Sample records for advanced vehicle applications

  1. An advanced unmanned vehicle for remote applications

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot's current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia's Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board

  2. An advanced unmanned vehicle for remote applications

    Pletta, J.B.; Sackos, J.


    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  3. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    Loewenthal, S. H.; Parker, R. J.


    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  4. Nonlinear approaches in engineering applications advanced analysis of vehicle related technologies

    Dai, Liming


    This book looks at the broad field of engineering science through the lens of nonlinear approaches. Examples focus on issues in vehicle technology, including vehicle dynamics, vehicle-road interaction, steering, and control for electric and hybrid vehicles. Also included are discussions on train and tram systems, aerial vehicles, robot-human interaction, and contact and scratch analysis at the micro/nanoscale. Chapters are based on invited contributions from world-class experts in the field who advance the future of engineering by discussing the development of more optimal, accurate, efficient, and cost and energy effective systems. This book is appropriate for researchers, students, and practicing engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems.

  5. Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications

    Vimmerstedt, L J; Hammel, C J


    Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

  6. Advanced microsystems for automotive applications 2013 smart systems for safe and green vehicles

    Meyer, Gereon


    The road vehicle of the future will embrace innovations from three major automotive technology fields: driver assistance systems, vehicle networking and alternative propulsion. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. They increasingly appear to be the key enabling technologies for safe and green road mobility. For more than fifteen years the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been successful in detecting novel trends and in discussing the technological implications from early on. The topic of the AMAA 2013 will be “Smart Systems for Safe and Green Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field.

  7. Performance and life evaluation of advanced battery technologies for electric vehicle applications

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis and Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies: (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R and D.

  8. Advanced Vehicle Testing and Evaluation

    Garetson, Thomas [The Clarity Group, Incorporated, Chicago, IL (United States)


    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  9. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report



    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  10. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Jadidi, Yasser


    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  11. Environmental performance of advanced hybrid energy storage systems for electric vehicle applications

    Highlights: • The environmental impact of advanced energy storage systems is assessed. • The methodology used is Life Cycle Assessment following the ISO 14040 and 14044. • Twelve impact categories are assessed to avoid burden shifting. • Increasing the efficiency and extending the lifetime benefits the environmental performance. • The results show that there are hot spots where to act and reduce the overall impact. - Abstract: In this paper the environmental performance of an advanced hybrid energy storage system, comprising high power and high energy lithium iron phosphate cells, is compared with a stand alone battery concept composed of lithium manganese oxide cells. The methodology used to analyse the environmental impacts is Life Cycle Assessment (LCA). The manufacturing, use phase and end-of-life of the battery packs are assessed for twelve impact categories. The functional unit is 1 km driven under European average conditions. The present study assesses the environmental performance of the two battery packs for two scenarios: scenario 1 with a vehicle total drive range of 150,000 km and scenario 2 with total driving range of the car of 300,000 km. The results of scenario 1 show that the increased efficiency of the hybrid system reduces, in general, the environmental impact during the use stage, although the manufacturing stage has higher impact than the benchmark. Scenario 2 shows how the extended lifetime of the hybrid system benefits the emissions per km driven

  12. Advanced Welding Applications

    Ding, Robert J.


    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  13. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.


    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  14. Advanced Manufacturing at the Marshall Space Flight Center and Application to Ares I and Ares V Launch Vehicles

    Carruth, Ralph


    There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.

  15. Advances in fuel cell vehicle design

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  16. Recycling of Advanced Batteries for Electric Vehicles

    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed

  17. Recycling of Advanced Batteries for Electric Vehicles



    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

  18. Hybrid and Electric Advanced Vehicle Systems Simulation

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.


    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  19. Advancements in Topical Antifungal Vehicles.

    Kircik, Leon H


    The primary treatment for superficial fungal infections is antifungal topical formulations, and allylamines and azoles represent the two major classes of topical formulations that are used to treat these infections. The stratum corneum (SC) is composed of keratinocytes that are surrounded by a matrix of lipids. The efficacy of topically applied formulations depends on their ability to penetrate this lipid matrix, and the vehicle plays an integral role in the penetration of active molecule into skin. There are several challenges to formulating topical drugs, which include the biotransformation of the active molecules as they pass through the SC and the physical changes that occur to the vehicle itself when it is applied to the skin. This article will review current and emerging topical antifungal vehicles. PMID:26885798

  20. Cost and Economics for Advanced Launch Vehicles

    Whitfield, Jeff


    Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.

  1. Advanced continuously variable transmissions for electric and hybrid vehicles

    Loewenthal, S. H.


    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  2. 10 CFR 611.3 - Advanced technology vehicle.


    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  3. Advanced control architecture for autonomous vehicles

    Maurer, Markus; Dickmanns, Ernst D.


    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  4. GPS based Advanced Vehicle Tracking and Vehicle Control System

    Mashood Mukhtar


    Full Text Available Security systems and navigators have always been a necessity of human‟s life. The developments of advanced electronics have brought revolutionary changes in these fields. In this paper, we will present a vehicle tracking system that employs a GPS module and a GSM modem to find the location of a vehicle and offers a range of control features. To complete the design successfully, a GPS unit, two relays, a GSM Modem and two MCU units are used. There are five features introduced in the project. The aim of this project is to remotely track a vehicle‟s location, remotely switch ON and OFF the vehicle‟s ignition system and remotely lock and unlock the doors of the vehicle. An SMS message is sent to the tracking system and the system responds to the users request by performing appropriate actions. Short text messages are assigned to each of these features. A webpage is specifically designed to view the vehicle‟s location on Google maps. By using relay based control concept introduced in this paper, number of control features such as turning heater on/off, radio on/off etc. can be implemented in the same fashion.

  5. Robotics Inspection Vehicle for Advanced Storages

    After the dismantling of nuclear weapons and the probable release of large quantities of weapon graded materials under international verification regimes, there will be a wide interest in unmanned, highly automated and secure storage areas. In such circumstances, robotics technologies can provide an effective answer to the problem of securing, manipulating and inventorying all stored materials. In view of this future application JRC's NPNS started the development and construction of an advanced robotics prototype and demonstration system, named Robotics Inspection Vehicle (RIV), for remote inspection, surveillance and remote handling in those areas. The system was designed to meet requirements of reliability, security, high availability, robustness against radiation effects, self-maintainability (i.e., auto-repair capability), and easy installation. Due to its innovative holonomic design, RIV is a highly maneuverable and agile platform able to move in any direction, including sideways. The platform carries on-board a five degree of freedom manipulator arm. The high maneuverability and operation modes take into account the needs for accessing in the most easy way materials in the storage area. The platform is prepared to operate in one of three modes: i) manual tele-operation, ii) semiautonomous and iii) fully autonomous. The paper describes RIV's main design features, and details its GENERIS based control software [JRC's software architecture for robotics] and embedded sensors (i.e., 3D laser range, transponder antenna, ultra-sound, vision-based robot guidance, force-torque sensors, etc.). RIV was designed to incorporate several JRC innovative surveillance and inspection technologies and reveals that the current state of technology is mature to effectively provide a solution to novel storage solutions. The system is available for demonstration at JRC's Rialto Laboratory

  6. Advanced control design for hybrid turboelectric vehicle

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.


    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  7. Advancing Transportation through Vehicle Electrification - PHEV

    Bazzi, Abdullah [Chrysler Group LLC, Auburn Hills, MI (United States); Barnhart, Steven [Chrysler Group LLC, Auburn Hills, MI (United States)


    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  8. Advanced propulsion system for hybrid vehicles

    Norrup, L. V.; Lintz, A. T.


    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  9. Nanocomposites for Vehicle Structural Applications

    Njuguna, James; Silva, Francesco; Sachse, Sophia


    Advancements in the nanotechnology industry promise to offer improvements in capabilities across a spectrum of applications. This is of immense strategic importance to the high performance sector which has historically leveraged technological advances. The uses of polymer nanocomposites in structures have several predictable impacts on structural design and applications, primarily by providing a safer, faster, and eventually cheaper transportation in the future. In this chapter, special atten...

  10. Advanced hybrid vehicle propulsion system study

    Schwarz, R.


    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  11. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Barret, C.


    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  12. Nanoplasmonics advanced device applications

    Chon, James W M


    Focusing on control and manipulation of plasmons at nanometer dimensions, nanoplasmonics combines the strength of electronics and photonics, and is predicted to replace existing integrated circuits and photonic devices. It is one of the fastest growing fields of science, with applications in telecommunication, consumer electronics, data storage, medical diagnostics, and energy.Nanoplasmonics: Advanced Device Applications provides a scientific and technological background of a particular nanoplasmonic application and outlines the progress and challenges of the application. It reviews the latest

  13. Advanced vehicle systems assessment. Volume 5: Appendices

    Hardy, K.


    An appendix to the systems assessment for the electric hybrid vehicle project is presented. Included are battery design, battery cost, aluminum vehicle construction, IBM PC computer programs and battery discharge models.

  14. Advanced technology mobile robotics vehicle fleet

    A fleet of vehicles is being developed and maintained by Sandia National Laboratories for studies in remote control and autonomous operation. The vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as testbeds for developing concepts in the areas of remote control (teleoperation) and computer control (autonomy). Actuators control the vehicle speed, brakes, and steering via manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  15. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.


    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  16. Advanced hybrid and electric vehicles system optimization and vehicle integration


    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  17. Switched reluctance drives for electric vehicle applications

    Andrada Gascón, Pedro; Torrent Burgués, Marcel; Blanqué Molina, Balduino; Perat Benavides, Josep Ignasi


    Electric vehicles are the only alternative for a clean, efficient and environmentally friendly urban transport system. With the increasing interest in electric drives for electric vehicle propulsion. This paper first tries to explain why the switched reluctance drive is a strong candidate for electric vehicle applications. It then gives switched reluctance drive design guidelines for battery or fuel cell operated electric vehicles. Finally, it presents the design and simulation of a switched ...

  18. Advanced Path Following Control of an Overactuated Robotic Vehicle

    Ritzer, Peter; Winter, Christoph; Brembeck, Jonathan


    This work describes an advanced path following control strategy enabling overactuated robotic vehicles like the ROboMObil (ROMO) [1] to automatically follow predefined paths while all states of the vehicle's planar motion are controlled. This strategy is useful for autonomous vehicles which are guided along online generated paths including severe driving maneuvers caused by e.g. obstacle avoidance. The proposed approach combines path following, i.e. tracking a plane curve without a priori tim...

  19. Vehicle dynamics theory and application

    Jazar, Reza N


    This textbook is appropriate for senior undergraduate and first year graduate students in mechanical and automotive engineering. The contents in this book are presented at a theoretical-practical level. It explains vehicle dynamics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers and practicing engineers alike will appreciate the user-friendly presentation of a wealth of topics, most notably steering, handling, ride, and related components. This book also: Illustrates all key concepts with examples Includes exercises for each chapter Covers front, rear, and four wheel steering systems, as well as the advantages and disadvantages of different steering schemes Includes an emphasis on design throughout the text, which provides a practical, hands-on approach

  20. Advanced propulsion system concept for hybrid vehicles

    Bhate, S.; Chen, H.; Dochat, G.


    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  1. An applications guide to vehicle SNM monitors

    The applications guide introduces its readers to the vehicle special nuclear material (SNM) monitors that are becoming part of safeguards and security measures for nuclear material control at DOE facilities. Building on the foundation provided by an applications guide to pedestrian SNM monitors published in 1986 and a technical report on vehicle monitoring published in 1982, the guide provides an overview of vehicle monitoring in Part 1, a discussion of technical aspects of vehicle monitoring in Part 2, and a catalog of vehicle SNM monitors available to DOE facilities in Part 3. Vehicle monitor upkeep, calibration, testing, and performance are important topics in Part 1. The short technical discussion in Part 2 is devoted to new developments and unique features of vehicle monitors

  2. Advanced Ceramic Materials for Future Aerospace Applications

    Misra, Ajay


    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  3. ADVANCE, a modular vehicle simulation environment in MATLAB/SIMULINK

    Eelkema, J.; Vink, W.; Tillaart, E. van den


    This paper presents the development of a hybrid electric powertrain test platform. In the development process use has been made of ADVANCE, a modular vehicle simulation environment in MATLAB/Simulink. The background, philosophy, and the concept of the ADVANCE tool are discussed and a brief introduct

  4. Consumer Views on Transportation and Advanced Vehicle Technologies

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  5. Advanced components for electric and hybrid electric vehicles. Workshop proceedings

    Stricklett, K.L.; Cookson, A.H.; Bartholomew, R.W.; Leedy, T. [National inst. of Standards and Technology, Gaithersburg, MD (United States). Electricity Div.


    This is a key period in the development of electric and hybrid electric vehicles. The landmark 1990 legislation in California requires that 2 percent of new automobiles be zero emission vehicles in 1998, rising to 10 percent in the year 2005. This can only be met by electric vehicles. The purpose of the workshop was to concentrate on the technologies to improve the design, performance, manufacturability, and economics of the critical components for the next generation of electric and hybrid electric vehicles for the year 2000 and beyond. The workshop began with invited speakers to cover the general topics of impact of the California legislation, Federal agency programs, development of standards, infrastructure needs, advanced battery development, and the imperatives for commercial success of electric and hybrid electric vehicles. Working sessions were five parallel meetings on Energy Conversion Systems, Energy Storage Systems, Electric Propulsion Systems, Controls and Instrumentation, and Ancillary Systems.

  6. Advanced Cost Functions for Evaluation of Lateral Vehicle Dynamics

    Ivanov, V.; Augsburg, K.; Savitski, D.; Plíhal, Jiří; Nedoma, P.; Machan, J.

    Berlin: Springer, 2013, s. 425-440. (Lecture Notes in Electrical Engineering. 198). ISBN 978-3-642-33794-9. [FISITA 2012 World Automotive Congress. Beijing (CN), 27.11.2012-30.11.2012] Grant ostatní: Škoda AUTO a.s.(CZ) 6002 Institutional support: RVO:67985556 Keywords : vehicle dynamics * cost functions * stability * vehicle weighting factors * simulation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering cost functions for evaluation of lateral vehicle dynamics.pdf

  7. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    Humphreys, K.K.; Brown, D.R.


    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  8. Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles

    Gifford, Paul; Adams, John; Corrigan, Dennis; Venkatesan, Srinivasan

    Nickel/metal hydride (Ni/MH) batteries have emerged as the battery technology of choice for electric vehicles. GM Ovonic L.L.C., a joint venture between General Motors and Ovonic Battery was established in 1994 to manufacture and commercialize Ovonic's proprietary Ni/MH batteries for electric and hybrid vehicle applications. GM Ovonic is developing a `family of batteries' aimed at product improvement and cost reduction. Current performance of these new battery designs is described, as well as projections for future improvements. In addition, advances in cell and battery power have allowed further product diversification into cells and batteries specifically designed for a range of hybrid electric vehicles (HEVs).

