Sample records for advanced emr techniques

  1. The Next Generation EMR.

    Keshavjee, Karim; Mirza, Kashif; Martin, Ken


    Electronic medical/health record (EMR) usage in North America has increased significantly in the last half decade. But there is widespread dissatisfaction with the technologies that are currently available in the market place. Our hypothesis is that EMR vendors and the market place alone cannot solve the issue of poor technology. We propose an architecture for the next generation of electronic records that solves current concerns of end users and addresses the needs of additional stakeholders, including health system funders, patients, researchers and guideline implementers. By including additional stakeholders, we believe that additional resources, competencies and functionality can be unleashed to solve the larger problems of the current generation of EMRs. The architecture also addresses future requirements that are likely to arise from technological developments such as mobile apps and PHRs and from innovations in medicine, including genomics, artificial intelligence and personalized medicine. The paper makes a call to action for informatics researchers to play a greater role in R&D on EMRs. PMID:25676975

  2. Advanced analytical techniques

    The development of several new analytical techniques for use in clinical diagnosis and biomedical research is reported. These include: high-resolution liquid chromatographic systems for the early detection of pathological molecular constituents in physiologic body fluids; gradient elution chromatography for the analysis of protein-bound carbohydrates in blood serum samples, with emphasis on changes in sera from breast cancer patients; electrophoretic separation techniques coupled with staining of specific proteins in cellular isoenzymes for the monitoring of genetic mutations and abnormal molecular constituents in blood samples; and the development of a centrifugal elution chromatographic technique for the assay of specific proteins and immunoglobulins in human blood serum samples

  3. Digital Fourier analysis advanced techniques

    Kido, Ken'iti


    This textbook is a thorough, accessible introduction to advanced digital Fourier analysis for advanced undergraduate and graduate students. Assuming knowledge of the Fast Fourier Transform, this book covers advanced topics including the Hilbert transform, cepstrum analysis, and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Advanced Techniques" includes practice problems and thorough Appendices. As a central feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. The applet source code in Visual Basic is provided online, enabling advanced students to tweak and change the programs for more sophisticated results. A complete, intuitive guide, "Digital Fourier Analysis - Advanced Techniques" is an essential reference for students in science and engineering.

  4. Advanced enrichment techniques

    BNFL is in a unique position in that it has commercial experience of diffusion enrichment, and of centrifuge enrichment through its associate company Urenco. In addition BNFL is developing laser enrichment techniques as part of a UK development programme in this area. The paper describes the development programme which led to the introduction of competitive centrifuge enrichment technology by Urenco and discusses the areas where improvements have and will continue to be made in the centrifuge process. It also describes the laser development programme currently being undertaken in the UK. The paper concludes by discussing the relative merits of the various methods of uranium enrichment, with particular reference to the enrichment market likely to obtain over the rest of the century. (author)

  5. Advanced Wavefront Control Techniques

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G


    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  6. Advanced qualification techniques

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments

  7. Advanced qualification techniques

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-kev x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments

  8. GPU Pro advanced rendering techniques

    Engel, Wolfgang


    This book covers essential tools and techniques for programming the graphics processing unit. Brought to you by Wolfgang Engel and the same team of editors who made the ShaderX series a success, this volume covers advanced rendering techniques, engine design, GPGPU techniques, related mathematical techniques, and game postmortems. A special emphasis is placed on handheld programming to account for the increased importance of graphics on mobile devices, especially the iPhone and iPod touch.Example programs and source code can be downloaded from the book's CRC Press web page. 

  9. Review of advanced imaging techniques

    Yu Chen


    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  10. Perspectives on electronic medical records adoption: electronic medical records (EMR in outcomes research

    Dan Belletti


    Full Text Available Dan Belletti1, Christopher Zacker1, C Daniel Mullins21Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 2University of Maryland School of Pharmacy, Baltimore, MD, USAAbstract: Health information technology (HIT is engineered to promote improved quality and efficiency of care, and reduce medical errors. Healthcare organizations have made significant investments in HIT tools and the electronic medical record (EMR is a major technological advance. The Department of Veterans Affairs was one of the first large healthcare systems to fully implement EMR. The Veterans Health Information System and Technology Architecture (VistA began by providing an interface to review and update a patient’s medical record with its computerized patient record system. However, since the implementation of the VistA system there has not been an overall substantial adoption of EMR in the ambulatory or inpatient setting. In fact, only 23.9% of physicians were using EMRs in their office-based practices in 2005. A sample from the American Medical Association revealed that EMRs were available in an office setting to 17% of physicians in late 2007 and early 2008. Of these, 17% of physicians with EMR, only 4% were considered to be fully functional EMR systems. With the exception of some large aggregate EMR databases the slow adoption of EMR has limited its use in outcomes research. This paper reviews the literature and presents the current status of and forces influencing the adoption of EMR in the office-based practice, and identifies the benefits, limitations, and overall value of EMR in the conduct of outcomes research in the US.Keywords: electronic medical records, health information technology, medical errors

  11. Principles of modern radar advanced techniques

    Melvin, William


    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  12. Advanced Nanomeasuring Techniques for Surface Characterization

    Salah H. R. Ali


    Advanced precise and accurate nanomeasurement techniques play an important role to improve the function and quality of surface characterization. There are two basic approaches, the hard measuring techniques and the soft computing measuring techniques. The advanced soft measuring techniques include coordinate measuring machines, roundness testing facilities, surface roughness, interferometric methods, confocal optical microscopy, scanning probe microscopy, and computed tomography at the level ...

  13. Spatially-oriented EMR for Dental Surgery

    Wu, Min; Koenig, Lisa; Lynch, John; Wirtz, Thomas


    As digital dental images become widely available, a new Electronic MR system (EMR) will be critical for the success of applying new technology to dental care. This project is designed an image-based and spatially-oriented EMR for dental surgery. A new panoramic image-based annotation model will be developed, which will complement dental charting precisely locating specific spatial findings for each patient. A spatially-oriented, multilayered data model for dental EMR will be developed using G...

  14. Semantics driven approach for knowledge acquisition from EMRs.

    Perera, Sujan; Henson, Cory; Thirunarayan, Krishnaprasad; Sheth, Amit; Nair, Suhas


    Semantic computing technologies have matured to be applicable to many critical domains such as national security, life sciences, and health care. However, the key to their success is the availability of a rich domain knowledge base. The creation and refinement of domain knowledge bases pose difficult challenges. The existing knowledge bases in the health care domain are rich in taxonomic relationships, but they lack nontaxonomic (domain) relationships. In this paper, we describe a semiautomatic technique for enriching existing domain knowledge bases with causal relationships gleaned from Electronic Medical Records (EMR) data. We determine missing causal relationships between domain concepts by validating domain knowledge against EMR data sources and leveraging semantic-based techniques to derive plausible relationships that can rectify knowledge gaps. Our evaluation demonstrates that semantic techniques can be employed to improve the efficiency of knowledge acquisition. PMID:24058038

  15. Review of advanced imaging techniques

    Yu Chen; Chia-Pin Liang; Yang Liu; Fischer, Andrew H.; Parwani, Anil V.; Liron Pantanowitz


    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies") at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These...

  16. Advances in Procedural Techniques - Antegrade

    Wilson, William; Spratt, James C.


    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the “hybrid’ approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrogra...

  17. Advanced Metamorphic Techniques in Computer Viruses

    Beaucamps, Philippe


    Nowadays viruses use polymorphic techniques to mutate their code on each replication, thus evading detection by antiviruses. However detection by emulation can defeat simple polymorphism: thus metamorphic techniques are used which thoroughly change the viral code, even after decryption. We briefly detail this evolution of virus protection techniques against detection and then study the MetaPHOR virus, today's most advanced metamorphic virus.

  18. Advanced Spectroscopy Technique for Biomedicine

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  19. Advances of the IBIC technique

    The ion beam induced charge (IBIC) technique has been used for a wide variety of analytical applications in the study of semiconductor materials. This paper briefly reviews these uses and identifies those areas which require further development in order to facilitate the more widespread use of the IBIC method. Progress towards implementing these improvements is discussed. 14 refs., 1 fig

  20. Advances phase-lock techniques

    Crawford, James A


    From cellphones to micrprocessors, to GPS navigation, phase-lock techniques are utilized in most all modern electronic devices. This high-level book takes a systems-level perspective, rather than circuit-level, which differentiates it from other books in the field.

  1. Graph partitioning advance clustering technique

    Madhulatha, T Soni


    Clustering is a common technique for statistical data analysis, Clustering is the process of grouping the data into classes or clusters so that objects within a cluster have high similarity in comparison to one another, but are very dissimilar to objects in other clusters. Dissimilarities are assessed based on the attribute values describing the objects. Often, distance measures are used. Clustering is an unsupervised learning technique, where interesting patterns and structures can be found directly from very large data sets with little or none of the background knowledge. This paper also considers the partitioning of m-dimensional lattice graphs using Fiedler's approach, which requires the determination of the eigenvector belonging to the second smallest Eigenvalue of the Laplacian with K-means partitioning algorithm.

  2. Advanced atomic force microscopy techniques

    Thilo Glatzel; Hendrik Hölscher; Thomas Schimmel; Baykara, Mehmet Z; Schwarz, Udo D.; Ricardo Garcia


    Although its conceptual approach is as simple as the technique used in record players already introduced in the 19th century, the invention of the atomic force microscope (AFM) in 1986 by Binnig, Quate, and Gerber was a milestone for nanotechnology. The scanning tunneling microscope (STM), introduced some years earlier, had already achieved atomic resolution, but is limited to conductive surfaces. Since its operational principle is based on the detection of the forces acting between tip and s...

  3. GPU PRO 3 Advanced rendering techniques

    Engel, Wolfgang


    GPU Pro3, the third volume in the GPU Pro book series, offers practical tips and techniques for creating real-time graphics that are useful to beginners and seasoned game and graphics programmers alike. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Wessam Bahnassi, and Sebastien St-Laurent have once again brought together a high-quality collection of cutting-edge techniques for advanced GPU programming. With contributions by more than 50 experts, GPU Pro3: Advanced Rendering Techniques covers battle-tested tips and tricks for creating interesting geometry, realistic sha

  4. GPU Pro 4 advanced rendering techniques

    Engel, Wolfgang


    GPU Pro4: Advanced Rendering Techniques presents ready-to-use ideas and procedures that can help solve many of your day-to-day graphics programming challenges. Focusing on interactive media and games, the book covers up-to-date methods producing real-time graphics. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Sebastien St-Laurent have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book begins with discussions on the abi

  5. GPU Pro 5 advanced rendering techniques

    Engel, Wolfgang


    In GPU Pro5: Advanced Rendering Techniques, section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Marius Bjorge have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book covers rendering, lighting, effects in image space, mobile devices, 3D engine design, and compute. It explores rasterization of liquids, ray tracing of art assets that would otherwise be used in a rasterized engine, physically based area lights, volumetric light

  6. International acceptability of advanced safeguarding techniques

    There are active development programs now under way to significantly enhance the effectiveness of international safeguarding. Advanced safeguarding techniques now under development include new material accounting methods utilizing nondestructive assay techniques, more reliable surveillance instrumentation, tamper-resistant and tamper-indicating seals, new means of utilizing continuous human inspection, and systems that incorporate both passive and active use-denial technologies. Before these new safeguarding techniques are utilized, however, they must be acceptable to the international community. This will unquestionably result in a compromise between what is technically feasible and what is politically acceptable. This report highlights many of the elements common to advanced safeguarding techniques that impact directly upon international acceptability. The concept of acceptability is viewed from the perspective of three different groups: (1) those States seeking upgraded safeguards, (2) those States having safeguards imposed upon them, and (3) the International Atomic Energy Agency. In general, a more conducive climate exists today for the acceptance of advanced safeguarding techniques than at any period in the past; but the differences between advanced safeguards and those safeguards being employed today are so large that considerable opposition to their implementation can be expected

  7. Recent advances in optical encryption techniques

    YAN Aimin; HU Zhijuan; POON Tingchung


    Optical techniques have shown great potential in information security.This paper reviews the most recent technological and application advances of optical encryption of 2-D and 3-D objects.The main optical encryption techniques and encryption algorithms are summarized and illustrated in detail.Challenges and developments,which are the subject of the contributions to this focus paper,are also discussed,and prospects are predicted.

  8. In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state

    Elbaz, Yael; Steiner-Mordoch, Sonia; Danieli, Tsafi; Schuldiner, Shimon


    EmrE is a small multidrug transporter from Escherichia coli that provides a unique model for the study of polytopic membrane proteins. Here, we show its synthesis in a cell-free system in a fully functional form. The detergent-solubilized protein binds substrates with high affinity and, when reconstituted into proteoliposomes, transports substrate in a Δμ̃H+-dependent fashion. Here, we used the cell-free system to study the oligomeric properties of EmrE. EmrE functions as an oligomer, but the...

  9. Fundamentals and advanced techniques in derivatives hedging

    Bouchard, Bruno


    This book covers the theory of derivatives pricing and hedging as well as techniques used in mathematical finance. The authors use a top-down approach, starting with fundamentals before moving to applications, and present theoretical developments alongside various exercises, providing many examples of practical interest. A large spectrum of concepts and mathematical tools that are usually found in separate monographs are presented here. In addition to the no-arbitrage theory in full generality, this book also explores models and practical hedging and pricing issues. Fundamentals and Advanced Techniques in Derivatives Hedging further introduces advanced methods in probability and analysis, including Malliavin calculus and the theory of viscosity solutions, as well as the recent theory of stochastic targets and its use in risk management, making it the first textbook covering this topic. Graduate students in applied mathematics with an understanding of probability theory and stochastic calculus will find this b...

  10. Test Concept for Advanced Oxidation Techniques

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Mortensen, Lars

    as establishing the applicability of the proposed technique, the treatability tests also provide essential site-specific design parameters required for the full scale system, namely; oxidant demand, delivery method, kinetics etc. Drawing up field studies and laboratory data, this poster will discus the importance...... advanced on-site oxidation tests. The remediation techniques included are electrochemical oxidation, photochemical/photocatalytic oxidation, ozone, hydrogen peroxide, permanganate, and persulfate among others. A versatile construction of the mobile test unit makes it possible to combine different...

  11. Advanced magnetic resonance spectroscopy techniques and applications

    Cao, Peng; 曹鹏


    Magnetic resonance (MR) is a well-known non-invasive technique that provides spectra (by MR spectroscopy, MRS) and images (by magnetic resonance imaging, MRI) of the examined tissue with detailed metabolic, structural, and functional information. This doctoral work is focused on advanced methodologies and applications of MRS for probing cellular and molecular changes in vivo. A single-voxel diffusion-weighted (DW) MRS method was first developed for monitoring the size changes of intramyocellu...

  12. Advanced Techniques of Industrial Robot Programming

    Cheng, Frank Shaopeng


    Creating accurate robot points is an important task in robot programming. This chapter discussed the advanced techniques used in creating robot points for improving robot operation flexibility and reducing robot production downtime. The theory of robotics shows that an industrial robot system represents a robot point in both Cartesian coordinates and proper joint values. The concepts and procedures of designing accurate robot user tool frame UT[k] and robot user frame UF[i] are essential in t...

  13. ARDENT to develop advanced dosimetric techniques

    Antonella Del Rosso


    Earlier this week, the EU-supported Marie Curie training network ARDENT kicked off at a meeting held at CERN. The overall aim of the project is the development of advanced instrumentation for radiation dosimetry. The applications range from radiation measurements around particle accelerators, onboard commercial flights and in space, to the characterization of radioactive waste and medicine, where accurate dosimetry is of vital importance.   The ARDENT (Advanced Radiation Dosimetry European Network Training) project is both a research and a training programme, which aims at developing new dosimetric techniques while providing 15 Early-Stage Researchers (ESR) with state-of-the-art training. The project, coordinated by CERN, is funded by the European Union with a contribution of about 3.9 million euros over four years. The ARDENT initiative will focus on three main technologies: gas detectors, in particular Gas Electron Multipliers (GEM) and Tissue Equivalent Proportional Counters (TEPC); solid stat...

  14. Advanced flow MRI: emerging techniques and applications.

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K


    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  15. Mechanical Design Optimization Using Advanced Optimization Techniques

    Rao, R Venkata


    Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...

  16. Development for advanced materials and testing techniques

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  17. SU-E-I-97: Smart Auto-Planning Framework in An EMR Environment (SAFEE)

    Purpose: Our Radiation Oncology Department uses clinical practice guidelines for patient treatment, including normal tissue sparing and other dosimetric constraints. These practice guidelines were adapted from national guidelines, clinical trials, literature reviews, and practitioner's own experience. Modern treatment planning systems (TPS) have the capability of incorporating these practice guidelines to automatically create radiation therapy treatment plans with little human intervention. We are developing a software infrastructure to integrate clinical practice guidelines and radiation oncology electronic medical record (EMR) system into radiation therapy treatment planning system (TPS) for auto planning. Methods: Our Smart Auto-Planning Framework in an EMR environment (SAFEE) uses a software pipeline framework to integrate practice guidelines,EMR, and TPS together. The SAFEE system starts with retrieving diagnosis information and physician's prescription from the EMR system. After approval of contouring, SAFEE will automatically create plans according to our guidelines. Based on clinical objectives, SAFEE will automatically select treatment delivery techniques (such as, 3DRT/IMRT/VMAT) and optimize plans. When necessary, SAFEE will create multiple treatment plans with different combinations of parameters. SAFEE's pipeline structure makes it very flexible to integrate various techniques, such as, Model-Base Segmentation (MBS) and plan optimization algorithms, e.g., Multi-Criteria Optimization (MCO). In addition, SAFEE uses machine learning, data mining techniques, and an integrated database to create clinical knowledgebase and then answer clinical questions, such as, how to score plan quality or how volume overlap affects physicians' decision in beam and treatment technique selection. Results: In our institution, we use Varian Aria EMR system and RayStation TPS from RaySearch, whose ScriptService API allows control by external programs. These applications are

  18. In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state

    Elbaz, Yael; Steiner-Mordoch, Sonia; Danieli, Tsafi; Schuldiner, Shimon


    EmrE is a small multidrug transporter from Escherichia coli that provides a unique model for the study of polytopic membrane proteins. Here, we show its synthesis in a cell-free system in a fully functional form. The detergent-solubilized protein binds substrates with high affinity and, when reconstituted into proteoliposomes, transports substrate in a Δμ̃H+-dependent fashion. Here, we used the cell-free system to study the oligomeric properties of EmrE. EmrE functions as an oligomer, but the size of the functional oligomer has not been established unequivocally. Coexpression of two plasmids in the cell-free system allowed demonstration of functional complementation and pull-down experiments confirmed that the basic functional unit is the dimer. An additional interaction between dimers has been detected by using crosslinking between unique Cys residues. This finding implies the existence of a dimer of dimers. PMID:14755055


    Derroll David


    Full Text Available With the advanced technologies in the area of Engineering the World has become a smaller place and communication is in our finger tips. The multimedia sharing traffic through electronic media has increased tremendously in the recent years with the higher use of social networking sites. The statistics of amount of images uploaded in the internet per day is very huge. Digital Image security has become vulnerable due to increase transmission over non-secure channel and needs protection. Digital Images play a crucial role in medical and military images etc. and any tampering of them is a serious issue. Several approaches are introduced to authenticate multimedia images. These approaches can be categorized into fragile and semi-fragile watermarking, conventional cryptography and digital signatures based on the image content. The aim of this paper is to provide a comparative study and also a survey of emerging techniques for image authentication. The important requirements for an efficient image authentication system design are discussed along with the classification of image authentication into tamper detection, localization and reconstruction and robustness against image processing operation. Furthermore, the concept of image content based authentication is enlightened.

