy forecasting, benchmarking, identifying energy conservation measures, measurement and verification.

  17. The implementation of a discovery-oriented science education program in a rural elementary school

    Science.gov (United States)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine

  18. Assessment report on research and development activities. Activity: 'Advanced science research' (Interim report)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for interim assessment of 'Advanced Science Research,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research programs and activities of the Advanced Science Research Center (hereinafter referred to as 'ASRC') for the period of two years from April 2010. The Committee evaluated the management and the research programs of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the result of the assessment by the Committee with the Committee report attached from page 7. (author)

  19. Assessment report of research and development activities. Activity: advanced science research' (Interim report)

    International Nuclear Information System (INIS)

    2008-08-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consults an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for interim assessment of 'Advanced Science Research,' in accordance with General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research program of the Advanced Science Research Center (hereinafter referred to as 'ASRC') during the period of two years from October 2005 to September 2007. The Committee evaluated the management and research activities of the ASRC based on the explanatory documents prepared by the ASRC, the oral presentations with questions-and-answers by the Director and the research group leaders, and interviews from group members through on-site visits by the Committee members. One CD-ROM is attached as an appendix. (J.P.N.)

  20. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    Science.gov (United States)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  1. Advanced Chemical Propulsion for Science Missions

    Science.gov (United States)

    Liou, Larry

    2008-01-01

    The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.

  2. A Longitudinal Study of Implementing Reality Pedagogy in an Urban Science Classroom: Effects, Challenges, and Recommendations for Science Teaching and Learning

    Science.gov (United States)

    Borges, Sheila Ivelisse

    Statistics indicate that students who reside in forgotten places do not engage in science-related careers. This is problematic because we are not tapping into diverse talent that could very well make scientific strides and because there is a moral obligation for equity as discussed in Science for all (AAAS, 1989). Research suggests that one of the reasons for this disparity is that students feel alienated from science early on in their K--12 education due to their inability to connect culturally with their teachers (Tobin, 2001). Urban students share an urban culture, a way of knowing and being that is separate from that of the majority of the teacher workforce whom have not experienced the nuances of urban culture. These teachers have challenges when teaching in urban classrooms and have a myriad of difficulties such as classroom management, limited access to experienced science colleagues and limited resources to teach effectively. This leads them to leaving the teaching profession affecting already high teacher attrition rates in urban areas (Ingersol, 2001). In order to address these issues a culturally relevant pedagogy, called reality pedagogy (Emdin, 2011), was implemented in an urban science classroom using a bricolage (Denzin & Lincoln, 2005) of different theories such as social capital (Bourdieu, 1986) and critical race theory (Ladson-Billings & Tate, 1995), along with reality pedagogy to construct a qualitative sociocultural lens. Reality pedagogy has five tools, which are cogenerative dialogues, coteaching, cosmopolitanism, context, and content. In this longitudinal critical ethnography a science teacher in an alternative teaching certification program was supported for two years as she implemented the tools of reality pedagogy with her urban students. Findings revealed that the science teacher enacted four racial microaggressions against her students, which negatively affected the teacher-student relationship and science teaching and learning. As the

  3. Appreciative Inquiry and Implementation Science in Leadership Development.

    Science.gov (United States)

    Bleich, Michael R; Hessler, Christine

    2016-05-01

    Appreciative inquiry was developed to initiate and animate change. As implementation science gains a foothold in practice settings to bridge theory, evidence, and practice, appreciative inquiry takes on new meaning as a leadership intervention and training tool. J Contin Educ Nurs. 2016;47(5):207-209. Copyright 2016, SLACK Incorporated.

  4. Teacher Implementation and the Impact of Game-Based Science Curriculum Materials

    Science.gov (United States)

    Wilson, Christopher D.; Reichsman, Frieda; Mutch-Jones, Karen; Gardner, April; Marchi, Lisa; Kowalski, Susan; Lord, Trudi; Dorsey, Chad

    2018-01-01

    Research-based digital games hold great potential to be effective tools in supporting next-generation science learning. However, as with all instructional materials, teachers significantly influence their implementation and contribute to their effectiveness. To more fully understand the contributions and challenges of teacher implementation of digital games, we studied the replacement of existing high school biology genetics lessons over a 3- to 6-week period with Geniverse, an immersive, game-like learning environment designed to be used in classrooms. The Geniverse materials infuse virtual experimentation in genetics with a narrative of a quest to heal a genetic disease; incorporate the topics of meiosis and protein synthesis with inheritance; and include the science practices of explanation and argumentation. The research design involved a quasi-experiment with 48 high school teachers and about 2000 students, student science content knowledge and argumentation outcome measures, and analysis using hierarchical linear modeling. Results indicate that when Geniverse was implemented as the designers intended, student learning of genetics content was significantly greater than in the comparison, business-as-usual group. However, a wide range of levels of Geniverse implementation resulted in no significant difference between the groups as a whole. Students' abilities to engage in scientific explanation and argumentation were greater in the Geniverse group, but these differences were not statistically significant. Observation, survey, and interview data indicate a range of barriers to implementation and teacher instructional decisions that may have influenced student outcomes. Implications for the role of the teacher in the implementation of game-based instructional materials are discussed.

  5. The implementation of psychiatric advance directives: Experiences from a Dutch crisis card initiative.

    NARCIS (Netherlands)

    van der Ham, A.J.; Voskes, Y.; van Kempen, N.; Broerse, J.E.W.; Widdershoven, G.A.

    2013-01-01

    Objective: The crisis card is a specific form of psychiatric advance directive, documenting mental clients' treatment preferences in advance of a potential psychiatric crisis. In this paper, we aim to provide insight into implementation issues surrounding the crisis card. Method: A Dutch crisis-card

  6. Beam processing of advanced materials

    International Nuclear Information System (INIS)

    Singh, J.; Copley, S.M.

    1993-01-01

    International Conference on Beam Processing of Advanced Materials was held at the Fall TMS/ASM Materials Week at Chicago, Illinois, November 2--5, 1992. The symposium was devoted to the recent advances in processing of materials by an energy source such as laser, electron, ion beams, etc. The symposium served as a forum on the science of beam-induced materials processing and implications of this science to practical implementation. An increased emphasis on obtaining an understanding of the fundamental mechanisms of beam-induced surface processes was a major trend observed at this years symposium. This has resulted in the increased use of advanced diagnostic techniques and modeling studies to determine the rate controlling steps in these processes. Individual papers have been processed separately for inclusion in the appropriate data bases

  7. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods

    NARCIS (Netherlands)

    Waltman, L.R.; Van, Raan A.F.J.; Smart, S.

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach

  8. Synthesizing Marketing, Community Engagement, and Systems Science Approaches for Advancing Translational Research.

    Science.gov (United States)

    Kneipp, Shawn M; Leeman, Jennifer; McCall, Pamela; Hassmiller-Lich, Kristen; Bobashev, Georgiy; Schwartz, Todd A; Gilmore, Robert; Riggan, Scott; Gil, Benjamin

    2015-01-01

    The adoption and implementation of evidence-based interventions (EBIs) are the goals of translational research; however, potential end-users' perceptions of an EBI value have contributed to low rates of adoption. In this article, we describe our application of emerging dissemination and implementation science theoretical perspectives, community engagement, and systems science principles to develop a novel EBI dissemination approach. Using consumer-driven, graphics-rich simulation, the approach demonstrates predicted implementation effects on health and employment outcomes for socioeconomically disadvantaged women at the local level and is designed to increase adoption interest of county program managers accountable for improving these outcomes in their communities.

  9. Criteria for selecting implementation science theories and frameworks: results from an international survey

    Directory of Open Access Journals (Sweden)

    Sarah A. Birken

    2017-10-01

    Full Text Available Abstract Background Theories provide a synthesizing architecture for implementation science. The underuse, superficial use, and misuse of theories pose a substantial scientific challenge for implementation science and may relate to challenges in selecting from the many theories in the field. Implementation scientists may benefit from guidance for selecting a theory for a specific study or project. Understanding how implementation scientists select theories will help inform efforts to develop such guidance. Our objective was to identify which theories implementation scientists use, how they use theories, and the criteria used to select theories. Methods We identified initial lists of uses and criteria for selecting implementation theories based on seminal articles and an iterative consensus process. We incorporated these lists into a self-administered survey for completion by self-identified implementation scientists. We recruited potential respondents at the 8th Annual Conference on the Science of Dissemination and Implementation in Health and via several international email lists. We used frequencies and percentages to report results. Results Two hundred twenty-three implementation scientists from 12 countries responded to the survey. They reported using more than 100 different theories spanning several disciplines. Respondents reported using theories primarily to identify implementation determinants, inform data collection, enhance conceptual clarity, and guide implementation planning. Of the 19 criteria presented in the survey, the criteria used by the most respondents to select theory included analytic level (58%, logical consistency/plausibility (56%, empirical support (53%, and description of a change process (54%. The criteria used by the fewest respondents included fecundity (10%, uniqueness (12%, and falsifiability (15%. Conclusions Implementation scientists use a large number of criteria to select theories, but there is little

  10. Criteria for selecting implementation science theories and frameworks: results from an international survey.

    Science.gov (United States)

    Birken, Sarah A; Powell, Byron J; Shea, Christopher M; Haines, Emily R; Alexis Kirk, M; Leeman, Jennifer; Rohweder, Catherine; Damschroder, Laura; Presseau, Justin

    2017-10-30

    Theories provide a synthesizing architecture for implementation science. The underuse, superficial use, and misuse of theories pose a substantial scientific challenge for implementation science and may relate to challenges in selecting from the many theories in the field. Implementation scientists may benefit from guidance for selecting a theory for a specific study or project. Understanding how implementation scientists select theories will help inform efforts to develop such guidance. Our objective was to identify which theories implementation scientists use, how they use theories, and the criteria used to select theories. We identified initial lists of uses and criteria for selecting implementation theories based on seminal articles and an iterative consensus process. We incorporated these lists into a self-administered survey for completion by self-identified implementation scientists. We recruited potential respondents at the 8th Annual Conference on the Science of Dissemination and Implementation in Health and via several international email lists. We used frequencies and percentages to report results. Two hundred twenty-three implementation scientists from 12 countries responded to the survey. They reported using more than 100 different theories spanning several disciplines. Respondents reported using theories primarily to identify implementation determinants, inform data collection, enhance conceptual clarity, and guide implementation planning. Of the 19 criteria presented in the survey, the criteria used by the most respondents to select theory included analytic level (58%), logical consistency/plausibility (56%), empirical support (53%), and description of a change process (54%). The criteria used by the fewest respondents included fecundity (10%), uniqueness (12%), and falsifiability (15%). Implementation scientists use a large number of criteria to select theories, but there is little consensus on which are most important. Our results suggest that the

  11. Sensor Web Technology Challenges and Advancements for the Earth Science Decadal Survey Era

    Science.gov (United States)

    Norton, Charles D.; Moe, Karen

    2011-01-01

    This paper examines the Earth science decadal survey era and the role ESTO developed sensor web technologies can contribute to the scientific observations. This includes hardware and software technology advances for in-situ and in-space measurements. Also discussed are emerging areas of importance such as the potential of small satellites for sensor web based observations as well as advances in data fusion critical to the science and societal benefits of future missions, and the challenges ahead.

  12. Women's Advancement in Political Science. A Report on the APSA Workshop on the Advancement of Women in Academic Political Science in the United States (Washington, DC, March 4-5, 2004)

    Science.gov (United States)

    American Political Science Association (NJ1), 2005

    2005-01-01

    In March 2004, the National Science Foundation funded a two-day workshop by the American Political Science Association (APSA) on the advancement of women in academic political science in the United States. The workshop was prompted by an alarming stall in the number of women entering the discipline and persisting through early years of faculty…

  13. Memoranda about Implementation of the Cancer Guidelines and Accompanying Supplemental Guidance - Science Policy Council Cancer Guidelines Implementation Workgroup Communication I and II

    Science.gov (United States)

    Memoranda from the Chair of EPA's Science Policy Council to the Science Policy Council and the Science Policy Council Steering Committee regarding Implementation of the Cancer Guidelines and Accompanying Supplemental Guidance.

  14. 1. international spring school and symposium on advances in materials science; invited lectures. Proceedings. V.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The 1 st international conference on advances in materials science was held on 15-20 March, 1994 in cairo. The specialist discussed material science formation, development and observation. The application of advances in material science technique in the field of atomic energy, structure design, microelectronic structure were discussed at the meeting. more than 400 papers were presented in the meeting.

  15. 1. international spring school and symposium on advances in materials science; invited lectures. Proceedings. V.1

    International Nuclear Information System (INIS)

    1994-03-01

    The 1 st international conference on advances in materials science was held on 15-20 March, 1994 in cairo. The specialist discussed material science formation, development and observation. The application of advances in material science technique in the field of atomic energy, structure design, microelectronic structure were discussed at the meeting. more than 400 papers were presented in the meeting

  16. Kindergarten Teachers' Understanding of the Elements of Implementing Inquiry-Based Science Instruction

    Science.gov (United States)

    Blevins, Kathryn

    The purpose of this basic qualitative research study was to identify the extent to which kindergarten teachers understand and implement inquiry-based instruction in their science classrooms. This study was conducted in response to the indication that traditional didactic teaching methods were not enough to adequately prepare American students to compete in the global economy. Inquiry is a teaching method that could prepare students for the critical thinking skills needed to enter society in the 21st century. It is vital that teachers be sufficiently trained in teaching using the necessary components of inquiry-based instruction. This study could be used to inform leaders in educational administration of the gaps in teachers' understanding as it pertains to inquiry, thus allowing for the delivery of professional development that will address teachers' needs. Existing literature on inquiry-based instruction provides minimal information on kindergarten teachers' understanding and usage of inquiry to teach science content, and this information would be necessary to inform administrators in their response to supporting teachers in the implementation of inquiry. The primary research question for this study was "To what extent do kindergarten teachers understand the elements of implementing inquiry-based lessons in science instruction?" The 10 participants in this study were all kindergarten teachers in a midsized school district in the Mid-Atlantic region of the United States. Data were collected using face-to-face semistructured interviews, observations of the teachers implementing what they perceived to be inquiry-based instruction, and the analysis of lesson plans to indicate the components used to plan for inquiry-instruction. The findings of this study indicated that while teachers believed inquiry to be a beneficial method for teaching science, they did not understand the components of inquiry and tended to implement lesson plans created at the district level. By

  17. Reaching the Next Stephen Hawking: Five Ways to Help Students with Disabilities in Advanced Placement Science Classes

    Science.gov (United States)

    Howard, Lori A.; Potts, Elizabeth A.; Linz, Ed

    2013-01-01

    As the federal government encourages all students to attempt advanced math and science courses, more students with disabilities are enrolling in Advanced Placement (AP) science classes. AP science teachers can better serve these students by understanding the various types of disabilities (whether physical, learning, emotional, or behavioral),…

  18. The science of stakeholder engagement in research: classification, implementation, and evaluation.

    Science.gov (United States)

    Goodman, Melody S; Sanders Thompson, Vetta L

    2017-09-01

    In this commentary, we discuss the science of stakeholder engagement in research. We propose a classification system with definitions to determine where projects lie on the stakeholder engagement continuum. We discuss the key elements of implementation and evaluation of stakeholder engagement in research posing key questions to consider when doing this work. We commend and critique the work of Hamilton et al. in their multilevel stakeholder engagement in a VA implementation trial of evidence-based quality improvement in women's health primary care. We also discuss the need for more work in this area to enhance the science of stakeholder engagement in research.

  19. Twitter use at the 2016 Conference on the Science of Dissemination and Implementation in Health: analyzing #DIScience16.

    Science.gov (United States)

    Allen, Caitlin G; Andersen, Brittany; Chambers, David A; Groshek, Jacob; Roberts, Megan C

    2018-02-20

    Poor dissemination of research findings may hamper the reach and impact of scientific discoveries. One key emerging platform for research dissemination is social media, including Twitter. While Twitter and other social media are increasingly being used to disseminate research content presented during scientific conferences, few studies have investigated the extent to which these tools are used throughout conferences and how they are being used. The aim for this study was to better understand the use of Twitter during the 2016 Annual Conference on the Science of Dissemination and Implementation in Health (D&I conference). We performed an analysis of Twitter use before, during, and after the 2016 D&I conference, which took place from December 14 to 15. All tweets (posted between December 1 and 31) that included the conference-specific hashtag (#DIScience16) were assessed. We identified 2639 tweets using the data analytics platform NUVI. We used NUVI software to generate statistics about reach, influence, mentions, and origin of the tweets. Individual tweet content was also assessed using DiscoverText and coded for disease category, implementation outcomes discussed, category of tweet, and conference track. A total of 2639 tweets were analyzed; 89.1% of the tweets were posted during the conference. A total of 389 unique users participated on Twitter, representing 31 states and 22 locations outside of the USA. Most (56.8%) tweets were re-tweets and were used for scientific promotion (50.6%). Key conference speakers and implementation outcomes (de-implementation, adaptation, and fidelity) were commonly discussed. Our findings reveal that Twitter was used as a platform during the D&I conference, both to facilitate conference discussion and to promote scientific ideas. This work contributes to the existing data analytics and implementation science literature in two major ways: (1) by advancing knowledge of how social media is used during annual academic conferences and (2

  20. Advanced Technologies and Data Management Practices in Environmental Science: Lessons from Academia

    Science.gov (United States)

    Hernandez, Rebecca R.; Mayernik, Matthew S.; Murphy-Mariscal, Michelle L.; Allen, Michael F.

    2012-01-01

    Environmental scientists are increasing their capitalization on advancements in technology, computation, and data management. However, the extent of that capitalization is unknown. We analyzed the survey responses of 434 graduate students to evaluate the understanding and use of such advances in the environmental sciences. Two-thirds of the…

  1. A methodology for enhancing implementation science proposals: comparison of face-to-face versus virtual workshops.

    Science.gov (United States)

    Marriott, Brigid R; Rodriguez, Allison L; Landes, Sara J; Lewis, Cara C; Comtois, Katherine A

    2016-05-06

    With the current funding climate and need for advancements in implementation science, there is a growing demand for grantsmanship workshops to increase the quality and rigor of proposals. A group-based implementation science-focused grantsmanship workshop, the Implementation Development Workshop (IDW), is one methodology to address this need. This manuscript provides an overview of the IDW structure, format, and findings regarding its utility. The IDW methodology allows researchers to vet projects in the proposal stage in a structured format with a facilitator and two types of expert participants: presenters and attendees. The presenter uses a one-page handout and verbal presentation to present their proposal and questions. The facilitator elicits feedback from attendees using a format designed to maximize the number of unique points made. After each IDW, participants completed an anonymous survey assessing perceptions of the IDW. Presenters completed a funding survey measuring grant submission and funding success. Qualitative interviews were conducted with a subset of participants who participated in both delivery formats. Mixed method analyses were performed to evaluate the effectiveness and acceptability of the IDW and compare the delivery formats. Of those who participated in an IDW (N = 72), 40 participated in face-to-face only, 16 in virtual only, and 16 in both formats. Thirty-eight (face-to-face n = 12, 35 % response rate; virtual n = 26, 66.7 % response rate) responded to the surveys and seven (15.3 % response rate), who had attended both formats, completed an interview. Of 36 total presenters, 17 (face-to-face n = 12, 42.9 % response rate; virtual n = 5, 62.9 % response rate) responded to the funding survey. Mixed method analyses indicated that the IDW was effective for collaboration and growth, effective for enhancing success in obtaining grants, and acceptable. A third (35.3 %) of presenters ultimately received funding for their proposal, and more than

  2. Assessment report on research and development activities. Activity: 'Advanced science research' (Interim report)

    International Nuclear Information System (INIS)

    2012-11-01

    Japan Atomic Energy Agency (hereinafter referred to as “JAEA”) consulted an assessment committee, “Evaluation Committee of Research Activities for Advanced Science Research” (hereinafter referred to as “Committee”) for interim assessment of “Advanced Science Research,” in accordance with “General Guideline for the Evaluation of Government Research and Development (R and D) Activities” by Cabinet Office, Government of Japan, “Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology” and “Regulation on Conduct for Evaluation of R and D Activities” by JAEA. In response to the JAEA's request, the Committee assessed the research programs and activities of the Advanced Science Research Center (hereinafter referred to as “ASRC”) for the period of two years from April 2010. The Committee evaluated the management and the research programs of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the result of the assessment by the Committee with the Committee report attached from page 7. (author)

  3. EDITORIAL: Focus on Advances in Surface and Interface Science 2008 FOCUS ON ADVANCES IN SURFACE AND INTERFACE SCIENCE 2008

    Science.gov (United States)

    Scheffler, Matthias; Schneider, Wolf-Dieter

    2008-12-01

    Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K

  4. Engaging High School Students in Advanced Math and Science Courses for Success in College: Is Advanced Placement the Answer?

    Science.gov (United States)

    Kelley-Kemple, Thomas; Proger, Amy; Roderick, Melissa

    2011-01-01

    The current study provides an in-depth look at Advanced Placement (AP) math and science course-taking in one school district, the Chicago Public Schools (CPS). Using quasi-experimental methods, this study examines the college outcomes of students who take AP math and science courses. Specifically, this study asks whether students who take AP math…

  5. Complex program of advance in science and technology

    International Nuclear Information System (INIS)

    Sychev, V.V.

    1986-01-01

    A draft of the complex program of advance in science and technology of the CMEA member-countries is described in brief. The basis of the program includes five priority trends electronics development complex automatization, advanced development of nuclear energy, production of new materials and tecnologies of their production and processing, advanced developmen of biotechnologies. Development of nuclear energy will be based on WWER-440 and WWER-1000 type NPPs. Heat-only nuclear stations and power and heat nuclear stations will receive a large development effort, as well as sodium-cooled fast reactors of the BN type having 800 and 1600 MW capacity, high-temperature gas-cooled breeders of the BGR-300 type, gas-cooled reactors of the VG-400 type for high-temperature heat supply (500-1000 deg C). It is contemplated to design the TOKAMAK-15 research thermonuclear facility and a pilot thermonuclear reactor for power generation and plutonium production. The program also comprises works aimed at improving reliability and safety of the nuclear installations

  6. Assessment report of research and development activities. Activity: 'Advanced science research' (Pre-review report)

    International Nuclear Information System (INIS)

    2010-11-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for prior assessment of 'Advanced Science Research,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research program and activities of the Advanced Science Research Center (hereinafter referred to as 'ASRC') for the period of five years from April 2010. The Committee evaluated the management and the research program of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the result of the assessment by the Committee with the Committee report attached from page 7. (author)

  7. Interprofessional development and implementation of a pharmacist professional advancement and recognition program.

    Science.gov (United States)

    Hager, David; Chmielewski, Eric; Porter, Andrea L; Brzozowski, Sarah; Rough, Steve S; Trapskin, Philip J

    2017-11-15

    The interprofessional development, implementation, and outcomes of a pharmacist professional advancement and recognition program (PARP) at an academic medical center are described. Limitations of the legacy advancement program, in combination with low rates of employee engagement in peer recognition and professional development, at the UW Health department of pharmacy led to the creation of a task force comprising pharmacists from all practice areas to develop a new pharmacist PARP. Senior leadership within the organization expanded the scope of the project to include an interprofessional work group tasked to develop guidelines and core principles that other professional staff could use to reduce variation across advancement and recognition programs. Key program design elements included a triennial review of performance against advancement standards and the use of peer review to supplement advancement decisions. The primary objective was to meaningfully improve pharmacists' engagement as measured through employee engagement surveys. Secondary outcomes of interest included the results of pharmacist and management satisfaction surveys and the program's impact on the volume and mix of pharmacist professional development activities. Of the 126 eligible pharmacists, 93 participated in the new program. The majority of pharmacists was satisfied with the program. For pharmacists who were advanced as part of the program, meaningful increases in employee engagement scores were observed, and a mean of 95 hours of professional development and quality-improvement activities was documented. Implementation of a PARP helped increase pharmacist engagement through participation in quality-improvement and professional development activities. The program also led to the creation of organizationwide interprofessional guidelines for advancement programs within various healthcare disciplines. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  9. 42 CFR 495.338 - Health information technology implementation advance planning document requirements (HIT IAPD).

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Health information technology implementation... CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY INCENTIVE PROGRAM Requirements Specific to the Medicaid Program § 495.338 Health information technology implementation advance planning document...

  10. Challenges to implementation of advance directives of will in hospital practice.

    Science.gov (United States)

    Cogo, Silvana Bastos; Lunardi, Valéria Lerch; Quintana, Alberto Manuel; Girardon-Perlini, Nara Marilene Oliveira; Silveira, Rosemary Silva da

    2016-01-01

    to understand the difficulties and limitations in the implementation of advance directives of will in the hospital context. qualitative, exploratory and descriptive study conducted by means of semi-structured interviews with nurses, resident physicians and family caregivers. The data were analyzed by using discursive textual analysis based on the framework of bioethics principles. the following categories emerged: Terminality as an expression of loss and cure as an option for care; concerns about legal implications; advance directives of will demand patient autonomy and proper communication. limitations and difficulties in practice of advance directives of will from the perspective of the participants show, apart from countless conflicts and dilemmas regarding end-of life matters, that impending death experiences obstruct patients' wishes.

  11. Why Implementing History and Philosophy in School Science Education is a Challenge: An Analysis of Obstacles

    Science.gov (United States)

    Höttecke, Dietmar; Silva, Cibelle Celestino

    2011-03-01

    Teaching and learning with history and philosophy of science (HPS) has been, and continues to be, supported by science educators. While science education standards documents in many countries also stress the importance of teaching and learning with HPS, the approach still suffers from ineffective implementation in school science teaching. In order to better understand this problem, an analysis of the obstacles of implementing HPS into classrooms was undertaken. The obstacles taken into account were structured in four groups: 1. culture of teaching physics, 2. teachers' skills, epistemological and didactical attitudes and beliefs, 3. institutional framework of science teaching, and 4. textbooks as fundamental didactical support. Implications for more effective implementation of HPS are presented, taking the social nature of educational systems into account.

  12. Evaluation of the implementation of sport science programme in Malaysian secondary schools

    Directory of Open Access Journals (Sweden)

    Wee Eng Hoe

    2016-01-01

    Full Text Available This study evaluated a new sport science curriculum in Malaysian secondary schools. Four implementation dimensions (‘teaching ability’, ‘administration of sport science programme’, ‘teaching duty allocation’ and ‘non-human factors’ were examined. 135 schools and 94 teachers were surveyed. 81% teachers were male and 85% were under 40. About half of the respondents were trained in sport science and had 1-2 years teaching experience. Over 90% of teachers perceived they have knowledge to teach and can manage students. However, 80% felt they need more exposure and training. Male teachers were better than female teachers in managing students and conducting activities/experiments. Experienced teachers were better in conducting activities and experiments. Teachers majoring in sport science were more knowledgeable while PE majors found teaching sport science challenging. Most teachers perceived that teaching facilities, financial allocation and reference resources were inadequate. Majority of the administrators consulted teachers before assigning teaching load but failed to observe teaching. This research provides invaluable feedbacks on the implementation of the programme.

  13. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    Science.gov (United States)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  14. Instructional strategies in science classrooms of specialized secondary schools for the gifted

    Science.gov (United States)

    Poland, Donna Lorraine

    This study examined the extent to which science teachers in Academic Year Governor's Schools were adhering to the national standards for suggested science instruction and providing an appropriate learning environment for gifted learners. The study asked 13 directors, 54 instructors of advanced science courses, and 1190 students of advanced science courses in 13 Academic Year Governor's Schools in Virginia to respond to researcher-developed surveys and to participate in classroom observations. The surveys and classroom observations collected demographic data as well as instructors' and students' perceptions of the use of various instructional strategies related to national science reform and gifted education recommendations. Chi-square analyses were used to ascertain significant differences between instructors' and students' perceptions. Findings indicated that instructors of advanced science classes in secondary schools for the gifted are implementing nationally recognized gifted education and science education instructional strategies with less frequency than desired. Both students and instructors concur that these strategies are being implemented in the classroom setting, and both concur as to the frequency with which the implementation occurs. There was no significant difference between instructors' and students' perceptions of the frequency of implementation of instructional strategies. Unfortunately, there was not a single strategy that students and teachers felt was being implemented on a weekly or daily basis across 90% of the sampled classrooms. Staff development in gifted education was found to be minimal as an ongoing practice. While this study offers some insights into the frequency of strategy usage, the study needs more classroom observations to support findings; an area of needed future research. While this study was conducted at the secondary level, research into instructional practices at the middle school and elementary school gifted science

  15. Interdisciplinary Priorities for Dissemination, Implementation, and Improvement Science: Frameworks, Mechanics, and Measures.

    Science.gov (United States)

    Brunner, Julian W; Sankaré, Ibrahima C; Kahn, Katherine L

    2015-12-01

    Much of dissemination, implementation, and improvement (DII) science is conducted by social scientists, healthcare practitioners, and biomedical researchers. While each of these groups has its own venues for sharing methods and findings, forums that bring together the diverse DII science workforce provide important opportunities for cross-disciplinary collaboration and learning. In particular, such forums are uniquely positioned to foster the sharing of three important components of research. First: they allow the sharing of conceptual frameworks for DII science that focus on the use and spread of innovations. Second: they provide an opportunity to share strategies for initiating and governing DII research, including approaches for eliciting and incorporating the research priorities of patients, study participants, and healthcare practitioners, and decision-makers. Third: they allow the sharing of outcome measures well-suited to the goals of DII science, thereby helping to validate these outcomes in diverse contexts, improving the comparability of findings across settings, and elevating the study of the implementation process itself. © 2015 Wiley Periodicals, Inc.

  16. How to implement entrepreneurship in Library and Information Science Education

    DEFF Research Database (Denmark)

    Kristiansson, Michael Rene; Jochumsen, Henrik

    2016-01-01

    The present article intends to illustrate how entrepreneurship-centered teaching and learning can be implemented in a LIS-specific context while at the same time thematizing the challenges of implementing entrepreneurship in a general university context. The paper presents a concept of teaching a......, the article presents particular experiences, results and achievements obtained in seminars and course units at the Royal School of Library and Information Science, where the concept was developed....

  17. Implementation Strategy

    Science.gov (United States)

    1983-01-01

    Meeting the identified needs of Earth science requires approaching EOS as an information system and not simply as one or more satellites with instruments. Six elements of strategy are outlined as follows: implementation of the individual discipline missions as currently planned; use of sustained observational capabilities offered by operational satellites without waiting for the launch of new mission; put first priority on the data system; deploy an Advanced Data Collection and Location System; put a substantial new observing capability in a low Earth orbit in such a way as to provide for sustained measurements; and group instruments to exploit their capabilities for synergism; maximize the scientific utility of the mission; and minimize the costs of implementation where possible.

  18. Seven actionable strategies for advancing women in science, engineering, and medicine.

    Science.gov (United States)

    Smith, Kristin A; Arlotta, Paola; Watt, Fiona M; Solomon, Susan L

    2015-03-05

    Achieving gender equality in science will require devising and implementing strategies to overcome the political, administrative, financial, and cultural challenges that exist in the current environment. In this forum, we propose an initial shortlist of recommendations to promote gender equality in science and stimulate future efforts to level the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Health information technology and implementation science: partners in progress in the VHA.

    Science.gov (United States)

    Hynes, Denise M; Whittier, Erika R; Owens, Arika

    2013-03-01

    The Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI) has demonstrated how implementation science can enhance the quality of health care. During this time an increasing number of implementation research projects have developed or utilized health information technology (HIT) innovations to leverage the VA's electronic health record and information systems. To describe the HIT approaches used and to characterize the facilitators and barriers to progress within implementation research projects in the VA QUERI program. Nine case studies were selected from among 88 projects and represented 8 of 14 HIT categories identified. Each case study included key informants whose roles on the project were principal investigator, implementation science and informatics development. We conducted documentation analysis and semistructured in-person interviews with key informants for each of the 9 case studies. We used qualitative analysis software to identify and thematically code information and interview responses. : Thematic analyses revealed 3 domains or pathways critical to progression through the QUERI steps. These pathways addressed: (1) compliance and collaboration with information technology policies and procedures; (2) operating within organizational policies and building collaborations with end users, clinicians, and administrators; and (3) obtaining and maintaining research resources and approvals. Sustained efforts in HIT innovation and in implementation science in the Veterans Health Administration demonstrates the interdependencies of these initiatives and the critical pathways that can contribute to progress. Other health care quality improvement efforts that rely on HIT can learn from the Veterans Health Administration experience.

  20. Agriscience Teachers' Implementation of Digital Game-based Learning in an Introductory Animal Science Course

    Science.gov (United States)

    Webb, Angela W.; Bunch, J. C.; Wallace, Maria F. G.

    2015-12-01

    In today's technological age, visions for technology integration in the classroom continue to be explored and examined. Digital game-based learning is one way to purposefully integrate technology while maintaining a focus on learning objectives. This case study sought to understand agriscience teachers' experiences implementing digital game-based learning in an introductory animal science course. From interviews with agriscience teachers on their experiences with the game, three themes emerged: (1) the constraints of inadequate and inappropriate technologies, and time to game implementation; (2) the shift in teacher and student roles necessitated by implementing the game; and (3) the inherent competitive nature of learning through the game. Based on these findings, we recommend that pre-service and in-service professional development opportunities be developed for teachers to learn how to implement digital game-based learning effectively. Additionally, with the potential for simulations that address cross-cutting concepts in the next generation science standards, digital game-based learning should be explored in various science teaching and learning contexts.

  1. Variables that impact the implementation of project-based learning in high school science

    Science.gov (United States)

    Cunningham, Kellie

    Wagner and colleagues (2006) state the mediocrity of teaching and instructional leadership is the central problem that must be addressed if we are to improve student achievement. Educational reform efforts have been initiated to improve student performance and to hold teachers and school leaders accountable for student achievement (Wagner et al., 2006). Specifically, in the area of science, goals for improving student learning have led reformers to establish standards for what students should know and be able to do, as well as what instructional methods should be used. Key concepts and principles have been identified for student learning. Additionally, reformers recommend student-centered, inquiry-based practices that promote a deep understanding of how science is embedded in the everyday world. These new approaches to science education emphasize inquiry as an essential element for student learning (Schneider, Krajcik, Marx, & Soloway, 2002). Project-based learning (PBL) is an inquiry-based instructional approach that addresses these recommendations for science education reform. The objective of this research was to study the implementation of project-based learning (PBL) in an urban school undergoing reform efforts and identify the variables that positively or negatively impacted the PBL implementation process and its outcomes. This study responded to the need to change how science is taught by focusing on the implementation of project-based learning as an instructional approach to improve student achievement in science and identify the role of both school leaders and teachers in the creation of a school environment that supports project-based learning. A case study design using a mixed-method approach was used in this study. Data were collected through individual interviews with the school principal, science instructional coach, and PBL facilitator. A survey, classroom observations and interviews involving three high school science teachers teaching grades 9

  2. A Spacelab Expert System for Remote Engineering and Science

    Science.gov (United States)

    Groleau, Nick; Colombano, Silvano; Friedland, Peter (Technical Monitor)

    1994-01-01

    NASA's space science program is based on strictly pre-planned activities. This approach does not always result in the best science. We describe an existing computer system that enables space science to be conducted in a more reactive manner through advanced automation techniques that have recently been used in SLS-2 October 1993 space shuttle flight. Advanced computing techniques, usually developed in the field of Artificial Intelligence, allow large portions of the scientific investigator's knowledge to be "packaged" in a portable computer to present advice to the astronaut operator. We strongly believe that this technology has wide applicability to other forms of remote science/engineering. In this brief article, we present the technology of remote science/engineering assistance as implemented for the SLS-2 space shuttle flight. We begin with a logical overview of the system (paying particular attention to the implementation details relevant to the use of the embedded knowledge for system reasoning), then describe its use and success in space, and conclude with ideas about possible earth uses of the technology in the life and medical sciences.

  3. Technical and economic effect analysis of advanced MMIS implementation in KNGR

    International Nuclear Information System (INIS)

    Choe, Il Nam

    1997-01-01

    KNGR MMIS design approaches are summarized as follows: 1) compact workstation type operator console design to reduce the operators' physical and cognitive work loads by implementing Factors Engineering (HFE) principles and advanced graphic user interface technologies. 2) Full digital control and protection system design to enhance the reliability operability and maintainability. 3) Remote signal multiplexer implementation to reduce the hard-wired cable and cable installation cost and time. 4) Licensable design to meet latest licensing requirements including HFE and safety software validation and verification. 5 refs., 1 tab., 1 fig

  4. Technologies Advance UAVs for Science, Military

    Science.gov (United States)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  5. Innovations and advances in computing, informatics, systems sciences, networking and engineering

    CERN Document Server

    Elleithy, Khaled

    2015-01-01

    Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering  This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  ·       Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; ·       Includes chapters in the most a...

  6. Mentoring Faculty: Results from National Science Foundation's ADVANCE Program

    Science.gov (United States)

    Holmes, M. A.

    2015-12-01

    Faculty mentoring programs are common components of National Science Foundation ADVANCE awards. The ADVANCE program aims to increase the number of women on the faculty in science, technology, engineering and mathematics (STEM) departments through grants to individuals and to entire institutions. These grants target a change in institutional culture so that faculty from non-majority groups will succeed and thrive. Mentoring programs are generally designed to fit the particular institution(s) or target population (e.g., meteorologists at the beginning of their careers). A successful mentoring program makes the implicit knowledge necessary for faculty success explicit: policies and practices are made transparent; routes for finding answers are clarified or generated with faculty input; faculty overcome a sense of isolation and develop a community. Mentoring programs may be formal, with assigned mentors and mentees, or informal, with opportunities for beginning, middle and advanced career STEM faculty to mingle, generally over food and sometimes with a formal speaker. The programs are formally evaluated; in general, attention to mentoring generates better outcomes for all faculty. Research indicates that most successful scientists have a network of mentors rather than relying on one person to help navigate department, institution, and profession. The University of Nebraska-Lincoln's (UNL) award, ADVANCE-Nebraska, offered opportunities for faculty to informally network over luncheons with women speakers, advanced in their careers. We also offered after-hours networking receptions. In response to faculty feedback, we shifted to a series of panel discussions entitled "Conversations". Most panels were conducted by successful UNL faculty; about one-third had an outside expert on a given topic. Topics were chosen based on faculty feedback and targeted specifically to beginning faculty (How to Start Up a Lab; How to Balance Teaching and Writing), mid-career faculty (Putting

  7. Advanced man-machine interaction. Fundamentals and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Kraiss, K.F. (ed.) [Aachen Technische Hochschule (Germany). Lehrstuhl fuer Technische Informatik und Computerwissenschaften

    2006-07-01

    Man-machine interaction is the gateway providing access to functions and services, which, due to the ever increasing complexity of smart systems, threatens to become a bottleneck. This book therefore introduces not only advanced interfacing concepts, but also gives insight into the related theoretical background.This refers mainly to the realization of video-based multimodal interaction via gesture, mimics, and speech, but also to interacting with virtual object in virtual environments, cooperating with local or remote robots, and user assistance. While most publications in the field of human factors engineering focus on interface design, this book puts special emphasis on implementation aspects. To this end it is accompanied by software development environments for image processing, classification, and virtual environment implementation. In addition a test data base is included for gestures, head pose, facial expressions, full-body person recognition, and people tracking. These data are used for the examples throughout the book, but are also meant to encourage the reader to start experimentation on his own. Thus the book may serve as a self-contained introduction both for researchers and developers of man-machine interfaces. It may also be used for graduate-level university courses. (orig.)

  8. Harnessing implementation science to improve care quality and patient safety: a systematic review of targeted literature.

    Science.gov (United States)

    Braithwaite, Jeffrey; Marks, Danielle; Taylor, Natalie

    2014-06-01

    Getting greater levels of evidence into practice is a key problem for health systems, compounded by the volume of research produced. Implementation science aims to improve the adoption and spread of research evidence. A linked problem is how to enhance quality of care and patient safety based on evidence when care settings are complex adaptive systems. Our research question was: according to the implementation science literature, which common implementation factors are associated with improving the quality and safety of care for patients? We conducted a targeted search of key journals to examine implementation science in the quality and safety domain applying PRISMA procedures. Fifty-seven out of 466 references retrieved were considered relevant following the application of exclusion criteria. Included articles were subjected to content analysis. Three reviewers extracted and documented key characteristics of the papers. Grounded theory was used to distil key features of the literature to derive emergent success factors. Eight success factors of implementation emerged: preparing for change, capacity for implementation-people, capacity for implementation-setting, types of implementation, resources, leverage, desirable implementation enabling features, and sustainability. Obstacles in implementation are the mirror image of these: for example, when people fail to prepare, have insufficient capacity for implementation or when the setting is resistant to change, then care quality is at risk, and patient safety can be compromised. This review of key studies in the quality and safety literature discusses the current state-of-play of implementation science applied to these domains. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  9. Implementing an online pharmaceutical service using design science research.

    Science.gov (United States)

    Lapão, Luís Velez; da Silva, Miguel Mira; Gregório, João

    2017-03-27

    The rising prevalence of chronic diseases is pressing health systems to introduce reforms. Primary healthcare and multidisciplinary models have been suggested as approaches to deal with this challenge, with new roles for nurses and pharmacists being advocated. More recently, implementing healthcare based on information systems and technologies (e.g. eHealth) has been proposed as a way to improve health services. However, implementing online pharmaceutical services, including their adoption by pharmacists and patients, is still an open research question. In this paper we present ePharmacare, a new online pharmaceutical service implemented using Design Science Research. The Design Science Research Methodology (DSRM) was chosen to implement this online service for chronic diseases management. In the paper, DSRM's different activities are explained, from the definition of the problem to the evaluation of the artifact. During the design and development activities, surveys, observations, focus groups, and eye-tracking glasses were used to validate pharmacists' and patients' requirements. During the demonstration and evaluation activities the new service was used with real-world pharmacists and patients. The results show the contribution of DSRM in the implementation of online services for pharmacies. We found that pharmacists spend only 50% of their time interacting with patients, uncovering a clear opportunity to implement online pharmaceutical care services. On the other hand, patients that regularly visit the same pharmacy recognize the value in patient follow-up demanding to use channels such as the Internet for their pharmacy interactions. Limitations were identified regarding the high workload of pharmacists, but particularly their lack of know-how and experience in dealing with information systems (IST) for the provision of pharmaceutical services. This paper summarizes a research project in which an online pharmaceutical service was proposed, designed, developed

  10. Gaps and strategies in developing health research capacity: experience from the Nigeria Implementation Science Alliance.

    Science.gov (United States)

    Ezeanolue, Echezona E; Menson, William Nii Ayitey; Patel, Dina; Aarons, Gregory; Olutola, Ayodotun; Obiefune, Michael; Dakum, Patrick; Okonkwo, Prosper; Gobir, Bola; Akinmurele, Timothy; Nwandu, Anthea; Khamofu, Hadiza; Oyeledun, Bolanle; Aina, Muyiwa; Eyo, Andy; Oleribe, Obinna; Ibanga, Ikoedem; Oko, John; Anyaike, Chukwuma; Idoko, John; Aliyu, Muktar H; Sturke, Rachel

    2018-02-12

    Despite being disproportionately burdened by preventable diseases than more advanced countries, low- and middle-income countries (LMICs) continue to trail behind other parts of the world in the number, quality and impact of scholarly activities by their health researchers. Our strategy at the Nigerian Implementation Science Alliance (NISA) is to utilise innovative platforms that catalyse collaboration, enhance communication between different stakeholders, and promote the uptake of evidence-based interventions in improving healthcare delivery. This article reports on findings from a structured group exercise conducted at the 2016 NISA Conference to identify (1) gaps in developing research capacity and (2) potential strategies to address these gaps. A 1-hour structured group exercise was conducted with 15 groups of 2-9 individuals (n = 94) to brainstorm gaps for implementation, strategies to address gaps and to rank their top 3 in each category. Qualitative thematic analysis was used. First, duplicate responses were merged and analyses identified emerging themes. Each of the gaps and strategies identified were categorised as falling into the purview of policy-makers, researchers, implementing partners or multiple groups. Participating stakeholders identified 98 gaps and 91 strategies related to increasing research capacity in Nigeria. A total of 45 gaps and an equal number of strategies were ranked; 39 gaps and 43 strategies were then analysed, from which 8 recurring themes emerged for gaps (lack of sufficient funding, poor research focus in education, inadequate mentorship and training, inadequate research infrastructure, lack of collaboration between researchers, research-policy dissonance, lack of motivation for research, lack of leadership buy-in for research) and 7 themes emerged for strategies (increased funding for research, improved research education, improved mentorship and training, improved infrastructure for research, increased collaboration between

  11. IAEA Global Support of Decommissioning Implementation with a Focus on Advanced Technologies

    International Nuclear Information System (INIS)

    Michal, Vladimir; )

    2017-01-01

    Recently there are about 140 power reactors in decommissioning phase worldwide excluding 17+ that might be considered as decommissioned. In addition, more than 400 other nuclear facilities, such as research reactors or nuclear fuel cycle facilities, have been shutdown for decommissioning, have been undergoing active decommissioning or have already been fully dismantled. The IAEA provides various kind of support for Member States including publication of safety and technical reports providing guidance, recommendations, experiences, good practices and lessons learned covering the preparatory and implementation decommissioning phases. Many training courses, workshops, seminars etc. were organized to support sharing of good practices among specialists and organizations involved. In line with the non-technical aspects, such as decommissioning planning, costing, managerial approaches etc., there are also presented and discussed technical solutions often with a focus on the advanced technologies to be considered. Several completed and ongoing IAEA initiatives partially or fully address the advanced approaches and techniques to support safe and effective implementation of decommissioning projects. The presentation will provide an overview of relevant activities organized so far and perspectives of the IAEA on advanced technologies for decommissioning. (author)

  12. Describing the implementation of an innovative intervention and evaluating its effectiveness in increasing research capacity of advanced clinical nurses: using the consolidated framework for implementation research.

    Science.gov (United States)

    McKee, Gabrielle; Codd, Margaret; Dempsey, Orla; Gallagher, Paul; Comiskey, Catherine

    2017-01-01

    Despite advanced nursing roles having a research competency, participation in research is low. There are many barriers to participation in research and few interventions have been developed to address these. This paper aims to describe the implementation of an intervention to increase research participation in advanced clinical nursing roles and evaluate its effectiveness. The implementation of the intervention was carried out within one hospital site. The evaluation utilised a mixed methods design and a implementation science framework. All staff in advanced nursing roles were invited to take part, all those who were interested and had a project in mind could volunteer to participate in the intervention. The intervention consisted of the development of small research groups working on projects developed by the nurse participant/s and supported by an academic and a research fellow. The main evaluation was through focus groups. Output was analysed using thematic analysis. In addition, a survey questionnaire was circulated to all participants to ascertain their self-reported research skills before and after the intervention. The results of the survey were analysed using descriptive statistics. Finally an inventory of research outputs was collated. In the first year, twelve new clinical nurse-led research projects were conducted and reported in six peer reviewed papers, two non-peer reviewed papers and 20 conference presentations. The main strengths of the intervention were its promptness to complete research, to publish and to showcase clinical innovations. Main barriers identified were time, appropriate support from academics and from peers. The majority of participants had increased experience at scientific writing and data analysis. This study shows that an intervention, with minor financial resources; a top down approach; support of a hands on research fellow; peer collaboration with academics; strong clinical ownership by the clinical nurse researcher

  13. Advanced Technologies and Instrumentation at the National Science Foundation

    Science.gov (United States)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  14. Practices implemented by a Texas charter school system to overcome science teacher shortage

    Science.gov (United States)

    Yasar, Bilgehan M.

    The purpose of this study was to examine practices used by a charter school system to hire and retain science teachers. The research design for this study was a qualitative case study. This single instrumental case study explored the issue within a bounded system. Purposeful sampling strategy was used to identify the participants who were interviewed individually. Findings of the case study supported that using online resources, advertising in the newspaper, attending job fairs, using alternative certification programs, attracting alumni, contacting the college of educations and hiring internationally helped the charter school system with hiring science teachers. Improving teacher salary scale, implementing teacher mentorship programs, reimbursing teachers for certification and master's programs, providing professional development and supporting teachers helped to retain science teachers. Therefore, this study contributes to determining strategies and techniques, selecting methods and programs, training administrators, and monitoring for successful hiring and retaining science teacher implementation.

  15. [Activities of Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  16. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    Science.gov (United States)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging

  17. Implementing Elementary School Next Generation Science Standards

    Science.gov (United States)

    Kennedy, Katheryn B.

    Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The purpose of this basic qualitative interview study was to explore the research questions related to perceived learning needs of 8 elementary science teachers and 5 of their administrators serving as instructional leaders. Strategies needed for professional growth to support learning and barriers that hamper it at both building and district levels were included. These questions were considered through the lens of Schon's reflective learning and Weick's sensemaking theories. Analysis with provisional and open coding strategies identified informal and formal supports and barriers to teachers' learning. Results indicated that informal supports, primarily internet usage, emerged as most valuable to the teachers' learning. Formal structures, including professional learning communities and grade level meetings, arose as both supportive and restrictive at the building and district levels. Existing formal supports emerged as the least useful because of the dominance of other priorities competing for time and resources. Addressing weaknesses within formal supports through more effective planning in professional development can promote positive change. Improvement to professional development approaches using the internet and increased hands on activities can be integrated into formal supports. Explicit attention to these strategies can strengthen teacher effectiveness bringing positive social change.

  18. Abstraction to Implementation: A Two Stage Introduction to Computer Science.

    Science.gov (United States)

    Wolz, Ursula; Conjura, Edward

    A three-semester core curriculum for undergraduate computer science is proposed and described. Both functional and imperative programming styles are taught. The curriculum particularly addresses the problem of effectively presenting both abstraction and implementation. Two courses in the first semester emphasize abstraction. The next courses…

  19. Advancing the science of forest hydrology A challenge to agricultural and biological engineers

    Science.gov (United States)

    Devendra Amatya; Wayne Skaggs; Carl Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has originated largely from forested lands, which have experienced dramatic declines over the...

  20. Advances and challenges in computational plasma science

    International Nuclear Information System (INIS)

    Tang, W M; Chan, V S

    2005-01-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This

  1. Recent Advances in Hyporheic Zone Science

    Science.gov (United States)

    Hester, E. T.

    2017-12-01

    The hyporheic zone exists beneath and adjacent to streams and rivers where surface water and groundwater interact. It provides unique habitat for aquatic organisms, can buffer surface water temperatures, and can be highly reactive, processing nutrients and improving water quality. The hyporheic zone is the subject of considerable research and the past year in WRR witnessed important conceptual advances. A key focus was rigorous evaluation of mixing between surface water and groundwater that occurs within hyporheic sediments. Field observations indicate that greater mixing occurs in the hyporheic zone than in deeper groundwater, and this distinction has been explored by recent numerical modeling studies, but more research is needed to fully understand the causes. A commentary this year in WRR proposed that hyporheic mixing is enhanced by a combination of fluctuating boundary conditions and multiscale physical and chemical spatial heterogeneity but confirmation is left to future research. This year also witnessed the boundaries of knowledge pushed back in a number of other key areas. Field quantification of hyporheic exchange and reactions benefited from advances including the use and interpretation of high frequency nutrient sensors, actively heater fiber optic sensors, isotope tracers, and geophysical methods such as electrical resistivity imaging. Conceptual advances were made in understanding the effects of unsteady environmental conditions (e.g., tides and storms) and preferential flow on hyporheic processes. Finally, hyporheic science is being brought increasingly to bear on applied issues such as informing nutrient removal crediting for stream restoration practices, for example in the Chesapeake Bay watershed.

  2. Implementing e-network-supported inquiry learning in science

    DEFF Research Database (Denmark)

    Williams, John; Cowie, Bronwen; Khoo, Elaine

    2013-01-01

    The successful implementation of electronically networked (e-networked) tools to support an inquiry-learning approach in secondary science classrooms is dependent on a range of factors spread between teachers, schools, and students. The teacher must have a clear understanding of the nature......-construct knowledge using a wide range of resources for meaning making and expression of ideas. These outcomes were, however, contingent on the interplay of teacher understanding of the nature of science inquiry and school provision of an effective technological infrastructure and support for flexible curriculum...... of inquiry, the school must provide effective technological infrastructure and sympathetic curriculum parameters, and the students need to be carefully scaffolded to the point of engaging with the inquiry process. Within this study, e-networks supported students to exercise agency, collaborate, and co...

  3. International conference on Advances in Engineering Technologies and Physical Science

    CERN Document Server

    Ao, Sio-Iong; Rieger, Burghard; IAENG Transactions on Engineering Technologies : Special Edition of the World Congress on Engineering and Computer Science 2011

    2013-01-01

    This volume contains thirty revised and extended research articles written by prominent researchers participating in an international conference in engineering technologies and physical science and applications. The conference serves as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also struck a balance between theoretical and application development. The conference is truly international meeting with a high level of participation from many countries. Topics covered include chemical engineering, circuits, communications systems, control theory, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.

  4. Advanced Manufacturing Technology Implementation Process in SME: Critical Success Factors

    Directory of Open Access Journals (Sweden)

    Jani Rahardjo

    2010-01-01

    Full Text Available The aim of this paper is to present critical factors that constitute a successful implementation of the Advanced Manufacturing Technologies (AMT in Small Medium Enterprise (SME. Many large companies have applied AMT and the applications have shown significant results in this global market era. Conveniently, these phenomenons are also engaged to Small Medium Enterprises (SME that of high demands on performing high quality product, fast delivery, reliable and more flexible. The implementation of AMT follow several processes namely pre installation, installation, improvement and mature. In order to guarantee the succesfull of running these processes, one should consider the Critical Success Factors (CSF. We conducted a survey to 125 SMEs that have implemented AMT, and found that the CSF for each process are moderately different. Good leadership is the main critical success factor for preparing and installation of the AMT. Once the AMT started or installed and arrived at growth stage, the financial availability factor turns into a critical success factor in the AMT implementation. In, mature stage, the support and commitment of top management becomes an important factor for gaining successful implementation. By means of factor analysis, we could point out that strategic factors are the main factors in pre-installation and installation stage. Finally, in the growth stage and mature stage, both tactical and strategic factors are the important factors in the successful of AMT implementation

  5. Faculty Peer Networks: Role and Relevance in Advancing Agency and Gender Equity

    Science.gov (United States)

    O'Meara, KerryAnn; Stromquist, Nelly P.

    2015-01-01

    Organisational efforts to alter gender asymmetries are relatively rare, yet they are taking place in a number of universities. In the USA, sponsored by the National Science Foundation, ADVANCE programmes implement a number of interventions to improve the recruitment, retention, and advancement of women faculty. This study focused on one common…

  6. Implementation Science: New Approaches to Integrating Quality and Safety Education for Nurses Competencies in Nursing Education.

    Science.gov (United States)

    Dolansky, Mary A; Schexnayder, Julie; Patrician, Patricia A; Sales, Anne

    Although quality and safety competencies were developed and disseminated nearly a decade ago by the Quality and Safety Education for Nurses (QSEN) project, the uptake in schools of nursing has been slow. The use of implementation science methods may be useful to accelerate quality and safety competency integration in nursing education. The article includes a definition and description of implementation science methods and practical implementation strategies for nurse educators to consider when integrating the QSEN competencies into nursing curriculum.

  7. The science of stakeholder engagement in research: classification, implementation, and evaluation

    OpenAIRE

    Goodman, Melody S.; Sanders Thompson, Vetta L.

    2017-01-01

    In this commentary, we discuss the science of stakeholder engagement in research. We propose a classification system with definitions to determine where projects lie on the stakeholder engagement continuum. We discuss the key elements of implementation and evaluation of stakeholder engagement in research posing key questions to consider when doing this work. We commend and critique the work of Hamilton et al. in their multilevel stakeholder engagement in a VA implementation trial of evidence-...

  8. Advanced biomass science and technology for bio-based products: proceedings

    Science.gov (United States)

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  9. Science and sociability: women as audience at the British Association for the Advancement of Science, 1831-1901.

    Science.gov (United States)

    Higgitt, Rebekah; Withers, Charles W J

    2008-03-01

    This essay recovers the experiences of women at the meetings of the British Association for the Advancement of Science (BAAS) from its founding in 1831 to the end of the Victorian era. It aims to add to research on women in science by reconsidering the traditional role of women as consumers rather than producers of knowledge and to that on science popularization by focusing on audience experience rather than on the aims and strategies of popularizers. The essay argues that, in various ways, the ubiquitous and visible female audience came to define the BAAS audience and "the public" for science more generally. The women who swelled the BAAS audiences were accepted as a social element within the meetings even as they were regarded critically as scientific participants. Portrayed as passive and nonscientific, women allowed the male scientific elites to distance themselves from their audiences. Arguing from diary and other evidence, we present examples that complicate existing notions of audiences for science as necessarily active.

  10. Engaging academia to advance the science and practice of environmental public health tracking.

    Science.gov (United States)

    Strosnider, Heather; Zhou, Ying; Balluz, Lina; Qualters, Judith

    2014-10-01

    Public health agencies at the federal, state, and local level are responsible for implementing actions and policies that address health problems related to environmental hazards. These actions and policies can be informed by integrating or linking data on health, exposure, hazards, and population. The mission of the Centers for Disease Control and Prevention׳s National Environmental Public Health Tracking Program (Tracking Program) is to provide information from a nationwide network of integrated health, environmental hazard, and exposure data that drives actions to improve the health of communities. The Tracking Program and federal, state, and local partners collect, integrate, analyze, and disseminate data and information to inform environmental public health actions. However, many challenges exist regarding the availability and quality of data, the application of appropriate methods and tools to link data, and the state of the science needed to link and analyze health and environmental data. The Tracking Program has collaborated with academia to address key challenges in these areas. The collaboration has improved our understanding of the uses and limitations of available data and methods, expanded the use of existing data and methods, and increased our knowledge about the connections between health and environment. Valuable working relationships have been forged in this process, and together we have identified opportunities and improvements for future collaborations to further advance the science and practice of environmental public health tracking. Published by Elsevier Inc.

  11. Strategies for Success of Women Faculty in Science: The ADVANCE Program at the University of Rhode Island

    Science.gov (United States)

    Wishner, K.; Silver, B.; Boudreaux-Bartels, F.; Harlow, L.; Knickle, H.; Mederer, H.; Peckham, J.; Roheim, C.; Trubatch, J.; Webster, K.

    2004-12-01

    The NSF-funded ADVANCE program seeks to increase the recruitment and retention of women faculty in science, technology, engineering, and mathematics (STEM) disciplines as part of a national goal of creating a broad-based scientific workforce able to effectively address societal demands. The University of Rhode Island, a recipient of an Institutional Transformation ADVANCE grant in 2003, has begun a campus-wide initiative. The 5 goals are (1) to increase the numbers of women STEM faculty, (2) to provide faculty development opportunities, (3) to improve networks of professional and social support, (4) to assess the academic work environment for all faculty, and (5) to implement long-term changes throughout the university that promote a supportive work environment for women STEM faculty. Accomplishments during the first year include (1) hiring several ADVANCE Assistant Professors, (2) developing workshops on critical skills for junior faculty (grant writing, negotiations, mentoring), (3) initiating a series of lunch meetings where pertinent topical and work-family issues are discussed informally, (4) awarding small Incentive grants for research and other projects that enhance the careers of women STEM faculty, (5) developing and modifying university policies on family leave and dual career couple recruitment, (6) developing and implementing quantitative and qualitative assessment tools for baseline and ongoing campus-wide work climate surveys within the context of a theoretical model for change, and (7) offering directed self-study workshops for entire departments using a trained facilitator. The ADVANCE Assistant Professor position, unique to URI's program, allows a new hire to spend the first 2-3 years developing a research program without teaching obligations. ADVANCE pays their salary during this time, at which point they transition to a regular faculty position. During this first of five years of NSF funding, the ADVANCE program has been met with campus wide

  12. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  13. Training the "assertive practitioner of behavioral science": advancing a behavioral medicine track in a family medicine residency.

    Science.gov (United States)

    Butler, Dennis J; Holloway, Richard L; Fons, Dominique

    2013-01-01

    This article describes the development of a Behavioral Medicine track in a family medicine residency designed to train physicians to proactively and consistently apply advanced skills in psychosocial medicine, psychiatric care, and behavioral medicine. The Behavioral Medicine track emerged from a behavioral science visioning retreat, an opportunity to restructure residency training, a comparative family medicine-psychiatry model, and qualified residents with high interest in behavioral science. Training was restructured to increase rotational opportunities in core behavioral science areas and track residents were provided an intensive longitudinal counseling seminar and received advanced training in psychopharmacology, case supervision, and mindfulness. The availability of a Behavioral Medicine track increased medical student interest in the residency program and four residents have completed the track. All track residents have presented medical Grand Rounds on behavioral science topics and have lead multiple workshops or research sessions at national meetings. Graduate responses indicate effective integration of behavioral medicine skills and abilities in practice, consistent use of brief counseling skills, and good confidence in treating common psychiatric disorders. As developed and structured, the Behavioral Medicine track has achieved the goal of producing "assertive practitioners of behavioral science in family medicine" residents with advanced behavioral science skills and abilities who globally integrate behavioral science into primary care.

  14. Expanding School-District/University Partnerships to Advance Health Promoting Schools Implementation and Efficacy in Taiwan

    Science.gov (United States)

    Liu, Chieh-Hsing; Chang, Fong-Ching; Liao, Li-Ling; Niu, Yu-Zhen; Cheng, Chi-Chia; Shih, Shu-Fang; Chang, Tzu-Chau; Chou, Hsin-Pei

    2015-01-01

    In 2011, the Taiwan government expanded its support of school-district/university partnership programs that promote the implementation of the evidenced-based Health Promoting Schools (HPS) program. This study examined whether expanding the support for this initiative was effective in advancing HPS implementation, perceived HPS impact and perceived…

  15. Hiding in plain sight: communication theory in implementation science

    OpenAIRE

    Manojlovich, Milisa; Squires, Janet E; Davies, Barbara; Graham, Ian D

    2015-01-01

    Background Poor communication among healthcare professionals is a pressing problem, contributing to widespread barriers to patient safety. The word ?communication? means to share or make common. In the literature, two communication paradigms dominate: (1) communication as a transactional process responsible for information exchange, and (2) communication as a transformational process responsible for causing change. Implementation science has focused on information exchange attributes while la...

  16. Supports and Concerns for Teacher Professional Growth During the Implementation of a Science Curriculum Innovation

    Science.gov (United States)

    Peers, Cheryl (Shelley) E.; Diezmann, Carmel M.; Watters, James J.

    2003-02-01

    Internationally, considerable reform in science education is occurring which promotes constructivist philosophies and advocates constructivist-inspired pedagogical strategies that are new to many teachers. This paper reports on the supporting factors necessary for teacher professional growth and the issues of concern that were evident during one primary teacher''s successful implementation of a unit of work based on a draft of a new state-wide science syllabus which proposes such approaches. One researcher (CEP) provided guidance during the writing and implementation of the unit through professional development workshops complemented by ongoing collegial support. The analysis of the teacher''s practice reveals that professional growth required a willingness of the teacher to engage with change and modify his professional practice. The support factors for teacher growth consisted of an appropriate program of professional development, teacher understanding of the elements of the curriculum innovation, and successful experiences in implementing new approaches. In contrast, the issues of concern were: the adequacy of support for planning including the time required to understand the innovation and make changes to teaching practice; science equipment; teacher knowledge; classroom management strategies; and ways to cope with change. Understanding of these support factors and issues of concern is vital for the successful implementation of science curriculum innovations.

  17. Implementing an Applied Science Program

    Science.gov (United States)

    Rickman, Doug; Presson, Joan

    2007-01-01

    The work implied in the NASA Applied Science Program requires a delicate balancing act for the those doing it. At the implementation level there are multiple tensions intrinsic to the program. For example each application of an existing product to a decision support process requires deep knowledge about the data and deep knowledge about the decision making process. It is highly probable no one person has this range of knowledge. Otherwise the decision making process would already be using the data. Therefore, a team is required. But building a team usually requires time, especially across agencies. Yet the program mandates efforts of relatively short duration. Further, those who know the data are scientists, which makes them essential to the program. But scientists are evaluated on their publication record. Anything which diverts a scientist from the research for his next publication is an anathema to him and potential death to their career. Trying to get another agency to use NASA data does not strike most scientists as material inherently suitable for publication. Also, NASA wishes to rapidly implement often substantial changes to another agency's process. For many reasons, such as budget and program constraints, speed is important. But the owner of a decision making process is tightly constrained, usually by law, regulation, organization and custom. Changes when made are slow, cautious, even hesitant, and always done according a process specific to the situation. To manage this work MSFC must balance these and other tensions. Some things we have relatively little control over, such as budget. These we try to handle by structural techniques. For example by insisting all of our people work on multiple projects simultaneously we inherently have diversification of funding for all of our people. In many cases we explicitly use some elements of tension to be productive. For example the need for the scientists to constantly publish is motivation to keep tasks short and

  18. USGS Science Data Catalog - Open Data Advances or Declines

    Science.gov (United States)

    Frame, M. T.; Hutchison, V.; Zolly, L.; Wheeler, B.; Latysh, N.; Devarakonda, R.; Palanisamy, G.; Shrestha, B.

    2014-12-01

    The recent Office of Science and Technology Policy (OSTP) White House Open Data Policies (2013) have required Federal agencies to establish formal catalogues of their science data holdings and make these data easily available on Web sites, portals, and applications. As an organization, the USGS has historically excelled at making its data holdings freely available on its various Web sites (i.e., National, Scientific Programs, or local Science Center). In response to these requirements, the USGS Core Science Analytics, Synthesis, and Libraries program, in collaboration with DOE's Oak Ridge National Laboratory (ORNL) Mercury Consortium (funded by NASA, USGS, and DOE), and a number of other USGS organizations, established the Science Data Catalog (http://data.usgs.gov) cyberinfrastructure, content management processes/tools, and supporting policies. The USGS Science Data Catalog led the charge at USGS to improve the robustness of existing/future metadata collections; streamline and develop sustainable publishing to external aggregators (i.e., data.gov); and provide leadership to the U.S. Department of Interior in emerging Open Data policies, techniques, and systems. The session will discuss the current successes, challenges, and movement toward meeting these Open Data policies for USGS scientific data holdings. A retrospective look at the last year of implementation of these efforts within USGS will occur to determine whether these Open Data Policies are improving data access or limiting data availability. To learn more about the USGS Science Data Catalog, visit us at http://data.usgs.gov/info/about.html

  19. TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science

    Science.gov (United States)

    Wilson, C. R.; Spiegelman, M.; van Keken, P.

    2012-12-01

    Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are

  20. Literacy Strategies in the Science Classroom The Influence of Teacher Cognitive Resources on Implementation

    Science.gov (United States)

    Mawyer, Kirsten Kamaile Noelani

    Scientific literacy is at the heart of science reform (AAAS, 1989; 1993: NRC, 1996). These initiatives advocate inquiry-based science education reform that promotes scientific literacy as the prerequisite ability to both understand and apply fundamental scientific ideas to real-world problems and issues involving science, technology, society and the environment. It has been argued that literacy, the very ability to read and write, is foundational to western science and is essential for the attainment of scientific literacy and the reform of science education in this country (Norris & Phillips, 2004). With this wave of reform comes the need to study initiatives that seek to support science teachers, as they take on the task of becoming teachers of literacy in the secondary science classroom. This qualitative research examines one such initiative that supports and guides teachers implementing literacy strategies designed to help students develop reading skills that will allow them to read closely, effectively, and with greater comprehension of texts in the context of science. The goal of this study is to gather data as teachers learn about literacy strategies through supports built into curricular materials, professional development, and implementation in the classroom. In particular, this research follows four secondary science teachers implementing literacy strategies as they enact a yearlong earth and environmental science course comprised of two different reform science curricula. The findings of this research suggest teacher's development of teacher cognitive resources bearing on Teaching & Design can be dynamic or static. They also suggest that the development of pedagogical design capacity (PDC) can be either underdeveloped or emergent. This study contributes to current understandings of the participatory relationship between curricular resources and teacher cognitive resources that reflects the design decision of teachers. In particular, it introduces a

  1. Experience of developments and implementation of advanced fuel cycles of WWER-440 reactors

    International Nuclear Information System (INIS)

    Gagarinski, A.A.; Lizorkin, M.P.; Novikov, A.N.; Proselkov, V.N.; Saprykin, V.V.

    2000-01-01

    The paper presents the experience of development and implementation of advanced four- and five-year fuel cycles in the WWER-440 reactors, the results of experimental operation of the new fuel design and the main neutronic characteristics of the core. (Authors)

  2. Why Implementing History and Philosophy in School Science Education Is a Challenge: An Analysis of Obstacles

    Science.gov (United States)

    Hottecke, Dietmar; Silva, Cibelle Celestino

    2011-01-01

    Teaching and learning with history and philosophy of science (HPS) has been, and continues to be, supported by science educators. While science education standards documents in many countries also stress the importance of teaching and learning with HPS, the approach still suffers from ineffective implementation in school science teaching. In order…

  3. PHYSICAL SCIENCE TEACHERS’ PERCEPTIONS OF AN ADVANCED CERTIFICATE IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Sarah Bansilal

    2016-04-01

    Full Text Available Advanced Certificate in Education programmes was offered by many South African universities to provide opportunities for teachers to upgrade their positions. The purpose of the study was to explore Physical Science teachers’ perceptions of their professional development. In this study we considered three domains of professional development which are content knowledge, pedagogic content knowledge and teacher beliefs and attitudes. This study used a mixed method approach using the form of an embedded design. The study was conducted with 156 students enrolled in an ACE Physical Science programme. The teachers stated that their content knowledge and pedagogic content knowledge had not only improved, but also their engagement with actual laboratories, and conducting experiments contributed to their teaching experiences. Hence, their self-confidence of physical science teaching evolved. The authors recommend that the ACE programme should also include a mentoring system with teaching practicum via school leadership and subject advisers.

  4. Advancing Alternative Analysis: Integration of Decision Science

    DEFF Research Database (Denmark)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina

    2016-01-01

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate......, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect......) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts....

  5. Earth Science Futuristic Trends and Implementing Strategies

    Science.gov (United States)

    Habib, Shahid

    2003-01-01

    For the last several years, there is a strong trend among the science community to increase the number of space-based observations to get a much higher temporal and spatial resolution. Such information will eventually be useful in higher resolution models that can provide predictability with higher precision. Such desirability puts a tremendous burden on any single implementing entity in terms of budget, technology readiness and compute power. The health of planet Earth is not governed by a single country, but in reality, is everyone's business living on this planet. Therefore, with this notion, it is becoming an impractical problem by any single organization/country to undertake. So far, each country per their means has proceeded along satisfactorily in implementing or benefiting directly or indirectly from the Earth observation data and scientific products. However, time has come that this is becoming a humongous problem to be undertaken by a single country. Therefore, this paper gives some serious thoughts in what options are there in undertaking this tremendous challenge. The problem is multi-dimensional in terms of budget, technology availability, environmental legislations, public awareness, and communication limitations. Some of these issues are introduced, discussed and possible implementation strategies are provided in this paper to move out of this predicament. A strong emphasis is placed on international cooperation and collaboration to see a collective benefit for this effort.

  6. Review of research on advanced computational science in FY2016

    International Nuclear Information System (INIS)

    2017-12-01

    Research on advanced computational science for nuclear applications, based on “Plan to Achieve Medium- to Long-term Objectives of the Japan Atomic Energy Agency (Medium- to Long-term Plan)”, has been performed at Center for Computational Science and e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting of outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R and D performed at CCSE in FY 2016 (April 1st, 2016 - March 31st, 2017), (2) Results of the evaluation on the R and D by the committee in FY 2016. (author)

  7. Instructional support and implementation structure during elementary teachers' science education simulation use

    Science.gov (United States)

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-07-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results indicated teachers used a one-to-one student-to-computer ratio most often either during class-wide individual computer use or during a rotating station structure. Worksheets, general support, and peer collaboration were the most common forms of instructional support. The least common instructional support forms included lesson pacing, initial play, and a closure discussion. Students' simulation use was supported in the fewest ways during a rotating station structure. Results suggest that simulation professional development with elementary teachers needs to explicitly focus on implementation structures and instructional support to enhance participants' pedagogical knowledge and improve instructional simulation use. In addition, research is needed to provide theoretical explanations for the observed patterns that should subsequently be addressed in supporting teachers' instructional simulation use during professional development or in teacher preparation programs.

  8. Advanced Instrumentation for Ultrafast Science at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, Nora [Univ. of Connecticut, Storrs, CT (United States)

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture the ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.

  9. Advances in reproductive science for wild carnivore conservation.

    Science.gov (United States)

    Comizzoli, P; Crosier, A E; Songsasen, N; Gunther, M Szykman; Howard, J G; Wildt, D E

    2009-07-01

    Knowledge about reproduction is critical for predicting the viability of wildlife populations in nature and for managing breeding programmes in captivity. Intensive species-based studies are the priority, because reproductive mechanisms are extraordinarily diverse, even within the same taxonomic family. Carnivores deserve more attention as such species are highly vulnerable to environmental change and human persecution. The present review provides contemporary illustrations of how reproductive science is contributing to understand unique reproductive mechanisms that are both of fundamental and applied interest. In the case of the endangered African wild dog (Lycaon pictus) free-living in South Africa, non-invasive faecal corticosteroid assessments have yielded new insights about the impact of animal relocation and reintroduction on adaptive responses, reproductive fitness and survival. For the maned wolf (Chrysocyon brachyurus), advances have been made in characterizing and comparing reproductive traits in free-ranging vs captive individuals. For the cheetah (Acinonyx jubatus), recent studies have focused on the cryosensitivity of sperm and the ability to develop a field-friendly sperm cryo-method. The by-product has been a large-scale frozen repository of sperm from wild-caught cheetahs useful for infusing new genes into ex situ populations. Finally, rigorous, multi-disciplinary and cross-institutional reproductive studies of the black-footed ferret (Mustela nigripes), including the use of artificial insemination, have contributed to the remarkable recovery and restoration of this species, once on the brink of extinction. In summary, advances in reproductive science are not necessarily related to 'assisted breeding'. However, understanding the unique ways of carnivore reproduction greatly contributes to species management and conservation.

  10. Relationship among science teacher personality characteristics and degree of teacher classroom implementation after in-service workshop

    Science.gov (United States)

    Sechler, Phares Lochiel Coleman

    State departments of public instruction require that teachers periodically update their licenses throughout their teaching careers. Various professional development events such as in-service workshops, university offerings, and special innovative programs provide opportunities for novice and experienced teachers to grow professionally. The "Team Science" workshop was designed from models supported by research that described guidelines for successful workshop strategies. In evaluating the workshop, the question was asked "Why did not all teachers implement the ideas from the workshop in their science classrooms?" This study investigates the possible relationship between teacher personality characteristics and implementation of technology innovations. Team Science was an extensive workshop program planned to develop science teachers' expertise in using computer and video technology to teach in physical science, chemistry, and physics classrooms in rural school in North Carolina. Upon evaluating the four-year effort, it was found that the 23 participants implemented the technological strategies at various levels. At the higher end of the range of technology use, some teachers exhibited complete integration of the computers and interfacing devices into both the laboratory work and the classroom inquiry. At the lower end of the range, some teachers used the technology very little. The resulting question emerged from the data collected: Do specific teacher personality characteristics (independent variables) correlate with the degree of implementation (dependent variable) of the innovative ideas and tools used in the teacher's science classroom after the in-service workshop? To determine if there were any significant personality traits, each teacher was given five personality tests. The tests were Hunt's Conceptual Development Test, the Paragraph Completion Test; James Rest's Defining Issues Test; Simmons Personal Survey, an emotional tendency test; the Myers-Briggs Type

  11. Advancing the Science of Team Science

    Science.gov (United States)

    Falk‐Krzesinski, Holly J.; Börner, Katy; Contractor, Noshir; Fiore, Stephen M.; Hall, Kara L.; Keyton, Joann; Spring, Bonnie; Stokols, Daniel; Trochim, William; Uzzi, Brian

    2010-01-01

    Abstract The First Annual International Science of Team Science (SciTS) Conference was held in Chicago, IL April 22–24, 2010. This article presents a summary of the Conference proceedings. Clin Trans Sci 2010; Volume 3: 263–266. PMID:20973925

  12. "I am Not a Statistic": Identities of African American Males in Advanced Science Courses

    Science.gov (United States)

    Johnson, Diane Wynn

    The United States Bureau of Labor Statistics (2010) expects new industries to generate approximately 2.7 million jobs in science and technology by the year 2018, and there is concern as to whether there will be enough trained individuals to fill these positions. A tremendous resource remains untapped, African American students, especially African American males (National Science Foundation, 2009). Historically, African American males have been omitted from the so called science pipeline. Fewer African American males pursue a science discipline due, in part; to limiting factors they experience in school and at home (Ogbu, 2004). This is a case study of African American males who are enrolled in advanced science courses at a predominantly African American (84%) urban high school. Guided by expectancy-value theory (EVT) of achievement related results (Eccles, 2009; Eccles et al., 1983), twelve African American male students in two advanced science courses were observed in their science classrooms weekly, participated in an in-depth interview, developed a presentation to share with students enrolled in a tenth grade science course, responded to an open-ended identity questionnaire, and were surveyed about their perceptions of school. Additionally, the students' teachers were interviewed, and seven of the students' parents. The interview data analyses highlighted the important role of supportive parents (key socializers) who had high expectations for their sons and who pushed them academically. The students clearly attributed their enrollment in advanced science courses to their high regard for their science teachers, which included positive relationships, hands-on learning in class, and an inviting and encouraging learning environment. Additionally, other family members and coaches played important roles in these young men's lives. Students' PowerPoint(c) presentations to younger high school students on why they should take advanced science courses highlighted these

  13. ESnet4: next generation network strategy, architecture, and implementation for DOE Science

    International Nuclear Information System (INIS)

    Collins, Michael; Burrescia, Joseph; Dart, Eli; Gagliardi, Jim; Guok, Chin; Johnston, William; Metzger, Joe; Oberman, Kevin; O'Connor, Mike

    2006-01-01

    The Department of Energy's (DOE) Office of Science is the largest supporter of basic research in the physical sciences in the US. It directly supports the research of 15,000 PhDs, PostDocs and Graduate Students, and operates major scientific facilities at DOE laboratories that serve the entire US research community: other Federal agencies, universities, and industry, as well as the international research and education (R and E) community. ESnet's mission is to provide the network infrastructure that supports the mission of the Office of Science (SC). ESnet must evolve substantially in order to continue meeting the Office of Science mission needs and this paper discusses the development of ESnet's strategy to meet these requirements through a new network architecture and implementation approach

  14. Design, Implementation and Evaluation of Innovative Science Teaching Strategies for Non-Formal Learning in a Natural History Museum

    Science.gov (United States)

    Çil, Emine; Maccario, Nihal; Yanmaz, Durmus

    2016-01-01

    Background: Museums are useful educational resources in science teaching. Teaching strategies which promote hands-on activities, student-centred learning, and rich social interaction must be designed and implemented throughout the museum visit for effective science learning. Purpose: This study aimed to design and implement innovative teaching…

  15. Assessing citation networks for dissemination and implementation research frameworks.

    Science.gov (United States)

    Skolarus, Ted A; Lehmann, Todd; Tabak, Rachel G; Harris, Jenine; Lecy, Jesse; Sales, Anne E

    2017-07-28

    A recent review of frameworks used in dissemination and implementation (D&I) science described 61 judged to be related either to dissemination, implementation, or both. The current use of these frameworks and their contributions to D&I science more broadly has yet to be reviewed. For these reasons, our objective was to determine the role of these frameworks in the development of D&I science. We used the Web of Science™ Core Collection and Google Scholar™ to conduct a citation network analysis for the key frameworks described in a recent systematic review of D&I frameworks (Am J Prev Med 43(3):337-350, 2012). From January to August 2016, we collected framework data including title, reference, publication year, and citations per year and conducted descriptive and main path network analyses to identify those most important in holding the current citation network for D&I frameworks together. The source article contained 119 cited references, with 50 published articles and 11 documents identified as a primary framework reference. The average citations per year for the 61 frameworks reviewed ranged from 0.7 to 103.3 among articles published from 1985 to 2012. Citation rates from all frameworks are reported with citation network analyses for the framework review article and ten highly cited framework seed articles. The main path for the D&I framework citation network is presented. We examined citation rates and the main paths through the citation network to delineate the current landscape of D&I framework research, and opportunities for advancing framework development and use. Dissemination and implementation researchers and practitioners may consider frequency of framework citation and our network findings when planning implementation efforts to build upon this foundation and promote systematic advances in D&I science.

  16. Innovations in Undergraduate Science Education: Going Viral

    OpenAIRE

    Hatfull, Graham F.

    2015-01-01

    Bacteriophage discovery and genomics provides a powerful and effective platform for integrating missions in research and education. Implementation of the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program facilitates a broad impact by including a diverse array of schools, faculty, and students. The program generates new insights into the diversity and evolution of the bacteriophage population and presents a model for introducing first-yea...

  17. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    Science.gov (United States)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  18. The Implementation of the New Lower Secondary Science Curriculum in Three Schools in Rwanda

    Science.gov (United States)

    Nsengimana, Théophile; Ozawa, Hiroaki; Chikamori, Kensuke

    2014-01-01

    In 2006, Rwanda began implementing an Outcomes Based Education (OBE) lower secondary science curriculum that emphasises a student-centred approach. The new curriculum was designed to transform Rwandan society from an agricultural to a knowledge-based economy, with special attention to science and technology education. Up until this point in time…

  19. Advanced Computing for 21st Century Accelerator Science and Technology

    International Nuclear Information System (INIS)

    Dragt, Alex J.

    2004-01-01

    Dr. Dragt of the University of Maryland is one of the Institutional Principal Investigators for the SciDAC Accelerator Modeling Project Advanced Computing for 21st Century Accelerator Science and Technology whose principal investigators are Dr. Kwok Ko (Stanford Linear Accelerator Center) and Dr. Robert Ryne (Lawrence Berkeley National Laboratory). This report covers the activities of Dr. Dragt while at Berkeley during spring 2002 and at Maryland during fall 2003

  20. Next Generation Science Standards: Considerations for Curricula, Assessments, Preparation, and Implementation

    Science.gov (United States)

    Best, Jane; Dunlap, Allison

    2014-01-01

    This policy brief provides an overview of the Next Generation Science Standards (NGSS), discusses policy considerations for adopting or adapting the new standards, and presents examples from states considering or implementing the NGSS. Changing academic standards is a complex process that requires significant investments of time, money, and human…

  1. Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter

    Science.gov (United States)

    Ashman, Mike; Cardesin Moinelo, Alejandro; Frew, David; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Muñoz, Michela; Nespoli, Federico

    2018-05-01

    The ExoMars Science Operations Centre (SOC) is located at ESA's European Space Astronomy Centre (ESAC) in Madrid, Spain and is responsible for coordinating the science planning activities for TGO in order to optimize the scientific return of the mission. The SOC constructs, in accordance with Science Working Team (SWT) science priorities, and in coordination with the PI science teams and ESA's Mission Operations Centre (MOC), a plan of scientific observations and delivers conflict free operational products for uplink and execution on-board. To achieve this, the SOC employs a planning concept based on Long, Medium and Short Term planning cycles. Long Term planning covers mission segments of several months and is conducted many months prior to execution. Its goal is to establish a feasible science observation strategy given the science priorities and the expected mission profile. Medium Term planning covers a 1 month mission segment and is conducted from 3 to 2 months prior to execution whilst Short Term planning covers a 1 week segment and is conducted from 2 weeks to 1 week prior to execution. The goals of Medium and Short Term planning are to operationally instantiate and validate the Long Term plan such that the SOC may deliver to MOC a conflict free spacecraft pointing profile request (a Medium Term planning deliverable), and the final instrument telecommanding products (a Short Term planning deliverable) such that the science plan is achieved and all operational constraints are met. With a 2 hour-400km science orbit, the vast number of solar occultation, nadir measurement, and surface imaging opportunities, combined with additional mission constraints such as the necessary provision of TGO communication slots to support the ExoMars 2020 Rover & Surface Platform mission and NASA surface assets, creates a science planning task of considerable magnitude and complexity. In this paper, we detail how the SOC is developing and implementing the necessary planning

  2. A practical implementation science heuristic for organizational readiness: R = MC2

    Science.gov (United States)

    Cook, Brittany S.; Lamont, Andrea; Wandersman, Abraham; Castellow, Jennifer; Katz, Jason; Beidas, Rinad S.

    2015-01-01

    There are many challenges when an innovation (i.e., a program, process, or policy that is new to an organization) is actively introduced into an organization. One critical component for successful implementation is the organization’s readiness for the innovation. In this article, we propose a practical implementation science heuristic, abbreviated as R= MC2. We propose that organizational readiness involves: 1) the motivation to implement an innovation, 2) the general capacities of an organization, and 3) the innovation-specific capacities needed for a particular innovation. Each of these components can be assessed independently and be used formatively. The heuristic can be used by organizations to assess readiness to implement and by training and technical assistance providers to help build organizational readiness. We present an illustration of the heuristic by showing how behavioral health organizations differ in readiness to implement a peer specialist initiative. Implications for research and practice of organizational readiness are discussed. PMID:26668443

  3. "helix Nebula - the Science Cloud", a European Science Driven Cross-Domain Initiative Implemented in via AN Active Ppp Set-Up

    Science.gov (United States)

    Lengert, W.; Mondon, E.; Bégin, M. E.; Ferrer, M.; Vallois, F.; DelaMar, J.

    2015-12-01

    Helix Nebula, a European science cross-domain initiative building on an active PPP, is aiming to implement the concept of an open science commons[1] while using a cloud hybrid model[2] as the proposed implementation solution. This approach allows leveraging and merging of complementary data intensive Earth Science disciplines (e.g. instrumentation[3] and modeling), without introducing significant changes in the contributors' operational set-up. Considering the seamless integration with life-science (e.g. EMBL), scientific exploitation of meteorological, climate, and Earth Observation data and models open an enormous potential for new big data science. The work of Helix Nebula has shown that is it feasible to interoperate publicly funded infrastructures, such as EGI [5] and GEANT [6], with commercial cloud services. Such hybrid systems are in the interest of the existing users of publicly funded infrastructures and funding agencies because they will provide "freedom and choice" over the type of computing resources to be consumed and the manner in which they can be obtained. But to offer such freedom and choice across a spectrum of suppliers, various issues such as intellectual property, legal responsibility, service quality agreements and related issues need to be addressed. Finding solutions to these issues is one of the goals of the Helix Nebula initiative. [1] http://www.egi.eu/news-and-media/publications/OpenScienceCommons_v3.pdf [2] http://www.helix-nebula.eu/events/towards-the-european-open-science-cloud [3] e.g. https://sentinel.esa.int/web/sentinel/sentinel-data-access [5] http://www.egi.eu/ [6] http://www.geant.net/

  4. Role, implementation, and effectiveness of advanced allied health assistants: a systematic review

    Directory of Open Access Journals (Sweden)

    Stanhope J

    2013-12-01

    Full Text Available Jessica Stanhope,1 Claire Pearce21International Centre for Allied Health Evidence, University of South Australia, Adelaide, SA, Australia; 2ACT (Australian Capital Territory Government Health Directorate, Canberra, ACT, AustraliaBackground: The purpose of this systematic review was to determine the effectiveness and implementation of advanced allied health assistant roles.Methods: A systematic search of seven databases and Google Scholar was conducted to identify studies published in English peer-reviewed journals from 2003 to 2013 and reporting on the effectiveness and implementation of advanced allied health assistant (A/AHA roles. Reference lists were also screened to identify additional studies, and the authors’ personal collections of studies were searched. Studies were allocated to the National Health and Medical Research Council hierarchy of evidence, and appraisal of higher-level studies (III-1 and above conducted using the Centre for Evidence Based Medicine Systematic Review Critical Appraisal Sheet for included systematic reviews or the PEDro scale for level II and III-1 studies. Data regarding country, A/AHA title, disciplines, competencies, tasks, level of autonomy, clients, training, and issues regarding the implementation of these roles were extracted, as were outcomes used and key findings for studies investigating their effectiveness.Results: Fifty-three studies were included, and most because they reported background information rather than investigating A/AHA roles, this representing low-level information. A/AHAs work in a range of disciplines, with a variety of client groups, and in a number of different settings. Little was reported regarding the training available for A/AHAs. Four studies investigated the effectiveness of these roles, finding that they were generally well accepted by clients, and provided more therapy time. Issues in integrating these new roles into existing health systems were also reported.Conclusion: A

  5. Review of research on advanced computational science in FY2015

    International Nuclear Information System (INIS)

    2017-01-01

    Research on advanced computational science for nuclear applications, based on 'Plan to Achieve Medium- to Long-term Objectives of the Japan Atomic Energy Agency (Medium- to Long-term Plan)', has been performed at Center for Computational Science and e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting of outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R and D performed at CCSE in FY 2015 (April 1st, 2015 - March 31st, 2016), (2) Results of the evaluation on the R and D by the committee in FY 2015 (April 1st, 2015 - March 31st, 2016). (author)

  6. Advancing nursing science through health trajectory research: an introduction.

    Science.gov (United States)

    Wyman, Jean F; Henly, Susan J

    2011-01-01

    The Minnesota Center for Health Trajectory Research has focused on developing ways to better understand how interventions influence health trajectories during transitional, acute, or chronic health challenges across the life span. The health trajectory perspective advances nursing science by providing a person-centered point of view that emphasizes change in health over time within individuals, families, groups, or communities. Theoretical considerations and statistical modeling approaches used in studying health trajectories, along with exemplars from nursing research studies from this special issue of Nursing Research, are highlighted.

  7. National facility for advanced computational science: A sustainable path to scientific discovery

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  8. Perspective of Lecturers in Implementing PISMP Science Curriculum in Malaysia's IPG

    Science.gov (United States)

    Yahya, Fauziah Hj; Bin Hamdan, Abdul Rahim; Jantan, Hafsah Binti; Saleh, Halimatussadiah Binti

    2015-01-01

    The article aims to identify lecturers' perspectives in implementing PISMP science curriculum in IPG Malaysia based on teaching experience with KIPP model. The respondents consisted of 105 lecturers from 20 IPG Malaysia. The study used a questionnaire consisting of 74 items covering the four dimensions (Context, Input, Process and Product). Data…

  9. 76 FR 71982 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Science.gov (United States)

    2011-11-21

    ... Multiplexed Microbiology Devices: Their clinical application and public health/clinical needs; inclusion of...] Advancing Regulatory Science for Highly Multiplexed Microbiology/ Medical Countermeasure Devices; Public... Multiplexed Microbiology/ Medical Countermeasure Devices'' that published in the Federal Register of August 8...

  10. HEAPA Filter Bank In-Place Leak Test of Advanced Fuel Science Building

    Energy Technology Data Exchange (ETDEWEB)

    Ji, C. G.; Bae, S. O.; Kim, C. H

    2007-12-15

    To maintain the optimum condition of Advanced Fuel Science Building in KAERI, this report is described leak tests for HEPA Filter of HVAC in this facility. The main topics of this report are as follows for: - Procurement Specification - Visual Inspection - Airflow Capacity Test - HEPA Filter Bank In-Place Test.

  11. ESnet4: next generation network strategy, architecture, and implementation for DOE Science

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michael; Burrescia, Joseph; Dart, Eli; Gagliardi, Jim; Guok, Chin; Johnston, William; Metzger, Joe; Oberman, Kevin; O' Connor, Mike

    2006-09-15

    The Department of Energy's (DOE) Office of Science is the largest supporter of basic research in the physical sciences in the US. It directly supports the research of 15,000 PhDs, PostDocs and Graduate Students, and operates major scientific facilities at DOE laboratories that serve the entire US research community: other Federal agencies, universities, and industry, as well as the international research and education (R and E) community. ESnet's mission is to provide the network infrastructure that supports the mission of the Office of Science (SC). ESnet must evolve substantially in order to continue meeting the Office of Science mission needs and this paper discusses the development of ESnet's strategy to meet these requirements through a new network architecture and implementation approach.

  12. Evaluating a Professional Development Programme for Implementation of a Multidisciplinary Science Subject

    NARCIS (Netherlands)

    Visser, Talitha Christine; Coenders, Ferdinand G.M.; Terlouw, C.; Pieters, Julius Marie

    2013-01-01

    This study aims to evaluate a professional development programme that prepares and assists teachers with the implementation of a multidisciplinary science module, basing the evaluation on participants’ reactions, the first level of Guskey’s five-level model for evaluation (2002). Positive

  13. The implementation of a social constructivist approach in primary science education in Confucian heritage culture: the case of Vietnam

    NARCIS (Netherlands)

    Vu Thu Hang, N.; Meijer, M.R.; Bulte, A.M.W.; Pilot, A.

    2015-01-01

    Social constructivism has been increasingly studied and implemented in science school education. Nevertheless, there is a lack of holistic studies on the implementation of social constructivist approach in primary science education in Confucian heritage culture. This study aims to determine to what

  14. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  15. Implementing planetary protection measures on the Mars Science Laboratory.

    Science.gov (United States)

    Benardini, James N; La Duc, Myron T; Beaudet, Robert A; Koukol, Robert

    2014-01-01

    The Mars Science Laboratory (MSL), comprising a cruise stage; an aeroshell; an entry, descent, and landing system; and the radioisotope thermoelectric generator-powered Curiosity rover, made history with its unprecedented sky crane landing on Mars on August 6, 2012. The mission's primary science objective has been to explore the area surrounding Gale Crater and assess its habitability for past life. Because microbial contamination could profoundly impact the integrity of the mission and compliance with international treaty was required, planetary protection measures were implemented on MSL hardware to verify that bioburden levels complied with NASA regulations. By applying the proper antimicrobial countermeasures throughout all phases of assembly, the total bacterial endospore burden of MSL at the time of launch was kept to 2.78×10⁵ spores, well within the required specification of less than 5.0×10⁵ spores. The total spore burden of the exposed surfaces of the landed MSL hardware was 5.64×10⁴, well below the allowed limit of 3.0×10⁵ spores. At the time of launch, the MSL spacecraft was burdened with an average of 22 spores/m², which included both planned landed and planned impacted hardware. Here, we report the results of a campaign to implement and verify planetary protection measures on the MSL flight system.

  16. Teachers' implementation of reform-oriented instructional strategies in science: Lessons from two professional development programs

    Science.gov (United States)

    Cook, Nicole D.

    This dissertation reports findings from two studies that investigated the relationship between professional development and teachers' instructional practices in Science,Technology, Engineering, and Mathematics (STEM). The first program, the Indiana Science Initiative (ISI) focused on K-8 teachers and their use of inquiry-based science instruction in conjunction with curricular modules provided by the ISI program. The second program, Research Goes to School (RGS), focused on high school STEM teachers and their use of problem-based learning (PBL) as they implemented curricular units that they developed themselves at the RGS summer workshop. In-service teachers were recruited from both programs. They were observed teaching their respective curricular materials and interviewed about their experiences in order to investigate the following research questions: 1. How do teachers implement the reform-oriented instructional strategies promoted by their professional development experiences with the ISI or RGS? 2. What are the challenges and supports that influence teachers' use of the reform-oriented instructional strategies promoted by their professional development experiences with the ISI or RGS? To investigate these questions the fidelity of implementation was it was conceptualized by Century, Rudnick, and Freeman (2010) was used as a theoretical framework. The study of the ISI program was conducted during the program's pilot year (2010-11). Five teachers of grades 3 through 6 were recruited from three different schools. Participants were observed as they taught lessons related to the modules and they were interviewed about their experiences. Based on analysis of the data from the observations, using a modified version of the Science Teacher Inquiry Rubric (STIR) (Bodzin & Beerer, 2003), the participants were found to exhibit partial fidelity of implementation to the model of inquiry-based instruction promoted by the ISI. Based on data from the interviews, the

  17. The role of differentiation and standards-based grading in the science learning of struggling and advanced learners in a detracked high school honors biology classroom

    Science.gov (United States)

    MacDonald, Michelina Ruth Carter

    and advanced learners. My fourth finding reflects what I learned about heterogeneous grouping: (4) Heterogeneously grouping students for argumentation through engagement in science inquiry serves both to reinforce proficiency of learning goals for struggling learners and simultaneously push all learners towards advanced proficiency. These findings indicate how planning for and implementing a differentiated, standards-based instructional unit can support the learning needs of both struggling and advanced learners in a detracked, honors biology classroom.

  18. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  19. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  20. Implementation Measurement for Evidence-Based Violence Prevention Programs in Communities.

    Science.gov (United States)

    Massetti, Greta M; Holland, Kristin M; Gorman-Smith, Deborah

    2016-08-01

    Increasing attention to the evaluation, dissemination, and implementation of evidence-based programs (EBPs) has led to significant advancements in the science of community-based violence prevention. One of the prevailing challenges in moving from science to community involves implementing EBPs and strategies with quality. The CDC-funded National Centers of Excellence in Youth Violence Prevention (YVPCs) partner with communities to implement a comprehensive community-based strategy to prevent violence and to evaluate that strategy for impact on community-wide rates of violence. As part of their implementation approach, YVPCs document implementation of and fidelity to the components of the comprehensive youth violence prevention strategy. We describe the strategies and methods used by the six YVPCs to assess implementation and to use implementation data to inform program improvement efforts. The information presented describes the approach and measurement strategies employed by each center and for each program implemented in the partner communities. YVPCs employ both established and innovative strategies for measurement and tracking of implementation across a broad range of programs, practices, and strategies. The work of the YVPCs highlights the need to use data to understand the relationship between implementation of EBPs and youth violence outcomes.

  1. A stakeholder-driven agenda for advancing the science and practice of scale-up and spread in health.

    Science.gov (United States)

    Norton, Wynne E; McCannon, C Joseph; Schall, Marie W; Mittman, Brian S

    2012-12-06

    Although significant advances have been made in implementation science, comparatively less attention has been paid to broader scale-up and spread of effective health programs at the regional, national, or international level. To address this gap in research, practice and policy attention, representatives from key stakeholder groups launched an initiative to identify gaps and stimulate additional interest and activity in scale-up and spread of effective health programs. We describe the background and motivation for this initiative and the content, process, and outcomes of two main phases comprising the core of the initiative: a state-of-the-art conference to develop recommendations for advancing scale-up and spread and a follow-up activity to operationalize and prioritize the recommendations. The conference was held in Washington, D.C. during July 2010 and attended by 100 representatives from research, practice, policy, public health, healthcare, and international health communities; the follow-up activity was conducted remotely the following year. Conference attendees identified and prioritized five recommendations (and corresponding sub-recommendations) for advancing scale-up and spread in health: increase awareness, facilitate information exchange, develop new methods, apply new approaches for evaluation, and expand capacity. In the follow-up activity, 'develop new methods' was rated as most important recommendation; expanding capacity was rated as least important, although differences were relatively minor. Based on the results of these efforts, we discuss priority activities that are needed to advance research, practice and policy to accelerate the scale-up and spread of effective health programs.

  2. CE-ACCE: The Cloud Enabled Advanced sCience Compute Environment

    Science.gov (United States)

    Cinquini, L.; Freeborn, D. J.; Hardman, S. H.; Wong, C.

    2017-12-01

    Traditionally, Earth Science data from NASA remote sensing instruments has been processed by building custom data processing pipelines (often based on a common workflow engine or framework) which are typically deployed and run on an internal cluster of computing resources. This approach has some intrinsic limitations: it requires each mission to develop and deploy a custom software package on top of the adopted framework; it makes use of dedicated hardware, network and storage resources, which must be specifically purchased, maintained and re-purposed at mission completion; and computing services cannot be scaled on demand beyond the capability of the available servers.More recently, the rise of Cloud computing, coupled with other advances in containerization technology (most prominently, Docker) and micro-services architecture, has enabled a new paradigm, whereby space mission data can be processed through standard system architectures, which can be seamlessly deployed and scaled on demand on either on-premise clusters, or commercial Cloud providers. In this talk, we will present one such architecture named CE-ACCE ("Cloud Enabled Advanced sCience Compute Environment"), which we have been developing at the NASA Jet Propulsion Laboratory over the past year. CE-ACCE is based on the Apache OODT ("Object Oriented Data Technology") suite of services for full data lifecycle management, which are turned into a composable array of Docker images, and complemented by a plug-in model for mission-specific customization. We have applied this infrastructure to both flying and upcoming NASA missions, such as ECOSTRESS and SMAP, and demonstrated deployment on the Amazon Cloud, either using simple EC2 instances, or advanced AWS services such as Amazon Lambda and ECS (EC2 Container Services).

  3. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    Science.gov (United States)

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  4. Classroom Environment in the Implementation of an Innovative Curriculum Project in Science Education.

    Science.gov (United States)

    Suarez, Mercedes; Pias, Rosa; Membiela, Pedro; Dapia, Dolores

    1998-01-01

    Analyzes the perceptions of students, teachers, and external observers in order to study the influence of classroom environment on the implementation of an innovative project in science education. Contains 33 references. (DDR)

  5. Advancing the Science of Developmental Neurotoxicity (DNT) Testing for Better Safety Evaluation

    DEFF Research Database (Denmark)

    Bal-Price, Anna; Coecke, Sandra; Costa, Lucio

    2012-01-01

    Bal-Price AK, Coecke S, Costa L, Crofton KM, Fritsche E, Goldberg A, Grandjean P, Lein PJ, Li A, Lucchini R, Mundy WR, Padilla S, Persico A, Seiler AEM, Kreysa J. Conference Report: Advancing the Science of Developmental Neurotoxicity (DNT) Testing for Better Safety Evaluation. Altex 2012: 29: 202-15....

  6. Dissemination of an innovative mastery learning curriculum grounded in implementation science principles: a case study.

    Science.gov (United States)

    McGaghie, William C; Barsuk, Jeffrey H; Cohen, Elaine R; Kristopaitis, Theresa; Wayne, Diane B

    2015-11-01

    Dissemination of a medical education innovation, such as mastery learning, from a setting where it has been used successfully to a new and different medical education environment is not easy. This article describes the uneven yet successful dissemination of a simulation-based mastery learning (SBML) curriculum on central venous catheter (CVC) insertion for internal medicine and emergency medicine residents across medical education settings. The dissemination program was grounded in implementation science principles. The article begins by describing implementation science which addresses the mechanisms of medical education and health care delivery. The authors then present a mastery learning case study in two phases: (1) the development, implementation, and evaluation of the SBML CVC curriculum at a tertiary care academic medical center; and (2) the dissemination of the SBML CVC curriculum to an academic community hospital setting. Contextual information about the drivers and barriers that affected the SBML CVC curriculum dissemination is presented. This work demonstrates that dissemination of mastery learning curricula, like all other medical education innovations, will fail without active educational leadership, personal contacts, dedication, hard work, rigorous measurement, and attention to implementation science principles. The article concludes by presenting a set of lessons learned about disseminating an SBML CVC curriculum across different medical education settings.

  7. Advancing participation of blind students in Science, Technology, Engineering, and Math

    Science.gov (United States)

    Beck-Winchatz, Bernhard; Riccobono, Mark A.

    2008-12-01

    Like their sighted peers, many blind students in elementary, middle, and high school are naturally interested in space. This interest can motivate them to learn fundamental scientific, quantitative, and critical thinking skills, and sometimes even lead to careers in Science, Technology, Engineering, and Math (STEM) disciplines. However, these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats, the unfamiliarity of teachers with non-visual teaching methods, lack of access to blind role models, and the low expectations of their teachers and parents. We discuss joint efforts by the National Aeronautics and Space Administration (NASA) and the National Federation of the Blind’s (NFB) National Center for Blind Youth in Science (NCBYS) to develop and implement strategies to promote opportunities for blind youth in science. These include the development of tactile space science books and curriculum materials, science academies for blind middle school and high school students, and college-level internship and mentoring programs. The partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals.

  8. ARM Unmanned Aerial Systems Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Recent advances in Unmanned Aerial Systems (UAS) coupled with changes in the regulatory environment for operations of UAS in the National Airspace increase the potential value of UAS to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. UAS include unmanned aerial vehicles (UAV) and tethered balloon systems (TBS). The roles UAVs and TBSs could play within the ARM Facility, particularly science questions they could help address, have been discussed in several workshops, reports, and vision documents, including: This document describes the implementation of a robust and vigorous program for use of UAV and TBS for the science missions ARM supports.

  9. The application of implementation science for pressure ulcer prevention best practices in an inpatient spinal cord injury rehabilitation program.

    Science.gov (United States)

    Scovil, Carol Y; Flett, Heather M; McMillan, Lan T; Delparte, Jude J; Leber, Diane J; Brown, Jacquie; Burns, Anthony S

    2014-09-01

    To implement pressure ulcer (PU) prevention best practices in spinal cord injury (SCI) rehabilitation using implementation science frameworks. Quality improvement. SCI Rehabilitation Center. Inpatients admitted January 2012 to July 2013. Implementation of two PU best practices were targeted: (1) completing a comprehensive PU risk assessment and individualized interprofessional PU prevention plan (PUPP); and (2) providing patient education for PU prevention; as part of the pan-Canadian SCI Knowledge Mobilization Network. At our center, the SCI Pressure Ulcer Scale replaced the Braden risk assessment scale and an interprofessional PUPP form was implemented. Comprehensive educational programing existed, so efforts focused on improving documentation. Implementation science frameworks provided structure for a systematic approach to best practice implementation (BPI): (1) site implementation team, (2) implementation drivers, (3) stages of implementation, and (4) improvement cycles. Strategies were developed to address key implementation drivers (staff competency, organizational supports, and leadership) through the four stages of implementation: exploration, installation, initial implementation, and full implementation. Improvement cycles were used to address BPI challenges. Implementation processes (e.g. staff training) and BPI outcomes (completion rates). Following BPI, risk assessment completion rates improved from 29 to 82%. The PUPP completion rate was 89%. PU education was documented for 45% of patients (vs. 21% pre-implementation). Implementation science provided a framework and effective tools for successful pressure ulcer BPI in SCI rehabilitation. Ongoing improvement cycles will target timeliness of tool completion and documentation of patient education.

  10. Implementation of a professional portfolio: a tool to demonstrate professional development for advanced practice.

    Science.gov (United States)

    Chamblee, Tracy B; Dale, Juanita Conkin; Drews, Barbie; Spahis, Joanna; Hardin, Teri

    2015-01-01

    The literature has a gap related to professional development for APRNs. In the United States, many health care organizations use clinical advancement programs for registered nurses, but APRNs are not often included in these programs. If APRNs are included, advancement opportunities are very limited. At CMC, implementation of a professional portfolio resulted in increased satisfaction among APPs regarding their ability to showcase professional growth and expertise, as well as the uniqueness of their advanced practice. Use of the professional portfolio led to improved recognition by APS and organizational leaders of APP performance excellence during the annual performance evaluation, as well as improved recognition among APP colleagues in terms of nominations for honors and awards.

  11. [Projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo].

    Science.gov (United States)

    Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji

    2014-01-01

    Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.

  12. Advances in Laser/Lidar Technologies for NASA's Science and Exploration Mission's Applications

    Science.gov (United States)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA's Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  13. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  14. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  15. Report of the evaluation by the Ad Hoc Review Committee on advance science research. Result evaluation, interim evaluation, in-advance evaluation in fiscal year 2003

    International Nuclear Information System (INIS)

    2003-11-01

    The Research Evaluation Committee, which consisted of 13 members from outside of the Japan Atomic Energy Research Institute (JAERI), set up an Ad Hoc Review Committee on Advanced Science Research in accordance with the Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations in order to evaluate the accomplishments of the research completed in Fiscal Year 2002, the accomplishments of the research started in Fiscal Year 2001, and the adequacy of the programs of the research to be started in Fiscal Year 2004 at Advanced Science Research Center of JAERI. The Ad Hoc Review Committee consisted of nine specialists from outside of JAERI. The Ad Hoc Review Committee conducted its activities from May to July 2003. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Ad Hoc Review Committee meeting which was held on June 24, 2003, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Ad Hoc Review Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on August 4, 2003. This report describes the result of the evaluation by the Ad Hoc Review Committee on Advanced Science Research. (author)

  16. Report of the evaluation by the Ad Hoc Review Committee on Advance Science Research. Result evaluation, interim evaluation, in-advance evaluation in fiscal year 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    The Research Evaluation Committee, which consisted of 13 members from outside of the Japan Atomic Energy Research Institute (JAERI), set up an Ad Hoc Review Committee on Advanced Science Research in accordance with the Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations in order to evaluate the accomplishments of the research completed in Fiscal Year 2001, the accomplishments of the research started in Fiscal Year 2000, and the adequacy of the programs of the research to be started in Fiscal Year 2003 at Advanced Science Research Center of JAERI. The Ad Hoc Review Committee consisted of eight specialists from outside of JAERI. The Ad Hoc Review Committee conducted its activities from May to July 2002. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Ad Hoc Review Committee meeting which was held on June 4, 2002, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Ad Hoc Review Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on August 5, 2002. This report describes the result of the evaluation by the Ad Hoc Review Committee on Advanced Science Research. (author)

  17. Beyond "implementation strategies": classifying the full range of strategies used in implementation science and practice.

    Science.gov (United States)

    Leeman, Jennifer; Birken, Sarah A; Powell, Byron J; Rohweder, Catherine; Shea, Christopher M

    2017-11-03

    Strategies are central to the National Institutes of Health's definition of implementation research as "the study of strategies to integrate evidence-based interventions into specific settings." Multiple scholars have proposed lists of the strategies used in implementation research and practice, which they increasingly are classifying under the single term "implementation strategies." We contend that classifying all strategies under a single term leads to confusion, impedes synthesis across studies, and limits advancement of the full range of strategies of importance to implementation. To address this concern, we offer a system for classifying implementation strategies that builds on Proctor and colleagues' (2013) reporting guidelines, which recommend that authors not only name and define their implementation strategies but also specify who enacted the strategy (i.e., the actor) and the level and determinants that were targeted (i.e., the action targets). We build on Wandersman and colleagues' Interactive Systems Framework to distinguish strategies based on whether they are enacted by actors functioning as part of a Delivery, Support, or Synthesis and Translation System. We build on Damschroder and colleague's Consolidated Framework for Implementation Research to distinguish the levels that strategies target (intervention, inner setting, outer setting, individual, and process). We then draw on numerous resources to identify determinants, which are conceptualized as modifiable factors that prevent or enable the adoption and implementation of evidence-based interventions. Identifying actors and targets resulted in five conceptually distinct classes of implementation strategies: dissemination, implementation process, integration, capacity-building, and scale-up. In our descriptions of each class, we identify the level of the Interactive System Framework at which the strategy is enacted (actors), level and determinants targeted (action targets), and outcomes used to

  18. How to implement the Science Fair Self-Help Development Program in schools

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.

    1994-01-01

    This manual is intended to act as a working guide for setting up a Science Fair Volunteer Support Committee at your school. The Science Fair Volunteer Support Committee, or SFVSC, is the key component of the Science Fair Self-Help program, which was developed by Sandia National Laboratories and is designed to support a school`s science activities. The SFVSC is a team of parents and community volunteers who work in concert with a school`s teaching staff to assist and manage all areas of a school Science and Engineering Fair. The main advantage of creating such a committee is that it frees the science teachers from the organizational aspects of the fair and lets them concentrate on their job of teaching science. This manual is based on information gained through a Self-Help Development pilot program that was developed by Sandia National Laboratories during the 1991--92 school year at three Albuquerque, NM, middle schools. The manual describes the techniques that were successful in the pilot program and discusses how these techniques might be implemented in other schools. This manual also discusses problems that may be encountered, including suggestions for how they might be resolved.

  19. The Implementation of a Social Constructivist Approach in Primary Science Education in Confucian Heritage Culture: The Case of Vietnam

    Science.gov (United States)

    H?ng, Ngô Vu Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2015-01-01

    Social constructivism has been increasingly studied and implemented in science school education. Nevertheless, there is a lack of holistic studies on the implementation of social constructivist approach in primary science education in Confucian heritage culture. This study aims to determine to what extent a social constructivist approach is…

  20. Implementation of inquiry-based science education in different countries: some reflections

    Science.gov (United States)

    Rundgren, Carl-Johan

    2017-03-01

    In this forum article, I reflect on issues related to the implementation of inquiry-based science education (IBSE) in different countries. Regarding education within the European Union (EU), the Bologna system has in later years provided extended coordination and comparability at an organizational level. However, the possibility of the EU to influence the member countries regarding the actual teaching and learning in the classrooms is more limited. In later years, several EU-projects focusing on IBSE have been funded in order to make science education in Europe better, and more motivating for students. Highlighting what Heinz and her colleagues call the policy of `soft governance' of the EU regarding how to improve science education in Europe, I discuss the focus on IBSE in the seventh framework projects, and how it is possible to maintain more long-lasting results in schools through well-designed teacher professional development programs. Another aspect highlighted by Heinz and her colleagues is how global pressures on convergence in education interact with educational structures and traditions in the individual countries. The rise of science and science education as a global culture, encompassing contributions from all around the world, is a phenomenon of great potential and value to humankind. However, it is important to bear in mind that if science and science education is going to become a truly global culture, local variation and differences regarding foci and applications of science in different cultures must be acknowledged.

  1. Clinical implementation of coverage probability planning for nodal boosting in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Ramlov, Anne; Assenholt, Marianne S; Jensen, Maria F

    2017-01-01

    PURPOSE: To implement coverage probability (CovP) for dose planning of simultaneous integrated boost (SIB) of pathologic lymph nodes in locally advanced cervical cancer (LACC). MATERIAL AND METHODS: CovP constraints for SIB of the pathological nodal target (PTV-N) with a central dose peak...

  2. INTEGRATION OF BUSINESS, EDUCATION AND SCIENCE AT THE REGIONAL LEVEL FOR IMPLEMENTING THE NATIONAL TECHNOLOGICAL INITIATIVE

    Directory of Open Access Journals (Sweden)

    Innara Lyapina

    2018-01-01

    Full Text Available Current world affairs show that the post-industrial stage of development of all mature world powers’ economies is followed by creation of a new development paradigm, which is based on the economy of knowledge, science achievements, innovations, global information and communication systems, and which leads to innovative economy formation. In the context of the national innovation economy formation in the Russian Federation, prerequisites are created for integrating the efforts of business, science and education representatives to develop, produce and market high-tech products which have significant economic or social potential. And this is not only the task announced by the Russian government, but also a natural process in the country’s economy, which contributes to the increase in the integration participants’ efficiency. The result of such integrated interaction of education, science and business consists in a synergistic effect through formation of an interactive cooperation model that involves the active use of combined knowledge, ideas, technologies and other resources during innovative projects implementation. At the same time, integration processes are diverse, complex and occur in each case taking into account the integrating parties’ activity specifics. Within this framework, the goal of the research is to characterize the impact of the education, science and business integration process, on the national technological initiative implementation in the country on the whole and to study the integrating experience of these entities at the regional level. In the course of the research, the stages of the Russian national innovation economy formation process have been studied; the role of education, science and business in the National Technological Initiative implementation has been characterized; it’s been proved that educational institutions are the key link in the integration process in the chain “education – science

  3. Teaching of anatomical sciences: A blended learning approach.

    Science.gov (United States)

    Khalil, Mohammed K; Abdel Meguid, Eiman M; Elkhider, Ihsan A

    2018-04-01

    Blended learning is the integration of different learning approaches, new technologies, and activities that combine traditional face-to-face teaching methods with authentic online methodologies. Although advances in educational technology have helped to expand the selection of different pedagogies, the teaching of anatomical sciences has been challenged by implementation difficulties and other limitations. These challenges are reported to include lack of time, costs, and lack of qualified teachers. Easy access to online information and advances in technology make it possible to resolve these limitations by adopting blended learning approaches. Blended learning strategies have been shown to improve students' academic performance, motivation, attitude, and satisfaction, and to provide convenient and flexible learning. Implementation of blended learning strategies has also proved cost effective. This article provides a theoretical foundation for blended learning and proposes a validated framework for the design of blended learning activities in the teaching and learning of anatomical sciences. Clin. Anat. 31:323-329, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Using Concept Maps in Political Science

    Science.gov (United States)

    Chamberlain, Robert P.

    2015-01-01

    Concept mapping is a pedagogical technique that was developed in the 1970s and is being used in K-12 and postsecondary education. Although it has shown excellent results in other fields, it is still rare in political science. In this research note, I discuss the implementation and testing of concept mapping in my Advanced Introduction to…

  5. Saudi Arabia: A future regional hub for advanced education, research, science and technology.

    Science.gov (United States)

    Meo, Sultan Ayoub

    2015-10-01

    Saudi Arabia is the largest country of the Arabian Peninsula, blessed with significant natural resources, including oil, gas and minerals. Saudi Arabia has recognised the importance of education in social and economic transformation, and has established a large number of universities, research and advanced technical institutes which have broken the metropolitan boundaries and have been extended to the far-flung areas of the country. There are 68 universities and degree-awarding institutes. The educational budget reached its highest-ever level of $56.56 billion for the year 2014. About 124,000 Saudi students are pursuing higher education in about 500 universities around the world. Saudi Arabia produced 177826 research papers in Institute for Scientific Information (ISI) database and in the year 2014 alone, 26168 research papers were published in indexed science journals with a rising h-index of 144. The country is turning into a regional hub for advanced education, research, science and technology while swiftly shifting from an oil-based to a knowledge-based economy.

  6. A case study of one school system's adoption and implementation of an elementary science program

    Science.gov (United States)

    Kelly, Michael Patrick

    2000-10-01

    The researcher's purpose in this study was to examine the process used by the Minot Public Schools to adopt and implement a new elementary science program from Silver Burdett Ginn called Discovery Works. Using case study methods within a naturalistic design, the researcher investigated teachers' concerns as they adopted and implemented Discovery Works in their classrooms. Data were gathered using the Concerns Based Adoption Model (CBAM) instrument, interviews with adoption committee members, classroom teachers, grade level meetings, and document analysis of field notes related to each phase of the study. Content analysis methods were used to analyze the data. Emergent themes were presented and substantiated in the data, in terms of six research questions that guided this research. The data were analyzed both quantitatively and qualitatively to provide a rich, thick description that and enabled the researcher to confirm and triangulate the concerns of teachers in this study. The quantitative data revealed a general nonuser profile by teachers as they implemented Discovery Works. Three major themes of concerns emerged from a qualitative analysis of the data. The first theme was implementation, including issues related to teacher attitudes and inservice needs. The second theme, management issues, had five concerns subsumed within it. These included concerns related to time, materials, storage, reorder, and cooperative groups. The third theme, effects on students, included issues concerning hands-on methods of teaching science, vocabulary, especially at the upper elementary, and assessment issues. Possible solutions to resolve each of the concerns were presented. Major conclusions are that teacher concerns about Discovery Works were normal for any group experiencing a new innovation. Teachers and students enjoyed using the hands-on materials, and that Minot Public Schools has taken a small, but important step forward on the road to science education reform. Although

  7. Assessment report of research and development activities FY2014. Activity: 'Advanced science research' (Final report)

    International Nuclear Information System (INIS)

    2015-09-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for final evaluation and prior assessment of 'Advanced Science Research,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research programs and activities of the Advanced Science Research Center (hereinafter referred to as 'ASRC') for the period of five years from April 2010 and the research programs from April 2015. The Committee evaluated the management and the research programs of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the results of the assessment by the Committee with the Committee report attached. (author)

  8. Faculty Development Program Models to Advance Teaching and Learning Within Health Science Programs

    Science.gov (United States)

    Lancaster, Jason W.; Stein, Susan M.; MacLean, Linda Garrelts; Van Amburgh, Jenny

    2014-01-01

    Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school. PMID:24954939

  9. Faculty development program models to advance teaching and learning within health science programs.

    Science.gov (United States)

    Lancaster, Jason W; Stein, Susan M; MacLean, Linda Garrelts; Van Amburgh, Jenny; Persky, Adam M

    2014-06-17

    Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school.

  10. The Structural Relationship between Out-of-School Time Enrichment and Black Student Participation in Advanced Science

    Science.gov (United States)

    Young, Jamaal; Young, Jemimah

    2018-01-01

    The researchers tested a model of the structural relationship between Black student engagement in out-of-school time (OST) science enrichment and participation in advanced science courses in high school. The participants in the sample were Black students (N = 3,173) who participated in the High School Longitudinal Study of 2009/2012. The student…

  11. Implementation of National Science Education Standards in suburban elementary schools: Teachers' perceptions and classroom practices

    Science.gov (United States)

    Khan, Rubina Samer

    2005-07-01

    This was an interpretive qualitative study that focused on how three elementary school science teachers from three different public schools perceived and implemented the National Science Education Standards based on the Reformed Teaching Observation Protocol and individual interviews with the teachers. This study provided an understanding of the standards movement and teacher change in the process. Science teachers who were experienced with the National Science Education Standards were selected as the subjects of the study. Grounded in the theory of teacher change, this study's phenomenological premise was that the extent to which a new reform has an effect on students' learning and achievement on standardized tests depends on the content a teacher teaches as well as the style of teaching. It was therefore necessary to explore how teachers understand and implement the standards in the classrooms. The surveys, interviews and observations provided rich data from teachers' intentions, reflections and actions on the lessons that were observed while also providing the broader contextual framework for the understanding of the teachers' perspectives.

  12. A brief review of advances in complex networks of nuclear science and technology field

    International Nuclear Information System (INIS)

    Fang Jinqing

    2010-01-01

    A brief review of advances in complex networks of nuclear science and technology field at home and is given and summarized. These complex networks include: nuclear energy weapon network, network centric warfare, beam transport networks, continuum percolation evolving network associated with nuclear reactions, global nuclear power station network, (nuclear) chemistry reaction networks, radiological monitoring and anti-nuclear terror networks, and so on. Some challenge issues and development prospects of network science are pointed out finally. (authors)

  13. Review of research on advanced computational science in FY2010-2014

    International Nuclear Information System (INIS)

    2016-03-01

    Research on advanced computational science for nuclear applications, based on 'the plan for meeting the mid-term goal of the Japan Atomic Energy Agency', has been performed at Center for Computational Science and e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R and D performed at CCSE in the period of the midterm plan (April 1st, 2010 - March 31st, 2015) (2) Results of the evaluation on the R and D by the committee in the period of the midterm plan (April 1st, 2010 - March 31st, 2015). (author)

  14. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  15. Microgravity science and applications projects and payloads

    Science.gov (United States)

    Crouch, R. K.

    1987-01-01

    An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.

  16. How behavioral science can advance digital health.

    Science.gov (United States)

    Pagoto, Sherry; Bennett, Gary G

    2013-09-01

    The field of behavioral science has produced myriad data on health behavior change strategies and leveraged such data into effective human-delivered interventions to improve health. Unfortunately, the impact of traditional health behavior change interventions has been heavily constrained by patient and provider burden, limited ability to measure and intervene upon behavior in real time, variable adherence, low rates of implementation, and poor third-party coverage. Digital health technologies, including mobile phones, sensors, and online social networks, by being available in real time, are being explored as tools to increase our understanding of health behavior and to enhance the impact of behavioral interventions. The recent explosion of industry attention to the development of novel health technologies is exciting but has far outpaced research. This Special Section of Translational Behavioral Medicine, Smartphones, Sensors, and Social Networks: A New Age of Health Behavior Change features a collection of studies that leverage health technologies to measure, change, and/or understand health behavior. We propose five key areas in which behavioral science can improve the impact of digital health technologies on public health. First, research is needed to identify which health technologies actually impact behavior and health outcomes. Second, we need to understand how online social networks can be leveraged to impact health behavior on a large scale. Third, a team science approach is needed in the developmental process of health technologies. Fourth, behavioral scientists should identify how a balance can be struck between the fast pace of innovation and the much slower pace of research. Fifth, behavioral scientists have an integral role in informing the development of health technologies and facilitating the movement of health technologies into the healthcare system.

  17. Who Will Do Science? Trends, and Their Causes in Minority and Female Representation among Holders of Advanced Degrees in Science and Mathematics. A Special Report.

    Science.gov (United States)

    Berryman, Sue E.

    This paper describes trends in and causes of minority and female representation among holders of advanced science and math degrees. The minority groups studied are Blacks, Hispanic Americans, American Indians, and Asian Americans, all of whom are compared with Whites. The degrees looked at include those in math, the computer sciences, physical…

  18. First 3 years of operation of RIACS (Research Institute for Advanced Computer Science) (1983-1985)

    Science.gov (United States)

    Denning, P. J.

    1986-01-01

    The focus of the Research Institute for Advanced Computer Science (RIACS) is to explore matches between advanced computing architectures and the processes of scientific research. An architecture evaluation of the MIT static dataflow machine, specification of a graphical language for expressing distributed computations, and specification of an expert system for aiding in grid generation for two-dimensional flow problems was initiated. Research projects for 1984 and 1985 are summarized.

  19. Best Implementation Practices: Disseminating New Assessment Technologies in a Juvenile Justice Agency

    Science.gov (United States)

    Young, Douglas; Moline, Karl; Farrell, Jill; Bierie, David

    2006-01-01

    Much has been written in recent years about advances in assessment technologies designed to aid decision making in the juvenile justice system. Adoption and implementation of this latest generation of actuarial tools, however, have lagged behind their development. Assessment in juvenile justice exemplifies the "science-practice gap" that…

  20. Implementation of polyatomic MCTDHF capability

    Science.gov (United States)

    Haxton, Daniel; Jones, Jeremiah; Rescigno, Thomas; McCurdy, C. William; Ibrahim, Khaled; Williams, Sam; Vecharynski, Eugene; Rouet, Francois-Henry; Li, Xiaoye; Yang, Chao

    2015-05-01

    The implementation of the Multiconfiguration Time-Dependent Hartree-Fock method for poly- atomic molecules using a cartesian product grid of sinc basis functions will be discussed. The focus will be on two key components of the method: first, the use of a resolution-of-the-identity approximation; sec- ond, the use of established techniques for triple Toeplitz matrix algebra using fast Fourier transform over distributed memory architectures (MPI 3D FFT). The scaling of two-electron matrix element transformations is converted from O(N4) to O(N log N) by including these components. Here N = n3, with n the number of points on a side. We test the prelim- inary implementation by calculating absorption spectra of small hydro- carbons, using approximately 16-512 points on a side. This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under the Early Career program, and by the offices of BES and Advanced Scientific Computing Research, under the SciDAC program.

  1. Beyond “implementation strategies”: classifying the full range of strategies used in implementation science and practice

    Directory of Open Access Journals (Sweden)

    Jennifer Leeman

    2017-11-01

    Full Text Available Abstract Background Strategies are central to the National Institutes of Health’s definition of implementation research as “the study of strategies to integrate evidence-based interventions into specific settings.” Multiple scholars have proposed lists of the strategies used in implementation research and practice, which they increasingly are classifying under the single term “implementation strategies.” We contend that classifying all strategies under a single term leads to confusion, impedes synthesis across studies, and limits advancement of the full range of strategies of importance to implementation. To address this concern, we offer a system for classifying implementation strategies that builds on Proctor and colleagues’ (2013 reporting guidelines, which recommend that authors not only name and define their implementation strategies but also specify who enacted the strategy (i.e., the actor and the level and determinants that were targeted (i.e., the action targets. Main body We build on Wandersman and colleagues’ Interactive Systems Framework to distinguish strategies based on whether they are enacted by actors functioning as part of a Delivery, Support, or Synthesis and Translation System. We build on Damschroder and colleague’s Consolidated Framework for Implementation Research to distinguish the levels that strategies target (intervention, inner setting, outer setting, individual, and process. We then draw on numerous resources to identify determinants, which are conceptualized as modifiable factors that prevent or enable the adoption and implementation of evidence-based interventions. Identifying actors and targets resulted in five conceptually distinct classes of implementation strategies: dissemination, implementation process, integration, capacity-building, and scale-up. In our descriptions of each class, we identify the level of the Interactive System Framework at which the strategy is enacted (actors, level and

  2. An Assessment of Advanced Manufacturing Technologies Implementation in Manufacturing Enterprises

    Directory of Open Access Journals (Sweden)

    Ghulam Yasin Shaikh

    2011-04-01

    Full Text Available The implementation of AMTs (Advanced Manufacturing Technologies has always been the high interest and core issue for the manufacturing enterprises to get rapid production for global market place. The developed countries have achieved its competitive advantage by implementing this unique model of technologies with full range of systems. In developing countries, the implementation of such technologies is not much common due to so many reasons, (political, social, economical and technical but entrepreneurs of growing economies are contemplating to reshape long term strategy to adopt Computer systems oriented technologies in their manufacturing companies to meet the growing needs of their indigenous market on one hand and to make a place in the international market on the other. Although, very few manufacturing organization do meet the global market requirements. But there is still lot of efforts to be taken for world class competition. An attempt has been made in this paper to develop a conceptual model taking in to account the three parameters such as, Direct, Indirect and Administrative AMTs. This research work further attempts to present an empirical data analysis conducted in the manufacturing enterprises in province of Sindh, Pakistan. The overall indigenous progress of manufacturing enterprises as according to the data collected from 60 companies reveals that the AMTs systems are partially understood and practiced that is also one of the cause towards slow progress of national exchequer.

  3. Adapting Advances in Remediation Science to Long-Term Surveillance

    International Nuclear Information System (INIS)

    Peterson, D.M.

    2006-01-01

    Several facets of groundwater remediation stand to gain from the advances made during recent years in disciplines that contribute to remediation science. Engineered remedies designed to aggressively remove subsurface contamination should benefit from this progress, and more passive cleanup methods and the long-term monitoring of such passive approaches may benefit equally well if not more. The U.S. Department of Energy Office of Legacy Management (LM) has adopted a strategic plan that is designed to take advantage of technological improvements in the monitoring and assessment of both active and passive groundwater remedies. Flexible adaptation of new technologies, as they become available, to long-term surveillance at LM sites is expected to reduce site stewardship costs while ensuring the future protection of human health and the environment. Some of the technologies are expected to come from government initiatives that focus on the needs of subsurface monitoring. Additional progress in monitoring science will likely result from continual improvements in our understanding of contaminant fate-and-transport processes in groundwater and the vadose zone. (authors)

  4. Adapting Advances in Remediation Science to Long-Term Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dave [S.M. Stoller Corporation

    2006-03-01

    Several facets of groundwater remediation stand to gain from the advances made during recent years in disciplines that contribute to remediation science. Engineered remedies designed to aggressively remove subsurface contamination should benefit from this progress, and more passive cleanup methods and the long-term monitoring of such passive approaches may benefit equally well if not more. The U.S. Department of Energy Office of Legacy Management (LM) has adopted a strategic plan that is designed to take advantage of technological improvements in the monitoring and assessment of both active and passive groundwater remedies. Flexible adaptation of new technologies, as they become available, to long-term surveillance at LM sites is expected to reduce site stewardship costs while ensuring the future protection of human health and the environment. Some of the technologies are expected to come from government initiatives that focus on the needs of subsurface monitoring. Additional progress in monitoring science will likely result from continual improvements in our understanding of contaminant fate-and-transport processes in the groundwater and the vadose zone.

  5. Career Advancement Outcomes in Academic Science, Technology, Engineering and Mathematics (STEM): Gender, Mentoring Resources, and Homophily

    Science.gov (United States)

    Lee, Sang Eun

    This dissertation examines gender differences in career advancement outcomes among academic science, technology, engineering and mathematics (STEM) scientists. In particular, this research examines effects of gender, PhD advisors and postdoctoral supervisors mentoring resources and gender homophily in the mentoring dyads on the career advancement outcomes at early career stages. Female academic scientists have disadvantages in the career progress in the academic STEM. They tend to fall behind throughout their career paths and to leave the field compared to their male colleagues. Researchers have found that gender differences in the career advancement are shaped by gender-biased evaluations derived from gender stereotypes. Other studies demonstrate the positive impacts of mentoring and gender homophily in the mentoring dyads. To add greater insights to the current findings of female academic scientists' career disadvantages, this dissertation investigates comprehensive effects of gender, mentoring, and gender homophily in the mentoring dyads on female scientists' career advancement outcomes in academic science. Based on the Status Characteristics Theory, the concept of mentoring, Social Capital Theory, and Ingroup Bias Theory, causal path models are developed to test direct and indirect effects of gender, mentoring resources, and gender homophily on STEM faculty's career advancement. The research models were tested using structural equation modeling (SEM) with data collected from a national survey, funded by the National Science Foundation, completed in 2011 by tenured and tenure-track academic STEM faculty from higher education institutions in the United States. Findings suggest that there is no gender difference in career advancement controlling for mentoring resources and gender homophily in the mentoring dyads and other factors including research productivity and domestic caregiving responsibilities. Findings also show that the positive relationship between

  6. New Literacy Implementation: The Impact of Professional Development on Middle School Student Science Learning

    Science.gov (United States)

    Hsu, Hui-Yin; Wang, Shaing-Kwei; Coster, Daniel

    2017-01-01

    With advancing technology, "literacy" evolves to include new forms of literacy made possible by digital technologies. "New literacy" refers to using technology to research, locate, evaluate, synthesize and communication information. The purpose of the study is to develop a framework to guide science teachers' new literacy…

  7. Exposing the Science in Citizen Science: Fitness to Purpose and Intentional Design.

    Science.gov (United States)

    Parrish, Julia K; Burgess, Hillary; Weltzin, Jake F; Fortson, Lucy; Wiggins, Andrea; Simmons, Brooke

    2018-05-21

    Citizen science is a growing phenomenon. With millions of people involved and billions of in-kind dollars contributed annually, this broad extent, fine grain approach to data collection should be garnering enthusiastic support in the mainstream science and higher education communities. However, many academic researchers demonstrate distinct biases against the use of citizen science as a source of rigorous information. To engage the public in scientific research, and the research community in the practice of citizen science, a mutual understanding is needed of accepted quality standards in science, and the corresponding specifics of project design and implementation when working with a broad public base. We define a science-based typology focused on the degree to which projects deliver the type(s) and quality of data/work needed to produce valid scientific outcomes directly useful in science and natural resource management. Where project intent includes direct contribution to science and the public is actively involved either virtually or hands-on, we examine the measures of quality assurance (methods to increase data quality during the design and implementation phases of a project) and quality control (post hoc methods to increase the quality of scientific outcomes). We suggest that high quality science can be produced with massive, largely one-off, participation if data collection is simple and quality control includes algorithm voting, statistical pruning and/or computational modeling. Small to mid-scale projects engaging participants in repeated, often complex, sampling can advance quality through expert-led training and well-designed materials, and through independent verification. Both approaches - simplification at scale and complexity with care - generate more robust science outcomes.

  8. The Implementation of Integrated Science Technology, Engineering and Mathematics (STEM) Instruction Using Robotics in the Middle School Science Classroom

    Science.gov (United States)

    Ntemngwa, Celestin; Oliver, J. Steve

    2018-01-01

    The research study reported here was conducted to investigate the implementation of integrated STEM lessons within courses that have a single subject science focus. The purpose also included development of a pedagogical theory. This technology-based teaching was conceptualized by school administrators and teachers in order to provide middle school…

  9. Training trainers in health and human rights: implementing curriculum change in South African health sciences institutions.

    Science.gov (United States)

    Ewert, Elena G; Baldwin-Ragaven, Laurel; London, Leslie

    2011-07-25

    The complicity of the South African health sector in apartheid and the international relevance of human rights as a professional obligation prompted moves to include human rights competencies in the curricula of health professionals in South Africa. A Train-the-Trainers course in Health and Human Rights was established in 1998 to equip faculty members from health sciences institutions nationwide with the necessary skills, attitudes and knowledge to teach human rights to their students. This study followed up participants to determine the extent of curriculum implementation, support needed as well as barriers encountered in integrating human rights into health sciences teaching and learning. A survey including both quantitative and qualitative components was distributed in 2007 to past course participants from 1998-2006 via telephone, fax and electronic communication. Out of 162 past participants, 46 (28%) completed the survey, the majority of whom were still employed in academic settings (67%). Twenty-two respondents (48%) implemented a total of 33 formal human rights courses into the curricula at their institutions. Respondents were nine times more likely (relative risk 9.26; 95% CI 5.14-16.66) to implement human rights education after completing the training. Seventy-two extracurricular activities were offered by 21 respondents, many of whom had successfully implemented formal curricula. Enabling factors for implementation included: prior teaching experience in human rights, general institutional support and the presence of allies - most commonly coworkers as well as deans. Frequently cited barriers to implementation included: budget restrictions, time constraints and perceived apathy of colleagues or students. Overall, respondents noted personal enrichment and optimism in teaching human rights. This Train-the-Trainer course provides the historical context, educational tools, and collective motivation to incorporate human rights educational initiatives at health

  10. Training Trainers in health and human rights: Implementing curriculum change in South African health sciences institutions

    Directory of Open Access Journals (Sweden)

    Baldwin-Ragaven Laurel

    2011-07-01

    Full Text Available Abstract Background The complicity of the South African health sector in apartheid and the international relevance of human rights as a professional obligation prompted moves to include human rights competencies in the curricula of health professionals in South Africa. A Train-the-Trainers course in Health and Human Rights was established in 1998 to equip faculty members from health sciences institutions nationwide with the necessary skills, attitudes and knowledge to teach human rights to their students. This study followed up participants to determine the extent of curriculum implementation, support needed as well as barriers encountered in integrating human rights into health sciences teaching and learning. Methods A survey including both quantitative and qualitative components was distributed in 2007 to past course participants from 1998-2006 via telephone, fax and electronic communication. Results Out of 162 past participants, 46 (28% completed the survey, the majority of whom were still employed in academic settings (67%. Twenty-two respondents (48% implemented a total of 33 formal human rights courses into the curricula at their institutions. Respondents were nine times more likely (relative risk 9.26; 95% CI 5.14-16.66 to implement human rights education after completing the training. Seventy-two extracurricular activities were offered by 21 respondents, many of whom had successfully implemented formal curricula. Enabling factors for implementation included: prior teaching experience in human rights, general institutional support and the presence of allies - most commonly coworkers as well as deans. Frequently cited barriers to implementation included: budget restrictions, time constraints and perceived apathy of colleagues or students. Overall, respondents noted personal enrichment and optimism in teaching human rights. Conclusion This Train-the-Trainer course provides the historical context, educational tools, and collective motivation

  11. Advanced Simulation and Computing FY17 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendrickson, Bruce [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, Doug [National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development; Hoang, Thuc [National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment

    2016-08-29

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.

  12. ASSESSMENT OF THE INQUIRY-BASED PROJECT IMPLEMENTATION PROCESS IN SCIENCE EDUCATION UPON STUDENTS’ POINTS OF VIEWS

    Directory of Open Access Journals (Sweden)

    Orhan AKINOGLU

    2008-01-01

    Full Text Available Aim of the study is to assess how students in 6th, 7th and 8th grades of primary education see the project works made in science education and their implementation processes. The study was fulfilled upon the descriptive survey model to collect data. Participants of the research were 100 students who had project implementation experiences in science education, and they were from 24 primary schools in 7 districts randomly chosen in the city of Istanbul in Turkey. Data of the study were collected by using a semi-constructed interview form offered to students during the 2005-2006 teaching year. In the research, following items were examined: The extent to which students are inspired from the previously made projects during their own project selection process, the level of scientific document survey and the effects of contemporary events, science and technology class topics and students’ interest areas. It was seen that internet is the mostly used source to obtain information. For students, one of the most problematic issues faced during the project implementation is the time limits set out by teacher. It was found that the most obvious benefit obtained by students from the project works is their increasing interest towards science and technology class. The most significant change seen by students regarding project preparation is their increasing grades in exams during and following the project works.

  13. Implementation and benefits of advanced process control for lithography CD and overlay

    Science.gov (United States)

    Zavyalova, Lena; Fu, Chong-Cheng; Seligman, Gary S.; Tapp, Perry A.; Pol, Victor

    2003-05-01

    Due to the rapidly reduced imaging process windows and increasingly stingent device overlay requirements, sub-130 nm lithography processes are more severely impacted than ever by systamic fault. Limits on critical dimensions (CD) and overlay capability further challenge the operational effectiveness of a mix-and-match environment using multiple lithography tools, as such mode additionally consumes the available error budgets. Therefore, a focus on advanced process control (APC) methodologies is key to gaining control in the lithographic modules for critical device levels, which in turn translates to accelerated yield learning, achieving time-to-market lead, and ultimately a higher return on investment. This paper describes the implementation and unique challenges of a closed-loop CD and overlay control solution in high voume manufacturing of leading edge devices. A particular emphasis has been placed on developing a flexible APC application capable of managing a wide range of control aspects such as process and tool drifts, single and multiple lot excursions, referential overlay control, 'special lot' handling, advanced model hierarchy, and automatic model seeding. Specific integration cases, including the multiple-reticle complementary phase shift lithography process, are discussed. A continuous improvement in the overlay and CD Cpk performance as well as the rework rate has been observed through the implementation of this system, and the results are studied.

  14. Strategic Alliance to Advanced Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level

    Science.gov (United States)

    Scarborough, Jule Dee

    2004-01-01

    This document (book) reports on the Strategic Alliance to Advance Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level, funded by National Science Foundation. It was a collaborative partnership involving the Rockford Public Schools, Rock Valley College, and Northern Illinois…

  15. The Use of Ethical Frameworks for Implementing Science as a Human Endeavour in Year 10 Biology

    Science.gov (United States)

    Yap, Siew Fong; Dawson, Vaille

    2014-01-01

    This research focuses on the use of ethical frameworks as a pedagogical model for socio-scientific education in implementing the "Science as a Human Endeavour" (SHE) strand of the Australian Curriculum: Science in a Year 10 biology class in a Christian college in metropolitan Perth, Western Australia. Using a case study approach, a mixed…

  16. Advanced Sensors for Safety and Security

    CERN Document Server

    Khudaverdyan, Surik

    2013-01-01

    This book results from a NATO Advanced Research Workshop titled “Technological Innovations in CBRNE Sensing and Detection for Safety, Security, and Sustainability” held in Yerevan, Armenia in 2012. The objective was to discuss and exchange views as to how fusion of advanced technologies can lead to improved sensors/detectors in support of defense, security, and situational awareness. The chapters range from policy and implementation, advanced sensor platforms using stand-off (THz and optical) and point-contact methods for detection of chemical, nuclear, biological, nuclear and explosive agents and contaminants in water, to synthesis methods for several materials used for sensors.  In view of asymmetric, kinetic, and distributed nature of threat vectors, an emphasis is placed to examine new generation of sensors/detectors that utilize an ecosystems of innovation and advanced sciences convergence in support of effective counter-measures against  CBRNE threats. The book will be of considerable interest and...

  17. Tsunamis: bridging science, engineering and society.

    Science.gov (United States)

    Kânoğlu, U; Titov, V; Bernard, E; Synolakis, C

    2015-10-28

    Tsunamis are high-impact, long-duration disasters that in most cases allow for only minutes of warning before impact. Since the 2004 Boxing Day tsunami, there have been significant advancements in warning methodology, pre-disaster preparedness and basic understanding of related phenomena. Yet, the trail of destruction of the 2011 Japan tsunami, broadcast live to a stunned world audience, underscored the difficulties of implementing advances in applied hazard mitigation. We describe state of the art methodologies, standards for warnings and summarize recent advances in basic understanding, and identify cross-disciplinary challenges. The stage is set to bridge science, engineering and society to help build up coastal resilience and reduce losses. © 2015 The Author(s).

  18. The Implementation of an Interdisciplinary Co-planning Team Model Among Mathematics and Science Teachers

    Science.gov (United States)

    Brown, Michelle Cetner

    In recent years, Science, Technology, Engineering, and Mathematics (STEM) education has become a significant focus of numerous theoretical and commentary articles as researchers have advocated for active and conceptually integrated learning in classrooms. Drawing connections between previously isolated subjects, especially mathematics and science, has been shown to increase student engagement, performance, and critical thinking skills. However, obstacles exist to the widespread implementation of integrated curricula in schools, such as teacher knowledge and school structure and culture. The Interdisciplinary Co-planning Team (ICT) model, in which teachers of different subjects come together regularly to discuss connections between content and to plan larger interdisciplinary activities and smaller examples and discussion points, offers a method for teachers to create sustainable interdisciplinary experiences for students within the bounds of the current school structure. The ICT model is designed to be an iterative, flexible model, providing teachers with both a regular time to come together as "experts" and "teach" each other important concepts from their separate disciplines, and then to bring their shared knowledge and language back to their own classrooms to implement with their students in ways that fit their individual classes. In this multiple-case study, which aims to describe the nature of the co-planning process, the nature of plans, and changes in teacher beliefs as a result of co-planning, three pairs of secondary mathematics and science teachers participated in a 10-week intervention with the ICT model. Each pair constituted one case. Data included observations, interviews, and artifact collection. All interviews, whole-group sessions, and co-planning sessions were transcribed and coded using both theory-based and data-based codes. Finally, a cross-case comparison was used to present similarities and differences across cases. Findings suggest that the

  19. Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M; Phillips, J; Hpson, J; Meisner, R

    2010-04-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  20. Design, implementation and evaluation of innovative science teaching strategies for non-formal learning in a natural history museum

    Science.gov (United States)

    Çil, Emine; Maccario, Nihal; Yanmaz, Durmuş

    2016-09-01

    Background: Museums are useful educational resources in science teaching. Teaching strategies which promote hands-on activities, student-centred learning, and rich social interaction must be designed and implemented throughout the museum visit for effective science learning.

  1. The use of parent involved take-home science activities during student teaching: Understanding the challenges of implementation

    Science.gov (United States)

    Zarazinski, Jill

    The purpose of this study was to identify student teachers use and implementation of Science in a Bag when it was no longer a required course-based assessment. This take-home science activity acted as the elaboration component of the 5Es lesson teacher candidates designed and taught in the classroom, utilized household items, and directly involved parents in their child's education. The purposeful sample was comprised of six teacher candidates during their student teaching practicum, the last semester of the childhood education teacher certification program. This collective case study centered on student teachers' use of the focused activity, Science in a Bag, in order to gain knowledge of challenges faced in applying take-home science kits and working with parents. Data collection was comprised of student teacher and parent interviews, candidate reflections, as well as in-class observations and discussions carried out during weekly seminars. Data collection occurred throughout the seven-week student teaching practicum. The four research questions were: 1) What factors do teacher candidates identify as interfering with their ability to implement Science in a Bag during student teaching placements? 2) What factors do teacher candidates identify as enhancing their ability to carry out Science in a Bag? 3) What forms of support do teacher candidates believe are important to their success in implementing Science in a Bag during student teaching? 4) How do teacher candidates deal with obstacles when implementing Science in a Bag? Despite the fact that no student teacher was prohibited from implementing Science in a Bag, the level to which candidates valued and utilized this instructional strategy varied compared to how they were taught and practiced it during the science methods course. Some student teachers attempted to hide their feelings toward Science in a Bag, however their actions revealed that they were simply carrying out the instructional strategy because they

  2. Institutional transformation: An analysis of change initiatives at NSF ADVANCE institutions

    Science.gov (United States)

    Plummer, Ellen W.

    The purpose of this study was to examine how institutional culture promoted or impeded the implementation of round one and two NSF ADVANCE initiatives designed to improve academic climates for women in science and engineering. This study was conducted in two phases. In phase one, 35 participants from 18 institutions were interviewed to answer three research questions. Participants identified a policy, process, or program designed to improve academic cultures for women in science and engineering fields. Participants also identified strategies that promoted the implementation of these efforts, and discussed factors that impeded these efforts. In phase two, site visits were conducted at two institutions to answer a fourth research question. How did institutional culture shape the design and implementation of faculty search processes? Policies, processes, and programs were implemented by participants at the institutional, departmental, and individual levels and included family friendly and dual career policies at the institutional level, improved departmental faculty search and climate improvement processes, and mentoring programs and training for department heads at the individual level. Communication and leadership strategies were key to the successful implementation of policies, processes, and programs designed to achieve institutional transformation. Communication strategies involved shaping change messages to reach varied audiences often with the argument that change efforts would improve the climate for everyone not just women faculty members. Administrative and faculty leaders from multiple levels proved important to change efforts. Institutional Transformation Institutional culture shaped initiatives to improve faculty search processes. Faculty leaders in both settings used data to persuade faculty members of the need for change. At one site, data that included national availability information was critical to advancing the change agenda. At the other site

  3. STEM-based science learning implementation to identify student’s personal intelligences profiles

    Science.gov (United States)

    Wiguna, B. J. P. K.; Suwarma, I. R.; Liliawati, W.

    2018-05-01

    Science and technology are rapidly developing needs to be balanced with the human resources that have the qualified ability. Not only cognitive ability, but also have the soft skills that support 21st century skills. Science, Technology, Engineering, and Mathematics (STEM) Education is a solution to improve the quality of learning and prepare students may be able to trained 21st century skills. This study aims to analyse the implementation of STEM-based science learning on Newton’s law of motion by identifying the personal intelligences profile junior high school students. The method used in this research is pre experiment with the design of the study one group pre-test post-test. Samples in this study were 26 junior high school students taken using Convenience Sampling. Students personal intelligences profile after learning STEM-based science uses two instruments, self-assessment and peer assessment. Intrapersonal intelligence profile based self-assessment and peer assessment are respectively 69.38; and 64.08. As for interpersonal intelligence for self-assessment instrument is 73 and the peer assessment is 60.23.

  4. Teachers' implementation of gender-inclusive instructional strategies in single-sex and mixed-sex science classrooms

    Science.gov (United States)

    Parker, Lesley H.; Rennie, Léonie J.

    2002-09-01

    Debate continues over the benefits, or otherwise, of single-sex classes in science and mathematics, particularly for the performance of girls. Previous research and analyses of the circumstances surrounding the implementation of single-sex classes warn that the success of the strategy requires due consideration of the nature of the instructional environment for both boys and girls, together with appropriate support for the teachers involved. This article reports the circumstances under which teachers were able to implement gender-inclusive strategies in single-sex science classes in coeducational high schools and documents some of the difficulties faced. The study was part of the Single-Sex Education Pilot Project (SSEPP) in ten high schools in rural and urban Western Australia. Qualitative and quantitative data were gathered during the project from teachers, students and classroom observations. Overall, it was apparent that single-sex grouping created environments in which teachers could implement gender-inclusive science instructional strategies more readily and effectively than in mixed-sex settings. Teachers were able to address some of the apparent shortcomings of the students' previous education (specifically, the poor written and oral communication of boys and the limited experience of girls with 'hands-on' activities and open-ended problem solving). Further, in same-sex classrooms, sexual harassment which inhibited girls' learning was eliminated. The extent to which teachers were successful in implementing gender-inclusive instructional strategies, however, depended upon their prior commitment to the SSEPP as a whole, and upon the support or obstacles encountered from a variety of sources, including parents, the community, students, and non-SSEPP teachers.

  5. Publishing and the advancement of science from selfish genes to Galileo's finger

    CERN Document Server

    Rodgers, Michael

    2014-01-01

    Popular science books, selling in their thousands - even millions - help us appreciate breakthroughs in understanding the natural world, while highlighting the cultural importance of scientific knowledge. Textbooks bring these same advances to students; the scientists of tomorrow. But how do these books come about? And why are some of them so spectacularly successful? This is the first ever insider's account of science publishing, written by an editor intimately involved in the publication of some of the most famous bestsellers in the field. Michael Rodgers reveals the stories behind these extraordinary books, providing a behind-the-scenes view of the world of books, authors and ideas. These vivid and engaging narratives illuminate not only the challenges of writing about science, but also how publishing itself works and the creative collaboration between authors and editors that lies at its heart. The book (like many of those it describes) is intended for a wide readership. It will interest people in publish...

  6. International Conference on Computer, Communication and Computational Sciences

    CERN Document Server

    Mishra, Krishn; Tiwari, Shailesh; Singh, Vivek

    2017-01-01

    Exchange of information and innovative ideas are necessary to accelerate the development of technology. With advent of technology, intelligent and soft computing techniques came into existence with a wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the ‘Advances in Computer and Computational Sciences’ from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of ‘International Conference on Computer, Communication and Computational Sciences (ICCCCS 2016), held during 12-13 August, 2016 in Ajmer, India. These papers are arranged in the form of chapters. The content of the book is divided into two volumes that cover variety of topics such as intelligent hardware and software design, advanced communications, power and energy optimization, intelligent techniques used in internet of things, intelligent image processing, advanced software engineering, evolutionary and ...

  7. Science and Security Policy: The Case of Advanced Pathogens

    International Nuclear Information System (INIS)

    Harris, E. D.

    2007-01-01

    The revolution in biotechnology presents unprecedented opportunities and dangers for the health and well being of mankind. Today, one can plausibly imagine the eradication of many historic diseases. One can also envisage the creation of new diseases that would endanger a substantial proportion of the entire human species. As powerful applications for biotechnology research are identified, appropriate arrangements for managing their extraordinary consequences will inevitably become necessary. This presentation will explore recent efforts to balance science and security policy in the area of advanced biotechnology research. Key developments on the dual-use issue will be discussed, together with a variety of governance options aimed at mitigating the risk from such research. (author)

  8. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  9. Corporate System of Advanced Education for Teachers in Educational Organization in the Context of Professional Standard Implementation

    Directory of Open Access Journals (Sweden)

    Kurneshova L.Y.,

    2017-02-01

    Full Text Available The paper describes methodological approaches to the development of corporate system of advanced training for teachers in the context of implementation of the professional standard for teachers as a basis for competitive growth of educational institution. The key stage in this process is to identify areas of concern in the competencies of the teaching staff. The paper presents a system developed for these purposes which consists of the following four elements: self-testing for teachers; professional training; psychoeducational diagnostic training; training on creating a corporate roadmap for raising professional skills in teachers. The paper addresses the issues related to roadmap development basing on the foresight methodology. Finally, it provides an analysis of various forms of advanced training programs for teachers used in 46 regional centers for advanced training in every federal region of the Russian Federation. Supported by the Moscow Educational Department. The research work “Development and realization of manage- ment project “Organization and implementation of teacher professional training based on the requirements of Teacher professional standard”

  10. Proceedings of third national symposium on recent advances in analytical sciences

    International Nuclear Information System (INIS)

    2010-04-01

    The contributions made by analytical scientists have played critical roles in the areas ranging from the development of concepts and theories to a variety of practical applications such as mining, refining, fuel processing, fertilisers, food products, nano materials etc. The theme of the symposium 'Recent Advances in Analytical Sciences and Applications' is well significant in view of its importance in the design and development of new products as well as in the environmental monitoring and quality control in industrial manufacturing. Papers relevant to INIS are indexed separately

  11. Factors Affecting the Implementation of Argument in the Elementary Science Classroom. A Longitudinal Case Study

    Science.gov (United States)

    Martin, Anita M.; Hand, Brian

    2009-01-01

    This longitudinal case study describes the factors that affect an experienced teacher’s attempt to shift her pedagogical practices in order to implement embedded elements of argument into her science classroom. Research data was accumulated over 2 years through video recordings of science classes. The Reformed Teacher Observation Protocol (RTOP) is an instrument designed to quantify changes in classroom environments as related to reform as defined by the National Research Council ( National science education standards. Washington, DC: National Academy Press, 1996b) and the National Research Council ( Fulfilling the promise: Biology education in the nation’s schools, Washington, DC: National Academy Press, 1990) and was used to analyze videotaped science lessons. Analysis of the data shows that there was a significant shift in the areas of teacher questioning, and student voice. Several levels of subsequent analysis were completed related to teacher questioning and student voice. The data suggests a relationship between these areas and the implementation of scientific argument. Results indicate that the teacher moved from a traditional, teacher-centered, didactic teaching style to instructional practices that allowed the focus and direction of the lesson to be affected by student voice. This was accomplished by a change in teacher questioning that included a shift from factual recall to more divergent questioning patterns allowing for increased student voice. As student voice increased, students began to investigate ideas, make statements or claims and to support these claims with strong evidence. Finally, students were observed refuting claims in the form of rebuttals. This study informs professional development related to experienced teachers in that it highlights pedagogical issues involved in implementing embedded elements of argument in the elementary classroom.

  12. The ConNECT Framework: a model for advancing behavioral medicine science and practice to foster health equity.

    Science.gov (United States)

    Alcaraz, Kassandra I; Sly, Jamilia; Ashing, Kimlin; Fleisher, Linda; Gil-Rivas, Virginia; Ford, Sabrina; Yi, Jean C; Lu, Qian; Meade, Cathy D; Menon, Usha; Gwede, Clement K

    2017-02-01

    Health disparities persist despite ongoing efforts. Given the United States' rapidly changing demography and socio-cultural diversity, a paradigm shift in behavioral medicine is needed to advance research and interventions focused on health equity. This paper introduces the ConNECT Framework as a model to link the sciences of behavioral medicine and health equity with the goal of achieving equitable health and outcomes in the twenty-first century. We first evaluate the state of health equity efforts in behavioral medicine science and identify key opportunities to advance the field. We then discuss and present actionable recommendations related to ConNECT's five broad and synergistic principles: (1) Integrating Context; (2) Fostering a Norm of Inclusion; (3) Ensuring Equitable Diffusion of Innovations; (4) Harnessing Communication Technology; and (5) Prioritizing Specialized Training. The framework holds significant promise for furthering health equity and ushering in a new and refreshing era of behavioral medicine science and practice.

  13. The Indiana University Center for Healthcare Innovation and Implementation Science: Bridging healthcare research and delivery to build a learning healthcare system.

    Science.gov (United States)

    Azar, Jose; Adams, Nadia; Boustani, Malaz

    2015-01-01

    In the United States, it is estimated that 75,000 deaths every year could be averted if the healthcare system implemented high quality care more effectively and efficiently. Patient harm in the hospital occurs as a consequence of inadequate procedures, medications and other therapies, nosocomial infections, diagnostic evaluations and patient falls. Implementation science, a new emerging field in healthcare, is the development and study of methods and tools aimed at enhancing the implementation of new discoveries and evidence into daily healthcare delivery. The Indiana University Center for Healthcare Innovation and Implementation Science (IU-CHIIS) was launched in September 2013 with the mission to use implementation science and innovation to produce great-quality, patient-centered and cost-efficient healthcare delivery solutions for the United States of America. Within the first 24 months of its initiation, the IU-CHIIS successfully scaled up an evidence-based collaborative care model for people with dementia and/or depression, successfully expanded the Accountable Care Unit model positively impacting the efficiency and quality of care, created the first Certificate in Innovation and Implementation Science in the US and secured funding from National Institutes of Health to investigate innovations in dementia care. This article summarizes the establishment of the IU-CHIIS, its impact and outcomes and the lessons learned during the journey. Copyright © 2015. Published by Elsevier GmbH.

  14. Academic Standards for Developing, Implementing, Evaluating, and Improving Information Science and Technology Baccalaureate Degrees

    Science.gov (United States)

    Shields-Bryant, Elayne

    2006-01-01

    The unprecedented growth, development and implementation of information technology (IT) driven by e-commerce and other technological advances have resulted in an increased demand of technology skilled workers (Reichgelt, Zhang, & Price, 2002; United States Department of Labor Bureau of Labor Statistics, 2005). In response to degree-dependent…

  15. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    Energy Technology Data Exchange (ETDEWEB)

    Saffer, Shelley (Sam) I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  16. The Implementation and Evaluation of Teacher Training in Gaming Instruction for Secondary Science: An Action Research Project

    Science.gov (United States)

    Sanders, Veronica

    2016-01-01

    This study implemented and evaluated gaming instruction as a professional development for science teachers at a Georgia high school. It was guided by four research questions that (a) assessed the impact of training in gaming instruction and evaluation of that training on science teachers' ability to use games; (b) examined evidence showing that…

  17. Implementation strategy for advanced practice nursing in primary health care in Latin America and the Caribbean.

    Science.gov (United States)

    Oldenburger, David; De Bortoli Cassiani, Silvia Helena; Bryant-Lukosius, Denise; Valaitis, Ruta Kristina; Baumann, Andrea; Pulcini, Joyce; Martin-Misener, Ruth

    2017-06-08

    SYNOPSIS Advanced practice nursing (APN) is a term used to describe a variety of possible nursing roles operating at an advanced level of practice. Historically, APN roles haves evolved informally, out of the need to improve access to health care services for at-risk and disadvantaged populations and for those living in underserved rural and remote communities. To address health needs, especially ones related to primary health care, nurses acquired additional skills through practice experience, and over time they developed an expanded scope of practice. More recently, APN roles have been developed more formally through the establishment of graduate education programs to meet agreed-upon competencies and standards for practice. The introduction of APN roles is expected to advance primary health care throughout Latin America and the Caribbean, where few such roles exist. The purpose of the paper is to outline an implementation strategy to guide and support the introduction of primary health care APN roles in Latin America and the Caribbean. The strategy includes the adaptation of an existing framework, utilization of recent research evidence, and application of knowledge from experts on APN and primary health care. The strategy consists of nine steps. Each step includes a national perspective that focuses on direct country involvement in health workforce planning and development and on implementation. In addition, each step incorporates an international perspective on encouraging countries that have established APN programs and positions to collaborate in health workforce development with nations without advanced practice nursing.

  18. Barriers to advance care planning at the end of life: an explanatory systematic review of implementation studies.

    Directory of Open Access Journals (Sweden)

    Susi Lund

    Full Text Available Advance Care Plans (ACPs enable patients to discuss and negotiate their preferences for the future including treatment options at the end of life. Their implementation poses significant challenges.To investigate barriers and facilitators to the implementation of ACPs, focusing on their workability and integration in clinical practice.An explanatory systematic review of qualitative implementation studies.Empirical studies that reported interventions designed to support ACP in healthcare. Web of Knowledge, Ovid MEDLINE, CINAHL, PsycINFO, British Nursing Index and PubMed databases were searched.Direct content analysis, using Normalization Process Theory, to identify and characterise relevant components of implementation processes.13 papers identified from 166 abstracts were included in the review. Key factors facilitating implementation were: specially prepared staff utilizing a structured approach to interactions around ACPs. Barriers to implementation were competing demands of other work, the emotional and interactional nature of patient-professional interactions around ACPs, problems in sharing decisions and preferences within and between healthcare organizations.This review demonstrates that doing more of the things that facilitate delivery of ACPs will not reduce the effects of those things that undermine them. Structured tools are only likely to be partially effective and the creation of a specialist cadre of ACP facilitators is unlikely to be a sustainable solution. The findings underscore both the challenge and need to find ways to routinely incorporate ACPs in clinical settings where multiple and competing demands impact on practice. Interventions most likely to meet with success are those that make elements of Advance Care Planning workable within complex and time pressured clinical workflows.

  19. New implementation of an SX700 undulator beamline at the Advanced Light Source

    International Nuclear Information System (INIS)

    Warwick, T.; Andresen, N.; Comins, J.; Kaznacheyev, K.; Kortright, J.B.; McKean, P.J.; Padmore, H.A.; Shuh, D.K.; Stevens, T.; Tyliszczak, T.

    2004-01-01

    A newly engineered implementation of a collimated SX700-style beam line for soft x-rays is described. This facility is operational at the Advanced Light Source and delivers high brightness undulator beams to a scanning zone plate microscope and to an array of end stations for x-ray spectroscopic studies of wet surfaces. Switching between branches is motorized, servo-steering systems maintain throughput and the monochromator works together with the elliptical undulator for a fully automated facility

  20. Towards a pragmatic science in schools

    Science.gov (United States)

    Segal, Gilda

    1997-06-01

    This paper contrasts naive beliefs about the nature of science, with science as it appears from sociological and philosophical study, feminist critique and insights from multicultural education. I draw implications from these informed views to suggest how school science might be modified to project a pragmatic view of science to its students that allows students to know science and its relationships to themselves and society in multi-faceted ways. From these perspectives, pragmatic school science is situated within a values framework that questions how we know. Pragmatic school science also requires that the naive inductivist views that permeate school science inquiry methods at present be modified to recognise that observations and inquiry are guided by prior knowledge and values; that new knowledge is tentative; that some knowledge has high status, as it has been constructed consensually over a long period; but that even high status knowledge can be challenged. For implementation of these reforms, yet still to embrace the need for some students to appropriate understanding of discipline knowledge required for advanced science education, a broad set of aims is required.

  1. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    Science.gov (United States)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  2. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  3. ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION

    OpenAIRE

    Silvestri, L.; Mascaro, A. L. Allegra; Lotti, J.; Sacconi, L.; Pavone, F. S.

    2013-01-01

    Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brain...

  4. Strategies for Effective Implementation of Science Models into 6-9 Grade Classrooms on Climate, Weather, and Energy Topics

    Science.gov (United States)

    Yarker, M. B.; Stanier, C. O.; Forbes, C.; Park, S.

    2011-12-01

    As atmospheric scientists, we depend on Numerical Weather Prediction (NWP) models. We use them to predict weather patterns, to understand external forcing on the atmosphere, and as evidence to make claims about atmospheric phenomenon. Therefore, it is important that we adequately prepare atmospheric science students to use computer models. However, the public should also be aware of what models are in order to understand scientific claims about atmospheric issues, such as climate change. Although familiar with weather forecasts on television and the Internet, the general public does not understand the process of using computer models to generate a weather and climate forecasts. As a result, the public often misunderstands claims scientists make about their daily weather as well as the state of climate change. Since computer models are the best method we have to forecast the future of our climate, scientific models and modeling should be a topic covered in K-12 classrooms as part of a comprehensive science curriculum. According to the National Science Education Standards, teachers are encouraged to science models into the classroom as a way to aid in the understanding of the nature of science. However, there is very little description of what constitutes a science model, so the term is often associated with scale models. Therefore, teachers often use drawings or scale representations of physical entities, such as DNA, the solar system, or bacteria. In other words, models used in classrooms are often used as visual representations, but the purpose of science models is often overlooked. The implementation of a model-based curriculum in the science classroom can be an effective way to prepare students to think critically, problem solve, and make informed decisions as a contributing member of society. However, there are few resources available to help teachers implement science models into the science curriculum effectively. Therefore, this research project looks at

  5. UWHS Climate Science: Uniting University Scientists and High School Teachers in the Development and Implementation of a Dual-Credit STEM-Focused Curriculum

    Science.gov (United States)

    Bertram, M. A.; Thompson, L.; Ackerman, T. P.

    2012-12-01

    The University of Washington is adapting a popular UW Atmospheric Sciences course on Climate and Climate Change for the high school environment. In the process, a STEM-focused teaching and learning community has formed. With the support of NASA Global Climate Change Education 20 teachers have participated in an evolving professional development program that brings those actively engaged in research together with high school teachers passionate about bringing a formal climate science course into the high school. Over a period of several months participating teachers work through the UW course homework and delve deeply into specific subject areas. Then, during a week-long summer institute, scientists bring their particular expertise (e.g. radiation, modeling) to the high school teachers through lectures or labs. Together they identify existing lectures, textbook material and peer-reviewed resources and labs available through the internet that can be used to effectively teach the UW material to the high school students. Through this process the scientists learn how to develop teaching materials around their area of expertise, teachers engage deeply in the subject matter, and both the university and high school teachers are armed with the tools to effectively teach a STEM-focused introductory course in climate science. To date 12 new hands-on modules have been completed or are under development, exploring ice-cores, isotopes, historical temperature trends, energy balance, climate models, and more. Two modules have been tested in the classroom and are ready for peer-review through well-respected national resources such as CLEAN or the National Earth Science Teachers Association; three others are complete and will be implemented in a high school classroom this year, and the remainder under various stages of development. The UWHS ATMS 211 course was piloted in two APES (Advanced Placement Environmental Science classrooms) in Washington State in 2011/2012. The high school

  6. Implementation of science process skills using ICT-based approach to facilitate student life skills

    Science.gov (United States)

    Rahayu, Y. S.; Yuliani; Wijaya, B. R.

    2018-01-01

    The purpose of this study is to describe the results of the implementation of a teaching-learning package in Plant Physiology courses to improve the student’s life skills using the science process skills-based approach ICT. This research used 15 students of Biology Education of Undergraduate International Class who are in the Plant Physiology course. This study consists of two phases items, namely the development phase and implementation phase by using a one-shot case study design. Research parameters were the feasibility of lesson plans, student achievement, Including academic skills, thinking skills, and social skills. Data were descriptively Analyzed According to the characteristics of the existing data. The result shows that the feasibility of a lesson plan is very satisfied and can be improvements in student’s life skills, especially with regards to student’s thinking skills and scientific thinking skills. The results indicate that the science process skills using ICT-based approach can be effective methods to improve student’s life skills.

  7. What are the implications of implementation science for medical education?

    Directory of Open Access Journals (Sweden)

    David W. Price

    2015-04-01

    Full Text Available Background: Derived from multiple disciplines and established in industries outside of medicine, Implementation Science (IS seeks to move evidence-based approaches into widespread use to enable improved outcomes to be realized as quickly as possible by as many as possible. Methods: This review highlights selected IS theories and models, chosen based on the experience of the authors, that could be used to plan and deliver medical education activities to help learners better implement and sustain new knowledge and skills in their work settings. Results: IS models, theories and approaches can help medical educators promote and determine their success in achieving desired learner outcomes. We discuss the importance of incorporating IS into the training of individuals, teams, and organizations, and employing IS across the medical education continuum. Challenges and specific strategies for the application of IS in educational settings are also discussed. Conclusions: Utilizing IS in medical education can help us better achieve changes in competence, performance, and patient outcomes. IS should be incorporated into curricula across disciplines and across the continuum of medical education to facilitate implementation of learning. Educators should start by selecting, applying, and evaluating the teaching and patient care impact one or two IS strategies in their work.

  8. Consortium of Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) Science Plan: A Community-based Infrastructure Initiative

    Science.gov (United States)

    Wilson, J. L.; Dressler, K.; Hooper, R. P.

    2005-12-01

    The river basin is a fundamental unit of the landscape and water in that defined landscape plays a central role in shaping the land surface, in dissolving minerals, in transporting chemicals, and in determining species distribution. Therefore, the river basin is a natural observatory for examining hydrologic phenomena and the complex interaction of physical, chemical, and biological processes that control them. CUAHSI, incorporated in 2001, is a community-based research infrastructure initiative formed to mobilize the hydrologic community through addressing key science questions and leveraging nationwide hydrologic resources from its member institutions and collaborative partners. Through an iterative community-based process, it has been previously proposed to develop a network of hydrologic infrastructure that organizes around scales on the order of 10,000 km2 to examine critical interfaces such as the land-surface, atmosphere, and human impact. Data collection will characterize the stores, fluxes, physical pathways, and residence time distributions of water, sediment, nutrients, and contaminants coherently at nested scales. These fundamental properties can be used by a wide range of scientific disciplines to address environmental questions. This more complete characterization will enable new linkages to be identified and hypotheses to be tested more incisively. With such a research platform, hydrologic science can advance beyond measuring streamflow or precipitation input to understanding how the river basin functions in both its internal processes and in responding to environmental stressors. That predictive understanding is needed to make informed decisions as development and even natural pressures stress existing water supplies and competing demands for water require non-traditional solutions that take into consideration economic, environmental, and social factors. Advanced hydrologic infrastructure will enable research for a broad range of multidisciplinary

  9. Teachers' Sensemaking about Implementation of an Innovative Science Curriculum Across the Settings of Professional Development and Classroom Enactment

    Science.gov (United States)

    de los Santos, Xeng

    Designing professional development that effectively supports teachers in learning new and often challenging practices remains a dilemma for teacher educators. Within the context of current reform efforts in science education, such as the Next Generation Science Standards, teacher educators are faced with managing the dilemma of how to support a large number of teachers in learning new practices while also considering factors such as time, cost, and effectiveness. Implementation of educative, reform-aligned curricula is one way to reach many teachers at once. However, one question is whether large-scale curriculum implementation can effectively support teachers in learning and sustaining new teaching practices. To address this dilemma, this study used a comparative, multiple case study design to investigate how secondary science teachers engaged in sensemaking about implementation of an innovative science curriculum across the settings of professional development and classroom enactment. In using the concept of sensemaking from organizational theory, I focused specifically on how teachers' roles in social organizations influenced their decisions to implement the curriculum in particular ways, with differing outcomes for their own learning and students' engagement in three-dimensional learning. My research questions explored: (1) patterns in teachers' occasions of sensemaking, including critical noticing of interactions among themselves, the curriculum, and their students; (2) how teachers' social commitments to different communities influenced their sensemaking; and, (3) how sustained sensemaking over time could facilitate teacher learning of rigorous and responsive science teaching practices. In privileging teachers' experiences in the classroom using the curriculum with their students, I used data generated primarily from teacher interviews with their case study coaches about implementation over the course of one school year. Secondary sources of data included

  10. Institutional repository in communication: the REPOSCOM project implemented in the digital libraries federation of communication science

    Directory of Open Access Journals (Sweden)

    Sueli Mara Soares Pinto Ferreira

    2007-01-01

    Full Text Available Considering the conceptualization, characterization and context of the institutional repositories (IR this paper discuss the procedures, policies and strategies delineated to the implementation of IR in a research environment. The object of discussion is the project called Reposcom - Institutional Repository of Intercom (Brazilian Society of Interdisciplinary Studies of Communication – which is part of a broader project managed by the Portcom – Information Network in Communication Sciences of Countries of Portuguese Language – and called Digital Libraries Federation in the Communication Sciences. Aiming to share the knowledge and experience acquired with the implementation of the Reposcom, this paper describes its work activities, the decisions made, the customization of the software DSpace (the technological solution and the initial results achieved with the project.

  11. Report of the evaluation by the Ad Hoc Review Committee on Materials Science Research. In-advance evaluation in fiscal year 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    The Research Evaluation Committee, which consisted of 13 members from outside of the Japan Atomic Energy Research Institute (JAERI), set up an Ad Hoc Review Committee on Materials Science Research in accordance with the Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations in order to evaluate the adequacy of the R and D programs to be implemented for five years starting in Fiscal Year 2003 at Department of Materials Science in Tokai Research Establishment of JAERI. The Ad Hoc Review Committee consisted of eight specialists from outside of JAERI. The Ad Hoc Review Committee conducted its activities from April 2002 to August 2002. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Ad Hoc Review Committee meeting which was held on June 5th, 2002, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Ad Hoc Review Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on August 5th, 2002. This report describes the result of the evaluation by the Ad Hoc Review Committee on Materials Science Research. (author)

  12. Report of the evaluation by the Ad Hoc Review Committee on Materials Science Research. In-advance evaluation in fiscal year 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    The Research Evaluation Committee, which consisted of 13 members from outside of the Japan Atomic Energy Research Institute (JAERI), set up an Ad Hoc Review Committee on Materials Science Research in accordance with the Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations in order to evaluate the adequacy of the R and D programs to be implemented for five years starting in Fiscal Year 2003 at Department of Materials Science in Tokai Research Establishment of JAERI. The Ad Hoc Review Committee consisted of eight specialists from outside of JAERI. The Ad Hoc Review Committee conducted its activities from April 2002 to August 2002. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Ad Hoc Review Committee meeting which was held on June 5th, 2002, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Ad Hoc Review Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on August 5th, 2002. This report describes the result of the evaluation by the Ad Hoc Review Committee on Materials Science Research. (author)

  13. Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, L

    2009-04-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  14. The implementation and evaluation of teacher training in gaming instruction for secondary science: An action research project

    Science.gov (United States)

    Sanders, Veronica

    This study implemented and evaluated gaming instruction as a professional development for science teachers at a Georgia high school. It was guided by four research questions that (a) assessed the impact of training in gaming instruction and evaluation of that training on science teachers' ability to use games; (b) examined evidence showing that science teachers used games; (c) assessed the impact of the implementation and subsequent evaluation of games-based training on how science teachers instruct their students; and (d) explored the use of change management principles to help teachers transition from traditional to gaming instruction. The study included a purposive sampling of 10 volunteer science teachers who received the professional development of training in gaming instruction and were observed as they used games to instruct their students. Quantitative data were collected from interviews, observations, and reviews of student assignments and teacher plans, and were statistically analyzed to answer the research questions. These same methods were used to obtain qualitative data, which were also analyzed to answer the research questions as well as to understand the meaning, beliefs and experience behind the numbers. Ultimately, data analysis revealed that the science teachers not only used gaming instruction but also that the training helped them to use gaming instruction and that they considered gaming instruction a viable instruction methodology. Finally, data analysis revealed that change management was successfully used in the study.

  15. Teachers' Attitude towards Implementation of Learner-Centered Methodology in Science Education in Kenya

    Science.gov (United States)

    Ndirangu, Caroline

    2017-01-01

    This study aims to evaluate teachers' attitude towards implementation of learner-centered methodology in science education in Kenya. The study used a survey design methodology, adopting the purposive, stratified random and simple random sampling procedures and hypothesised that there was no significant relationship between the head teachers'…

  16. How has the economic downturn affected communities and implementation of science-based prevention in the randomized trial of communities that care?

    Science.gov (United States)

    Kuklinski, Margaret R; Hawkins, J David; Plotnick, Robert D; Abbott, Robert D; Reid, Carolina K

    2013-06-01

    This study examined implications of the economic downturn that began in December 2007 for the Community Youth Development Study (CYDS), a longitudinal randomized controlled trial of the Communities That Care (CTC) prevention system. The downturn had the potential to affect the internal validity of the CYDS research design and implementation of science-based prevention in study communities. We used archival economic indicators and community key leader reports of economic conditions to assess the extent of the economic downturn in CYDS communities and potential internal validity threats. We also examined whether stronger economic downturn effects were associated with a decline in science-based prevention implementation. Economic indicators suggested the downturn affected CYDS communities to different degrees. We found no evidence of systematic differences in downturn effects in CTC compared to control communities that would threaten internal validity of the randomized trial. The Community Economic Problems scale was a reliable measure of community economic conditions, and it showed criterion validity in relation to several objective economic indicators. CTC coalitions continued to implement science-based prevention to a significantly greater degree than control coalitions 2 years after the downturn began. However, CTC implementation levels declined to some extent as unemployment, the percentage of students qualifying for free lunch, and community economic problems worsened. Control coalition implementation levels were not related to economic conditions before or after the downturn, but mean implementation levels of science-based prevention were also relatively low in both periods.

  17. Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0

    International Nuclear Information System (INIS)

    McCoy, M; Kusnezov, D; Bikkel, T; Hopson, J

    2007-01-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  18. Advanced Simulation and Computing FY10-11 Implementation Plan Volume 2, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, B

    2009-06-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  19. Applications of the Advanced Light Source to problems in the earth, soil, and environmental sciences report of the workshop

    International Nuclear Information System (INIS)

    1992-10-01

    This report discusses the following topics: ALS status and research opportunities; advanced light source applications to geological materials; applications in the soil and environmental sciences; x-ray microprobe analysis; potential applications of the ALS in soil and environmental sciences; and x-ray spectroscopy using soft x-rays: applications to earth materials

  20. Challenges to implementing "best available science"

    Science.gov (United States)

    Vita Wright

    2010-01-01

    Interagency wildland fire policy directs manager to apply "best available science" to management plans and activities. But what does "best available science" mean? With a vague definition of this concept and few guidelines for delivering or integrating science into management, it can be difficult for scientists to effectively provide managers with...

  1. National Center for Advancing Translational Sciences

    Science.gov (United States)

    ... Models Core Technologies Clinical Innovation Clinical and Translational Science Awards Program Rare Diseases Clinical Research Network Patient ... to our monthly e-newsletter. About Translation Translational Science Spectrum Explore the full spectrum of translational science, ...

  2. Assessment Strategies for Implementing Ngss in K12 Earth System Science Classrooms

    Science.gov (United States)

    McAuliffe, C.

    2016-12-01

    Several science education researchers have led assessment efforts that provide strategies particularly useful for evaluating the threedimensional learning that is central to NGSS (DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K., 2016; Knight, A. M. & McNeill, K. L., 2015; McNeill, K. L., KatshSinger, R. & Pelletier, P., 2015; McNeill K.L., et.al., 2015; McNeill, K.L., & Krajcik, J.S., 2011; Penuel, W., 2016). One of the basic premises of these researchers is that, "Assessment is a practice of argument from evidence based on what students say, do, and write" and that "the classroom is the richest place to gather evidence of what students know (Penuel, W., 2016). The implementation of the NGSS in Earth System Science provides a unique opportunity for geoscience education researchers to study student learning and contribute to the development of this research as well as for geoscience educators to apply these approaches and strategies in their own work with K12 inservice and preservice educators. DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K. (2016). Building an Assessment Argument to Design and Use Next Generation Science Assessments in Efficacy Studies of Curriculum Interventions. American†Journal†of†Evaluation†37(2) 174192Æ Knight, A. M. & McNeill, K. L. (2015). Comparing students' individual written and collaborative oral socioscientific arguments. International Journal of Environmental and Science Education.10(5), 23647. McNeill, K. L., KatshSinger, R. & Pelletier, P. (2015). Assessing science practices-Moving your class along a continuum. Science Scope. McNeill, K.L., & Krajcik, J.S. (2011). Supporting Grade 5-8 Students in Constructing Explanations in Science: The Claim, Evidence, and Reasoning Framework for Talk and Writing. Upper Saddle River, New Jersey: Pearson. Penuel, W. (2016). Classroom Assessment Strategies for NGSS Earth and Space Sciences. Implementing†the†NGSS†Webinar†Series, February 11, 2016.

  3. Data-driven predictions in the science of science.

    Science.gov (United States)

    Clauset, Aaron; Larremore, Daniel B; Sinatra, Roberta

    2017-02-03

    The desire to predict discoveries-to have some idea, in advance, of what will be discovered, by whom, when, and where-pervades nearly all aspects of modern science, from individual scientists to publishers, from funding agencies to hiring committees. In this Essay, we survey the emerging and interdisciplinary field of the "science of science" and what it teaches us about the predictability of scientific discovery. We then discuss future opportunities for improving predictions derived from the science of science and its potential impact, positive and negative, on the scientific community. Copyright © 2017, American Association for the Advancement of Science.

  4. Regenerative dentistry: translating advancements in basic science research to the dental practice.

    Science.gov (United States)

    Garcia-Godoy, Franklin; Murray, Peter

    2010-01-01

    Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. This review provides an assessment of how tissue engineering, stem cell, genetic transfer, biomaterial and growth factor therapies can be integrated into clinical dental therapies to restore and regenerate oral tissues. In parallel to the creation of a new field in general medicine called "regenerative medicine," we call this field "regenerative dentistry." While the problems of introducing regenerative therapies are substantial, the potential benefits to patients and the profession are equally ground-breaking. In this review, we outline a few areas of interest for the future of oral and dental medicine in which advancements in basic science have already been adapted to fit the goals of 21st century dentistry.

  5. ARCHES: Advancing Research & Capacity in Hydrologic Education and Science

    Science.gov (United States)

    Milewski, A.; Fryar, A. E.; Durham, M. C.; Schroeder, P.; Agouridis, C.; Hanley, C.; Rotz, R. R.

    2013-12-01

    Educating young scientists and building capacity on a global scale is pivotal towards better understanding and managing our water resources. Based on this premise the ARCHES (Advancing Research & Capacity in Hydrologic Education and Science) program has been established. This abstract provides an overview of the program, links to access information, and describes the activities and outcomes of student participants from the Middle East and North Africa. The ARCHES program (http://arches.wrrs.uga.edu) is an integrated hydrologic education approach using online courses, field programs, and various hands-on workshops. The program aims to enable young scientists to effectively perform the high level research that will ultimately improve quality of life, enhance science-based decision making, and facilitate collaboration. Three broad, interlinked sets of activities are incorporated into the ARCHES program: (A1) the development of technical expertise, (A2) the development of professional contacts and skills, and (A3) outreach and long-term sustainability. The development of technical expertise (A1) is implemented through three progressive instructional sections. Section 1: Students were guided through a series of online lectures and exercises (Moodle: http://wrrs.uga.edu/moodle) covering three main topics (Remote Sensing, GIS, and Hydrologic Modeling). Section 2: Students participated in a hands-on workshop hosted at the University of Georgia's Water Resources and Remote Sensing Laboratory (WRRSL). Using ENVI, ArcGIS, and ArcSWAT, students completed a series of lectures and real-world applications (e.g., Development of Hydrologic Models). Section 3: Students participated in field studies (e.g., measurements of infiltration, recharge, streamflow, and water-quality parameters) conducted by U.S. partners and international collaborators in the participating countries. The development of professional contacts and skills (A2) was achieved through the promotion of networking

  6. The Critical Path Institute's approach to precompetitive sharing and advancing regulatory science.

    Science.gov (United States)

    Woosley, R L; Myers, R T; Goodsaid, F

    2010-05-01

    Many successful large industries, such as computer-chip manufacturers, the cable television industry, and high-definition television developers,(1) have established successful precompetitive collaborations focusing on standards, applied science, and technology that advance the field for all stakeholders and benefit the public.(2) The pharmaceutical industry, however, has a well-earned reputation for fierce competition and did not demonstrate willingness to share data or knowledge until the US Food and Drug Administration (FDA) launched the Critical Path Initiative in 2004 (ref. 3).

  7. Multilevel Models for Estimating the Effect of Implementing Argumentation-Based Elementary Science Instruction

    Science.gov (United States)

    Shelley, Mack; Gonwa-Reeves, Christopher; Baenziger, Joan; Seefeld, Ashley; Hand, Brian; Therrien, William; Villanueva, Mary Grace; Taylor, Jonte

    2012-01-01

    The purpose of this paper is to examine the impact of implementation of the Science Writing Heuristic (SWH) approach at 5th grade level in the public school system in Iowa as measured by Cornell Critical Thinking student test scores. This is part of a project that overall tests the efficacy of the SWH inquiry-based approach to build students'…

  8. Advances in Intelligent Control Systems and Computer Science

    CERN Document Server

    2013-01-01

    The conception of real-time control networks taking into account, as an integrating approach, both the specific aspects of information and knowledge processing and the dynamic and energetic particularities of physical processes and of communication networks is representing one of the newest scientific and technological challenges. The new paradigm of Cyber-Physical Systems (CPS) reflects this tendency and will certainly change the evolution of the technology, with major social and economic impact. This book presents significant results in the field of process control and advanced information and knowledge processing, with applications in the fields of robotics, biotechnology, environment, energy, transportation, et al.. It introduces intelligent control concepts and strategies as well as real-time implementation aspects for complex control approaches. One of the sections is dedicated to the complex problem of designing software systems for distributed information processing networks. Problems as complexity an...

  9. Accelerator R and D: Research for Science - Science for Society

    International Nuclear Information System (INIS)

    Holtkamp, N.R.; Biedron, S.; Milton, S.V.; Boeh, L.; Clayton, J.E.; Zdasiuk, G.; Gourlay, S.A.; Zisman, M.S.; Hamm, R.W.; Henderson, S.; Hoffstaetter, G.H.; Merminga, L.; Ozaki, S.; Pilat, F.C.; White, M.

    2012-01-01

    In September 2011 the US Senate Appropriations Committee requested a ten-year strategic plan from the Department of Energy (DOE) that would describe how accelerator R and D today could advance applications directly relevant to society. Based on the 2009 workshop 'Accelerators for America's Future' an assessment was made on how accelerator technology developed by the nation's laboratories and universities could directly translate into a competitive strength for industrial partners and a variety of government agencies in the research, defense and national security sectors. The Office of High Energy Physics, traditionally the steward for advanced accelerator R and D within DOE, commissioned a task force under its auspices to generate and compile ideas on how best to implement strategies that would help fulfill the needs of industry and other agencies, while maintaining focus on its core mission of fundamental science investigation.

  10. Developing your Career in an Age of Team-Science

    Science.gov (United States)

    Zucker, Deborah

    2013-01-01

    Academic institutions and researchers are becoming increasingly involved in translational research to spur innovation in addressing many complex biomedical and societal problems, and in response to the focus of the NIH and other funders. One approach to translational research is to development interdisciplinary research teams. By bringing together collaborators with diverse research backgrounds and perspectives, these teams seek to blend their science and the workings of the scientists to push beyond the limits of current research. While team-science promises individual and team benefits in creating and implementing innovations, its increased complexity poses challenges. In particular, since academic career advancement commonly focuses on individual achievement, team-science might differentially impact early stage researchers. This need to be recognized for individual accomplishments in order to move forward in an academic career may give rise to research-team conflicts. Raising awareness to career-related aspects of team science will help individuals (particularly trainees and junior faculty) take steps to align their excitement and participation with the success of both the team and their personal career advancement. PMID:22525235

  11. The 2014 National Nursing Research Roundtable: The science of caregiving.

    Science.gov (United States)

    Grady, Patricia A; Gullatte, Mary

    2014-01-01

    The National Nursing Research Roundtable (NNRR) meets annually to provide an opportunity for the leaders of nursing organizations with a research mission to discuss and disseminate research findings to improve health outcomes. In 2014, the NNRR addressed the science of caregiving, a topic of increasing importance given that more people are living with chronic conditions and that managing chronic illness is shifting from providers to individuals, their families, and the communities where they live. The NNRR consisted of scientific presentations in which leading researchers discussed the latest advances in caregiving science across the life span and breakout sessions where specific questions were discussed. The questions focused on the policy and practice implications of caregiving science and provided an opportunity for nursing leaders to discuss ways to advance caregiving science. The nursing community is ideally positioned to design and test caregiver health interventions and to implement these interventions in clinical and community settings. Published by Elsevier Inc.

  12. Biological and Environmental Research Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Biological and Environmental Research, March 28-31, 2016, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Arkin, Adam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bader, David C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aluru, Srinivas [Georgia Inst. of Technology, Atlanta, GA (United States); Andersen, Amity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Aprá, Edoardo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Azad, Ariful [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bates, Susan [National Center for Atmospheric Research, Boulder, CO (United States); Blaby, Ian [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaby-Haas, Crysten [Brookhaven National Lab. (BNL), Upton, NY (United States); Bonneau, Rich [New York Univ. (NYU), NY (United States); Bowen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bradford, Mark A. [Yale Univ., New Haven, CT (United States); Brodie, Eoin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, James (Ben) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bernholdt, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bylaska, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Calvin, Kate [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cannon, Bill [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Xingyuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheung, Margaret [Univ. of Houston, Houston, TX (United States); Chowdhary, Kenny [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Compo, Gil [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Crowley, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Debusschere, Bert [Sandia National Lab. (SNL-CA), Livermore, CA (United States); D’Imperio, Nicholas [Brookhaven National Lab. (BNL), Upton, NY (United States); Dror, Ron [Stanford Univ., Stanford, CA (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Friedberg, Iddo [Iowa State Univ., Ames, IA (United States); Fyke, Jeremy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Zheng [Stony Brook Univ., Stony Brook, NY (United States); Georganas, Evangelos [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Giraldo, Frank [Naval Postgraduate School, Monterey, CA (United States); Gnanakaran, Gnana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Govind, Niri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Grandy, Stuart [Univ. of New Hampshire, Durham, NH (United States); Gustafson, Bill [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hammond, Glenn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hargrove, William [USDA Forest Service, Washington, D.C. (United States); Heroux, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Forrest [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hofmeyr, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hunke, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jackson, Charles [Univ. of Texas-Austin, Austin, TX (United States); Jacob, Rob [Argonne National Lab. (ANL), Argonne, IL (United States); Jacobson, Dan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobson, Matt [Univ. of California, San Francisco, CA (United States); Jain, Chirag [Georgia Inst. of Technology, Atlanta, GA (United States); Johansen, Hans [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Johnson, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jones, Andy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jones, Phil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kalyanaraman, Ananth [Washington State Univ., Pullman, WA (United States); Kang, Senghwa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); King, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Koanantakool, Penporn [Univ. of California, Berkeley, CA (United States); Kollias, Pavlos [Stony Brook Univ., Stony Brook, NY (United States); Kopera, Michal [Univ. of California, Santa Cruz, CA (United States); Kotamarthi, Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Karol [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kyrpides, Nikos [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xiaolin [Stony Brook Univ., Stony Brook, NY (United States); Lin, Wuyin [Brookhaven National Lab. (BNL), Upton, NY (United States); Link, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Yangang [Brookhaven National Lab. (BNL), Upton, NY (United States); Loew, Leslie [Univ. of Connecticut, Storrs, CT (United States); Luke, Edward [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, Hsi -Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahadevan, Radhakrishnan [Univ. of Toronto, Toronto, ON (Canada); Maranas, Costas [Pennsylvania State Univ., University Park, PA (United States); Martin, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States); McCue, Lee Ann [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McInnes, Lois Curfman [Argonne National Lab. (ANL), Argonne, IL (United States); Mills, Richard [Intel Corp., Santa Clara, CA (United States); Molins Rafa, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mostafavi, Sara [Center for Molecular Medicine and Therapeutics, Vancouver, BC (Canada); Moulton, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mourao, Zenaida [Univ. of Cambridge (United Kingdom); Najm, Habib [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ng, Bernard [Center for Molecular Medicine and Therapeutics, Vancouver, BC (Canada); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Norman, Matt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oh, Sang -Yun [Univ. of California, Santa Barbara, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pass, Rebecca [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pau, George S. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petridis, Loukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Prakash, Giri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Price, Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Randall, David [Colorado State Univ., Fort Collins, CO (United States); Renslow, Ryan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riihimaki, Laura [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ringler, Todd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roberts, Andrew [Naval Postgraduate School, Monterey, CA (United States); Rokhsar, Dan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ruebel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Salinger, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheibe, Tim [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schulz, Roland [Intel, Mountain View, CA (United States); Sivaraman, Chitra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sreepathi, Sarat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Talbot, Jenifer [Boston Univ., Boston, MA (United States); Tantillo, D. J. [Univ. of California, Davis, CA (United States); Tartakovsky, Alex [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taylor, Ronald [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Urban, Nathan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valiev, Marat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Wagner, Allon [Univ. of California, Berkeley, CA (United States); Wainwright, Haruko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wieder, Will [NCAR/Univ. of Colorado, Boulder, CO (United States); Wiley, Steven [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Dean [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Worley, Pat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xie, Shaocheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yelick, Kathy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yoo, Shinjae [Brookhaven National Lab. (BNL), Upton, NY (United States); Yosef, Niri [Univ. of California, Berkeley, CA (United States); Zhang, Minghua [Stony Brook Univ., Stony Brook, NY (United States)

    2016-03-31

    Understanding the fundamentals of genomic systems or the processes governing impactful weather patterns are examples of the types of simulation and modeling performed on the most advanced computing resources in America. High-performance computing and computational science together provide a necessary platform for the mission science conducted by the Biological and Environmental Research (BER) office at the U.S. Department of Energy (DOE). This report reviews BER’s computing needs and their importance for solving some of the toughest problems in BER’s portfolio. BER’s impact on science has been transformative. Mapping the human genome, including the U.S.-supported international Human Genome Project that DOE began in 1987, initiated the era of modern biotechnology and genomics-based systems biology. And since the 1950s, BER has been a core contributor to atmospheric, environmental, and climate science research, beginning with atmospheric circulation studies that were the forerunners of modern Earth system models (ESMs) and by pioneering the implementation of climate codes onto high-performance computers. See http://exascaleage.org/ber/ for more information.

  13. Evaluating the systematic implementation of the 'Let Me Decide' advance care planning programme in long term care through focus groups: staff perspectives.

    LENUS (Irish Health Repository)

    Cornally, Nicola

    2015-11-01

    The \\'Let Me Decide\\' Advance Care Planning (LMD-ACP) programme offers a structured approach to End-of-Life (EoL) care planning in long-term care for residents with and without capacity to complete an advance care directive\\/plan. The programme was implemented in three homes in the South of Ireland, with a view to improving quality of care at end of life. This paper will present an evaluation of the systematic implementation of the LMD-ACP programme in the homes.

  14. Advancing the Assessment of Dynamic Psychological Processes.

    Science.gov (United States)

    Wright, Aidan G C; Hopwood, Christopher J

    2016-08-01

    Most commonly used clinical assessment tools cannot fully capture the dynamic psychological processes often hypothesized as core mechanisms of psychopathology and psychotherapy. There is therefore a gap between our theories of problems and interventions for those problems and the tools we use to understand clients. The purpose of this special issue is to connect theory about clinical dynamics to practice by focusing on methods for collecting dynamic data, statistical models for analyzing dynamic data, and conceptual schemes for implementing dynamic data in applied settings. In this introductory article, we argue for the importance of assessing dynamic processes, highlight recent advances in assessment science that enable their measurement, review challenges in using these advances in applied practice, and adumbrate the articles in this issue.

  15. Implementation of the Communities That Care Prevention System by Coalitions in the Community Youth Development Study

    Science.gov (United States)

    Arthur, Michael W.; Hawkins, J. David; Brown, Eric C.; Briney, John S.; Oesterle, Sabrina; Abbott, Robert D.

    2010-01-01

    Although advances in prevention science over the past two decades have produced a growing list of tested and effective programs and policies for preventing adolescent delinquency and drug use, widespread dissemination and high-quality implementation of effective programs and policies in communities has not been achieved. The Community Youth…

  16. Advances in Molecular Rotational Spectroscopy for Applied Science

    Science.gov (United States)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  17. LEDs for the Implementation of Advanced Hydrogenation Using Hydrogen Charge-State Control

    Directory of Open Access Journals (Sweden)

    Chee Mun Chong

    2018-01-01

    Full Text Available Light-induced degradation (LID of p-type Cz solar cells has plagued the industry for many decades. However, in recent years, new techniques for solving this LID have been developed, with hydrogen passivation of the boron-oxygen defects appearing to be an important contributor to the solution. Advanced hydrogenation approaches involving the control of the charge state for the hydrogen atoms in silicon to enhance their diffusivity and reactivity are developed and evaluated in this work for commercial application using a prototype industrial tool in conjunction with solar cells manufactured on commercial production lines. This prototype tool, unlike the previous successful laser-based laboratory approaches, is based on the use of LEDs for controlling the charge state of the hydrogen atoms. The illumination from the LEDs is also used in this work to passivate process-induced defects and contamination from the respective production lines with significant improvements in both efficiency and stability. The results indicate that the low-cost LED-based industrial tool performs as well as the laser-based laboratory tool for implementing these advanced hydrogen passivation approaches.

  18. Career Advancement Outcomes in Academic Science, Technology, Engineering and Mathematics (STEM): Gender, Mentoring Resources, and Homophily

    Science.gov (United States)

    Lee, Sang Eun

    2017-01-01

    This dissertation examines gender differences in career advancement outcomes among academic science, technology, engineering and mathematics (STEM) scientists. In particular, this research examines effects of gender, PhD advisors and postdoctoral supervisors mentoring resources and gender homophily in the mentoring dyads on the career advancement…

  19. Advanced light microscopy core facilities: Balancing service, science and career

    Science.gov (United States)

    Hartmann, Hella; Reymann, Jürgen; Ansari, Nariman; Utz, Nadine; Fried, Hans‐Ulrich; Kukat, Christian; Peychl, Jan; Liebig, Christian; Terjung, Stefan; Laketa, Vibor; Sporbert, Anje; Weidtkamp‐Peters, Stefanie; Schauss, Astrid; Zuschratter, Werner; Avilov, Sergiy

    2016-01-01

    ABSTRACT Core Facilities (CF) for advanced light microscopy (ALM) have become indispensable support units for research in the life sciences. Their organizational structure and technical characteristics are quite diverse, although the tasks they pursue and the services they offer are similar. Therefore, throughout Europe, scientists from ALM‐CFs are forming networks to promote interactions and discuss best practice models. Here, we present recommendations for ALM‐CF operations elaborated by the workgroups of the German network of ALM‐CFs, German Bio‐Imaging (GerBI). We address technical aspects of CF planning and instrument maintainance, give advice on the organization and management of an ALM‐CF, propose a scheme for the training of CF users, and provide an overview of current resources for image processing and analysis. Further, we elaborate on the new challenges and opportunities for professional development and careers created by CFs. While some information specifically refers to the German academic system, most of the content of this article is of general interest for CFs in the life sciences. Microsc. Res. Tech. 79:463–479, 2016. © 2016 THE AUTHORS MICROSCOPY RESEARCH AND TECHNIQUE PUBLISHED BY WILEY PERIODICALS, INC. PMID:27040755

  20. Design and implementation of information visualization system on science and technology industry based on GIS

    Science.gov (United States)

    Wu, Xiaofang; Jiang, Liushi

    2011-02-01

    Usually in the traditional science and technology information system, the only text and table form are used to manage the data, and the mathematic statistics method is applied to analyze the data. It lacks for the spatial analysis and management of data. Therefore, GIS technology is introduced to visualize and analyze the information data on science and technology industry. Firstly, by using the developed platform-microsoft visual studio 2005 and ArcGIS Engine, the information visualization system on science and technology industry based on GIS is built up, which implements various functions, such as data storage and management, inquiry, statistics, chart analysis, thematic map representation. It can show the change of science and technology information from the space and time axis intuitively. Then, the data of science and technology in Guangdong province are taken as experimental data and are applied to the system. And by considering the factors of humanities, geography and economics so on, the situation and change tendency of science and technology information of different regions are analyzed and researched, and the corresponding suggestion and method are brought forward in order to provide the auxiliary support for development of science and technology industry in Guangdong province.

  1. Computational Science in Armenia (Invited Talk)

    Science.gov (United States)

    Marandjian, H.; Shoukourian, Yu.

    This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.

  2. Application of discrete choice experiments to enhance stakeholder engagement as a strategy for advancing implementation: a systematic review.

    Science.gov (United States)

    Salloum, Ramzi G; Shenkman, Elizabeth A; Louviere, Jordan J; Chambers, David A

    2017-11-23

    One of the key strategies to successful implementation of effective health-related interventions is targeting improvements in stakeholder engagement. The discrete choice experiment (DCE) is a stated preference technique for eliciting individual preferences over hypothetical alternative scenarios that is increasingly being used in health-related applications. DCEs are a dynamic approach to systematically measure health preferences which can be applied in enhancing stakeholder engagement. However, a knowledge gap exists in characterizing the extent to which DCEs are used in implementation science. We conducted a systematic literature search (up to December 2016) of the English literature to identify and describe the use of DCEs in engaging stakeholders as an implementation strategy. We searched the following electronic databases: MEDLINE, Econlit, PsychINFO, and the CINAHL using mesh terms. Studies were categorized according to application type, stakeholder(s), healthcare setting, and implementation outcome. Seventy-five publications were selected for analysis in this systematic review. Studies were categorized by application type: (1) characterizing demand for therapies and treatment technologies (n = 32), (2) comparing implementation strategies (n = 22), (3) incentivizing workforce participation (n = 11), and (4) prioritizing interventions (n = 10). Stakeholders included providers (n = 27), patients (n = 25), caregivers (n = 5), and administrators (n = 2). The remaining studies (n = 16) engaged multiple stakeholders (i.e., combination of patients, caregivers, providers, and/or administrators). The following implementation outcomes were discussed: acceptability (n = 75), appropriateness (n = 34), adoption (n = 19), feasibility (n = 16), and fidelity (n = 3). The number of DCE studies engaging stakeholders as an implementation strategy has been increasing over the past decade. As DCEs are more widely used as a

  3. The U.S. Geological Survey Ecosystem Science Strategy, 2012-2022 - Advancing discovery and application through collaboration

    Science.gov (United States)

    Williams, Byron K.; Wingard, G. Lynn; Brewer, Gary; Cloern, James E.; Gelfenbaum, Guy R.; Jacobson, Robert B.; Kershner, Jeffrey L.; McGuire, Anthony David; Nichols, James D.; Shapiro, Carl D.; van Riper, Charles; White, Robin P.

    2012-01-01

    technologies for data collection, management, and visualization. Collectively, these capabilities can be used to reveal ecological patterns and processes, explain how and why ecosystems change, and forecast change over different spatial and temporal scales. USGS science can provide managers with options and decision-support tools to use resources sustainably. The USGS has long-standing, collaborative relationships with the DOI and other partners in the natural sciences, in both conducting science and its application. The USGS engages these partners in cooperative investigations that otherwise would lack the necessary support or be too expensive for a single bureau to conduct.The heart of this strategy is a framework and vision for USGS ecosystems science that focuses on five long-term goals, which are seen as interconnected and reinforcing components:• Improve understanding of ecosystem structure, function, and processes. The focus for this goal is an understanding of how ecosystems work, including the dynamics of species, their populations, interactions, and genetics, and how they change across spatial and temporal scales. • Advance understanding of how drivers influence ecosystem change. The challenges here are explaining the drivers of ecosystem change, their spatio-temporal patterns, their uncertainties and interactions, and their influence on ecosystem processes and dynamics. • Improve understanding of the services that ecosystems provide to society. Here the emphasis is on the measurement of environmental capital and ecosystem services, and the identification of sources and patterns of change in space and time. • Develop tools, technologies, and capacities to inform decision-making about ecosystems. This includes developing new technologies and approaches for conducting applications-oriented ecosystem science. A principal challenge will be how to quantify uncertainty and incorporate it in decision analysis. • Apply science to enhance strategies for

  4. Factors influencing the development and implementation of advanced radiographer practice in Australia – a qualitative study using an interpretative phenomenological approach

    Energy Technology Data Exchange (ETDEWEB)

    Page, Barbara A, E-mail: barbpage09@gmail.com [School of Dentistry and Health Sciences, Charles Sturt University, Wagga Wagga, New South Wales (Australia); Bernoth, Maree [School of Nursing, Midwifery and Indigenous Health, Charles Sturt University, Wagga Wagga, New South Wales (Australia); Davidson, Rob [School of Dentistry and Health Sciences, Charles Sturt University, Wagga Wagga, New South Wales (Australia)

    2014-09-15

    The purpose of this study was to explore the factors influencing the implementation or the lack of implementation of advanced practitioner role in Australia. This study uses an interpretative phenomenological approach to explore the in-depth real life issues, which surround the advanced practitioner as a solution to radiologist workforce shortages in Australia. Research participants are radiographers, radiation therapists and health managers registered with the Australian Institute of Radiography (AIR) and holding senior professional and AIR Board positions with knowledge of current advanced practice. In total, seven interviews were conducted revealing education, governance, technical, people issues, change management, government, costs and timing as critical factors influencing advanced practice in Australia. Seven participants in this study perceived an advanced practice role might have major benefits and a positive impact on the immediate and long-term management of patients. Another finding is the greater respect and appreciation of each other's roles and expertise within the multidisciplinary healthcare team. Engagement is required of the critical stakeholders that have been identified as ‘blockers’ (radiologists, health departments) as well as identified allies (e.g. emergency clinicians, supportive radiologists, patient advocacy groups). The research supports that the AIR has a role to play for the professional identity of radiographers and shaping the advanced practice role in Australia.

  5. Factors influencing the development and implementation of advanced radiographer practice in Australia – a qualitative study using an interpretative phenomenological approach

    International Nuclear Information System (INIS)

    Page, Barbara A; Bernoth, Maree; Davidson, Rob

    2014-01-01

    The purpose of this study was to explore the factors influencing the implementation or the lack of implementation of advanced practitioner role in Australia. This study uses an interpretative phenomenological approach to explore the in-depth real life issues, which surround the advanced practitioner as a solution to radiologist workforce shortages in Australia. Research participants are radiographers, radiation therapists and health managers registered with the Australian Institute of Radiography (AIR) and holding senior professional and AIR Board positions with knowledge of current advanced practice. In total, seven interviews were conducted revealing education, governance, technical, people issues, change management, government, costs and timing as critical factors influencing advanced practice in Australia. Seven participants in this study perceived an advanced practice role might have major benefits and a positive impact on the immediate and long-term management of patients. Another finding is the greater respect and appreciation of each other's roles and expertise within the multidisciplinary healthcare team. Engagement is required of the critical stakeholders that have been identified as ‘blockers’ (radiologists, health departments) as well as identified allies (e.g. emergency clinicians, supportive radiologists, patient advocacy groups). The research supports that the AIR has a role to play for the professional identity of radiographers and shaping the advanced practice role in Australia

  6. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  7. Sustainability of evidence-based healthcare: research agenda, methodological advances, and infrastructure support.

    Science.gov (United States)

    Proctor, Enola; Luke, Douglas; Calhoun, Annaliese; McMillen, Curtis; Brownson, Ross; McCrary, Stacey; Padek, Margaret

    2015-06-11

    Little is known about how well or under what conditions health innovations are sustained and their gains maintained once they are put into practice. Implementation science typically focuses on uptake by early adopters of one healthcare innovation at a time. The later-stage challenges of scaling up and sustaining evidence-supported interventions receive too little attention. This project identifies the challenges associated with sustainability research and generates recommendations for accelerating and strengthening this work. A multi-method, multi-stage approach, was used: (1) identifying and recruiting experts in sustainability as participants, (2) conducting research on sustainability using concept mapping, (3) action planning during an intensive working conference of sustainability experts to expand the concept mapping quantitative results, and (4) consolidating results into a set of recommendations for research, methodological advances, and infrastructure building to advance understanding of sustainability. Participants comprised researchers, funders, and leaders in health, mental health, and public health with shared interest in the sustainability of evidence-based health care. Prompted to identify important issues for sustainability research, participants generated 91 distinct statements, for which a concept mapping process produced 11 conceptually distinct clusters. During the conference, participants built upon the concept mapping clusters to generate recommendations for sustainability research. The recommendations fell into three domains: (1) pursue high priority research questions as a unified agenda on sustainability; (2) advance methods for sustainability research; (3) advance infrastructure to support sustainability research. Implementation science needs to pursue later-stage translation research questions required for population impact. Priorities include conceptual consistency and operational clarity for measuring sustainability, developing evidence

  8. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  9. Forging a link between mentoring and collaboration: a new training model for implementation science.

    Science.gov (United States)

    Luke, Douglas A; Baumann, Ana A; Carothers, Bobbi J; Landsverk, John; Proctor, Enola K

    2016-10-13

    Training investigators for the rapidly developing field of implementation science requires both mentoring and scientific collaboration. Using social network descriptive analyses, visualization, and modeling, this paper presents results of an evaluation of the mentoring and collaborations fostered over time through the National Institute of Mental Health (NIMH) supported by Implementation Research Institute (IRI). Data were comprised of IRI participant self-reported collaborations and mentoring relationships, measured in three annual surveys from 2012 to 2014. Network descriptive statistics, visualizations, and network statistical modeling were conducted to examine patterns of mentoring and collaboration among IRI participants and to model the relationship between mentoring and subsequent collaboration. Findings suggest that IRI is successful in forming mentoring relationships among its participants, and that these mentoring relationships are related to future scientific collaborations. Exponential random graph network models demonstrated that mentoring received in 2012 was positively and significantly related to the likelihood of having a scientific collaboration 2 years later in 2014 (p = 0.001). More specifically, mentoring was significantly related to future collaborations focusing on new research (p = 0.009), grant submissions (p = 0.003), and publications (p = 0.017). Predictions based on the network model suggest that for every additional mentoring relationships established in 2012, the likelihood of a scientific collaboration 2 years later is increased by almost 7 %. These results support the importance of mentoring in implementation science specifically and team science more generally. Mentoring relationships were established quickly and early by the IRI core faculty. IRI fellows reported increasing scientific collaboration of all types over time, including starting new research, submitting new grants, presenting research results, and

  10. "This Is a Tool for You to Use": Expansive Framing and Adaptive Transfer in Two PBL Science Classrooms

    Science.gov (United States)

    Becherer, Kendall

    This dissertation is a qualitative, comparative case study investigating productive disciplinary engagement, framing for transfer, and tool use in two high school science classrooms. My goal was to investigate the implementation of material resources that were developed to support students' engagement, driven by my primary research question: How does the implementation of material tools as a learning resource support or impede students' productive disciplinary engagement in a project-based learning setting? Using a grounded theory approach, I analyzed video transcriptions and interviews of two teachers and their students at the same school as they enacted a coordinated project-based, advanced placement curriculum as part of a design-based implementation research project. Findings suggest that intentional framing and use of tools may help teachers support students in making connections across multiple parts of a project in ways that facilitate productive engagement in the discipline of science as well as students building on and adapting their knowledge over time. Keywords: Project-based learning, advanced placement, environmental science, scientific practices, dialogic discourse, grammar of schooling, situative theory, student engagement, productive disciplinary engagement, material resources, student authorship, framing for transfer, expansive framing, near transfer, adaptive transfer.

  11. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  12. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.

  13. `Discover, Understand, Implement, and Transfer': Effectiveness of an intervention programme to motivate students for science

    Science.gov (United States)

    Schütte, Kerstin; Köller, Olaf

    2015-09-01

    Considerable research has focused on how best to satisfy modern societies' needs for skilled labour in the field of science. The present study evaluated an intervention programme designed to increase secondary school students' motivation to pursue a science career. Students from 3 schools of the highest educational track participated for up to 2 years in the intervention programme, which was implemented as an elective in the school curriculum. Our longitudinal study design for evaluating the effectiveness of the intervention programme included all students at the grade levels involved in the programme with students who did not participate serving as a control group. Mixed-model analyses of variance showed none of the intended effects of the intervention programme on science motivation; latent growth models corroborated these results. When the programme began, students who enrolled in the science elective (n = 92) were already substantially more motivated than their classmates (n = 228). Offering such an intervention programme as an elective did not further increase the participating students' science motivation. It seems worthwhile to carry out intervention programmes with talented students who show (comparatively) little interest in science at the outset rather than with highly motivated students who self-select into the programme.

  14. Advanced ACTPol Cryogenic Detector Arrays and Readout

    Science.gov (United States)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  15. Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Kusnezov, D; Bickel, T; McCoy, M; Hopson, J

    2007-09-13

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  16. Communication Regulatory Science: Mapping a New Field.

    Science.gov (United States)

    Noar, Seth M; Cappella, Joseph N; Price, Simani

    2017-12-13

    Communication regulatory science is an emerging field that uses validated techniques, tools, and models to inform regulatory actions that promote optimal communication outcomes and benefit the public. In the opening article to this special issue on communication and tobacco regulatory science, we 1) describe Food and Drug Administration (FDA) regulation of tobacco products in the US; 2) introduce communication regulatory science and provide examples in the tobacco regulatory science realm; and 3) describe the special issue process and final set of articles. Communication research on tobacco regulatory science is a burgeoning area of inquiry, and this work advances communication science, informs and potentially guides the FDA, and may help to withstand legal challenges brought by the tobacco industry. This research has the potential to have a major impact on the tobacco epidemic and population health by helping implement the most effective communications to prevent tobacco initiation and increase cessation. This special issue provides an example of 10 studies that exemplify tobacco regulatory science and demonstrate how the health communication field can affect regulation and benefit public health.

  17. Core Principles and Test Item Development for Advanced High School and Introductory University Level Food Science

    Science.gov (United States)

    Laing-Kean, Claudine A. M.

    2010-01-01

    Programs supported by the Carl D. Perkins Act of 2006 are required to operate under the state or national content standards, and are expected to carry out evaluation procedures that address accountability. The Indiana high school course, "Advanced Life Science: Foods" ("ALS: Foods") operates under the auspices of the Perkins…

  18. Advancing the Science of Behavioral Self-Management of Chronic Disease: The Arc of a Research Trajectory

    Science.gov (United States)

    Allegrante, John P.

    2018-01-01

    This article describes advances in the behavioral self-management of chronic disease from the perspective of a 25-year trajectory of National Institute of Health-funded research in arthritis and cardiopulmonary diseases that has sought to develop a transdisciplinary understanding of how applied behavioral science can be used to improve health…

  19. An examination of the advances in science and technology of prevention of tooth decay in young children since the Surgeon General's Report on Oral Health.

    Science.gov (United States)

    Milgrom, Peter; Zero, Domenick T; Tanzer, Jason M

    2009-01-01

    This paper addresses a number of areas related to how effectively science and technology have met Healthy People 2010 goals for tooth decay prevention. In every area mentioned, it appears that science and technology are falling short of these goals. Earlier assessments identified water fluoridation as one of the greatest public health accomplishments of the last century. Yet, failure to complete needed clinical and translational research has shortchanged the caries prevention agenda at a critical juncture. Science has firmly established the transmissible nature of tooth decay. However, there is evidence that tooth decay in young children is increasing, although progress has been made in other age groups. Studies of risk assessment have not been translated into improved practice. Antiseptics, chlorhexidine varnish, and polyvinylpyrrolidone iodine (PVI-I) may have value, but definitive trials are needed. Fluorides remain the most effective agents, but are not widely disseminated to the most needy. Fluoride varnish provides a relatively effective topical preventive for very young children, yet definitive trials have not been conducted. Silver diamine fluoride also has potential but requires study in the United States. Data support effectiveness and safety of xylitol, but adoption is not widespread. Dental sealants remain a mainstay of public policy, yet after decades of research, widespread use has not occurred. We conclude that research has established the public health burden of tooth decay, but insufficient research addresses the problems identified in the report Oral Health in America: A Report of the Surgeon General. Transfer of technology from studies to implementation is needed to prevent tooth decay among children. This should involve translational research and implementation of scientific and technological advances into practice.

  20. "Finding the Joy in the Unknown": Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms

    Science.gov (United States)

    Quigley, Cassie F.; Herro, Dani

    2016-06-01

    In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.

  1. Implementation Science for closing the treatment gap for mental disorders by translating evidence base into practice: experiences from the PRIME project.

    Science.gov (United States)

    Shidhaye, Rahul

    2015-12-01

    This paper utilizes the experience of PRIME (Programme for Improving Mental health care) to exemplify how implementation science provides key insights and approaches to closing the treatment gap for mental disorders. The real-world application of strategies described in the implementation science literature, accompanied by use of alternative, rigorous evaluation methods to assess their impact on patient outcomes, can help in closing the mental health treatment gap in disadvantaged populations. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  2. A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators

    NARCIS (Netherlands)

    Godfray, H.C.J.; Blacquière, Tjeerd; Field, L.M.; Hails, R.S.; Potts, S.G.; Raine, N.E.; Vanbergen, A.J.; McLean, A.R.

    2015-01-01

    Asummary is provided of recent advances in the natural science evidence base concerning the effects of neonicotinoid insecticides on insect pollinators in a format (a ‘restatement’) intended to be accessible to informed but not expert policymakers and stakeholders. Important new studies have been

  3. Being a Scientist While Teaching Science: Implementing Undergraduate Research Opportunities for Elementary Educators

    Science.gov (United States)

    Hock, Emily; Sharp, Zoe

    2016-03-01

    Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.

  4. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    Science.gov (United States)

    Beaulieu, Stace E.; Emery, Emery; Brickley, Annette; Spargo, Abbey; Patterson, Kathleen; Joyce, Katherine; Silva, Tim; Madin, Katherine

    2015-01-01

    Digital globes are new technologies increasingly used in informal and formal education to display global datasets and show connections among Earth systems. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question by developing new content for digital globes with the intent to educate and…

  5. The Geohazards Exploitation Platform: an advanced cloud-based environment for the Earth Science community

    Science.gov (United States)

    Manunta, Michele; Casu, Francesco; Zinno, Ivana; De Luca, Claudio; Pacini, Fabrizio; Caumont, Hervé; Brito, Fabrice; Blanco, Pablo; Iglesias, Ruben; López, Álex; Briole, Pierre; Musacchio, Massimo; Buongiorno, Fabrizia; Stumpf, Andre; Malet, Jean-Philippe; Brcic, Ramon; Rodriguez Gonzalez, Fernando; Elias, Panagiotis

    2017-04-01

    The idea to create advanced platforms for the Earth Observation community, where the users can find data but also state-of-art algorithms, processing tools, computing facilities, and instruments for dissemination and sharing, has been launched several years ago. The initiatives developed in this context have been supported firstly by the Framework Programmes of European Commission and the European Space Agency (ESA) and, progressively, by the Copernicus programme. In particular, ESA created and supported the Grid Processing on Demand (G-POD) environment, where the users can access to advanced processing tools implemented in a GRID environment, satellite data and computing facilities. All these components are located in the same datacentre to significantly reduce and make negligible the time to move the satellite data from the archive. From the experience of G-POD was born the idea of ESA to have an ecosystem of Thematic Exploitation Platforms (TEP) focused on the integration of Ground Segment capabilities and ICT technologies to maximize the exploitation of EO data from past and future missions. A TEP refers to a computing platform that deals with a set of user scenarios involving scientists, data providers and ICT developers, aggregated around an Earth Science thematic area. Among the others, the Geohazards Exploitation Platform (GEP) aims at providing on-demand and systematic processing services to address the need of the geohazards community for common information layers and to integrate newly developed processors for scientists and other expert users. Within GEP, the community benefits from a cloud-based environment, specifically designed for the advanced exploitation of EO data. A partner can bring its own tools and processing chains, but also has access in the same workspace to large satellite datasets and shared data processing tools. GEP is currently in the pre-operations phase under a consortium led by Terradue Srl and six pilot projects concerning

  6. Advanced high school biology in an era of rapid change: a summary of the biology panel report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools.

    Science.gov (United States)

    Wood, William B

    2002-01-01

    A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Panel for Biology were that AP courses in particular suffer from inadequate quality control as well as excessive pressure to fulfill their advanced placement function, which encourages teachers to attempt coverage of all areas of biology and emphasize memorization of facts rather than in-depth understanding. In this essay, the Panel's principal findings are discussed, with an emphasis on its recommendation that colleges and universities should be strongly discouraged from using performance on either the AP examination or the IB examination as the sole basis for automatic placement out of required introductory courses for biology majors and distribution requirements for nonmajors.

  7. Building community partnerships to implement the new Science and Engineering component of the NGSS

    Science.gov (United States)

    Burke, M. P.; Linn, F.

    2013-12-01

    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership

  8. PREFACE: APCTP-ASEAN Workshop on Advanced Materials Science and Nanotechnology (AMSN08)

    Science.gov (United States)

    Van Hieu, Nguyen

    2009-09-01

    Dear friends To contribute to the enhancement of the international scientific cooperation of the ASEAN countries and in reply to the proposal of the Vietnam Academy of Science and Technology (VAST), the Asia-Pacific Center for Theoretical Physics (APCTP) and the Sub Committee on Materials Science and Technology (SCMST) of the ASEAN Committee of Science and Technology (ASEAN COST) agreed to organize this APCTP-ASEAN Workshop on Advanced Materials Science and Nanotechnology with the participation of the Ministry of Science and Technology of Vietnam, the Vietnam Academy of Science and Technology, Rencontres du Vietnam, the Vietnam Physical Society, the Vietnam National University in Ho Chi Minh City and the Vietnam National University in Hanoi. As well as the participants from 9 of the 10 ASEAN countries and many other countries/regions of APCTP (Australia, China, Chinese Taipei, Japan and Korea) we warmly welcome the guests from Europe, the United States, Canada and Israel. Without the financial support of the Asia-Pacific Center for Theoretical Physics APCTP, Abdus Salam International Center for Theoretical Physics ICTP, the Asian Office of Aerospace Research and Development AOARD, the US Office of Naval Research Global-Asia ONRG, the Ministry of Science and Technology of Vietnam MOST, the Vietnam Academy of Science and Technology VAST, the Vietnam National University in Ho Chi Minh City VNU HCMC and other Sponsors, we would have been unable to hold this Workshop. On behalf of the International and Local Organizing Committees I would like to express our deep gratitude to the Sponsors. We highly appreciate the support and advice of the members of the International Advisory Committee, the scientific contribution of the invited speakers and all participants. We acknowledge the warm reception of the Khanh Hoa province Administration and citizens, and the hard work of the VAST staff for the success of the Workshop. We cordially wish all participants lively scientific

  9. Project and implementation of advanced controls in a natural gas reformation unit; Projeto e implementacao de controles avancados em unidade de reforma de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Andreoni, Bruno [Andreoni Servicos de Engenharia Ltda., Rio de Janeiro, RJ (Brazil); Bueno, Roberto Galvao [Prosint S.A., XX (Brazil); Cruz, Luiz Alfredo A [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1993-12-31

    This paper presents an effective implementation of advanced controls using a DCS previously loaded with conventional controls only. The advanced control system for a multiple fuel natural gas reform furnace consists of material and energy on-line balances, multivariable feedback trims, dynamic compensations and adaptive controls. The system performed well without an analyzer despite wide variations in fuel composition. A few items were implemented to improve the system after startup of the original strategies. All implementations were made possible through great involvement of plant personnel, aided by a consulting firm. The system provided tangible benefits and adequate return on the investment. (author)

  10. Advanced Fuels Campaign FY 2010 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Lori Braase

    2010-12-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

  11. Application of discrete choice experiments to enhance stakeholder engagement as a strategy for advancing implementation: a systematic review

    Directory of Open Access Journals (Sweden)

    Ramzi G. Salloum

    2017-11-01

    Full Text Available Abstract Background One of the key strategies to successful implementation of effective health-related interventions is targeting improvements in stakeholder engagement. The discrete choice experiment (DCE is a stated preference technique for eliciting individual preferences over hypothetical alternative scenarios that is increasingly being used in health-related applications. DCEs are a dynamic approach to systematically measure health preferences which can be applied in enhancing stakeholder engagement. However, a knowledge gap exists in characterizing the extent to which DCEs are used in implementation science. Methods We conducted a systematic literature search (up to December 2016 of the English literature to identify and describe the use of DCEs in engaging stakeholders as an implementation strategy. We searched the following electronic databases: MEDLINE, Econlit, PsychINFO, and the CINAHL using mesh terms. Studies were categorized according to application type, stakeholder(s, healthcare setting, and implementation outcome. Results Seventy-five publications were selected for analysis in this systematic review. Studies were categorized by application type: (1 characterizing demand for therapies and treatment technologies (n = 32, (2 comparing implementation strategies (n = 22, (3 incentivizing workforce participation (n = 11, and (4 prioritizing interventions (n = 10. Stakeholders included providers (n = 27, patients (n = 25, caregivers (n = 5, and administrators (n = 2. The remaining studies (n = 16 engaged multiple stakeholders (i.e., combination of patients, caregivers, providers, and/or administrators. The following implementation outcomes were discussed: acceptability (n = 75, appropriateness (n = 34, adoption (n = 19, feasibility (n = 16, and fidelity (n = 3. Conclusions The number of DCE studies engaging stakeholders as an implementation strategy has been increasing over the

  12. Implementing Participatory Water Management: Recent Advances in Theory, Practice, and Evaluation

    Directory of Open Access Journals (Sweden)

    Yorck von Korff

    2012-03-01

    Full Text Available Many current water planning and management problems are riddled with high levels of complexity, uncertainty, and conflict, so-called "messes" or "wicked problems." The realization that there is a need to consider a wide variety of values, knowledge, and perspectives in a collaborative decision making process has led to a multitude of new methods and processes being proposed to aid water planning and management, which include participatory forms of modeling, planning, and decision aiding processes. However, despite extensive scientific discussions, scholars have largely been unable to provide satisfactory responses to two pivotal questions: (1 What are the benefits of using participatory approaches?; (2 How exactly should these approaches be implemented in complex social-ecological settings to realize these potential benefits? In the study of developing social-ecological system sustainability, the first two questions lead to a third one that extends beyond the one-time application of participatory approaches for water management: (3 How can participatory approaches be most appropriately used to encourage transition to more sustainable ecological, social, and political regimes in different cultural and spatial contexts? The answer to this question is equally open. This special feature on participatory water management attempts to propose responses to these three questions by outlining recent advances in theory, practice, and evaluation related to the implementation of participatory water management. The feature is largely based on an extensive range of case studies that have been implemented and analyzed by cross-disciplinary research teams in collaboration with practitioners, and in a number of cases in close cooperation with policy makers and other interested parties such as farmers, fishermen, environmentalists, and the wider public.

  13. Science for Diplomacy, Diplomacy for Science

    Science.gov (United States)

    Colglazier, E. Wiliam

    2015-04-01

    I was a strong proponent of ``science diplomacy'' when I became Science and Technology Adviser to the Secretary of State in 2011. I thought I knew a lot about the subject after being engaged for four decades on international S&T policy issues and having had distinguished scientists as mentors who spent much of their time using science as a tool for building better relations between countries and working to make the world more peaceful, prosperous, and secure. I learned a lot from my three years inside the State Department, including great appreciation and respect for the real diplomats who work to defuse conflicts and avoid wars. But I also learned a lot about science diplomacy, both using science to advance diplomacy and diplomacy to advance science. My talk will focus on the five big things that I learned, and from that the one thing where I am focusing my energies to try to make a difference now that I am a private citizen again.

  14. Best Practices for Implementing Inquiry-Based Science Instruction for English Language Learners

    Science.gov (United States)

    Williams, Erica

    This applied dissertation was designed to provide better access to current information to link literacy and science. Students frequently used literacy skills to gather information and communicate understanding of scientific concepts to others. Science became applicable through the tools associated with literacy. There was a need for instruction that integrated language development with science content. This research focused on revealing the instructional trends of English language learners science teachers in the United Arab Emirates. The researcher introduced the questionnaire surveys in the form of a professional development session. The participants were asked to complete the questionnaire concurrently with the descriptive presentation of each component of the sheltered instruction observation protocol (SIOP) model. Completing the SIOP Checklist Survey provided data on the type of constructivist strategies (best practices) teachers were utilizing and to what degree of fidelity the strategies were being implemented. Teachers were encouraged to continue to use these services for curriculum enrichment and as an additional source for future lesson plans. An analysis of the data revealed authentic learning as the most common best practice used with the most fidelity by teachers. The demographic subgroup, teaching location, was the only subgroup to show statistical evidence of an association between teaching location and the use of problem-based learning techniques in the classroom. Among factors that influenced the degree of teacher fidelity, teachers' expectation for student achievement had a moderate degree of association between the use of scaffolding techniques and co-operative learning.

  15. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive

  16. NATO Advanced Research Workshop on Brilliant Light Facilities and Research in Life and Material Sciences

    CERN Document Server

    Tsakanov, Vasili; Brilliant Light in Life and Material Sciences

    2007-01-01

    The present book contains an excellent overview of the status and highlights of brilliant light facilities and their applications in biology, chemistry, medicine, materials and environmental sciences. Overview papers on diverse fields of research by leading experts are accompanied by the highlights in the near and long-term perspectives of brilliant X-Ray photon beam usage for fundamental and applied research. The book includes advanced topics in the fields of high brightness photon beams, instrumentation, the spectroscopy, microscopy, scattering and imaging experimental techniques and their applications. The book is strongly recommended for students, engineers and scientists in the field of accelerator physics, X-ray optics and instrumentation, life, materials and environmental sciences, bio and nanotechnology.

  17. Caring Science or Science of Caring.

    Science.gov (United States)

    Turkel, Marian C; Watson, Jean; Giovannoni, Joseph

    2018-01-01

    The concepts caring science and science of caring have different meanings; however, they are often used interchangeably. The purpose of this paper is to present an overview of the synthesis of the scholarly literature on the definitions of the science of caring and caring science and to affirm the authors' perspective relating to the language of caring science. Caring science advances the epistemology and ontology of caring. Ideas related to caring science inquiry are presented, and the authors acknowledge the future of caring science as unitary caring science.

  18. The Science of Phototherapy: An Introduction

    CERN Document Server

    Grossweiner, Leonard I; Gerald Rogers, B.H; Jones, Linda R

    2005-01-01

    Phototherapy exemplifies scientific medicine. The major advances have resulted from effective collaborations between basic researchers and clinicians. This book is directed to clinicians and basic researchers who are interested in current and emerging implementations of phototherapy. It can serve as an introductory reference and a textbook for advanced undergraduate and graduate courses in medical physics and biomedical engineering. The emphasis is on the science underlying the various phototherapy procedures, which encompasses aspects of classical and molecular photophysics, biological photochemistry, photobiology and biophotonics. Topics that do not usually appear in other general sources include the theory and applications of tissue optics, Monte Carlo simulation, light dosimetry, and analytical modeling of laser surgery. Many illustrative problems with answers are provided to exemplify the more quantitative aspects of each topic.

  19. AN EXAMINATION OF THE ADVANCES IN SCIENCE AND TECHNOLOGY OF PREVENTION OF TOOTH DECAY IN YOUNG CHILDREN SINCE THE SURGEON GENERAL’S REPORT ON ORAL HEALTH

    Science.gov (United States)

    Milgrom, Peter; Zero, Domenick T.; Tanzer, Jason M.

    2009-01-01

    This paper addresses a number of areas related to how effectively science and technology have met Healthy People 2010 goals for tooth decay prevention. In every area mentioned, it appears that science and technology are falling short of these goals. Earlier assessments identified water fluoridation as one of the greatest public health accomplishments of the last century. Yet, failure to complete needed clinical and translational research has shortchanged the caries prevention agenda that incomplete at a critical juncture. Science has firmly established the transmissible nature of tooth decay. However, there is evidence that tooth decay in young children is increasing although progress has been made in other age groups. Studies of risk assessment have not been translated into improved practice. Antiseptics, chlorhexidine varnish, and PVP-iodine may have value, but definitive trials are needed. Fluorides remain the most effective agents, but are not widely disseminated to the most needy. Fluoride varnish provides a relatively effective topical preventive for very young children, yet definitive trials have not been conducted. Silver diammine fluoride also has potential but requires study in the US. Data support effectiveness and safety of xylitol, but adoption is not widespread. Dental sealants remain a mainstay of public policy, yet after decades of research, widespread use has not occurred. We conclude that research has established the public health burden of tooth decay, but insufficient research addresses the problems identified in the Surgeon General's Report. Transfer of technology from studies to implementation is needed to prevent tooth decay among children. This should involve translational research and implementation of scientific and technological advances into practice. PMID:19837019

  20. Defining Success in Open Science.

    Science.gov (United States)

    Ali-Khan, Sarah E; Jean, Antoine; MacDonald, Emily; Gold, E Richard

    2018-01-01

    Mounting evidence indicates that worldwide, innovation systems are increasing unsustainable. Equally, concerns about inequities in the science and innovation process, and in access to its benefits, continue. Against a backdrop of growing health, economic and scientific challenges global stakeholders are urgently seeking to spur innovation and maximize the just distribution of benefits for all. Open Science collaboration (OS) - comprising a variety of approaches to increase open, public, and rapid mobilization of scientific knowledge - is seen to be one of the most promising ways forward. Yet, many decision-makers hesitate to construct policy to support the adoption and implementation of OS without access to substantive, clear and reliable evidence. In October 2017, international thought-leaders gathered at an Open Science Leadership Forum in the Washington DC offices of the Bill and Melinda Gates Foundation to share their views on what successful Open Science looks like. Delegates from developed and developing nations, national governments, science agencies and funding bodies, philanthropy, researchers, patient organizations and the biotechnology, pharma and artificial intelligence (AI) industries discussed the outcomes that would rally them to invest in OS, as well as wider issues of policy and implementation. This first of two reports, summarizes delegates' views on what they believe OS will deliver in terms of research, innovation and social impact in the life sciences. Through open and collaborative process over the next months, we will translate these success outcomes into a toolkit of quantitative and qualitative indicators to assess when, where and how open science collaborations best advance research, innovation and social benefit. Ultimately, this work aims to develop and openly share tools to allow stakeholders to evaluate and re-invent their innovation ecosystems, to maximize value for the global public and patients, and address long-standing questions

  1. Barriers to the implementation of advanced clinical pharmacy services at Portuguese hospitals.

    Science.gov (United States)

    Brazinha, Isabel; Fernandez-Llimos, Fernando

    2014-10-01

    In some countries, such as Portugal, clinical pharmacy services in the hospital setting may be implemented to a lower extent than desirable. Several studies have analysed the perceived barriers to pharmacy service implementation in community pharmacy. To identify the barriers towards the implementation of advanced clinical pharmacy services at a hospital level in Portugal, using medication follow-up as an example. Hospital pharmacies in Portugal. A qualitative study based on 20 face-to-face semi-structured interviews of strategists and hospital pharmacists. The interview guide was based on two theoretical frameworks, the Borum's theory of organisational change and the Social Network Theory, and then adapted for the Portuguese reality and hospital environments. A constant comparison process with previously analysed interviews, using an inductive approach, was carried out to allow themes to emerge. Themes were organised following the Leavitt's Organizational Model: functions and objectives; hospital pharmacist; structure of pharmacy services; environment; technology; and medication follow-up based on the study topic. Barriers towards practice change. Medication follow-up appeared not to be a well-known service in Portuguese hospital pharmacies. The major barriers at the pharmacist level were their mind-set, resistance to change, and lack of readiness. Lack of time, excessive bureaucratic and administrative workload, reduced workforce, and lack of support from the head of the service and other colleagues were identified as structural barriers. Lack of access to patients' clinical records and cumbersome procedures to implement medication follow-up were recognised as technological barriers. Poor communication with other healthcare professionals, and lack of support from professional associations were the major environmental barriers. Few of the barriers identified by Portuguese hospital pharmacists were consistent with previous reports from community pharmacy. The mind

  2. Proposal to DOE Basic Energy Sciences Ultrafast X-ray science facility at the Advanced Light Source

    CERN Document Server

    Schönlein, R W; Alivisatos, A P; Belkacem, A; Berrah, N; Bozek, J; Bressler, C; Cavalleri, A; Chang, Z; Chergui, M; Falcone, R W; Glover, T E; Heimann, P A; Hepburn, J; Larsson, J; Lee, R W; McCusker, J; Padmore, H A; Pattison, P; Pratt, S T; Robin, D W; Schlüter, Ross D; Shank, C V; Wark, J; Zholents, A A; Zolotorev, M S

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  3. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-12-12

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  4. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    International Nuclear Information System (INIS)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron

  5. [Development of an advanced education program for community medicine by Nagasaki pharmacy and nursing science union consortium].

    Science.gov (United States)

    Teshima, Mugen; Nakashima, Mikiro; Hatakeyama, Susumi

    2012-01-01

    The Nagasaki University School of Pharmaceutical Sciences has conducted a project concerning "development of an advanced education program for community medicine" for its students in collaboration with the University's School of Nursing Sciences, the University of Nagasaki School of Nursing Sciences, and the Nagasaki International University School of Pharmaceutical Sciences. The project was named "formation of a strategic base for the integrated education of pharmacy and nursing science specially focused on home-healthcare and welfare", that has been adopted at "Strategic University Cooperative Support Program for Improving Graduate" by the Ministry of Education, Culture, Sports, Science and Technology, Japan from the 2009 academic year to the 2011 academic year. Our project is a novel education program about team medical care in collaboration with pharmacist and nurse. In order to perform this program smoothly, we established "Nagasaki pharmacy and nursing science union consortium (Nagasaki University, The University of Nagasaki, Nagasaki International University, Nagasaki Pharmaceutical Association, Nagasaki Society of Hospital Pharmacists, Nagasaki Nursing Association, Nagasaki Medical Association, Nagasaki Prefectural Government)". In this symposium, we introduce contents about university education program and life learning program of the project.

  6. Making Science Work.

    Science.gov (United States)

    Thomas, Lewis

    1981-01-01

    Presents a viewpoint concerning the impact of recent scientific advances on society. Discusses biological discoveries, space exploration, computer technology, development of new astronomical theories, the behavioral sciences, and basic research. Challenges to keeping science current with technological advancement are also discussed. (DS)

  7. Military conversion and Science from a global perspective

    International Nuclear Information System (INIS)

    Proctor, J.

    1994-01-01

    The changes that begun in late 1980s in Europe and former Soviet Union have great impact upon political, economic and social conditions of most people in the world, meaning present state and future development of science. This paper deals with the problems of defense conversion and brain drain which provide a uniting global issue for learned societies, academies of science and organizations advancing technology around the world to maintain pressure on decision makers to raise science and technology in their scheme of priorities. Learned societies and academies both non-governmental and government supported have clear roles in defense conversion and related issues of brain drain. The challenge remains: to design and implement structures and processes for the modern world to deal with high technology, basic and applied science with the attendant great concentration of power and resources. Revised procedures for funding transitional structures and processes for sciences are expected to be recommended

  8. Generic Science Skills Enhancement of Students through Implementation of IDEAL Problem Solving Model on Genetic Information Course

    Science.gov (United States)

    Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.

    2018-04-01

    This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with of 20,93%. Based on result for each indicator, showed that there are indicators of generic science skills classified in the high category.

  9. Implementation and Initial Testing of Advanced Processing and Analysis Algorithms for Correlated Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cutler, Theresa Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Robert Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects in all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.

  10. Management of science policy, sociology of science policy and economics of science policy

    CERN Document Server

    Ruivo, Beatriz

    2017-01-01

    'Management of science policy, sociology of science policy and economics of science policy' is a theoretical essay on the scientific foundation of science policy (formulation, implementation, instruments and procedures). It can be also used as a textbook.

  11. Developing science policy capacity at the state government level: Planning a science and technology policy fellowship program for Colorado and beyond

    Science.gov (United States)

    Druckenmiller, M. L.

    2017-12-01

    There is growing recognition of the potential to advance science policy capacity within state legislatures, where there is most often a shortage of professional backgrounds in the natural sciences, technology, engineering, and medicine. Developing such capacity at the state level should be considered a vital component of any comprehensive national scale strategy to strengthen science informed governance. Toward this goal, the Center for Science and Technology Policy Research at the University of Colorado Boulder is leading a strategic planning process for a Science and Technology Policy Fellowship Program within the Colorado state legislature and executive branch agencies. The intended program will place PhD-level scientists and engineers in one-year placements with decision-makers to provide an in-house resource for targeted policy-relevant research. Fellows will learn the intricacies of the state policymaking process, be exposed to opportunities for science to inform decisions, and develop a deeper understanding of key science and technology topics in Colorado, including water resources, wildfire management, and energy. The program's ultimate goals are to help foster a decision-making arena informed by evidence-based information, to develop new leaders adept at bridging science and policymaking realms, and to foster governance that champions the role of science in society. Parallel to efforts in Colorado, groups from nine other states are preparing similar plans, providing opportunities to share approaches across states and to set the stage for increased science and technology input to state legislative agendas nationwide. Importantly, highly successful and sustainable models exist; the American Association for the Advancement of Science (AAAS) has implemented a federally based fellowship program for over 43 years and the California Council for Science and Technology (CCST) has directed a fellowship program for their state's legislature since 2009. AAAS and CCST

  12. Design and implementation of an advanced protection system for the Shin-Kori 3 and 4 nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Yonghak; Choi, Woongseock; Kwon, Jongsoo; Wilkosz, Stephen J.; Ridolfo, Charles F.; Yanosy, Paul L.

    2008-01-01

    The Nuclear Power Industry is currently embracing modern digital technology for upgrades to existing Instrumentation and Control (I and C) infrastructures as well as for incorporation into the next generation of new plants which will be coming 'on-line' during the next decade. This technology is being fully exploited for the next generation of advanced plant protection systems which will be initially deployed on the Shin-Kori 3 and 4 Nuclear Power Plant in the Republic of Korea. The system design for this plant protection system is being performed by the Korea Power Engineering Company (KOPEC) and builds upon the past generation of digital safety systems which were initially implemented at Ulchin 5 and 6. The advanced protection system is an evolution of this existing design and includes a number of improved operating attributes including: · Integration of Reactor Protection, Engineered Safety Features Actuation, and Qualified Indication and Alarm functions which were previously implemented by separate systems in the past. · Use of a 'soft control' interface which provides convenient accessibility to the safety systems from 'operator workstations' · Implementation of a Large Display Panel (LDP) which provides a consistent and constant representation of the overall plant state and of the plant safety status. The equipment for the advanced plant protection system is being provided by Westinghouse Electric Company (WEC) and utilizes the Westinghouse 'Common Q' Standardized qualified platform (where 'Q' denotes 'qualified'). The 'Common Q' platform is comprised of commercially dedicated Programmable Logic Controllers (PLC's), color-graphic Flat Panel Displays (FPD's) with integral touch screens, and high speed data communication links. It is a mature product that is in wide use for a number of safety-related applications. Among its key attributes are: · High overall system availability, which is achieved via use of a multiple channel configuration that is tolerant

  13. New Science for a Secure and Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  14. Social science research in malaria prevention, management and control in the last two decades: an overview.

    Science.gov (United States)

    Mwenesi, Halima Abdullah

    2005-09-01

    In the recent past, considerable progress has been made in understanding how human behavior and social organization, macro- and micro-level economic processes, and health and political systems affect responses to malaria at global, national, community, household, and individual levels. Advances in malaria-related social, behavioral, economic, evaluation, health systems, and policy (social science) research have resulted in improvements in the design and implementation of malaria prevention, management and control (PMC) strategies. Indeed, the past two decades chronicle dramatic advances in the implementation of evidence-based interventions, drawn not only from biomedical but also from social science research. Malaria awareness-raising, advocacy, case management, and prevention efforts have reaped the benefits of social science research and as a result, many programs are implemented and evaluated in a more effective manner than in the past. However, the pace at which findings from social science research are integrated into program and policy implementation is unsatisfactory. Additionally, examples remain of programs that fail to utilize findings from social science research and as a result, achieve minimal results. Furthermore, there is a sizeable body of knowledge that is underutilized and which, if assimilated into programs and policies, could accelerate progress in malaria PMC. Examples include information on meaningful community participation, gender, socio-economic status, and health systems. Regrettably, although social science input is necessary for almost all interventions for malaria management and control, the numbers of scientists working in this area are dismal in most of the key disciplines-medical anthropology; demography; geography and sociology; health economics and health policy; social psychology; social epidemiology; and behavior-change communication. Further, skills of program workers charged with implementation of interventions and strategies

  15. Science et Technique, Sciences de la Santé

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES. Science et Technique, Sciences de la Santé. Journal Home > Vol ... The journal is focused on health sciences in general. It publishes articles ...

  16. Design and Implementation of a Library and Information Science Open Access Journal Union Catalogue System

    Directory of Open Access Journals (Sweden)

    Sinn-Cheng Lin

    2017-03-01

    Full Text Available Open access is a mode of academic communication that has been on the rise in recent years, but open access academic resources are widely dispersed across the internet, making it occasionally inconvenient in terms of its use. This research is focused on library and information science, using the OAIS reference model as the system framework, two open access platform, DOAJ and E-LIS as the data sources, and through system implementation develop a “library and information science open access journal union catalogue” system. Using the OAI-PMH protocol as the data interoperability standard, and LAMP as the development environment, four major functionalities: injest, archiving, management and access of information were designed, developed, and integrated into system build. Actual testing and verification showed this system is able to successfully collect data from DOAJ and E-LIS open journal resources related to library and information science. The system is now active and functional, and can be used by researchers in the library and science information field.

  17. How to Implement Rigorous Computer Science Education in K-12 Schools? Some Answers and Many Questions

    Science.gov (United States)

    Hubwieser, Peter; Armoni, Michal; Giannakos, Michail N.

    2015-01-01

    Aiming to collect various concepts, approaches, and strategies for improving computer science education in K-12 schools, we edited this second special issue of the "ACM TOCE" journal. Our intention was to collect a set of case studies from different countries that would describe all relevant aspects of specific implementations of…

  18. Perceptions of Science Teachers on Implementation of Seven Principles for Good Practice in Education by Chickering and Gamson in Courses

    Science.gov (United States)

    Ugras, Mustafa; Asiltürk, Erol

    2018-01-01

    The present study aimed to determine the perceptions of science teachers on the implementation of the seven principles for good practice in education by Chickering and Gamson in their courses. Seven principles for good science education were used as a data collection tool in the survey. "The seven principles for good practice in science…

  19. Advanced Simulation and Computing FY10-FY11 Implementation Plan Volume 2, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, R; Peery, J; McCoy, M; Hopson, J

    2009-09-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  20. Advanced Simulation and Computing FY09-FY10 Implementation Plan, Volume 2, Revision 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, R; Hopson, J; Peery, J; McCoy, M

    2008-10-07

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  1. Some Problems of Information-Communication Technologies Implementation in the Activity of Enterprise Structures of Education and Science

    Directory of Open Access Journals (Sweden)

    Alexander A. Galushkin

    2016-09-01

    Full Text Available In this article author examines some of the issues of information and communication technologies in the activity of enterprise structures of education and science. During study author analyzes views of some eminent scientists, with formulate their own point of view. The study emphasizes that the introduction of information products in the deeper stages of the structure of education and science, implementing educational programs, as a rule, is facing a number of serious difficulties. In conclusion, the author cites 3 evidence-based conclusions.

  2. Nutrigenomics: Definitions and Advances of This New Science

    Directory of Open Access Journals (Sweden)

    N. M. R. Sales

    2014-01-01

    Full Text Available The search for knowledge regarding healthy/adequate food has increased in the last decades among the world population, researchers, nutritionists, and health professionals. Since ancient times, humans have known that environment and food can interfere with an individual’s health condition, and have used food and plants as medicines. With the advance of science, especially after the conclusion of the Human Genome Project (HGP, scientists started questioning if the interaction between genes and food bioactive compounds could positively or negatively influence an individual’s health. In order to assess this interaction between genes and nutrients, the term “Nutrigenomics” was created. Hence, Nutrigenomics corresponds to the use of biochemistry, physiology, nutrition, genomics, proteomics, metabolomics, transcriptomics, and epigenomics to seek and explain the existing reciprocal interactions between genes and nutrients at a molecular level. The discovery of these interactions (gene-nutrient will aid the prescription of customized diets according to each individual’s genotype. Thus, it will be possible to mitigate the symptoms of existing diseases or to prevent future illnesses, especially in the area of Nontransmissible Chronic Diseases (NTCDs, which are currently considered an important world public health problem.

  3. Implementing drought early warning systems: policy lessons and future needs

    Science.gov (United States)

    Iglesias, Ana; Werner, Micha; Maia, Rodrigo; Garrote, Luis; Nyabeze, Washington

    2014-05-01

    Drought forecasting and Warning provides the potential of reducing impacts to society due to drought events. The implementation of effective drought forecasting and warning, however, requires not only science to support reliable forecasting, but also adequate policy and societal response. Here we propose a protocol to develop drought forecasting and early warning based in the international cooperation of African and European institutions in the DEWFORA project (EC, 7th Framework Programme). The protocol includes four major phases that address the scientific knowledge and the social capacity to use the knowledge: (a) What is the science available? Evaluating how signs of impending drought can be detected and predicted, defining risk levels, and analysing of the signs of drought in an integrated vulnerability approach. (b) What are the societal capacities? In this the institutional framework that enables policy development is evaluated. The protocol gathers information on vulnerability and pending hazard in advance so that early warnings can be declared at sufficient lead time and drought mitigation planning can be implemented at an early stage. (c) How can science be translated into policy? Linking science indicators into the actions/interventions that society needs to implement, and evaluating how policy is implemented. Key limitations to planning for drought are the social capacities to implement early warning systems. Vulnerability assessment contributes to identify these limitations and therefore provides crucial information to policy development. Based on the assessment of vulnerability we suggest thresholds for management actions to respond to drought forecasts and link predictive indicators to relevant potential mitigation strategies. Vulnerability assessment is crucial to identify relief, coping and management responses that contribute to a more resilient society. (d) How can society benefit from the forecast? Evaluating how information is provided to

  4. An Examination of Teacher Understanding of Project Based Science as a Result of Participating in an Extended Professional Development Program: Implications for Implementation

    Science.gov (United States)

    Mentzer, Gale A.; Czerniak, Charlene M.; Brooks, Lisa

    2017-01-01

    Project-based science (PBS) aligns with national standards that assert children should learn science by actively engaging in the practices of science. Understanding and implementing PBS requires a shift in teaching practices away from one that covers primarily content to one that prompts children to conduct investigations. A common challenge to…

  5. A preliminary exploration of the advanced molecular bio-sciences research center

    International Nuclear Information System (INIS)

    Yanai, Takanori; Yamada, Yutaka; Tanaka, Kimio; Yamagami, Mutsumi; Sota, Masahiro; Takemura, Tatsuo; Koyama, Kenji; Sato, Fumiaki

    2001-01-01

    Low dose and low dose rate radiation effects on lifespan, pathological changes, hemopoiesis and cytokine production in mice have been investigated in our laboratory. In the intermediate period of the investigation, an expert committee on radiation biology was organized. The purposes of the committee were to assess previous studies and advise on a future research plan for the Advanced Molecular Bio-Sciences Research Center (AMBIC). The committee emphasized the necessity of molecular research in radiation biology, and proposed the following five subjects: 1) molecular carcinogenesis by low dose radiation; 2) radiation effects on the immune and hemopoietic systems; 3) molecular mechanisms of hereditary effect; 4) noncancer diseases of low dose radiation, and 5) cellular mechanisms by low dose radiation. (author)

  6. Advanced Research and Data Methods in Women's Health: Big Data Analytics, Adaptive Studies, and the Road Ahead.

    Science.gov (United States)

    Macedonia, Christian R; Johnson, Clark T; Rajapakse, Indika

    2017-02-01

    Technical advances in science have had broad implications in reproductive and women's health care. Recent innovations in population-level data collection and storage have made available an unprecedented amount of data for analysis while computational technology has evolved to permit processing of data previously thought too dense to study. "Big data" is a term used to describe data that are a combination of dramatically greater volume, complexity, and scale. The number of variables in typical big data research can readily be in the thousands, challenging the limits of traditional research methodologies. Regardless of what it is called, advanced data methods, predictive analytics, or big data, this unprecedented revolution in scientific exploration has the potential to dramatically assist research in obstetrics and gynecology broadly across subject matter. Before implementation of big data research methodologies, however, potential researchers and reviewers should be aware of strengths, strategies, study design methods, and potential pitfalls. Examination of big data research examples contained in this article provides insight into the potential and the limitations of this data science revolution and practical pathways for its useful implementation.

  7. Economic (gross cost) analysis of systematically implementing a programme of advance care planning in three Irish nursing homes.

    Science.gov (United States)

    O'Sullivan, Ronan; Murphy, Aileen; O'Caoimh, Rónán; Cornally, Nicola; Svendrovski, Anton; Daly, Brian; Fizgerald, Carol; Twomey, Cillian; McGlade, Ciara; Molloy, D William

    2016-04-26

    Although advance care planning (ACP) and the use of advanced care directives (ACD) and end-of-life care plans are associated with a reduction in inappropriate hospitalisation, there is little evidence supporting the economic benefits of such programmes. We assessed the economic impact (gross savings) of the Let Me Decide (LMD) ACP programme in Ireland, specifically the impact on hospitalisations, bed days and location of resident deaths, before and after systematic implementation of the LMD-ACP combined with a palliative care education programme. The LMD-ACP was introduced into three long-term care (LTC) facilities in Southern Ireland and outcomes were compared pre and post implementation. In addition, 90 staff were trained in a palliative care educational programme. Economic analysis including probabilistic sensitivity analysis was performed. The uptake of an ACD or end-of-life care post-implementation rose from 25 to 76%. Post implementation, there were statistically significant decreases in hospitalisation rates from baseline (hospitalisation incidents declined from 27.8 to 14.6%, z = 3.96, p Economic analysis suggested a cost-reduction related to reduced hospitalisations ranging between €10 and €17.8 million/annum and reduction in ambulance transfers, estimated at €0.4 million/annum if these results were extrapolated nationally. When unit costs and LOS estimates were varied in scenario analyses, the expected cost reduction owing to reduced hospitalisations, ranged from €17.7 to €42.4 million nationally. Implementation of the LMD-ACP (ACD/end-of-life care plans combined with palliative care education) programme resulted in reduced rates of hospitalisation. Despite an increase in LOS, likely reflecting more complex care needs of admitted residents, gross costs were reduced and scenario analysis projected large annual savings if these results were extrapolated to the wider LTC population in Ireland.

  8. Evaluating the sustainability, scalability, and replicability of an STH transmission interruption intervention: The DeWorm3 implementation science protocol

    Science.gov (United States)

    Ajjampur, Sitara S. R.; Bailey, Robin; Galactionova, Katya; Gwayi-Chore, Marie-Claire; Halliday, Katherine; Ibikounle, Moudachirou; Juvekar, Sanjay; Kalua, Khumbo; Kang, Gagandeep; Lele, Pallavi; Luty, Adrian J. F.; Pullan, Rachel; Sarkar, Rajiv; Schär, Fabian; Tediosi, Fabrizio; Weiner, Bryan J.; Yard, Elodie; Walson, Judd

    2018-01-01

    Hybrid trials that include both clinical and implementation science outcomes are increasingly relevant for public health researchers that aim to rapidly translate study findings into evidence-based practice. The DeWorm3 Project is a series of hybrid trials testing the feasibility of interrupting the transmission of soil transmitted helminths (STH), while conducting implementation science research that contextualizes clinical research findings and provides guidance on opportunities to optimize delivery of STH interventions. The purpose of DeWorm3 implementation science studies is to ensure rapid and efficient translation of evidence into practice. DeWorm3 will use stakeholder mapping to identify individuals who influence or are influenced by school-based or community-wide mass drug administration (MDA) for STH and to evaluate network dynamics that may affect study outcomes and future policy development. Individual interviews and focus groups will generate the qualitative data needed to identify factors that shape, contextualize, and explain DeWorm3 trial outputs and outcomes. Structural readiness surveys will be used to evaluate the factors that drive health system readiness to implement novel interventions, such as community-wide MDA for STH, in order to target change management activities and identify opportunities for sustaining or scaling the intervention. Process mapping will be used to understand what aspects of the intervention are adaptable across heterogeneous implementation settings and to identify contextually-relevant modifiable bottlenecks that may be addressed to improve the intervention delivery process and to achieve intervention outputs. Lastly, intervention costs and incremental cost-effectiveness will be evaluated to compare the efficiency of community-wide MDA to standard-of-care targeted MDA both over the duration of the trial and over a longer elimination time horizon. PMID:29346376

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Institute for Nanomaterials and Nanotechnology, MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), Rabat, Morocco; LMPHE (URAC 12), Departement of Physique, BP 1014, Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco; National Centre for Energy, Sciences and ...

  10. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students.

    Science.gov (United States)

    Jordan, Tuajuanda C; Burnett, Sandra H; Carson, Susan; Caruso, Steven M; Clase, Kari; DeJong, Randall J; Dennehy, John J; Denver, Dee R; Dunbar, David; Elgin, Sarah C R; Findley, Ann M; Gissendanner, Chris R; Golebiewska, Urszula P; Guild, Nancy; Hartzog, Grant A; Grillo, Wendy H; Hollowell, Gail P; Hughes, Lee E; Johnson, Allison; King, Rodney A; Lewis, Lynn O; Li, Wei; Rosenzweig, Frank; Rubin, Michael R; Saha, Margaret S; Sandoz, James; Shaffer, Christopher D; Taylor, Barbara; Temple, Louise; Vazquez, Edwin; Ware, Vassie C; Barker, Lucia P; Bradley, Kevin W; Jacobs-Sera, Deborah; Pope, Welkin H; Russell, Daniel A; Cresawn, Steven G; Lopatto, David; Bailey, Cheryl P; Hatfull, Graham F

    2014-02-04

    Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students' interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome

  11. Designing and Implementing a New Advanced Level Biology Course

    Science.gov (United States)

    Hall, Angela; Reiss, Michael J.; Rowell, Cathy; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course, piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the…

  12. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Towards a first implementation of the WLIMES approach in living system studies advancing the diagnostics and therapy in augmented personalized medicine.

    Science.gov (United States)

    Simeonov, Plamen L

    2017-12-01

    The goal of this paper is to advance an extensible theory of living systems using an approach to biomathematics and biocomputation that suitably addresses self-organized, self-referential and anticipatory systems with multi-temporal multi-agents. Our first step is to provide foundations for modelling of emergent and evolving dynamic multi-level organic complexes and their sustentative processes in artificial and natural life systems. Main applications are in life sciences, medicine, ecology and astrobiology, as well as robotics, industrial automation, man-machine interface and creative design. Since 2011 over 100 scientists from a number of disciplines have been exploring a substantial set of theoretical frameworks for a comprehensive theory of life known as Integral Biomathics. That effort identified the need for a robust core model of organisms as dynamic wholes, using advanced and adequately computable mathematics. The work described here for that core combines the advantages of a situation and context aware multivalent computational logic for active self-organizing networks, Wandering Logic Intelligence (WLI), and a multi-scale dynamic category theory, Memory Evolutive Systems (MES), hence WLIMES. This is presented to the modeller via a formal augmented reality language as a first step towards practical modelling and simulation of multi-level living systems. Initial work focuses on the design and implementation of this visual language and calculus (VLC) and its graphical user interface. The results will be integrated within the current methodology and practices of theoretical biology and (personalized) medicine to deepen and to enhance the holistic understanding of life. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Advancing Evidence-Based Assessment in School Mental Health: Key Priorities for an Applied Research Agenda.

    Science.gov (United States)

    Arora, Prerna G; Connors, Elizabeth H; George, Melissa W; Lyon, Aaron R; Wolk, Courtney B; Weist, Mark D

    2016-12-01

    Evidence-based assessment (EBA) is a critically important aspect of delivering high-quality, school-based mental health care for youth. However, research in this area is limited and additional applied research on how best to support the implementation of EBA in school mental health (SMH) is needed. Accordingly, this manuscript seeks to facilitate the advancement of research on EBA in SMH by reviewing relevant literature on EBA implementation in schools and providing recommendations for key research priorities. Given the limited number of published studies available, findings from child and adolescent mental health and implementation science research are also included to inform a robust and comprehensive research agenda on this topic. Based on this literature review, five priorities for research on EBA in SMH are outlined: (1) effective identification of assessment targets, (2) appropriate selection of assessment measures, (3) investigation of organizational readiness for EBA, (4) study of implementation support for EBA, and (5) promotion of EBA data integration and use. Each priority area includes recommended directions for future research. A comprehensive and robust research agenda is warranted to build the science and practice of implementing EBA in SMH. Specific directions for this agenda are offered.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Editorial Board. Bulletin of Materials Science. Editor. Giridhar U. Kulkarni, Centre for Nano and Soft Matter Science, Bengaluru. Associate Editors. Ayan Datta, Indian Association for the Cultivation of Science, Kolkata M. Eswaramoorthy, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru A.K. Ganguli ...

  16. FY 1994 annual report. Advanced combustion science utilizing microgravity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Researches on combustion in microgravity were conducted to develop combustion devices for advanced combustion techniques, and thereby to cope with the requirements for diversification of energy sources and abatement of environmental pollution by exhaust gases. This project was implemented under the research cooperation agreement with US's NASA, and the Japanese experts visited NASA's test facilities. NASA's Lewis Research Center has drop test facilities, of which the 2.2-sec drop test facilities are useful for researches by Japan. The cooperative research themes for combustion in microgravity selected include interactions between fuel droplets, high-pressure combustion of binary fuel sprays, and ignition and subsequent flame propagation in microgravity. An ignition test equipment, density field measurement equipment and flame propagation test equipment were constructed in Japan to conduct the combustion tests in microgravity for, e.g., combustion and evaporation of fuel droplets, combustion characteristics of liquid fuels mixed with solid particles, combustion of coal/oil mixture droplets, and estimating flammability limits. (NEDO)

  17. Advancing theory development: exploring the leadership–climate relationship as a mechanism of the implementation of cultural competence

    Directory of Open Access Journals (Sweden)

    Erick G. Guerrero

    2017-11-01

    Full Text Available Abstract Background Leadership style and specific organizational climates have emerged as critical mechanisms to implement targeted practices in organizations. Drawing from relevant theories, we propose that climate for implementation of cultural competence reflects how transformational leadership may enhance the organizational implementation of culturally responsive practices in health care organizations. Methods Using multilevel data from 427 employees embedded in 112 addiction treatment programs collected in 2013, confirmatory factor analysis showed adequate fit statistics for our measure of climate for implementation of cultural competence (Cronbach’s alpha = .88 and three outcomes: knowledge (Cronbach’s alpha = .88, services (Cronbach’s alpha = .86, and personnel (Cronbach’s alpha = .86 practices. Results Results from multilevel path analyses indicate a positive relationship between employee perceptions of transformational leadership and climate for implementation of cultural competence (standardized indirect effect = .057, bootstrap p < .001. We also found a positive indirect effect between transformational leadership and each of the culturally competent practices: knowledge (standardized indirect effect = .006, bootstrap p = .004, services (standardized indirect effect = .019, bootstrap p < .001, and personnel (standardized indirect effect = .014, bootstrap p = .005. Conclusions Findings contribute to implementation science. They build on leadership theory and offer evidence of the mediating role of climate in the implementation of cultural competence in addiction health service organizations.

  18. Empirical Philosophy of Science

    DEFF Research Database (Denmark)

    Mansnerus, Erika; Wagenknecht, Susann

    2015-01-01

    knowledge takes place through the integration of the empirical or historical research into the philosophical studies, as Chang, Nersessian, Thagard and Schickore argue in their work. Building upon their contributions we will develop a blueprint for an Empirical Philosophy of Science that draws upon...... qualitative methods from the social sciences in order to advance our philosophical understanding of science in practice. We will regard the relationship between philosophical conceptualization and empirical data as an iterative dialogue between theory and data, which is guided by a particular ‘feeling with......Empirical insights are proven fruitful for the advancement of Philosophy of Science, but the integration of philosophical concepts and empirical data poses considerable methodological challenges. Debates in Integrated History and Philosophy of Science suggest that the advancement of philosophical...

  19. Implementation of a new advanced graduate education program in oral implantology.

    Science.gov (United States)

    Gallucci, German O; Weber, Hans Peter; Kalenderian, Elsbeth

    2012-10-01

    The academic program for the Harvard School of Dental Medicine's Advanced Graduate Program in Oral Implantology is based on scientific evidence applied to educational quality, translational research, patient care, and service. The objective of the program is to enable highly motivated individuals with proven scholarship and excellence in patient care to achieve academic leadership in the clinical and scientific fields of implant dentistry and tissue regeneration. A detailed curriculum describing the academic program, as well as a business plan (which included a management plan describing the organizational structure, financial implications, and market forces) and implementation and communication plans, were developed before moving forward. With careful academic and business planning, the result was a vibrant implant program, in which all placements and restorations of implants are coordinated with regard to practice management. The program is integrated into the existing clinical care model and has been financially self-sustaining from its inception. Six students have participated in the last two years. On average, each student performed seventy-nine procedures on twenty-nine patients, generating over $46,000 in production. The curriculum includes didactics, hands-on clinical learning, and research activities. Research is a critical component as well. The results demonstrate that the time taken to develop a detailed curriculum and business plan for a new academic program, which anticipated and resolved potential barriers to success, was instrumental in the successful implementation of an oral implantology residency program.

  20. The investigation of science teachers’ experience in integrating digital technology into science teaching

    Science.gov (United States)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  1. 23rd Recent Advances in Retailing & Services Science Conference, July 11-14, 2016, Edinburgh, Scotland : book of abstracts

    NARCIS (Netherlands)

    Rasouli, S.; Timmermans, H.J.P.

    2016-01-01

    This book includes the (edited) abstracts of the papers that will be presented at the 23rd Recent Advances in Retailing and Services Science Conference, at the Carlton/Hilton hotel, Edinburgh, Scotland, July 11- 16, 2016. The aim of the conference is to bring together an international and

  2. Recruit and ADVANCE

    Science.gov (United States)

    Rosser, Sue V.

    2007-04-01

    Beginning in 2001, the National Science Foundation launched the ADVANCE Initiative, which has now awarded more than 70 million to some thirty institutions for transformations to advance women. Results of studies on how to attract and retain women students and faculty underpinned our ADVANCE Institutional Transformation grant funded by the NSF for 3.7 million for five years, beginning in 2001. As co-principal investigator on this grant, I insured that this research informed the five major threads of the grant: 1) Four termed ADVANCE professors to mentor junior women faculty in each college; 2) Collection of MIT-Report-like data indicators to assess whether advancement of women really occurs during and after the institutional transformation undertaken through ADVANCE; 3) Family-friendly policies and practices to stop the tenure clock and provide active service, modified duties, lactation stations and day care; 4) Mini-retreats to facilitate access for tenure-track women faculty to male decision-makers and administrators for informal conversations and discussion on topics important to women faculty; 5) Removal of subtle gender, racial, and other biases in promotion and tenure. The dynamic changes resulting from the grant in quality of mentoring, new understanding of promotion and tenure, numbers of women retained and given endowed chairs, and emergence of new family friendly policies gave me hope for genuine diversification of leadership in science and technology. As the grant funding ends, the absence of NSF prestige and monitoring, coupled with a change in academic leadership at the top, provide new challenges for institutionalization, recruitment, and advancement of women into leadership positions in science and engineering.

  3. Advancing Pre-college Science and Mathematics Education

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Rick [General Atomics, San Diego, CA (United States)

    2015-05-06

    With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter, the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.

  4. The Implementation of a Cost Effectiveness Analyzer for Web-Supported Academic Instruction: An Example from Life Science

    Science.gov (United States)

    Cohen, Anat; Nachmias, Rafi

    2012-01-01

    This paper describes implementation of a quantitative cost effectiveness analyzer for Web-supported academic instruction that was developed in our University. The paper presents the cost effectiveness analysis of one academic exemplary course in Life Science department and its introducing to the course lecturer for evaluation. The benefits and…

  5. Citizen science: A new perspective to advance spatial pattern evaluation in hydrology.

    Science.gov (United States)

    Koch, Julian; Stisen, Simon

    2017-01-01

    Citizen science opens new pathways that can complement traditional scientific practice. Intuition and reasoning often make humans more effective than computer algorithms in various realms of problem solving. In particular, a simple visual comparison of spatial patterns is a task where humans are often considered to be more reliable than computer algorithms. However, in practice, science still largely depends on computer based solutions, which inevitably gives benefits such as speed and the possibility to automatize processes. However, the human vision can be harnessed to evaluate the reliability of algorithms which are tailored to quantify similarity in spatial patterns. We established a citizen science project to employ the human perception to rate similarity and dissimilarity between simulated spatial patterns of several scenarios of a hydrological catchment model. In total, the turnout counts more than 2500 volunteers that provided over 43000 classifications of 1095 individual subjects. We investigate the capability of a set of advanced statistical performance metrics to mimic the human perception to distinguish between similarity and dissimilarity. Results suggest that more complex metrics are not necessarily better at emulating the human perception, but clearly provide auxiliary information that is valuable for model diagnostics. The metrics clearly differ in their ability to unambiguously distinguish between similar and dissimilar patterns which is regarded a key feature of a reliable metric. The obtained dataset can provide an insightful benchmark to the community to test novel spatial metrics.

  6. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    2010-01-01

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  7. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov (United States)

    , storage, and disposal. Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy Safety Components and Systems Improving battery performance, economics, and safety for transportation. Batteries Sciences and Engineering Chemical Sciences Geosciences Fusion Energy Sciences Advanced Scientific Computing

  8. Implementing the Namaste Care Program for residents with advanced dementia: exploring the perceptions of families and staff in UK care homes.

    Science.gov (United States)

    Stacpoole, Min; Hockley, Jo; Thompsell, Amanda; Simard, Joyce; Volicer, Ladislav

    2017-10-01

    Increasing numbers of older people with advanced dementia are cared for in care homes. No cure is available, so research focused on improving quality of life and quality of care for people with dementia is needed to support them to live and die well. The Namaste Care programme is a multi-dimensional care program with sensory, psycho-social and spiritual components intended to enhance quality of life and quality of care for people with advanced dementia. The aim of the study was to establish whether the Namaste Care program can be implemented in UK care homes; and what effect Namaste Care has on the quality of life of residents with advanced dementia, their families and staff. This article explores the qualitative findings of the study, reporting the effect of the programme on the families of people with advanced dementia and care home staff, and presenting their perceptions of change in care. An organisational action research methodology was used. Focus groups and interviews were undertaken pre/post implementation of the Namaste Care program. The researcher kept a reflective diary recording data on the process of change. A comments book was available to staff and relatives in each care home. Data was analysed thematically within each care home and then across all care homes. Six care homes were recruited in south London: one withdrew before the study was underway. Of the five remaining care homes, four achieved a full Namaste Care program. One care home did not achieve the full program during the study, and another discontinued Namaste Care when the study ended. Every home experienced management disruption during the study. Namaste Care challenged normal routinised care for older people with advanced dementia. The characteristics of care uncovered before Namaste was implemented were: chaos and confusion, rushing around, lack of trust, and rewarding care. After the programme was implemented these perceptions were transformed, and themes of calmness, reaching out to

  9. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  10. Friends and Family: A Literature Review on How High School Social Groups Influence Advanced Math and Science Coursetaking

    Science.gov (United States)

    Gottfried, Michael; Owens, Ann; Williams, Darryl; Kim, Hui Yon; Musto, Michela

    2017-01-01

    In this study, we synthesized the literature on how informal contexts, namely friends and family social groups, shape high school students' likelihood of pursuing advanced math and science coursework. Extending scholarly understandings of STEM education, we turned to the body of literature with three guiding questions: (1) What influence do…

  11. Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy

    Science.gov (United States)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2010-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 90 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed in this article. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations have been developed: (1) Space Act Agreement between NASA and GE for collaborative projects (2) NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011) (3) NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011) (4

  12. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, RE

    2004-07-15

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods

  13. A Career in Science | Women in Science | Initiatives | Indian ...

    Indian Academy of Sciences (India)

    Journals · Overview · Bulletin of Materials Science · DIALOGUE: Science, ... Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore ... Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram ... The Panel organized a one day Lecture on the occasion of International ...

  14. African Crop Science Journal

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... The African Crop Science Journal, a quarterly publication, publishes original ... interactions, information science, environmental science and soil science.

  15. Global-scale Observations of the Limb and Disk (GOLD): Science Implementation

    Science.gov (United States)

    Solomon, S. C.; McClintock, W. E.; Eastes, R.; Anderson, D. N.; Andersson, L.; Burns, A. G.; Codrescu, M.; Daniell, R. E.; England, S.; Eparvier, F. G.; Evans, J. S.; Krywonos, A.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Woods, T. N.

    2017-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) is a NASA mission of opportunity that will image the Earth's thermosphere and ionosphere from geostationary orbit. GOLD will investigate how the thermosphere-ionosphere (T-I) system responds to geomagnetic storms, solar radiation, and upward propagating tides and how the structure of the equatorial ionosphere influences the formation and evolution of equatorial plasma density irregularities. GOLD consists of a pair of identical imaging spectrographs that will measure airglow emissions at far-ultraviolet wavelengths from 132 to 162 nm. On the disk, temperature and composition will be determined during the day using emissions from molecular nitrogen Lyman-Birge-Hopfield (LBH) band and atomic oxygen 135.6 nm, and electron density will be derived at night from 135.6 nm emission. On the limb, exospheric temperature will be derived from LBH emission profiles, and molecular oxygen density will be measured using stellar occultations. This presentation describes the GOLD mission science implementation including the as-built instrument performance and the planned observing scenario. It also describes the results of simulations performed by the GOLD team to validate that the measured instrument performance and observing plan will return adequate data to address the science objectives of the mission.

  16. Proceedings of the 8th Annual Conference on the Science of Dissemination and Implementation

    OpenAIRE

    Chambers, David; Simpson, Lisa; Hill-Briggs, Felicia; Neta, Gila; Vinson, Cynthia; Chambers, David; Beidas, Rinad; Marcus, Steven; Aarons, Gregory; Hoagwood, Kimberly; Schoenwald, Sonja; Evans, Arthur; Hurford, Matthew; Rubin, Ronnie; Hadley, Trevor

    2016-01-01

    Table of contents A1 Introduction to the 8th Annual Conference on the Science of Dissemination and Implementation: Optimizing Personal and Population Health David Chambers, Lisa Simpson D1 Discussion forum: Population health D&I research Felicia Hill-Briggs D2 Discussion forum: Global health D&I research Gila Neta, Cynthia Vinson D3 Discussion forum: Precision medicine and D&I research David Chambers S1 Predictors of community therapists? use of therapy techniques in a large public mental hea...

  17. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  18. Beyond Sputnik U.S. science policy in the twenty-first century

    CERN Document Server

    Neal, Homer A; McCormick, Jennifer

    2008-01-01

    Science and technology are responsible for almost every advance in our modern quality of life. Yet science isn't just about laboratories, telescopes and particle accelerators. Public policy exerts a huge impact on how the scientific community conducts its work. Beyond Sputnik is a comprehensive survey of the field for use as an introductory textbook in courses and a reference guide for legislators, scientists, journalists, and advocates seeking to understand the science policy-making process. Detailed case studies---on topics from cloning and stem cell research to homeland security and science education---offer readers the opportunity to study real instances of policymaking at work. Authors and experts Homer A. Neal, Tobin L. Smith, and Jennifer B. McCormick propose practical ways to implement sound public policy in science and technology and highlight how these policies will guide the results of scientific discovery for years to come.

  19. Implementation of a light-route TDMA communications satellite system for advanced business networks

    Science.gov (United States)

    Hanson, B.; Smalley, A.; Zuliani, M.

    The application of Light Route TDMA systems to various business communication requirements is discussed. It is noted that full development of this technology for use in advanced business networks will be guided by considerations of flexibility, reliability, security, and cost. The implementation of the TDMA system for demonstrating these advantages to a wide range of public and private organizations is described in detail. Among the advantages offered by this system are point-to-point and point-to-multipoint (broadcast) capability; the ability to vary the mix and quantity of services between destinations in a fully connected mesh network on an almost instantaneous basis through software control; and enhanced reliability with centralized monitor, alarm and control functions by virtue of an overhead channel.

  20. A preliminary exploration of Advanced Molecular Bio-Sciences Research Center

    International Nuclear Information System (INIS)

    Yamada, Yutaka; Yanai, Takanori; Onodera, Jun'ichi; Yamagami, Mutsumi; Sakata, Hiroshi; Sota, Masahiro; Takemura, Tatsuo; Koyama, Kenji; Sato, Fumiaki

    2000-01-01

    Low-dose and low-dose-rate radiation effects on life-span, pathological changes, hemopoiesis and cytokine production in experimental animals have been investigated in our laboratory. In the intermediate period of the investigation, an expert committee on radiation biology, which was composed of two task groups, was organized. The purposes of the committee were to assess of previous studies and plan future research for Advanced Molecular Bio-Sciences Research Center (AMBIC). In its report, the committee emphasized the necessity of molecular research in radiation biology and ecology, and proposed six subjects for the research: 1) Molecular carcinogenesis of low-dose radiation; 2) Radiation effects on the immune system and hemopoietic system; 3) Molecular mechanisms of hereditary effect; 4) Non cancer effect of low-dose radiation; 5) Gene targeting for ion transport system in plants; 6) Bioremediation with transgenic plant and bacteria. Exploration of the AMBIC project will continue under the committee's direction. (author)