  9. Plug engine systems for future launch vehicle applications

    Immich, H.; Parsley, R. C.


    Based on improved viability resulting from modern analysis techniques, plug nozzle rocket engines are once again being investigated with respect to advanced launch vehicle concepts. The advantage of these engines is the external expansion, which self-adapts to external pressure variation, as well as the short compact design for high expansion ratios. This paper describes feasible design options ranging from a plug nozzle engine with an annular combustion chamber to a segmented modular design, to the integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications including single-stage-to-orbit (SSTO) vehicles, as well as upper stage vehicles such as the second stage of the SAeNGER HTOL launch vehicle concept. Also included is a discussion of how maturing computational fluid dynamic (CFD) modeling techniques could significantly reduce installed performance uncertainties, reducing plug engine development risk.

  10. Advanced Battery Diagnosis for Electric Vehicles

    Lamichhane, Chudamani


    Summary Literatures on battery technologies and diagnosis of its parameters were studied. The innovative battery technologies from basic knowledge to world standard testing procedures were analysed and discussed in the report. The established battery test station and flowchart was followed during the battery test preparation and testing. In order to understand and verify the battery performance, the well established test procedures developed by USABC (United States Advanced Battery Consorti...

  11. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)


    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  12. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles



    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  13. Control definition study for advanced vehicles

    Lapins, M.; Martorella, R. P.; Klein, R. W.; Meyer, R. C.; Sturm, M. J.


    The low speed, high angle of attack flight mechanics of an advanced, canard-configured, supersonic tactical aircraft designed with moderate longitudinal relaxed static stability (Static Margin, SM = 16% C sub W at M = 0.4) was investigated. Control laws were developed for the longitudinal axis (""G'' or maneuver and angle of attack command systems) and for the lateral/directional axes. The performance of these control laws was examined in engineering simulation. A canard deflection/rate requirement study was performed as part of the ""G'' command law evaluation at low angles of attack. Simulated coupled maneuvers revealed the need for command limiters in all three aircraft axes to prevent departure from controlled flight. When modified with command/maneuver limiters, the control laws were shown to be adequate to prevent aircraft departure during aggressive air combat maneuvering.

  14. Recycling readiness of advanced batteries for electric vehicles

    Jungst, R.G.


    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  15. Advancing Autonomous Operations for Deep Space Vehicles

    Haddock, Angie T.; Stetson, Howard K.


    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.


    Arsh Chanana


    Full Text Available Microcapsule is a tiny sphere including core material/internal phase or fill, coated with/surrounded by wall know as shell, coating or membrane. The usual size range of the microcapsule lies between 1 to 1000 μm. The technique is usually applied for targeted drug delivery, protection of the molecule and stability if the core material. Microencapsulation system offers potential advantages over conventional drug delivery systems and also established as unique carrier systems for many pharmaceuticals. This article contains the traditional and the recent pharmaceutical applications of microecapsules. The microcapsules are widely applied in pharmaceutical for Novel drug Delivery System (NDDS, latest formulations, Delivery of DNA Vaccines, Pro Drug Approach, Biodegradable and biocompatible material. Other then pharmaceutical microcapsules are widely used in delivery of probiotic, pesticide industry, food technology, beverages and cell immobilization etc. Although significant advances have been made in the field of microencapsulation, still many challenges need to be rectified during the appropriate selection of core materials, coating materials and process techniques.

  17. An economic study of an advanced technology supersonic cruise vehicle

    Smith, C. L.; Williams, L. J.


    A description is given of the methods used and the results of an economic study of an advanced technology supersonic cruise vehicle. This vehicle was designed for a maximum range of 4000 n.mi. at a cruise speed of Mach 2.7 and carrying 292 passengers. The economic study includes the estimation of aircraft unit cost, operating cost, and idealized cash flow and discounted cash flow return on investment. In addition, it includes a sensitivity study on the effects of unit cost, manufacturing cost, production quantity, average trip length, fuel cost, load factor, and fare on the aircraft's economic feasibility.

  18. Advanced Infrared Technology and Applications

    Ovidio Salvetti; Laura Abbozzo Ronchi; Carlo Corsi; Antoni Rogalski; Marija Strojnik


    Nowadays, advanced infrared techniques are a key ingredient in disparate applications, ranging from medical diagnostics and treatment to industrial inspection and environmental monitoring. We believe that the success of such infrared applications highly depends on a continuous exchange between scientific advances and technological progresses.

  19. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    James E. Francfort; Donald Karner; John G. Smart


    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  20. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    Burnham, A.; Wang, M. Q.; Wu, Y.


    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  1. Development and applications of GREET 2.7 -- The Transportation Vehicle-Cycle Model

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results

  2. Vehicle density in VANET Applications

    Reyes Muñoz, María Angélica; Barrado Muxí, Cristina; Lopez, Marco; Excelente Toledo, Cora Beatriz


    This paper analyzes how street-level traffic data affects routing in VANETs applications. First, we offer a general review about which protocols and techniques would fit best for VANET applications. We selected five main technical aspects (Transmission, Routing, Quality of Service, Security and Location) that we consider are differential aspects of VANETs from current Ad-Hoc Networks. Second, the paper analyzes how to configure each technical aspect according to the goal of a wide range of VA...

  3. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States); Palmer, A.J.; Ingram, F.W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Wiffen, F.W. [Dept. of Energy, Germantown, MD (United States). Office of Fusion Energy


    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  4. Vehicle to Grid Services: Potential and Applications

    Saeed Lotfifard


    Full Text Available Electric Vehicle (EV technology is expected to take a major share in the light-vehicle market in the coming decades. Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. On the other hand, EVs have the potential to support the grid under various conditions. This paper studies possible potential and applications of Vehicle to Grid (V2G services, including active power services, which discharge the EV batteries, and power quality services, which do not engage the battery or require only small amounts of battery charge. The advantages and disadvantages of each service and the likelihood that a given service will be effective and beneficial for the grid in the future are discussed. Further, the infrastructure cost, duration, and value of V2G services are compared qualitatively.

  5. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  6. 1997 update for the applications guide to vehicle SNM monitors

    Ten years have elapsed since the publication of the original applications guide to vehicle special nuclear material (SNM) monitors. During that interval, use of automatic vehicle monitors has become more commonplace, and formal procedures for monitor upkeep and evaluation have become available. New concepts for vehicle monitoring are being explored, as well. This update report reviews the basics of vehicle SNM monitoring, discusses what is new in vehicle SNM monitoring, and catalogs the vehicle SNM monitors that are commercial available

  7. Recent advances in the fundamental understanding of railway vehicle dynamics

    True, Hans


    The topic of this article is the calculation of the critical speed for railway vehicles. It is emphasised that it is misleading to formulate the mathematical problem as a stability problem. It must correctly be formulated as a problem of existence of coexisting solutions to the full non-linear dy......The topic of this article is the calculation of the critical speed for railway vehicles. It is emphasised that it is misleading to formulate the mathematical problem as a stability problem. It must correctly be formulated as a problem of existence of coexisting solutions to the full non......-linear dynamical problem. The lowest speed at which there exist more critical speed in road tests. A couple of examples show applications of the method to various dynamical models of railway vehicles. Freight wagons are treated in the end of the article because the dry friction damping with stick-slip and end...




    Full Text Available Smart Power Team is currently working on the design of an urban electric vehicle designed to compete in the Shell Eco-marathon. One important aspect of this type of vehicle characteristics is it safety. The project of advanced driver assistance systems has included some proposals of such systems and the concept of their execution. The first concept, BLIS (Blind Spot Information System, is to build a system of informing a driver about vehicles appearing in the blind spot. The system constitutes a second concept, CDIS (Collision Detection and Information System, and it is designed to detect a vehicle collision and inform the team. Further systems are: DPMS (Dew Point Measurement System - a system which does not allow a situation, where the windows are fogged, OHRS (Overtaking Horn Reminder System - a system which checks overtaking and MSS (main supervision system - a supervisory system. These concepts are based on the assumption of the use of laser sensors, photoelectric, humidity and temperature, and other commercially available systems. The article presents a detailed description of driver assistance systems and virtual prototyping methodology for these systems, as well as the numerical results of the verification of one of the systems.

  9. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    Caille, Gary


    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (, a nonprofit web–based learning resource and Google spin–off.

  10. Advanced microsystems for automotive applications 2008

    Valldorf, J.; Gessner, W. (eds.) [VDI/VDE Innovation und Technik GmbH, Berlin (Germany)


    With the total number of vehicles steadily increasing and soon approaching one billion, the world is facing serious challenges in terms of both safety of road transport and sustainability. Consequently the two major persistent issues for the automotive industry are improved safety and reduced emissions. The integration of complex microsystems with enhanced intelligence has enabled an increase in efficiency of the previously 'dumb' internal combustion engine by an average 1% annually during the last 20 years. In the future, such smart systems may help to leverage novel powertrain concepts towards the zero emission vehicle. Particularly for electric cars, anticipatory power management and efficient driving assistance will be needed to overcome range limitations. Electrical in-wheel motors equipped with novel miniaturized functionalities will be required. Intelligent systems for tire monitoring and control deserve special attention as well, since insufficient tire pressure accounts for more than 3% of the efficiency losses in the car. The conference book in hand is a showroom of activities, the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been known for during the last 12 years: advanced sensors including one based on the giant magneto resistance (GMR) effect, several camera and radar systems making road traffic safer by assisting the driver in recognizing pedestrians and obstacles, and human-machine interfaces based on the recognition of hand gestures - a striking example of how smart systems will further enhance the usability of vehicles and the comfort of driving. (orig.)

  11. Applications of advanced sensors on unmanned aerial vehicles (UAV's) for the protection of high value targets and support of response forces

    Full text: Fixed imaging systems using visible light cameras typically meet the security needs of conventional facilities that are concerned primarily with asset protection. Facilities where enhanced security needs are both to protect the facility and the theft of valuable assets may choose to use thermal imaging forward looking infrared (FLIR) cameras in addition to visible light cameras. These FLIR cameras provide a 'hot' target in very low light conditions or when camouflaged as well as the heat signatures of people and vehicles. These imagers are usually in fixed points of view and can scan areas of a scene. The cost of thermal cameras often means that a few selected points have this capability and the majority of cameras are visible light only. Non-conventional facilities managing nuclear power, processing, or storage of nuclear materials may find fixed camera systems inadequate. Attackers have evaluated camera locations and often understand the limitations of such systems. In addition using these two imaging options does not provide the command and control structure or the response force with adequate situational awareness of the threats they face. The presence of chemicals not observable using the visible or thermal IR cameras such as nerve agents or other dangerous gases could be used as a mechanism to disable reaction forces and as a force multiplier for the attackers. These same visible, thermal infrared cameras with the addition of a hyperspectral sensor on an unmanned aerial vehicle (UAV) such as a General Atomics Predator (RQ-1) can provide significant standoff capabilities with an unpredictability of camera view by the attackers and close the gap between visible and thermal imaging systems. Such a system could be flown at a particular altitude to avoid detection by the attackers and conflict with response force aircraft entering the area. This enhanced spectral information will allow better command decisions as well as providing real-time fused

  12. Weight and cost forecasting for advanced manned space vehicles

    Williams, Raymond


    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  13. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.


    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  14. Hybrid and electric advanced vehicle systems (heavy) simulation

    Hammond, R. A.; Mcgehee, R. K.


    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  15. Advanced Driving Assistance Systems for an Electric Vehicle

    Pau Muñoz-Benavent


    Full Text Available This paper describes the automation of a Neighborhood Electric Vehicle (NEV and the embedded distributed architecture for implementing an Advanced Driving Assistance System (ADAS with haptic, visual, and audio feedback in order to improve safety. For the automation, original electric signals were conditioned, and mechanisms for actuation and haptic feedback were installed. An embedded distributed architecture was chosen based on two low-cost boards and implemented under a Robotics Operating System (ROS framework. The system includes features such as collision avoidance and motion planning.

  16. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    Burke, Andy


    This paper focuses on ultracapactors (electrochemical capacitors) as energy storage in vehicle applications and thus evaluates the present state-of-the-art of ultracapacitor technologies and their suitability for use in electric and hybrid drivelines of various types of vehicles. A key consideration in determining the applicability of ultracapacitors for a particular vehicle application is the proper assessment of the energy storage and power requirements. For hybrid-electric vehicles, the ke...

  17. Lithium batteries for electric road vehicle applications

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)


    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  18. Advanced Mission Management System for Unmanned Aerial Vehicles

    R. Anand Raji


    Full Text Available The paper presents advanced mission management system (MMS for unmanned aerial vehicles, based on integrated modular avionics (IMA architecture. IMA architecture enables the MMS to host high end functions for autonomous navigation and attack. MMS is a collection of systems to execute the mission objectives. The system constitutes mission computer (MC, sensors and other sub-systems. The MMS-MC needs to execute advanced algorithms like terrain referenced navigation, vision-aided navigation, automatic target recognition, sensor fusion, online path planning, and tactical planning for autonomy and safety. This demands high-end architecture in terms of hardware, software, and communication. The MMS-MC is designed to exploit the benefits of IMA concepts such as open system architecture, hardware and software architecture catering for portability, technology transparency, scalability, system reconfigurability and fault tolerance. This paper investigates on advanced navigation methods for augmenting INS with terrain-referenced navigation and vision-aided navigation during GPS non-availability. This paper also includes approach to implement these methods and simulation results are provided accordingly, and also discusses in a limited way, the approach for implementing online path planning.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.438-444, DOI:

  19. Advanced Control Surface Seal Development for Future Space Vehicles

    DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.


    High temperature control surface seals have been identified as a critical technology in the development of future space vehicles. These seals must withstand temperatures of up to 2600 F and protect underlying temperature-sensitive structures (such as actuators and sealing capability by remaining resilient during flight conditions. The current baseline seal, used on the Shuttle orbiters and the X-38 vehicle, consists of a Nextel 312 sheath, an internal Inconel X-750 knitted spring tube, and hand-stuffed Saffil batting. Unfortunately at high temperatures (> 1500 F), the seal resiliency significantly degrades due to yielding and creep of the spring tube element. The permanent set in the seals can result in flow passing over the seals and subsequent damage to temperature sensitive components downstream of the seals. Another shortcoming of the baseline seal is that instances have been reported on Shuttle flights where some of the hand-stuffed Saffil batting insulation has been extracted, thus potentially compromising the seal. In vehicles where the thermal protection systems are delicate (such as with Shuttle tiles), the control surface seals must also limit the amount of force applied to the opposing surfaces. Additionally, in many applications the seals are subjected to scrubbing as control surfaces are actuated. The seals must be able to withstand any damage resulting from this high temperature scrubbing and retain their heat/flow blocking abilities.

  20. Advanced DC/AC inverters applications in renewable energy

    Luo, Fang Lin


    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  1. Advanced Aero-Propulsive Mid-Lift-to-Drag Ratio Entry Vehicle for Future Exploration Missions

    Campbell, C. H.; Stosaric, R. R; Cerimele, C. J.; Wong, K. A.; Valle, G. D.; Garcia, J. A.; Melton, J. E.; Munk, M. M.; Blades, E.; Kuruvila, G.; Picetti, D. J.; Hassan, B.; Kniskern, M. W.


    NASA is currently looking well into the future toward realizing Exploration mission possibilities to destinations including the Earth-Moon Lagrange points, Near-Earth Asteroids (NEAs) and the Moon. These are stepping stones to our ultimate destination Mars. New ideas will be required to conquer the significant challenges that await us, some just conceptions and others beginning to be realized. Bringing these ideas to fruition and enabling further expansion into space will require varying degrees of change, from engineering and integration approaches used in spacecraft design and operations, to high-level architectural capabilities bounded only by the limits of our ideas. The most profound change will be realized by paradigm change, thus enabling our ultimate goals to be achieved. Inherent to achieving these goals, higher entry, descent, and landing (EDL) performance has been identified as a high priority. Increased EDL performance will be enabled by highly-capable thermal protection systems (TPS), the ability to deliver larger and heavier payloads, increased surface access, and tighter landing footprints to accommodate multiple asset, single-site staging. In addition, realizing reduced cost access to space will demand more efficient approaches and reusable launch vehicle systems. Current operational spacecraft and launch vehicles do not incorporate the technologies required for these far-reaching missions and goals, nor what is needed to achieve the desired launch vehicle cost savings. To facilitate these missions and provide for safe and more reliable capabilities, NASA and its partners will need to make ideas reality by gaining knowledge through the design, development, manufacturing, implementation and flight testing of robotic and human spacecraft. To accomplish these goals, an approach is recommended for integrated development and implementation of three paradigm-shifting capabilities into an advanced entry vehicle system with additional application to launch

  2. Recent advances in research on unmanned aerial vehicles

    Wang, Le; Yin, George


    A team of launched and coordinated Unmanned aerial vehicles (UAVs), requires advanced technologies in sensing, communication, computing, and control to improve their intelligence and robustness towards autonomous operations. To enhance reliability, robustness, and mission capability of a team of UAVs, a system-oriented and holistic approach is desirable in which all components and subsystems are considered in terms of their roles and impact on the entire system.  This volume aims to summarize the recent progress, identify challenges and opportunities, and develop new methodologies and systems on coordinated UAV control. A group of experts working in this area have contributed to this volume in several related aspects of autonomous control of networked UAVs. Their papers introduce new control methodologies, algorithms, and systems that address several important issues in developing intelligent, autonomous or semi-autonomous, networked systems for the next generation of UAVs. The papers share a common focus on...


    Grzegorz SZCZĘŚNIAK


    Full Text Available The paper presents the design solutions and fastening mounting frames in special vehicles. Special Vehicles is an interesting and growing market in the production of heavy vehicles. Due to the nature of the use of these vehicles of their design solutions require constant change and adaptation, which opens up the possibility of a utilitarian research

  4. Advanced energy conversion and application

    This VDI-report 1029 contains the manuscripts of 45 lectures which have been held on the expert meeting ''Advanced energy conversion and application''. The following 3 main subjects have been dealt with: I electric power stations and heating and power stations, II industrial energy technology, III energy supply of buildings. For each of the 45 manuscripts, a separated assessment with regard to the content has been elaborated. (HW)

  5. Advances and applications in nonlinear control systems

    Volos, Christos


    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  6. Advanced express web application development

    Keig, Andrew


    A practical book, guiding the reader through the development of a single page application using a feature-driven approach.If you are an experienced JavaScript developer who wants to build highly scalable, real-world applications using Express, this book is ideal for you. This book is an advanced title and assumes that the reader has some experience with node, Javascript MVC web development frameworks, and has heard of Express before, or is familiar with it. You should also have a basic understanding of Redis and MongoDB. This book is not a tutorial on Node, but aims to explore some of the more

  7. III Advanced Ceramics and Applications Conference

    Gadow, Rainer; Mitic, Vojislav; Obradovic, Nina


    This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.

  8. Electric and plug-in hybrid vehicles advanced simulation methodologies

    Varga, Bogdan Ovidiu; Moldovanu, Dan; Iclodean, Calin


    This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain

  9. Smart mobile in-vehicle systems next generation advancements

    Abut, Huseyin; Takeda, Kazuya; Hansen, John


    This is an edited collection by world-class experts, from diverse fields, focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. The book presents developments on road safety, in-vehicle technologies and state-of-the art systems. Includes coverage of DSP technologies in adaptive automobiles, algorithms and evaluation of in-car communication systems, driver-status monitoring and stress detection, in-vehicle dialogue systems and human-machine interfaces, challenges in video and audio processing for in-vehicle products, multi-sensor fusion for driver identification and vehicle to infrastructure wireless technologies.

  10. Vehicle-to-anything application (v2anything app) for electric vehicles

    João C. Ferreira; Monteiro, Vítor Duarte Fernandes; Afonso, João L.


    This paper presents a mobile information system denominated as Vehicle-to-Anything Application (V2Anything App), and explains its conceptual aspects. This application is aimed at giving relevant information to Full Electric Vehicle (FEV) drivers, by supporting the integration of several sources of data in a mobile application, thus contributing to the deployment of the electric mobility process. The V2Anything App provides recommendations to the drivers about the FEV range autonomy, location ...

  11. Advanced SOA tools and applications

    Brzezinski, Jerzy; Cellary, Wojciech; Grzech, Adam; Zielinski, Krzysztof


    This book presents advanced software development tools for construction, deployment and governance of Service Oriented Architecture (SOA) applications. Novel technical concepts and paradigms, formulated during the research stage and during development of such tools are presented and illustrated by practical usage examples. Hence this book will be of interest not only to theoreticians but also to engineers who cope with real-life problems. Additionally, each chapter contains an overview of related work, enabling comparison of the proposed concepts with exiting solutions in various areas of the SOA development process. This makes the book interesting also for students and scientists who investigate similar issues.

  12. Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles

    Zach C. Winfield


    Full Text Available Many advanced vehicle technologies, including electric vehicles (EVs, hybrid electric vehicles (HEVs, and fuel cell vehicles (FCVs, are gaining attention throughout the World due to their capability to improve fuel efficiencies and emissions. When evaluating the operational successes of these new fuel-efficient vehicles, it is essential to consider energy usage and greenhouse gas (GHG emissions throughout the entire lifetimes of the vehicles, which are comprised of two independent cycles: a fuel cycle and a vehicle cycle. This paper intends to contribute to the assessment of the environmental impacts from the alternative technologies throughout the lifetimes of various advanced vehicles through objective comparisons. The methodology was applied to six commercial vehicles that are available in the U.S. and that have similar dimensions and performances. We also investigated the shifts in energy consumption and emissions through the use of electricity and drivers’ behavior regarding the frequencies of battery recharging for EVs and plug-in hybrid electric vehicles (PHEVs. This study thus gives insight into the impacts of the electricity grid on the total energy cycle of a vehicle lifetime. In addition, the total ownership costs of the selected vehicles were examined, including considerations of the fluctuating gasoline prices. The cost analysis provides a resource for drivers to identify optimal choices for their driving circumstances.

  13. The advanced magnetovision system for Smart application

    Kaleta, Jerzy; Wiewiórski, Przemyslaw; Lewandowski, Daniel


    An original method, measurement devices and software tool for examination of magneto-mechanical phenomena in wide range of SMART applications is proposed. In many Hi-End market constructions it is necessary to carry out examinations of mechanical and magnetic properties simultaneously. Technological processes of fabrication of modern materials (for example cutting, premagnetisation and prestress) and advanced concept of using SMART structures involves the design of next generation system for optimization of electric and magnetic field distribution. The original fast and higher than million point static resolution scanner with mulitsensor probes has been constructed to measure full components of the magnetic field intensity vector H, and to visualize them into end user acceptable variant. The scanner has also the capability to acquire electric potentials on surface to work with magneto-piezo devices. Advanced electronic subsystems have been applied for processing of results in the Magscaner Vison System and the corresponding software - Maglab has been also evaluated. The Dipole Contour Method (DCM) is provided for modeling different states between magnetic and electric coupled materials and to visually explain the information of the experimental data. Dedicated software collaborating with industrial parametric systems CAD. Measurement technique consists of acquiring a cloud of points similarly as in tomography, 3D visualisation. The actually carried verification of abilities of 3D digitizer will enable inspection of SMART actuators with the cylindrical form, pellets with miniature sizes designed for oscillations dampers in various construction, for example in vehicle industry.


    M. Manyoky


    Full Text Available This paper presents the investigation of UAVs (Unmanned Aerial Vehicles for use in cadastral surveying. Within the scope of a pilot study UAVs were tested for capturing geodata and compared with conventional data acquisition methods for cadastral surveying. Two study sites were therefore surveyed with a tachymeter-GNSS combination as well as a UAV system. The workflows of both methods were investigated and the resulting data were compared with the requirements of Swiss cadastral surveying. Concerning data acquisition and evaluation, the two systems are found to be comparable in terms of time expenditure, accuracy, and completeness. In conclusion, the UAV image orientation proved to be the limiting factor for the obtained accuracy due to the low- cost camera including camera calibration, image quality, and definition of the ground control points (natural or artificial. However, the required level of accuracy for cadastral surveying was reached. The advantage of UAV systems lies in their high flexibility and efficiency in capturing the surface of an area from a low flight altitude. In addition, further information such as orthoimages, elevation models and 3D objects can easily be gained from UAV images. Altogether, this project endorses the benefit of using UAVs in cadastral applications and the new opportunities they provide for cadastral surveying.

  15. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  16. Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations

    Gietelink, O.J.; Ploeg, J.; Schutter,; Verhaegen, M.


    This paper presents a new method for the design and validation of advanced driver assistance systems (ADASs). With vehicle hardware-in-the-loop (VEHIL) simulations, the development process, and more specifically the validation phase, of intelligent vehicles is carried out safer, cheaper, and is more

  17. An assessment of research and development leadership in advanced batteries for electric vehicles

    Bruch, V. L.


    Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles' heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

  18. RFID-based vehicle positioning and its applications in connected vehicles.

    Wang, Jianqiang; Ni, Daiheng; Li, Keqiang


    This paper proposed an RFID-based vehicle positioning approach to facilitate connected vehicles applications. When a vehicle passes over an RFID tag, the vehicle position is given by the accurate position stored in the tag. At locations without RFID coverage, the vehicle position is estimated from the most recent tag location using a kinematics integration algorithm till updates from the next tag. The accuracy of RFID positioning is verified empirically in two independent ways with one using radar and the other a photoelectric switch. The former is designed to verify whether the dynamic position obtained from RFID tags matches the position measured by radar that is regarded as accurate. The latter aims to verify whether the position estimated from the kinematics integration matches the position obtained from RFID tags. Both means supports the accuracy of RFID-based positioning. As a supplement to GPS which suffers from issues such as inaccuracy and loss of signal, RFID positioning is promising in facilitating connected vehicles applications. Two conceptual applications are provided here with one in vehicle operational control and the other in Level IV intersection control. PMID:24599188

  19. Advanced vehicle concepts systems and design analysis studies

    Waters, Mark H.; Huynh, Loc C.


    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.

  20. Advanced Control System Design for Hypersonic Vehicles Project

    National Aeronautics and Space Administration — Guidance and control system design for hypersonic vehicles is more challenging than their subsonic and supersonic counterparts. Some of these challenges are (i)...

  1. New Lightweight Structures for Advanced Automotive Vehicles - Safe and Modular

    Kobilke, Alexander; Kopp, Gundolf; Schöll, Roland; Straßburger, Philipp; Kriescher, Michael


    The next generations of vehicle designs should be developed aiming for individual mobility whilst also retaining safety, environmental friendliness, and affordability. An essential step for increasing the body's performance in terms of safety and weight is the combination of high-performance materials such as new steel grades or high-performance fibre composite materials with a vehicle architecture optimised for these materials. The basis of the work is the unique synthesis of research fields...

  2. Electric vehicle machines and drives design, analysis and application

    Chau, K


    A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

  3. Radio channel measurements at street intersections for vehicle-to-vehicle applications

    Kåredal, Johan; Tufvesson, Fredrik; Abbas, Taimoor; Klemp, Oliver; Paier, Alexander; Bernadó, Laura; Molisch, Andreas


    This paper presents the results of an empirical study of wireless propagation channels for vehicle-to-vehicle communications in street intersections, a scenario especially important for collision avoidance applications. The results are derived from a channel measurement campaign performed at 5.6 GHz in four different types of urban intersections. We present results on typical power delay profiles, pathloss and delay spreads and discuss important propagation mechanisms. By comparing the res...

  4. Vehicle antenna development for mobile satellite applications

    Woo, K.


    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  5. Labview Application For A Vehicle Control

    Douglas Paladine Vieira


    Full Text Available This article deals with the construction of a vehicle driven by electric motors and that is automated, that is, that can move anywhere without human intervention. The control was done using the software Labview, with data acquisition and generation of control signs. The vehicle has an infrared sensors system that indicates the existence of an obstacle ahead the vehicle, informing it that it should stop and bypass the obstacle. The program is the responsible for the engine control, making it possible for the prototype to run and bypass the objects that block its way. The possibility of remote-controlling a vehicle is very important is risky situations for human beings, for example in radioactive places. The main advantage of this system is the total flexibility for making alterations in the control software, without being necessary to touch the physical part of the prototype. The conclusion of this work is that the system is efficient and able to move in a room with objects without touching them.

  6. Advanced Data Mining and Deployment for Integrated Vehicle Health Management and the Space Vehicle Lifecycle Project

    National Aeronautics and Space Administration — In a successful Phase 1 project for NASA SBIR topic A1.05, "Data Mining for Integrated Vehicle Health Management," Michigan Aerospace Corporation (MAC) demonstrated...

  7. Advanced teleoperation in nuclear applications

    A new generation of integrated remote maintenance systems is being developed to meet the needs of future nuclear fuel reprocessing at the Oak Ridge National Laboratory. Development activities cover all aspects of an advanced teleoperated maintenance system with particular emphasis on a new force-reflecting servomanipulator concept. The new manipulator, called the advanced servomanipulator, is microprocessor controlled and is designed to achieve force-reflection performance near that of mechanical master/slave manipulators. The advanced servomanipulator uses a gear-drive transmission which permits modularization for remote maintainability (by other advanced servomanipulators) and increases reliability. Human factors analysis has been used to develop an improved man/machine interface concept based upon colorgraphic displays and menu-driven tough screens. Initial test and evaluation of two advanced servomanipulator slave arms and several other development components have begun. 9 references, 5 figures

  8. Rich Vehicle Routing Problems and Applications

    Wen, Min

    given set of customers. The VRP is a computationally hard combinatorial problem and has been intensively studied by numerous researchers in the last fifty years. Due to the significant economic benefit that can be achieved by optimizing the routing problems in practice, more and more attention has been......The Vehicle Routing Problem (VRP) is one of the most important and challenging optimization problems in the field of Operations Research. It was introduced by Dantzig and Ramser (1959) and defined as the problem of designing the optimal set of routes for a fleet of vehicles in order to serve a...... problems in the sense that consolidation decisions have to be made at the depot and these decisions interact with the planning of pickup and delivery routes. We presented a mathematical model and proposed a Tabu Search based heuristic to solve it. It is shown that the approach can produce near-optimal...

  9. Flight Vehicle Control and Aerobiological Sampling Applications

    Techy, Laszlo


    Aerobiological sampling using unmanned aerial vehicles (UAVs) is an exciting research field blending various scientific and engineering disciplines. The biological data collected using UAVs helps to better understand the atmospheric transport of microorganisms. Autopilot-equipped UAVs can accurately sample along pre-defined flight plans and precisely regulated altitudes. They can provide even greater utility when they are networked together in coordinated sampling missions: such measurements ...

  10. PEMS Light Duty Vehicles Application: Experiences in Downtown Milan



    ABSTRACT Portable Emissions Measurement Systems (PEMS) are becoming an important regulatory tool to monitor the in-use compliance of large sources like heavyduty vehicles (HDV) or non-road mobile machinery (NRMM). Legislative research programmes in Europe, United States and Japan are introducing PEMS in the regulations. The application of PEMS to light-duty vehicles (LDVs) is not part of or driven by official legislative requirements. However, as the vehicleengine operation points in the l...

  11. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    Confer, Keith


    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  12. Progress on advanced dc and ac induction drives for electric vehicles

    Schwartz, H. J.


    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  13. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    Mindy Kirpatrick; J. E. Francfort


    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric

  14. Advanced components for electric and hybrid electric vehicles: Proceedings of a workshop

    Stricklett, K.L. [ed.; Cookson, A.H.; Bartholomew, R.W.; Leedy, T. [National Inst. of Standards and Tech., Gaithersburg, MD (United States)


    This is a key period in the development of electric and hybrid electric vehicles. The landmark 1990 legislation in California requires that two percent of new automobiles be zero emission vehicles in 1998, rising to 10 percent in the year 2005. This can only be met by electric vehicles. The purpose of the workshop was to concentrate on the technologies to improve the design, performance, manufacturability, and economics of the critical components for the next generation of electric and hybrid electric vehicles for the year 2000 and beyond. The workshop began with invited speakers to cover the general topics of impact of the California legislation, federal agency programs, development of standards, infrastructure needs, advanced battery development, and the imperatives for commercial success of electric and hybrid electric vehicles. Working sessions were five parallel meetings on energy conversion systems, energy storage systems, electric propulsion systems, controls and instrumentation, and ancillary systems.

  15. Design considerations of the irradiation test vehicle for the advanced test reactor

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others


    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  16. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Vehicle Projects LLC


    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  17. Advanced in Computer Science and its Applications

    Yen, Neil; Park, James; CSA 2013


    The theme of CSA is focused on the various aspects of computer science and its applications for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of computer science and its applications. Therefore this book will be include the various theories and practical applications in computer science and its applications.

  18. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    No, author


    also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  19. Fibres : future materials for advanced emerging applications

    Fangueiro, Raúl; Rana, S


    Fibrous materials are finding widespread applications in diversified areas, starting from clothing sector to medical fields, various structural and infrastructural applications of civil engineering, aerospace industries and even for energy harvesting and storage applications. In this paper, the results of various research activities conducted by the Fibrous Materials Research Group (FMRG), University of Minho to explore fibrous materials in several advanced and emerging applicatio...

  20. Recent Advances in Launch Vehicle Toxic Hazard and Risk Analysis

    Nyman, R. L.


    A number of widely used rocket propellants produce toxic combustion byproducts or are themselves toxic in their un-reacted state. In this paper we focus on the methodology used to evaluate early flight catastrophic failures and nominal launch emissions that release large amounts of propellant or combustion products into the planetary boundary layer that pose a potential risk to launch area personnel, spectators, or the general public. The United States has traditionally used the Rocket Exhaust Effluent Diffusion Model (REEDM) [1] to access the hazard zones associated with such releases. REEDM is a 1970's vintage Gaussian atmospheric dispersion model that is limited in its ability to accurately simulate certain aspects of the initial source geometry and dynamics of a vehicle breakup and propellant fragment dispersion. The Launch Area Toxic Risk Analysis 3-Dimensional (LATRA3D) [2] computer program has been developed that addresses many of REEDM's deficiencies. LATRA3D is a probabilistic risk analysis tool that simulates both nominal vehicle flight and in-flight failure emissions.

  1. Final report for the Advanced Natural Gas Vehicle Project

    John Wozniak


    The project objective was to develop the technologies necessary to prototype a dedicated compressed natural gas (CNG) powered, mid-size automobile with operational capabilities comparable to gasoline automobiles. A system approach was used to design and develop the engine, gas storage system and vehicle packaging. The 2.4-liter DOHC engine was optimized for natural gas operation with high-compression pistons, hardened exhaust valves, a methane-specific catalytic converter and multi-point gaseous injection. The chassis was repackaging to increase space for fuel storage with a custom-designed, cast-aluminum, semi-trailing arm rear suspension system, a revised flat trunk sheet-metal floorpan and by equipping the car with run-flat tires. An Integrated Storage system (ISS) was developed using all-composite, small-diameter cylinders encapsulated within a high-strength fiberglass shell with impact-absorbing foam. The prototypes achieved the target goals of a city/highway driving range of 300 miles, ample trunk capacity, gasoline vehicle performance and ultra low exhaust emissions.

  2. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    Moawad, Ayman [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, Namdoo [Argonne National Lab. (ANL), Argonne, IL (United States); Shidore, Neeraj [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)


    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of the rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.

  3. The application of a lifetime observer in vehicle technology

    Wedman, S.; Wallaschek, J. [Paderborn Univ. (Gesamthochschule) (Germany). Heinz-Nixdorf Inst.


    This paper presents the concept of a lifetime observer for mobile systems and discusses some pilot applications in vehicle technology. The idea is to expand the basic mechanical system by sensors and electronic information-processing components in order to monitor the stress in critical components. Potential damage, upcoming failures, and the remaining lifetime of the system can then be predicted on-line by using a mathematical damage model. In particular, system aspects in the design of lifetime observers and condition monitoring systems are discussed. The application of a lifetime observer in a newly developed railway vehicle is presented as a detailed example. (orig.)

  4. Application of Harmony Search to Vehicle Routing

    Zong W.  Geem


    Full Text Available A phenomenon-inspired meta-heuristic algorithm, harmony search, imitating music improvisation process, is introduced and applied to vehicle routing problem, then compared with one of the popular evolutionary algorithms, genetic algorithm. The harmony search algorithm conceptualized a group of musicians together trying to search for better state of harmony. This algorithm was applied to a test traffic network composed of one bus depot, one school and ten bus stops with demand by commuting students. This school bus routing example is a multi-objective problem to minimize both the number of operating buses and the total travel time of all buses while satisfying bus capacity and time window constraints. Harmony search could find good solution within the reasonable amount of time and computation.

  5. International Forum on Advanced Microsystems for Automotive Application

    Meyer, Gereon


    The automobile is going through the biggest transformation in its history. Automation and electrification of vehicles are expected to enable safer and cleaner mobility. The prospects and requirements of the future automobile affect innovations in major technology fields like driver assistance systems, vehicle networking and drivetrain development. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. It has been the mission of the International Forum on Advanced Microsystems for Automotive Applications (AMAA) for more than fifteen years to detect novel trends and to discuss the technological implications from early on. Therefore, the topic of the AMAA 2014 will be “Smart Systems for Safe, Clean, and Automated Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers w...

  6. Argonne to open new facility for advanced vehicle testing


    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  7. MRV - Modular Robotic Vehicle

    Ridley, Justin; Bluethmann, Bill


    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  8. Depth perception camera for autonomous vehicle applications

    Kornreich, Philipp


    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. Since it provides numeric information of the distance from the camera to all points in its field of view it is ideally suited for autonomous vehicle navigation and robotic vision. This eliminates the LIDAR conventionally used for range measurements. The light arriving at a pixel through a convex lens adds constructively only if it comes from the object point in focus at this pixel. The light from all other object points cancels. Thus, the lens selects the point on the object who's range is to be determined. The range measurement is accomplished by short light guides at each pixel. The light guides contain a p - n junction and a pair of contacts along its length. They, too, contain light sensing elements along the length. The device uses ambient light that is only coherent in spherical shell shaped light packets of thickness of one coherence length. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel.

  9. Survey of Advanced Booster Options for Potential Shuttle Derivative Vehicles

    Sackheim, Robert L.; Ryan, Richard; Threet, Ed; Kennedy, James W. (Technical Monitor)


    A never-ending major goal for the Space Shuttle program is to continually improve flight safety, as long as this launch system remains in operational service. One of the options to improve system safety and to enhance vehicle performance as well, that has been seriously studied over the past several decades, is to replace the existing strap-on four segment solid rocket boosters (SRB's) with more capable units. A number of booster upgrade options have been studied in some detail, ranging from five segment solids through hybrids and a wide variety of liquid strap-ons (both pressure and pump fed with various propellants); all the way to a completely reusable liquid fly back booster (complete with air breathing engines for controlled landing and return). All of these possibilities appear to offer improvements in varying degrees; and each has their strengths and weaknesses from both programmatic and technical points of view. The most beneficial booster upgrade/design, if the shuttle program were to continue long enough to justify the required investment, would be an approach that greatly increased both vehicle and crew safety. This would be accomplished by increasing the minimum range/minimum altitude envelope that would readily allow abort to orbit (ATO), possibly even to zero/zero, and possibly reduce or eliminate the Return to Launch Site (RTLS) and even the Trans Atlantic Landing (TAL) abort mode requirements. This paper will briefly survey and discuss all of the various booster'upgrade options studied previously, and compare their relative attributes. The survey will explicitly discuss, in summary comparative form, options that include: five segment solids; several hybrid possibilities; pressure and/or pump-fed liquids using either LO2/kerosene, H2O/kerosene and LO2/J2, any of which could be either fully expendable, partly or fully reusable; and finally a fully reusable liquid fly back booster system, with a number of propellant and propulsion system options

  10. Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback

    Fossen, T.I.; Blanke, M.


    More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback...... controller minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...

  11. Challenges of Integrating Unmanned Aerial Vehicles In Civil Application

    Unmanned Aerial Vehicle (UAV) has evolved rapidly over the past decade. There have been an increased number of studies aiming at improving UAV and in its use for different civil applications. This paper highlights the fundamentals of UAV system and examines the challenges related with the major components such as motors, drives, power systems, communication systems and image processing tools and equipment

  12. Advanced electric propulsion system concept for electric vehicles

    Raynard, A. E.; Forbes, F. E.


    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  13. Advances in Dynamic Games and Their Applications

    Bernhard, Pierre; Pourtallier, Odile


    Presents the advances in the theory of dynamic games and their applications in several disciplines. This title covers a variety of topics ranging from purely theoretical developments in game theory, to numerical analysis of various dynamic games, and then progressing to applications of dynamic games in economics, finance, and energy supply

  14. Advanced Extrusion Technology and Application of Aluminium,Magnesium Alloy for Vehicle Body%车身用铝、镁合金先进挤压成形技术及应用

    李落星; 周佳; 张辉


    Resource and environment problems will be the bottleneck of sustainable development in the future, which is significant influence for the transport industry. Therefore, the low fuel consumption, low emission technologies are key technologies in the automotive industry. Lightweight is an effective way to save energy and reduce emission. Aluminum and magnesium alloys are ideal materials for lightweight vehicles due to their high specific strength and high specific stiffness. Considering of the difficulty of extrusion forming and its' subsequent processing for high-performance aluminum and magnesium alloys, a systematic research has been carried out on extrusion mechanism and precise modeling. A series of high efficiency, short processing extrusion technologies have been developed, including isothermal extrusion based on numerical simulation, extrusion-bending-quenching integration forming and continuous extrusion forming. The new developed extrusion technologies lay a good foundation for the large scale application of aluminum and magnesium alloys in the automobile industry.%资源和环境的制约将成为未来社会实现可持续发展的瓶颈,对决定国民经济命脉的交通运输产业的发展有显著影响.因此,低油耗、低排放技术已成为汽车产业发展中的关键技术,轻量化是节约能源和减少有害气体排放的有效途径.铝、镁合金由于比强度和比刚度高,是汽车轻量化的理想材料.针对汽车车身用的高性能铝、镁合金挤压成形和后续加工困难的问题,系统地开展挤压变形机理和精确仿真建模研究,开发包括基于数值仿真的等温挤压、挤压—弯曲—淬火一体化成形和镁合金连续挤压等一系列高效、短流程挤压加工新工艺、新装备.为铝、镁合金在汽车上的大规模推广应用打下了良好的基础.

  15. Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle

    Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.


    This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.

  16. Piezocomposites for unmanned underwater vehicle applications

    Shin, Hoseop; Chang, Woosuk; Lee, Haksoo; Kim, Goonchil; Seo, Heesul


    This paper reviews feasibility of piezoceramic-polymer composite, so called piezocomposite, materials for UUV sonar application. Focus is not only placed on high electro-acoustic transformation performance, also on mass productivity, which is achieved by introducing Powder Injection Molding(PIM) process. Theoretical piezocomposite design method is introduced with FEM verification. Samples, produced via PIM process, are tested and proved their feasibility as UUV sonar sensors.

  17. Towards advanced OCT clinical applications

    Kirillin, Mikhail; Panteleeva, Olga; Agrba, Pavel; Pasukhin, Mikhail; Sergeeva, Ekaterina; Plankina, Elena; Dudenkova, Varvara; Gubarkova, Ekaterina; Kiseleva, Elena; Gladkova, Natalia; Shakhova, Natalia; Vitkin, Alex


    In this paper we report on our recent achievement in application of conventional and cross-polarization OCT (CP OCT) modalities for in vivo clinical diagnostics in different medical areas including gynecology, dermatology, and stomatology. In gynecology, CP OCT was employed for diagnosing fallopian tubes and cervix; in dermatology OCT for monitoring of treatment of psoriasis, scleroderma and atopic dermatitis; and in stomatology for diagnosis of oral diseases. For all considered application, we propose and develop different image processing methods which enhance the diagnostic value of the technique. In particular, we use histogram analysis, Fourier analysis and neural networks, thus calculating different tissue characteristics as revealed by OCT's polarization evolution. These approaches enable improved OCT image quantification and increase its resultant diagnostic accuracy.

  18. Advanced online food ordering application



    The purpose of the thesis was to produce a web application for ordering food (pizzas) online. The thesis mainly focuses on providing the most effective sales possible. For that reason we built a special mechanism for automatic categorisation of pizzas in different categories, which combined with data on a user's past purchases provided a selection of the most appropriate pizzas for that specific user. The first part of the thesis describes the technologies and tools used. In developing t...

  19. Advanced Accelerator Applications in Medicine

    besides the original purpose on development of particle acceleratora as research tools in nuclear and high-energy physics, there are large variety of accelerators used in various fileds from fundamental research to industrial usesand applications chemistry, biology and medicine. Pratical accelators used in various field of medical applications since serveral decades. Even through, a large fraction of applications is emphasized on cancer therappy, the number of accelerators used in midicine for other diagnostics and treatments has increased steady over the years. Several types of accelerated particles are used including electron, proton, neutron and ions. Presently, relativistic electron beams and radiation from linear accelerators (linas) are widely used. A combination of positron emission tomography (PRT) and radiotherapy is an example of excellent invention early detection and treat of cancer tumors. The most developments for proton and heavy ion therapy as well as a modern boron neutron capture therapy (BNCT) are also great incoming effective systems. This talk will focus on developments of the accelrator systems as well as overview on biophysical properties and medical aspects of the diacnostics and treatments.

  20. Uses of Advanced Ceramic Composites in the Thermal Protection Systems of Future Space Vehicles

    Rasky, Daniel J.


    Current ceramic composites being developed and characterized for use in the thermal protection systems (TPS) of future space vehicles are reviewed. The composites discussed include new tough, low density ceramic insulation's, both rigid and flexible; ultra-high temperature ceramic composites; nano-ceramics; as well as new hybrid ceramic/metallic and ceramic/organic systems. Application and advantage of these new composites to the thermal protection systems of future reusable access to space vehicles and small spacecraft is reviewed.

  1. Nanoscale Advances in Catalysis and Energy Applications

    Li, Yimin; Somorjai, Gabor A.


    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  2. Microsoft Application Virtualization Advanced Guide

    Alvarez, Augusto


    A practical tutorial containing clear, step-by-step explanations of all the concepts required to understand the technology involved in virtualizing your application infrastructure. Each chapter uses real-world scenarios so that the readers can put into practice what they learn immediately and with the right guidance. Each topic is written defining a common need and developing the process to solve it using Microsoft App-V. This book is for system administrators or consultants who want to master and dominate App-V, and gain a deeper understanding of the technology in order to optimize App V impl

  3. A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)

    Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan

    This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and "through-the-ground" parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains.

  4. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600–1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles. (invited review)

  5. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    Su, Ming; Chen, Chingchi; Rajan, Siddharth


    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  6. Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles

    Moffitt, Nicholas J.

    This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate

  7. Signature molecular descriptor : advanced applications.

    Visco, Donald Patrick, Jr. (Tennessee Technological University, Cookeville, TN)


    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  8. Advanced Materials for Automotive Application

    In this paper some recent material developments will be overviewed mainly from the point of view of automotive industry. In car industry, metal forming is one of the most important manufacturing processes imposing severe restrictions on materials; these are often contradictory requirements, e.g. high strength simultaneously with good formability, etc. Due to these challenges and the ever increasing demand new material classes have been developed; however, the more and more wide application of high strength materials meeting the requirements stated by the mass reduction lead to increasing difficulties concerning the formability which requires significant technological developments as well. In this paper, the recent materials developments will be overviewed from the point of view of the automotive industry

  9. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)


    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  10. Advanced Sensor Technologies for Next-Generation Vehicles

    Sheen, S H; Chien, H T; Gopalsami, N; Jendrzejczyk, A; Raptis, A C


    This report summarizes the development of automobile emissions sensors at Argonne National Laboratory. Three types of sensor technologies, i.e., ultrasound, microwave, and ion-mobility spectrometry (IMS), were evaluated for engine-out emissions monitoring. Two acoustic sensor technologies, i.e., surface acoustic wave and flexural plate wave, were evaluated for detection of hydrocarbons. The microwave technique involves a cavity design and measures the shifts in resonance frequency that are a result of the presence of trace organic compounds. The IMS technique was chosen for further development into a practical emissions sensor. An IMS sensor with a radioactive {sup 63}Ni ion source was initially developed and applied to measurement of hydrocarbons and NO{sub x} emissions. For practical applications, corona and spark discharge ion sources were later developed and applied to NO{sub x} emission measurement. The concentrations of NO{sub 2} in dry nitrogen and in a typical exhaust gas mixture are presented. The sensor response to moisture was evaluated, and a cooling method to control the moisture content in the gas stream was examined. Results show that the moisture effect can be reduced by using a thermoelectric cold plate. The design and performance of a laboratory prototype sensor are described.

  11. Recent advances in application of EB Technology

    In this paper recent advances in application of electron beam technology are presented. Important industrial and scientific achievements of the international community, together with research by Mediscan, Austria, an operator of state-of-the-art electron beam service center and innovator in the field of EB-Technology are reviewed. In addition, areas which may play an important role in the future are identified. Special focus is on the use of X-ray converters and the potential for industrial applications. (author)

  12. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.


    This paper presents experimental data and an analysis of a proton exchange membrane fuel cell system for electric vehicle applications. The dependence of the fuel cell system's performance on air stoichiometry, operating temperature, and reactant gas pressure was assessed in terms of the fuel cell's polarity and power density-efficiency graphs. All the experiments were performed by loading the fuel cell with resistive heater coils which could be controlled to provide a constant current or con...

  13. Image-Based Vehicle Identification Technology for Homeland Security Applications

    Clark, G A


    The threat of terrorist attacks against US civilian populations is a very real, near-term problem that must be addressed, especially in response to possible use of Weapons of Mass Destruction. Several programs are now being funded by the US Government to put into place means by which the effects of a terrorist attack could be averted or limited through the use of sensors and monitoring technology. Specialized systems that detect certain threat materials, while effective within certain performance limits, cannot generally be used efficiently to track a mobile threat such as a vehicle over a large urban area. The key elements of an effective system are an image feature-based vehicle identification technique and a networked sensor system. We have briefly examined current uses of image and feature recognition techniques to the urban tracking problem and set forth the outlines of a proposal for application of LLNL technologies to this critical problem. The primary contributions of the proposed work lie in filling important needs not addressed by the current program: (1) The ability to create vehicle ''fingerprints,'' or feature information from images to allow automatic identification of vehicles. Currently, the analysis task is done entirely by humans. The goal is to aid the analyst by reducing the amount of data he/she must analyze and reduce errors caused by inattention or lack of training. This capability has broad application to problems associated with extraction of useful features from large data sets. (2) Improvements in the effectiveness of LLNL's WATS (Wide Area Tracking System) by providing it accurate threat vehicle location and velocity. Model predictability is likely to be enhanced by use of more information related to different data sets. We believe that the LLNL can accomplish the proposed tasks and enhance the effectiveness of the system now under development.

  14. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Duffy, James B.


    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  15. Reusable launch vehicles, enabling technology for the development of advanced upper stages and payloads

    In the near future there will be classes of upper stages and payloads that will require initial operation at a high-earth orbit to reduce the probability of an inadvertent reentry that could result in a detrimental impact on humans and the biosphere. A nuclear propulsion system, such as was being developed under the Space Nuclear Thermal Propulsion (SNTP) Program, is an example of such a potential payload. This paper uses the results of a reusable launch vehicle (RLV) study to demonstrate the potential importance of a Reusable Launch Vehicle (RLV) to test and implement an advanced upper stage (AUS) or payload in a safe orbit and in a cost effective and reliable manner. The RLV is a horizontal takeoff and horizontal landing (HTHL), two-stage-to-orbit (TSTO) vehicle. The results of the study shows that an HTHL is cost effective because it implements airplane-like operation, infrastructure, and flight operations. The first stage of the TSTO is powered by Rocket-Based-Combined-Cycle (RBCC) engines, the second stage is powered by a LOX/LH rocket engine. The TSTO is used since it most effectively utilizes the capability of the RBCC engine. The analysis uses the NASA code POST (Program to Optimize Simulated Trajectories) to determine trajectories and weight in high-earth orbit for AUS/advanced payloads. Cost and reliability of an RLV versus current generation expandable launch vehicles are presented

  16. Smart limbed vehicles for naval applications. Part I. Performance analysis

    Weisberg, A.; Wood, L.


    Research work in smart, unmanned limbed vehicles for naval warfare applications performed during the latter part of FY76 and FY76T by the Special Studies Group of the LLL Physics Department for the Office of Naval Research is reported. Smart water-traversing limbed remotely navigated vehicles are interesting because: they are the only viable small vehicle usable in high sea states; they are small and work on the ocean surface, they are much harder to detect than any other conventional craft; they have no human pilot, are capable of high-g evasion, and will continue to operate after direct hits that would have crippled a human crew; they have the prospect of providing surface platforms possessing unprecedented speed and maneuverability; unlike manned information-gathering craft, they impose almost no penalty for missions in excess of 10 hours (no need to rotate shifts of crewmen, no food/lavatory requirements, etc.) and, in their ''loitering mode'', waterbugs could perhaps perform their missions for days to weeks; they are cheap enough to use for one-way missions; they are mass-producible; they are inherently reliable--almost impossible to sink and, in the event of in-use failure, the vehicle will not be destroyed; they maximally exploit continuing technological asymmetries between the U.S. and its potential opponents; and they are economically highly cost-effective for a wide spectrum of Navy missions. (TFD)

  17. Advisor 2.0: A Second-Generation Advanced Vehicle Simulator for Systems Analysis

    Wipke, K.; Cuddy, M.; Bharathan, D.; Burch, S.; Johnson, V.; Markel, A.; Sprik, S.


    The National Renewable Energy Laboratory has recently publicly released its second-generation advanced vehicle simulator called ADVISOR 2.0. This software program was initially developed four years ago, and after several years of in-house usage and evolution, the tool is now available to the public through a new vehicle systems analysis World Wide Web page. ADVISOR has been applied to many different systems analysis problems, such as helping to develop the SAE J1711 test procedure for hybrid vehicles and helping to evaluate new technologies as part of the Partnership for a New Generation of Vehicles (PNGV) technology selection process. The model has been and will continue to be benchmarked and validated with other models and with real vehicle test data. After two months of being available on the Web, more than 100 users have downloaded ADVISOR. ADVISOR 2.0 has many new features, including an easy-to-use graphical user interface, a detailed exhaust aftertreatment thermal model, and complete browser-based documentation. Future work will include adding to the library of components available in ADVISOR, including optimization functionality, and linking with a more detailed fuel cell model.

  18. Neural networks advances and applications 2

    Gelenbe, E


    The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret

  19. Electrospinning for advanced energy and environmental applications

    Cavaliere, Sara


    Electrospinning for Advanced Energy and Environmental Applications delivers a state-of-the-art overview of the use of electrospun fibers in energy conversion and storage, as well as in environmental sensing and remediation. Featuring contributions from leading experts in electrospinning and its specific applications, this book: Introduces the electrospinning technique and its origins, outlining achievable one-dimensional (1D) nanoscaled materials and their various applicationsDiscusses the use of electrospun materials in energy devices, including low- and high-temperature fuel cells, hydrogen

  20. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    Dufrene, Warren R., Jr.


    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  1. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    Dufrene, Warren R., Jr.


    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  2. Simplifying the in-vehicle connectivity for ITS applications

    Sergio Tornell


    Full Text Available In-vehicle connectivity has experienced a big expansion in recent years; car manufacturers are very active in this sense, and are proposing OBU oriented solutions. This effort is justified by the user demands for always-on connectivity. However, currently available OBUs do not provide the desired flexibility and simplicity of use that would be desirable for ITS applications. For example, none of them considers the possibility for inter-vehicle device-to-device communications. In this paper we present GRCBox, an architecture that ex- tends the in-vehicle connectivity by providing inter and in- vehicular communication support. By creating private vehicular networks, GRCBox allows user devices’ applications to perform direct peer-to-peer communication. In this paper we describe the GRCBox design along with four case studies. We also include the experimental results obtained from a test-bed to show that our solution does not have a negative impact on the performance when compared to a centralized solution.

  3. Research on green vehicle and powertrain technologies and their intended application to green ships

    Dong, Z. [Victoria Univ., BC (Canada). Dept. of Mechanical Engineering


    This presentation discussed fuel cell vehicle and backup power system applications for ships. The technology was based on proton exchange membrane (PEM) fuel cell and membrane electrode assembly (MEA) system designs. Technical problems related to the designs included issues related to heat and water management, as well as process and materials costs. Use of the technologies is inhibited by a lack of infrastructure and certification, as well as the problems associated with hydrogen fuel supply, transportation, distribution and storage. Modelling studies for other public transport applications are being modified for use in marine applications. Fuel cell models include empirical; theoretical-empirical; theoretical; and simulation-based computational fluid dynamics (CFD) and mass transfer models. Theoretical models are used to determine parasitic loads as well as to account for fuel storage. Testing results for various PEM fuel cell vehicles were provided. Research on next-generation hybrid powertrains was also discussed. Research is now being conducted on new architectures for multi-regime hybrid vehicles as well as on advanced hybrid energy storage systems. Various performance evaluation simulations were outlined. Details of a new powertrain and stationary components for a green boat design were also outlined. tabs., figs.

  4. Dynamic Surface Control and Its Application to Lateral Vehicle Control

    Bongsob Song


    Full Text Available This paper extends the design and analysis methodology of dynamic surface control (DSC in Song and Hedrick, 2011, for a more general class of nonlinear systems. When rotational mechanical systems such as lateral vehicle control and robot control are considered for applications, sinusoidal functions are easily included in the equation of motions. If such a sinusoidal function is used as a forcing term for DSC, the stability analysis faces the difficulty due to highly nonlinear functions resulting from the low-pass filter dynamics. With modification of input variables to the filter dynamics, the burden of mathematical analysis can be reduced and stability conditions in linear matrix inequality form to guarantee the quadratic stability via DSC are derived for the given class of nonlinear systems. Finally, the proposed design and analysis approach are applied to lateral vehicle control for forward automated driving and backward parallel parking at a low speed as well as an illustrative example.

  5. Different control applications on a vehicle using fuzzy logic control

    Nurkan Yagiz; L Emir Sakman; Rahmi Guclu


    In this paper, the active suspension control of a vehicle model that has five degrees of freedom with a passenger seat using a fuzzy logic controller is studied. Three cases are taken into account as different control applications. In the first case, the vehicle model having passive suspensions with an active passenger seat is controlled. In the second case, active suspensions with passive passenger seat combination are controlled. In the third case, both the passenger seat and suspensions have active controllers. Vibrations of the passenger seat in the three cases due to road bump input are simulated. At the end of the study, the results are compared in order to select the combination that supplies the best ride comfort.

  6. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    Olszewski, Mitch [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  7. Applications of Advanced Electromagnetics Components and Systems

    Kouzaev, Guennadi A


    This text, directed to the microwave engineers and Master and PhD students, is on the use of electromagnetics to the development and design of advanced integrated components distinguished by their extended field of applications. The results of hundreds of authors scattered in numerous journals and conference proceedings are carefully reviewed and classed.  Several chapters are to refresh the knowledge of readers in advanced electromagnetics. New techniques are represented by compact electromagnetic–quantum equations which can be used in modeling of microwave-quantum integrated circuits of future In addition, a topological method to the boundary value problem analysis is considered with the results and examples.  One extended chapter is for the development and design of integrated components for extended bandwidth applications, and the technology and electromagnetic issues of silicon integrated transmission lines, transitions, filters, power dividers, directional couplers, etc are considered. Novel prospec...

  8. Recent advances in vacuum sciences and applications

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid–liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented. (topical review)

  9. Recent advances in vacuum sciences and applications

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.


    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  10. Advanced magnetic resonance spectroscopy techniques and applications

    Cao, Peng; 曹鹏


    Magnetic resonance (MR) is a well-known non-invasive technique that provides spectra (by MR spectroscopy, MRS) and images (by magnetic resonance imaging, MRI) of the examined tissue with detailed metabolic, structural, and functional information. This doctoral work is focused on advanced methodologies and applications of MRS for probing cellular and molecular changes in vivo. A single-voxel diffusion-weighted (DW) MRS method was first developed for monitoring the size changes of intramyocellu...

  11. Differential equations and applications recent advances


    Differential Equations and Applications : Recent Advances focus on the latest developments in Nonlinear Dynamical Systems, Neural Networks, Fluid Dynamics, Fractional Differential Systems, Mathematical Modelling and Qualitative Theory. Different aspects such as Existence, Stability, Controllability, Viscosity and Numerical Analysis for different systems have been discussed in this book. This book will be of great interest and use to researchers in Applied Mathematics, Engineering and Mathematical Physics.

  12. Advanced Vehicle Tracking System on Google Earth Using GPS and GSM

    Sowjanya Kotte


    Full Text Available Vehicle navigation is one of the most important applications in the era of navigation which is mostly used by drivers. Therefore the efficiency of the maps given to the drivers has a great importance in the navigation system. In this paper we proposed a very efficient system which uses the GPS and earth maps to help the driver in navigation by robust display of the current position of the vehicle on a displayed map. The main aim of this project is designing a system which is capable of continuous monitoring of path of the vehicle on PC with Google Earth Application. Here the important issue is displaying the map on several various scales which are adopted by the users. The heart elements in the implementation of this project are GPS, GSM and MCU. The GPS-GSM integrated structure is designed to track the vehicles by using Google earth application. The micro controller is used to receive data from GPS and to transfer the latitude and longitude to the PC to map by using the VB.Net language and this map is generated using Google Earth information.

  13. Environmental applications of biosurfactants: recent advances.

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh


    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies. PMID:21340005

  14. Environmental Applications of Biosurfactants: Recent Advances

    Swaranjit Singh Cameotra


    Full Text Available Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies.

  15. Communication services for advanced network applications.

    Bresnahan, J.; Foster, I.; Insley, J.; Toonen, B.; Tuecke, S.


    Advanced network applications such as remote instrument control, collaborative environments, and remote I/O are distinguished by traditional applications such as videoconferencing by their need to create multiple, heterogeneous flows with different characteristics. For example, a single application may require remote I/O for raw datasets, shared controls for a collaborative analysis system, streaming video for image rendering data, and audio for collaboration. Furthermore, each flow can have different requirements in terms of reliability, network quality of service, security, etc. They argue that new approaches to communication services, protocols, and network architecture are required both to provide high-level abstractions for common flow types and to support user-level management of flow creation and quality. They describe experiences with the development of such applications and communication services.

  16. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    Caruthers, James; Dietz, J.; Pelter, Libby; Chen, Jie; Roberson, Glen; McGinn, Paul; Kizhanipuram, Vinodegopal


    The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college student electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.

  17. Status of Li-polymer batteries for vehicle applications

    Srinivasan, Venkat

    Polymer-based batteries have the potential to revolutionize energy storage because of their ability to allow lithium metal anodes to be used, thereby promising higher energy densities. In addition, there have been vast strides in tuning polymers specific to battery applications, including the use of mixed conductors that provide both electronic and ionic conduction, and multifunctional polymers that serve as, for example, conductors and binders. There has been renewed interest in this topic recently, in the context of solid-state batteries. However, it is still not clear if the properties of presently available solid electrolytes are sufficient to meet the targets for electric vehicle applications. In this talk, we will present a material-to-cell level analysis of solid electrolytes to access the status of presently available materials. Continuum scale models will be used with experiments to understand the underlying processes in the battery and to project energy and power capabilities of solid-state cells based on their material properties. The models use appropriate material properties, where available, and are compared to experimental data to ensure validity. The validated model is then used to estimate the cell-level energy and power capability following the testing protocols specific to electric vehicle application. This analysis helps to identify existing challenges and provides guidelines for research at both material and cell levels for this promising class of next-generation batteries.

  18. TRIZ method application for improving the special vehicles maintenance

    Petrović Saša


    Full Text Available TRIZ methodology provides an opportunity for improving the classical engineering approach based on personal knowledge and experience. This paper presents the application of TRIZ methods for improving vehicle maintenance where special equipment is installed. A specific problem is the maintenance of the periscopes with heating system. Protective glass panels with heating system are rectangular glass elements. Their purpose is to perform mechanical protection of built-in prisms and provide heating of the prisms. Aging and long-term use leads to failure of these elements. The practice requires solutions in order to extend the lifetime of the system. New solution is evaluated by simulation and experiment.

  19. Rotary-wing aeroelasticity with application to VTOL vehicles

    Friedmann, Peretz P.


    A concise assessment is presented of the state of the art in the field of rotary-wing aeroelasticity (RWE). The basic ingredients of RWE are reviewed, including structural modeling, unsteady aerodynamic modeling, formulation of the equations of motion, and solution methods. Results illustrating these methods are presented for isolated blades and coupled rotor-fuselage problems. The application of active controls to suppress aeromechanical and aeroelastic instabilities and to reduce vibration in rotorcraft is discussed. Structural optimization with aeroelastic constraints, gust response analysis of helicopters, and aeroelastic problems in special VTOL vehicles are briefly examined.

  20. Water Management Applications of Advanced Precipitation Products

    Johnson, L. E.; Braswell, G.; Delaney, C.


    Advanced precipitation sensors and numerical models track storms as they occur and forecast the likelihood of heavy rain for time frames ranging from 1 to 8 hours, 1 day, and extended outlooks out to 3 to 7 days. Forecast skill decreases at the extended time frames but the outlooks have been shown to provide "situational awareness" which aids in preparation for flood mitigation and water supply operations. In California the California-Nevada River Forecast Centers and local Weather Forecast Offices provide precipitation products that are widely used to support water management and flood response activities of various kinds. The Hydrometeorology Testbed (HMT) program is being conducted to help advance the science of precipitation tracking and forecasting in support of the NWS. HMT high-resolution products have found applications for other non-federal water management activities as well. This presentation will describe water management applications of HMT advanced precipitation products, and characterization of benefits expected to accrue. Two case examples will be highlighted, 1) reservoir operations for flood control and water supply, and 2) urban stormwater management. Application of advanced precipitation products in support of reservoir operations is a focus of the Sonoma County Water Agency. Examples include: a) interfacing the high-resolution QPE products with a distributed hydrologic model for the Russian-Napa watersheds, b) providing early warning of in-coming storms for flood preparedness and water supply storage operations. For the stormwater case, San Francisco wastewater engineers are developing a plan to deploy high resolution gap-filling radars looking off shore to obtain longer lead times on approaching storms. A 4 to 8 hour lead time would provide opportunity to optimize stormwater capture and treatment operations, and minimize combined sewer overflows into the Bay.ussian River distributed hydrologic model.

  1. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  2. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Ming Cheng


    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  3. Ground-to-orbit laser propulsion: Advanced applications

    Kare, J.T.


    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  4. Advances in brazing science, technology and applications


    Brazing processes offer enhanced control, adaptability and cost-efficiency in the joining of materials. Unsurprisingly, this has lead to great interest and investment in the area. Drawing on important research in the field, Advances in brazing provides a clear guide to the principles, materials, methods and key applications of brazing. Part one introduces the fundamentals of brazing, including molten metal wetting processes, strength and margins of safety of brazed joints, and modeling of associated physical phenomena. Part two goes on to consider specific materials, such as super alloys, filler metals for high temperature brazing, diamonds and cubic boron nitride, and varied ceramics and intermetallics. The brazing of carbon-carbon (C/C) composites to metals is also explored before applications of brazing and brazed materials are discussed in part three. Brazing of cutting materials, use of coating techniques, and metal-nonmetal brazing for electrical, packaging and structural applications are reviewed, alon...

  5. Computational electromagnetics recent advances and engineering applications


    Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.

  6. POF hydrogen detection sensor systems for launch vehicles applications

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.


    This paper describes the first successful Plastic Optical Fiber (POF) cable and glass fiber hydrogen detection sensor systems developed for Delta IV Launch Vehicle. Hydrogen detection in space application is very challenging; the hydrogen detection is priority for rocket industry and every transport device or any application where hydrogen is involved. H2 sensors are necessary to monitor the detection possible leak to avoid explosion, which can be highly dangerous. The hydrogen sensors had to perform in temperatures between -18° C to 60° C (0° F to 140° F). The response of the sensor in this temperature regime was characterized to ensure proper response of the sensors to fugitive hydrogen leakage during vehicle ground operations. We developed the first 75 m combination of POF and glass fiber H2 sensors. Performed detail investigation of POF-glass cables for attenuation loss, thermal, humidity, temperature, shock, accelerate testing for life expectancy. Also evaluated absorption, operating and high/low temperatures, and harsh environmental for glass-POF cables connectors. The same test procedures were performed for glass multi mode fiber part of the H2 and O2 sensors. A new optical waveguides was designed and developed to decrease the impact of both noise and long term drift of sensor. A field testing of sensors was performed at NASA Stennis on the Aerospike X-33 to quantify the element of the sensor package that was responsible for hydrogen detection and temperature.

  7. Image Transmission for Inter-Vehicle Safety Application

    Yap Wei Yee


    Full Text Available Vision-based applications leveraged on the CMOS camera aim to provide the road condition sensing solution for inter-vehicle safety application as well as car drivers’ acknowledgement and notification. Using the Roborealm simulation environment, on-board camera detects the road boundaries beside the car for path prediction system and IR sensor used to interpret the car present location. The proposed system performed the prior informing function for the driver with different frequencies for events and the panel wording displayed. A thorough comparison in CCD and CMOS camera performance on the level of different pixel has been evaluated. Performance of the system is also evaluated in the case that the use different values of min variation filter as well as the definition to avoid erroneous data in order to get the best picture presentation. In the future, this system is to be integrating further with the vehicle accident report system for the authority and paramedics to dispatch the team in a short time.

  8. Experimental Investigation of Exhaust Thermoelectric System and Application for Vehicle

    Liu, X.; Deng, Y. D.; Wang, W. S.; Su, C. Q.


    In this case study, an energy harvesting system using a thermoelectric power generator (TEG) has been constructed. Experimental investigation of the hot and cold sides of the thermoelectric modules (TMs) in this system has been undertaken to assess the feasibility for automotive applications. Two test benches have been developed to analyze the TM performance and the TEG system characteristics, especially the temperature difference, open-circuit voltage, and maximum power output of the TM and TEG system. As the performance of a TM is most influenced by the applied pressure and the temperature difference, a thermostatic heater, thermostatic water tank, and clamping devices are used in our experimental apparatus, increasing the output power of the TEG system. Based on the test bench, a new system called the "four-TEGs" system was designed and assembled into a prototype vehicle called "Warrior," and the characteristics of the system such as the maximum power output have been studied in road tests. The results show great potential for application of this technology in future vehicles.

  9. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.


    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.

  10. Advances in monoclonal antibody application in myocarditis

    Li-na HAN; Shuang HE; Yu-tang WANG; Li-ming YANG; Si-yu LIU; Ting ZHANG


    Monoclonal antibodies have become a part of daily preparation technologies in many laboratories.Attempts have been made to apply monoclonal antibodies to open a new train of thought for clinical treatments of autoimmune diseases,inflammatory diseases,cancer,and other immune-associated diseases.This paper is a prospective review to anticipate that monoclonal antibody application in the treatment of myocarditis,an inflammatory disease of the heart,could be a novel approach in the future.In order to better understand the current state of the art in monoclonal antibody techniques and advance applications in myocarditis,we,through a significant amount of literature research both domestic and abroad,developed a systematic elaboration of monoclonal antibodies,pathogenesis of myocarditis,and application of monoclonal antibodies in myocarditis.This paper presents review of the literature of some therapeutic aspects of monoclonal antibodies in myocarditis and dilated cardiomyopathy to demonstrate the advance of monoclonal antibody application in myocarditis and a strong anticipation that monoclonal antibody application may supply an effective therapeutic approach to relieve the severity of myocarditis in the future.Under conventional therapy,myocarditis is typically associated with congestive heart failure as a progressive outcome,indicating the need for alternative therapeutic strategies to improve long-term results.Reviewing some therapeutic aspects of monoclonal antibodies in myocarditis,we recently found that monoclonal antibodies with high purity and strong specificity can accurately act on target and achieve definite progress in the treatment of viral myocarditis in rat model and may meet the need above.However,several issues remain.The technology on howto make a higher homologous and weak immunogenic humanized or human source antibody and the treatment mechanism of monoclonal antibodies may provide solutions for these open issues.If we are to further stimulate

  11. Recent Advances in Information Hiding and Applications

    Huang, Hsiang-Cheh; Jain, Lakhmi; Zhao, Yao


    This research book presents a sample of recent advances in information hiding techniques and their applications. It includes:   Image data hiding scheme based on vector quantization and image graph coloring The copyright protection system for Android platform Reversible data hiding ICA-based image and video watermarking Content-based invariant image watermarking Single bitmap block truncation coding of color images using cat swarm optimization Genetic-based wavelet packet watermarking for copyright protection Lossless text steganography in compression coding Fast and low-distortion capacity acoustic synchronized acoustic-to-acoustic steganography scheme Video watermarking with shot detection

  12. Advanced electromagnetism foundations, theory and applications

    Barrett, Terence W


    Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electro

  13. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.


    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  14. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    Lai, Jason [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yu, Wensong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sun, Pengwei [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Leslie, Scott [Powerex, Inc., Harrison, OH (United States); Prusia, Duane [Powerex, Inc., Harrison, OH (United States); Arnet, Beat [Azure Dynamics, Oak Park, MI (United States); Smith, Chris [Azure Dynamics, Oak Park, MI (United States); Cogan, Art [Azure Dynamics, Oak Park, MI (United States)


    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  15. REST advanced research topics and practical applications

    Wilde, Erik; Alarcon, Rosa


    This book serves as a starting point for people looking for a deeper principled understanding of REST, its applications, its limitations, and current research work in the area and as an architectural style. The authors focus on applying REST beyond Web applications (i.e., in enterprise environments), and in reusing established and well-understood design patterns. The book examines how RESTful systems can be designed and deployed, and what the results are in terms of benefits and challenges encountered in the process. This book is intended for information and service architects and designers who are interested in learning about REST, how it is applied, and how it is being advanced.

  16. Advances and applications in chaotic systems

    Volos, Christos


    This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.

  17. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    Younger, F. C.; Lackner, H.


    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  18. Advances in the development of ovonic nickel metal hydride batteries for industrial and electric vehicles

    This paper reports that increasing concerns over urban pollution and continued uncertainties about oil supplies have forced the government and industry to refocus their attention on electric vehicles. Despite enormous expenditures in research and development for the ideal battery system, no commercially viable candidate has emerged. The battery systems being considered today due to renewed environmental concerns are still the same systems that were so extensively tested over the last 15 years. For immediate application, an electric vehicle designer has very little choice other than the lead-acid battery despite the fact that energy density is so low as to make vehicle range inadequate, as well as the need for replacement every 20,000 miles. The high energy density projections of Na-S and other so-called high energy batteries have proven to be significantly less in practical modules and there are still concern over cycle life which can be attained under aggressive conditions, reliability under freeze/thaw cycling and consequences resulting from high temperature operation. The conventional nickel-based systems (Ni- Zn, Ni-Fe, Ni-Cd) provide near term higher energy density as compared to lead-acid, but still do not address other important issues such as long life, the need for maintenance-free operation, the use of nontoxic materials and low cost. Against this background, the development of Ovonic Nickel-Metal Hydride (Ni-MH) batteries for electric vehicles has been rapid and successful. Ovonic No-Mh battery technology is uniquely qualified for electric vehicles due to its high energy density, high discharge rate capability, non-toxic alloys, long cycle life. low cost, tolerance to abuse and ability to be sealed for totally maintenance free operation

  19. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles.

    Nam, Kanghyun


    This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle's cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data. PMID:26569246

  20. Idling-stop vehicle road tests of advanced valve-regulated lead-acid (VRLA) battery

    Sawai, Ken; Ohmae, Takao; Suwaki, Hironori; Shiomi, Masaaki; Osumi, Shigeharu

    The results of road tests on valve-regulated lead-acid (VRLA) batteries in an idling-stop (stop and go) vehicle are reported. Idling-stop systems are simple systems to improve fuel economy of automobiles. They are expected to spread widely from an environmental perspective. Performances of a conventional flooded battery, a conventional VRLA battery, and an improved VRLA battery were compared in road tests with an idling-stop vehicle. It was found that the improved VRLA battery was suited to idling-stop applications because it had a smaller capacity loss than the conventional flooded battery during partial-state-of-charge (PSoC) operation. The positive grid was corroded in layers, unlike the usual grain boundary corrosion of SLI battery grid. It is because the corrosion proceeded mainly under PSoC conditions. The corrosion rate could be controlled by potential control of positive plates.

  1. Idling-stop vehicle road tests of advanced valve-regulated lead-acid (VRLA) battery

    Sawai, Ken; Ohmae, Takao; Suwaki, Hironori; Shiomi, Masaaki; Osumi, Shigeharu [Technical Development Division, Automotive Battery Business Unit, GS Yuasa Power Supply Ltd., Nishinosho, Kisshoin, Minami-ku, Kyoto (Japan)


    The results of road tests on valve-regulated lead-acid (VRLA) batteries in an idling-stop (stop and go) vehicle are reported. Idling-stop systems are simple systems to improve fuel economy of automobiles. They are expected to spread widely from an environmental perspective. Performances of a conventional flooded battery, a conventional VRLA battery, and an improved VRLA battery were compared in road tests with an idling-stop vehicle. It was found that the improved VRLA battery was suited to idling-stop applications because it had a smaller capacity loss than the conventional flooded battery during partial-state-of-charge (PSoC) operation. The positive grid was corroded in layers, unlike the usual grain boundary corrosion of SLI battery grid. It is because the corrosion proceeded mainly under PSoC conditions. The corrosion rate could be controlled by potential control of positive plates. (author)


    Osman ELDOĞAN


    Full Text Available Wheel model is very important in vehicle modelling, it is because the contact between vehicle and road is achieved by wheel. Vehicle models can be dynamic models which are used in vehicle design, they can also be models used in accident simulations. Because of the importance of subject, many studies including theoretical, experimental and mixed type have been carried out. In this study, information is given about development of wheel modelling and research studies and also use of these modellings in traffic accident simulations.

  3. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)


    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  4. Application development environment for advanced digital workstations

    Valentino, Daniel J.; Harreld, Michael R.; Liu, Brent J.; Brown, Matthew S.; Huang, Lu J.


    One remaining barrier to the clinical acceptance of electronic imaging and information systems is the difficulty in providing intuitive access to the information needed for a specific clinical task (such as reaching a diagnosis or tracking clinical progress). The purpose of this research was to create a development environment that enables the design and implementation of advanced digital imaging workstations. We used formal data and process modeling to identify the diagnostic and quantitative data that radiologists use and the tasks that they typically perform to make clinical decisions. We studied a diverse range of radiology applications, including diagnostic neuroradiology in an academic medical center, pediatric radiology in a children's hospital, screening mammography in a breast cancer center, and thoracic radiology consultation for an oncology clinic. We used object- oriented analysis to develop software toolkits that enable a programmer to rapidly implement applications that closely match clinical tasks. The toolkits support browsing patient information, integrating patient images and reports, manipulating images, and making quantitative measurements on images. Collectively, we refer to these toolkits as the UCLA Digital ViewBox toolkit (ViewBox/Tk). We used the ViewBox/Tk to rapidly prototype and develop a number of diverse medical imaging applications. Our task-based toolkit approach enabled rapid and iterative prototyping of workstations that matched clinical tasks. The toolkit functionality and performance provided a 'hands-on' feeling for manipulating images, and for accessing textual information and reports. The toolkits directly support a new concept for protocol based-reading of diagnostic studies. The design supports the implementation of network-based application services (e.g., prefetching, workflow management, and post-processing) that will facilitate the development of future clinical applications.

  5. Modeling of electric vehicle battery for vehicle-to-grid applications

    Pang, Ying; Brady, Cormac; Pellegrino, Giustino;


    Electric vehicle battery models are essential when performing analysis of EV systems. The battery package of electric vehicles is complicated and unpredictable because of its chemical based functioning. In this paper, a battery model is presented with a number of internal and external factors taken...

  6. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan


    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  7. Mission applications for advanced photovoltaic solar arrays

    The compatibility of the advanced photovoltaic solar array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system (> 130 w/kG) was compared to rigid arrays and an RTG (radio-isotope thermoelectric generator) static power source for a wide range of assumed future Earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. This paper discusses the three selected power sources, the assessment criteria and rating definitions, the reference missions, and presents the assessment results in a tabular format

  8. Mobile virtual synchronous machine for vehicle-to-grid applications

    Pelczar, Christopher


    The Mobile Virtual Synchronous Machine (VISMA) is a power electronics device for Vehicle to Grid (V2G) applications which behaves like an electromechanical synchronous machine and offers the same beneficial properties to the power network, increasing the inertia in the system, stabilizing the grid voltage, and providing a short-circuit current in case of grid faults. The VISMA performs a real-time simulation of a synchronous machine and calculates the phase currents that an electromagnetic synchronous machine would produce under the same local grid conditions. An inverter with a current controller feeds the currents calculated by the VISMA into the grid. In this dissertation, the requirements for a machine model suitable for the Mobile VISMA are set, and a mathematical model suitable for use in the VISMA algorithm is found and tested in a custom-designed simulation environment prior to implementation on the Mobile VISMA hardware. A new hardware architecture for the Mobile VISMA based on microcontroller and FPGA technologies is presented, and experimental hardware is designed, implemented, and tested. The new architecture is designed in such a way that allows reducing the size and cost of the VISMA, making it suitable for installation in an electric vehicle. A simulation model of the inverter hardware and hysteresis current controller is created, and the simulations are verified with various experiments. The verified model is then used to design a new type of PWM-based current controller for the Mobile VISMA. The performance of the hysteresis- and PWM-based current controllers is evaluated and compared for different operational modes of the VISMA and configurations of the inverter hardware. Finally, the behavior of the VISMA during power network faults is examined. A desired behavior of the VISMA during network faults is defined, and experiments are performed which verify that the VISMA, inverter hardware, and current controllers are capable of supporting this

  9. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    Fesmire, J. E.; Sass, J.


    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  10. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.


    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  11. Advanced flow MRI: emerging techniques and applications.

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K


    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  12. Applications of the advanced neutron source reactor

    When the technique of neutron scattering was pioneered at the X-10 graphite reactor at Oak Ridge National Laboratory about 50 years ago, it was used to study certain important, but fairly esoteric, properties of crystals. From this modest beginning, neutron scattering has become a major tool in every branch of science, from the astrophysics of the early universe to human biology, and in many important industrial and engineering applications. In a typical modern research reactor it is not unusual to find one instrument studying new polymeric materials, while its neighbor is measuring residual stress in a jet turbine, sometimes with the jet operating. Most of this development has taken place outside of the United States, primarily in Western Europe, Japan and Russia, and it is generally recognized that we are a decade behind our competitors in this important field. The Advanced Neutron Source (ANS), planned to become operational as a user-facility at Oak Ridge at the end of this decade, will regain our leadership in neutron-based research and will be a major center for attracting new students into science. This paper discusses some of the research and development applications of the ANS, with an emphasis on applied materials science and engineering

  13. Heterogeneous Photocatalysis: Recent Advances and Applications

    Alex Omo Ibhadon


    Full Text Available Semiconductor heterogeneous photocatalysis, the subject of this review, is a versatile, low-cost and environmentally benign treatment technology for a host of pollutants. These may be of biological, organic and inorganic in origin within water and air. The efficient and successful application of photocatalysis demands that the pollutant, the catalyst and source of illumination are in close proximity or contact with each other. The ability of advanced oxidation technology to remove low levels of persistent organic pollutants as well as microorganisms in water has been widely demonstrated and, progressively, the technology is now being commercialized in many areas of the world including developing nations. This review considers recent developments in the research and application of heterogeneous semiconductor photocatalysis for the treatment of low-level concentrations of pollutants in water and air using titanium dioxide as a “model” semiconductor. The review considers charge transport characteristics on the semiconductor surface, photocatalyst reactor design and organic degradation mechanistic pathways. The effects of photoreactor operating parameters on the photocatalytic process are discussed in addition to mineralization and disinfection kinetics.

  14. Cognitive Radio Network (CRN) System for Vehicle Safety Applications

    Lim, Jae Han


    As the number of vehicle accidents increases, car manufacturers and academic researchers have developed a vehicular safety system. The key component of the safety system is vehicular communications, by which vehicles exchange their local status information with neighbor vehicles and disseminate a warning message within a specified area. The challenge lies in satisfying stringent communication requirements of the safety system, extremely reliable packet delivery and low communication latency. ...

  15. Advances in artificial olfaction: sensors and applications.

    Gutiérrez, J; Horrillo, M C


    The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned. PMID:24767451

  16. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol. II

    Gris, Arturo


    Identifies potentially promising market segments for electric and hybrid vehicle technologies; covers topics including energy and power requirements, battery and range extender, propulsion system, and air conditioning

  17. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    Gris, Arturo E.


    Identifies potentially promising market segments for electric and hybrid vehicle technologies; covers topics including energy and power requirements, battery and range extender, propulsion system, and air conditioning

  18. Reliability prediction for the vehicles equipped with advanced driver assistance systems (ADAS and passive safety systems (PSS

    Balbir S. Dhillon


    Full Text Available The human error has been reported as a major root cause in road accidents in today’s world. The human as a driver in road vehicles composed of human, mechanical and electrical components is constantly exposed to changing surroundings (e.g., road conditions, environmentwhich deteriorate the driver’s capacities leading to a potential accident. The auto industries and transportation authorities have realized that similar to other complex and safety sensitive transportation systems, the road vehicles need to rely on both advanced technologies (i.e., Advanced Driver Assistance Systems (ADAS and Passive Safety Systems (PSS (e.g.,, seatbelts, airbags in order to mitigate the risk of accidents and casualties. In this study, the advantages and disadvantages of ADAS as active safety systems as well as passive safety systems in road vehicles have been discussed. Also, this study proposes models that analyze the interactions between human as a driver and ADAS Warning and Crash Avoidance Systems and PSS in the design of vehicles. Thereafter, the mathematical models have been developed to make reliability prediction at any given time on the road transportation for vehicles equipped with ADAS and PSS. Finally, the implications of this study in the improvement of vehicle designs and prevention of casualties are discussed.

  19. Application of a Biodegradable Lubricant in a Diesel Vehicle

    Schramm, Jesper


    , NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters...

  20. A Boosting Multi Flyback Converter for Electric Vehicle Application

    J. Sangeetha


    Full Text Available The Flyback converter belongs to the primary switched converter family, which means there is isolation between input and output. Flyback converters have low number of components compared to other Switched Mode Power Supplies (SMPSs, they also have the advantage that several isolated output voltages can be regulated by one control circuit. This study proposes an efficient and cost effective Multi Flyback topology, an isolated DC-DC converter suitable for electric vehicle applications especially driven with induction motor. The converter topology forms a power interface between the battery and the motor and also capable of boosting the voltage from low voltage battery side to high voltage DC link. A Multi Flyback Converter topology implemented by paralleling three individual flyback converters at the battery input side and DC link output side. The topology will share the current across each individual converter and the individual power will be added up at the output side. The scheme incorporates a transformer winding technique which can reduce the leakage inductance of the coupled inductor to a satisfactory limit.

  1. Application of Machine Vision to Vehicle Automatic Collision Warning Algorithm

    WANG Jiang-feng; GAO Feng; XU Guo-yan; YAO Sheng-zhuo


    Using the new technologies such as information technology, communication technology and electronic control technology, vehicle collision warning system(CWS) can acquire road condition, adjacent vehicle march condition as well as its dynamics performance continuously, then it can forecast the oncoming potential collision and give a warning. Based on the analysis of driver's driving behavior, algorithm's warning norms are determined. Based on warning norms adopting machine vision method, the cooperation collision warning algorithm(CWA) model with multi-input and multi-output is established which is used in supporting vehicle CWS. The CWA is tested using the actual data and the result shows that this algorithm can identify and carry out warning for vehicle collision efficiently, which has important meaning for improving the vehicle travel safety.

  2. Induced pluripotent stem cells: advances to applications

    Timothy J Nelson


    Full Text Available Timothy J Nelson1, Almudena Martinez-Fernandez1, Satsuki Yamada1, Yasuhiro Ikeda2, Carmen Perez-Terzic1, Andre Terzic11Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA; 2Department of Molecular Medicine; Mayo Clinic, Rochester, Minnesota, USAAbstract: Induced pluripotent stem cell (iPS technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms.Keywords: iPS, regenerative medicine, individualized medicine, stem cell therapy

  3. Advanced Photodetectors for Hyperspectroscopy and Other Applications

    Rodionov, I; Crotty, Ian; Fonte, Paulo J R; Galy, F; Peskov, Vladimir; Zanette, O


    Hyperspectroscopy is a new method of surface image taking, providing simultaneously high position and spectral resolutions which allow one to make some conclusions about chemical compositions of the surfaces. We are now studying applications of the hyperspctroscopic technique to be used for medicine. This may allow one to develop early diagnostics of some illnesses, as for example, skin cancer. For image taking advanced MCPs are currently used, sensitive in the spectral interval of 450-850 nm. One of the aims of this work is to extend the hyperspectrocpic method to the UV region of spectra: 185-280 nm. For this we have developed and successfully tested innovative 1D and 2D UV sealed photosensitive gaseous detectors with resistive electrodes. These detectors are superior MCPs due to the very low rate of noise pulses and thus due to the high signal to noise ratio. Other important features of these detectors are that they have excellent position resolutions - 30 micron in digital form, are vibration stable and a...

  4. Application of Vehicle Dynamic Modeling in Uavs for Precise Determination of Exterior Orientation

    Khaghani, M.; Skaloud, J.


    Advances in unmanned aerial vehicles (UAV) and especially micro aerial vehicle (MAV) technology together with increasing quality and decreasing price of imaging devices have resulted in growing use of MAVs in photogrammetry. The practicality of MAV mapping is seriously enhanced with the ability to determine parameters of exterior orientation (EO) with sufficient accuracy, in both absolute and relative senses (change of attitude between successive images). While differential carrier phase GNSS satisfies cm-level positioning accuracy, precise attitude determination is essential for both direct sensor orientation (DiSO) and integrated sensor orientation (ISO) in corridor mapping or in block configuration imaging over surfaces with low texture. Limited cost, size, and weight of MAVs represent limitations on quality of onboard navigation sensors and puts emphasis on exploiting full capacity of available resources. Typically short flying times (10-30 minutes) also limit the possibility of estimating and/or correcting factors such as sensor misalignment and poor attitude initialization of inertial navigation system (INS). This research aims at increasing the accuracy of attitude determination in both absolute and relative senses with no extra sensors onboard. In comparison to classical INS/GNSS setup, novel approach is presented here to integrated state estimation, in which vehicle dynamic model (VDM) is used as the main process model. Such system benefits from available information from autopilot and physical properties of the platform in enhancing performance of determination of trajectory and parameters of exterior orientation consequently. The navigation system employs a differential carrier phase GNSS receiver and a micro electro-mechanical system (MEMS) grade inertial measurement unit (IMU), together with MAV control input from autopilot. Monte-Carlo simulation has been performed on trajectories for typical corridor mapping and block imaging. Results reveal

  5. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    Gruttadauria, Michelangelo


    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  6. Advances in the Application of Electrical Techniques for Site Remediation

    Electrical techniques in site remediation have advanced over the past 10–15 years as a result of the experience gained in their application to various types of waste and sites. The main advances have been in equipment design and construction combined with improvement in the understanding of the vitrification process. An overview is given of the advances together with an account of an application to a particular remediation problem. (author)

  7. Energy efficient non-road hybrid electric vehicles advanced modeling and control

    Unger, Johannes; Jakubek, Stefan


    Analyzing the main problems in the real-time control of parallel hybrid electric powertrains in non-road applications, which work in continuous high dynamic operation, this book gives practical insight in to how to maximize the energetic efficiency and drivability of such powertrains. The book addresses an energy management control structure, which considers all constraints of the physical powertrain and uses novel methodologies for the prediction of the future load requirements to optimize the controller output in terms of an entire work cycle of a non-road vehicle. The load prediction includes a methodology for short term loads as well as for an entire load cycle by means of a cycle detection. A maximization of the energetic efficiency can so be achieved, which is simultaneously a reduction in fuel consumption and exhaust emissions. Readers will gain a deep insight into the necessary topics to be considered in designing an energy and battery management system for non-road vehicles and that only a combinatio...

  8. Advanced cold rolled steels for automotive applications

    Hofmann, H. [ThyssenKrupp Steel AG, Eberhardstrasse 12, 44145 Dortmund (Germany); Mattissen, D.; Schaumann, T.W. [ThyssenKrupp Steel AG, Duisburg (Germany)


    Advanced multiphase steels offer a great potential for bodies-in-white through their combination of formability and achievable component strength levels. They are first choice for strength and crash-relevant parts of challenging geometry. The intensive development of high-strength multiphase steels by ThyssenKrupp has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex phase steels are currently produced in addition to cold rolled DP and RA steels. New continuously annealed grades with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for applications mainly in the field of structural automobile elements make use of the classic advantages of microalloying as well as the principles of DP and TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (Abstract Copyright [2006], Wiley Periodicals, Inc.) [German] Fortschrittliche Multiphasen-Staehle eroeffnen wegen der inzwischen erreichbaren Kombination aus Umformbarkeit und Bauteilfestigkeit ein enormes Potenzial fuer Rohkarosserien. Sie stellen eine erste Wahl dar, wenn es um Festigkeit und um Crashsicherheit geht und besondere Anforderungen an die Bauteilgeometrien gestellt werden. Bei ThyssenKrupp hat die Entwicklung hochfester Multiphasen-Staehle in Verbindung mit dem Feuerverzinken zur Realisierung von Blechhalbzeugen gefuehrt, die hervorragend formbar sind. Es werden heute feuerverzinkte Komplexphasenstaehle neben den bewaehrten kaltgewalzten Dualphasen(DP) - und Retained Austenit(RA)-Staehlen produziert. Die neuen kontinuierlich gegluehten Stahlvarianten mit Festigkeiten bis zu 1000 MPa in Kombination mit der bei Strukturbauteilen im Automobilbau geforderten Duktilitaet nutzen sowohl die klassischen Vorteile des Mikrolegierens aus und dazu die Prinzipien, die man bei DP- und TRIP-Staehlen anwendet. Eine weitere Verbesserung des Eigenschaftsprofils wird mit dem

  9. Advances in LEDs for automotive applications

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno


    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  10. Advanced applications of water cooled nuclear power plants

    promise shorter construction times and lower capital costs could help to promote a new era of nuclear power. About one-fifth of the world's energy consumption is used for electricity generation. Most of the world's energy consumption is for heat and transportation. Nuclear energy has considerable potential to penetrate these energy sectors now served by fossil fuels that are characterized by price volatility and finite supply. Advanced applications of nuclear energy include seawater desalination, district heating, heat for industrial processes, and electricity and heat for hydrogen production. In addition, since nuclear electricity is generally produced in a base load mode at stable prices, there is considerable near-term potential for nuclear power to contribute to the transportation sector as a carbon-free source of electricity for charging electric and plug-in hybrid vehicles. This collaborative assessment was recommended by the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR). The objective has been to identify opportunities and challenges for water cooled reactors to capture a substantial share of the above mentioned advanced applications. For each application, the opportunities, market context, challenges and potential solutions are addressed

  11. Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design

    Ordaz, Irian; Li, Wu


    Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.

  12. A Driving Behavior Retrieval Application for Vehicle Surveillance System

    Fu Xianping; Men Yugang; Yuan Guoliang


    Vehicle surveillance system provides a large range of informational services for the driver and administrator such as multiview road and driver surveillance videos from multiple cameras mounted on the vehicle, video shots monitoring driving behavior and highlighting the traffic conditions on the roads. How to retrieval driver’s specific behavior, such as ignoring pedestrian, operating infotainment, near collision or running the red light, is difficult in large scale driving data. Annotation a...

  13. A Driving Behavior Retrieval Application for Vehicle Surveillance System

    Fu Xianping


    Full Text Available Vehicle surveillance system provides a large range of informational services for the driver and administrator such as multiview road and driver surveillance videos from multiple cameras mounted on the vehicle, video shots monitoring driving behavior and highlighting the traffic conditions on the roads. How to retrieval driver’s specific behavior, such as ignoring pedestrian, operating infotainment, near collision or running the red light, is difficult in large scale driving data. Annotation and retrieving of these video streams has an important role on visual aids for safety and driving behavior assessment. In a vehicle surveillance system, video as a primary data source requires effective ways of retrieving the desired clip data from a database. And data from naturalistic studies allow for an unparalleled breadth and depth of driver behavior analysis that goes beyond the quantification and description of driver distraction into a deeper understanding of how drivers interact with their vehicles. To do so, a model that classifies vehicle video data on the basis of traffic information and its semantic properties which were described by driver’s eye gaze orientation was developed in this paper. The vehicle data from OBD and sensors is also used to annotate the video. Then the annotated video data based on the model is organized and streamed by retrieval platform and adaptive streaming method. The experimental results show that this model is a good example for evidence-based traffic instruction programs and driving behavior assessment.

  14. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    Kevin Morrow; Donald Darner; James Francfort


    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  15. Advanced Internet Protocols, Services, and Applications

    Oki, Eiji; Tatipamula, Mallikarjun; Vogt, Christian


    Today, the internet and computer networking are essential parts of business, learning, and personal communications and entertainment. Virtually all messages or transactions sent over the internet are carried using internet infrastructure- based on advanced internet protocols. Advanced internet protocols ensure that both public and private networks operate with maximum performance, security, and flexibility. This book is intended to provide a comprehensive technical overview and survey of advanced internet protocols, first providing a solid introduction and going on to discu

  16. Nationwide impact and vehicle to grid application of electric vehicles mobility using an activity based model

    Álvaro, Roberto; González, Jairo; Fraile Ardanuy, José Jesús; Knapen, Luk; JANSSENS, Davy


    This paper describes the impact of electric mobility on the transmission grid in Flanders region (Belgium), using a micro-simulation activity based models. These models are used to provide temporal and spatial estimation of energy and power demanded by electric vehicles (EVs) in different mobility zones. The increment in the load demand due to electric mobility is added to the background load demand in these mobility areas and the effects over the transmission substations are analyzed. From t...

  17. Design and evaluation of safety-critical applications based on inter-vehicle communication

    An, Natalya


    Inter-vehicle communication has a potential to improve road traffic safety and efficiency. Technical feasibility of communication between vehicles has been extensively studied, but due to the scarcity of application-level research, communication's impact on the road traffic is still unclear. This thesis addresses this uncertainty by designing and evaluating two fail-safe applications, namely, Rear-End Collision Avoidance and Virtual Traffic Lights.

  18. A high capability teleoperated vehicle for hazardous applications

    The Robotics Development Group at the Savannah River Site is developing a high performance teleoperated vehicle for use in radioactive and hazardous environments. The three-wheeled vehicle incorporates a highly dexterous 6 degree-of-freedom (DOF), hydraulically-powered manipulator made by Schilling Development, Inc. The teleoperator is called Little MoRT (MObile Radio-controlled Teleoperator) and is a modified version of a commercially available, battery-powered, warehouse vehicle. Little MoRT is controlled remotely by a universal robot controller either through a radio frequency link or a tethered cable. Six video cameras and a microphone provide the operator with audio-visual feedback of the vehicle and its surrounding environment. The vehicle also incorporates a hydraulic power unit consisting of a propane-driven engine for powering the Schilling manipulator. Little MoRT is capable of operating in outdoor as well as indoor environments and is well suited for decontamination and decommissioning activities such as dismantling, sorting, and surveying of radioactive waste

  19. Post-vehicle-application lithium-ion battery remanufacturing, repurposing and recycling capacity: Modeling and analysis

    Charles Robert Standridge


    Full Text Available Purpose: A mathematical model is used to help determine the manufacturing capacity needed to support post-vehicle-application remanufacturing, repurposing, and recycling of lithium-ion batteries over time.  Simulation is used in solving the model to estimate capacity in kWh.  Lithium-ion batteries that are commonly used in the electrification of vehicles cannot be simply discarded post-vehicle-application due to the materials of which they are composed.  Eventually, each will fail to hold a charge and will need to be recycled.  Remanufacturing, allowing a battery to return to a vehicle application, and repurposing, transforming a battery for use in a non-vehicle application, postpone recycling and increase value. The mathematical model and its solution using simulation test the hypothesis that the capacity needed for remanufacturing, repurposing, and recycling as well as new battery production is a function of a single parameter:  the percent of post-vehicle-application batteries that are remanufactured. Design/methodology/approach: Equations in the mathematical model represent the capacity needed for remanufacturing, repurposing, and recycling as well as new battery production as dependent variables.  Independent variables are exogenous quantities as such as the demand for electrified vehicles of all types, physical properties of batteries such as their application life distribution including the time to recycling, and a single decision variable:  the percent of post-vehicle-application batteries that are remanufactured.  Values of the dependent variables over time are estimated by simulation for values of the percent of post-vehicle-application batteries ranging from 0% to 85% in steps of 5%. Findings and Originality/value: The simulation results support important insights for investment in capacity for remanufacturing, repurposing, and recycling of post-vehicle-application batteries as well as new batteries.  The capacity needed for

  20. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility

    Rezvanizaniani, Seyed Mohammad; Liu, Zongchang; Chen, Yan; Lee, Jay


    As hybrid and electric vehicle technologies continue to advance, car manufacturers have begun to employ lithium ion batteries as the electrical energy storage device of choice for use in existing and future vehicles. However, to ensure batteries are reliable, efficient, and capable of delivering power and energy when required, an accurate determination of battery performance, health, and life prediction is necessary. This paper provides a review of battery prognostics and health management (PHM) techniques, with a focus on major unmet needs in this area for battery manufacturers, car designers, and electric vehicle drivers. A number of approaches are presented that have been developed to monitor battery health status and performance, as well as the evolution of prognostics modeling methods. The goal of this review is to render feasible and cost effective solutions for dealing with battery life issues under dynamic operating conditions.

  1. Lithium batteries advanced technologies and applications

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef


    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  2. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.


    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  3. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station


    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  4. The Advanced Re-Entry Vehicle (ARV) a Development Step from ATV Toward Manned Transportation Systems

    Bottacini, M.; Berthe, P.; Vo, X.; Pietsch, K.


    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of un-pressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU's); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and deorbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat- hield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a

  5. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    Wood, E.; Neubauer, J.; Burton, E.


    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  6. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  7. Advanced remote handling for future applications: The advanced integrated maintenance system

    The Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. The developed technology has a wide spectrum of application for other hazardous environments. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, installation, and operation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System

  8. Advanced nanomaterials and their applications in renewable energy

    Liu, Jingbo Louise


    Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cell

  9. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.


    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  10. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    Staunton, R.H.


    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance