Advanced Space Fission Propulsion Systems
Houts, Michael G.; Borowski, Stanley K.
2010-01-01
Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust
The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)
Key nuclear data measurements for advanced fission energy and white neutron source at CSNS
The key nuclear data for advanced fission energy are important in designing advanced nuclear reactors and facilities for nuclear-waste transmutation. Because the present nuclear data library is limited by experimental condition and energy range, the precision of some nuclear data is low, even some nuclear data are blank. In this paper, the status of the nuclear data and white neutron sources were presented. The back-streaming neutron beam at China Spallation Neutron Source (CSNS) has very wide energy spectrum (0.01 eV-200 MeV) and excellent time structure. From the simulation results, it's obtained that the uncollimated neutron fluence rate is around 9.3 × 106 cm-2 · s-1 within the given energy range at 80 m away from the target, which accounts for about 53% of the total neutrons. The time resolution of 0.3%-0.9%, which is important for the Time-of-Flight method, can be obtained for both the parasite operation mode with two proton bunches and the dedicated operation mode with a single proton bunch. CSNS white neutron source will be a good facility for nuclear data measurement. (authors)
Intermediate energy nuclear fission
Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)
Advanced Fission Reactor Program objectives
The objective of an advanced fission reactor program should be to develop an economically attractive, safe, proliferation-resistant fission reactor. To achieve this objective, an aggressive and broad-based research and development program is needed. Preliminary work at Brookhaven National Laboratory shows that a reasonable goal for a research program would be a reactor combining as many as possible of the following features: (1) initial loading of uranium enriched to less than 15% uranium 235, (2) no handling of fuel for the full 30-year nominal core life, (3) inherent safety ensured by core physics, and (4) utilization of natural uranium at least 5 times as efficiently as light water reactors
With the detector system DIOGENES thermal neutron induced and spontaneous α particle associated fission and spontaneous nuclear tripartition into three fragments of similar masses has been investigated. DIOGENES is a concentric arrangement of toroidal angular position sensitive ionization chambers and proportional counters to measure the kinetic energies and relative angular distributions of the three reaction products of ternary fission. For α-particle accompanied fission some of the many possible α particle fission-fragment parameter correlations will be discussed. For nearly symmetric low-energy nuclear tripartition new upper limits are presented. Former experimental results which pretended evidence for so called true ternary fission could be explained by charged-particle associated fission with a light particle in the mass range of 13 < A < 23
Energy dependence of fission observables
Paşca, Horia
2016-01-01
The mass, charge and isotopic distributions of fission fragments are studied within an improved scission-point statistical model in the reaction 235U+n at different energies of the incident neutron. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments. The calculated mass distribution of 238U+n is also compared with experimental data.
Ripani M.
2015-01-01
Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.
Fusion and fission of atomic clusters: recent advances
Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.;
2005-01-01
We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....
Energy partition in low energy fission
Mirea, M.
2011-01-01
The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the another separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The fission path is obtained in the frame of the macroscopic-microscopic model. The single particle level schemes are obtained within the two ...
Energy production using fission fragment rockets
Chapline, G.; Matsuda, Y.
1991-08-01
Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: approximately twice the efficiency if the fission fragment energy can be directly converted into electricity; reduction of the buildup of a fission fragment inventory in the reactor could avoid a Chernobyl type disaster; and collection of the fission fragments outside the reactor could simplify the waste disposal problem.
Energy production using fission fragment rockets
Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs
Fusion-fission energy systems evaluation
This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept
Fusion-fission energy systems evaluation
Teofilo, V.L.; Aase, D.T.; Bickford, W.E.
1980-01-01
This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.
Improved Calculation of Thermal Fission Energy
Ma, X. B.; Zhong, W. L.; Wang, L. Z.; Y. X. Chen; Cao, J
2012-01-01
Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel isotopes, with improvements on three aspects. ...
Fission dynamics at low excitation energy
Aritomo, Y
2013-01-01
The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.
Fission dynamics at low excitation energy
Aritomo, Y.; Chiba, S.
2013-01-01
The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibrati...
Structural materials for fission & fusion energy
Steven J. Zinkle
2009-11-01
Full Text Available Structural materials represent the key for containment of nuclear fuel and fission products as well as reliable and thermodynamically efficient production of electrical energy from nuclear reactors. Similarly, high-performance structural materials will be critical for the future success of proposed fusion energy reactors, which will subject the structures to unprecedented fluxes of high-energy neutrons along with intense thermomechanical stresses. Advanced materials can enable improved reactor performance via increased safety margins and design flexibility, in particular by providing increased strength, thermal creep resistance and superior corrosion and neutron radiation damage resistance. In many cases, a key strategy for designing high-performance radiation-resistant materials is based on the introduction of a high, uniform density of nanoscale particles that simultaneously provide good high temperature strength and neutron radiation damage resistance.
Kramer, Kevin James
2010-01-01
This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by ...
Calculated medium energy fission cross sections
An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission
Fission dynamics at low excitation energy. 2
Aritomo, Y; Ivanyuk, F A
2014-01-01
The mass asymmetry in the fission of U-236 at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.
Advanced Modeling of Prompt Fission Neutrons and Gamma Rays
Kawano T.
2010-03-01
Full Text Available Prompt fission neutrons and gamma rays are computed using a Monte Carlo treatment of the statistical evaporation of the excited primary fission fragments. The assumption of two fragments in thermal equilibrium at the time of neutron emission is addressed by studying the neutron multiplicity as a function of fragment mass. Results for the neutron-induced fission of 235U are discussed, for incident neutron energies from 0.5 to 5.5 MeV. Recent experimental data on the fission fragment yields as a function of mass and total kinetic energy are used as input data.
Advanced Modeling of Prompt Fission Neutrons and Gamma Rays
Kawano T; Talou P.
2010-01-01
Prompt fission neutrons and gamma rays are computed using a Monte Carlo treatment of the statistical evaporation of the excited primary fission fragments. The assumption of two fragments in thermal equilibrium at the time of neutron emission is addressed by studying the neutron multiplicity as a function of fragment mass. Results for the neutron-induced fission of 235U are discussed, for incident neutron energies from 0.5 to 5.5 MeV. Recent experimental data on the fission fragment yield...
Fission induced by nucleons at intermediate energies
Lo Meo, S., E-mail: sergio.lomeo@enea.it [ENEA, Centro Ricerche Ezio Clementel, 40129 Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy); Mancusi, D., E-mail: davide.mancusi@cea.fr [CEA, Centre de Saclay, Irfu/SPhN, F91191 Gif-sur-Yvette Cedex (France); Massimi, C., E-mail: cristian.massimi@bo.infn.it [Dipartimento di Fisica ed Astronomia dell' Università di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy); Vannini, G., E-mail: gianni.vannini@bo.infn.it [Dipartimento di Fisica ed Astronomia dell' Università di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy); Ventura, A., E-mail: alberto.ventura@bo.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna (Italy)
2015-01-15
Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.
Fission induced by nucleons at intermediate energies
Meo, Sergio Lo; Massimi, Cristian; Vannini, Gianni; Ventura, Alberto
2014-01-01
Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Li\\`ege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.
Low energy fission: dynamics and scission configurations
In the first part of this paper we recall a recent study concerning low energy fission dynamics. Propagation is made by use of the Time Dependent Generator Coordinate Method, where the basis states are taken from self-consistent Hartree-Fock-Bogoliubov calculations with the Gogny force. Theoretical fragment mass distributions are presented and compared with the evaluation made by Wahl. In the second part of this paper, new results concerning scission configurations are shown. Deviations of the fission fragment proton numbers from the Unchanged Charge Distribution prescription and fission fragment deformations are discussed. (authors)
Energy from nuclear fission an introduction
De Sanctis, Enzo; Ripani, Marco
2016-01-01
This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...
Nucleon-induced fission at intermediate energies
The absence of a satisfactory theoretical description to predict isotope yields as well as the need for experimental fragment mass and charge distributions at intermediate-energies form the motivation of this work. Like the objects under study, the research presented in this thesis consists two main parts. Part 1 concerns an activation experiment that has been performed at the 'Kernfysisch Versneller Instituut' (Nuclear Physics Accelerator Institute) in Groningen, Netherlands, using the AGOR cyclotron. Fission product yields have been measured resulting from 190 MeV proton-induced fission of natW, 197Au, natPb, 208Pb and 232Th. In Chapter 2 the experimental set up is discussed, followed in Chapter 3 by a description of the data analysis. The results on the reconstructed mass yields and the total fission cross sections are presented in Chapter 4. Part 2 is of a theoretical nature. The objective is to compute fission product mass yields from intermediate-energy nucleon-induced reactions. In the approach presented here, two stages can be distinguished. In the first stage the fission cross section is determined for the various fissioning isotopes as a function of their excitation energy in competition with other processes like pre-equilibrium decay and particle evaporation. ALICE-91 is a nuclear reaction code that takes care of this first stage. The second stage consists of constructing the total fission-fragment mass and charge distributions from the different contributions of all the equilibrated fissioning systems. Hence, a model is needed that gives a prediction for the fission-product mass yields in a large range of mass, charge, and excitation energy of the fissioning nucleus. For this purpose, the multi-modal random neck-rupture model by Brosa is extended with temperature-dependent shell and pairing corrections and a temperature-dependent LDM. The combination of ALICE-91 and the modified Brosa approach is used for the analysis of the experiments given in the
Energy Correlation of Prompt Fission Neutrons
Elter, Zs.; Pázsit, I.
2016-03-01
In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements) are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons) need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.
Energy Correlation of Prompt Fission Neutrons
Elter Zs.
2016-01-01
Full Text Available In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.
Fission energy program of the US Department of Energy, FY 1981
Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems
Fission energy program of the US Department of Energy, FY 1981
Ferguson, Robert L.
1980-03-01
Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.
Derivation of Energy Generated by Nuclear Fission-Fusion Reaction
Kayano, Hideo; Teshigawara, Makoto; Konashi, Kenji; Yamamoto, Takuya
1994-01-01
In the solids which contain fissionable elements and deuterium, it is expected that the energy generated by nuclear fission contributes to the promotion of the D-D nuclear fusion in the solids. When nuclear fission occurs by neutrons in the solid, the fissionable elements divide into two fission product nuclei having the energy of 100MeV, respectively. It is expected that the hige energy fission products promote rapidly nuclear fision reaction by knocking out the D atoms in the solids and by ...
Measurement of fission fragments energy loss
Benetti, P; Calligarich, E; Cesana, A; Dolfini, R; Ioppolo, T; Raselli, G L; Terrani, M
2002-01-01
The mean energy of sup 2 sup 5 sup 2 Cf fission fragments emerging from an absorber and the determination of the capture rate in the absorber itself have been measured using two independent and complementary nuclear techniques. The results can be applied to the measurement of the energy self-absorption in a non-zero thickness source and can be used to validate simulation programs.
Excitation-energy dependence of the nuclear fission characteristics
Baba, H.; Saito, T.; Takahashi, N. [Osaka City Univ. (Japan). Faculty of Science] [and others
1996-03-01
It is known that the width parameter of the fragment mass yield distribution follows a beautiful systematics with respect to the excitation energy. According to this systematics, the fission characteristics following the systematics should disappear when the excitation energy Ex goes down to 14 MeV. The present purpose is to elucidate if, where, how and why a transition takes place in the fission characteristics of the asymmetric fission of light actinide elements. Two types of experiments are performed, one is the double-energy measurement of the kinetic energies of complementary fragments in the thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at 13.3- and 15.7-MeV excitations, and the other is the radiochemical study of proton-induced fission and photofission of {sup 238}U at various excitation energies. In conclusion, it has demonstrated that there are two distinctive fission mechanisms in the low-energy fission of light actinide elements and the transition between them takes place around 14-MeV excitation. The characteristics of proton fission and photofission in the energy range lower than the above transition point are the essentially the same as those of thermal-neutron fission and also spontaneous fission. The results of GDR fission indicates the fission in the high-energy side starts from the nuclear collective states, whereas the lower-energy fission is of non-collective nature. It is likely that thermal-neutron fission is rather of the barrier-penetrating type like spontaneous fission than the threshold fission. (S.Y.)
Mass and Charge Distribution in Low-Energy Fission
The mass and charge distributions for thermal-neutron fission of U235 are discussed in considerable detail and compared with the corresponding distributions in other low-energy fission processes. Points discussed in connection with the mass distributions for binary fission include the positions of the peaks, valley and fine structure in a mass yield curve with respect to filled nuclear shells and the changes in the positions that occur with changing fissioning nucleus and excitation energy. The mass distribution from ternary fission is discussed also. For both binary and ternary fission comments are made concerning the mass distributions of primary fragments (before neutron evaporation) and of fission products (after neutron evaporation). Charge distribution is discussed in terms of charge dispersion among fission products with the same mass number and the variation with mass number of Zp, the ''most probable charge'' (non-integral) for a given mass number. Although direct information about charge distribution is limited to fission products, estimates are presented of charge distribution for primary fission fragments. Knowledge and estimates of mass and charge distribution for a fission process allow estimation of primary yields of all fission products or fragments. Although many estimated primary yields are quite uncertain mainly because of lack of knowledge of charge distribution, especially for fission products formed in low yield; some estimates of primary yields are presented to illustrate the need for and possible practicality of further experimentation. Fission processes other than thermal-neutron fission of U235 that are discussed include thermal-neutron fission of U233 and Pu239, spontaneous fission of Pu240 and Cf252, 14-MeV neutron fission of U235 and U238, 11-MeV proton fission of Ra226 and 22-MeV deuteron fission of Bi209. (author)
Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission
Rossi P C R
2012-02-01
Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.
Energy Dependence of Plutonium Fission-Product Yields
A method is developed for interpolating between and/or extrapolating from two pre-neutron-emission first-chance mass-asymmetric fission-product yield curves. Measured 240Pu spontaneous fission and thermal-neutron-induced fission of 239Pu fission-product yields (FPY) are extrapolated to give predictions for the energy dependence of the n + 239Pu FPY for incident neutron energies from 0 to 16 MeV. After the inclusion of corrections associated with mass-symmetric fission, prompt-neutron emission, and multi-chance fission, model calculated FPY are compared to data and the ENDF/B-VII.1 evaluation. The ability of the model to reproduce the energy dependence of the ENDF/B-VII.1 evaluation suggests that plutonium fission mass distributions are not locked in near the fission barrier region, but are instead determined by the temperature and nuclear potential-energy surface at larger deformation.
Energy Dependence of Plutonium Fission-Product Yields
Lestone, J. P.
2011-12-01
A method is developed for interpolating between and/or extrapolating from two pre-neutron-emission first-chance mass-asymmetric fission-product yield curves. Measured 240Pu spontaneous fission and thermal-neutron-induced fission of 239Pu fission-product yields (FPY) are extrapolated to give predictions for the energy dependence of the n + 239Pu FPY for incident neutron energies from 0 to 16 MeV. After the inclusion of corrections associated with mass-symmetric fission, prompt-neutron emission, and multi-chance fission, model calculated FPY are compared to data and the ENDF/B-VII.1 evaluation. The ability of the model to reproduce the energy dependence of the ENDF/B-VII.1 evaluation suggests that plutonium fission mass distributions are not locked in near the fission barrier region, but are instead determined by the temperature and nuclear potential-energy surface at larger deformation.
Advanced modeling of prompt fission neutrons and gamma rays
Prompt fission neutrons and gamma rays are computed using a Monte Carlo treatment of the statistical evaporation of the excited primary fission fragments. The assumption of two fragments in thermal equilibrium at the time of neutron emission is addressed by studying the neutron multiplicity as a function of fragment mass. Results for the neutron-induced fission of 235U are discussed, for incident neutron energies from 0.5 to 5.5 MeV. Recent experimental data on the fission fragment yields as a function of mass and total kinetic energy are used as input data. Monte-Carlo calculations allow the exploration of physical observables beyond average quantities. A new parameter RT has been introduced: RT=Tl/Th where Tl and Th are the temperatures in the light and heavy fragments. The average neutron multiplicity computed as a function of the fragment mass agrees best with the experimental data (with En=5.5 MeV) when RT=1 which can be understood as follows: as the incident neutron energy increases, the role of shell effects diminishes and the ratio of collective energies stored in the light and heavy fragment tends toward 1
The changing face of fission track dating: recent advances
Fission Track Dating has undergone something of a renaissance in recent years. What began as a rather unreliable method of geochronology has now become a rigorous and dependable means of measuring not only geological time but also paleotemperatures. Developments such as the zeta calibration technique, rigorous satistical data analysis, investigation of confined track lengths and detailed studies of annealing behaviour have all contributed to advances in the technique
Evolution of isotopic fission-fragment yields with excitation energy
Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism. (authors)
Evolution of isotopic fission-fragment yields with excitation energy
Bazin D.
2012-07-01
Full Text Available Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism.
Fast Neutron Induced Fission neutron Spectra Below the Incident Energy
Woodring, Mitchell L.; Egan, James J.; Kegel, Gunter H.; DeSimone, David J.
2008-06-15
Fission neutron spectra from neutron induced fission in 235U and 239Pu for energies below that of the neutron inducing fission have been measured. The spectra were obtained for 1.5 MeV and 2.5 MeV incident neutrons. Previous accelerator-based fission neutron spectra measurements have been seriously complicated by time-correlated gamma rays and scattered neutrons from the fission sample. Three barium fluoride detectors were placed near the sample undergoing induced fission and used to identify fission gamma rays. A coincidence of fission gamma rays was used to gate a liquid scintillator neutron detector to distinguish fission events from other events. The fission neutron spectral shape and average energy measured in this experiment compare well to both previous measurements and prior theory and also suggest a dependence on incident neutron energy and mass of the fissioning nucleus. An overview of the experiment, a discussion of the results, and the importance of this work to homeland security are given.
About total kinetic energy distribution between fragments of binary fission
At the investigation of binary fission reactions one of the main characteristic of process is total kinetic energy (TKE) of fission fragments and it distribution between them. From the values of these characteristics it is possible to extract the information about structure of fission fragments in the break up point of initial fissionable nuclear system. In our work TKE dependence from the deformation parameters of shape and density distribution of charge in the fission fragments are investigated. In the end of paper some generalizations of obtaining results are carried out and presented in the form of tables and figures
Simulation of fission products behavior in severe accidents for advanced passive PWR
Highlights: • A fission product analysis model based on thermal hydraulic module is developed. • An assessment method for fission product release and transport is constructed. • Fission products behavior during three modes of containment response is investigated. • Source term results for the three modes of containment response are obtained. - Abstract: Fission product behavior for common Pressurized Water Reactor (PWR) has been studied for many years, and some analytical tools have developed. However, studies specifically on the behavior of fission products related to advanced passive PWR is scarce. In the current study, design characteristics of advanced passive PWR influencing fission product behavior are investigated. An integrated fission products analysis model based on a thermal hydraulic module is developed, and the assessment method for fission products release and transport for advanced passive PWR is constructed. Three modes of containment response are simulated, including intact containment, containment bypass and containment overpressure failure. Fission products release from the core and corium, fission products transport and deposition in the Reactor Coolant System (RCS), fission products transport and deposition in the containment considering fission products retention in the in-containment refueling water storage tank (IRWST) and in the secondary side of steam generators (SGs) are simulated. Source term results of intact containment, containment bypass and containment overpressure failure are obtained, which can be utilized to evaluate the radiological consequences
Study on Fission Blanket Fuel Cycling of a Fusion-Fission Hybrid Energy Generation System
Full text: Direct application of ITER-scale tokamak as a neutron driver in a subcritical fusion-fission hybrid reactor to generate electric power is of great potential in predictable future. This paper reports a primary study on neutronic and fuel cycle behaviors of a fission blanket for a new type of fusion-driven system (FDS), namely a subcritical fusion-fission hybrid reactor for electric power generation aiming at energy generation fueled with natural or depleted uranium. Using COUPLE2 developed at INET of Tsinghua University by coupling the MCNP code with the ORIGEN code to study the neutronic behavior and the refueling scheme, this paper focuses on refueling scheme of the fissionable fuel while keeping some important parameters such as tritium breeding ratio (TBR) and energy gain. Different fission fuels, coolants and their volumetric ratios arranged in the fission blanket satisfy the requirements for power generation. The results show that soft neutron spectrum with optimized fuel to moderator ratio can yield an energy amplifying factor of M> 20 while maintaining the TBR > 1.1 and the CR > 1 (the conversion ratio of fissile materials) in a reasonably long refueling cycle. Using an in-site fuel recycle plant, it will be an attractive way to realize the goal of burning 238U with such a new type of fusion-fission hybrid reactor system to generate electric power. (author)
Energy dissipation in the cold fission of 252Cf
The conversion of energy of collective nuclear motion into internal single particle excitation energy is one of the modes of nuclear energy dissipation. Dissipation and its relation to pair breaking is one of the challenges in nuclear field. A characteristic of low energy fission is odd-even effect. Odd-even staggering in the mass or charge yields and in the total kinetic energies will be of useful to analyze dissipation energy. The odd even effects in the charge distribution of cold fission fragments can be analysed to extract information on the energy dissipation during the passage from the first potential well towards the scission point through the fission barrier. The Q value during a fission process is decomposed into the total kinetic and excitation energies (TKE and TXE)
Advanced model for the prediction of the neutron-rich fission product yields
Rubchenya V.A.; Gorelov D.; Jokinen A.; Penttilä H.; Äystö J.
2013-01-01
The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus a...
Fission properties of the BCPM energy-density functional
Fission dynamics properties of the Barcelona-Catania-Paris-Madrid energy density functional are explored with mean-field techniques. Potential energy surfaces as well as collective inertia relevant in the fission process are computed for several nuclei where experimental data exist. Inner and outer barrier heights as well as fission isomer excitation energies are reproduced quite well in all the cases. The spontaneous fission half-lives tsf are also computed using the standard semiclassical approach and the results are compared with the experimental data. The experimental trend with mass number is reasonably well reproduced over a range of 27 orders of magnitude. However, the theoretical predictions suffer from large uncertainties when the quantities that enter the spontaneous fission half-life formula are varied. Modifications of only a few per cent in the pairing correlation strengths strongly modify the collective inertia with a large impact on the spontaneous fission lifetimes in all the nuclei considered. Encouraged by the quite satisfactory description of the trend of fission properties with mass number, we explore the fission properties of the even-even uranium isotope chain from 226U to 282U. Very large lifetimes are found beyond A = 256 with a peak at neutron number N = 184.
A Review of Previous Research in Direct Energy Conversion Fission Reactors
From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this
Nuclear fission energy: the international scene and the outlook for Italy
Because of concerns about the environment, energy security and energy costs, fission nuclear energy is gaining ground again around the world. In Italy, the research community can help relaunch the national nuclear programmes by providing advanced training, recruiting young engineers and researchers for RD activities, and furthering an immediate cooperation of the Italian system in the principal European and international projects on sustainable nuclear energy
Considerations for a sustainable nuclear fission energy in Europe
Presented is the global energy perspectives and and sustainable development fission vision scenario. Described are the innovative concepts with technological breakthroughs concerning the fuel cycle and evolution of the spent fuel radiotoxic contents
A New Method of Prompt Fission Neutron Energy Spectrum Unfolding
Zeynalova, O. V.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.
2010-11-01
The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. The goal was to find out the reasons of a long time existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of fission fragments (FF). On the one hand the 252Cf (sf) reaction is one of the main references for nuclear data, on the other hand the understanding of PFN emission mechanism is very important for nuclear fission theory. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 107 fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.
Fission of Oriented Nuclei by Low Energy Neutrons. RCN Report
This report describes the study of the angular distribution of α-particles and of fission fragments originating from neutron capture in heavy nuclei, which are aligned at low temperatures by the method of hyperfine interaction. The results of the measurements with the target nucleus 233U with neutrons in the energy range from 0 to 2000 eV can be interpreted with the Bohr-theory of transition states at the deformation barrier for nuclear fission. The relatively invariant behaviour of the anisotropy in the angular distribution of fission fragments as a function of neutron energy indicates that the available fission channels are strongly mixed. For neutron resonances with spin and parity 2+ 2 to 3 channels are open and for 3+ resonances 1 to 2. The group structure in the subthreshold fission cross section of 237Np has been explained by the double-humped deformation barrier proposed by Strutinsky. The implication of this interpretation is that all the resonances in one group have the same spin. The resonances in the first group at 40 eV agree consistently with the fission channel (2+,2). The groups at higher neutron energies up to 2000 eV correspond mainly with the channels (2+,2) and (3+,2). (author)
The results of the experiment on measuring the energy dependence of fission fragment angular anisotropy in resonance neutron induced fission of 235U aligned target in energy region up to 42 eV are presented. The agreement with the data of Pattenden and Postma in resonances is good enough, while the theoretical curve, calculated using the R-matrix multilevel two fission channel approach, does not seem to describe the energy dependence of fission fragment angular anisotropy property. The necessity of taking into account the interference between levels with different spins is discussed. 11 refs., 2 figs
Full text: The implementation in the reaction code system EMPIRE-2.19 of an advanced formalism for fission cross-section calculation has been completed. The formalism is based on the optical model for fission and can be applied for nuclei exhibiting double- or triple-humped barrier starting from sub-barrier excitation energies. The optical model for fission, initially developed to describe the resonant structure of the fission cross section at sub-barrier excitation energies due to the vibrational states in the second well of a double-humped fission barrier, was extended to light actinides by including the relations for the transmission coefficients through a complex triple-humped fission barrier. The real part of the fission barrier is parameterised as a function of the nucleus deformation by five smoothly joined parabolas. The imaginary potential is introduced only in the deformation range corresponding to the second well because the tertiary well is supposed to be shallow enough to neglect the damping of class III vibrational states. The transition states are assumed to be rotational states built on vibrational or non-collective band-heads. As the excitation energy increases, the shell effect, which causes the splitting of the outer barrier, diminishes and the outer humps lump into a single one. Therefore, in the present formalism, triple-humped barriers are associated only to the discrete transition states; the contribution of continuum to the fission coefficients is calculated considering a double-humped barrier. The parameters of the second single barrier equivalent with the outer humps are being determined from the condition of equal transmission coefficients. The saddle-point transition states in continuum are described by level densities (BCS below the critical energy and a modified version of Fermi Gas above) accounting for collective enhancements specific to the nuclear shape asymmetry at each saddle point . The neutron cross sections of 232Th in the
Advanced model for the prediction of the neutron-rich fission product yields
Rubchenya V. A.
2013-12-01
Full Text Available The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP.
Proton-induced fission of heavy nuclei at intermediate energies
Deppman, A; Guimaraes, V; Karapetyan, G S; Balabekyan, A R; Demekhina, N A
2013-01-01
The intermediate energy proton-induced fission of 241Am, 238$U and 237$Np is studied. The inelastic interactions of protons and heavy nuclei are described by a CRISP model, in which the reaction proceeds in two steps. The first one corresponds fast cascade, where a series of individual particle-particle collisions occurs within the nucleus. It leaves a highly excited cascade residual nucleus, assumed to be in thermal equilibrium. Subsequently, in the second step the excited nucleus releases its energy by evaporation of neutrons and light charged particles as well. Both the symmetric and asymmetric fission are regarded, and the fission probabilities are obtained from CRISP code calculations, by means of statistical weighting factors. The fission cross sections, the fissility of the fissioning nuclei, and the number of nucleons lost by the target - before and after fission - are calculated and compared to experiments for 660 MeV protons incident on 241Am, 238$U and 237$Np. Some of the model predictions are in f...
Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya
2012-02-21
lowest Y2O3 concentration of 0.2 wt.%. An APT characterization of MA957 joined by friction stir welding (FSW) showed that this solid sate joining procedure had only a modest effect on the NF number density (N) and average diameter (
Full text: A concept for detecting the presence of special nuclear material (235U or 239Pu) concealed in inter modal cargo containers is described. It is based on interrogation with a pulsed beam of 6-8 MeV neutrons and fission events are identified between beam pulses by their β-delayed neutron emission or β -delayed high-energy γ-radiation. The high-energy γ-ray signature is being employed for the first time. Fission product γ-rays above 3 MeV are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. High-energy γ-radiation is nearly 10X more abundant than the delayed neutrons and penetrates even thick cargo's readily. The concept employs two large (8x20 ft) arrays of liquid scintillation detectors that have high efficiency for the detection of both delayed neutrons and delayed γ-radiation. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. This information, together with predicted signature strength, has been applied to the estimation of detection probability for the nuclear material and estimation of false alarm rates. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48
Perspective on the fusion-fission energy concept
A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given
Experimental survey of the potential energy surfaces associated with fission
Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)
Excitation energy dependence of fission in the mercury region
McDonnell, J D; Sheikh, J A; Staszczak, A; Warda, M
2014-01-01
Background: Recent experiments on beta-delayed fission reported an asymmetric mass yield in the neutron-deficient nucleus 180Hg. Earlier experiments in the mass region A=190-200 close to the beta-stability line, using the (p,f) and (\\alpha,f) reactions, observed a more symmetric distribution of fission fragments. While the beta-delayed fission of 180Hg can be associated with relatively low excitation energy, this is not the case for light-ion reactions, which result in warm compound nuclei. Purpose: To elucidate the roles of proton and neutron numbers and excitation energy in determining symmetric and asymmetric fission yields, we compute and analyze the isentropic potential energy surfaces of 174,180,198Hg and 196,210Po. Methods: We use the finite-temperature superfluid nuclear density functional theory, for excitation energies up to E*=30MeV and zero angular momentum. For our theoretical framework, we consider the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Results: Fo...
The Advanced Energy Initiative
Milliken, JoAnn; Joseck, Fred; Wang, Michael; Yuzugullu, Elvin
The President's Advanced Energy Initiative (AEI), launched in 2006, addresses the challenges of energy supply and demand facing our Nation by supporting research and development of advanced technologies for transportation and stationary power generation. The AEI portfolio includes clean coal, nuclear and renewable energy technologies (solar and wind) for stationary power generation and advanced battery technologies, cellulosic ethanol as a fuel and hydrogen fuel cells for transportation. These research and development programs are underpinned by comprehensive life-cycle analysis efforts using models such as Hydrogen Analysis (H2A) and Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) to enable a better understanding of the characteristics and trade-offs associated with advanced energy options and to help decision makers choose viable pathways for clean, reliable and affordable energy.
Fragment Deexcitation of Fission Induced by High Energy Nucleons
Yavshits S.; Grudzevich O.
2010-01-01
The KRIF library of the neutron-, proton- and gamma-spectra emitted by the nuclei excited up to 500 MeV is presented. The KRIF contains information for about 2000 emitters which are the fragments of the ten targets fission induced by the nucleons with the energies up to 3 GeV.
Fragment Deexcitation of Fission Induced by High Energy Nucleons
Yavshits S.
2010-03-01
Full Text Available The KRIF library of the neutron-, proton- and gamma-spectra emitted by the nuclei excited up to 500 MeV is presented. The KRIF contains information for about 2000 emitters which are the fragments of the ten targets fission induced by the nucleons with the energies up to 3 GeV.
Systematics of fission cross sections at the intermediate energy region
Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)
Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments
Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.
2013-01-01
Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.
High-energy fission models validation and comparison with experiments
Calculations including the high energy fission models were performed. Comparisons on BNL-Cosmotron arrangements of thermal neutron peak fluxes in the H2O-moderator for lead and depleted uranium targets are given for different proton beam energies (540, 960, 1470 MeV) and two B0-parameters (8 and 14 MeV) of the level density formula. Preliminary results of neutron spectra measurements for thin uranium targets are compared with HETC calculations at 590 MeV incident proton beam energy. The residual mass distributions are determined in thin uranium targets for proton beam energies of 0.3, 1.0, and 2.9 GeV. The calculations are done using the Rutherford and Appleton Laboratory high energy fission model (RAL) and are compared with respective calculations of the ORNL-model by Alsmiller et al
Simultaneous Measurements of Flight Times and Energies of Fission Fragments
In a companion paper the results of measuring the prompt neutron emission from individual fission fragments arising in thermal fission are reported. In that experiment a large volume liquid scintillation counter was .used to. record the fission neutrons, and fragment mass was identified by a gold silicon surface barrier counter.- arrangement. An alternative Way of measuring the prompt neutron emission is described here. Fragment time-of- flight apparatus is mounted in an evacuated tube that passes laterally through the thermal column of the 5-MW research reactor HERALD. A centrally positioned thin source produces 3 x 105 fissions s-1. Fragments travel distances of 180 cm and 300 cm respectively to the terminal detectors, and in passing through a VYNS film, positioned 180 cm from the source along the longer flight path, eject electrons that are used to form a reference time-signal. Essentially the times of flight of both fission fragments are measured simultaneously with the kinetic energy of one of the pair. This is achieved by using a surface barrier counter for the 300-cm detector. The difficulty of maintaining good timing and energy resolutions simultaneously is overcome by routing the pulse to the charge sensitive preamplifier through a delay line amplifier from which a fast timing pulse is derived. The collected data enables the fragment mass to be determined both before and after prompt neutrons have been emitted. Hence the experiment provides a means for studying the behaviour of neutron emission from individual fragments. The experimental uncertainties are those associated with the measurement of small differences, and an appraisal is made of the errors and calibrations that enter into the measurements. Of particular importance, the response of the surface barrier counter to fission fragments is obtained directly, from the collected data from events in which the neutron emission is low. These calibrations are used in the measurements of postneutron mass
Proton-induced fission on 241Am, 238U and 237Np at intermediate energies
Deppman, A.; Andrade-II, E.; Guimaraes, V; Karapetyan, G. S.; Balabekyan, A. R.; Demekhina, N. A.
2013-01-01
Intermediate energy data of proton-induced fission on 241Am, 238U and 237Np targets were analysed and investigated using the computational simulation code CRISP. Inelastic interactions of protons on heavy nuclei and both symmetric and asymmetric fission are regarded. The fission probabilities are obtained from the CRISP code calculations by means of the Bohr-Wheeler model. The fission cross sections, the fissility and the number of nucleons evaporated by the nuclei, before and after fission, ...
Fission of Heavy Elements by High-Energy Protons
A brief survey is given of the phenomenology of fission-like break-up processes induced in high-Z elements by protons of high energies, with principal emphasis on the GeV region. Charge dispersions are discussed in some detail. New charge dispersion data in various mass regions for products formed in lead and uranium interactions with 2.9 GeV and 28-GeV protons are reviewed. The pronounced differences between the lead and uranium results are discussed. The doublehumped charge dispersion curves observed near A = 130 for uranium ''fission'' products are interpreted in terms of two different mechanisms, characterized by low and high deposition energies. This interpretation is confirmed by recoil experiments, particularly by data on angular distributions and range spectra for neutron - deficient and neutron-excess products of uranium ''fission''. From the charge dispersions, yield-versus-mass curves for the 2.9-GeV and 28-GeV interactions are constructed and these are compared with the yield-versus - mass distributions at lower energies. In the uranium interactions, a single broad maximum, centred at A ≈ 110, is found in the mass distribution, broader at 28 than at 2.9 GeV. With lead as the target, the mass distribution is flat in the region 40 < A <140. Values of fission cross-sections derived from the yield - versus-mass curves are discussed in the light of fission cross-sections obtained by other methods and at other bombarding energies. (author)
The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods presented during the
Excitation-energy sorting in superfluid fission dynamics
Schmidt K.-H.
2010-10-01
Full Text Available It is now well established that at moderate excitation energies the nucleus temperature does not vary with increasing excitation energy. We show that, as a consequence, two nuclei with different temperatures brought into contact show a rather surprising energy-sorting mechanism where the hotter nucleus transfers all its excitation energy to the colder one. The scission configuration of the fission process offers a unique possibility to observe this phenomenon. The energy-sorting mechanism is clearly reflected by the mean number of prompt neutrons as a function of the fragment mass and by the dependence of the local even-odd effect with mass asymmetry.
Excitation-energy sorting in superfluid fission dynamics
It is now well established that at moderate excitation energies the nucleus temperature does not vary with increasing excitation energy. We show that, as a consequence, two nuclei with different temperatures brought into contact show a rather surprising energy-sorting mechanism where the hotter nucleus transfers all its excitation energy to the colder one. The scission configuration of the fission process offers a unique possibility to observe this phenomenon. The energy-sorting mechanism is clearly reflected by the mean number of prompt neutrons as a function of the fragment mass and by the dependence of the local even-odd effect with mass asymmetry. (authors)
Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs
Towell, Rusty; Niffte Collaboration
2015-10-01
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.
Performance of the fissionTPC and the Potential to Advance the Thorium Fuel Cycle
Towell, Rusty; Niffte Collaboration
2014-09-01
The NIFFTE fission Time Projection Chamber (fissionTPC) is a powerful tool that is being developed to take precision measurements of neutron-induced fission cross sections of transuranic elements. During the last run at the Los Alamos Neutron Science Center (LANSCE) the fully instrumented TPC took data for the first time. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow cross section systematics to be controlled at the level of 1%. The fissionTPC performance from this run will be shared. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors including the abundance of thorium verses uranium, minimizing radioactive waste, improved reactor safety, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium fueled nuclear reactors will also be discussed.
Clement, J. D.
1973-01-01
Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.
Composite delayed neutron energy spectra of fissionable isotopes
Delayed neutron (DN) energy spectra spanning a range of 0.01-4.00 MeV have been measured for 235U, 238U and 239Pu. DN equilibrium spectra were also measured for all three nuclides. A helium jet transfer system was used to transport fission products to a low-background counting area. Beta-neutron correlations were used for background suppression and for energy determination by the neutron time-of-flight method. The 235U and 239Pu spectra show marked similarity, while those from the fast fission of 238U are considerably more energetic. DN six-group spectra for 235U, 238U and 239Pu have been deduced from these measurements using a constrained least-squares iterative method
Tiwari, Ashutosh
2014-01-01
An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p
Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)
2010-04-08
This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li_{17}Pb_{83 } eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li_{17}Pb_{83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li_{17}Pb_{83}, separated from the Li_{17}Pb_{83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF_{2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles
Kramer, K
2010-04-08
This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm
Determination of nuclear fission number by high-energy delayed γ-rays
Fission numbers of 235U samples irradiated in short time were obtained by fission yield method. The total emission rate of high-energy delayed γ-rays above 3 MeV per fission over time was measured by large volume NaI detector, and high-energy delayed γ-rays emission rate of pulse irradiation was gained. Fission numbers of two 235U samples were obtained by applying the emission rate of high-energy delayed γ-rays per fission, and the relative uncertainty is less than 4%. (authors)
The contrasting fission potential-energy structure of actinides and mercury isotopes
Ichikawa, Takatoshi; Iwamoto, Akira; Möller, Peter; Sierk, Arnold J.
2012-01-01
Fission-fragment mass distributions are asymmetric in fission of typical actinide nuclei for nucleon number $A$ in the range $228 \\lnsim A \\lnsim 258$ and proton number $Z$ in the range $90\\lnsim Z \\lnsim 100$. For somewhat lighter systems it has been observed that fission mass distributions are usually symmetric. However, a recent experiment showed that fission of $^{180}$Hg following electron capture on $^{180}$Tl is asymmetric. We calculate potential-energy surfaces for a typical actinide ...
A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs
Measurement and calculation of the 233Pa fission cross-section for advanced fuel cycles
The energy dependence of the neutron-induced fission cross-section of 233Pa has been measured directly for the first time from the fission threshold up to 8.5 MeV. This fission cross-section is a key ingredient in feasibility studies on fast reactors and accelerator driven systems based on the Th-U fuel cycle. The results are at strong variance with the existing evaluations. The new experimental data give lower cross-section values and resolve the question about the threshold energy. Additionally a new theoretical calculation of the reaction cross-section has been performed with the statistical model code STATIS, showing a very good agreement with the experimental data. (authors)
The description of an experimental set-up for the study of the excitation energy distribution of fission fragments by means of coincident measurement of fission neutrons is presented. For every fission event the kinetic energy and mass of both fragments are registered simultaneously with the number of prompt neutrons emitted by each of the complementary fission fragments. With this set-up, the fission fragments are detected by a twin ionization chamber and the neutrons - by two large Gd-loaded liquid scintillator tanks. (author)
In order to highlight the sensitivity of the fission observables to the potential energy surface, we have carried out statistical model calculations with three different options: a. liquid drop mass (MLD) and liquid drop fission barrier (BLD), b. experimental mass (Mexp = MLD + Δn) along with a damping of the shell correction at the ground state (Δn) with excitation energy and shell corrected fission barrier (BLD-Δn), c. experimental mass and liquid drop fission barrier
Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-11-12
This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of ^{235}U and ^{238}U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.
The Power Makers' Challenge And the Need for Fission Energy
Nicholson, Martin
2012-01-01
The Power Makers - the producers of our electricity - must meet the demands of their customers while also addressing the threat of climate change. There are widely differing views about solutions to electricity generation in an emission constrained world. Some see the problem as relatively straight forward, requiring deep cuts in emissions now by improving energy efficiency, energy conservation and using only renewable resources. Many electricity industry engineers and scientists see the problem as being much more involved. The Power Makers ’ Challenge: and the need for Fission Energy looks at why using only conventional renewable energy sources is not quite as simple as it seems. Following a general introduction to electricity and its distribution, the author quantifies the reductions needed in greenhouse gas emissions from the power sector in the face of ever increasing world demands for electricity. It provides some much needed background on the many energy sources available for producing electricity ...
Design related aspects in advanced nuclear fission plants
Important issues to be considered for design of future reactors are: extrapolation of stress rupture data, creep-fatigue, negligible creep, damage monitoring. The paper highlights some new developments taking examples from a martensitic steel (mod 9% Cr), oxide dispersion strengthened (ODS) steels and nickel-base superalloys. Traditional approaches to extrapolation of (thermal) stress rupture data like Larson-Miller Parameter or Monkman-Grant rule seem to be valid concepts also for advanced reactors. However, a significant influence of cyclic softening on creep rates and stress rupture data can be expected as shown for grade 91. This is particularly true for creep-fatigue interactions. Based on cyclic stress-strain behaviour it is also possible to get very good life-time predictions under creep-fatigue with a strain range separation (inelastic fatigue and creep ranges) technique which could replace the currently used linear life fraction rule. Results from in-beam irradiation creep reveal no significant influence of dispersoid size. It can be assumed that irradiation creep is a matrix property. Finally it is shown that micro-sample testing of exposed material could be used as an advanced method for damage assessment in future nuclear power plants.
Design related aspects in advanced nuclear fission plants
The construction of nuclear power plants needs design codes (e.g. ASME or RCC-MR) to allow save and reliable design and operation. To meet the requirements of advanced future plants either existing codes have to be amended or new codes have to be developed. Future Generation IV plants like the very high temperature reactor (VHTR) or the sodium fast reactor (SFR) are currently in this stage of code development. Some important issues to be considered in this context are: design curves (lower bound scatter bands), creep-fatigue, negligible creep, crack growth (fatigue, creep, fast fracture), damage monitoring. The paper will provide some insight into the materials problems behind design rules. Examples will be taken from a martensitic steel (mod 9% Cr), oxide dispersion strengthened (ODS) steels and nickel-base superalloys. Possibilities for the replacement of the linear life fraction rule with advanced creep-fatigue damage assessments will be discussed. Specific emphasize will be put on the role of cyclic softening. Damage assessment and propagation of cracks from flaws under creep and fatigue will be touched upon. Some results from creep at low temperatures (irradiation creep, negligible creep) will be presented. (author)
Energy spectra of delayed neutrons from separated fission products. IV
Energy spectra of delayed neutrons from the mass-separated fission products 8890Br, 138140I, 142(Xe,Cs) and 144Cs have been measured. Average level spacings, neutron envelopes and Psub(n) values were calculated and compared with the experimental data. The neutron envelopes are well reproduced for all precursors except 90Br and 140I. For the latter the neutron window predicted by various mass formulae is too wide and a considerable reduction was found necessary to bring calculated envelopes in agreement with the experimental distributions. (Auth.)
Role of energy cost in the yield of cold ternary fission of 252Cf
P V Kunhikrishnan; K P Santhosh
2013-01-01
The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by includingWong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield in all the light charged particle emissions. The higher ground state deformation of the fragments, the odd–even effect and the enhanced yield in the octupole region observed in cold fission are found to be consistent with the concept of energy cost.
Photo-fission of 232Th and 238U at intermediate energies
Deppman, A.(Universidade de São Paulo (USP), São Paulo, Brazil); Andrade-II, E.; Guimaraes, V.; Demekhina, N. A.; Karapetyan, G. S.
2013-01-01
In this work we present an analysis of the yields of fission fragments induced by bremsstrahlung photons with endpoint energies of 50 and 3500 MeV on 232Th and 238U targets using the simulation code CRISP. A multimodal fission option was added to this code and an extension of the calculation to the properties of the fission products is presented. By dividing the fissioning nuclei according to their fissionability, an approach is introduced which accounts for the contribution of symmetric and ...
The NIFFTE Fission Time Projection Chamber (TPC) is a powerful tool that is being developed to take precision measurements of neutron-induced fission cross sections of transuranic elements. These improved data are needed for many applications including the development of future generations of nuclear reactors. During the last run at the Los Alamos Neutron Science Center (LANSCE) the fully instrumented TPC took data with several different targets for the first time. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow cross section systematics to be controlled at the level of 1%. Results from this run will be shared. These results are critical to the development of advanced uranium-fuelled reactors. However, there are clear advantages to developing thorium-fuelled reactors including the abundance of thorium verses uranium, minimizing radioactive waste, improved reactor safety, and enhanced proliferation resistance. The potential for using the NIFFTE fission TPC to measure needed cross sections important to the development of thorium fuelled nuclear reactors will also be discussed. (author)
Neutron and fragment yields in proton-induced fission of 238U at intermediate energies
The primary fission fragment mass and kinetic energy distributions, and neutron multiplicities as function of fragment mass have been measured in the proton-induced fission of 238U at energies Ep=20, 35, 50 and 60 MeV using time-of-flight technique. Pre-scission and post-scission neutron multiplicities have been extracted from double differential distributions. The fragment mass dependence of the post-scission neutron multiplicities reveals the gross nuclear shell structure effect even at the higher proton energies we measured. The yields of neutron-rich fission products in the fission of 238U by 25 MeV protons were measured using an ion guide-based isotope separator technique. The results indicate enhancement for superasymmetric mass division at intermediate excitation energy of the fissioning nucleus. The experimental results have been analysed in the framework of a time-dependent statistical model with inclusion of nuclear friction effects in the fission process
EU Energy Strategy and The Role of Fission Energy
European Council in its conclusions of 8/9 March 2007 endorsed conditionally as EU objective a 30 percent reduction of GHG emission by 2020 compared to 1990 with a firm commitment to achieve at least 20 percent reduction. Further commitments are reduction of energy consumption by 20 percent compared with projections for 2020 and a 20 percent share of renewable energy sources in overall energy consumption in 2020. Assuming that the reduction of energy consumption by 20 percent relative to projections for 2020, is achieved, as well as increase of renewable in total energy consumption from 4.4 percent share in 1990 to 20 percent in 2020, and provided that nuclear contribution is not reduced, then the CO2 emission reduction target of 20 percent by 2020 relative to 1990 could be attained. However, both these commitments on consumption decrease and share of renewable in 2007 EC conclusions are in comparison with the 2006 Green Paper so ambitious that reserve measures should be considered. The 2006 Green Paper projected an increase of a share of renewable in total energy production to 12.2 percent by 2030. According to IEA World Energy Outlook 2004 projections, used in Green Paper, wind power would in 2030 contribute with 11 percent in electricity production, on the level of 480 TWh. This projection would require installed wind power of 170 to 180 GW. With new, considerably higher target for renewable by 2020 and limited scope for hydro and solar power increase, wind power would probably have to be increased by at least 50 percent, to about 250-270 GW, to bring renewable share to the 20 percent in overall energy consumption. At present installed wind power in EC amounts to about 50 GW, so to reach a 20 percent target for renewable by 2020 over 200 GW of new wind power would have to be built in not much more than 10 years, unless some spectacular advance with solar energy. Assuming that mass installations start by 2010 the required annual construction would be about 20 GW
Fragment-mass distributions in fission of heavy nuclei by intermediate and high-energy probes
Deppman, Airton; Andrade-II, E. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Menezes, J.C.M.; Garcia, F. [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil); Duarte, S.B.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Rossi, P.C.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
Full text: Recent experiments have shown that the multimode approach for describing the fission process leads to some compatibility with the observed results. A systematic analysis of the parameters obtained by fitting the fission-fragment mass distribution to the spontaneous and low-energy data has shown that the values for those parameters present a smooth dependence upon the nuclear mass number. In the present work it is shown that the same parameter-values obtained for low- energy fission can be used to describe high-energy fission results of fragment-mass distributions if one takes into account the appropriate distribution of the fissioning system. To calculate the fission-fragment mass distributions, Monte Carlo simulations are used. This simulation considers a two-step reaction mechanism, namely, an intranuclear cascade providing the compound nucleus followed by a mechanism of competition between particle evaporation and fission. The fission-fragment masses are obtained according to the multimode approach following the Statistical Scission Model. Simulations for fission induced by 660 MeV protons on 241Am and 237Np, and for fission of 238U induced by photons from Bremsstrahlung with end-point energies of 50 MeV and 3500 MeV have been performed, and the results have been compared with recent experimental data. (author)
Dynamical effects in fission investigated at high excitation energy
Benlliure J.
2016-01-01
The experimental techniques used for the investigation of nuclear fission have progressed considerably during the last decade. Most of this progress is based on the use of the inverse kinematics technique allowing for the first time the complete isotopic and kinematic characterization of both fission fragments. These measurements make possible to characterize the fissioning system at saddle and at scission, and can be used to benchmark fission model calculations. One of the important ingredie...
Simultaneous Velocity and Energy Measurement of Fission Fragments
Semi-conductor detectors have been used in a double-velocity apparatus for a simultaneous measurement of fragment velocities and detector pulse heights. The purposes of this measurement were (1) to obtain the pulse-height-to-energy calibration of these detectors for fission fragments and (2) to evaluate a technique for the simultaneous determination of pre- and post neutron emission parameters of the fission process from a coincident measurement of fragment velocities and energies. Fast and slow output signals were obtained from the detectors for use in the time-of-flight and pulse-height measurements respectively. The recorded data were the flight times of both fragments and the pulse height from one of the detectors for a total of 46 000 Cf252 fission events. Fragment velocities, initial masses and initial energies were obtained in the usual manner from the time-of- flight data. The detector calibration function was determined from the correlation between the recorded pulse heights and the final parameters of the corresponding fragments. The latter values were obtained from the initial mass, initial energy and the published values of v(m, EK) for californium fragments. Finally, the calibration function was corrected for instrumental dispersions and the dependence of the average energy on fragment mass. The post-neutron-emission parameters were obtained from the recorded data and available detector calibration procedures including the one given above. The average number of neutrons emitted as.a function of fragment mass was obtained from the event-by-event differences of the initial and final masses. This result provided a sensitive test of the validity of this proposed technique and the various calibration procedures. Agreement with published data was found for the calibration procedure based on these data and one derived from the response of semi-conductor detectors to accelerated bromine and iodine ions. In each case the root mean square deviation from the
Understanding Low Energy Gamma Emission from Fission and Capture with DANCE
Wilburn, Grey; Couture, Aaron; Mosby, Shea
2012-10-01
Los Alamos National Laboratory's Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 barium fluoride (BaF2) detectors in a 4π array used to study cross-section measurements from neutron capture reactions. Further, recent studies have taken advantage of DANCE to study the gamma emission from fission, which is not well characterized. Neutron capture is studied because of its relevance to nuclear astrophysics (almost all elements heavier than iron are formed via neutron capture) and nuclear energy, where neutron capture is a poison in the reactor. Gamma ray cascades following neutron capture and fission include photons with energies between 100 keV and 10 MeV. DANCE uses a ^6LiH sphere to attenuate scattered neutrons, the primary background in DANCE. Unfortunately, it also attenuates low energy gamma rays. In order to quantify this effect and validate simulations, direct measurements of low energy gammas were made with a high purity germanium (HPGe) crystal. HPGe's allow for high resolution measurements of low energy gamma rays that are not possible using the BaF2 crystals. The results and their agreement with simulations will be discussed.
Kaplan Abdullah
2015-01-01
Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.
The fission process in which heavy nuclei fragment into three large charged panicles, in place of the usual two, has been studied in the case of thermal-neutron-induced fission of U235 and the spontaneous fission of Cf252. Solid-state detectors, a fast triple coincidence system and a three-coincident-parameter analyser were used to measure the three fission fragment energies parallel with the detection of each ternary fission event. Experimental evidence is presented supporting the existence of ternary fission by specifically excluding recoil phenomena and accidental events as contributing to the observed three-fold coincidence events. Mass-energy-angular correlations of ternary fission have been determined and are summarized as follows: The total kinetic energy release in ternary fission appears to be slightly higher (by approximately 10 MeV) than that for binary fission. In the case of the spontaneous ternary fission of Cf252, the frequency of occurrence is observed to be greater than 2.2 x 10-6 ternary fission events per binary fission event. Tripartition of Cf252 results preferentially in division into two medium mass particle (one of which has a mass number near 56) and one larger mass. In the case of thermal-neutron-induced fission of U235, the frequency of occurrence is observed to be greater than 1.2 x 10-6 ternary fission events per binary fission event. Ternary fission of U236: results in the formation of one light fragment (near mass 36) and two large fragments or, as in the case of Cf252, two medium fragments and one large one. These results indicate that axially asymmetric distortion modes are possible in the pre-scission configurations of the fissioning nucleus. A description is given of experiments designed to radiochemically detect the light fragment resulting from ternary fission. (author)
Economic implications of fusion-fission energy systems
The principal conclusions that can be made based on the estimated costs reported in this paper are twofold. First, hybrid reactors operating symbiotically with conventional fission reactors are a potentially attractive supply alternative. Estimated hybrid energy system costs are slightly greater than estimated costs of the most attractive alternatives. However, given the technological, economic, and institutional uncertainties associated with future energy supply, differences of such magnitude are of little significance. Second, to be economically viable, hybrid reactors must be both fuel producers and electricity producers. A data point representing each hybrid reactor driver-blanket concept is plotted as a function of net electrical production efficiency and annual fuel production. The plots illustrate that the most economically viable reactor concepts are those that produce both fuel and electricity
Dynamical effects and fission in the heavy ion collisions at incident energies near the Fermi energy
In this work we have studied the reaction mechanisms implied in the heavy ion collisions at energies near the Fermi level. We have observed the predominance of binary processes (2 principal nuclei in the exit channel) and selected events leading to the fission of one of the two fragmentation products. On the basis of the study of angular distributions of fission fragments and associated light particles, we have determined the angular momentum of the nucleus in the moment of fission and the angular momentum transfer in the interaction. The comparison of experimental values of the angular momentum transferred with the theoretical models enables the characterization of projectile-target interaction. For the different systems studied, the spin of fissioning nucleus ranges between 30 ℎ and 60 ℎ while the transferred angular momentum may reach 90 ℎ. For these studies the determinant parameter is the sequence of emission of light particles and fragments, hence the lifetime associated to each processes. For central collisions we have measured pre-fission lifetimes lower then 10-21 sec. These values are very short in comparison with the statistical fission processes, what prompted to search for off-equilibrium (non-statistical) phenomena in the data. Taking into account the charges of the fission fragments we were able to isolate a dynamical component and a statistical component in the fission process. We have compared these two classes of events and showed that there is a relative excess of energy between the fragments when the origin of scission is dynamical. We hope to derive of this observable the nuclear deformation velocity and constrain the value of the nuclear matter viscosity in comparison with the theoretical models
Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides
Ramos D.
2016-01-01
Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.
The Future of Nuclear Energy: Facts and Fiction Chapter I: Nuclear Fission Energy Today
Dittmar, Michael
2009-01-01
Nuclear fission energy is considered to be somewhere between the holy grail, required to solve all energy worries of the human industrialized civilization, and a fast path directly to hell. Discussions about future energy sources and the possible contribution from nuclear energy are often dominated by variations of fundamentalists and often irrational approaches. As a result, very little is known by the general public and even by decision makers about the contribution of nuclear energy today,...
Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides
Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M. D.; Schmitt, C.
2016-03-01
Experimental access to full isotopic fragment distributions is very important to determine the features of the fission process. However, the isotopic identification of fission fragments has been, in the past, partial and scarce. A solution based on the use of inverse kinematics to study transfer-induced fission of exotic actinides was carried out at GANIL, resulting in the first experiment accessing the full identification of a collection of fissioning systems and their corresponding fission fragment distribution. In these experiments, a 238U beam at 6.14 AMeV impinged on a carbon target to produce fissioning systems from U to Am by transfer reactions, and Cf by fusion reactions. Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.
Preliminary calculations of medium-energy fission cross sections and spectra
Nucleon-induced fission cross sections determined from a statistical preequilibrium model are used in conjunction with a new scission-point model of fission fragment mass, charge and excitation energy distributions to produce evaporation model calculations of particle and gamma spectra and multiplicities from fission. Comparisons are made to experiment for the 14.5-MeV neutron-induced fission of 238U. In addition, calculated particle and gamma spectra will be compared with the ENDF/B library for 2- and 5-MeV neutron-induced fission of 235U and 238U, respectively. Initial predictions for these same quantities for proton-induced fission reactions at energies up to 100 MeV will be presented and discussed. 6 refs., 3 figs
Benchmarking Nuclear Fission Theory
G. F. Bertsch(INT, Seattle, USA); Loveland, W.; Nazarewicz, W.; Talou, P.
2015-01-01
We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. The purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.
Neutron energy distributions in the dynamical competition between evaporation and fission
So far theoretical investigations on the abnormal emission of light particles in competition with fission have dealt only with the total number of emitted particles. In this study, a first step in calculations of energy spectra is attempted in the framework of transport equation describing the evolution of an excited nucleus toward fission. We stress the role of differential multiplicities as qualified strobes to gain knowledge on the dynamical evolution of the fission process
Fission-product decay energy-releases rates were measured for thermal-neutron fission of 235U. Samples of mass 1 to 10 μg were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub γ/) vs E/sub γ/ and N(E/sub beta/) vs E/sub β/. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub γ/ and E/sub β/ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables
Prokhorova, E. V.; Bogachev, A. A.; Itkis, M. G.; Itkis, I. M.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Pashkevich, V. V.; Rusanov, A. Ya.
2008-04-01
Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction 48Ca + 208Pb → 256No at the energies E=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of 256No and quasi-fission "shoulders" corresponding to the light fragment masses ˜60-90 u and complimentary heavy fragment masses. The quasi-fission "shoulders" have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses M=130-135 u and the TKE of ≈233 MeV.
Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction 48Ca + 208Pb →256No at the energies Elab=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of 256No and quasi-fission 'shoulders' corresponding to the light fragment masses ∼60-90 u and complimentary heavy fragment masses. The quasi-fission 'shoulders' have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses MH=130-135 u and the TKE of ∼233 MeV
Recently, Blyumkina et al. have noted tfte existence ot fission channel ettects in the total kinetic energy of fragments of fission induced by s- and p-wave neutrons. Effects of this nature can also be expected in the variation of the fragment kinetic energies from resonance to resonance in low-energy (s-wave) neutron-induced fission. A fission-fragment detector whose efficiency is dependent on the kinetic energy of the fragments was used in the study of the slow-neutron-induced fission of U235. Comparing the counting-rate of this detector with a conventional fission detector, whose efficiency is independent of the fragment kinetic energy, shows that there exists a variation in the kinetic energy of certain fragments with neutron energy in the neutron energy region from 0.025 to 1 eV. In order to determine the response of the kinetic-energy-sensitive detector, it was necessary to measure the rangè-energy relations of fission fragments in various media, including noble gases and metallic foils. It was estimated from these data that the variation in the fragment kinetic energy release is ∼500 keV, for those fission events that give the lightest and most energetic of the heavy fragments. The variation in fragment kinetic energy is strongly asymmetric about the 0.28-eV resonance in U235, and suggests that the fragment kinetic energy sensitively reflects the presence of interference effects among resonances in fission. A multi-level multi-channel analysis of the data has been made, based on the parameters of Vogt and under the assumption that different fission channels lead to different configurations at scission, such that the kinetic energy release is also different. Previously a major objection to multi-level multi-channel analysis in fission has been that the parameters obtained are not unique. However, the possibility of observing partial fission cross-sections (fission occurring by way of one channel only) removes one of the ambiguities inherent in the multi
An investigation of fission models for high-energy radiation transport calculations
An investigation of high-energy fission models for use in the HETC code has been made. The validation work has been directed checking the accuracy of the high-energy radiation transport computer code HETC to investigate the appropriate model for routine calculations, particularly for spallation neutron source applications. Model calculations are given in terms of neutron production, fission fragment energy release, and residual nuclei production for high-energy protons incident on thin uranium targets. The effect of the fission models on neutron production from thick uranium targets is also shown. (orig.)
FITPULS: a code for obtaining analytic fits to aggregate fission-product decay-energy spectra
The operation and input to the FITPULS code, recently updated to utilize interactive graphics, are described. The code is designed to retrieve data from a library containing aggregate fine-group spectra (150 energy groups) from fission products, collapse the data to few groups (up to 25), and fit the resulting spectra along the cooling time axis with a linear combination of exponential functions. Also given in this report are useful results for aggregate gamma and beta spectra from the decay of fission products released from 235U irradiated with a pulse (10-4 s irradiation time) of thermal neutrons. These fits are given in 22 energy groups that are the first 22 groups of the LASL 25-group decay-energy group structure, and the data are expressed both as MeV per fission second and particles per fission second; these pulse functions are readily folded into finite fission histories. 65 figures, 11 tables
Energy dependence of 238U fission yields investigated in inverse kinematics
Veselsky M.
2010-03-01
Full Text Available The production cross sections of neutron-rich fission residues produced in reactions induced by a 238U beam impinging onto Pb and Be targets were investigated at the Fragment Separator (FRS at GSI using the inverse kinematic technique. These data allowed us to discuss the optimum energies in fission for producing the most neutron-rich residues.
Schunck, N.; Duke, DJ; Carr, H.; Knoll, A
2013-01-01
Eighty years after its experimental discovery, a description of induced nuclear fission based solely on the interactions between neutrons and protons and quantum many-body methods still poses formidable challenges. The goal of this paper is to contribute to the development of a predictive microscopic framework for the accurate calculation of static properties of fission fragments for hot fission and thermal or slow neutrons. To this end, we focus on the Pu239(n,f) reaction and employ nuclear ...
Fission energy program of the U. S. Department of Energy
1978-06-01
The document describes programs managed by the Program Director for Nuclear Energy, Department of Energy, and under the cognizance of the Committee on Science and Technology, United States House of Representatives. The major portion of the document is concerned with civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977, but it also includes descriptions of the space applications and naval reactor programs.
Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors
Calviani, Marco; Montagnoli, G; Mastinu, P
2009-01-01
The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...
Nuclear energy and fusion-fission hybrid reactor for pure energy production
The next two decades are very critical for nuclear energy development. The commercial fast reactor may be in use around 2035; it is also possible that magnetically confined fusion, laser fusion and z-pinch fusion will be demonstrated at that time. A fusion demonstration reactor can be a pure fusion or a fusion-fission hybrid. The latter can lower the fusion power and mitigate the radiation damage of high energy neutrons to materials. On the other hand, the supply of deuterium and tritium as fuel for fusion can only last a few hundred years. We describe here a hybrid for pure energy use which can make full use of uranium and is proliferation resistant, as no separation of uranium and plutonium is needed in post-processing. The union of fission, fusion, and a pure energy hybrid can contribute to the large scale use of nuclear energy in the near future, and supply mankind for more than a thousand years. (authors)
Fission energy program of the U.S. Department of Energy. FY 1980
This document presents the baseline implementation program plan as of January 1979 and is derived from the National Energy Plan and other major policy documents. The document discusses civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977 and the National Energy Act of 1978. It derives the fission energy policy and program objectives from the National Energy Plan and Act, describes the overall program strategy, and presents the overall budget. The approach used in managing the program, including the program structure and methods used for program control, is explained. The civilian fission power development implementation programs are described in detail. Other considerations affecting civilian nuclear power development are also discussed
Demetriou, P.; Keutgen, Thomas; Prieels, René; El Masri, Youssef
2010-01-01
Fission properties of proton-induced fission on Th232, Np237, U238, Pu239, and Am241 targets, measured at the Louvain-la-Neuve cyclotron facility at proton energies of 26.5 and 62.9 MeV, are compared with the predictions of the state-of-the-art nuclear reaction code talys. The code couples the multimodal random neck-rupture model with the pre-equilibrium exciton and statistical models to predict fission fragment mass yields, pre- and post-scission neutron multiplicities, and total fission cro...
Photon and proton induced fission on heavy nuclei at intermediate energies
Andrade-II, E.; Karapetyan, G.S.; Deppman, A.; Guimaraes, V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Balabekyan, A.R. [Yerevan State University, Alex Manoogian 1, Yerevan (Armenia); Demekhina, N.A. [Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan (Armenia); Joint Institute for Nuclear Research (JINR), Flerov Laboratory of Nuclear Reactions (LNR), Moscow (Russian Federation)
2014-07-01
We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on {sup 241}Am, {sup 238}U, and {sup 237}Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on {sup 232}Th and {sup 238}U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)
Photon and proton induced fission on heavy nuclei at intermediate energies
Andrade-II E.
2014-04-01
Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.
Photon and proton induced fission on heavy nuclei at intermediate energies
We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)
V.M. STRUTINSKY's semi-classical method is the most precise to determine the energy of the different states along the fission way. The double-humped fission barrier explains fission isomerism. V.M. STRUTINSKY's barrier explains the ''intermediate structure'' observed in the cross section under the threshold; it provides also the observed effect of ''vibrational resonances'' with an interpretation. Taking an asymmetry parameter in consideration, a triple-humped fission barrier seems to be essential now for the light actinides. There is still a microscopic fission barrier to be explained
Schunck, N.; Duke, DJ; Carr, H.
2013-01-01
Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from the...
Aiming to conduct a measurement under further higher resolution, a TOF measurement of the fission fragment of 235U(nth,f) was conducted by using a thin-film scintillator excellent in time responsibility. By TOF measurement, the fission fragment mass after emitting the prompt neutron and the numbers of the prompt neutron could be obtained. And, double energy measurement at the different incident proton energy was conducted for 238U(p,f) to investigate the to investigate the energy dependency of the nuclear fission. As a result of investigating the nuclear fission mechanism in multi face and due to the obtained data, it was found that degree of deformation of the fission fragment played an important role. However, as data on the prompt neutron numbers was not obtained this time, more detailed investigation could not be conducted. (G.K.)
Takamiya, Koichi; Inoue, Takakazu; Nakanishi, Kiyoshi [Osaka Univ., Toyonaka (Japan). Faculty of Science] [and others
1997-03-01
Aiming to conduct a measurement under further higher resolution, a TOF measurement of the fission fragment of {sup 235}U(n{sub th},f) was conducted by using a thin-film scintillator excellent in time responsibility. By TOF measurement, the fission fragment mass after emitting the prompt neutron and the numbers of the prompt neutron could be obtained. And, double energy measurement at the different incident proton energy was conducted for {sup 238}U(p,f) to investigate the to investigate the energy dependency of the nuclear fission. As a result of investigating the nuclear fission mechanism in multi face and due to the obtained data, it was found that degree of deformation of the fission fragment played an important role. However, as data on the prompt neutron numbers was not obtained this time, more detailed investigation could not be conducted. (G.K.)
A parametric study that evaluated the economic performance of breeder/client systems is described. The linkage of the breeders to the clients was modelled using the stockpile approach to determine the system doubling time. Since the actual capital costs of the breeders are uncertain, a precise prediction of the cost of a breeder was not attempted. Instead, the breakeven capital cost of a breeder relative to the capital cost of a client reactor was established by equating the cost of electricity from the breeder/client system to the cost of a system consisting of clients alone. Specific results are presented for two breeder/client systems. The first consisted of an LMFBR with LWR clients. The second consisted of a DT fusion reactor (with a 238U fission suppressed blanket) with LWR clients. The economics of each system was studied as a function of the cost of fissile fuel from a conventional source. Generally, the LMFBR/LWR system achieved relatively small breakeven capital cost ratios; the maximum ratio computed was 2.2 (achieved at approximately triple current conventional fissile material cost). The DTFR/LWR system attained a maximum breakeven capital cost ratio of 4.5 (achieved at the highest plasma quality (ignited device) and triple conventional fissile cost)
An EPR fission plant is expected to operate from 2010 to 2070. In this time range a new generation of advanced fission reactors and several stages of fusion reactors from ITER to DEMO will emerge. Their viability in the competitive socio-economic environment and also their possible synergy benefits are discussed in this paper. The studied cases involve the Finnish EPR, Generation IV, and the EFDA Power Plant Conceptual Study Models A-D. The main focus is on economic and safety assessments. Some cross-cutting issues of technologies are discussed. Concerning the economic potential of both conceptual fusion power plants and those of Generation IV candidates, we have used the present Finnish EPR as a reference. Comparisons using various pricing methods are made for fusion and Generation IV: mass flow analyses together with engineering, construction and financial margins form one method and another one is based on simple scaling relations between components or structures with common technology level. In all these studies fusion competitiveness has to be improved in terms of plant availability and internal power recirculation. At present the best fission plants have a plant availability close to 95% and an internal power recirculation of the order of 3-4%. The operation and maintenance solutions of Model C and D show the right way for fusion. A remarkable rise of the fuel costs of present LWRs would first make the Generation IV breeder options and thereafter the fusion plants more competitive. The costs of safety related components, such as the containment and the equipment for severe accident mitigation (e.g. the core catcher in a LWR), should be accounted for and the extent to which the inherent fusion safety features could compensate such expenses should be analysed. For an overall assessment of the various nuclear options both internal and external costs are considered. (author)
Dynamical effects in fission investigated at high excitation energy
Benlliure J.
2016-01-01
Full Text Available The experimental techniques used for the investigation of nuclear fission have progressed considerably during the last decade. Most of this progress is based on the use of the inverse kinematics technique allowing for the first time the complete isotopic and kinematic characterization of both fission fragments. These measurements make possible to characterize the fissioning system at saddle and at scission, and can be used to benchmark fission model calculations. One of the important ingredients in transport models describing the dynamics of the process is the dissipation parameter, governing the coupling between intrinsic and collective degrees of freedom. Recent experiments got access to the magnitude of this parameter and could also investigate its dependence in temperature and deformation.
Dynamical effects in fission investigated at high excitation energy
Benlliure, J.
2016-05-01
The experimental techniques used for the investigation of nuclear fission have progressed considerably during the last decade. Most of this progress is based on the use of the inverse kinematics technique allowing for the first time the complete isotopic and kinematic characterization of both fission fragments. These measurements make possible to characterize the fissioning system at saddle and at scission, and can be used to benchmark fission model calculations. One of the important ingredients in transport models describing the dynamics of the process is the dissipation parameter, governing the coupling between intrinsic and collective degrees of freedom. Recent experiments got access to the magnitude of this parameter and could also investigate its dependence in temperature and deformation.
Neutron emission as a function of fragment energy in the spontaneous fission of 260Md
The authors have made the first measurement of the number of neutrons emitted in the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of 254Es, they produced 28-d 260Md, which was neutron-counted in a 1-m-diam spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58 ± 0.11, substantially less than for other actinides. A direct correlation of neutron multiplicity with fragment excitation energy is clearly demonstrated
These proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications are divided into 4 sessions bearing on: - data needs: 4 conferences - experimental work: 11 conferences - theoretical work: 4 conferences - evaluation work: 5 conferences
Prompt fission neutron energy spectrum as a function of energies of neutron inducing fission has been calculated on the basis of the Madland-Nix(MN) model. The resultant spectra have been weighted to excitation functions of 27Al(n,α), 32S(n,p) and 115In(n,n) threshold reactions in order to get the average cross sections and then spectral indices which are defined as the average cross section ratio for two selective threshold reactions among the above three. It is appeared that spectral indices together with the neutron spectra are varying with energies of neutron inducing fission. This may indicate that the prompt fission neutron energy spectrum can be determined by measuring experimentally the spectral index.(Author)
The fission of 210Po, produced by three different nuclear reactions (209Bi + p, 206Pb + α and 198Pt + 12C), has been studied in detail in order to establish the dependence of various scission-point properties on the excitation energy and angular-momentum distribution of the fissioning nucleus. Excitation energies of 31, 44 and 57 MeV were chosen so as to give reasonable fission cross-sections, while avoiding a large contribution from second chance fission. The experiments were conducted on a beam line of the Harwell Variable Energy Cyclotron. The mean-fragment total-kinetic-energy release was found to be dependent on the 210Po excitation energy and angular-momentum distribution. The variances of the total-kinetic energy and mass distributions were found to be a strongly dependent on excitation energy but not on angular momentum. The experimental results of this work were found to be in good agreement with the theoretical liquid-drop-model calculations of Nix and Swiatecki. (author)
Total kinetic energy distribution of fission fragments in 6,7Li + 238U reactions
The shape and width of fission-fragment (FF) mass and kinetic energy distribution provides a lot of information on the fission reaction mechanism and the structure of the compound nucleus (CN), the fragments as well as the interacting nuclei. The shape of the mass distribution of the fission fragments for the actinides induced by the proton or neutron is known to change with the incident energy. At low energies, it shows a double humped distribution which changes slowly to a single humped distribution as energy increases. However, for a reaction involving a weakly bound projectile (i.e., 6Li + 232Th), a sharp change in the shape of the mass distribution with energy was observed. The sharp increase in the peak to valley ratio (P:V) in the fission-fragment mass distribution in 6Li + 232Th reaction by Itkis et al. and in 6,7Li + 238U reactions by Santra et al. was concluded to be due to the reduced energy transfer to the composite system caused by incomplete fusion (ICF) of alpha or deuteron/triton followed by fissions. Total Kinetic Energy (TKE) distribution of fission fragments is another important observable on which the effect of projectile breakup is not explored yet. In this contribution, the study of breakup/transfer effect on average TKE distribution for 6,7Li + 238U reactions is presented
A twin ionization chamber for fission fragment detection is described. The chamber allows to extract both, fast timing- and energy proportional signals. A time resolution of 1.62 ns FWHM was obtained between two fission fragments detected in the two halves of the chamber. For 241Am α-particles the chamber gave an energy resolution of 1.3 percent. As counting gas methane NTP was used
Rodrıguez-Guzmán, R.; Robledo, L. M.
2016-01-01
Mean-field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144≤ N≤ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well-developed third minimum along the fission paths of Ra nuclei is analyzed in terms of the energetics of the "fragments" defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and α -decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N=164 with a steady increase that makes heavier neutron-rich Ra isotopes stable against fission, diminishing the importance of fission recycling in the r-process.
Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain)
2016-01-15
Mean-field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144 ≤ N ≤ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well-developed third minimum along the fission paths of Ra nuclei is analyzed in terms of the energetics of the ''fragments'' defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and α-decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N = 164 with a steady increase that makes heavier neutron-rich Ra isotopes stable against fission, diminishing the importance of fission recycling in the r-process. (orig.)
Mean-field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144 ≤ N ≤ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well-developed third minimum along the fission paths of Ra nuclei is analyzed in terms of the energetics of the ''fragments'' defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and α-decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N = 164 with a steady increase that makes heavier neutron-rich Ra isotopes stable against fission, diminishing the importance of fission recycling in the r-process. (orig.)
Optimal deuteron energy for a neutron rich nuclei source based on fission
A neutron rich nuclei source can be conceived by using the neutron induced fission process. A high neutron flux can be obtained through the deuteron break-up reaction in the so--called converters. The number of fission events and their isotopic distributions produced in a uranium target depends on the deuteron incident beam energy, characteristics of the converter and geometry of the combination. A theoretical approach is presented in order to optimize the number of fission events in the uranium target as function of the above mentioned parameters. The initial kinetic energy of the deuteron beam, the nature of the converter and its geometry determines the angular and energy distributions of the emerging neutrons. The models used to simulate these distributions are essentially based on the Serber's approximation. The fission is treated in a microscopic-macroscopic approach using the two center shell model. A new concept is used to determine the isotopic distribution of the fission fragments as a function of the neutron energy. A steep dumping of the neutron energy is produced in the compound nucleus which modifies the two humped fission barrier and produces changes of the penetrabilities associated to each binary partition and therefore, in the isotopic distribution. Finally, our results show that a good value of the incident deuteron energy suitable for the production of neutron rich beams is closed to 80 MeV. (authors)
Assessing the role of the (n, γ f) process in the low-energy fission of actinides
Talou, Patrick; Lynn, J. E.; Kawano, T.; Mosby, S.; Couture, A.; Bouland, O.
2016-06-01
We review the role of the (n, γ f) process in the low-energy neutron-induced fission reaction of 239Pu. Recent measurements of the average total γ-ray energy released in this reaction were performed with the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos. Significant fluctuations of this quantity in the resonance region below 100 eV can be interpreted by invoking the presence of the indirect (n, γ f) process. Modern calculations of the probability for such an event to occur are presented.
Ohio Advanced Energy Manufacturing Center
Kimberly Gibson; Mark Norfolk
2012-07-30
The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote
Fission-Fragment Angular, Energy, and Mass Division Correlations for the U234 (d, Pf) Reaction
The fission of the compound nucleus U235 in the neighbourhood of its fission threshold has been studied by means of the U234 (d.pf) reaction. A three-parameter analyser was used to record simultaneously the two fission-fragment kinetic energies and the proton energy for each coincident event. The excitation energy at which fission occurs is defined by the kinetic energy of the stripped.proton. The variation of angular anisotropy with excitation energy shows considerably more structure than that obtained by Lamphere for the same nucleus resulting from fast-neutron bombardment of U234. At least eight fission channels at the saddle point have been observed for the energy region between threshold and 2 MeV above threshold. Nilsson-type calculations of single particle energies for deformed nuclei have been made for the larger deformations more nearly describing the saddle-point configuration. The single particle states identified by Lamphere are consistent with those calculated to be close to the Fermi surface for reasonable saddle-point deformations. The primary motivation for this experiment was to search for a possible correlation between mass asymmetry and angular anisotropy. Mass yields obtained from the correlated fragment energies show no variation of the anisotropy with mass ratio, in contrast with experiments where the excitation energy at which fission is occurring is not fixed and where a dependence of anisotropy on mass ratio has been observed. There is therefore no evidence from anisotropy measurements that the properties of the saddle point influence the final mass division. The average total kinetic energy release in fission varies by less than 0.5% for the different saddle-point channels observed. The variation of total kinetic energy with mass ratio has also been investigated. (author)
Kramer, Kevin James
This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by
Signature of fission in 16O + 159Tb system at energy ≅ 5 MeV/nucleon
In the present work, with a view to study complete fusion-fission (CFF) and incomplete fusion-fission (ICFF) in HI induced reactions, experiment has been performed for measuring the production cross-sections for several fission products in 16O + 159Tb system at ≅ 87 MeV beam energy
Sage C.
2013-03-01
Full Text Available We review the statistical model and its application for the process of nuclear fission. The expressions for excitation energy and spin distributions for the individual fission fragments are given. We will finally emphasize the importance of measuring prompt gamma decay to further test the statistical model in nuclear fission with the FIPPS project.
We review the statistical model and its application for the process of nuclear fission. The expressions for excitation energy and spin distributions for the individual fission fragments are given. We will finally emphasize the importance of measuring prompt gamma decay to further test the statistical model in nuclear fission with the FIPPS project. (authors)
The dependence of cumulative 238U(n,f) fission yield on incident-neutron energy
ZHENG Na; ZHONG Chunlai; MA Liyong; CHEN Zhongjing; LI Xiangqing; LIU Tingjin; CHEN Jinxiang; FAN Tieshuan
2009-01-01
This work is aim at studying the dependence of fission yields on incident neutron energy,so as to produce evaluated yield sets of the energy dependence.Experimental data at different neutron energies for gas fission products 85m,87,88Kr and 138Xe resulting from the 238U(n,f) reaction are processed using codes AVERAGE for weighed average and ZOTT for simultaneous evaluation.Energy dependence of the cumulative fission product yields on the incident neutron is presented.The evaluated curve of product yield is compared with the results calculated by the TALYS-0.64 code.The present evaluation is consistent with other main libraries in error permission.The fit curve of 87,88Kr can be recommended to predict the unmeasured fission yields.Comparisons of the evaluated energy dependence curves with theoretical calculated results show that the predictions using purely theoretical model for the fission process are not sufficiently accurate and reliable for the calculations of the cumulative fission yields for the 238U(n,f).
Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.
2016-05-01
The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.
Regnier, D.; Dubray, N.; Schunck, N.; Verriere, M.
2016-01-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of ...
Demekhina, N. A.; Karapetyan, G. S.; Balabekyan, A. R.
2014-01-01
The cross sections for the binary fission of 197Au, 181Ta and 209Bi targets induced by 11B ions were measured at intermediate energies. The fission products cross sections were studied by means of activation analysis in off-line regime observed gamma-ray spectra. The fission cross section is reconstructed on the basis of charge and mass distribution of the fission products.
For energy demand in the economic development of China in 21 Century, for seeking the strategy to develop nuclear energy in China, according to the nuclear resources in China and the perspective of international nuclear technology development, the optimization of the combination of three kinds of advanced reactors, namely, HTGR, FBR, and fusion-fission hybrid reactors in the development of nuclear energy in China was investgated. Three alternative stra tegies with different priorities were suggested
Recent experimental results for spontaneous fission half-lives and fission fragment mass and kinetic-energy distributions and other properties of the fragments are reviewed and compared with recent theoretical models. The experimental data lend support to the existence of the predicted deformed shells near Z = 108 and N = 162. Prospects for extending detailed studies of spontaneous fission properties to elements beyond hahnium (element 105) are considered. (orig.)
Äystö J.; Penttilä H.; Gorelov D.; Rubchenya V.A.
2012-01-01
A new method to measure the fission product independent yields employing the ion guide technique and a Penning trap as a precision mass filter, which allows an unambiguous identification of the nuclides is presented. The method was used to determine the independent yields in the proton-induced fission of 232Th and 238U at 25 MeV. The data were analyzed with the consistent model for description of the fission product formation cross section at the projectile energies up to 100 MeV. Pre-compoun...
Advanced energy efficient windows
Thomsen, Kirsten Engelund
2007-01-01
energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...
Advanced Performance Hydraulic Wind Energy
Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.
2013-01-01
The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.
Advanced energy efficient windows
Thomsen, Kirsten Engelund
2007-01-01
Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide...
Neutrons and Kinetic Energy of Fragments in Fission of Heavy Nuclei
The distribution of excitation energy and kinetic energy depending on the mass of the fragment formed in heavy- isotope fission by thermal neutrons is experimentally investigated. The excitation energy is shown to have a low minimum in the region of the double-magic fragment (M ∼132), to increase in the symmetrical fission area and to be at its maximum for fragments complementary to magic. The kinetic energy of the fragments measured for U235 correlates with the excitation energy. The total energy release according to the experimental data is in good agreement with calculations according to Milton's mass tables in every case except that of strongly asymmetric fission. In the measurements conducted, the ratio of the maximum of the fragment yield curve to the minimum (after neutron escape) was 500 : 1. (author)
Fission-Fragment Mass Distribution and Particle Evaporation at low Energies
Schmitt, Ch.; Bartel, J.; Pomorski, K.; Surowiec, A.
2002-01-01
Fusion-fission dynamics is investigated with a special emphasis on fusion reactions at low energy for which shell effects and pairing correlations can play a crucial role leading in particular to multi-modal fission. To follow the dynamical evolution of an excited and rotating nucleus we solve a 2-dimensional Langevin equation taking explicitly light-particle evaporation into account. The confrontation theory-experiment is demonstrated to give interesting information on the model presented, i...
Total fission cross sections of 181Ta ions colliding with hydrogen atoms at 300, 500, 800 and 1000 A MeV have been measured. The combined use of the inverse kinematics technique with an efficient detection set-up made it possible to determine these cross sections with high accuracy ranging between 8% and 17%. The new data put some light in the controversial results obtained so far and contribute to the understanding of the fission process at high excitation energies. (authors)
Advanced materials for energy storage.
Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming
2010-02-23
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. PMID:20217798
Absolute Energy Calibration of Solid-State Detectors for Fission Fragments and Heavy Ions
Detailed measurements of the pulse-height response of silicon solid-state detectors to energetic heavy ions and fission fragments have been made. These studies have now led to a reliable method of absolute energy calibration of solid-state detectors for fission fragments, as well as to a better understanding of the somewhat peculiar response characteristics of the detectors to fission fragments and heavy ions. The use of silicon solid-state detectors in fragment kinetic energy measurements in recent years has been widespread; at the same time, questions have been raised about the detailed interpretation of such measurements because of the increasing evidence for anomalous behaviour in charge production, charge collection and charge multiplication in the case of densely ionizing particles. The present report discusses systematics and possible origins of these effects. Application of the absolute energy calibration method, which takes into account the mass and energy dependence of the response, is based simply on a Cf252 or U235 fragment pulse- height spectrum. Our studies were carried out with mono-energetic Br71, Br81 and I127 ions of energies from 30 to 120 MeV, and with fission fragments from spontaneous fission of Cf252 and neutron-induced fission of U235 and Pu239. It is shown that for a given fragment mass, over a wide energy range, the fragment energy versus pulse-height relationship is of the form E = ax + b, where E is the fragment energy and x is the measured pulse height. A dependence of pulse height on fragment mass has also been established, which leads to an energy versus pulse-height relationship, for the range of fission-fragment masses and energies, of the form E = (a + a'm)x + b + b'M, where M is the fragment mass. The effect of detector window and of detector type, resistivity and electric field have been studied. Guides to the selection of detectors and to their use with fission fragments are given. The effect of the more exact calibration
Nucleon-induced fission cross-sections at transitive energy region 20-200 MeV
The new approach to the calculation of nucleon induced fission cross sections at energies 20-200 MeV is presented. The cross sections of multiconfiguration fission is calculated as a sum of fission cross-sections for nuclei formed in process of fast (direct) and precompound stage of fission reaction. The intranuclear cascade model is used for description of direct stage and precompound-statistical model for calculation of fission and de-excitation cross sections. Calculated with new optical model parameters sets fission cross sections are compared with experimental data for neutron-induced fission of 237Np, 239Pu, 235,238U and proton-induced fission of 235,238U. Brief information about new code system is also presented. (author)
Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy
Stetcu, I.; Talou, P.; Kawano, T.
2016-06-01
We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).
Schunck, N; Carr, H
2013-01-01
Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production of nuclear waste management. The goal of this paper is to set up the foundations of a microscopic model to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the fission of 239Pu(n,f). We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature, and predict the evolution of both the inner and outer fission barriers as ...
DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT
D. BELLER; G. POLANSKY; ET AL
2000-11-01
The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R&D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented.
Study of advanced fission power reactor development for the United States. Volume II
This report presents the results of a multi-phase research study which had as its objective the comparative study of various advanced fission reactors and evaluation of alternate strategies for their development in the USA through the year 2020. By direction from NSF, ''advanced'' reactors were defined as those which met the dual requirements of (1) offering a significant improvement in fissile fuel utilization as compared to light-water reactors and (2) currently receiving U.S. Government funding. (A detailed study of the LMFBR was specifically excluded, but cursory baseline data were obtained from ERDA sources.) Included initially were the High-Temperature Gas-Cooled Reactor (HTGR), Gas-Cooled Fast Reactor (GCFR), Molten Salt Reactor (MSR), and Light-Water Breeder Reactor (LWBR). Subsequently, the CANDU Heavy Water Reactor (HWR) was included for comparison due to increased interest in its potential. This volume presents the reasoning process and analytical methods utilized to arrive at the conclusions for the overall study
The contrasting fission potential-energy structure of actinides and mercury isotopes
Ichikawa, Takatoshi; Möller, Peter; Sierk, Arnold J
2012-01-01
Fission-fragment mass distributions are asymmetric in fission of typical actinide nuclei for nucleon number $A$ in the range $228 \\lnsim A \\lnsim 258$ and proton number $Z$ in the range $90\\lnsim Z \\lnsim 100$. For somewhat lighter systems it has been observed that fission mass distributions are usually symmetric. However, a recent experiment showed that fission of $^{180}$Hg following electron capture on $^{180}$Tl is asymmetric. An earlier experiment has shown fission of $^{198}$Hg and nearby nuclei is symmetric, but with hints of asymmetric yield distributions up to about 10 MeV above the saddle-point energy. We calculate potential-energy surfaces for a typical actinide nucleus and for 12 even isotopes in the range $^{178}$Hg--$^{200}$Hg, demonstrating the radical differences between actinide and mercury potential surfaces. We discuss these differences and how the changing potential-energy structure along the mercury isotope chain affects the observed (a)symmetry of the fission fragments. We show that the ...
Advanced energy conversion and application
This VDI-report 1029 contains the manuscripts of 45 lectures which have been held on the expert meeting ''Advanced energy conversion and application''. The following 3 main subjects have been dealt with: I electric power stations and heating and power stations, II industrial energy technology, III energy supply of buildings. For each of the 45 manuscripts, a separated assessment with regard to the content has been elaborated. (HW)
Recent Advances in Power Conversion and Heat Rejection Technology for Fission Surface Power
Mason, Lee
2010-01-01
Under the Exploration Technology Development Program, the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) are jointly developing Fission Surface Power (FSP) technology for possible use in human missions to the Moon and Mars. A preliminary reference concept was generated to guide FSP technology development. The concept consists of a liquid-metal-cooled reactor, Stirling power conversion, and water heat rejection, with Brayton power conversion as a backup option. The FSP project has begun risk reduction activities on some key components with the eventual goal of conducting an end-to-end, non-nuclear, integrated system test. Several power conversion and heat rejection hardware prototypes have been built and tested. These include multi-kilowatt Stirling and Brayton power conversion units, titanium-water heat pipes, and composite radiator panels.
The number of prompt neutrons emitted in the fission event have been measured separately for each complementary fragment in coincidence with fragment mass and kinetic energies in spontaneous fission of 252Cf, 244Cm and 248Cm. Two high efficient Gd-loaded liquid scintillator tanks were used for the neutron registration. Approximately 3x106 fission events coincident with prompt neutron emission have been accumulated for each isotope. The mean neutron multiplicity, the dispersion and the covariance of the multiplicity distributions have been obtained as a function of fission fragment mass and kinetic energy. The neutron multiplicity data have been corrected for neutron registration efficiency, background and pile-up. Dependencies of the moments of the multiplicity distributions on the fragment mass and total kinetic energy for different mass bins, as well as mass and total kinetic energy distributions of the fission fragments are presented, discussed and compared for the different isotopes investigated. The results showed a different behavior of the moments of the multiplicity distribution depending on the fragment mass asymmetry that reflects changes in the dynamical effects for different fission modes. (author)
AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
Courchet, Julien; Lewis, Tommy L.; Losón, Oliver C.; Hellberg, Kristina; Young, Nathan P.; Chen, Hsiuchen; Polleux, Franck; Chan, David C.; Shaw, Reuben J.
2016-01-01
Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA–linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)–activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission. PMID:26816379
Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of 243Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of 243Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references
Benchmarking a fission-product release computer program containing a Gibbs energy minimizer
The computer program SOURCE IST 2.0 contains a 1997 model of fission-product vaporization, developed by B.J. Corse et al. That model was tractable on computers of that day. However, the understanding of fuel thermochemistry has advanced since that time. A new prototype computer program was developed with: a) newer Royal Military College of Canada thermodynamic model of uranium dioxide fuel, b) new model for fission-product vaporization from the fuel surface, c) a user-callable thermodynamics subroutine library, d) an updated nuclear data library, and e) an updated nuclide generation and depletion algorithm. The prototype has been benchmarked against experimental results. (author)
Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Bélier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric; Alvarez-Pol, Héctor; Audouin, Laurent; Aumann, Thomas; Ayyad, Yassid; Benlliure, Jose; Casarejos, Enrique; Cortina Gil, Dolores; Caamaño, Manuel; Farget, Fanny; Fernández Domínguez, Beatriz; Heinz, Andreas; Jurado, Beatriz; Kelić-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Paradela, Carlos; Pietri, Stéphane; Ramos, Diego; Rodríguez-Sànchez, Jose-Luis; Rodríguez-Tajes, Carme; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Tassan-Got, Laurent; Vargas, Jossitt; Voss, Bernd; Weick, Helmut
2015-12-01
A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism.
Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Belier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric [CEA DAM Bruyeres-le-Chatel, Arpajon (France); Alvarez-Pol, Hector; Ayyad, Yassid; Benlliure, Jose; Cortina Gil, Dolores; Caamano, Manuel; Fernandez Dominguez, Beatriz; Paradela, Carlos; Ramos, Diego; Rodriguez-Sanchez, Jose-Luis; Vargas, Jossitt [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, Laurent; Tassan-Got, Laurent [CNRS/IN2P3, IPNO, Orsay (France); Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Casarejos, Enrique [Universidad de Vigo, Vigo (Spain); Farget, Fanny; Rodriguez-Tajes, Carme [CNRS/IN2P3, GANIL, Caen (France); Heinz, Andreas [Chalmers University of Technology, Gothenburg (Sweden); Jurado, Beatriz [CNRS/IN2P3, CENBG, Gradignan (France); Kelic-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Pietri, Stephane; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Voss, Bernd; Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)
2015-12-15
A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)
A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)
Carjan, N.; Hambsch, F.-J.; Rizea, M.; Serot, O.
2012-04-01
The partition between the light (L) and the heavy (H) fission fragments of the excitation energy available at scission is studied in the framework of the sudden approximation, i.e., under the assumption that the neck rupture and the absorption of the neck pieces by the fragments happen infinitely fast. We are dealing with a sudden transition between two different nuclear configurations (αi→αf) and we only need to know the two sets of neutron eigenstates involved. The accent in the present work is put on the dependence of this share of energy on the mass asymmetry AL/AH of the primary fission fragments during the low-energy fission of 236U. In particular, for every fragment mass A we estimate the scission neutron multiplicity νsc, the average energy cost for their release , the primary fragments' excitation energy Esc*, and the corresponding temperature Tsc. The results are analyzed separately for each value of Ω (the projection of the angular momentum on the symmetry axis). As general trends, a decrease of Esc* (Tsc) and an increase of νsc () with increasing A were observed.
This three-volume set details a multistage research study on the comparison of various advanced fission reactors and evaluation of alternate strategies for their development in the USA through the year 2020. Volume III presents the basic data and other input information utilized in the process of the study. Detailed reactor and fuel-cycle information is contained on the HTGR, GCFR, MSBR, LWBR, and CANDU-HWR, as obtained by BCL staff from numerous sources. These data have been assembled, critically reviewed, and modified where necessary to assure consistency, both internally for each reactor system, and between reactor types. Similar, comparative information was required for the LWR mass balances, fuel cycle, etc., but this was generally accepted from ERDA sources without the critical evaluation to which the other data were subjected. Other detailed information that relates to the objective of the study, e.g., projections of nuclear power growth and uranium availability, generic safeguards information, description of computerized models, etc., is incorporated for ready reference
The purpose of this work is experimental studies of the energy dependence of the fission cross sections of heavy nuclei, natPb, 209Bi, 232Th, 233U, 235U, 238U, 237Np and 239Pu, by protons at the energies from 200 to 1000 MeV. At present experiment the method based on use of the gas parallel plate avalanche counters (PPACs) for registration of complementary fission fragments in coincidence and the telescope of scintillation counters for direct counting of the incident protons on the target has been used. First preliminary results of the energy dependences of proton induced fission cross sections for natPb, 209Bi, 235U and 238U are reported. (author)
Pahlavani, M. R.; Mirfathi, S. M.
2016-04-01
The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of 239Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy.
Nucleon-induced fission cross sections of heavy nuclei in the intermediate energy region
Fission is the most important nuclear reaction for society at large today due to its use in energy production. However, this has raised the problem of how to treat the long-lived radioactive waste from nuclear reactors. A radical solution would be to change the composition of the waste into stable or short-lived nuclides, which could be done through nuclear transmutation. Such a concept requires accelerator-driven systems to be designed, where those for transmutation are reactor hybrids. This thesis is a contribution to the knowledge base for developing transmutation systems, specifically with respect to the computational modeling of the underlying nuclear reactions, induced by the incident and secondary particles. Intermediate energy fission cross sections are one important type of such data. Moreover, they are essential for understanding the fission process itself and related nuclear interactions. The experimental part of this work was performed at the neutron beam facility of the The Svedberg Laboratory in Uppsala. Fission cross sections of 238U, 209Bi, Pb, 208Pb, 197Au, W, and 181Ta were measured for neutrons in the range En, = 30-160 MeV using thin-film breakdown counters for the fission fragment detection. A model was developed for the determination of the efficiency of such detectors. A compilation of existing data on proton-induced fission cross sections for nuclei from 165Ho to 239Pu was performed. The results, which constitute the main body of information in this field, were added to the worldwide EXFOR database. The dependences of the cross sections on incident energy and target nucleus were studied, which resulted in systematics that make it possible to give estimates for unmeasured nuclides. Nucleon-induced fission cross sections were calculated using an extended version of the cascade exciton model. A comparison with the systematics and the experimental data obtained in the present work revealed significant discrepancies. A modification of the model
JAck D. Law
2007-09-01
The Fission Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Advanced Fuel Cycle Initiative for the simultaneous separation of cesium (Cs) and strontium (Sr) from spent light water reactor (LWR) fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository, and when combined with the separation of americium (Am) and curium (Cm), could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with a simulated feed solution in 3.3-cm centrifugal contactors are detailed. Removal efficiencies, distribution coefficient data, coextraction of metals, and process hydrodynamic performance are discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel.
Rodriguez-Guzman, R R
2015-01-01
Mean field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144 $\\le$ N $\\le$ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well developed third minimum along the fission paths of Ra nuclei, is analyzed in terms of the energetics of the "fragments" defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and $\\alpha$-decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N=164 with a steady increase that makes heavier ...
Regnier, D; Schunck, N; Verriere, M
2016-01-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear energy density functional (EDF) method, where large amplitude collective motion is treated adiabatically using the time dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in tw...
Simulation of neutron rich nuclei production through 239U fission at intermediates energies
The theoretical part and some results obtained from a model realised for fission processes in wide range of mass-asymmetries are presented. The fission barriers are computed in a tridimensional configuration space using the Yukawa - plus - exponential macroscopic energies corrected within the Strutinsky procedure. It is assumed that channel probabilities are proportional with Gamow penetrabilities. The model is applied for the disintegration of the 239U in order to determine the relative yields for the production of neutron rich nuclei at diverse intermediate energies. (author)
Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy
Rykaczewski, Krzysztof
2015-10-01
Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.
Fission-fragment kinetic-energy distributions from a two-dimensional Fokker-Planck equation
We calculate the fission-fragment kinetic-energy distribution for the compound nucleus 213At by simultaneously taking into account spreading in a stretching degree of freedom and fluctuations in a fission degree of freedom. This is done in terms of an approximate solution of a two-dimensional Fokker-Planck equation obtained by propagating Gaussian bundles in momentum space. When compared as functions of nuclear temperature with experimental data, our calculated mean kinetic energies are in approximate agreement and our calculated variances are slightly too small
Odd–even effect in fragment angular momentum in low-energy fission of actinides
B S Tomar; R Tripathi; A Goswami
2007-01-01
Quantitative explanation for the odd–even effect on fragment angular momenta in the low-energy fission of actinides have been provided by taking into account the single particle spin of the odd proton at the fragment's scission point deformation in the case of odd- fragments along with the contribution from the population of angular momentum bearing collective vibrations of the fissioning nucleus at scission point. The calculated fragment angular momenta have been found to be in very good agreement with the experimental data for fragments in the mass number region of 130–140. The odd–even effect observed in the fragment angular momenta in the low-energy fission of actinides has been explained quantitatively for the first time.
Implementation of a Gibbs energy minimizer in a fission-product release computer program
SOURCE 2.0 is the Canadian computer program for calculating fractional release of fission products from the UO2 fuel matrix. In nuclear accidents, fission-product release from fuel is one of the physical steps required before radiation dose from fission products can affect the public. Fission-product release calculations are a step in the analysis path to calculating dose consequences to the public from postulated nuclear accidents. SOURCE 2.0 contains a 1997 model of fission-product vaporization by B.J. Corse et al. based on lookup tables generated with the FACT computer program. That model was tractable on computers of that day. However, the understanding of fuel thermochemistry has advanced since that time. Additionally, computational resources have significantly improved since the time of the development of the Corse model and now allow incorporation of the more-rigorous thermodynamic treatment. Combining the newer Royal Military College of Canada (RMC) thermodynamic model of irradiated uranium dioxide fuel, a new model for fission-product vaporization from the fuel surface, a commercial user-callable thermodynamics subroutine library (ChemApp), an updated nuclide list, and updated nuclear physics data, a prototype computer program based on SOURCE IST 2.0P11 has been created that performs thermodynamic calculations internally. The resulting prototype code (with updated and revised data) provides estimates of 140La releases that are in better agreement with experiments than the original code version and data. The improvement can be quantified by a reduction in the mean difference between experimental and calculated release fractions from 0.70 to 0.07. 140La is taken to be representative of “low-volatile” fission products. To ensure that the existing acceptable performance for noble gases and volatile fission products is not adversely affected by the changes, comparisons were also made for a representative noble gas, 85Kr, and a representative volatile
Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.
2016-04-01
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.
Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P
2016-04-01
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel. PMID:27081973
XEUS: Exploratory Energy Utilization Systemic s for Fission Fusion Hybrid Application
World energy outlook requires environmental friendliness, sustain ability and improved economic feasibility. The Exploratory Energy Utilization Systemic s (XEUS) is being developed at the Seoul National University (SNU) to satisfy these demands. Generation IV (Gen IV) and fusion reactors are considered as candidates for the primary system. Battery Omnibus Reactor Integral System (BORIS) is a liquid-metal cooled fast reactor which is one of the Gen IV concepts. Fusion Engineering Lifetime Integral Explorer (FELIX) is a fusion demonstration reactor for power generation. These two concepts are considered as dominant options for future nuclear energy source from the environmental, commercial and nonproliferation points of view. XEUS may as well be applied to the fusion-fission hybrid system. The system code is being developed to analyze the steady state and transient behavior of the primary system. Compact and high efficiency heat exchangers are designed in the Loop Energy Exchanger Integral System (LEXIS). Modular Optimized Brayton Integral System (MOBIS) incorporates a Brayton cycle with supercritical fluid to achieve high power conversion ratio. The high volumetric energy density of the Brayton cycle enables designers to reduce the size and eventually the cost of the system when compared with that of the Rankine cycle. MOBIS is home to heat exchangers and turbo machineries. The advanced shell-and-tube or printed circuit heat exchanger is considered as heat transfer components to reduce size of the system. The supercritical fluid driven turbines and compressor are designed to achieve higher component efficiency. Thermo hydrodynamic characteristics of each component in MOBIS are demonstrated utilizing computational fluid dynamics software CFXR. Another key contributor to the reduction of capital costs per unit energy has to do with manufacturing and assembly processes that streamline plant construction by minimizing construction work and time. In a three
Energy Storage (II): Developing Advanced Technologies
Robinson, Arthur L
1974-01-01
Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)
Theory and applications of the fission matrix method for continuous-energy Monte Carlo
Highlights: • The fission matrix method is implemented into the MCNP Monte Carlo code. • Eigenfunctions and eigenvalues of power distributions are shown and studied. • Source convergence acceleration is demonstrated for a fuel storage vault problem. • Forward flux eigenmodes and relative uncertainties are shown for a reactor problem. • Eigenmodes expansions are performed during source convergence for a reactor problem. - Abstract: The fission matrix method can be used to provide estimates of the fundamental mode fission distribution, the dominance ratio, the eigenvalue spectrum, and higher mode forward and adjoint eigenfunctions of the fission distribution. It can also be used to accelerate the convergence of power method iterations and to provide basis functions for higher-order perturbation theory. The higher-mode fission sources can be used to determine higher-mode forward fluxes and tallies, and work is underway to provide higher-mode adjoint-weighted fluxes and tallies. These aspects of the method are here both theoretically justified and demonstrated, and then used to investigate fundamental properties of the transport equation for a continuous-energy physics treatment. Implementation into the MCNP6 Monte Carlo code is also discussed, including a sparse representation of the fission matrix, which permits much larger and more accurate representations. Properties of the calculated eigenvalue spectrum of a 2D PWR problem are discussed: for a fine enough mesh and a sufficient degree of sampling, the spectrum both converges and has a negligible imaginary component. Calculation of the fundamental mode of the fission matrix for a fuel storage vault problem shows how convergence can be accelerated by over a factor of ten given a flat initial distribution. Forward fluxes and the relative uncertainties for a 2D PWR are shown, both of which qualitatively agree with expectation. Lastly, eigenmode expansions are performed during source convergence of the 2D PWR
Randrup, Jorgen; Moller, Peter
2011-01-01
Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there exists no model with demonstrated predictive power for the fission fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces whic...
Schmidt, Karl-Heinz; Jurado, Beatriz
2010-01-01
The even-odd effect in fission is explained by a model based on statistical mechanics. It reveals that the variation of the even-odd effect with the mass of the fissioning nucleus and the increase towards asymmetric splits is due to the important statistical weight of configurations where the light fission fragment populates the ground state of an even-even nucleus. This implies that entropy drives excitation energy and unpaired nucleons predominantly to the heavy fragment. Therefore, the eve...
Excitation Functions of Fusion and Fission for 32S+170Er at Energies Near and Below Coulomb Barrier
BAO; Peng-fei; LIN; Cheng-jian; YANG; Feng; JIA; Hui-ming; XU; Xin-xing; YANG; Lei; SUN; Li-jie; MA; Nan-ru; ZHANG; Huan-qiao; LIU; Zu-hua
2013-01-01
Excitation functions of fusion evaporation residue(ER)and fission for 32S+170Er system at near barrier energy region were measured,respectively.With the comparison to the calculations of coupledchannels effects,it is accessible to investigate the impacts on the fusion and fission processes of target deformation and the dependence on the entrance-channel.The experiment was performed at Beijing HI-13 Tandem Accelerator.Fission and fusion evaporation
Yield-Energy Evaluation of 85Kr of 239Pu+n Fission
2008-01-01
<正>The yields of 85Kr, the important production of the 239Pu fission, were re-evaluated over the incident neutron energy 1-15 MeV, based upon all the experimental data. The yields as function of energ
Medium and long-term scenarios for fission nuclear energy and role of innovative concepts
The course addresses medium and long-term scenarios for nuclear energy and role of innovative concepts. In particular, presented are several major issues related to plutonium management, transmutation of minor actinides and long-lived fission products, and accelerator driven systems. The paper essentially reproduces transparencies prepared as lecture notes. (author)
Medium and long term scenarios for fission nuclear energy and role of innovative concepts
In the assessment of medium and long-term scenarios for fission nuclear energy and the role of innovative concepts, the options for the back-end of the fuel cycle play a central role. Three classical scenarios are analysed corresponding to open cycle, reprocessing for Pu utilisation and some long-lived fission products transmutation. We will first examine the impact of the fuel cycle in terms of waste toxicity. Subsequently, we will quickly remind the issues associated to Pu utilisation. Finally, we will extensively describe the transmutation: physics, applications and scenarios
Äystö J.
2012-02-01
Full Text Available A new method to measure the fission product independent yields employing the ion guide technique and a Penning trap as a precision mass filter, which allows an unambiguous identification of the nuclides is presented. The method was used to determine the independent yields in the proton-induced fission of 232Th and 238U at 25 MeV. The data were analyzed with the consistent model for description of the fission product formation cross section at the projectile energies up to 100 MeV. Pre-compound nucleon emission is described with the two-component exciton model using Monte Carlo method. Decay of excited compound nuclei is treated within time-dependent statistical model with inclusion of the nuclear friction effect. The charge distribution of the primary fragment isobaric chain was considered as a result of frozen quantal fluctuations of the isovector nuclear density. The theoretical predictions of the independent fission product cross sections are used for normalization of the measured fission product isotopic distributions.
Paradela C.
2010-10-01
Full Text Available In this work we have investigated total fission cross section of 181Ta+1H at FRS (FRagment Separator -GSI at 1, 0.8, 0.5 and 0.3 GeV with an specific setup, providing high accuracy measurements of the cross section values. We compare the results obtained in this experiment, with several calculations performed with the intra-nuclear cascade model (INCL v4.1 coupled to de-excitation code (ABLAv3p, according to two different models describing fission process at high-excitation energies: statistical model of Bohr and Wheeler and the dynamical description of the fission process. The comparison with data of previous experiments is also discussed in order to address the existing discrepancies with this new results.
Badimon, C.; Barreau, G.; Doan, T.P.; Pedemay, G. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Thiesen, Ch. [Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Belier, G.; Meot, M.V. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France); Astier, A.; Ducroux, L.; Meyer, M.; Redon, N. [Inst.de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)
1997-06-01
The prompt {gamma} emission in the spontaneous fission of {sup 252}Cf is characterized by an energy spectrum which extends up to 20 MeV. It was established that the spectrum presents in the neighbourhood of symmetric fission an intensity bump in the 3-8 MeV {gamma} energy interval. The origin of this phenomenon is still not well understood, so that it was found interesting to carry out new measurements. The spectrum of the {gamma} rays emitted in spontaneous fission of {sup 252}Cf has been measurement in the EUROGAM II multidetector using photovoltaic cells to detect fragments. The aim of the experiment was to investigate the {gamma} yield enhancement which appears for mass fragment ratio near 132/120. This enhancement was found to be composed of two peaks located at 4 MeV and 5.5 MeV respectively. The results obtained confirm the intensity bound in the 3-8 MeV region but this augmentation reaches the maximum when the heavy fragment is near the mass 132. Beyond mass 140 the phenomenon diminish and the {gamma} spectrum regains the behaviour expected for a statistic emission. The additional structure at 5.5 MeV does not vary with excitation energy while the excitation function of the 4 MeV structure is more structured and presents a maximum when the excitation energy is near 8 MeV. It is likely that all or part of this observed phenomenon is due to a particular excitation mode of this isotope associated for instance with a low energy dipole resonance. A theoretical study of this collective effect is under way 3 refs.
Overview of research by the fission group in Trombay
R K Chourdhury
2015-08-01
Nuclear fission studies in Trombay began nearly six decades ago, with the commissioning of the APSARA research reactor. Early experimental work was based on mass, kinetic energy distributions, neutron and X-ray emission in thermal neutron fission of 235U, which were carried out with indigenously developed detectors and electronics instrumentation. With the commissioning of CIRUS reactor and the availability of higher neutron flux, advanced experiments were carried out on ternary fission, pre-scission neutron emission, fragment charge distributions, quarternary fission, etc. In the late eighties, heavy-ion beams from the pelletron-based medium energy heavy-ion accelerator were available, which provided a rich variety of possibilities in nuclear fission studies. Pioneering work on fragment angular distributions, fission time-scales, transfer-induced fission, -ray multiplicities and mass–energy correlations were carried out, providing important information on the dynamics of the fission process. More recently, work on fission fragment -ray spectroscopy has been initiated, to understand the nuclear structure aspects of the neutron-rich fission fragment nuclei. There have also been parallel efforts to carry out theoretical studies in the areas of shell effects, superheavy nuclei, fusion–fission dynamics, fragment angular distributions, etc. to complement the experimental studies. This paper will provide a glimpse of the work carried out by the fission group at Trombay in the above-mentioned topics.
Fission excitation function for 19F + 194,196,198Pt at near and above barrier energies
Singh Varinderjit
2015-01-01
Full Text Available Fission excitation functions for 19F + 194,196,198Pt reactions populating 213,215,217Fr compound nuclei are reported. Out of these three compound nuclei, 213Fr is a shell closed (N=126 compound nucleus and the other two are away from the shell closure. From a comparison of the experimental fission cross-sections with the statistical model predictions, it is observed that the fission cross-sections are underestimated by the statistical model predictions using shell corrected finite range rotating liquid drop model (FRLDM fission barriers. Further the FRLDM fission barriers are reduced to fit the fission cross-sections over the entire measured energy range.
Montoya, Modesto
2014-01-01
This work is focused on even-odd effects on the minimal total fragment excitation energy in thermal neutron induced fission of 233U and 235U as well as in spontaneous fission of 252Cf. In a scission model, taking into account the fragment deformation properties and Coulomb interaction between fragments, the expression of the difference between Q-values referred to even/even and odd/odd charge splits, respectively, on the corresponding difference between the minimal total fragment excitation energy is studied.
Fission nuclear power prospects and its role in meeting global energy needs
Nuclear power currently makes an important contribution to world's energy requirements providing 17% of its electricity. But as global warming becomes of greater concern, many ask whether nuclear power can and should contribute more. The author, who is involved in the nuclear power enterprise for 35 years, tries to answer this question affirmative. He holds the view that: a) nuclear fission power is essential to meeting world's energy needs without unduly impairing the global environment; b) by possessing the required attributes discussed in this paper, nuclear fission power can be made societally acceptable; c) the industrialized world should accelerate LMFR deployment while fostering more convenient energy alternatives for the developing world; and d) the HTGR is unique in its ability to augment non-electricity energy needs and could become the technology choice of developing countries for nuclear electricity production. (author). 5 refs., 5 figs., 4 tabs
Fusion-Fission of $^{16}O+^{197}Au$ at Sub-Barrier Energies
Back, B B; Janssens, R V F; Henderson, D J; Shumard, B R; Lister, C J; Peterson, D; Rehm, K E; Tanihata, I; Tang, X; Wang, X; Zhu, S
2006-01-01
The recent discovery of heavy-ion fusion hindrance at far sub-barrier energies has focused much attention on both experimental and theoretical studies of this phenomenon. Most of the experimental evidence comes from medium-heavy systems such as Ni+Ni to Zr+Zr, for which the compound system decays primarily by charged-particle evaporation. In order to study heavier systems, it is, however, necessary to measure also the fraction of the decay that goes into fission fragments. In the present work we have, therefore, measured the fission cross section of 16O+197Au down to unprecedented far sub-barrier energies using a large position sensitive PPAC placed at backward angles. The preliminary cross sections will be discussed and compared to earlier studies at near-barrier energies. No conclusive evidence for sub-barrier hindrance was found, probably because the measurements were not extended to sufficiently low energies.
Advanced Space Power Systems (ASPS): Advanced Energy Storage Systems Project
National Aeronautics and Space Administration — The development of high specific energy devices will enable NASA’s future robotic and human-exploration missions. The need for advances in energy...
Jurado, Beatriz
2014-01-01
The characteristics of the odd-even effect in fission-fragment Z distributions are compared to a model based on statistical mechanics. Special care is taken for using a consistent description for the influence of pairing correlations on the nuclear level density. The variation of the odd-even effect with the mass of the fissioning nucleus and with fission asymmetry is explained by the important statistical weight of configurations where the light nascent fission fragment populates the lowest energy state of an even-even nucleus. This implies that entropy drives excitation energy and unpaired nucleons predominantly to the heavy fragment. Therefore, within our model, the odd-even effect appears as an additional signature of the recently discovered energy-sorting process in nuclear fission.
LaBauve, R.J.; George, D.C.; England, T.R.
1980-03-01
The operation and input to the FITPULS code, recently updated to utilize interactive graphics, are described. The code is designed to retrieve data from a library containing aggregate fine-group spectra (150 energy groups) from fission products, collapse the data to few groups (up to 25), and fit the resulting spectra along the cooling time axis with a linear combination of exponential functions. Also given in this report are useful results for aggregate gamma and beta spectra from the decay of fission products released from /sup 235/U irradiated with a pulse (10/sup -4/ s irradiation time) of thermal neutrons. These fits are given in 22 energy groups that are the first 22 groups of the LASL 25-group decay-energy group structure, and the data are expressed both as MeV per fission second and particles per fission second; these pulse functions are readily folded into finite fission histories. 65 figures, 11 tables.
A physical description of fission product behavior fuels for advanced power reactors.
Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.
2007-10-18
The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.
The transport and deposition of fission products in the ACACIA (AdvanCed Atomic Cogenerator for Industrial Applications) high temperature reactor primary system are investigated. The study focuses on the behaviour calculated with the MELCOR computer code of 4 nuclides: Cs-137, Sr-90, Ag-110m, and I-131. After a ten-year operation period, the total activity of the released nuclides in the primary system is about 58 GBq. The highest activity is produced by Cs-137 (52 GBq), followed by I-131 (4 GBq), and Ag-110m (1.8 GBq). The contribution of Sr-90 is very low (1600 Bq). The highest activity is found in the precooler (56 GBq). The main reason is the condensation of the volatile species CsOH and CsI in this component. Other components with high activities are the recuperator (1.4 GBq) and the compressor (0.007 GBq). These components are contaminated by Ag-110m. The gas ducts in the energy conversion unit are contaminated by Ag-110m (0.043 GBq) and I-131 (0.011 GBq). Contamination as a consequence of a Loss Of Coolant Accident (LOCA) or a Loss of Flow Accident (LOFA) is difficult to estimate, because it depends on a number of phenomena. Under the assumption that 10 fuels elements are damaged, the activity is about 44 GBq. In this accident, Ag-110m produces most of the activity (31 GBq), followed by Cs-137 (12 GBq), and I-131 (1.4 GBq). Although the activity of Sr-90 is high (0.023 GBq), it is negligible compared to the activity of the other nuclides. Obviously, the activity is proportional to the number of damaged fuel elements. The distribution of the nuclides over the components is not considered in view of the large number of uncertainties. 9 refs
Goutte, H.; Berger, J.F.; Casoli, P.; Gogny, D.
2005-01-01
The collective dynamics of low energy fission in 238U is described within a time-dependent formalism based on the Gaussian Overlap Approximation of the time-dependent Generator Coordinate Method. The intrinsic deformed configurations of the nucleus are determined from the self-consistent Hartree-Fock-Bogoliubov procedure employing the effective force D1S with constraints on the quadrupole and octupole moments. Fragment kinetic energy and mass distributions are calculated and compared with exp...
Unfolding the fission prompt γ-ray energy and multiplicity distribution measured by DANCE
The nearly energy independence of the γ-ray efficiency and multiplicity response for the DANCE array, the unusual characteristic elucidated in our early technical report (LLNL-TR-452298), gives one a unique opportunity to derive the true prompt γ-ray energy and multiplicity distribution in fission from the measurement. This unfolding procedure for the experimental data will be described in details and examples will be given to demonstrate the feasibility of reconstruction of the true distribution.
Unfolding the fission prompt gamma-ray energy and multiplicity distribution measured by DANCE
Chyzh, A; Wu, C Y; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J; Laptev, A
2010-10-16
The nearly energy independence of the {gamma}-ray efficiency and multiplicity response for the DANCE array, the unusual characteristic elucidated in our early technical report (LLNL-TR-452298), gives one a unique opportunity to derive the true prompt {gamma}-ray energy and multiplicity distribution in fission from the measurement. This unfolding procedure for the experimental data will be described in details and examples will be given to demonstrate the feasibility of reconstruction of the true distribution.
Thiep, Tran Duc; An, Truong Thi; Cuong, Phan Viet; Vinh, Nguyen The; Mishinski, G. V.; Zhemenik, V. I.
2016-07-01
In this work we present the isomeric ratio of fission product 135Xe in the photo-fission of actinide elements 232Th, 233U and 237Np induced by end-point bremsstrahlung energies of 13.5, 23.5 and 25.0 MeV which were determined by the method of inert gaseous flow. The data were analyzed, discussed and compared with the similar data from literature to examine the role of energy separated in fission process, excitation energy and reaction channels effects.
Nanocarbons for advanced energy storage
Feng, Xinliang
2015-01-01
This first volume in the series on nanocarbons for advanced applications presents the latest achievements in the design, synthesis, characterization, and applications of these materials for electrochemical energy storage. The highly renowned series and volume editor, Xinliang Feng, has put together an internationally acclaimed expert team who covers nanocarbons such as carbon nanotubes, fullerenes, graphenes, and porous carbons. The first two parts focus on nanocarbon-based anode and cathode materials for lithium ion batteries, while the third part deals with carbon material-based supercapacit
Advanced materials for clean energy
Xu (Kyo Jo), Qiang
2015-01-01
Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca
Theoretical Description of the Fission Process
Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic
Theory of neutron emission in fission
Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity bar νp. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and bar νp on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and bar νp with higher accuracy than is currently possible
Farmer, J C; Diaz de la Rubia, T; Moses, E
2008-12-23
The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission
The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission
Parity nonconservation in nuclear fission: does it depend on fragment mass/energy?
For fission of 233U induced by polarized cold neutrons the dependence of the PNC asymmetry coefficient αnf(mLF, TKE) on light fragment mass mLF and total kinetic energy TKE was studied. Concurrently the angular distribution predicted for PNC reactions was tested. Altogether more than 2x1010 fission events with high mass/energy resolution have been collected. This corresponds to an increase in the statistics compared to previous experiments (U. Graf, F. Goennenwein, P. Geltenbort, et al., Z. Phys. A 351 (1995) 281 and V.A. Vesna, V.A. Knyaz'kov, E.A. Kolomenskii et al., JETP. Lett. 31 (1980) 663) by a factor of about 20. The preliminary analysis of the PNC asymmetry shows no significant variation of αnf for different fragment masses/energies, whereas the prediction concerning the angular dependence was confirmed with a precision not obtained up to now
In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO2 fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products 88Kr, 142La, 138Cs, 84Br, 89Rb, 95Y, 90mRb and 90Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been measured and quantitatively evaluated for re-irradiated burnt UO
Montoya, Modesto
2014-01-01
This work is focused on even-odd effects on the minimal total fragment excitation energy in thermal neutron induced fission of 233U and 235U as well as in spontaneous fission of 252Cf. In a scission model, taking into account the fragment deformation properties and Coulomb interaction between fragments, the expression of the difference between Q-values referred to even/even and odd/odd charge splits, respectively, on the corresponding difference between the minimal total fragment excitation e...
Total kinetic energy release in the fast neutron-induced fission of $^{235}$U
Yanez, R; King, J; Barrett, J S; Fotiades, N; Lee, H Y
2015-01-01
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. (To calibrate the apparatus, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the OSU TRIGA reactor). The TKE decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. The standard deviation of the TKE distribution is constant from $E_{n}$=20-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II modes for a given mass is independent of neutron energy.
Development of technetium alloy waste forms for advanced nuclear energy cycles
The Fuel Cycle Technologies (FCT) Program within the Office of Nuclear Energy of the U.S. Department of Energy is charged with developing nuclear fuel cycle options that improve use of actinide resources, responsibly manage wastes, improve and limit proliferation risk. Technetium is a fission product of particular concern for disposal in a repository because of its high fission yield, long half-life, and high solubility and mobility in groundwater as pertechnetate. For example, modeling studies for the former Yucca Mountain repository site indicated that technetium would be an important dose contributor after closure of the repository, in the first 10,000 years. The FCT Program is investigating a range of potential repository environments for ultimate disposal of fission products including technetium from advanced nuclear fuel recycling schemes
Advanced Energy Projects FY 1990 research summaries
This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)
Smith, M. B.; Michl, Josef
2010-01-01
Roč. 110, č. 11 (2010), s. 6891-6936. ISSN 0009-2665 Grant ostatní: Department of Energy(US) DE-FG36-08GO18017 Institutional research plan: CEZ:AV0Z40550506 Keywords : solar energy conversion * photovoltaics * singlet fission Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 33.033, year: 2010
Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant
Meier, W R; Abbott, R; Beach, R; Blink, J; Caird, J; Erlandson, A; Farmer, J; Halsey, W; Ladran, T; Latkowski, J; MacIntyre, A; Miles, R; Storm, E
2008-10-02
A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R&D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost.
An ionization chamber with Frisch grids for studies of high-energy neutron-induced fission
Tutin, G. A.; Ryzhov, I. V.; Eismont, V. P.; Kireev, A. V.; Condé, H.; Elmgren, K.; Olsson, N.; Renberg, P.-U.
2001-01-01
A gridded ionization chamber for fission fragment detection is described. The chamber has been specially designed for use at the quasi-monoenergetic 7Li(p, n) neutron source at the The Svedberg Laboratory, Uppsala, Sweden. The detector permits measurements of fission fragment energy and emission angle for two targets with diameter of up to 10 cm. The time response of the chamber (⩽5 ns FWHM) is adequate to apply time-of-flight discrimination against background events induced by non-peak neutrons. Results of angular anisotropy measurements for the 232Th (n, f) and 238U(n, f) reactions in the 20-160 MeV energy range are given.
Simutkin, V. D.; Ryzhov, I. V.; Tutin, G. A.; Vaishnene, L. A.; Blomgren, J.; Pomp, S.; Österlund, M.; Andersson, P.; Bevilacqua, R.; Meulders, J. P.; Prieels, R.
2009-10-01
Fragment mass distributions from neutron-induced fission of 232Th and 238U have been measured at quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE. The measurements have been carried out making use of a multi-section Frisch-gridded ionization chamber. The measurement technique as well as the data processing is described. Preliminary data on primary fragment mass yields are given for an incident neutron energy of 32.8 MeV.
Double-energy double-velocity measurement system for fission fragments and its application
A new system of double-energy double-velocity (DEDV) measurement for fission fragments has been developed. In this system, the energies of fission fragments are measured by silicon surface barrier detectors (SSB) and the velocities by the time-of-flight (TOF) method utilizing thin film detectors (TFD) as start detectors and SSBs as stop detectors of TOF. Theoretical and experimental studies on TFDs and SSBs have been performed before the construction of the DEDV measurement system. The TFD consists of a thin plastic scintillator film and light guide. The author proposes a new model of the luminescence production in a scintillator film. This model takes into account the thickness of the scintillator film and uses only one parameter. The calculated TFD response to charged particles shows good agreement with other experiments. The dependence of the TFD response to the thickness of the scintillator film has been studied experimentally and analyzed by the luminescence production model. The results of this analysis shows the validity of the luminescence production model. The time resolution of the DEDV measurement system using TFDs and SSBs was 133 ps. As an application of this system, the DEDV measurement for the thermal neutron-induced fission of 233U has been carried out at the super mirror neutron guide tube facility of Kyoto University Reactor (KUR). The energy and velocity of each fission fragment have been stored on magnetic disk event by event in a list mode. The analyzed results of masses, energies and velocities of light and heavy fragments agree well with other authors' works. The value of the total neutron emission number is 2.53 and shows good agreement within experimental error, with the JENDL-2 value, 2.49. The light fragment shows a slightly greater number of neutrons emitted than the other works. This suggests the possibility of larger deformation of light fragments at the scission point. (author)
Energy spectra of fission fragments were determined using a Nuclear Track Methodology (NTM) supported by digital image analysis and numerical data processing using a standard personal computer. The analysis of a californium (252Cf) spectrum with this approach shows improvement compared with the values reported previously using the standard procedure, in terms of resolution and accuracy. This new method adds full automation to the technical advantages and cost effectiveness of an NTM.
Study of Relationship Between Neutron Energy and Fission Yields of 95Zr, 140Ba and 147Nd From 235U
2001-01-01
This work measures fission yields of 235U induced by neutrons with energy of thermal, 3.0, 5.0, 5.5, 8.0 and 14.8 MeV. The main purpose is to study the relationship between neutron energy and fission fields of 95Zr,140Ba and 147Nd from 235U by measuring the radioactivity of foil with direct gamma spectrometry. The fission yields induced by fast neutrons are get by fast-thermal-ratio method which based on yields from thermal neutrons, yields by thermal neutron are come from absolute measurement. Since fast-thermal-ratio method eliminates uncertainties of gamma intensity, gamma
Measurements of charge distributions of the fragments in the low energy fission reaction
The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ−Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au–Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2⁎ and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.
Some important aspects of fragment angular momentum in medium energy fission of 238U
Independent isomeric yield ratios of 131Te, 133Te and 134I have been determined at five different energies in the range of 25-44 MeV alpha particle induced fission of 238U using radiochemical and gamma spectrometric techniques. From the independent isomeric yield ratios, fragment angular momenta (Jrms) have been deduced using a statistical model analysis. The Jrms were also calculated theoretically based on thermal equilibration of various collective modes after considering the occurrence of multichance fission. These data and the literature data for various fragments in the mass region 126-136 in 238U (α,f), 238U (p,f) and 238U (γ,f) show the following important features: (i) Both the entrance channel excitation energy and input angular momentum affect the fragment angular momentum in the exit channel. (ii) There are two groups of fission products from the point of view of change of fragment angular momentum with increase in excitation energy and input angular momentum. (iii) Fragment angular momentum depends on nuclear structure effect such as shell closure proximity and odd-even effect. (iv) The fragment angular momentum calculated theoretically based on statistical equilibration of various collective modes are in good agreement with the experimental values indicating the validity of such an assumption
Direct energy conversion in fission reactors: A U.S. NERI project
SLUTZ,STEPHEN A.; SEIDEL,DAVID B.; POLANSKY,GARY F.; ROCHAU,GARY E.; LIPINSKI,RONALD J.; BESENBRUCH,G.; BROWN,L.C.; PARISH,T.A.; ANGHAIE,S.; BELLER,D.E.
2000-05-30
In principle, the energy released by a fission can be converted directly into electricity by using the charged fission fragments. The first theoretical treatment of direct energy conversion (DEC) appeared in the literature in 1957. Experiments were conducted over the next ten years, which identified a number of problem areas. Research declined by the late 1960's due to technical challenges that limited performance. Under the Nuclear Energy Research Initiative the authors are determining if these technical challenges can be overcome with todays technology. The authors present the basic principles of DEC reactors, review previous research, discuss problem areas in detail, and identify technological developments of the last 30 years that can overcome these obstacles. As an example, the fission electric cell must be insulated to avoid electrons crossing the cell. This insulation could be provided by a magnetic field as attempted in the early experiments. However, from work on magnetically insulated ion diodes they know how to significantly improve the field geometry. Finally, a prognosis for future development of DEC reactors will be presented .
Direct energy conversion in fission reactors: A U.S. NERI project
In principle, the energy released by a fission can be converted directly into electricity by using the charged fission fragments. The first theoretical treatment of direct energy conversion (DEC) appeared in the literature in 1957. Experiments were conducted over the next ten years, which identified a number of problem areas. Research declined by the late 1960's due to technical challenges that limited performance. Under the Nuclear Energy Research Initiative the authors are determining if these technical challenges can be overcome with todays technology. The authors present the basic principles of DEC reactors, review previous research, discuss problem areas in detail, and identify technological developments of the last 30 years that can overcome these obstacles. As an example, the fission electric cell must be insulated to avoid electrons crossing the cell. This insulation could be provided by a magnetic field as attempted in the early experiments. However, from work on magnetically insulated ion diodes they know how to significantly improve the field geometry. Finally, a prognosis for future development of DEC reactors will be presented
Total kinetic energy release in the fast neutron-induced fission of $^{235}$U
Yanez, R; King, J; Barrett, J S; Fotiades, N; Lee, H Y
2016-01-01
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. To benchmark the TKE measurement, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the Oregon State University TRIGA reactor, giving pre-neutron emission $E^*_{TKE}=170.7\\pm0.4$ MeV in good agreement with known values. Our measurements are thus absolute measurements. The TKE in $^{235}$U(n,f) decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II ...
Kinetic energies of cluster fragments in ternary fission of 252 Cf
Vijayaraghavan, K. R.; von Oertzen, W.; Balasubramaniam, M.
2012-03-01
The kinetic energy distribution and potential energies of fragments from the collinear cluster tripartition (CCT), the "true" ternary fission of 252Cf, have been calculated. It is assumed that the breakup of the nucleus into three fragments happens sequentially in two steps from a hyper-deformed shape. In the first step a first neck rupture occurs of the parent radioactive nucleus, forming two fragments (one of them is usually 132Sn) and, in the second step, one of the two fragments breaks into two other fragments, resulting finally in three fragments (the experiment is based on a binary coincidence where a missing mass is determined). We show the result for the principal combination of the three spherical fragments (semi-magic isotopes of Sn, Ca, Ni) observed recently experimentally. These isotopes are clusters with high Q -values, which produce the highest yields in the ternary fission bump. It is shown that the kinetic energies of the middle fragments have very low values, making their experimental detection quite difficult. This fact explains why the direct detection of true ternary fission with three fragments heavier than A > 40 has escaped experimental observation.