  20. Labview advanced programming techniques, second edition

    Bitter, Rick; Nawrocki, Matt


    Whether seeking deeper knowledge of LabVIEW®'s capabilities or striving to build enhanced VIs, professionals know they will find everything they need in LabVIEW: Advanced Programming Techniques. Now accompanied by LabVIEW 2011, this classic second edition, focusing on LabVIEW 8.0, delves deeply into the classic features that continue to make LabVIEW one of the most popular and widely used graphical programming environments across the engineering community. The authors review the front panel controls, the Standard State Machine template, drivers, the instrument I/O assistant, error handling functions, hyperthreading, and Express VIs. It covers the introduction of the Shared Variables function in LabVIEW 8.0 and explores the LabVIEW project view. The chapter on ActiveX includes discussion of the Microsoft™ .NET® framework and new examples of programming in LabVIEW using .NET. Numerous illustrations and step-by-step explanations provide hands-on guidance. Reviewing LabVIEW 8.0 and accompanied by the latest s...

  1. Physician buy-in for EMRs.

    Yackanicz, Lori; Kerr, Richard; Levick, Donald


    Implementing an EMR in an ambulatory practice requires intense workflow analysis, introduction of new technologies and significant cultural change for the physicians and physician champion. This paper will relate the experience at Lehigh Valley Health Network in the implementation of an ambulatory EMR and with the physician champions that were selected to assist the effort. The choice of a physician champion involves political considerations, variation in leadership and communication styles, and a cornucopia of personalities. Physician leadership has been shown to be a critical success factor for any successful technology implementation. An effective physician champion can help develop and promote a clear vision of an improved future, enlist the support of the physicians and staff, drive the process changes needs and manage the cultural change required. The experience with various types of physician champions will be discussed, including, the "reluctant leader", the "techie leader", the "whiny leader", and the "mature leader". Experiences with each type have resulted in a valuable, "lessons learned" summary. LVHN is a tertiary academic community medical center consisting of 950 beds and over 450 employed physicians. LVHN has been named to the Health and Hospital Network's 100 Top Wired and 25 Most Wireless Hospitals. PMID:20397333

  2. Perspectives on electronic medical records adoption: electronic medical records (EMR) in outcomes research

    Dan Belletti; Christopher Zacker; C Daniel Mullins


    Dan Belletti1, Christopher Zacker1, C Daniel Mullins21Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 2University of Maryland School of Pharmacy, Baltimore, MD, USAAbstract: Health information technology (HIT) is engineered to promote improved quality and efficiency of care, and reduce medical errors. Healthcare organizations have made significant investments in HIT tools and the electronic medical record (EMR) is a major technological advance. The Department of Veterans Affairs ...

  3. Tolerance of Listeria monocytogenes to Quaternary Ammonium Sanitizers Is Mediated by a Novel Efflux Pump Encoded by emrE.

    Kovacevic, Jovana; Ziegler, Jennifer; Wałecka-Zacharska, Ewa; Reimer, Aleisha; Kitts, David D; Gilmour, Matthew W


    A novel genomic island (LGI1) was discovered in Listeria monocytogenes isolates responsible for the deadliest listeriosis outbreak in Canada, in 2008. To investigate the functional role of LGI1, the outbreak strain 08-5578 was exposed to food chain-relevant stresses, and the expression of 16 LGI1 genes was measured. LGI1 genes with putative efflux (L. monocytogenes emrE [emrELm]), regulatory (lmo1851), and adhesion (sel1) functions were deleted, and the mutants were exposed to acid (HCl), cold (4°C), salt (10 to 20% NaCl), and quaternary ammonium-based sanitizers (QACs). Deletion of lmo1851 had no effect on the L. monocytogenes stress response, and deletion of sel1 did not influence Caco-2 and HeLa cell adherence/invasion, whereas deletion of emrE resulted in increased susceptibility to QACs (P monocytogenes to QACs via emrELm. Since QACs are commonly used in the food industry, there is a concern that L. monocytogenes strains possessing emrE will have an increased ability to survive this stress and thus to persist in food processing environments. PMID:26590290

  4. Bringing Advanced Computational Techniques to Energy Research

    Mitchell, Julie C


    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  5. Advances in China's Oil Reservoir Description Technique

    Mu Longxin; Huang Shiyan; Jia Ailin; Rong Jiashu


    @@ Oil reservoir description in China has undergone rapid development in recent years. Extensive research carried out at various oilfields and petroleum universities has resulted in the formulation of comprehensive oil reservoir description techniques and methods uniquely suited to the various development phases of China's continental facies. The new techniques have the following characteristics:

  6. Recent Advances in Beam Diagnostic Techniques

    Fiorito, R. B.


    We describe recent advances in diagnostics of the transverse phase space of charged particle beams. The emphasis of this paper is on the utilization of beam-based optical radiation for the precise measurement of the spatial distribution, divergence and emittance of relativistic charged particle beams. The properties and uses of incoherent as well as coherent optical transition, diffraction and synchrotron radiation for beam diagnosis are discussed.

  7. Advanced Measurement Techniques for Spray Investigations

    Bodoc, V.; Laurent, C; Biscos, Y.; Lavergne, G.


    International audience The objective of this paper is to present recent advances at Onera in the spray diagnostic and simulation fields. In the context of the reduction of engine pollutant emissions, the optimization of fuel spray injection represents phenomena of great fundamental and practical interest and is an important feature in the design of new prototypes of turbojet injection devices. The physics of spray formation, transport, evaporation and combustion are not completely understo...

  8. Advanced MRI techniques of the fetal brain

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities. (orig.)

  9. Design study of a bar-type EMR device

    Sun, Jian


    It is well known that extraordinary magnetoresistance (EMR) depends on the geometric parameters of the EMR device and the locations of the electrodes. In this paper, the performance of a bar-type EMR device is simulated with respect to the device geometry and electrode locations. The performance is evaluated with regards to the output sensitivity of the device, rather than the often analyzed EMR ratio, since it is more relevant than the EMR ratio for potential applications ranging from read heads to smart biomedical sensors. The results obtained with the finite element method show the dependence of the output sensitivity on the device geometry the placements of the electric contacts as well as the strength of the applied magnetic field in different configurations and allow finding the optimum parameters. Within the studied range of -1 to 1 T both IVVI and VIIV configurations show very similar behavior. For EMR sensors of high sensitivity, the results suggest that a simple two-contact device would provide the best performance replacing the conventional four-contact design. © 2012 IEEE.

  10. Advanced numerical techniques in core simulations

    The whole core simulations are one of the most CPU intensive calculations in reactor physics design and analyses. For a designer it is imperative to perform these calculations with good accuracy and in least time possible to try out various options. It is important for the code developers to use techniques involving minimum approximations and to use most recent numerical methods applied in tandem with huge computing power available today. In the presented paper, some of these methods are discussed. (author)

  11. Transport modeling and advanced computer techniques

    A workshop was held at the University of Texas in June 1988 to consider the current state of transport codes and whether improved user interfaces would make the codes more usable and accessible to the fusion community. Also considered was the possibility that a software standard could be devised to ease the exchange of routines between groups. It was noted that two of the major obstacles to exchanging routines now are the variety of geometrical representation and choices of units. While the workshop formulated no standards, it was generally agreed that good software engineering would aid in the exchange of routines, and that a continued exchange of ideas between groups would be worthwhile. It seems that before we begin to discuss software standards we should review the current state of computer technology --- both hardware and software to see what influence recent advances might have on our software goals. This is done in this paper

  12. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  13. Advance crew procedures development techniques: Procedures generation program requirements document

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.


    The Procedures Generation Program (PGP) is described as an automated crew procedures generation and performance monitoring system. Computer software requirements to be implemented in PGP for the Advanced Crew Procedures Development Techniques are outlined.

  14. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)


    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  15. Advances in the Application of Electrical Techniques for Site Remediation

    Electrical techniques in site remediation have advanced over the past 10–15 years as a result of the experience gained in their application to various types of waste and sites. The main advances have been in equipment design and construction combined with improvement in the understanding of the vitrification process. An overview is given of the advances together with an account of an application to a particular remediation problem. (author)

  16. Advanced analysis techniques for uranium assay

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples count rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.

  17. Advanced nuclear techniques for health and environment

    Full text: Particle accelerators were developed seventy years ago to investigate nuclear and atomic structure. Nuclear reactors were developed fifty years ago with the promise of producing low cost energy and for military purposes. In the last three decades, we have witnessed a major shift towards the use of high energy ions from accelerators and high quality neutron beams from reactors in the analysis of materials composition and structure for a broad range of scientific applications. Electrostatic accelerators have evolved into specialised tools for accelerator mass spectrometry (AMS) and ion beam analysis techniques. AMS is the technique of choice for the analysis of carbon-14 and other long-lived radionuclides in oceanography, hydrology, paleoclimatology and other environmental applications where isotope sensitivities of one part in 1015 are required. AMS is also applied in toxicology to study human exposure to chemicals and biomolecules at atto mole levels. Synchrotron accelerators fitted with insertion devices like wigglers and ondulators have revived interest in the field of hard x-rays microprobes. Recent developments are based on the use of Fresnel zone plates and tapered glass capillaries producing photon fluxes of 1010 photons per sec per μm2 that allow minimum detection limits below 10-15 g, an ideal microanalytical tool for biology and materials studies. Finally, high-flux neutrons produced by modern research reactors have unique properties for characterising the structure of matter in condensed states. In particular, small angle neutron scattering with cold neutrons is a versatile technique to determine microstructural features with dimensions in the range 10 to 1000 angstroms in biological, environmental and industrial samples. In conclusion, ions, synchrotron radiation and neutron beams are increasingly used to probe materials structure and composition on the microscopic scale, each with their own range of applications, advantages and disadvantages

  18. Recent advances in DNA sequencing techniques

    Singh, Rama Shankar


    Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

  19. Advances in DUS Test Technique for Coconut

    Ling GAO; Li XU; Difa LlU; Rulian ZHANG


    As great progress has been made in the field of protection of new plant varieties, more attention is paid to the standardization of DUS (Distinctness, Unifor-mity, and Stability) test procedure. For further studies of tropical plants as their im-portance in agriculture and germplasm, protection of coconut becomes more signifi-cant and thus DUS test technique of coconut is needed. ln this essay, we analyzed the status quo of the DUS test guidelines by lnternational Union for the Protection of New Varieties of Plants (UPOV proj.3) and national DUS test guidelines in Chi-na, and provided some suggestions or promotions for improving the guidelines of DUS test in coconut.

  20. Advanced techniques in digital mammographic images recognition

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  1. Diagnostics of nonlocal plasmas: advanced techniques

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir


    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  2. Factors impacting providers' perceptions regarding a midwestern university-based EMR.

    Whitten, Pamela; Buis, Lorraine; Mackert, Michael


    The potential for Information Technology (IT) to enhance the healthcare provision has long been recognized. One application of IT in healthcare, Electronic Medical Records (EMR) systems, has generated particular interest. Technical and structural barriers are often analyzed to understand EMR deployment. This study sought to examine cultural barriers to better explain the potential success and failure of EMRs. Successful EMR implementations are of interest to telemedicine researchers as they provide an IT infrastructure on which many telemedicine applications can be built. This investigation sought to understand the role and impact of individual and organizational issues on perceptions regarding EMRs by providers now employing an EMR system at Michigan State University (MSU). A 144-item survey was administered to 41 participants and descriptive statistics were employed for data analyses. Data indicated that providers reported mixed results regarding perceptions of EMRs at MSU. More than 45% of the respondents reported that they consider the MSU EMR system a bad choice. Yet, these same providers reported high levels of satisfaction across multiple aspects of system usability. Demographic variables did not emerge as highly correlated with perceptions of the EMR system at MSU. However, positive perceptions about EMRs in general were highly correlated with positive perceptions of the EMR system at MSU. Because results indicate that perceptions of the impacts of EMRs in general are more often correlated with perceptions of a specific EMR implementation than demographic variables, health organizations should focus their energies on EMR education and training. PMID:17848107

  3. Innovative Tools Advance Revolutionary Weld Technique


    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  4. Advanced cement solidification technique for spent resins

    In the past 40 years, the nuclear facilities of China Institute of Atomic Energy (CIAE) produced an amount of radioactive organic resins, a kind of problematic stream in nuclear industry. As these facilities were stepping into decommissioning, the treatment of the spent organic resins was put on the agenda. The various routes for spent resin treatment such as incineration, advanced oxidation, cement immobilization, etc, were considered. Each method has its advantages and disadvantages when applied in the treatment of spent resins. Since the quantities of the spent organic resins were relatively small and an experience with variety of cementation processes existed in CIAE, predominately for immobilization of the evaporated concentrates, the option of direct encapsulation of the spent organic resins into cementitious materials was adopted in 2003, as a preferred method from the point of view of saving the on the cost of the disposal. In order to realize the end goal, the main work consisted of: the survey of the source terms; cementitious material formula investigation; and the process development. This work, which was undertaken in the following years, is addressed as follows. Source terms of the spent resins in CIAE were to be made clear firstly. The results showed that a total of 24-29 m3 of spent resins was generated and accumulated in the past 40 years. Spent resin arose from two research reactors (heavy water reactor and light water reactor), and from the waste management plant. The amount of the spent resins from the heavy water reactor was 1m3 or so, but its radioactive concentration was high to ∼108-∼109Bq/m3. Two kinds of cements, ASC and OPC cement were selected next, as the solidifying matrix to be investigated. A mixture surface response approach was employed to design experiment and interpret data. In comparison, ASC was superior to OPC cement and it displayed preferable performances to encapsulate spent resins. The optimum formulation is:1) resin

  5. Study and Implementation of Advanced Neuroergonomic Techniques



    Full Text Available Research in the area of neuroergonomics has blossomed in recent years with the emergence of noninvasive techniques for monitoring human brain function that can be used to study various aspects of human behavior in relation to technology and work, including mental workload, visual attention, working memory, motor control, human-automation interaction, and adaptive automation. Consequently, this interdisciplinary field is concerned with investigations of the neural bases of human perception,cognition, and performance in relation to systems and technologies in the real world -- for example, in the use of computers and various other machines at home or in the workplace, and in operating vehiclessuch as aircraft, cars, trains, and ships. We will look at recent trends in functional magnetic resonance imaging (fMRI, with a special focus on the questions that have been addressed. This focus is particularly important for functional neuroimaging, whose contributions will be measured by the depth of the questions asked. The ever-increasing understanding of the brain and behavior at work in the real world, the development of theoretical underpinnings, and the relentless spread of facilitative technology in the West and abroad are inexorably broadening the substrates for this interdisciplinary area of research and practice. Neuroergonomics blends neuroscience and ergonomics to the mutual benefit of both fields, and extends the study of brain structure and function beyond the contrived laboratory settings often used in neuropsychological, psychophysical, cognitive science, and other neurosciencerelated fields. Neuroergonomics is providing rich observations of the brain and behavior at work, at home, in transportation, and in other everyday environments in human operators who see, hear, feel, attend, remember, decide, plan, act, move, or manipulate objects among other people and technology in diverse,real-world settings. The neuroergonomics approach is

  6. Advanced time-correlated single photon counting techniques

    Becker, Wolfgang


    Time-correlated single photon counting (TCSPC) is a remarkable technique for recording low-level light signals with extremely high precision and picosecond-time resolution. TCSPC has developed from an intrinsically time-consuming and one-dimensional technique into a fast, multi-dimensional technique to record light signals. So this reference and text describes how advanced TCSPC techniques work and demonstrates their application to time-resolved laser scanning microscopy, single molecule spectroscopy, photon correlation experiments, and diffuse optical tomography of biological tissue. It gives practical hints about constructing suitable optical systems, choosing and using detectors, detector safety, preamplifiers, and using the control features and optimising the operating conditions of TCSPC devices. Advanced TCSPC Techniques is an indispensable tool for everyone in research and development who is confronted with the task of recording low-intensity light signals in the picosecond and nanosecond range.

  7. [Advanced online search techniques and dedicated search engines for physicians].

    Nahum, Yoav


    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines. PMID:18357673

  8. Thin film characterisation by advanced X-ray diffraction techniques

    The Fifth School on X-ray diffraction from polycrystalline materials was devoted to thin film characterization by advanced X-ray diffraction techniques. Twenty contributions are contained in this volume; all twenty are recorded in the INIS Database. X-ray diffraction is known to be a powerful analytical tool for characterizing materials and understanding their structural features. The aim of these articles is to illustrate the fundamental contribution of modern diffraction techniques (grazing incidence, surface analysis, standing waves, etc.) to the characterization of thin and ultra-thin films, which have become important in many advanced technologies

  9. A Survey of Advanced Microwave Frequency Measurement Techniques

    Anand Swaroop Khare


    Full Text Available Microwaves are radio waves with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. The science of photonics includes the generation, emission, modulation, signal processing, switching, transmission, amplification, detection and sensing of light. Microwave photonics has been introduced for achieving ultra broadband signal processing. Instantaneous Frequency Measurement (IFM receivers play an important role in electronic warfare. Technologies used for signal processing, include conventional direct Radio Frequency (RF techniques, digital techniques, intermediate frequency (IF techniques and photonic techniques. Direct RF techniques suffer an increased loss, high dispersion, and unwanted radiation problems in high frequencies. The systems that use traditional RF techniques can be bulky and often lack the agility required to perform advanced signal processing in rapidly changing environments. In this paper we discussed a survey of Microwave Frequency Measurement Techniques. The microwaves techniques are categorized based upon different approaches. This paper provides the major advancement in the Microwave Frequency MeasurementTechniques research; using these approaches the features and categories in the surveyed existing work.

  10. Camtasia Studio 8 advanced editing and publishing techniques

    Dixon, Claire Broadley


    A practical guide packed with examples that will show you how to implement the different features of Camtasia Studio 8 and create professional looking projects.If you are familiar with Camtasia Studio and you want to experiment with more advanced techniques, then this is the guide you have been looking for!

  11. Advanced of X-ray fluorescence logging technique in China

    The paper discuses principle of X-ray fluorescence logging, and introduces advanced of X-ray fluorescence logging technique in China. By 2009, third generation XRF logging instrument has been developed in China, and good logging result has been obtained in Lala copper mine. (authors)

  12. EMRs and Clinical IS Implementation in Hospitals: A Statewide Survey

    Jaana, Mirou; Ward, Marcia M.; Bahensky, James A.


    Purpose: Present an overview of clinical information systems (IS) in hospitals and analyze the level of electronic medical records (EMR) implementation in relation to clinical IS capabilities and organizational characteristics. Methods: We developed a survey instrument measuring clinical IS implementation and classified clinical IS across 5 EMR…

  13. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  14. Nuclear techniques in the development of advanced ceramic technologies

    The importance of research, development and application of advanced materials is well understood by all developed and most developing countries. Amongst advanced materials, ceramics play a prominent role due to their specific chemical and physical properties. According to performance and importance, advanced ceramics can be classified as structural ceramics (mechanical function) and the so-called functional ceramics. In the latter class of materials, special electrical, chemical, thermal, magnetic and optical properties are of interest. The most valuable materials are multifunctional, for example, when structural ceramics combine beneficial mechanical properties with thermal and chemical sensitivity. Multifunctionality is characteristic of many composite materials (organic/inorganic composite). Additionally, properties of material can be changed by reducing its dimension (thin films, nanocrystalline ceramics). Nuclear techniques, found important applications in research and development of advanced ceramics. The use of neutron techniques has increased dramatically in recent years due to the development of advanced neutron sources, instrumentation and improved data analysis. Typical neutron techniques are neutron diffraction, neutron radiography, small angle neutron scattering and very small angle neutron scattering. Neutrons can penetrate deeply into most materials thus sampling their bulk properties. In determination of the crystal structure of HTSC, YBa2 Cu2O7, XRD located the heavy metal atoms, but failed in finding many of the oxygen atoms, while the neutron diffraction located all atoms equally well in the crystal structure. Neutron diffraction is also unique for the determination of the magnetic structure of materials since the neutrons themselves have a magnetic moment. Application of small angle neutron scattering for the determination of the size of hydrocarbon aggregates within the zeolite channels is illustrated. (author)

  15. Neural engineering from advanced biomaterials to 3D fabrication techniques

    Kaplan, David


    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  16. Recent Advances in Wireless Indoor Localization Techniques and System

    Zahid Farid


    Full Text Available The advances in localization based technologies and the increasing importance of ubiquitous computing and context-dependent information have led to a growing business interest in location-based applications and services. Today, most application requirements are locating or real-time tracking of physical belongings inside buildings accurately; thus, the demand for indoor localization services has become a key prerequisite in some markets. Moreover, indoor localization technologies address the inadequacy of global positioning system inside a closed environment, like buildings. Based on this, though, this paper aims to provide the reader with a review of the recent advances in wireless indoor localization techniques and system to deliver a better understanding of state-of-the-art technologies and motivate new research efforts in this promising field. For this purpose, existing wireless localization position system and location estimation schemes are reviewed, as we also compare the related techniques and systems along with a conclusion and future trends.

  17. Knowledge based systems advanced concepts, techniques and applications


    The field of knowledge-based systems (KBS) has expanded enormously during the last years, and many important techniques and tools are currently available. Applications of KBS range from medicine to engineering and aerospace.This book provides a selected set of state-of-the-art contributions that present advanced techniques, tools and applications. These contributions have been prepared by a group of eminent researchers and professionals in the field.The theoretical topics covered include: knowledge acquisition, machine learning, genetic algorithms, knowledge management and processing under unc

  18. An Effective Technique for Endoscopic Resection of Advanced Stage Angiofibroma

    Mojtaba Mohammadi Ardehali


    Full Text Available Introduction: In recent years, the surgical management of angiofibroma has been greatly influenced by the use of endoscopic techniques. However, large tumors that extend into difficult anatomic sites present major challenges for management by either endoscopy or an open-surgery approach which needs new technique for the complete en block resection.   Materials and Methods: In a prospective observational study we developed an endoscopic transnasal technique for the resection of angiofibroma via pushing and pulling the mass with 1/100000 soaked adrenalin tampons. Thirty two patients were treated using this endoscopic technique over 7 years. The mean follow-up period was 36 months. The main outcomes measured were tumor staging, average blood loss, complications, length of hospitalization, and residual and/or recurrence rate of the tumor.   Results: According to the Radkowski staging, 23,5, and 4 patients were at stage IIC, IIIA, and IIIB, respectively. Twenty five patients were operated on exclusively via transnasal endoscopy while 7 patients were managed using endoscopy-assisted open-surgery techniques. Mean blood loss in patients was 1261± 893 cc. The recurrence rate was 21.88% (7 cases at two years following surgery. Mean hospitalization time was 3.56 ± 0.6 days.   Conclusion:  Using this effective technique, endoscopic removal of more highly advanced angiofibroma is possible. Better visualization, less intraoperative blood loss, lower rates of complication and recurrence, and shorter hospitalization time are some of the advantages.

  19. 美国电子病历应用分级模型EMR Adoption Model简介%Brief Introduction to EMR Adoption Model of America

    舒婷; 梁铭会


    In this article, the author introduces the content and implementation of EMR Adoption Model that developedby US HIMSS Analytics since 2005. There are altogether eight levels in EMR Adoption Model, from level zero to seven.This American Model sets a very important example for the investigation and evaluation of EMR adoption in Chinesehospitals.%介绍了HIMSS Analytics自2005年起开发的电子病历应用分级模型EMR Adoption Model的主要内容,以及在美国和加拿大两国的实际应用情况.EMR Adoption Model-分为8个级别,从O级到7级.美国的电子病历应用分级模型对我国的电子病历应用分级考察来说,起到了很好的借鉴作用.

  20. Advanced Experimental Techniques for RF and DC Breakdown Research

    Kovermann, J W; Descoeudres, A; Lefèvre, T; Wuensch, W


    Advanced experimental techniques are being developed to analyze RF and DC breakdown events. First measurements with a specially built spectrometer have been made with a DC spark setup [1] at CERN and will soon be installed in the CLIC 30GHz accelerating structure test stand to allow comparison between DC and RF breakdown phenomena. This spectrometer is able to measure the light intensity development during a breakdown in narrow wavelength bands in the visible and near infrared range. This will give information about the important aspects of the breakdown including chemical elements, temperature, plasma parameters and possibly precursors of a breakdown.

  1. Creating motion graphics with After Effects essential and advanced techniques

    Meyer, Chris


    * 5th Edition of best-selling After Effects book by renowned authors Trish and Chris Meyer covers the important updates in After Effects CS4 and CS5 * Covers both essential and advanced techniques, from basic layer manipulation and animation through keying, motion tracking, and color management * Companion DVD is packed with project files for version CS5, source materials, and nearly 200 pages of bonus chapters Trish and Chris Meyer share over 17 years of hard-earned, real-world film and video production experience inside this critically acclaimed text. More than a step-by-step review of th

  2. Testing aspects of advanced coherent electron cooling technique

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.


    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  3. Advanced detection techniques for educational experiments in cosmic ray physics

    In this paper we describe several detection techniques that can be employed to study cosmic ray properties and carry out training activities at high school and undergraduate level. Some of the proposed devices and instrumentation are inherited from professional research experiments, while others were especially developed and marketed for educational cosmic ray experiments. The educational impact of experiments in cosmic ray physics in high-school or undergraduate curricula will be exploited through various examples, going from simple experiments carried out with small Geiger counters or scintillation devices to more advanced detection instrumentation which can offer starting points for not trivial research work. (authors)

  4. Advanced experimental and numerical techniques for cavitation erosion prediction

    Chahine, Georges; Franc, Jean-Pierre; Karimi, Ayat


    This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion, a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss), and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion (Gr...

  5. Recent Advances in Techniques for Hyperspectral Image Processing

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna


    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  6. Advanced analytical techniques for boiling water reactor chemistry control

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs

  7. Pitfalls and Security Measures for the Mobile EMR System in Medical Facilities

    Yeo, Kiho; Lee, Keehyuck; Kim, Jong-Min; Kim, Tae-Hun; Choi, Yong-Hoon; Jeong, Woo-Jin; Hwang, Hee; Baek, Rong Min; Yoo, Sooyoung


    Objectives The goal of this paper is to examine the security measures that should be reviewed by medical facilities that are trying to implement mobile Electronic Medical Record (EMR) systems designed for hospitals. Methods The study of the security requirements for a mobile EMR system is divided into legal considerations and sectional security investigations. Legal considerations were examined with regard to remote medical services, patients' personal information and EMR, medical devices, th...

  8. Attitudes of academic-based and community-based physicians regarding EMR use during outpatient encounters.

    Penrod, L. E.; Gadd, C. S.


    Physician satisfaction with EMR implementations has been reported in a number of recent studies. Most of these have reported on implementation of an EMR in a uniform practice setting rather than comparing satisfaction with implementation between settings. Our objectives in this study were to: 1) compare and contrast the attitudes of academic-based and community-based primary care physicians toward EMR use 6 months after implementation, and 2) investigate some of the factors influencing their ...

  9. Evaluation of a commercial electronic medical record (EMR) by primary care physicians 5 years after implementation.

    Kaelber, David; Greco, Peter; Cebul, Randall D


    Electronic medical records (EMRs) are gaining increasing prominence in the delivery of healthcare, although the focus is primarily on deploying EMRs. Relatively little research has studied the post-implementation of commercial EMRs. Here we present the results of a web-based survey of all the primary care clinicians in our university affiliated, tertiary care health system. The survey evaluated primary care clinician demographics, usage, and ideas for enhancement of the EpicCare EMR, five year after its initial deployment throughout our healthcare system. PMID:16779289

  10. EMR2 Receptor Ligation Modulates Cytokine Secretion Profiles and Cell Survival of Lipopolysaccharide-treated Neutrophils

    Tzu-Ying Chenee


    Full Text Available Background: Epidermal growth factor (EGF-like module-containing mucin-like hormonereceptor-like 2 (EMR2 is an adhesion G protein-coupled receptor previouslyshown to potentiate neutrophil responses to a number of inflammatory stimuli. EMR2 activation promotes neutrophil adhesion and migration, and augments production of reactive oxygen species and degranulation. In this study,we examined the effect of EMR2 ligation by its specific antibody on thecytokine expression profile and cell survival of lipopolysaccharide (LPS-treated neutrophils.Methods: Neutrophils were treated with LPS in the absence or presence of the antiEMR2 mAb, 2A1. Cell apoptosis was determined by flow cytometry analysisusing annexin-V and propidium iodide staining. Cell supernatants were collected for the detection of cytokine secretion by enzyme-linked immunosorbent assay.Results: We confirmed the specific priming effect of EMR2 on the response of neutrophils to formyl-Met-Leu-Phe by measuring the production of reactiveoxygen species. Furthermore, we showed that EMR2 ligation suppressesLPS-induced neutrophil survival. In addition, we demonstrated that ligationof EMR2 changes the secretion profiles of multiple cytokines, includinginterleukin (IL-6, IL-8, and monocyte chemotactic protein-1. Finally, higherlevels of EMR2 were detected on neutrophils of liver cirrhosis patients andwere correlated to a pro-apoptotic phenotype.Conclusion: Collectively, the present data indicate a functional role for EMR2 in themodulation of neutrophil activation during inflammation.

  11. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    Iliescu, Bogdan; Haskal, Ziv J., E-mail: [University of Maryland School of Medicine, Division of Vascular and Interventional Radiology (United States)


    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.

  12. Advanced techniques using the plant as indicator of irrigation management

    Barbara dos Santos Esteves


    Full Text Available The methodologies which are considered the most promising for irrigation management are those based on the analysis of the water status of the plants themselves. This justifies the study and improvement of indicators based on automatic and continuous measures to enable real-time monitoring data, as indices from sap flow, dendrometry and leaf turgor pressure techniques. The aim of this paper is to analyze such methodologies in order to demonstrate their principles, advantages and challenges. In conclusion, the methodologies analyzed still have many technological advances and challenges before being presented to the final user. The future research should work these tools for elaboration of technical indexes that allow their simplification, on the instrumental point of view, and the interpretation of their results.

  13. An atypical meningioma demystified and advanced magnetic resonance imaging techniques

    Despoina Voultsinou


    Full Text Available A 40-year-old male presented with visuospatial processing disturbances. Family history was free. Conventional and advanced magnetic resonance imaging (MRI studies were performed. On T2 and fluid attenuation inversion recovery images, an increased signal intensity extra-axial lesion was demonstrated. Post-contrast scans depicted homogeneous intense contrast medium enhancement. T2FNx01 star sequence was negative for hemorrhagic or calcification foci. Diffusion-weighted imaging findings were indicative of malignant behavior and magnetic resonance venography confirmed superior sagittal sinus infiltration. Increased cerebral blood volume values were observed and peri-lesional oedema on perfusion-weighted imaging was also demonstrated. The signal intensity-time curve depicted the characteristic meningioma pattern. Spectroscopy showed increased choline and alanine levels, but decreased N-acetyl-aspartate levels. Conventional MRI is adequate for typical types of meningiomas. However, the more atypical ones, in which even the histopathologic specimen may demonstrate characteristics of typical meningioma, could be easier diagnosed with advanced MRI techniques.

  14. Multiple advanced surgical techniques to treat acquired seminal duct obstruction

    Hong-Tao Jiang


    Full Text Available The aim of this study was to evaluate the outcomes of multiple advanced surgical treatments (i.e. microsurgery, laparoscopic surgery and endoscopic surgery for acquired obstructive azoospermia. We analyzed the surgical outcomes of 51 patients with suspected acquired obstructive azoospermia consecutively who enrolled at our center between January 2009 and May 2013. Modified vasoepididymostomy, laparoscopically assisted vasovasostomy and transurethral incision of the ejaculatory duct with holmium laser were chosen and performed based on the different obstruction sites. The mean postoperative follow-up time was 22 months (range: 9 months to 52 months. Semen analyses were initiated at four postoperative weeks, followed by trimonthly (months 3, 6, 9 and 12 semen analyses, until no sperm was found at 12 months or until pregnancy was achieved. Patency was defined as >10,000 sperm ml−1 of semen. The obstruction sites, postoperative patency and natural pregnancy rate were recorded. Of 51 patients, 47 underwent bilateral or unilateral surgical reconstruction; the other four patients were unable to be treated with surgical reconstruction because of pelvic vas or intratesticular tubules obstruction. The reconstruction rate was 92.2% (47/51, and the patency rate and natural pregnancy rate were 89.4% (42/47 and 38.1% (16/42, respectively. No severe complications were observed. Using multiple advanced surgical techniques, more extensive range of seminal duct obstruction was accessible and correctable; thus, a favorable patency and pregnancy rate can be achieved.

  15. Advances in the Rising Bubble Technique for discharge measurement

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk


    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of

  16. Burnout prediction using advance image analysis coal characterization techniques

    Edward Lester; Dave Watts; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering


    The link between petrographic composition and burnout has been investigated previously by the authors. However, these predictions were based on 'bulk' properties of the coal, including the proportion of each maceral or the reflectance of the macerals in the whole sample. Combustion studies relating burnout with microlithotype analysis, or similar, remain less common partly because the technique is more complex than maceral analysis. Despite this, it is likely that any burnout prediction based on petrographic characteristics will become more accurate if it includes information about the maceral associations and the size of each particle. Chars from 13 coals, 106-125 micron size fractions, were prepared using a Drop Tube Furnace (DTF) at 1300{degree}C and 200 millisecond and 1% Oxygen. These chars were then refired in the DTF at 1300{degree}C 5% oxygen and residence times of 200, 400 and 600 milliseconds. The progressive burnout of each char was compared with the characteristics of the initial coals. This paper presents an extension of previous studies in that it relates combustion behaviour to coals that have been characterized on a particle by particle basis using advanced image analysis techniques. 13 refs., 7 figs.

  17. Advanced remote decontamination techniques reduce costs and radiation doses

    A highly contaminated cell in the Pacific Northwest Laboratory's (PNL) 324 Building Radiochemical Engineering Facilities was recently decontaminated using a series of remote and contact techniques. The approach used in decontaminating the cell was very successful: It resulted in an 87% lower radiation dose to workers and a cost saving of 39% compared with a hands-on procedure used in another cell 2 yr earlier. Eight cycles of remote decontamination, combining use of an alkaline cleaner foam spray and pressurized water rinse, preceded manned entry. Initial radiation readings in cell C, averaging 50 rad/h, were first reduced to 2 and $1033/m2 of cell surface area. This paper is part of a larger effort sponsored by the U.S. Department of Energy's Surplus Facilities Management Program to clean out six radioactive cells and to dismantle PNL's pilot-scale radioactive liquid-fed ceramic melter. In this program, numerous other advanced techniques are being developed and are proving valuable, particularly in lowering radiation doses

  18. A review of hemorheology: Measuring techniques and recent advances

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.


    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  19. Applying advanced digital signal processing techniques in industrial radioisotopes applications

    Radioisotopes can be used to obtain signals or images in order to recognize the information inside the industrial systems. The main problems of using these techniques are the difficulty of identification of the obtained signals or images and the requirement of skilled experts for the interpretation process of the output data of these applications. Now, the interpretation of the output data from these applications is performed mainly manually, depending heavily on the skills and the experience of trained operators. This process is time consuming and the results typically suffer from inconsistency and errors. The objective of the thesis is to apply the advanced digital signal processing techniques for improving the treatment and the interpretation of the output data from the different Industrial Radioisotopes Applications (IRA). This thesis focuses on two IRA; the Residence Time Distribution (RTD) measurement and the defect inspection of welded pipes using a gamma source (gamma radiography). In RTD measurement application, this thesis presents methods for signal pre-processing and modeling of the RTD signals. Simulation results have been presented for two case studies. The first case study is a laboratory experiment for measuring the RTD in a water flow rig. The second case study is an experiment for measuring the RTD in a phosphate production unit. The thesis proposes an approach for RTD signal identification in the presence of noise. In this approach, after signal processing, the Mel Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from the processed signal or from one of its transforms. The Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) have been tested and compared for efficient feature extraction. Neural networks have been used for matching of the extracted features. Furthermore, the Power Density Spectrum (PDS) of the RTD signal has been also used instead of the discrete

  20. Analysis of the structure and function of EMRE in a yeast expression system.

    Yamamoto, Takenori; Yamagoshi, Ryohei; Harada, Kazuki; Kawano, Mayu; Minami, Naoki; Ido, Yusuke; Kuwahara, Kana; Fujita, Atsushi; Ozono, Mizune; Watanabe, Akira; Yamada, Akiko; Terada, Hiroshi; Shinohara, Yasuo


    The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel, and this complex is believed to consist of a pore-forming subunit, MCU, and its regulatory subunits. As yeast cells lack orthologues of the mammalian proteins, the yeast expression system for the mammalian calcium uniporter subunits is useful for investigating their functions. We here established a yeast expression system for the native-form mouse MCU and 4 other subunits. This expression system enabled us to precisely reconstitute the properties of the mammalian MCU complex in yeast mitochondria. Using this expression system, we analyzed the essential MCU regulator (EMRE), which is a key subunit for Ca(2+) uptake but whose functions and structure remain unclear. The topology of EMRE was revealed: its N- and C-termini projected into the matrix and the inter membrane space, respectively. The expression of EMRE alone was insufficient for Ca(2+) uptake; and co-expression of MCU with EMRE was necessary. EMRE was independent of the protein levels of other subunits, indicating that EMRE was not a protein-stabilizing factor. Deletion of acidic amino acids conserved in EMRE did not significantly affect Ca(2+) uptake; thus, EMRE did not have basic properties of ion channels such as ion-selectivity filtration and ion concentration. Meanwhile, EMRE closely interacted with the MCU on both sides of the inner membrane, and this interaction was essential for Ca(2+) uptake. This close interaction suggested that EMRE might be a structural factor for opening of the MCU-forming pore. PMID:27001609

  1. Removing baseline flame's spectrum by using advanced recovering spectrum techniques.

    Arias, Luis; Sbarbaro, Daniel; Torres, Sergio


    In this paper, a novel automated algorithm to estimate and remove the continuous baseline from measured flame spectra is proposed. The algorithm estimates the continuous background based on previous information obtained from a learning database of continuous flame spectra. Then, the discontinuous flame emission is calculated by subtracting the estimated continuous baseline from the measured spectrum. The key issue subtending the learning database is that the continuous flame emissions are predominant in the sooty regions, in absence of discontinuous radiation. The proposed algorithm was tested using natural gas and bio-oil flames spectra at different combustion conditions, and the goodness-of-fit coefficient (GFC) quality metric was used to quantify the performance in the estimation process. Additionally, the commonly used first derivative method (FDM) for baseline removing was applied to the same testing spectra in order to compare and to evaluate the proposed technique. The achieved results show that the proposed method is a very attractive tool for designing advanced combustion monitoring strategies of discontinuous emissions. PMID:22945158

  2. Development of advanced strain diagnostic techniques for reactor environments.

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,


    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  3. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Emilie Ringe


    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  4. Hybrid inverse lithography techniques for advanced hierarchical memories

    Xiao, Guangming; Hooker, Kevin; Irby, Dave; Zhang, Yunqiang; Ward, Brian; Cecil, Tom; Hall, Brett; Lee, Mindy; Kim, Dave; Lucas, Kevin


    Traditional segment-based model-based OPC methods have been the mainstream mask layout optimization techniques in volume production for memory and embedded memory devices for many device generations. These techniques have been continually optimized over time to meet the ever increasing difficulties of memory and memory periphery patterning. There are a range of difficult issues for patterning embedded memories successfully. These difficulties include the need for a very high level of symmetry and consistency (both within memory cells themselves and between cells) due to circuit effects such as noise margin requirements in SRAMs. Memory cells and access structures consume a large percentage of area in embedded devices so there is a very high return from shrinking the cell area as much as possible. This aggressive scaling leads to very difficult resolution, 2D CD control and process window requirements. Additionally, the range of interactions between mask synthesis corrections of neighboring areas can extend well beyond the size of the memory cell, making it difficult to fully take advantage of the inherent designed cell hierarchy in mask pattern optimization. This is especially true for non-traditional (i.e., less dependent on geometric rule) OPC/RET methods such as inverse lithography techniques (ILT) which inherently have more model-based decisions in their optimizations. New inverse methods such as model-based SRAF placement and ILT are, however, well known to have considerable benefits in finding flexible mask pattern solutions to improve process window, improve 2D CD control, and improve resolution in ultra-dense memory patterns. They also are known to reduce recipe complexity and provide native MRC compliant mask pattern solutions. Unfortunately, ILT is also known to be several times slower than traditional OPC methods due to the increased computational lithographic optimizations it performs. In this paper, we describe and present results for a methodology to

  5. Advanced techniques in actinide spectroscopy (ATAS 2014). Abstract book

    In 2012, The Institute of Resource Ecology at the Helmholtz-Zentrum Dresden Rossendorf organized the first international workshop of Advanced Techniques in Actinide Spectroscopy (ATAS). A very positive feedback and the wish for a continuation of the workshop were communicated from several participants to the scientific committee during the workshop and beyond. Today, the ATAS workshop has been obviously established as an international forum for the exchange of progress and new experiences on advanced spectroscopic techniques for international actinide and lanthanide research. In comparison to already established workshops and conferences on the field of radioecology, one main focus of ATAS is to generate synergistic effects and to improve the scientific discussion between spectroscopic experimentalists and theoreticians. The exchange of ideas in particular between experimental and theoretical applications in spectroscopy and the presentation of new analytical techniques are of special interest for many research institutions working on the improvement of transport models of toxic elements in the environment and the food chain as well as on reprocessing technologies of nuclear and non-nuclear waste. Spectroscopic studies in combination with theoretical modelling comprise the exploration of molecular mechanisms of complexation processes in aqueous or organic phases and of sorption reactions of the contaminants on mineral surfaces to obtain better process understanding on a molecular level. As a consequence, predictions of contaminant's migration behaviour will become more reliable and precise. This can improve the monitoring and removal of hazardous elements from the environment and hence, will assist strategies for remediation technologies and risk assessment. Particular emphasis is placed on the results of the first inter-laboratory Round-Robin test on actinide spectroscopy (RRT). The main goal of RRT is the comprehensive molecular analysis of the actinide complex


    Louis J. Durlofsky; Khalid Aziz


    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow

  7. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    Gruttadauria, Michelangelo


    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  8. Weldability and joining techniques for advanced fossil energy system alloys

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)


    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  9. Work-related psychosocial hazards among emergency medical responders (EMRS in Mansoura city

    Eman Omar Khashaba


    Full Text Available Purpose: This research was done to assess levels of psychosocial stress and related hazards [(burnout, depression, and posttraumatic stress disorder (PTSD] among emergency medical responders (EMRs. Materials and Methods: A comparative cross-sectional study was conducted upon (140 EMRs and a comparative group composed of (140 nonemergency workers. The groups studied were subjected to semistructured questionnaire including demographic data, survey for job stressors, Maslach burn out inventory (MBI, Beck depression inventory (BDI, and Davidson Trauma scale for PTSD. Results: The most severe acute stressors among EMRs were dealing with traumatic events (88.57%, followed by dealing with serious accidents (87.8% and young victims (87.14%. Chronic stressors were more commonly reported among EMRs with statistically significant differences (P 0.05. There was increased risk of PTSD for those who had higher stress levels from death of colleagues [odds ratio (OR [95% confidence interval (CI] = 2.2 (0.7-7.6, exposure to verbal or physical assault OR (95% CI = 1.6 (0.5-4.4 and dealing with psychiatric OR (95% CI 1.4 (0.53.7 (P > 0.05 Conclusion: EMRs group had more frequent exposure to both acute and chronic work-related stressors than comparative group. Also, EMRs had higher levels of EE, DP, and PTSD compared with comparative group. EMRs are in need for stress management program for prevention these of stress related hazards on health and work performance.

  10. Investigation of joining techniques for advanced austenitic alloys

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.


    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  11. Evaluation of Electronic Medical Record (EMR at large urban primary care sexual health centre.

    Christopher K Fairley

    Full Text Available OBJECTIVE: Despite substantial investment in Electronic Medical Record (EMR systems there has been little research to evaluate them. Our aim was to evaluate changes in efficiency and quality of services after the introduction of a purpose built EMR system, and to assess its acceptability by the doctors, nurses and patients using it. METHODS: We compared a nine month period before and after the introduction of an EMR system in a large sexual health service, audited a sample of records in both periods and undertook anonymous surveys of both staff and patients. RESULTS: There were 9,752 doctor consultations (in 5,512 consulting hours in the Paper Medical Record (PMR period and 9,145 doctor consultations (in 5,176 consulting hours in the EMR period eligible for inclusion in the analysis. There were 5% more consultations per hour seen by doctors in the EMR period compared to the PMR period (rate ratio = 1.05; 95% confidence interval, 1.02, 1.08 after adjusting for type of consultation. The qualitative evaluation of 300 records for each period showed no difference in quality (P>0.17. A survey of clinicians demonstrated that doctors and nurses preferred the EMR system (P<0.01 and a patient survey in each period showed no difference in satisfaction of their care (97% for PMR, 95% for EMR, P = 0.61. CONCLUSION: The introduction of an integrated EMR improved efficiency while maintaining the quality of the patient record. The EMR was popular with staff and was not associated with a decline in patient satisfaction in the clinical care provided.

  12. Work-related psychosocial hazards among emergency medical responders (EMRS) in Mansoura city

    Eman Omar Khashaba; Mona Abdel Fattah El-Sherif; Adel Al-Wehedy Ibrahim; Mostafa Ahmed Neatmatallah


    Purpose: This research was done to assess levels of psychosocial stress and related hazards [(burnout, depression, and posttraumatic stress disorder (PTSD)] among emergency medical responders (EMRs). Materials and Methods: A comparative cross-sectional study was conducted upon (140) EMRs and a comparative group composed of (140) nonemergency workers. The groups studied were subjected to semistructured questionnaire including demographic data, survey for job stressors, Maslach burn out invento...

  13. Validation of a nurses' views on electronic medical record systems (EMR) questionnaire in Turkish health system.

    Top, Mehmet; Yilmaz, Ali; Karabulut, Erdem; Otieno, Ochieng George; Saylam, Melahat; Bakır, Sevgi; Top, Sümbül


    Using of EMR in health services and organizations is steadily increasing for quality improvement, cost effectiveness and performance development. However, no validated national and international instruments (scale, questionnaire, index, and inventory) have assessed the effectiveness, satisfaction, health care savings, patient safety and cost minimization of electronic medical and health systems from the viewpoint and perceptions of nurses in Turkish health services. The perceptions of health care professionals especially physicians and nurses can contribute important information that may predict their acceptance of EMR and desired mode of use for EMR, evaluation performance of EMR thus guiding EMR implementation in hospitals. This article is a report of validation of the instrument to measure nurses' views on the use, quality and user satisfaction with EMR in Turkish health system. Items in the questionnaire were designed and obtained following O.G. Otieno, H. Toyama, M. Asonuma, M. Kanai-Pak, K. Naitoh's questionnaire about Use, Quality and User Satisfaction with EMR systems. Reliability and validity were examined and investigated in terms of responses from 487 nurses from one education hospital in Ankara, Turkey. This study was planned and conducted at a university hospital. The validation process was based on construct validity in this study. The response rate was 74.92%. Cronbach's alphas of three factors (use, quality and satisfaction of EMR) ranged from 0.78 to 0.94. Goodness-of-fit indices from the confirmatory factor analysis showed a reasonable model fit. Results of confirmatory factor analysis showed that χ2 statistic indicated significant result (p < 0.001) and model fit was acceptable according to relative χ2 statistic (χ2/df = 2.8 < 5). Further validation of the instrument could yield positive results in health systems in the different countries. Also further validation and reliability studies could be planned on physicians and other

  14. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko;


    optical shared memory supercomputer interconnect system switch fabric. In particular, we investigate the resilience of the aforementioned advanced modulation formats to the nonlinearities of semiconductor optical amplifiers, used as ON/OFF gates in the supercomputer optical switch fabric under study. In...

  15. Advancements in picosecond resolution time interval measurement techniques

    Dobos, L. [Tektronix, Inc., Beaverton, OR (United States)


    New, efficient measurement techniques are used to adequately characterize the actual performance of the new generation of programmable equivalent time sequential sampling oscilloscopes. These instruments provide new time interval measurement capabilities with increased repeatability and accuracy. Subpicosecond repeatability for risetime measurements of fast step generators (20 ps transition time) has been observed. A typical timebase related peak error of 3ps for short time interval measurements (up to tens of ns) has been shown. A brief introduction on the horizontal timebase error sources is followed by the description of the automated measurement techniques. Finally actual measurement results are shown using the described techniques.

  16. Advances in application and research of sterile insect irradiation techniques

    The sterile insect irradiation techniques have developed rapidly and achieved many results in the world in recent years. In practice, it has become one of the important measures to area-wide integrated pest management.Here the sterile insect irradiation techniques were reviewed, including their strategy, mechanism and quality control. How to break through the constraints in the practical application of the sterile insects was also discussed in this paper

  17. Optimisation techniques for advanced process supervision and control

    Abu-el-zeet, Z.H.


    This thesis is concerned with the use and development of optimisation techniques for process supervision and control. Two major areas related to optimisation are combined namely model predictive control and dynamic data reconciliation. A model predictive control scheme is implemented and used to simulate the control of a coal gasification plant. Static as well as dynamic data reconciliation techniques are developed and used in conjunction with steady-state optimisation and model predictive co...


    Mohammed naved Khan


    Academic and business researchers have for long debated on the most appropriate data analysis techniques that can be employed in conducting empirical researches in the domain of services marketing. On the basis of an exhaustive review of literature, the present paper attempts to provide a concise and schematic portrayal of generally followed data analysis techniques in the field of services quality literature. Collectively, the extant literature suggests that there is a growing trend among re...

  19. Advancement of neutron radiography technique in JRR-3M

    The JRR-3M thermal neutron radiography facility (JRR-3M TNRF) was completed in the JRR-3M of the Japan Atomic Energy Research Institute in 1991 and has been utilized as research tools for various kinds of research fields such as thermal hydraulic researches, agricultural researches, medical researches, archaeological researches and so on. High performance of the JRR-3M TNRF such as high neutron flux, high collimator ratio and wide radiographing field has enabled advanced researches and stimulated developments of advanced neutron radiography (NR) systems for higher spatial resolution and for higher temporal resolution. Static NR systems using neutron imaging plates or cooled CCD camera with high spatial resolution, a real-time NR system using a silicon intensifier target tube camera and a high-frame-rate NR system using a combination of an image intensifier and a high speed digital video camera with high temporal resolution have been developed to fill the requirements from researchers. (author)

  20. Advances in oriental document analysis and recognition techniques

    Lee, Seong-Whan


    In recent years, rapid progress has been made in computer processing of oriental languages, and the research developments in this area have resulted in tremendous changes in handwriting processing, printed oriental character recognition, document analysis and recognition, automatic input methodologies for oriental languages, etc. Advances in computer processing of oriental languages can also be seen in multimedia computing and the World Wide Web. Many of the results in those domains are presented in this book.

  1. Advanced Techniques in Pulmonary Function Test Analysis Interpretation and Diagnosis

    Gildea, T.J.; Bell, C. William


    The Pulmonary Functions Analysis and Diagnostic System is an advanced clinical processing system developed for use at the Pulmonary Division, Department of Medicine at the University of Nebraska Medical Center. The system generates comparative results and diagnostic impressions for a variety of routine and specialized pulmonary functions test data. Routine evaluation deals with static lung volumes, breathing mechanics, diffusing capacity, and blood gases while specialized tests include lung c...

  2. Recent Advances in Wireless Indoor Localization Techniques and System

    Farid, Zahid; Nordin, Rosdiadee; Ismail, Mahamod


    The advances in localization based technologies and the increasing importance of ubiquitous computing and context-dependent information have led to a growing business interest in location-based applications and services. Today, most application requirements are locating or real-time tracking of physical belongings inside buildings accurately; thus, the demand for indoor localization services has become a key prerequisite in some markets. Moreover, indoor localization technologies address the ...

  3. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    Clayton, Dwight A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barker, Alan M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santos-Villalobos, Hector J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Albright, Austin P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  4. Advanced characterization techniques for thin film solar cells

    Rau, Uwe; Kirchartz, Thomas


    Written by scientists from leading institutes in Germany, USA and Spain who use these techniques as the core of their scientific work and who have a precise idea of what is relevant for photovoltaic devices, this text contains concise and comprehensive lecture-like chapters on specific research methods.They focus on emerging, specialized techniques that are new to the field of photovoltaics yet have a proven relevance. However, since new methods need to be judged according to their implications for photovoltaic devices, a clear introductory chapter describes the basic physics of thin-film

  5. Advances in enantioselective separations using electromigration capillary techniques.

    Preinerstorfer, Beatrix; Lämmerhofer, Michael; Lindner, Wolfgang


    The most recent literature dealing with enantioselective separations and stereoselective analyses of chiral entities including especially pharmaceuticals, phytochemicals, biochemicals, agrochemicals, fine chemicals and specific test compounds by electromigration techniques such as CE, MEKC, MEEKC, CEC and microchip CE is reviewed. The review covers literature from 2007 until mid-2008, i.e. studies that were published after the appearance of the latest review article on that topic in Electrophoresis by Gübitz and Schmid (see Electrophoresis 2007, 28, 114). Particular attention is given to the description of new chiral selector systems, studies on separation mechanisms and applications in the above-specified electromigration techniques. PMID:19107703

  6. AC electric motors control advanced design techniques and applications

    Giri, Fouad


    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  7. Benefits of advanced software techniques for mission planning systems

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.


    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.


    Mohammed naved Khan


    Full Text Available Academic and business researchers have for long debated on the most appropriate data analysis techniques that can be employed in conducting empirical researches in the domain of services marketing. On the basis of an exhaustive review of literature, the present paper attempts to provide a concise and schematic portrayal of generally followed data analysis techniques in the field of services quality literature. Collectively, the extant literature suggests that there is a growing trend among researchers to rely on higher order multivariate techniques viz. confirmatory factor analysis, structural equation modeling etc. to generate and analyze complex models, while at times ignoring very basic and yet powerful procedures such as mean, t-Test, ANOVA and correlation. The marked shift in orientation of researchers towards using sophisticated analytical techniques can largely beattributed to the competition within the community of researchers in social sciences in general and those working in the area of service quality in particular as also growing demands of reviewers ofjournals. From a pragmatic viewpoint, it is expected that the paper will serve as a useful source of information and provide deeper insights to academic researchers, consultants, and practitionersinterested in modelling patterns of service quality and arriving at optimal solutions to increasingly complex management problems.

  9. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    Saricayir, Hakan; Uce, Musa; Koca, Atif


    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  10. Single Molecule Techniques for Advanced in situ Hybridization

    Hollars, C W; Stubbs, L; Carlson, K; Lu, X; Wehri, E


    One of the most significant achievements of modern science is completion of the human genome sequence, completed in the year 2000. Despite this monumental accomplishment, researchers have only begun to understand the relationships between this three-billion-nucleotide genetic code and the regulation and control of gene and protein expression within each of the millions of different types of highly specialized cells. Several methodologies have been developed for the analysis of gene and protein expression in situ, yet despite these advancements, the pace of such analyses is extremely limited. Because information regarding the precise timing and location of gene expression is a crucial component in the discovery of new pharmacological agents for the treatment of disease, there is an enormous incentive to develop technologies that accelerate the analytical process. Here we report on the use of plasmon resonant particles as advanced probes for in situ hybridization. These probes are used for the detection of low levels of gene-probe response and demonstrate a detection method that enables precise, simultaneous localization within a cell of the points of expression of multiple genes or proteins in a single sample.

  11. Optical Imaging and Microscopy Techniques and Advanced Systems

    Török, Peter


    This text on contemporary optical systems is intended for optical researchers and engineers, graduate students and optical microscopists in the biological and biomedical sciences. This second edition contains two completely new chapters. In addition most of the chapters from the first edition have been revised and updated. The book consists of three parts: The first discusses high-aperture optical systems, which form the backbone of optical microscopes. An example is a chapter new in the second edition on the emerging field of high numerical aperture diffractive lenses which seems to have particular promise in improving the correction of lenses. In this part particular attention is paid to optical data storage. The second part is on the use of non-linear optical techniques, including nonlinear optical excitation (total internal reflection fluorescence, second and third harmonic generation and two photon microscopy) and non-linear spectroscopy (CARS). The final part of the book presents miscellaneous technique...

  12. Characterization of PTFE Using Advanced Thermal Analysis Techniques

    Blumm, J.; Lindemann, A.; Meyer, M.; Strasser, C.


    Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer used in numerous industrial applications. It is often referred to by its trademark name, Teflon. Thermal characterization of a PTFE material was carried out using various thermal analysis and thermophysical properties test techniques. The transformation energetics and specific heat were measured employing differential scanning calorimetry. The thermal expansion and the density changes were determined employing pushrod dilatometry. The viscoelastic properties (storage and loss modulus) were analyzed using dynamic mechanical analysis. The thermal diffusivity was measured using the laser flash technique. Combining thermal diffusivity data with specific heat and density allows calculation of the thermal conductivity of the polymer. Measurements were carried out from - 125 °C up to 150 °C. Additionally, measurements of the mechanical properties were carried out down to - 170 °C. The specific heat tests were conducted into the fully molten regions up to 370 °C.

  13. Similarity search and data mining techniques for advanced database systems.

    Pryakhin, Alexey


    Modern automated methods for measurement, collection, and analysis of data in industry and science are providing more and more data with drastically increasing structure complexity. On the one hand, this growing complexity is justified by the need for a richer and more precise description of real-world objects, on the other hand it is justified by the rapid progress in measurement and analysis techniques that allow the user a versatile exploration of objects. In order to manage the huge volum...

  14. Advanced computer graphics techniques as applied to the nuclear industry

    Computer graphics is a rapidly advancing technological area in computer science. This is being motivated by increased hardware capability coupled with reduced hardware costs. This paper will cover six topics in computer graphics, with examples forecasting how each of these capabilities could be used in the nuclear industry. These topics are: (1) Image Realism with Surfaces and Transparency; (2) Computer Graphics Motion; (3) Graphics Resolution Issues and Examples; (4) Iconic Interaction; (5) Graphic Workstations; and (6) Data Fusion - illustrating data coming from numerous sources, for display through high dimensional, greater than 3-D, graphics. All topics will be discussed using extensive examples with slides, video tapes, and movies. Illustrations have been omitted from the paper due to the complexity of color reproduction. 11 refs., 2 figs., 3 tabs

  15. Advanced materials and techniques for fiber-optic sensing

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. (author)

  16. Advanced materials and techniques for fibre-optic sensing

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company – a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon

  17. Advanced materials and techniques for fibre-optic sensing

    Henderson, Philip J.


    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  18. Advances in Computational Techniques to Study GPCR-Ligand Recognition.

    Ciancetta, Antonella; Sabbadin, Davide; Federico, Stephanie; Spalluto, Giampiero; Moro, Stefano


    G-protein-coupled receptors (GPCRs) are among the most intensely investigated drug targets. The recent revolutions in protein engineering and molecular modeling algorithms have overturned the research paradigm in the GPCR field. While the numerous ligand-bound X-ray structures determined have provided invaluable insights into GPCR structure and function, the development of algorithms exploiting graphics processing units (GPUs) has made the simulation of GPCRs in explicit lipid-water environments feasible within reasonable computation times. In this review we present a survey of the recent advances in structure-based drug design approaches with a particular emphasis on the elucidation of the ligand recognition process in class A GPCRs by means of membrane molecular dynamics (MD) simulations. PMID:26538318

  19. Contributions to the course and workshop on basic and advanced fusion plasmas diagnostic techniques

    Three papers read at the Course and workshop on basic and advanced fusion plasmas diagnostic techniques held in Varenna from 3 to 13 September 1986 and prepared by searchers of Fusion Department of ENEA are reported

  20. Advanced CFD and radiotracer techniques - a complementary technology - for industrial multiphase applications

    This paper gives an overview of the advances in development and use of computational fluid dynamics (CFD) models and codes for industrial, particularly multiphase processing applications. Experimental needs for validation and improvement of CFD models and soft wares are highlighted. Integration of advanced CFD modelling with radioisotopes or tracer techniques as a complementary technology for future research and industrial applications is discussed. (author)

  1. Handbook of microwave component measurements with advanced VNA techniques

    Dunsmore, Joel P


    This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure

  2. Advances in PEM fuel cells with CFD techniques

    Robalinho, Eric; Cunha, Edgar Ferrari da; Zararya, Ahmed; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], Email:; Cekinski, Efrain [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)


    This paper presents some applications of computational fluid dynamics techniques in the optimization of Proton Exchange Membrane Fuel Cell (PEMFC) designs. The results concern: modeling of gas distribution channels, the study for both porous anode and cathode and the three-dimensional modeling of a partial geometry layer containing catalytic Gas Diffusion Layers (GDL) and membrane. Numerical results of the simulations of graphite plates flow channels, using ethanol as fuel, are also presented. Some experimental results are compared to the corresponding numerical ones for several cases, demonstrating the importance and usefulness of this computational tool. (author)

  3. Advanced terahertz techniques for quality control and counterfeit detection

    Ahi, Kiarash; Anwar, Mehdi


    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  4. Performance assessment of EMR systems based on post-relational database.

    Yu, Hai-Yan; Li, Jing-Song; Zhang, Xiao-Guang; Tian, Yu; Suzuki, Muneou; Araki, Kenji


    Post-relational databases provide high performance and are currently widely used in American hospitals. As few hospital information systems (HIS) in either China or Japan are based on post-relational databases, here we introduce a new-generation electronic medical records (EMR) system called Hygeia, which was developed with the post-relational database Caché and the latest platform Ensemble. Utilizing the benefits of a post-relational database, Hygeia is equipped with an "integration" feature that allows all the system users to access data-with a fast response time-anywhere and at anytime. Performance tests of databases in EMR systems were implemented in both China and Japan. First, a comparison test was conducted between a post-relational database, Caché, and a relational database, Oracle, embedded in the EMR systems of a medium-sized first-class hospital in China. Second, a user terminal test was done on the EMR system Izanami, which is based on the identical database Caché and operates efficiently at the Miyazaki University Hospital in Japan. The results proved that the post-relational database Caché works faster than the relational database Oracle and showed perfect performance in the real-time EMR system. PMID:21503741

  5. Inward open characterization of EmrD transporter with molecular dynamics simulation.

    Tan, Xianwei; Wang, Boxiong


    EmrD is a member of the multidrug resistance exporter family. Up to now, little is known about the structural dynamics that underline the function of the EmrD protein in inward-facing open state and how the EmrD transits from an occluded state to an inward open state. For the first time the article applied the AT simulation to investigate the membrane transporter protein EmrD, and described the dynamic features of the whole protein, the domain, the helices, and the amino acid residues during an inward-open process from its occluded state. The gradual inward-open process is different from the current model of rigid-body domain motion in alternating-access mechanism. Simulation results show that the EmrD inward-open conformational fluctuation propagates from a C-terminal domain to an N-terminal domain via the linker region during the transition from its occluded state. The conformational fluctuation of the C-terminal domain is larger than that of the N-terminal domain. In addition, it is observed that the helices exposed to the surrounding membrane show a higher level of flexibility than the other regions, and the protonated E227 plays a key role in the transition from the occluded to the open state. PMID:27055595

  6. Advanced spherical near-field antenna measurement techniques

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav


    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities...... and research carried out at the facility are presented in the article. Since 2004 several antenna test facility comparison campaigns were carried out between a number of European antenna measurement facilities. The first campaigns laid the foundation for the later comparisons in providing experience...... and showing the capabilities of each participating facility. A special campaign was carried out with the aim of establishing a reference radiation pattern for the DTU-ESA VAST-12 antenna. The on-ground calibration of the MIRAS space radiometer for ESA's SMOS mission was carried out at the DTU...

  7. Advanced Laser Techniques for Filler-Induced Complications

    Cassuto, D.; Marangoni, O.; Santis, G. De;


    BACKGROUND The increasing use of injectable fillers has been increasing the occurrence of disfiguring anaerobic infection or granulomas. This study presents two types of laser-assisted evacuation of filler material and inflammatory and necrotic tissue that were used to treat disfiguring facial...... nodules after different types of gel fillers. MATERIALS AND METHODS Infectious lesions after hydrogels were drained using a lithium triborate laser at 532 nm, with subsequent removal of infected gel and pus (laser assisted evacuation). Granuloma after gels containing microparticles were treated using...... an 808-nm diode laser using intralesional laser technique. The latter melted and liquefied the organic and synthetic components of the granulomas, facilitating subsequent evacuation. Both lasers had an easily controllable thin laser beam, which enabled the physician to control tissue damage and minimize...

  8. Advanced Infusion Techniques with 3-D Printed Tooling

    Nuttall, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Elliott, Amy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanning and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products (MVP) is

  9. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    Redding, Chip


    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  10. Advanced knowledge engineering techniques with applications to electric power systems

    Liu, C.-C.; Marathe, H.; Ma, T.-K.; Rosenwald, G.


    This chapter starts with a brief overview of the state-of-the-art of expert system applications to electric power systems. Several knowledge engineering techniques that were motivated by power system applications are reviewed: (1) identification of relations among rules or chains of rules, (2) estimation of the worst case processing time of rule-based systems, and (3) the equivalence class method for validation and verification of rule-based systems. The first issue, relation checking, is considered the most practical among the three and, therefore, the subject is discussed extensively in this chapter. A general relation checking algorithm developed at the University of Washington is described. A representation of rule-based systems in the attribute space is proposed. This representation is used to define several relations among rules. The relations defined are cause-effect, mutual exclusion, redundancy, conflict, subsumption and implication. A relation between a rule and a chain of rules is either complete, i.e. the relation holds for all instantiations of the rules, or partial, i.e. the relation holds only for some instantiations of the rules. An algorithm to detect relations between a new rule (to be added to the rule base) and rules in the rule base is developed. Example applications of this algorithm to rule-based systems are provided. (Author)

  11. Simulation of an advanced techniques of ion propulsion Rocket system

    Bakkiyaraj, R.


    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  12. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro


    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  13. Structural level characterization of base oils using advanced analytical techniques

    Hourani, Nadim


    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  14. Advances in high-resolution imaging – techniques for three-dimensional imaging of cellular structures

    Lidke, Diane S.; Lidke, Keith A.


    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below th...

  15. Management of metastatic malignant thymoma with advanced radiation and chemotherapy techniques: report of a rare case

    D’Andrea, Mark A; Reddy, G. Kesava


    Malignant thymomas are rare epithelial neoplasms of the anterior superior mediastinum that are typically invasive in nature and have a higher risk of relapse that may ultimately lead to death. Here we report a case of an advanced malignant thymoma that was successfully treated with neoadjuvant chemotherapy followed by surgical resection and subsequently with advanced and novel radiation therapy techniques. A 65-year-old male was diagnosed with a stage IV malignant thymoma with multiple metast...

  16. Mac OS X Snow Leopard for Power Users Advanced Capabilities and Techniques

    Granneman, Scott


    Mac OS X Snow Leopard for Power Users: Advanced Capabilities and Techniques is for Mac OS X users who want to go beyond the obvious, the standard, and the easy. If want to dig deeper into Mac OS X and maximize your skills and productivity using the world's slickest and most elegant operating system, then this is the book for you. Written by Scott Granneman, an experienced teacher, developer, and consultant, Mac OS X for Power Users helps you push Mac OS X to the max, unveiling advanced techniques and options that you may have not known even existed. Create custom workflows and apps with Automa

  17. Frontier of Advanced Accelerator Applications and Medical Treatments Using Nuclear Techniques. Abstract

    To address the challenges of research-based practice, developing advanced accelerator applications, and medical treatments using nuclear tecniqoes, researchers from Rajamakala University of Technology Lanna, Office of Atoms for Peace, and Chiang Mai University have joined in hosting this conference. Nuclear medicine, amedical specialty, diagnoses and treats diseases in a safe and painless way. Nuclear techniques can determine medical information that may otherwise be unavailable, require surgery, or necessitate more expensive and invasive diagnostic tests. Advance in nuclear techniques also offer the potential to detect abnormalities at earlier stages, leasding to earlier treatment and a more successful prognosis.

  18. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro


    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cel...

  19. Advanced signal processing techniques for interference removal in Satellite Navigation Systems

    Musumeci, Luciano


    This thesis investigates the use of innovative interference detection and mitigation techniques for GNSS based applications. The main purpose of this thesis is the development of advanced signal processing techniques outperforming current interference mitigation algorithms already implemented in off-the-shelf GNSS receivers. State-of-the-art interference countermeasures already investigated in literature, which process the signal at the ADC output, provide interference components suppression ...

  20. Characterization techniques for semiconductors and nanostructures: a review of recent advances

    Acher, Olivier


    Optical spectroscopy techniques are widely used for the characterization of semiconductors and nanostructures. Confocal Raman microscopy is useful to retrieve chemical and molecular information at the ultimate submicrometer resolution of optical microscopy. Fast imaging capabilities, 3D confocal ability, and multiple excitation wavelengths, have increased the power of the technique while making it simpler to use for material scientists. Recently, the development of the Tip Enhanced Raman Spectroscopy (TERS) has opened the way to the use of Raman information at nanoscale, by combining the resolution of scanning probe microscopy and chemical selectivity of Raman spectroscopy. Significant advances have been reported in the field of profiling the atomic composition of multilayers, using the Glow Discharge Optical Emission Spectroscopy technique, including real-time determination of etched depth by interferometry. This allows the construction of precise atomic profiles of sophisticated multilayers with a few nm resolution. Ellipsometry is another widely used technique to determine the profile of multilayers, and recent development have provided enhanced spatial resolution useful for the investigation of patterned materials. In addition to the advances of the different characterization techniques, the capability to observe the same regions at micrometer scale at different stages of material elaboration, or with different instrument, is becoming a critical issue. Several advances have been made to allow precise re-localization and co-localization of observation with different complementary characterization techniques.

  1. PREFACE: E-MRS 2012 Spring Meeting, Symposium M: More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics

    Wenger, Christian; Fompeyrine, Jean; Vallée, Christophe; Locquet, Jean-Pierre


    More than Moore explores a new area of Silicon based microelectronics, which reaches beyond the boundaries of conventional semiconductor applications. Creating new functionality to semiconductor circuits, More than Moore focuses on motivating new technological possibilities. In the past decades, the main stream of microelectronics progresses was mainly powered by Moore's law, with two focused development arenas, namely, IC miniaturization down to nano scale, and SoC based system integration. While the microelectronics community continues to invent new solutions around the world to keep Moore's law alive, there is increasing momentum for the development of 'More than Moore' technologies which are based on silicon technologies but do not simply scale with Moore's law. Typical examples are RF, Power/HV, Passives, Sensor/Actuator/MEMS or Bio-chips. The More than Moore strategy is driven by the increasing social needs for high level heterogeneous system integration including non-digital functions, the necessity to speed up innovative product creation and to broaden the product portfolio of wafer fabs, and the limiting cost and time factors of advanced SoC development. It is believed that More than Moore will add value to society on top of and beyond advanced CMOS with fast increasing marketing potentials. Important key challenges for the realization of the 'More than Moore' strategy are: perspective materials for future THz devices materials systems for embedded sensors and actuators perspective materials for epitaxial approaches material systems for embedded innovative memory technologies development of new materials with customized characteristics The Hot topics covered by the symposium M (More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics) at E-MRS 2012 Spring Meeting, 14-18 May 2012 have been: development of functional ceramics thin films New dielectric materials for advanced microelectronics bio- and CMOS compatible

  2. Laser rapid prototyping techniques for fabrication of advanced implants and scaffolds for tissue engineering

    Popov; V.; K.


    Rapid prototyping (RP) techniques become more and more extensively used instrument for numerous biomedical applications ranging from 3-D biomodels design to fabrication of custom-designed implants and scaffolds for tissue engineering. In this paper we present the results of our development of advanced Laser Stereolithography (LS) and new Surface Selective Laser Sintering (SSLS) methodologies for these purposes.……

  3. Laser rapid prototyping techniques for fabrication of advanced implants and scaffolds for tissue engineering


    @@ Rapid prototyping (RP) techniques become more and more extensively used instrument for numerous biomedical applications ranging from 3-D biomodels design to fabrication of custom-designed implants and scaffolds for tissue engineering. In this paper we present the results of our development of advanced Laser Stereolithography (LS) and new Surface Selective Laser Sintering (SSLS) methodologies for these purposes.

  4. Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    We describe an advanced gamma-ray spectrometer that is currently in development. It will obtain a sensitivity of -4ph/cm-2-sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging

  5. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments

  6. The role of the electronic medical record (EMR in care delivery development in developing countries: a systematic review

    Faustine Williams


    Conclusions The potential of EMR systems to transform medical care practice has been recognised over the past decades, including the enhancement of healthcare delivery and facilitation of decisionmaking processes. Some benefits of an EMR system include accurate medication lists, legible notes and prescriptions and immediately available charts. In spite of challenges facing the developing world such as lack of human expertise and financial resource, most studies have shown how feasible it could be with support from developed nations to design and implement an EMR system that fits into this environment.

  7. Tibial crest fracture correction after tibial tuberosity advancement (TTA using a modified TTA technique

    Tiago Carmagnani Prada


    Full Text Available Corrective osteotomies are challenging techniques that require specialized training and acquisition of specific materials. Nevertheless, they have been increasingly studied and used in clinical routine in the world. Several variations on the model and the application technique have been developed and refined in search of the improvement of surgical techniques and development of implants more affordable to purchase. The tibial tuberosity advancement (TTA consists on stabilization of tibial plateau perpendicular to the patellar tendon through the tibial tuberosity advancement. Our goal is to report a surgical complication of fracture of the tibial crest after TTA procedure. A dog with a confirmed diagnosis of rupture of the cranial cruciate ligament (CCLR was operated using conventional technique of TTA. After 3 days of surgery, the same animal had a fracture of the proximal tibial crest. The animal was sent back to surgery and was used a variation of TTA technique, with autologous iliac wing and three cortical screws. This variation of the technique was able to replace the original technique successfully.

  8. Review of Adaptive Cell Selection Techniques in LTE-Advanced Heterogeneous Networks

    Gadam, M. A.; Ahmed, Maryam Abdulazeez; Ng, Chee Kyun; Nordin, Nor Kamariah; Sali, Aduwati; Hashim, Fazirulhisyam


    Poor cell selection is the main challenge in Picocell (PeNB) deployment in Long Term Evolution- (LTE-) Advanced heterogeneous networks (HetNets) because it results in load imbalance and intercell interference. A selection technique based on cell range extension (CRE) has been proposed for LTE-Advanced HetNets to extend the coverage of PeNBs for load balancing. However, poor CRE bias setting in cell selection inhibits the attainment of desired cell splitting gains. By contrast, a cell selectio...

  9. Development of advanced techniques for life management and inspection of advanced heavy water reactor (AWHR) coolant channel components

    Operating life of pressure tubes of Pressurized Heavy Water Reactor (PHWR) is limited due to the presence of various issues associated with the material like hydrogen pick up, delayed hydride cracking, axial elongation and increase in diameter due to irradiation creep and growth. Periodic monitoring of the health of the pressure tube under in-situ conditions is essential to ensure the safe operation of the reactor. New designs of reactor call for innovative design philosophy, modification in fabrication route of pressure tube, development of reactor specific tools, both analytical and hardware for assessing the fitness for service of the pressure tube. Feedback from existing reactors has enhanced the understanding about life limiting parameters. This paper gives an insight into the life limiting issues associated with pressure tube and the efforts pursued for development of life management techniques for coolant channel of Advanced Heavy Water Reactor (AHWR) designed in India. The tools and techniques for in-situ property/hydrogen measurement, pulsed eddy current technique for zirconium alloy in-homogeneity characterization, horizontal shear wave EMAT system for dissimilar metal weld inspection, sliver sampling of vertical channel etc. are elaborated in the paper. (author)

  10. EMRS Spring Meeting 2014 Symposium D: Phonons and fluctuations in low dimensional structures


    The E-MRS 2014 Spring meeting, held from 26-30th May 2014 in Lille included the Symposium D entitled ''Phonons and Fluctuations in Low Dimensional Structures'', the first edition of its kind. The symposium was organised in response to the increasing interest in the study of phonons in the context of advances in condensed matter physics, electronics, experimental methods and theory and, in particular, the transfer of energy across atomic interfaces and the propagation of energy in the nm-scale. Steering heat by light or vice versa and examining nano-scale energy conversion (as in thermoelectricity and harvesting e.g. in biological systems) are two aspects that share the underlying science of energy processes across atomic interfaces and energy propagation in the nanoscale and or in confined systems. The nanometer scale defies several of the bulk relationships as confinement of electrons and phonons, locality and non-equilibrium become increasingly important. The propagation of phonons as energy carriers impacts not only heat transfer, but also the very concept and handling of temperature in non-equilibrium and highly localised conditions. Much of the needed progress depends on the materials studied and this symposium targeted the interface material aspects as well as the emerging concepts to advance in this field. The symposium had its origins in a series of meetings and seminars including: (1) the first Phonon Engineering Workshop, funded by Catalan Institute for Research and Advanced Studies (ICREA), the then MICINN, the CNRS, VTT, and several EU projects, held in Saint Feliu de Guixols (Girona, Spain) from 24th to 27th of May 2010 with 65 participants from Europe, the USA and Japan; (2) the first Phonons and Fluctuations workshop, held in Paris on 8th and 9th November 2010, supported by French, Spanish and Finnish national projects and EU projects, attended by about 50 researchers; (3) the second Phonon and Fluctuations workshop, held in Paris on 8th and 9th

  11. Data Analysis of EMR in Distributed Database with Respect to Today's E -Health Apps

    Onkar S Kemkar


    Full Text Available Comparative effectiveness research has been an ongoing effort to identify best-practices for health care. A doctor’s EHR in the office is supposed to be able to connect with outside sources of patient data, other clinicians using the same or different EMRs. Of most urgency, though, is the desire to connect a clinician with the local hospital. And, of all of the integrations, this one is the most difficult.This paper focuses on the use of data from an electronic medical record (EMR within a health care organization. It discusses how health provider extracts data from multiple sources in a near real-time fashion. Here also we discuss how national patient identity number can be used for healthcare transaction, how health data can be made protected by using the HIPPA concepts, how we can maintain the security of the patient data.

  12. Development of the staffing evaluation technique for mental tasks of the advanced main control room

    The key goals of staffing and qualifications review element are to ensure that the right numbers of people with the appropriate skills and abilities are available to support plant operations and events. If the staffing level is too few, excessive stress that caused human errors possibly will be placed on the operators. Accordingly, this study developed a staffing evaluation technique based on CPM-GOMS for the mental tasks such as operations in the advanced main control room. A within-subject experiment was designed to examine the validity of the staffing evaluation technique. The results indicated the performance of evaluated staffing level via the staffing evaluation technique was significantly higher than that of non-evaluated staffing level; thus, validity of the staffing evaluation technique can be accepted. Finally, the implications for managerial practice on the findings of this study were discussed. (author)

  13. Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Shree Krishna Sharma


    Full Text Available The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks.

  14. Localization and monitoring of spent fuel containers applying electromagnetic reflection measurement (EMR). Final report

    The direct final disposal of spent nuclear fuels involves the emplacement in containers, e.g. Pollux casks, and their permanent disposal in drifts. The IAEA requires surveillance measures for this concept. By the BGR the electromagnetic reflection method (EMR, underground radar) has been suggested for surveillance. It was tested for its suitability in the Asse salt mine on a rock-up of Pollux casks. (DG)

  15. Ferromagnetic clustering and ordering in manganese deficient LaMnO3: An EMR probe

    Electron magnetic resonance (EMR) properties of LaMn1-xO3 (x=0, 0.02 and 0.06) are studied in the range 115-600K. It is shown that above 200K either ferromagnetic clusters or long-range ferromagnetic correlation present in all samples, and that LaMn0.94O3 is ferromagnetic below 113.4+/-1.5K

  16. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.


    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  17. Ultra-realistic imaging advanced techniques in analogue and digital colour holography

    Bjelkhagen, Hans


    Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging.After a historical review of progress in holography, the book: Discusses CW recording lasers, pulsed holography lasers, and reviews optical designs for many of the principal laser types with emphasis on attaining th

  18. Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI

    van der Geest, Rob J; Garg, Pankaj


    Purpose of the Review Time-resolved 3D velocity-encoded MR imaging with velocity encoding in three directions (4D Flow) has emerged as a novel MR acquisition technique providing detailed information on flow in the cardiovascular system. In contrast to other clinically available imaging techniques such as echo-Doppler, 4D Flow MRI provides the 3D Flow velocity field within a volumetric region of interest over the cardiac cycle. This work reviews the most recent advances in the development and ...

  19. Advanced energy sources and conversion techniques. Proceedings of a seminar. Volume 1. [35 papers



    The Seminar was organized as a series of tutorial presentations and round table discussions on a technical level to implement the following: (a) to identify and explore present and projected needs for energy sources and conversion techniques for military applications; (b) to exchange information on current and planned efforts in these fields; (c) to examine the effect of anticipated scientific and technological advances on these efforts; and (d) to present suggested programs aimed at satisfying the military needs for energy sources and conversion techniques. Volume I contains all of the unclassified papers presented at the Seminar. (W.D.M.)

  20. Frontiers of Optical Spectroscopy Investigating Extreme Physical Conditions with Advanced Optical Techniques

    Bartolo, Baldassare


    Advanced spectroscopic techniques allow the probing of very small systems and very fast phenomena, conditions that can be considered "extreme" at the present status of our experimentation and knowledge. Quantum dots, nanocrystals and single molecules are examples of the former and events on the femtosecond scale examples of the latter. The purpose of this book is to examine the realm of phenomena of such extreme type and the techniques that permit their investigations. Each author has developed a coherent section of the program starting at a somewhat fundamental level and ultimately reaching the frontier of knowledge in the field in a systematic and didactic fashion. The formal lectures are complemented by additional seminars.

  1. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    Wasik, S M; Wallace, A M


    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. PMID:25348145


    Biswas, Pratim; Al-Dahhan, Muthanna


    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  3. Influence of semiconductor/metal interface geometry in an EMR sensor

    Sun, Jian


    The extraordinary magnetoresistance (EMR) is well known to be strongly dependent on geometric parameters. While the influence of the aspect ratios of the metal and semiconductor areas has been thoroughly investigated, the geometry of the semiconductor/metal interface has been neglected so far. However, from a fabrication point of view, this part plays a crucial role. In this paper, the performance of a bar-type hybrid EMR sensor is investigated by means of finite element method and experiments with respect to the hybrid interface geometry. A 3-D model has been developed, which simulates the EMR effect in case of fields in different directions. The semiconductor/metal interface has been investigated in terms of different layer thicknesses and overlaps. The results show that those parameters can cause a change in the output sensitivity of 2%-10%. In order to maintain a high sensitivity and keep the fabrication relatively simple and at low cost, a device with a thin metal shunt having a large overlap on the top of the semiconductor bar would provide the best solution. © 2001-2012 IEEE.

  4. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)


    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  5. Urethral advancement technique for repair of distal penile hypospadias: A revisit

    Awad Mohamed


    Full Text Available Background: Numerous ingenious methods have been described to repair hypospadias with variable results. The anterior urethral advancement technique reported by Chang[1] to repair distal hypospadias has shown encouraging results. We have reevaluated this technique with some modifications to improve its results. Materials and Methods: This study was done on 72 patients, 19 cases with glanular hypospadias, 20 cases with coronal hypospadias, 22 cases of subcoronal hypospadias,and 11 cases with anterior penile hypospadias in the period between September 1999 and October 2003. The patients′ age ranged from two years to twenty five years (median age 5.6 years. All the patients were operated using Chang′s technique with our modifications. Results: There were no major complications in any of our patients, no postoperative fistulae or urethral stricture. Three patients had meatal stenosis and preputial edema occurred in 83.3% in non-circumcised patients. Conclusion: Modifications of the anterior advancement technique has produced excellent Results. It is easy to do and learn and also offers good cosmetic and functional results.

  6. Advanced post-irradiation examination techniques for water reactor fuel. Proceedings of a technical committee meeting

    The purpose of the meeting was to provide and overview of the status of post-irradiation examination (PIE) techniques for water cooled reactor fuel assemblies and their components with emphasis given to advanced PIE techniques applied to high burnup fuel. Papers presented at the meeting described progress obtained in non-destructive (e.g. dimensional measurements, oxide layer thickness measurements, gamma scanning and tomography, neutron and X-ray radiography, etc.) and destructive PIE techniques (e.g. microstructural studies, elemental and isotopic analysis, measurement of physical and mechanical properties, etc.) used for investigation of water reactor fuel. Recent practice in high burnup fuel investigation revealed the importance of advanced PIE techniques, such as 3-D tomography, secondary ion mass spectrometry, laser flash, high resolution transmission and scanning electron microscopy, image analysis in microstructural studies, for understanding mechanisms of fuel behaviour under irradiation. Importance and needs for in-pile irradiation of samples and rodlets in instrumented rigs were also discussed. This TECDOC contains 20 individual papers presented at the meeting; each of the papers has been indexed separately

  7. Advanced field-solver techniques for RC extraction of integrated circuits

    Yu, Wenjian


    Resistance and capacitance (RC) extraction is an essential step in modeling the interconnection wires and substrate coupling effect in nanometer-technology integrated circuits (IC). The field-solver techniques for RC extraction guarantee the accuracy of modeling, and are becoming increasingly important in meeting the demand for accurate modeling and simulation of VLSI designs. Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits presents a systematic introduction to, and treatment of, the key field-solver methods for RC extraction of VLSI interconnects and substrate coupling in mixed-signal ICs. Various field-solver techniques are explained in detail, with real-world examples to illustrate the advantages and disadvantages of each algorithm. This book will benefit graduate students and researchers in the field of electrical and computer engineering, as well as engineers working in the IC design and design automation industries. Dr. Wenjian Yu is an Associate Professor at the Department of ...

  8. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    Prosser, Bill


    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  9. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    Liebold, F.; Maas, H.-G.


    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  10. Recent advances in fuel fabrication techniques and prospects for the nineties

    Advanced Nuclear Fuels Corporation's approach and experience with the application of a flexible, just-in-time manufacturing philosophy to the production of customized nuclear fuel is described. Automation approaches to improve productivity are described. The transfer of technology across product lines is discussed as well as the challenges presented by a multiple product fabrication facility which produces a wide variety of BWR and PWR designs. This paper also describes the method of managing vendor quality control programs in support of standardization and clarity of documentation. Process simplification and the ensuing experience are discussed. Prospects for fabrication process advancements in the nineties are given with emphasis on the benefits of dry conversion of UF6 to UO2 powder, and increased use of automated and computerized inspection techniques. (author)

  11. Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage

    The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs

  12. Impact of advanced MRI techniques for the diagnosis of dementia: comparison with PET

    Steffensen, Elena; Prakash, Vineet; Vestergård, Karsten;

    investigated with an advanced 3T MRI protocol including 3D pseudocontinuous arterial spin labeling (PC ASL) sequence for CBF measurement and DTI sequence used for tractography. Fifteen of the patients have also undergone 18-FDG PET examination. A reference data set from 30 healthy volunteers was used for......Introduction: The use of high magnetic fields in combination with fast algorithms for computer-based postprocessing has moved advanced MRI techniques into clinical practice. MRI provides in analogy with PET physiological information in addition to more traditional morphological images. Evaluation...... of cerebral blood flow (CBF) and also of white matter damage may be used to support the diagnosis and characterization of dementia and is of special important interest for the detection of changes in the early stages of the disease. Purpose: To investigate whether perfusion MRI with CBF maps combined...

  13. NATO Advanced Research Workshop on Thin Film Growth Techniques for Low-Dimensional Structures

    Parkin, S; Dobson, P; Neave, J; Arrott, A


    This work represents the account of a NATO Advanced Research Workshop on "Thin Film Growth Techniques for Low Dimensional Structures", held at the University of Sussex, Brighton, England from 15-19 Sept. 1986. The objective of the workshop was to review the problems of the growth and characterisation of thin semiconductor and metal layers. Recent advances in deposition techniques have made it possible to design new material which is based on ultra-thin layers and this is now posing challenges for scientists, technologists and engineers in the assessment and utilisation of such new material. Molecular beam epitaxy (MBE) has become well established as a method for growing thin single crystal layers of semiconductors. Until recently, MBE was confined to the growth of III-V compounds and alloys, but now it is being used for group IV semiconductors and II-VI compounds. Examples of such work are given in this volume. MBE has one major advantage over other crystal growth techniques in that the structure of the growi...

  14. Advanced Techniques in Web Intelligence-2 Web User Browsing Behaviour and Preference Analysis

    Palade, Vasile; Jain, Lakhmi


    This research volume focuses on analyzing the web user browsing behaviour and preferences in traditional web-based environments, social  networks and web 2.0 applications,  by using advanced  techniques in data acquisition, data processing, pattern extraction and  cognitive science for modeling the human actions.  The book is directed to  graduate students, researchers/scientists and engineers  interested in updating their knowledge with the recent trends in web user analysis, for developing the next generation of web-based systems and applications.

  15. [Recent advances in the techniques of protein-protein interaction study].

    Wang, Ming-Qiang; Wu, Jin-Xia; Zhang, Yu-Hong; Han, Ning; Bian, Hong-Wu; Zhu, Mu-Yuan


    Protein-protein interactions play key roles in the development of organisms and the response to biotic and abiotic stresses. Several wet-lab methods have been developed to study this challenging area,including yeast two-hybrid system, tandem affinity purification, Co-immunoprecipitation, GST Pull-down, bimolecular fluorescence complementation, fluorescence resonance energy transfer and surface plasmon resonance analysis. In this review, we discuss theoretical principles and relative advantages and disvantages of these techniques,with an emphasis on recent advances to compensate for limitations. PMID:24579310

  16. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Pastura, Giuseppe, E-mail: [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria


    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  17. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    Li, Tie-Qiang (Karolinska Huddinge - Medical Physics, Stockholm (Sweden)), email:; Wahlund, Lars-Olof (Dept. of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm (Sweden))


    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  18. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  19. Individual Particle Analysis of Ambient PM 2.5 Using Advanced Electron Microscopy Techniques

    Gerald J. Keeler; Masako Morishita


    The overall goal of this project was to demonstrate a combination of advanced electron microscopy techniques that can be effectively used to identify and characterize individual particles and their sources. Specific techniques to be used include high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM energy dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM). A series of ambient PM{sub 2.5} samples were collected in communities in southwestern Detroit, MI (close to multiple combustion sources) and Steubenville, OH (close to several coal fired utility boilers). High-resolution TEM (HRTEM) -imaging showed a series of nano-metal particles including transition metals and elemental composition of individual particles in detail. Submicron and nano-particles with Al, Fe, Ti, Ca, U, V, Cr, Si, Ba, Mn, Ni, K and S were observed and characterized from the samples. Among the identified nano-particles, combinations of Al, Fe, Si, Ca and Ti nano-particles embedded in carbonaceous particles were observed most frequently. These particles showed very similar characteristics of ultrafine coal fly ash particles that were previously reported. By utilizing HAADF-STEM, STEM-EDX, and EF-TEM, this investigation was able to gain information on the size, morphology, structure, and elemental composition of individual nano-particles collected in Detroit and Steubenville. The results showed that the contributions of local combustion sources - including coal fired utilities - to ultrafine particle levels were significant. Although this combination of advanced electron microscopy techniques by itself can not identify source categories, these techniques can be utilized as complementary analytical tools that are capable of providing detailed information on individual particles.

  20. Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques

    Gannon, Paul Edward

    High energy conversion efficiency, decreased environmentally-sensitive emissions and fuel flexibility have attracted increasing attention toward solid oxide fuel cell (SOFC) systems for stationary, transportation and portable power generation. Critical durability and cost issues, however, continue to impede wide-spread deployment. Many intermediate temperature (600-800°C) planar SOFC systems employ metallic alloy interconnect components, which physically connect individual fuel cells into electric series, facilitate gas distribution to appropriate SOFC electrode chambers (fuel/anode and oxidant[air]/cathode) and provide SOFC stack mechanical support. These demanding multifunctional requirements challenge commercially-available and inexpensive metallic alloys due to corrosion and related effects. Many ongoing investigations are aimed at enabling inexpensive metallic alloys (via bulk and/or surface modifications) as SOFC interconnects (SOFC(IC)s). In this study, two advanced physical vapor deposition (PVD) techniques: large area filtered vacuum arc deposition (LAFAD), and filtered arc plasma-assisted electron beam PVD (FA-EBPVD) were used to deposit a wide-variety of protective nanocomposite (amorphous/nanocrystalline) ceramic thin-film (1,000 hours); and, dramatically reduced Cr volatility (>30-fold). Analyses and discussions of SOFC(IC) corrosion, advanced PVD processes and protective coating behavior are intended to advance understanding and accelerate the development of durable and commercially-viable SOFC systems.

  1. Advanced condition monitoring techniques and plant life extension studies at EBR-2

    Numerous advanced techniques have been evaluated and tested at EBR-2 as part of a plant-life extension program for detection of degradation and other abnormalities in plant systems. Two techniques have been determined to be of considerable assistance in planning for the extended-life operation of EBR-2. The first, a computer-based pattern-recognition system (System State Analyzer or SSA) is used for surveillance of the primary system instrumentation, primary sodium pumps and plant heat balances. This surveillance has indicated that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals and can be used to provide derived signal values to replace signals from failed sensors. The second technique, also a computer-based pattern-recognition system (Sequential Probability Ratio Test or SPRT) is used to validate signals and to detect incipient failures in sensors and components or systems. It is being used on the failed fuel detection system and is experimentally used on the primary coolant pumps. Both techniques are described and experience with their operation presented

  2. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds.

    Medrano, Jose A; de Nooijer, Niek C A; Gallucci, Fausto; van Sint Annaland, Martin


    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO₂ as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  3. Managing large energy and mineral resources (EMR) projects in challenging environments

    Chanmeka, Arpamart

    The viability of energy mineral resources (EMR) construction projects is contingent upon the state of the world economic climate. Oil sands projects in Alberta, Canada exemplify large EMR projects that are highly sensitive to fluctuations in the world market. Alberta EMR projects are constrained by high fixed production costs and are also widely recognized as one of the most challenging construction projects to successfully deliver due to impacts from extreme weather conditions, remote locations and issues with labor availability amongst others. As indicated in many studies, these hardships strain the industry's ability to execute work efficiently, resulting in declining productivity and mounting cost and schedule overruns. Therefore, to enhance the competitiveness of Alberta EMR projects, project teams are targeting effective management strategies to enhance project performance and productivity by countering the uniquely challenging environment in Alberta. The main purpose of this research is to develop industry wide benchmarking tailored to the specific constraints and challenges of Alberta. Results support quantitative assessments and identify the root causes of project performance and ineffective field productivity problems in the heavy industry sector capital projects. Customized metrics produced from the data collected through a web-based survey instrument were used to quantitatively assess project performance in the following dimensions: cost, schedule, change, rework, safety, engineering and construction productivity and construction practices. The system enables the industry to measure project performance more accurately, get meaningful comparisons, while establishing credible norms specific to Alberta projects. Data analysis to identify the root cause of performance problems was conducted. The analysis of Alberta projects substantiated lessons of previous studies to create an improved awareness of the abilities of Alberta-based companies to manage their

  4. A Journey into the Hidden Lives of Electronic Medical Records (EMRs)

    Boulus-Rødje, Nina

    Drawing upon a three and a half year long research project, this dissertation examines the adaptation process of an electronic medical record (EMR) in a primary healthcare setting, with emphasis on methodological reflections on doing action research with a community partner. This dissertation thus...... Systems (IS), I analyze how health care practitioners adapt technology to their situated work practices. Investigating the factors promoting the adaptation process showed that reflective activities were essential for constructing emergent work practices. I therefore provide a conceptualization of the...

  5. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    Alexander Hexemer


    Full Text Available The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS, new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.

  6. Advanced single-wafer sequential multiprocessing techniques for semiconductor device fabrication

    Single-wafer integrated in-situ multiprocessing (SWIM) is recognized as the future trend for advanced microelectronics production in flexible fast turn- around computer-integrated semiconductor manufacturing environments. The SWIM equipment technology and processing methodology offer enhanced equipment utilization, improved process reproducibility and yield, and reduced chip manufacturing cost. They also provide significant capabilities for fabrication of new and improved device structures. This paper describes the SWIM techniques and presents a novel single-wafer advanced vacuum multiprocessing technology developed based on the use of multiple process energy/activation sources (lamp heating and remote microwave plasma) for multilayer epitaxial and polycrystalline semiconductor as well as dielectric film processing. Based on this technology, multilayer in-situ-doped homoepitaxial silicon and heteroepitaxial strained layer Si/GexSi1-x/Si structures have been grown and characterized. The process control and the ultimate interfacial abruptness of the layer-to-layer transition widths in the device structures prepared by this technology will challenge the MBE techniques in multilayer epitaxial growth applications

  7. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron


    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  8. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author).

  9. Advancement on techniques for the separation and maintenance of the red imported fire ant colonies



    Advancement has recently been made on the techniques for separating andmaintaining colonies of red imported fire ants, Solenopsis invicta Buren. A new brood rescuemethod significantly improved the efficiency in separating colony from mound soil.Furthermore, a new method was developed to separate brood from the colony using fire antrepellants. Finally, a cost-effective method was developed to coat containers with dilutedFluon(R) (AGC Chemicals America, Inc, Moorestown, NJ, USA), an aqueouspolytetrafluoroethylene, to prevent housed ants from escaping a container. Usually theoriginal Fluon(R) solution is directly applied to the wall of the containers. Reduced concentrations of Fluon(R) were found to be equally effective in preventing ant escape. The use ofdiluted Fluon(R) solutions to coat the containers was recommended because of environmentaland cost-saving benefits. Application of these new techniques can significantly reduce labor,cost and environmental contamination. This review paper collates all the new techniques inone reference which readers can use as a manual.

  10. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ∼0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator

  11. Utilization of advanced calibration techniques in stochastic rock fall analysis of quarry slopes

    Preh, Alexander; Ahmadabadi, Morteza; Kolenprat, Bernd


    In order to study rock fall dynamics, a research project was conducted by the Vienna University of Technology and the Austrian Central Labour Inspectorate (Federal Ministry of Labour, Social Affairs and Consumer Protection). A part of this project included 277 full-scale drop tests at three different quarries in Austria and recording key parameters of the rock fall trajectories. The tests involved a total of 277 boulders ranging from 0.18 to 1.8 m in diameter and from 0.009 to 8.1 Mg in mass. The geology of these sites included strong rock belonging to igneous, metamorphic and volcanic types. In this paper the results of the tests are used for calibration and validation a new stochastic computer model. It is demonstrated that the error of the model (i.e. the difference between observed and simulated results) has a lognormal distribution. Selecting two parameters, advanced calibration techniques including Markov Chain Monte Carlo Technique, Maximum Likelihood and Root Mean Square Error (RMSE) are utilized to minimize the error. Validation of the model based on the cross validation technique reveals that in general, reasonable stochastic approximations of the rock fall trajectories are obtained in all dimensions, including runout, bounce heights and velocities. The approximations are compared to the measured data in terms of median, 95% and maximum values. The results of the comparisons indicate that approximate first-order predictions, using a single set of input parameters, are possible and can be used to aid practical hazard and risk assessment.

  12. Advanced experimental techniques for measuring oscillator strengths of vacuum ultraviolet lines

    Advanced experimental techniques for measuring oscillator strengths of atomic and ionic transitions in the vacuum ultraviolet (VUV) are described. A VUV time-resolved laser-induced-fluorescence experiment for radiative lifetime measurements on atoms and ions in a beam is operational. Recent work on VUV transitions of Si I and B I is described. These lifetimes provide the essential absolute normalization for converting relative oscillator strengths to absolute transition probabilities. Emission measurements of branching fractions at VUV and longer wavelengths are proposed. A large echelle spectrograph equipped with a CCD detector array will be used. This experiment will provide the sensitivity, resolving power, and data handling capability required for extensive high quality emission branching fraction measurements. We further propose to use absorption measurements on hollow cathode discharges to determine relative absorption oscillator strengths. A demonstration of a new technique for absorption spectroscopy on glow discharges is reported. The new technique provides the sensitivity, dynamic range, and data handling capability required for extensive high quality absorption measurements. Relative absorption and emission oscillator strengths will be least-square adjusted using the bowtie method and normalized with accurate radiative lifetimes. (orig.)

  13. Application of advanced radiographic imaging techniques for characterizing low level nuclear waste

    BIR is currently investigating the use of two advanced x-ray imaging techniques for characterizing containers of solidified nuclear waste. These techniques, digital radiography (DR) and computed tomography (CT), are performed by computerized imaging systems that can automatically inspect containers using a set of imaging parameters chosen by the operator. Both inspection techniques can be performed by the same imaging system. The inspection result is a computer image, or series of images, that can be manipulated by the operator to show a wide variety of features within the inspected object. For the inspections performed so far, we have used the ACTIS CT/DR system that BIR designed and built for NASA's Marshall Space Flight Center. The inspections are being performed as part of a continuing Phase I/Phase II SBIR program for the U.S. Department of Energy. This paper discusses inspections performed on three types of waste containers: (1) a simulated waste drum imaged in Phase 1; (2) 55 gallon drums of assorted waste items supplied by the DOE'S EG and G Rocky Flats plant and by Westinghouse Hanford; and (3) several containers of glass used for solidifying radioactive substances, supplied by the DOE'S Westinghouse Savannah River site. The Phase II work also includes investigating dual energy CT imaging and designing a mechanically simplified ACTIS system and mobile trailer specifically for waste inspection. (author)

  14. Power Control Technique for Efficient Call Admission Control in Advanced Wirless Networks

    Ch. Sreenivasa Rao


    Full Text Available In 4G networks, call admission control techniques have been proposed to provide Quality of Service (QoS in a network by restricting the access to network resources. Power control is essential in call admission control in order to provide fair access to all users, improve battery lifetime and system performance. But the existing call admission control algorithms rarely consider the power controlling techniques in the handoff process for different traffic classes. In this paper, we propose to develop a power controlled call admission control scheme for handoff in the advanced wireless networks. The incoming call measures the initial interference on it and then the base station starts transmitting the packets to the new call. The new call is rejected when the interference reaches a threshold value.Whenever an existing call meets the power constraint, the transmit power is decremented based on thetraffic class and incoming call obtains this information by monitoring the interference received on it. Theconvergence of the power control algorithm is checked and the power levels of all incoming calls areadjusted. From our simulation results we prove that this power control technique provides efficienthandoff in the 4G networks by increasing the throughput and reducing the delay of the existing users.

  15. Benefits and Risks of Electronic Medical Record (EMR): An Interpretive Analysis of Healthcare Consumers' Perceptions of an Evolving Health Information Systems Technology

    Thompson, Chester D.


    The purpose of this study is to explore healthcare consumers' perceptions of their Electronic Medical Records (EMRs). Although there have been numerous studies regarding EMRs, there have been minimal, if any, research that explores healthcare consumers' awareness of this technology and the social implications that result. As consumers' health…

  16. Study and development of advanced control techniques for nuclear reactors and robots

    March-Leuba, C.


    This report studies and develops some aspects of the optimal control theory with the objective of evaluating benefits that the nuclear industry could obtain by applying advanced control techniques. First, the basic relationship between optimal control theory and closed-loop control design has been identified. As a result of this work, new algorithms have been developed for feedback implementations. The applicability of these new algorithms to problems such as state estimation, filtering, model update, and model decoupling has been studied. In addition, new alternatives to control design that are not based on optimal control theory have been developed. A broad range of application examples has been presented for several physical systems, including pressurized water nuclear reactors, boiling water nuclear reactors, steam generators, and robotics. 22 refs., 26 figs.

  17. Study and development of advanced control techniques for nuclear reactors and robots

    This report studies and develops some aspects of the optimal control theory with the objective of evaluating benefits that the nuclear industry could obtain by applying advanced control techniques. First, the basic relationship between optimal control theory and closed-loop control design has been identified. As a result of this work, new algorithms have been developed for feedback implementations. The applicability of these new algorithms to problems such as state estimation, filtering, model update, and model decoupling has been studied. In addition, new alternatives to control design that are not based on optimal control theory have been developed. A broad range of application examples has been presented for several physical systems, including pressurized water nuclear reactors, boiling water nuclear reactors, steam generators, and robotics. 22 refs., 26 figs

  18. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Techniques and applications

    Qin Ling; Leung, Kwok Sui (eds.) [Chinese Univ. of Hong Kong (China). Dept. of Orthopaedics and Traumatology; Genant, H.K. [California Univ., San Francisco, CA (United States); Griffith, J.F. [Chinese Univ. of Hong Kong (China). Dept. of Radiology and Organ Imaging


    This book provides a perspective on the current status of bioimaging technologies developed to assess the quality of musculoskeletal tissue with an emphasis on bone and cartilage. It offers evaluations of scaffold biomaterials developed for enhancing the repair of musculoskeletal tissues. These bioimaging techniques include micro-CT, nano-CT, pQCT/QCT, MRI, and ultrasound, which provide not only 2-D and 3-D images of the related organs or tissues, but also quantifications of the relevant parameters. The advance bioimaging technologies developed for the above applications are also extended by incorporating imaging contrast-enhancement materials. Thus, this book will provide a unique platform for multidisciplinary collaborations in education and joint R and D among various professions, including biomedical engineering, biomaterials, and basic and clinical medicine. (orig.)

  19. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Techniques and applications

    This book provides a perspective on the current status of bioimaging technologies developed to assess the quality of musculoskeletal tissue with an emphasis on bone and cartilage. It offers evaluations of scaffold biomaterials developed for enhancing the repair of musculoskeletal tissues. These bioimaging techniques include micro-CT, nano-CT, pQCT/QCT, MRI, and ultrasound, which provide not only 2-D and 3-D images of the related organs or tissues, but also quantifications of the relevant parameters. The advance bioimaging technologies developed for the above applications are also extended by incorporating imaging contrast-enhancement materials. Thus, this book will provide a unique platform for multidisciplinary collaborations in education and joint R and D among various professions, including biomedical engineering, biomaterials, and basic and clinical medicine. (orig.)


    Onur Doğan


    Full Text Available In today’s competitive world, organizations need to make the right decisions to prolong their existence. Using non-scientific methods and making emotional decisions gave way to the use of scientific methods in the decision making process in this competitive area. Within this scope, many decision support models are still being developed in order to assist the decision makers and owners of organizations. It is easy to collect massive amount of data for organizations, but generally the problem is using this data to achieve economic advances. There is a critical need for specialization and automation to transform the data into the knowledge in big data sets. Data mining techniques are capable of providing description, estimation, prediction, classification, clustering, and association. Recently, many data mining techniques have been developed in order to find hidden patterns and relations in big data sets. It is important to obtain new correlations, patterns, and trends, which are understandable and useful to the decision makers. There have been many researches and applications focusing on different data mining techniques and methodologies.In this study, we aim to obtain understandable and applicable results from a large volume of record set that belong to a firm, which is active in the meat processing industry, by using data mining techniques. In the application part, firstly, data cleaning and data integration, which are the first steps of data mining process, are performed on the data in the database. With the aid of data cleaning and data integration, the data set was obtained, which is suitable for data mining. Then, various association rule algorithms were applied to this data set. This analysis revealed that finding unexplored patterns in the set of data would be beneficial for the decision makers of the firm. Finally, many association rules are obtained, which are useful for decision makers of the local firm. 

  1. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    França, R F O; da Silva, C C; De Paula, S O


    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival. PMID:23339016

  2. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr. (.; .); Carlson, Jeffrey J.


    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous

  3. Advanced Personnel Vetting Techniques in Critical Multi-Tennant Hosted Computing Environments

    Farhan Hyder Sahito


    Full Text Available The emergence of cloud computing presents a strategic direction for critical infrastructures and promises to have far-reaching effects on their systems and networks to deliver better outcomes to the nations at a lower cost. However, when considering cloud computing, government entities must address a host of security issues (such as malicious insiders beyond those of service cost and flexibility. The scope and objective of this paper is to analyze, evaluate and investigate the insider threat in cloud security in sensitive infrastructures as well as to propose two proactive socio-technical solutions for securing commercial and governmental cloud infrastructures. Firstly, it proposes actionable framework, techniques and practices in order to ensure that such disruptions through human threats are infrequent, of minimal duration, manageable, and cause the least damage possible. Secondly, it aims for extreme security measures to analyze and evaluate human threats related assessment methods for employee screening in certain high-risk situations using cognitive analysis technology, in particular functional Magnetic Resonance Imaging (fMRI. The significance of this research is also to counter human rights and ethical dilemmas by presenting a set of ethical and professional guidelines. The main objective of this work is to analyze related risks, identify countermeasures and present recommendations to develop a security awareness culture that will allow cloud providers to utilize effectively the benefits of this advanced techniques without sacrificing system security.

  4. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Macdonald, D. D.; Lvov, S. N.


    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  5. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Somorjai, G.A.; Frei, H.; Park, J.Y.


    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  6. Utilization technique for advanced nuclear materials database system Data-Free-Way'

    Four organizations the National Research Institute for Metals (NRIM), the Japan Atomic Energy Research Institute (JAERI), the Japan Nuclear Fuel Cycle Development Institute (JNC) and Japan Science and Technology Incorporation (JST), conducted the 2nd period joint research for the purpose of development of utilization techniques for advanced nuclear materials database system named 'Data-Free-Way' (DFW), to make more useful system to support research and development of the nuclear materials, from FY 1995 to FY 1999. NRIM intended to fill a data system on diffusion and nuclear data by developing utilization technique on diffusion informations of steels and aluminum and nuclear data for materials for its independent system together with participating in fulfil of the DFW. And, NRIM has entered to a project on wide area band circuit application agreed at the G7 by using technologies cultivated by NRIM, to investigate network application technology with the Michigan State University over the sea under cooperation assistant business of JST, to make results on CCT diagram for welding and forecasting of welding heat history accumulated at NRIM for a long term, to perform development of a simulator assisting optimum condition decision of welding. (G.K.)

  7. Advances in estimation methods of vegetation water content based on optical remote sensing techniques


    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  8. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  9. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    Neu, T. R.; Lawrence, J. R.


    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose


    R. Menaka


    Full Text Available Preparation of anatomical models and teaching aids is a challenging task in the medical, veterinary and paramedical sciences as like as life form. The successful preservation of conventional methods by embalmed cadavers/ corpse’s are routinely practiced for educational/research purposes. The existing form of preservation technique is not promising to meet the current challenges in the teaching and learning of human/veterinary anatomy. The embalming fluid causes potential health hazards with continuous exposure of formalin fumes. The study was conducted on dissected cadaverous embalmed specimens by using advanced plastination technique. The 10% formalin fixed and preserved specimens of buffalo head and horse limb were subjected to dehydration, impregnation and hardening with clearing, dehydrating and curing agents. Plastination methodology consists of slowly replacing tissue fluids, lipids with a dehydrating agent and replaced with polymer under force impregnation. In these processes, water and lipids in biological tissues are replaced by curable polymers. The yielded specimens are pleasant to handle, non toxic, pliable, dried and don’t smell or decay. These plastinates are well utilized in routine practical demonstrations of gross anatomical observations in institutional teaching as well as learning. The plastinated specimens are today’s milestone in medical education and become an ideal teaching tool not only in anatomy but also in pathology, obstetrics, radiology and surgery. Hence, any methodology or technique that would decrease the level of exposure to formaldehyde should be explored. Plastinates offer this excellent alternative as it lowers the risk of undue exposure to formaldehyde with higher health and safety regulations in our country.

  11. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    Wang, Jianxiong


    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  12. The Automated Alert System for the Hospital Infection Control and the Safety of Medical Staff Based on EMR Data.

    Jo, Eunmi


    This report is about planning, developing, and implementing the automated alert system for the Hospital infection control and the safety of medical staffs about information on patients exposed to infection based on EMR Data in a tertiary hospital in Korea. PMID:27332375

  13. Efficient secure-channel free public key encryption with keyword search for EMRs in cloud storage.

    Guo, Lifeng; Yau, Wei-Chuen


    Searchable encryption is an important cryptographic primitive that enables privacy-preserving keyword search on encrypted electronic medical records (EMRs) in cloud storage. Efficiency of such searchable encryption in a medical cloud storage system is very crucial as it involves client platforms such as smartphones or tablets that only have constrained computing power and resources. In this paper, we propose an efficient secure-channel free public key encryption with keyword search (SCF-PEKS) scheme that is proven secure in the standard model. We show that our SCF-PEKS scheme is not only secure against chosen keyword and ciphertext attacks (IND-SCF-CKCA), but also secure against keyword guessing attacks (IND-KGA). Furthermore, our proposed scheme is more efficient than other recent SCF-PEKS schemes in the literature. PMID:25634700

  14. Implementing and Integrating a Clinically-Driven Electronic Medical Record (EMR for Radiation Oncology in a Large Medical Enterprise

    John Paxton Kirkpatrick


    Full Text Available Purpose/Objective: While our department is heavily invested in computer-based treatment planning, we historically relied on paper-based charts for management of Radiation Oncology patients. In early 2009, we initiated the process of conversion to an electronic medical record (EMR eliminating the need for paper charts. Key goals included the ability to readily access information wherever and whenever needed, without compromising safety, treatment quality, confidentiality or productivity.Methodology: In February, 2009, we formed a multi-disciplinary team of Radiation Oncology physicians, nurses, therapists, administrators, physicists/dosimetrists, and information technology (IT specialists, along with staff from the Duke Health System IT department. The team identified all existing processes and associated information/reports, established the framework for the EMR system and generated, tested and implemented specific EMR processes.Results: Two broad classes of information were identified: information which must be readily accessed by anyone in the health system versus that used solely within the Radiation Oncology department. Examples of the former are consultation reports, weekly treatment check notes and treatment summaries; the latter includes treatment plans, daily therapy records and quality assurance reports. To manage the former, we utilized the enterprise-wide system , which required an intensive effort to design and implement procedures to export information from Radiation Oncology into that system. To manage "Radiation Oncology" data, we used our existing system (ARIA, Varian Medical Systems. The ability to access both systems simultaneously from a single workstation (WS was essential, requiring new WS and modified software. As of January, 2010, all new treatments were managed solely with an EMR. We find that an EMR makes information more widely accessible and does not compromise patient safety, treatment quality or confidentiality

  15. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants

    during LTO. It should be pointed out here that LTO has different meanings in different countries. For example, in the United States of America, LTO refers to operation beyond the original 40 year licence period. That is, a nuclear plant in the USA can add 20 years to its licensed length of operation, extending the plant life to 60, 80, or more years in 20 year increments. In other countries such as Japan, LTO refers to operations beyond 30 years; while advanced gas cooled reactors (AGRs) in the United Kingdom may extend their licensed life by five years at a time beyond the original 30 years of licensed length. One may divide the SSCs of a nuclear plant into two general classes: those that are active components, such as pumps, motors, turbogenerators, valves, compressors, sensors and actuators, and those that are passive components, such as the reactor vessel, piping, reactor internals, containment structure, cables and the like. For active components (e.g. rotating machinery), there are plenty of SDP techniques, with the exception of prognostics, that are proven and routinely used. The advances in this area have occurred in the ability to see the degradation more quickly and more clearly through the use of high resolution data and improved data processing and visualization techniques. The same is not true for passive components. For passive components, periodic in-service inspections (ISIs) are implemented in accordance with ageing management plans, using non-destructive examination (NDE) techniques, such as eddy current testing and ultrasonic wave measurements. These measurements are defined in numerous codes and standards that have been available and used for years, not only in the nuclear industry but also in aerospace and other fields. While effective, the NDE techniques do not normally provide in situ, continuous on-line, or remote testing capabilities

  16. Principles, techniques and recent advances in fine particle aggregation for solid-liquid separation

    Waste water discharged from various chemical and nuclear processing operations contains dissolved metal species that are highly toxic and, in some cases, radioactive. When the waste is acidic in nature, neutralization using reagents such as lime is commonly practiced to reduce both the acidity and the amount of waste (Kuyucak et al.). The sludge that results from the neutralization process contains metal oxide or hydroxide precipitates that are colloidal in nature and is highly stable. Destabilization of colloidal suspensions can be achieved by aggregation of fines into larger sized agglomerates. Aggregation of fines is a complex phenomenon involving a multitude of forces that control the interparticle interaction. In order to understand the colloidal behavior of suspensions a fundamental knowledge of physicochemical properties that determine the various forces is essential. In this review, a discussion of basic principles governing the aggregation of colloidal fines, various ways in which interparticle forces can be manipulated to achieve the desired aggregation response and recent advances in experimental techniques to probe the interfacial characteristics that control the flocculation behavior are discussed

  17. The Novel Quantitative Technique for Assessment of Gait Symmetry Using Advanced Statistical Learning Algorithm

    Jianning Wu


    Full Text Available The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.

  18. Advance Technique for Online Payment Security in E-Commerce : “Double Verification”



    Full Text Available In E-Commerce various parties involve in E-Payment for buying and selling purpose of goods/services. An Internet E-Commerce Payment Gateway is a critical component for online transaction and that should provide trust to customer that transaction is secure and reliable in all security aspect. There are various vulnerabilities in the present Online Payment system. There is a Man-in-the-Browserattack which is an internet threat/ Trojan horse that can modify web pages and infects web browser and it can also alter transaction content or can add some more data in content. The Trojan can bedownloaded or delivered invisibly through Web exploits. This attack is invisible from customer as well as host web application. A MitB attack can take place whether we use SSL, PKI, two or three-factorSecurity solution. I proposed a advanced technique called “Double Verification” which can detect these MitB attacks while transaction and ensure us secure online transaction over the internet.

  19. Classification of human colonic tissues using FTIR spectra and advanced statistical techniques

    Zwielly, A.; Argov, S.; Salman, A.; Bogomolny, E.; Mordechai, S.


    One of the major public health hazards is colon cancer. There is a great necessity to develop new methods for early detection of cancer. If colon cancer is detected and treated early, cure rate of more than 90% can be achieved. In this study we used FTIR microscopy (MSP), which has shown a good potential in the last 20 years in the fields of medical diagnostic and early detection of abnormal tissues. Large database of FTIR microscopic spectra was acquired from 230 human colonic biopsies. Five different subgroups were included in our database, normal and cancer tissues as well as three stages of benign colonic polyps, namely, mild, moderate and severe polyps which are precursors of carcinoma. In this study we applied advanced mathematical and statistical techniques including principal component analysis (PCA) and linear discriminant analysis (LDA), on human colonic FTIR spectra in order to differentiate among the mentioned subgroups' tissues. Good classification accuracy between normal, polyps and cancer groups was achieved with approximately 85% success rate. Our results showed that there is a great potential of developing FTIR-micro spectroscopy as a simple, reagent-free viable tool for early detection of colon cancer in particular the early stages of premalignancy among the benign colonic polyps.

  20. Applying advanced imaging techniques to a murine model of orthotopic osteosarcoma

    Matthew Lawrence Broadhead


    Full Text Available IntroductionReliable animal models are required to evaluate novel treatments for osteosarcoma. In this study, the aim was to implement advanced imaging techniques in a murine model of orthotopic osteosarcoma to improve disease modeling and the assessment of primary and metastatic disease.Materials and methodsIntra-tibial injection of luciferase-tagged OPGR80 murine osteosarcoma cells was performed in Balb/c nude mice. Treatment agent (pigment epithelium-derived factor; PEDF was delivered to the peritoneal cavity. Primary tumors and metastases were evaluated by in vivo bioluminescent assays, micro-computed tomography, [18F]-Fluoride-PET and [18F]-FDG-PET. Results[18F]-Fluoride-PET was more sensitive than [18F]-FDG-PET for detecting early disease. Both [18F]-Fluoride-PET and [18F]-FDG-PET showed progressive disease in the model, with 4-fold and 2-fold increases in SUV (p<0.05 by the study endpoint, respectively. In vivo bioluminescent assay showed that systemically delivered PEDF inhibited growth of primary osteosarcoma.DiscussionApplication of [18F]-Fluoride-PET and [18F]-FDG-PET to an established murine model of orthotopic osteosarcoma has improved the assessment of disease. The use of targeted imaging should prove beneficial for the evaluation of new approaches to osteosarcoma therapy.

  1. OECD/CSNI specialist meeting on advanced instrumentation and measurements techniques: summary and conclusions

    This specialist meeting on Advanced Instrumentation and Measurements Techniques was held in Santa Barbara (USA) in 1997 and attracted some 70 participants in ten technical sessions and a session of the round table discussions, with a total of 41 papers. It was intended to bring together the international experts in multi-phase flow instrumentation, experiment and modeling to review the state-of-the-art of the two-phase flow instrumentation methods and to discuss the relation between modeling needs and instrumentation capabilities. The following topics were included: Modeling needs and future direction for improved constitutive relations, interfacial area transport equation, and multi-dimensional two-fluid model formulation; local instrumentation developments for void fraction, interfacial area, phase velocities, turbulence, entrainment, particle size, thermal non-equilibrium, shear stress, nucleation, condensation and boiling; global instrumentation developments for void fraction, mass flow, two-phase level, non-condensable concentration, flow regimes, low flow and break flow; relation between modeling needs and instrumentation capabilities, future directions for experiments focused on modeling needs and for instrumentation developments

  2. Dynamic Beamforming for Three-Dimensional MIMO Technique in LTE-Advanced Networks

    Yan Li


    Full Text Available MIMO system with large number of antennas, referred to as large MIMO or massive MIMO, has drawn increased attention as they enable significant throughput and coverage improvement in LTE-Advanced networks. However, deploying huge number of antennas in both transmitters and receivers was a great challenge in the past few years. Three-dimensional MIMO (3D MIMO is introduced as a promising technique in massive MIMO networks to enhance the cellular performance by deploying antenna elements in both horizontal and vertical dimensions. Radio propagation of user equipments (UE is considered only in horizontal domain by applying 2D beamforming. In this paper, a dynamic beamforming algorithm is proposed where vertical domain of antenna is fully considered and beamforming vector can be obtained according to UEs’ horizontal and vertical directions. Compared with the conventional 2D beamforming algorithm, throughput of cell edge UEs and cell center UEs can be improved by the proposed algorithm. System level simulation is performed to evaluate the proposed algorithm. In addition, the impacts of downtilt and intersite distance (ISD on spectral efficiency and cell coverage are explored.

  3. The development of optical microscopy techniques for the advancement of single-particle studies

    Marchuk, Kyle [Iowa State Univ., Ames, IA (United States)


    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  4. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress and reduces sperm motility in rats

    Maneesh Mailankot; Anil P Kunnath; Jayalekshmi, H; Bhargav Koduru; Rohith Valsalan


    INTRODUCTION: Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices. OBJECTIVE: The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality. MATERIALS AND METHODS: Male albino Wistar rats (10–12 weeks old) were exposed to RF-EMR from an active GSM (...

  5. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology

  6. Sophistication Techniques of Fourth Generations in Neoteric Mobile LTE and LTE-Advanced

    A. Z. Yonis


    Full Text Available Long Term Evolution (LTE-Advanced is a preliminary mobile communication standard formally submitted as a candidate for 4G systems to the ITU-T. LTE-A is being standardized by the 3rd Generation Partnership Project (3GPP as a major enhancement of the 3GPP Long Term Evolution (LTE-Release 8 standard, which proved to be sufficient to satisfy market‟s demand. The 3GPP group has been working on different aspects to improve LTE performance, where the purpose of the framework provided by LTE-Advanced, includes higher order MIMO, carrier aggregation (carriers with multiple components, peak data rate, and mobility. This paper presents a study on LTE evolution toward LTE-Advanced in terms of LTE enabling technologies (Orthogonal Frequency Division Multiplexing (OFDM and Multiple-Input Multiple-Output (MIMO, and also focuses on LTE- Advanced technologies MIMO enhancements for LTE-Advanced, Coordinated Multi Point transmission (CoMP.

  7. Transaction-neutral implanted data collection interface as EMR driver: a model for emerging distributed medical technologies.

    Lorence, Daniel; Sivaramakrishnan, Anusha; Richards, Michael


    Electronic Medical Record (EMR) and Electronic Health Record (EHR) adoption continues to lag across the US. Cost, inconsistent formats, and concerns about control of patient information are among the most common reasons for non-adoption in physician practice settings. The emergence of wearable and implanted mobile technologies, employed in distributed environments, promises a fundamentally different information infrastructure, which could serve to minimize existing adoption resistance. Proposed here is one technology model for overcoming adoption inconsistency and high organization-specific implementation costs, using seamless, patient controlled data collection. While the conceptual applications employed in this technology set are provided by way of illustration, they may also serve as a transformative model for emerging EMR/EHR requirements. PMID:20703915

  8. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    Samy, S.; Robinson, J.; Hays, M. D.


    threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m-3 (N=13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m-3) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time consuming preparation procedures while providing the advancement of selective mass determination that eliminates potential interferences associated with traditional fluorescence detection. This step forward in precise mass determination with the use of internal standardization, improves the confidence of compound identification. With the increasing focus on WSOC (including ON) characterization in the atmospheric science community, native detection by LC-MS (Q-TOF) will play a central role in determining the most direct approach to quantify an increasing fraction of the co-extracted polar organic compounds. Method application for further characterization of atmospheric ON will be discussed. Reference: Samy, S., Robinson, J., and M.D. Hays. "An Advanced LC-MS (Q-TOF) Technique for the Detection of Amino Acids in Atmospheric Aerosols", Analytical Bioanalytical Chemistry, 2011, DOI: 10.1007/s00216-011-5238-2

  9. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  10. Radio frequency electromagnetic radiation (RF-EMR from GSM (0.9/1.8GHz mobile phones induces oxidative stress and reduces sperm motility in rats

    Maneesh Mailankot


    Full Text Available INTRODUCTION: Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices. OBJECTIVE: The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality. MATERIALS AND METHODS: Male albino Wistar rats (10-12 weeks old were exposed to RF-EMR from an active GSM (0.9/1.8 GHz mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested. RESULTS: One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis. CONCLUSION: Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility.