WorldWideScience

Sample records for advanced clean coal

  1. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  2. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  3. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    International Nuclear Information System (INIS)

    1997-01-01

    Bechtel, together with Amax Research and Development Center (Amax R ampersand D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications, (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at

  4. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  5. Clean coal technology and advanced coal-based power plants

    International Nuclear Information System (INIS)

    Alpert, S.B.

    1991-01-01

    Clean Coal Technology is an arbitrary terminology that has gained increased use since the 1980s when the debate over acid raid issues intensified over emissions of sulfur dioxide and nitrogen oxides. In response to political discussions between Prime Minister Brian Mulroney of Canada and President Ronald Reagan in 1985, the US government initiated a demonstration program by the Department of Energy (DOE) on Clean Coal Technologies, which can be categorized as: 1. precombustion technologies wherein sulfur and nitrogen are removed before combustion, combustion technologies that prevent or lower emissions as coal is burned, and postcombustion technologies wherein flue gas from a boiler is treated to remove pollutants, usually transforming them into solids that are disposed of. The DOE Clean Coal Technology (CCT) program is being carried out with $2.5 billion of federal funds and additional private sector funds. By the end of 1989, 38 projects were under way or in negotiation. These projects were solicited in three rounds, known as Clean Coal I, II, and III, and two additional solicitations are planned by DOE. Worldwide about 100 clean coal demonstration projects are being carried out. This paper lists important requirements of demonstration plants based on experience with such plants. These requirements need to be met to allow a technology to proceed to commercial application with ordinary risk, and represent the principal reasons that a demonstration project is necessary when introducing new technology

  6. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  7. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  8. Clean utilization of coal

    International Nuclear Information System (INIS)

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  9. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  10. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  11. Engineering development of advance physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Smit, F.J.; Shields, G.L. [AMAX R& D Center/ENTECH Global Inc., Golden, CO (United States)

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  12. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  13. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  14. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    International Nuclear Information System (INIS)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  15. Clean coal technologies in Japan: technological innovation in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This brochure reviews the history clean coal technologies (CCT) in Japan and systematically describes the present state of CCT insofar. The brochure contains three parts. Part 1. CCT classifications; Part 2. CCT overview; and Part 3. Future outlook for CCT. The main section is part 2 which includes 1) technologies for coal resources development; 2) coal-fired power generation technologies - combustion technologies and gasification technologies; 3) iron making and general industry technologies; 4) multi-purpose coal utilization technologies - liquefaction technologies, pyrolysis technologies, powdering, fluidization, and co-utilisation technologies, and de-ashing and reforming technologies; 5) Environmental protection technologies - CO{sub 2} recovery technologies; flue gas treatment and gas cleaning technologies, and technologies to effectively use coal has; 6) basic technologies for advanced coal utilization; and 7) co-production systems.

  16. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  17. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  18. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  19. Final Report of the Advanced Coal Technology Work Group

    Science.gov (United States)

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  20. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  1. Controlling the cost of clean air - A new clean coal technology

    International Nuclear Information System (INIS)

    Kindig, J.K.; Godfrey, R.L.

    1991-01-01

    This article presents the authors' alternative to expensive coal combustion products clean-up by cleaning the coal, removing the sulfur, before combustion. Topics discussed include sulfur in coal and the coal cleaning process, the nature of a new coal cleaning technology, the impact on Clean Air Act compliance, and the economics of the new technology

  2. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  3. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  4. The development of clean coal technology is the main way to control of atmospheric pollution in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu Lixin; Xu Hong [Clean Coal Engineering & Research Center of Coal Industry (China)

    1999-11-01

    Atmospheric pollution in China and its causes are analysed. Power stations, industrial boilers and kilns and domestic coal combustion are the main pollution sources. Clean coal technologies are urgently needed. Main clean coal technologies which can improve the present situation of industrial coal combustion are coal cleaning, blending and briquetting; boiler retrofitting; advanced technologies to improve combustion efficiency and reduce pollution - fluidized bed combustion and pulverized coal desulfurization; and advanced desulfurization and dedusting technologies and equipment.

  5. Healy Clean Coal Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-09-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict

  6. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning...... itself, it is demonstrated that for a wide range of cleaning procedures and types of coal, chemical cleaning generally performs worse than combustion of the raw coals and physical cleaning using dense medium separation. These findings apply for many relevant impact categories, including climate change...

  7. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  8. Clean Coal Technology Demonstration Program: Program update 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  9. Cleaning and dewatering fine coal

    Science.gov (United States)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  10. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    International Nuclear Information System (INIS)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.; Marr, J.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO 2 emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  11. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  12. Development of advanced coal cleaning process; Kodo sekitan kaishitsu gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Osaka, S [Center for Coal Utilization, Japan, Tokyo (Japan); Akimoto, A; Yamashita, T [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    This paper aims to develop a clean coal production process which excellently removes environmental pollutant, is low-costed, and need no particular systems for distribution of products. The result of the development was described paying attention to column flotation which is a technology to high-efficiently select particulate regions, particulate heavy media cyclone, magnetic separation, and the basic design of the process into which those above were integrated. The two-stage selection process, which is an integration of column flotation and particulate heavy media cyclone into the conventional coal preparation equipment, can produce low-ash clean coal at high separation efficiency and also suppress the rise in processing cost. This process was also effective for removal of sulfur content and trace metal elements. The use of clean coal at power plant can be effective for not only the reduction in ash treatment amount, but the aspect of boiler operation characteristics such as heat transfer efficiency of boiler furnace wall, ash related troubles, loads of electrostatic precipitator, loads of flue gas desulfurization facilities. 17 figs., 5 tabs.

  13. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both the ash and sulfur contents of run-of-mine coals. The extent of cleaning depends on the liberation characteristics of the coal, which generally improve with reducing particle size. however, since most of the advanced technologies are wet processes, the clean coal product must be dewatered before it can be transported and burned in conventional boilers. This additional treatment step significantly increases the processing cost and makes the industrial applicability of these advanced technologies much less attractive. In order to avoid problems associated with fine coal dewatering, researchers at the Pittsburgh Energy Technology Center (PETC) developed a novel triboelectrostatic separation (TES) process that can remove mineral matter from dry coal. In this technique, finely pulverized coal is brought into contact with a material (such as copper) having a work function intermediate to that of the carbonaceous material and associated mineral matter. Carbonaceous particles having a relatively low work function become positively charged, while particles of mineral matter having significantly higher work functions become negatively charged. once the particles become selectively charged, a separation can be achieved by passing the particle stream through an electrically charged field. Details related to the triboelectrostatic charging phenomenon have been discussed elsewhere (Inculet, 1984).

  14. Development, testing, and demonstration of an optimal fine coal cleaning circuit

    International Nuclear Information System (INIS)

    Mishra, M.; Placha, M.; Bethell, P.

    1995-01-01

    The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb)

  15. Development, testing, and demonstration of an optimal fine coal cleaning circuit

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, M.; Placha, M.; Bethell, P. [and others

    1995-11-01

    The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb).

  16. The Clean Coal Technology Program: Options for SO2, NOx, and particulate control

    International Nuclear Information System (INIS)

    Strakey, J.P.; Hargis, R.; Eastman, M.L.; Santore, R.R.

    1992-01-01

    There are currently 42 active projects in the Clean Coal Technology Program. The Pittsburgh Energy Technology Center (PETC) is responsible for managing 30 of these projects: five projects under Clean Coal 1, ten projects under Clean Coal 2, nine projects under Clean Coal 3, and six projects under Clean Coal 4. This paper describes each of the PETC projects, including the technologies involved and the project status. Many of the projects will use advanced approaches to meet current and future requirements for particulate and air toxic emissions. Discussion of these aspects have been expanded in this summary paper to address the focus of this symposium. Additional information can be provided to interested particles either through DOE, the participant or the technology supplier. Numerous non-federal organizations including state and utility/industry research groups provide important co-funding and other support for these CCT projects. Space limitations prohibit listing them in this paper; however, a complete listing can be found in the Clean Coal Technology Demonstration Program Update 1990. Appendix A to this paper contains flow diagrams for all the projects

  17. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  18. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  19. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  20. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  1. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  2. Clean coal use in China: Challenges and policy implications

    International Nuclear Information System (INIS)

    Tang, Xu; Snowden, Simon; McLellan, Benjamin C.; Höök, Mikael

    2015-01-01

    Energy consumption in China is currently dominated by coal, a major source of air pollution and carbon emissions. The utilization of clean coal technologies is a likely strategic choice for China at present, however, although there have been many successes in clean coal technologies worldwide, they are not widely used in China. This paper examines the challenges that China faces in the implementation of such clean coal technologies, where the analysis shows that those drivers that have a negative bearing on the utilization of clean coal in China are mainly non-technical factors such as the low legal liability of atmospheric pollution related to coal use, and the lack of laws and mandatory regulations for clean coal use in China. Policies for the development of clean coal technologies are in their early stages in China, and the lack of laws and detailed implementation requirements for clean coal require resolution in order to accelerate China's clean coal developments. Currently, environmental pollution has gained widespread attention from the wider Chinese populace and taking advantage of this opportunity provides a space in which to regain the initiative to raise people’s awareness of clean coal products, and improve enterprises’ enthusiasm for clean coal. - Highlights: • Clean coal is not widely used in China due to many management issues. • Legal liability of pollution related with coal utilization is too low in China. • China is lack of laws and mandatory regulations for clean coal utilization. • It is difficult to accelerate clean coal utilization by incentive subsidies alone.

  3. Clean Coal Technology Programs: Program Update 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-01

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  4. Clean coal technology challenges for China

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J. [Tsinghua University, Beijing (China). Dept. of Thermal Engineering

    2001-01-01

    China is rich in coal reserves and also the largest coal producer and consumer in the world. Coal constitutes over 70% of the total energy consumption, some 86% of coal production is burned directly, which causes serious air pollution problems. However, based on China's specific energy structure, coal utilisation will remain the dominant means of energy usage and clean coal technology must be the way forward if the environmental problems are to be resolved. This article discusses China's Clean Coal Technology Program, its implementation, including the clean coal technologies being developed and introduced, with reference to the key R & D institutes for each of the coal-using sectors. The article is an edited version of the 2000 Robens Coal Science Lecture, delivered in London in October 2000. The China Coal Technology Program for the 9th Five-Year Plan (1996-2000) was approved in 1997. The technologies included in the Program considered in this article are in: coal washing and grading, coal briquette, coal water slurry; circulating fluidised bed technology; pressurised fluidised bed combined cycle; integrated gasification combined cycle; coal gasification, coal liquefaction and flue gas desulfurisation. 4 tabs.

  5. Report on Seminar on Clean Coal Technology '93; Clean coal technology kokusai seminar hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The program of the above clean coal technology (CCT) event is composed of 1) Coal energy be friendly toward the earth, 2) Research on CCT in America (study of coal structure under electron microscope), and 3) Research on CCT in Australia (high intensity combustion of ultrafine coal particles in a clean way). Remarks under item 1) are mentioned below. As for SO{sub 2} emissions base unit, Japan's is 1 at its coal-fired thermal power station while that of America is 7.8. As for the level of SO{sub 2}/NOx reduction attributable to coal utilization technologies, it rises in the order of flue gas desulfurizer-aided pulverized coal combustion, normal pressure fluidized bed combustion, pressurized fluidized bed combustion, integrated coal gasification combined cycle power generation, and integrated coal gasification combined cycle power generation/fuel cell. As for the level of CO2 reduction attributable to power generation efficiency improvement, provided that Japan's average power generation efficiency is 39% and if China's efficiency which is now 28% is improved to be similar to that of Japan, there will be a 40% reduction in CO2 emissions. Under item 2) which involves America's CCT program, reference is made to efforts at eliminating unnecessary part from the catalytic process and at reducing surplus air, to the export of CCT technology, and so forth. Under item 3), it is stated that coal cleaning may govern reaction efficiency in a process of burning coal particles for gasification. (NEDO)

  6. Clean Coal Day '93. Hokkaido Seminar; Clean Coal Day '93. Hokkaido Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The titles of the lectures in this record are 1) Coal energy be friendly toward the earth, 2) Future development of coal-fired thermal power generation, 3) Current status of research and development of coalbed methane in the U.S., and 4) PFBC (pressurized fluidized bed combustion combined cycle) system. Under title 1), the reason is explained why coal is back as an energy source and is made much of. The actualities of coal being labelled as a dirty energy source are explained. The rapid growth of demand for coal in Asia is commented on and what is expected of clean coal technology is stated. Under title 2), it is predicted that atomic energy, LNG (liquefied natural gas), and coal will be the main energy sources for electric power in Japan. Under title 3), it is stated that 10% of America's total amount of methane production is attributable to coal mining, that methane is the cleanest of the hydrocarbon fuels although it is a pollution source from an environmental point of view, and that it is therefore reasonable to have its collection and utilization placed in the domain of clean coal technology. Under title 4), a PFBC system to serve as the No. 3 machine for the Tomahigashi-Atsuma power plant is described. (NEDO)

  7. CoalFleet for tomorrow. An industry initiative to accelerate the deployment of advanced coal-based generation plants

    Energy Technology Data Exchange (ETDEWEB)

    Parkes, J.; Holt, N.; Phillips, J. [Electric Power Research Institute (United States)

    2006-07-01

    The industry initiative 'CoalFleet for tomorrow' was launched in November 2004 to accelerate the deployment and commercialization of clean, efficient, advanced coal power systems. This paper discusses the structure of CoalFleet and its strategy for reducing the cost, leadtime and risk of deploying advanced coal technologies such as combined-cycle power plants. 6 figs.

  8. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  9. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  10. Industrial use of coal and clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Leibson, I; Plante, J J.M.

    1990-06-01

    This report builds upon two reports published in 1988, namely {ital The use of Coal in the Industrial, Commercial, Residential and Transportation Sectors} and {ital Innovative Clean Coal Technology Deployment}, and provides more specific recommendations pertaining to coal use in the US industrial sector. The first chapter addresses industrial boilers which are common to many industrial users. The subsequent nine chapters cover the following: coke, iron and steel industries; aluminium and other metals; glass, brick, ceramic, and gypsum industries; cement and lime industries; pulp and paper industry; food and kindred products; durable goods industry; textile industry; refining and chemical industry. In addition, appendices supporting the contents of the study are provided. Each chapter covers the following topics as applicable: energy overview of the industry sector being discussed; basic processes; foreign experience; impediments to coal use; incentives that could make coal a fuel of choice; current and projected use of clean coal technology; identification of coal technology needs; conclusions; recommendations.

  11. Clean coal technology: The new coal era

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  12. Clean coal technology roadmap: issues paper

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2003-07-01

    The need for the Clean Coal Technology Roadmap is based on the climate change threat, Canada's commitment to the Kyoto protocol, and the need to keep options open in determining the future position of coal in Canada's energy mix. The current role of coal, issues facing coal-fired utilities, and greenhouse gas emission policies and environmental regulations are outlined. The IEA energy outlook (2002) and a National Energy Board draft concerning Canada's energy future are outlined. Environmental, market, and technical demands facing coal, technology options for existing facilities, screening new developments in technology, and clean coal options are considered. 13 figs. 5 tabs.

  13. New stage of clean coal technology in Japan; Clean coal technology no aratana tenkai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Y [Agency of Natural Resources and Energy, Tokyo (Japan)

    1996-09-01

    The paper described the positioning and new development of clean coal technology. Coal is an important resource which supplies approximately 30% of the energy consumed in all the world. In the Asian/Pacific region, especially, a share of coal in energy is high, around 60% of the world, and it is indispensable to continue using coal which is abundantly reserved. Japan continues using coal as an important energy among petroleum substituting energies taking consideration of the global environment, and is making efforts for development and promotion of clean coal technology aiming at further reduction of environmental loads. Moreover, in the Asian region where petroleum depends greatly upon outside the region, it is extremely important for stabilization of Japan`s energy supply that coal producing countries in the region promote development/utilization of their coal resources. For this, it is a requirement for Japan to further a coal policy having an outlook of securing stable coal supply/demand in the Asian region. 6 figs., 2 tabs.

  14. Appalachian clean coal technology consortium

    International Nuclear Information System (INIS)

    Kutz, K.; Yoon, Roe-Hoan

    1995-01-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A ampersand E firms working in the Appalachian coal fields. This approach is consistent with President Clinton's initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force

  15. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  16. Dynamics of clean coal-fired power generation development in China

    International Nuclear Information System (INIS)

    Yue, Li

    2012-01-01

    Coal-fired power technology will play an important role over a long period in China. Clean coal-fired power technology is essential for the global GHG emission reduction. Recently, advanced supercritical (SC)/ultra-supercritical (USC) technology has made remarkable progress in China and greatly contributed to energy saving and emission reduction. This study analyzes the dynamics of SC/USC development in China from an integrated perspective. The result indicates that, besides the internal demand, the effective implementation of domestic public policy and technology transfer contributed greatly to the development of SC/USC technology in China. In future low carbon scenario, SC/USC coal-fired power technology might still be the most important power generation technology in China until 2040, and will have a significant application prospect in other developing countries. The analysis makes a very useful introduction for other advanced energy technology development, including a renewable energy technology, in China and other developing countries. - Highlights: ► The US/USC technology is the key clean coal-fired power technology in current China. ► The domestic policy and technology transfer largely contributed to their development. ► This makes a useful introduction for the development of renewable energy in China.

  17. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  18. Self-Scrubbing Coal -- an integrated approach to clean air

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K.E. [Custom Coals Corp., Pittsburgh, PA (United States)

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.

  19. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.

    1994-01-01

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  20. Clean coal technology

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1990-01-01

    One of the major technology challenges in the next decade will be to develop means of using coal imaginatively as a source of chemicals and in a more energy-efficient manner. The Clean Air Act will help to diminish the acid rain but will not reduce CO 2 emissions. The Department of Energy (DOE) is fostering many innovations that are likely to have a positive effect on coal usage. Of the different innovations in the use of coal fostered by DOE, two are of particular interest. One is the new pressurized fluid bed combustion (PFBC) combined-cycle demonstration. The PFBC plant now becoming operational can reduce SO 2 emissions by more than 90% and NO x emissions by 50-70%. A second new technology co-sponsored by DOE is the Encoal mild coal gasification project that will convert a sub-bituminous low-BTU coal into a useful higher BTU solid while producing significant amounts of a liquid fuel

  1. Clean utilization of low-rank coals for low-cost power generation

    International Nuclear Information System (INIS)

    Sondreal, E.A.

    1992-01-01

    Despite the unique utilization problems of low-rank coals, the ten US steam electric plants having the lowest operating cost in 1990 were all fueled on either lignite or subbituminous coal. Ash deposition problems, which have been a major barrier to sustaining high load on US boilers burning high-sodium low-rank coals, have been substantially reduced by improvements in coal selection, boiler design, on-line cleaning, operating conditions, and additives. Advantages of low-rank coals in advanced systems are their noncaking behavior when heated, their high reactivity allowing more complete reaction at lower temperatures, and the low sulfur content of selected deposits. The principal barrier issues are the high-temperature behavior of ash and volatile alkali derived from the coal-bound sodium found in some low-rank coals. Successful upgrading of low-rank coals requires that the product be both stable and suitable for end use in conventional and advanced systems. Coal-water fuel produced by hydrothermal processing of high-moisture low-rank coal meets these criteria, whereas most dry products from drying or carbonizing in hot gas tend to create dust and spontaneous ignition problems unless coated, agglomerated, briquetted, or afforded special handling

  2. Separation of mercury in industrial processes of Polish hard steam coals cleaning

    Directory of Open Access Journals (Sweden)

    Wierzchowski Krzysztof

    2016-01-01

    Full Text Available Coal use is regarded as one of main sources of anthropogenic propagation of mercury in the environment. The coal cleaning is listed among methods of the mercury emission reduction. The article concerns the statistical assessment of mercury separation between coal cleaning products. Two industrial processes employed in the Polish coal preparation plants are analysed: coal cleaning in heavy media vessels and coal cleaning in jigs. It was found that the arithmetic mean mercury content in coarse and medium coal size fractions for clean coal from heavy media vessels, amounts 68.9 μg/kg, and most of the results lay below the mean value, while for rejects it amounts 95.5 μg/kg. It means that it is for around 25 μg/kg greater than in the clean coal. The arithmetic mean mercury content in raw coal smalls amounts around 118 mg/kg. The cleaning of smalls in jigs results in clean coal and steam coal blends characterized by mean mercury content 96.8 μg/kg and rejects with mean mercury content 184.5 μg/kg.

  3. Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

  4. Problems of clean coals production as a sources of clean energy generation; Problemy produkcji czystych wegli jako zrodlo wytwarzania czystej energii

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, W. [Polish Academy of Sciences, Krakow (Poland). Mineral and Energy Economy Institute

    2004-07-01

    The paper advises of clean coal technology programme objectives. Issues connected with clean coals preparation for combustion have been discussed. The quality of steam fine coals has been presented, including those used in the commercial power industry. A small supply of 'clean coals' has been started in Poland, related however to a limited demand. Factors affecting the reduction in clean coal production have been discussed. The fact that there are no significant reasons to constrain supplies of clean coals has been emphasised. The quality of coal in deposits is very good, and the condition of preparation enables production of clean coal. Clean energy generation from clean coal requires only cooperation between the hard coal mining industry and the commercial power industry, passing over particular sectoral interests. 15 refs.

  5. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  6. Combustion and environmental performance of clean coal end products

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  7. Clean coal technology: Export finance programs

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

  8. Advanced control - technologies for suppressing harmful emission in lignitic coal-fired power generation

    International Nuclear Information System (INIS)

    Mir, S.; Hai, S.M.A.

    2000-01-01

    The production of sufficient amount of indigenous energy is a prerequisite for the prosperity of a nation. Pakistan's energy demand far exceeds its indigenous supplies. A cursory look at the energy situation in Pakistan reveals that there is an urgent need for the development of its energy resources. In this regard, coal can play a key role if its problems of high-sulfur and high ash can be rectified through the adoption adaptation of advanced technologies, like (I) clean coal technologies, and (II) control technologies. A review on clean coal technologies for utilization of lignitic coals has already been published and the present article describes the effect of harmful emissions from the combustion of high sulfur coals, like the ones found in Pakistan and their control through advanced control technologies, to make a significant contribution in the total energy economics of Pakistan. (author)

  9. The Healy Clean Coal Project: Design verification tests

    International Nuclear Information System (INIS)

    Guidetti, R.H.; Sheppard, D.B.; Ubhayakar, S.K.; Weede, J.J.; McCrohan, D.V.; Rosendahl, S.M.

    1993-01-01

    As part of the Healy Clean Coal Project, TRW Inc., the supplier of the advanced slagging coal combustors, has successfully completed design verification tests on the major components of the combustion system at its Southern California test facility. These tests, which included the firing of a full-scale precombustor with a new non-storage direct coal feed system, supported the design of the Healy combustion system and its auxiliaries performed under Phase 1 of the project. Two 350 million BTU/hr combustion systems have been designed and are now ready for fabrication and erection, as part of Phase 2 of the project. These systems, along with a back-end Spray Dryer Absorber system, designed and supplied by Joy Technologies, will be integrated with a Foster Wheeler boiler for the 50 MWe power plant at Healy, Alaska. This paper describes the design verification tests and the current status of the project

  10. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately

  11. Clean Coal Technology Programs: Completed Projects (Volume 2)

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  12. State perspectives on clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  13. Coal-water fuels - a clean coal solution for Eastern Europe

    International Nuclear Information System (INIS)

    Ljubicic, B.; Willson, W.; Bukurov, Z.; Cvijanovic, P.; Stajner, K.; Popovic, R.

    1993-01-01

    Eastern Europe currently faces great economic and environmental problems. Among these problems is energy provision. Coal reserves are large but cause pollution while oil and gas need to be used for export. Formal 'clean coal technologies' are simply too expensive to be implemented on a large scale in the current economic crisis. The promised western investment and technological help has simply not taken place, western Europe must help eastern Europe with coal technology. The cheapest such technology is coal-water fuel slurry. It can substitute for oil, but research has not been carried out because of low oil prices. Coal-water fuel is one of the best methods of exploiting low rank coal. Many eastern European low rank coals have a low sulfur content, and thus make a good basis for a clean fuel. Italy and Russia are involved in such a venture, the slurry being transported in a pipeline. This technology would enable Russia to exploit Arctic coal reserves, thus freeing oil and gas for export. In Serbia the exploitation of sub-Danube lignite deposits with dredging mining produced a slurry. This led to the use and development of hot water drying, which enabled the removal of many of the salts which cause problems in pulverized fuel combustion. The system is economic, the fuel safer to transport then oil, either by rail or in pipelines. Many eastern European oil facilities could switch. 24 refs

  14. Clean coal technology demonstration program: Program update 1996-97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  15. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  16. Regional trends in the take-up of clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

    1997-12-31

    Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

  17. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  18. Clean coal technology. Coal utilisation by-products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  19. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  20. Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective

    Science.gov (United States)

    Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha

    2017-07-01

    Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.

  1. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This document contains papers presented at The advanced Coal-Fired Power Systems 1995 Review Meeting. Research was described in the areas of: integrated gasification combined cycle technology; pressurized fluidized-bed combustion; externally fired combined cycles; a summary stauts of clean coal technologies; advanced turbine systems and hot gas cleanup. Individual projects were processed separately for the United States Department of Energy databases.

  2. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  3. Clean Coal Technology Programs: Program Update 2003 (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  4. Environmental issues affecting clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  5. 2nd clean coal & carbon capture - securing the future. Conference documentation and delegate information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The presentations covered: policies and the regulatory environment - creating opportunities for clean coal technologies; mastering the economics of clean coal - gaining finance and investment for key projects; international initiatives in clean coal technologies; power plant developments; broader uses for coal; and carbon capture and storage.

  6. Fossil fuels. Commercializing clean coal technologies

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Kirk, Roy J.; Clark, Marcus R. Jr.; Greene, Richard M.; Buncher, Carole S.; Kleigleng, Robert G.; Imbrogno, Frank W.

    1989-03-01

    Coal, an abundant domestic energy source, provides 25 percent of the nation's energy needs, but its use contributes to various types of pollution, including acid rain. The Department of Energy (DOE) has a Clean Coal Technology (CCT) program whose goal is to expand the use of coal in an environmentally safe manner by contributing to the cost of projects demonstrating the commercial applications of emerging clean coal technologies. Concerned about the implementation of the CCT program, the Chairman, Subcommittee on Energy and Power, House Committee on Energy and Commerce, requested GAO to report on (1) DOE's process of negotiating cooperative agreements with project sponsors, (2) changes DOE has made to the program, (3) the status of funded projects, and (4) the interrelationship between acid rain control proposals and the potential commercialization of clean coal technologies. Under the CCT program, DOE funds up to 50 percent of the cost of financing projects that demonstrate commercial applications of emerging clean coal technologies. DOE has conducted two solicitations for demonstration project proposals and is planning a third solicitation by May 1989. The Congress has appropriated $400 million for the first solicitation, or round one of the program, $575 million for round two, and $575 million for round three, for a total of $1.55 billion. For the round-one solicitation, DOE received 51 proposals from project sponsors. As of December 31, 1988, DOE had funded nine projects and was in the process of negotiating cooperative financial assistance agreements with sponsors of four projects. In September 1988, DOE selected 16 round-two projects from 55 proposals submitted and began the process of negotiating cooperative agreements with the project sponsors. The Congress has debated the need to reduce acid rain-causing emissions associated with fossil fuel combustion. The 100th Congress considered but did not enact about 20 acid rain control bills. On February 9, 1989

  7. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  8. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  9. The clean coal initiative: An appropriate response to complex environmental issues

    International Nuclear Information System (INIS)

    Miller, C.L.

    1991-01-01

    The paper discusses the Department of Energy's Clean Coal Technology Program that can offer significant benefits when these technologies are used for power production, pollution control or the conversion of coal into other alternative energy products. The paper describes the status of the program, the 35 projects currently in the program, and the environmental role of clean coal technologies

  10. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  11. Innovation in clean coal technologies. Empirical evidence from firm-level patent data

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Juergen [Koeln Univ. (Germany). Dept. of Economics; Koeln Univ. (Germany). Energiewirtschaftliches Inst.; Wetzel, Heike [Kassel Univ. (Germany). Inst. of Economics

    2016-02-15

    This article empirically analyzes supply-side and demand-side factors expected to a.ect innovation in clean coal technologies. Patent data from 93 national and international patent offices is used to construct new firm-level panel data on 3,648 clean coal innovators over the time period 1978 to 2009. The results indicate that on the supply-side a firm¡¯s history in clean coal patenting and overall propensity to patent positively a.ects clean coal innovation. On the demand-side we find strong evidence that environmental regulation of emissions, that is CO{sub 2}, NO{sub X} and SO{sub 2}, induces innovation in both efficiency improving combustion and after pollution control technologies.

  12. Clean Coal Technologies - Accelerating Commerical and Policy Drivers for Deployment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Coal is and will remain the world's most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry's considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol's Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbon constrained world.

  13. Clean Coal Technologies - Accelerating Commerical and Policy Drivers for Deployment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Coal is and will remain the world's most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry's considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol's Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbon constrained world.

  14. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  15. Insight conference reports : proceedings of the clean coal summit : business strategies, solutions and risk management in uncertain regulatory times

    International Nuclear Information System (INIS)

    2006-01-01

    This conference was held to examine business options and risk management solutions in clean coal technologies. The conference was attended by coal industry representatives as well as members of both governmental and non-governmental agencies, who examined recent energy regulations and policies as well as a variety of issues related to sustainable energy development. Issues related to the attrition of Canada's older power plants were discussed and new coal gasification technologies were reviewed. The conference also addressed issues concerning public opinion and First Nations people. Conventional coal energy options were discussed along with advancements in emissions control technologies with particular reference to the role of clean coal science and technology. The conference featured 14 presentations, of which 4 have been catalogued separately for inclusion in this database. refs., tabs., figs

  16. 5. annual clean coal technology conference: powering the next millennium. Vol.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increased demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains papers presented at the plenary session and panel sessions on; international markets for clean coal technologies (CCTs); role of CCTs in the evolving domestic electricity market; environmental issues affecting CCT deployment; and CCT deployment from today into the next millennium. In addition papers presented at the closing plenary session on powering the next millennium--CCT answers the challenge are included. Selected papers have been processed for inclusion in the Energy Science and Technology database.

  17. Combustion characteristics of intensively cleaned coal fractions. Effect of mineral matter

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Fuente, E.; Pis, J.J. [Inst. Nacional de Carbon, Oviedo (Spain); Ivatt, S. [ETSU, Harwell, Didcot (United Kingdom)

    1997-12-31

    The purpose of this work has been to assess the effect that intensive coal cleaning exerts on the combustion behaviour of different density-separated coal fractions. Samples with ash contents varying from 39% for the raw coal, to 2% for the cleanest fraction were obtained after density separation. Temperature-programmed combustion and isothermal gasification in air were used to measure the reactivities of the parent coal and the cleaned fractions. Coal and char reactivities increased with increasing ash content of the samples. Thermal analysis-mass spectrometry of the low-temperature ashes was also carried out in order to study the reactions of coal minerals under combustion conditions. (orig.)

  18. Second annual clean coal technology conference: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-09

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately.

  19. Clean coal: Global opportunities for small businesses

    International Nuclear Information System (INIS)

    1998-01-01

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world's most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market

  20. Clean coal: Global opportunities for small businesses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.

  1. Clean Coal Technology Demonstration Program: Program update 1991 (as of December 31, 1991)

    International Nuclear Information System (INIS)

    1992-02-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of large-scale ''showcase'' facilities built across the country. The program takes the most promising advanced coal-based technologies and moves them into the commercial marketplace through demonstration. These demonstrations are on a scale large enough to generate all the data, from design, construction and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The CCT Program has been identified in the National Energy Strategy as major initiative supporting the strategy's overall goals to: increase efficiency of energy use; secure future energy supplies; enhance environmental quality; fortify foundations. The technologies being demonstrated under the CCT Program when commercially available will enable coal to reach its full potential as a source of energy for the nation and the international marketplace. The goal of the program is to furnish the US and international energy marketplaces with a number of advanced, highly efficient, and environmentally acceptable coal-using technologies

  2. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z; Morikawa, M; Fujii, Y [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  3. Asia's coal and clean coal technology market potential

    International Nuclear Information System (INIS)

    Johnson, C.J.; Binsheng Li

    1992-01-01

    The Asian region is unique in the world in having the highest economic growth rate, the highest share of coal in total primary energy consumption and the highest growth rate in electricity generation capacity. The outlook for the next two decades is for accelerated efforts to control coal related emissions of particulates and SO 2 and to a lessor extent NO x and CO 2 . Only Japan has widespread use of Clean Coal Technologies (CCTs) however a number of economies have plans to install CCTs in future power plants. Only CCTs for electricity generation are discussed, and are defined for the purpose of this paper as technologies that substantially reduce SO 2 and/or NO x emissions from coal-fired power plants. The main theses of this paper are that major increases in coal consumption will occur over the 1990-2010 period, and this will be caccompanied by major increases in coal related pollution in some Asian economies. Coal fired electricity generation is projected to grow at a high rate of about 6.9 percent per year over the 1990-2010 period. CCTs are projected to account for about 150 GW of new coal-fired capacity over the 1990-2010 period of about one-third of all new coal-fired capacity. A speculative conclusion is that China will account for the largest share of CCT additions over the 1990-2010 period. Both the US and Japan have comparative advantages that might be combined through cooperation and joint ventures to gain a larger share of the evolving CCT market in Asia. 5 refs., 7 figs., 4 tabs

  4. The role of clean coal technologies in post-2000 power generation

    International Nuclear Information System (INIS)

    Salvador, L.A.; Bajura, R.A.; Mahajan, K.

    1994-01-01

    A substantial global market for advanced power systems is expected to develop early in the next century for both repowering and new capacity additions, Although natural gas-fueled systems, such as gas turbines, are expected to dominate in the 1990's, coal-fueled systems are expected to emerge in the 2000's as systems of choice for base-load capacity because of coal's lower expected cost. Stringent environmental regulations dictate that all advanced power systems must be clean, economical, and efficient in order to meet both the environmental and economic performance criteria of the future. Recognizing these needs, the DOE strategy is to carry out an effective RD ampersand D program, in partnership with the private sector, to demonstrate these technologies for commercial applications in the next century. These technologies are expected to capture a large portion of the future power generation market. The DOE: expects that, domestically, advanced power systems products will be selected on the basis of varying regional needs and the needs of individual utilities. A large international demand is also expected for the new products, especially in developing nations

  5. Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?

    International Nuclear Information System (INIS)

    Glomsroed, Solveig; Wei Taoyuan

    2005-01-01

    China is a dominant energy consumer in global context and current energy forecasts emphasise that China's future energy consumption also will rely heavily on coal. The coal use is the major source of the greenhouse gas CO 2 and particles causing serious health damage. This paper looks into the question if coal washing might work as low cost strategy for both CO 2 and particle emission reductions. Coal washing removes dirt and rock from raw coal, resulting in a coal product with higher thermal energy and less air pollutants. Coal cleaning capacity has so far not been developed in line with the market potential. In this paper an emerging market for cleaned coal is studied within a CGE model for China. The macro approach catches the repercussions of coal cleaning through increased energy efficiency, lower coal transportation costs and crowding out effect of investments in coal washing plants. Coal cleaning stimulates economic growth and reduces particle emissions, but total energy use, coal use and CO 2 emissions increase through a rebound effect supported by the vast reserve of underemployed labourers. A carbon tax on fossil fuel combustion has a limited effect on total emissions. The reason is a coal leakage to tax exempted processing industries

  6. The NOXSO clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P. [NOXSO Corp., Bethel Park, PA (United States)

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  7. The Healy clean coal project: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.B.; McCrohan, D.V. [Alaska Industrial Development and Export Authority, Anchorage, AK (United States)

    1997-12-31

    The Healy Clean Coal Project, selected by the US Department of Energy under Round III of the Clean Coal Technology Program is currently in construction. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the US Department of Energy. Construction is scheduled to be completed in August of 1997, with startup activity concluding in December of 1997. Demonstration, testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of NOx, SO{sub 2} and particulates from this 50 megawatt plant are expected to be significantly lower than current standards. The project status, its participants, a description of the technology to be demonstrated, and the operational and performance goals of this project are presented.

  8. Analysis of the market penetration of clean coal technologies and its impacts in China's electricity sector

    International Nuclear Information System (INIS)

    Wang, Hao; Nakata, Toshihiko

    2009-01-01

    This paper discusses policy instruments for promoting the market penetration of clean coal technologies (CCTs) into China's electricity sector and the evaluation of corresponding effects. Based on the reality that coal will remain the predominant fuel to generate electricity and conventional pulverized coal boiler power plants have serious impacts on environment degradation, development of clean coal technologies could be one alternative to meet China's fast growing demand of electricity as well as protect the already fragile environment. A multi-period market equilibrium model is applied and an electricity model of China is established to forecast changes in the electricity system up to 2030s. Three policy instruments: SO 2 emission charge, CO 2 emission charge and implementing subsidies are considered in this research. The results show that all instruments cause a significant shift in China's electricity structure, promote CCTs' competitiveness and lead China to gain great benefit in both resource saving and environment improvement. Since resource security and environment degradation are becoming primary concerns in China, policies that could help to gain generations' market share of advanced coal-based technologies such as CCTs' is suitable for the current situation of China's electricity sector. (author)

  9. Clean coal technologies: Research, development, and demonstration program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  10. Modeling technological learning and its application for clean coal technologies in Japan

    International Nuclear Information System (INIS)

    Nakata, Toshihiko; Sato, Takemi; Wang, Hao; Kusunoki, Tomoya; Furubayashi, Takaaki

    2011-01-01

    Estimating technological progress of emerging technologies such as renewables and clean coal technologies becomes important for designing low carbon energy systems in future and drawing effective energy policies. Learning curve is an analytical approach for describing the decline rate of cost and production caused by technological progress as well as learning. In the study, a bottom-up energy-economic model including an endogenous technological learning function has been designed. The model deals with technological learning in energy conversion technologies and its spillover effect. It is applied as a feasibility study of clean coal technologies such as IGCC (Integrated Coal Gasification Combined Cycle) and IGFC (Integrated Coal Gasification Fuel Cell System) in Japan. As the results of analysis, it is found that technological progress by learning has a positive impact on the penetration of clean coal technologies in the electricity market, and the learning model has a potential for assessing upcoming technologies in future.

  11. Clean Coal Technologies: Accelerating Commercial and Policy Drivers for Deployment [Russian Version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Coal is and will remain the world’s most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry’s considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol’s Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbonconstrained world.

  12. Combustion behaviour of ultra clean coal obtained by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    F. Rubiera; A. Arenillas; B. Arias; J.J. Pis; I. Suarez-Ruiz; K.M. Steel; J.W. Patrick [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2003-10-01

    The increasing environmental concern caused by the use of fossil fuels and the concomitant need for improved combustion efficiency is leading to the development of new coal cleaning and utilisation processes. However, the benefits achieved by the removal of most mineral matter from coal either by physical or chemical methods can be annulled if poor coal combustibility characteristics are attained. In this work a high volatile bituminous coal with 6% ash content was subjected to chemical demineralisation via hydrofluoric and nitric acid leaching, the ash content of the clean coal was reduced to 0.3%. The original and treated coals were devolatilised in a drop tube furnace and the structure and morphology of the resultant chars was analysed by optical and scanning electron microscopies. The reactivity characteristics of the chars were studied by isothermal combustion tests in air at different temperatures in a thermogravimetric system. Comparison of the combustion behaviour and pollutant emissions of both coals was conducted in a drop tube furnace operating at 1000{sup o}C. The results of this work indicate that the char obtained from the chemically treated coal presents very different structure, morphology and reactivity behaviour than the char from the original coal. The changes induced by the chemical treatment increased the combustion efficiency determined in the drop tube furnace, in fact higher burnout levels were obtained for the demineralised coal.

  13. Coal and clean coal technology: challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, Andrew [IEA Clean Coal Centre, London (United Kingdom)

    2013-07-01

    Globally, there is a growing concern about fuel diversity and security of supply, particularly with regard to oil and natural gas. In contrast, coal is available from a much wider range of sources and has greater price stability. Consequently, coal use is increasing rapidly, and by 2030 may well reach a level of more than 4,500 Mtoe, corresponding to close to a doubling of current levels. However, at the same time, tightening regulations will require better solutions for achieving environmental compliance, for which coal has a number of key issues to address. Most of the coal will be used in the power generation sector. Consequently, the key research challenges are to develop and deploy methods by which coal can be used cleanly, efficiently, and in a sustainable way. These include improvements to existing coal utilisation technologies, particularly to improve operational flexibility and availability, while reducing energy use through higher efficiencies. There is an increasing need to ensure improved emissions control, with the emphasis on achieving ever-lower emissions of particulates, SO{sub 2} and NO{sub x} while also introducing control of trace species, particularly mercury. Alongside this, a key challenge is the integration of techniques that can capture CO{sub 2} then transport and store it within secure geological formations, thereby resulting in near zero emissions of CO{sub 2}. From a power plant perspective, the need is to achieve such integration while minimising any adverse impact on power plant efficiency, performance of existing emissions control systems, operational flexibility and availability. At the same time, means to minimize the additional costs associated with such technology must be established.

  14. Distribution Route Planning of Clean Coal Based on Nearest Insertion Method

    Science.gov (United States)

    Wang, Yunrui

    2018-01-01

    Clean coal technology has made some achievements for several ten years, but the research in its distribution field is very small, the distribution efficiency would directly affect the comprehensive development of clean coal technology, it is the key to improve the efficiency of distribution by planning distribution route rationally. The object of this paper was a clean coal distribution system which be built in a county. Through the surveying of the customer demand and distribution route, distribution vehicle in previous years, it was found that the vehicle deployment was only distributed by experiences, and the number of vehicles which used each day changed, this resulted a waste of transport process and an increase in energy consumption. Thus, the mathematical model was established here in order to aim at shortest path as objective function, and the distribution route was re-planned by using nearest-insertion method which been improved. The results showed that the transportation distance saved 37 km and the number of vehicles used had also been decreased from the past average of 5 to fixed 4 every day, as well the real loading of vehicles increased by 16.25% while the current distribution volume staying same. It realized the efficient distribution of clean coal, achieved the purpose of saving energy and reducing consumption.

  15. Coal and public perceptions

    International Nuclear Information System (INIS)

    Porter, R.C.

    1993-01-01

    The Department of Energy's (DOE) clean coal outreach efforts are described. The reason why clean coal technology outreach must be an integral part of coal's future is discussed. It is important that we understand the significance of these advances in coal utilization not just in terms of of hardware but in terms of public perception. Four basic premises in the use of coal are presented. These are: (1) that coal is fundamentally important to this nation's future; (2) that, despite premise number 1, coal's future is by no means assured and that for the last 10 years, coal has been losing ground; (3) that coal's future hinges on the public understanding of the benefits of the public's acceptance of advanced clean coal technology; and (4) hat public acceptance of clean coal technology is not going to be achieved through a nationwide advertising program run by the Federal government or even by the private sector. It is going to be gained at the grassroots level one community at a time, one plant at a time, and one referendum at a time. The Federal government has neither the resources, the staff, nor the mandate to lead the charge in those debates. What is important is that the private sector step up to the plate as individual companies and an individual citizens working one-one-one at the community level, one customer, one civic club, and one town meeting at a time

  16. Demonstration of advanced combustion NO(sub X) control techniques for a wall-fired boiler. Project performance summary, Clean Coal Technology Demonstration Program

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The project represents a landmark assessment of the potential of low-NO(sub x) burners, advanced overtire air, and neural-network control systems to reduce NO(sub x) emissions within the bounds of acceptable dry-bottom, wall-fired boiler performance. Such boilers were targeted under the Clean Air Act Amendments of 1990 (CAAA). Testing provided valuable input to the Environmental Protection Agency ruling issued in March 1994, which set NO(sub x) emission limits for ''Group 1'' wall-fired boilers at 0.5 lb/10(sup 6) Btu to be met by January 1996. The resultant comprehensive database served to assist utilities in effectively implementing CAAA compliance. The project is part of the U.S. Department of Energy's Clean Coal Technology Demonstration Program established to address energy and environmental concerns related to coal use. Five nationally competed solicitations sought cost-shared partnerships with industry to accelerate commercialization of the most advanced coal-based power generation and pollution control technologies. The Program, valued at over$5 billion, has leveraged federal funding twofold through the resultant partnerships encompassing utilities, technology developers, state governments, and research organizations. This project was one of 16 selected in May 1988 from 55 proposals submitted in response to the Program's second solicitation. Southern Company Services, Inc. (SCS) conducted a comprehensive evaluation of the effects of Foster Wheeler Energy Corporation's (FWEC) advanced overfire air (AOFA), low-NO(sub x) burners (LNB), and LNB/AOFA on wall-fired boiler NO(sub x) emissions and other combustion parameters. SCS also evaluated the effectiveness of an advanced on-line optimization system, the Generic NO(sub x) Control Intelligent System (GNOCIS). Over a six-year period, SCS carried out testing at Georgia Power Company's 500-MWe Plant Hammond Unit 4 in Coosa, Georgia. Tests proceeded in a logical sequence using rigorous statistical analyses to

  17. Ninth annual international Pittsburgh coal conference - proceedings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Over 200 papers are presented under the following headings: coal preparation; Clean Coal Technology Program status; pre- and post-utilization processing; advanced conversion technologies; integrated gasification combined cycle; indirect liquefaction; advanced liquefaction process development; conversion processes; coal - from a user's perspective; issues associated with coal use in heat engines; fundamentals of combustion; advanced combustion systems; low quality fuel applications/fluidised beds; combustion systems; ash and sludge disposal/utilization; developing SO 2 /NO x control technologies; technical overview of air toxics; scientific, economic and policy perspectives on global climate change; Clean Air Act compliance strategies; environmental policy/technology; spontaneous combustion; and special topics

  18. Study on the flotation technology for deep-cleaning of coal slime

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xiao-heng; Shan Xiao-yun; Jiang He-jin; Li Xiang-li [China University of Mining and Technology, Beijing (China). School of Chemical and Environmental Engineering

    2006-07-01

    The paper introduced the basic principle and special features of deep-cleaning of coal slime by flotation, first, separating the slime by conventional flotation to give a relatively low ash concentrate, a tailing containing an ash as high as possible, followed by flocculation-flotation to recover additional low ash concentrate. The regressive release flotation test and microphoto indicated that the middling consists mainly of intergrowth particles of coal and minerals. Comparison between deep-cleaning and conventional flotation results denoted that, at approximately same concentrate ash, its yield by deep-cleaning was 46.06 percent point higher, and at similar yield, its concentrate ash, 1.78 percent point lower. The performance by deep-cleaning is even better than that by regressive release flotation test. 4 refs., 2 figs., 6 tabs.

  19. The possibility of using clean coal in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Wong, H.K.; Khairudin, M.Y. [Tenaga Nasional Berhad, Perai (Malaysia)

    1994-12-31

    The Asia-Pacific region will see tremendous growth in demand for electricity in the next few decades and will be an important market for generation equipment and associated services. The Association of Southeast Asian Nations (ASEAN) countries alone anticipate additional power demand of more than 37,000 NM by the year 2000, with an estimated total expenditure of US $85 billion. Trends in recent years show natural gas-fired combined cycle in plants to be fast gaining in popularity over conventional thermal plants. The advantages include increased primary energy conversion efficiency coupled with significant reduction in pollutant emissions, shorter construction times, faster loading rates and reduced staffing requirements. In the computer model used for generation capacity expansion planning in Tenaga Nasional Berhad, clean coal technology models are not used as candidate plants. In the opinion of the authors, this results from a lack of comprehensive data regarding the operating characteristics and the capital and operating costs of such plants, making it difficult to compare to more proven technologies. We also believe that the economics of such plants have not been sufficiently demonstrated at full scale. The authors believe, however, that in the future, coal-fired combined cycle plants will offer enormous possibilities in Malaysia as an urgency to develop this form of clean coal technology in other countries will assure widespread commercial realization of the technology. The anticipated increase in electricity demand brings to the region many business opportunities. As an example, gas turbine component parts, which are used both in conventional systems and clean coal systems, initially can be locally manufactured with technology transfer from original equipment manufacturers; these technology transfers can progress into fall-licenses to local manufacturers.

  20. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical

  1. Strategic considerations for clean coal R and D

    International Nuclear Information System (INIS)

    McMullan, J.T.; Williams, B.C.; McCahey, S.

    2001-01-01

    While present interest in coal-fired power generation is centred on the developing countries, with new natural-gas-fired power stations predominating in the developed world, in the long term coal will return to being the fuel of choice for power generation for much of the world. To minimise the global impact of coal use it is essential, therefore, that coal technologies are developed that are efficient, clean and economically attractive. Techno-economic analyses of the options for coal are presented together with a strategic overview of potential lines of development. The broad conclusions are that new coal plants will not be truly competitive with natural gas until the price of gas increases to about 3.3 EURO/GJ, compared with a coal price of 1.3 EURO/GJ. Present state-of-the-art pulverised coal-fired plant is close to its optimum techno-economic performance and further improvements depend on the development of cost-effective super-alloys. However, there are good opportunities to increase the efficiency of coal use to greater than 50% (LHV basis) using gasification-based power generation cycles. Unless credit is given for the much lower emissions provided by these cycles, the pulverised coal and pressurised fluidised bed combustion will remain the most economic options. (author)

  2. Report to the United States Congress clean coal technology export markets and financing mechanisms

    International Nuclear Information System (INIS)

    1994-05-01

    This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country's coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently

  3. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT's. However, there appears to be potential for introduction of CCT's in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT's introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT's in a number of countries.

  4. Clean Coal Technologies in China: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shiyan Chang

    2016-12-01

    Full Text Available Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology research and development (R&D. This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.

  5. Clean coal technologies and global climate change

    International Nuclear Information System (INIS)

    Long, R.S.

    1993-01-01

    The role for Clean Coal Technologies is discussed in the context of the global climate change debate. Global climate change is, of course as the name implies, a global issue. This clearly distinguishes this issue from acid rain or ozone non-attainment, which are regional in nature. Therefore, the issue requires a global perspective, one that looks at the issue not just from a US policy standpoint but from an international policy view. This includes the positions of other individual nations, trading blocks, common interest groups, and the evolving United Nations bureaucracy. It is assumed that as the global economy continues to grow, energy demand will also grow. With growth in economic activity and energy use, will come growth in worldwide greenhouse gas emissions, including growth in carbon dioxide (CO 2 ) emissions. Much of this growth will occur in developing economies which intend to fuel their growth with coal-fired power, especially China and India. Two basic premises which set out the boundaries of this topic are presented. First, there is the premise that global climate change is occurring, or is about to occur, and that governments must do something to mitigate the causes of climate change. Although this premise is highly rebuttable, and not based on scientific certainty, political science has driven it to the forefront of the debate. Second is the premise that advanced combustion CCTs, with their higher efficiencies, will result in lower CO 2 emissions, and hence lessen any contribution of greater coal use to potential global climate change. This promise is demonstrably true. This discussion focuses on recent and emerging public sector policy actions, which may in large part establish a new framework in which the private sector will find new challenges and new opportunities

  6. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  7. Advanced Coal Wind Hybrid: Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW

  8. Clean and Secure Energy from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip [Univ. of Utah, Salt Lake City, UT (United States); Davies, Lincoln [Univ. of Utah, Salt Lake City, UT (United States); Kelly, Kerry [Univ. of Utah, Salt Lake City, UT (United States); Lighty, JoAnn [Univ. of Utah, Salt Lake City, UT (United States); Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Silcox, Geoffrey [Univ. of Utah, Salt Lake City, UT (United States); Uchitel, Kirsten [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues.

  9. Absorptive capacity, knowledge circulation and coal cleaning innovation : the Netherlands in the 1930s

    NARCIS (Netherlands)

    Davids, M.; Tjong Tjin Tai, S.E.

    2009-01-01

    Before World War II, Dutch State Mines, the national, state owned coal corporation, was confronted with major challenges, specifically that foreign coal was sold at dumping prices in the home market. At the same time, coal cleaning needed to be improved in order to offer higher quality coal against

  10. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  11. Advanced clean coal utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moritomi, Hiroshi [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  12. Clean Coal Technology Demonstration Program: Program Update 1998

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  13. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  14. Update on the REIPPPP, clean coal, nuclear, natural gas

    CSIR Research Space (South Africa)

    Milazi, Dominic

    2015-12-01

    Full Text Available , clean coal, nuclear, natural gas The Sustainable Energy Resource Handbook Volume 6 Dominic Milazi, Dr Tobias Bischof-Niemz, Abstract Since its release in 2011, the Integrated Resource Plan (IRP 2010-2030), or IRP 2010, has been the authoritative... text setting out South Africa’s electricity plan over the next 20 years. The document indicates timelines on the roll out of key supply side options such as renewable energy, the nuclear, natural gas and coal build programmes, as well as peaking...

  15. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  16. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  17. Coal in Asia-Pacific. Vol.9. No.1. Third APEC Coal Flow Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Third APEC (Asia-Pacific Economic Cooperation) Coal Flow Seminar was held featuring regional investment strategies for coal, power infrastructure, and technology transfer in Terrigal, Australia in 26-28, November, 1996. This publication introduces the summary and the papers presented for the keynote speeches and the panels of this seminar. For the keynote speeches, `Investment requirements for steaming coal supplies in APEC member economies,` `Barriers to investment across the APEC regional coal chain,` `The role of advanced coal technologies in greenhouse gas abatement and financing its development and uptake,` `Investment in clean coal power plants,` and `Role of multilateral development banks in financing clean coal technologies to reduce greenhouse gas emission` were presented. In addition, summary and papers describing individual situations of APEC member economies are introduced. 59 refs., 42 figs., 37 tabs.

  18. Clean Coal Technology Demonstration Program: Program Update 2001

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2002-07-30

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  19. Development of clean soil technology using coals as oily/tarry contaminant removal

    International Nuclear Information System (INIS)

    Ignasiak, T.; Szymocha, K.; Carson, D.; Ignasiak, B.

    1991-01-01

    A Clean Soil Process for the treatment of oil/tar contaminated soils has been developed. The mechanics, of the clean-up process that utilizes coal as a cleaning medium is described. The experience and results obtained in the batch-scale testing as well as in the 250 kg/hr continuous facility have been applied for a conceptual design of a 200 t/day mobile plant

  20. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  1. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  2. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  3. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT`s. However, there appears to be potential for introduction of CCT`s in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT`s introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT`s in a number of countries.

  4. Cleaning of Egyptian coal by using column flotation to minimize the environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Khalek, M.A.A. [CMRDI, Cairo (Egypt)

    2002-07-01

    This work aims to decrease the sulfur content of the Egyptian coal by using column flotation technology to be suitable for various applications. In this study, the column flotation parameters as air flow-rate, wash water, frother dosage and feed rate with its solid percent were studied. A clean coal was obtained containing 1.01 % total sulfur with a yield of 82 %, from Maghara coal (Sinai-Egypt) which contains 3.3 % total sulfur as raw coal.

  5. Study on the technology of decreasing ash and sulfur in coking coal concentrate by deep-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, A.; Li, P.; Chen, S. [Hefei Design and Research Institute of Coal Industry, Hefei (China)

    2007-06-15

    Middling fractions of coking coal, a rare resource in China, were analysed for their embedded minerals both in kind and distribution. Observation with a microscope shows that most are clay minerals of very small particle size. The embedded minerals can be liberated from middling by grinding. Clean coal can be obtained from ground middling by the flocculation-flotation process. The yield of clean coal could thus be increased and its ash and sulfur content decreased. 3 refs., 2 figs., 4 tabs.

  6. Fine coal cleaning via the micro-mag process

    Science.gov (United States)

    Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.

    1991-01-01

    A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

  7. The Clean Coal Program's contributions to addressing the requirements of the Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    Miller, R.L.

    1992-01-01

    The purpose of this paper is to examine the potential contributions of the US Department of Energy's Clean Coal Program (CCP) to addressing the requirements of the Clean Air Act (CAA) Amendments of 1990 (CAA90). Initially funded by Congress in 1985, the CCP is a government and industry co-funded effort to demonstrate a new generation of more efficient, economically feasible, and environmentally acceptable coal technologies in a series of full- scale ''showcase'' facilities built across the country. The CCP is expected to provide funding for more than $5 billion of projects during five rounds of competition, with at least half of the funding coming from the private sector. To date, 42 projects have been selected in the first 4 rounds of the CCP. The CAA and amendments form the basis for regulating emissions of air pollutants to protect health and the environment throughout the United States. Although the origin of the CAA can be traced back to 1955, many amendments passed since that time are testimony to the iterative process involved in the regulation of air pollution. Three key components of CAA90, the first major amendments to the CAA since 1977, include mitigation measures to reduce levels of (1) acid deposition, (2) toxic air pollutants, and (3) ambient concentrations of air pollutants. This paper focuses on the timeliness of clean coal technologies in contributing to these provisions of CAA90

  8. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  9. Advanced pulverized-coal power plants: A U.S. export opportunity

    International Nuclear Information System (INIS)

    Ruth, L.A.; Ramezan, M.; Izsak, M.S.

    1995-01-01

    This paper provides an overview of Low Emission Boiler System (LEBS) power generation systems and its potential for generating power worldwide. Based on the fuel availability, power requirements, and environmental regulations, countries have been identified that need to build advanced, clean, efficient, and economical power generation, systems. It is predicted that ''more electrical generation capacity will be built over the next 25 years than was built in the previous century''. For example, China and India alone, with less than 10% of today's demand, plan to build what would amount to a quarter of the world's new capacity. For the near- to mid-term, the LEBS program of Combustion 2000 has the promise to fill some of the needs of the international coal-fired power generation market. The high efficiency of LEBS, coupled with the use of advanced, proven technologies and low emissions, make it a strong candidate for export to those areas whose need for additional power is greatest. LEBS is a highly advanced version of conventional coal-based power plants that have been utilized throughout the world for decades. LEBS employs proven technologies and doesn't require gasification and/or an unconventional combustion environment (e.g., fluidized bed). LEBS is viewed by the utility industry as technically acceptable and commercially feasible

  10. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.; Menzies, W.R.; Smouse, S.M.; Stallings, J.W.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  11. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  12. Clean coal technologies and possible emission trading regimes in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Torok, S.

    1992-01-01

    After reviewing clean coal technologies currently under study in the United States, Australia, and Japan, under the current climate of global warming concerns, one concludes that some of these technologies might well be commercialised soon, especially if some kind of 'emission trading' regime is encouraged after the 1992 United Nations Conference on Environmental and Development (UNCED, Rio de Janeiro, Brazil, June 1992). Some alternative financing possibilities under various emission trading regimes are studied for a 'sample' technology to illustrate the issues involved in clean-coal technology penetration. It is concluded that a financial 'carbon saving credit' alone might prove sufficient to stimulate such penetration. (author)

  13. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-17

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  14. Cleaning up coal-fired plants : multi-pollutant technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2009-06-15

    Coal is the source of 41 per cent of the world's electricity. Emission reduction technologies are needed to address the rapid growth of coal-fired plants in developing countries. This article discussed a multi-pollutant technology currently being developed by Natural Resources Canada's CANMET Energy Technology Centre. The ECO technology was designed to focus on several types of emissions, including sulfur oxides (SOx), nitrogen oxides (NOx), mercury and particulates, as well as acid gases and other metals from the exhaust gas of coal-fired plants. The ECO process converts and absorbs incoming pollutants in a wet electrostatic precipitator while at the same time producing a valuable fertilizer. The ECO system is installed as part of the plant's existing particulate control device and treats flue gas in 3 process steps: (1) a dielectric barrier discharge reactor oxidizes gaseous pollutants to higher oxides; (2) an ammonia scrubber then removes sulfur dioxide (SO{sub 2}) not converted by the reactor while also removing the NOx; and (3) the wet electrostatic precipitator captures acid aerosols produced by the discharge reactor. A diagram of the ECO process flow was included. It was concluded that the systems will be installed in clean coal plants by 2015. 2 figs.

  15. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  16. Coal comes clean

    International Nuclear Information System (INIS)

    Minchener, A.

    1991-01-01

    Coal's status as the dominant fuel for electricity generation is under threat because of concern over the environmental impacts of acid rain and the greenhouse effect. Sulphur dioxide and nitrogen oxides cause acid rain and carbon dioxide is the main greenhouse gas. All are produced when coal is burnt. Governments are therefore tightening the emission limits for fossil-fuel power plants. In the United Kingdom phased reductions of sulphur dioxide and nitrogen oxides emissions are planned. It will be the responsibility of the power generator to take the necessary steps to reduce the emissions. This will be done using a number of technologies which are explained and outlined briefly - flue gas desulfurization, separation of coal into high and low-sulphur coal, direct desulfurization of coal, circulating fluidised bed combustion, integrated-gasification combined cycle systems and topping cycles. All these technologies are aiming at cleaner, more efficient combustion of coal. (UK)

  17. Potential contribution of the Clean Coal Program to reducing global emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Blasing, T.J.

    1992-01-01

    Environmental considerations of Clean Coal Program (CCP) initially focused on reducing emissions of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) to the atmosphere. However, it has also become apparent that some Clean Coal Technologies (CCTs) may contribute appreciably to reducing emissions of carbon dioxide (CO 2 ), thereby diminishing the rate of any global warming that may result from greenhouse effects. This is particularly true for CCTs involving replacement of a major portion of an existing facility and/or providing the option of using a different fuel form (the repowering CCTs). Because the subject of global-scale climate warming is receiving increased attention, the effect of CCTs on Co 2 emissions has become a topic of increasing interest. The Final Programmatic Environmental Impact Statement for the Clean Coal Technology Demonstration Program projected that with full implementation of those repowering CCTs that would be most effective at reducing CO 2 emissions (Pressurized Fluidized Bed and Coal Gasification Fuel Cell technologies), the national fossil-fuel Co 2 emissions by the year 2010 would be roughly 90% of the emissions that would occur with no implementation of any CCTs by the same date. It is the purpose of this paper to examine the global effect of such a reduction in greenhouse gas emissions, and to compare that effect with effects of other strategies for reducing global greenhouse gas emissions

  18. Economics of coal conversion processing. Advances in coal gasification: support research. Advances in coal gasification: process development and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The fall meeting of the American Chemical Society, Division of Fuel Chemistry, was held at Miami Beach, Florida, September 10-15, 1978. Papers involved the economics of coal conversion processing and advances in coal gasification, especially support research and process development and analysis. Fourteen papers have been entered individually into EDB and ERA; three papers had been entered previously from other sources. (LTN)

  19. A study of Multistage/Multifunction Column for Fine Coal Cleaning CRADA PC93-005, Final Report; FINAL

    International Nuclear Information System (INIS)

    Ralph Lai; Shiao-Hung Chiang; Daxin He; Yuru Feng

    1998-01-01

    The overall objective of the this research project is to explore the potential applicability of a multistage column for fine coal cleaning and other applications in fluid particle separation. The research work identifies the design parameters and their effects on the performance of the separation device. The results of this study provide an engineering data basis for further development of this technology in coal cleaning and in general areas of fluid and particle separations

  20. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    Durney, T.E.; Cook, A. [Coal Technology Corporation, Bristol, VA (United States); Ferris, D.D. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)] [and others

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  1. Element geochemistry and cleaning potential of the No. 11 coal seam from Antaibao mining district

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.F.; Qin, Y.; Song, D.Y.; Sang, S.X.; Jiang, B.; Zhu, Y.M.; Fu, X.H. [China University of Mining & Technology, Xuzhou (China). College for Resources & Geoscience

    2005-12-15

    Based on the analyses of sulfur and 41 other elements in 8 channel samples of the No. 11 coal seam from Antaibao surface mine, Shanxi, China and 4 samples from the coal preparation plant of this mine, the distribution of the elements in the seam profile, their geochemical partitioning behavior during the coal cleaning and the genetic relationships between the both are studied. The coal-forming environment was probably invaded by sea water during the post-stage of peatification, which results in the fact that the contents of As, Fe, S, etc. associated closely with sea water tend to increase toward the top of the seam. These elements studied are dominantly associated with kaolinite, pyrite, illite, montmorillonite, etc., of which the As, Pb, Mn, Cs, Co, Ni, etc. are mainly associated with sulfides, the Mo, V, Nb, Hf, REEs, Ta etc. mainly with kaolinite, the Mg, Al etc. mainly with epigenetic montmorillonite, and the Rb, Cr, Ba, Cu, K, Hg, etc. mainly with epigenetic illite. The physical coal cleaning is not only effective in the removal of ash and sulfur, but also in reducing the concentration of most major and trace elements. The elements Be, U, Sb, W, Br, Se, P, etc. are largely or partly organically bound showing a relatively low removability, while the removability of the other elements studied is more than 20%, of which the Mg, Mn, Hg, Fe, As, K, AI, Cs, and Cr associated mostly with the coarser or epigenetic minerals show a higher removability than that of ash. The distribution of the elements in the seam profile controls their partitioning behavior to a great degree during the coal cleaning processes.

  2. Rosebud syncoal partnership SynCoal{sup {reg_sign}} demonstration technology development update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Company, Billings, MT (United States); Heintz, S.J. [Department of Energy, Pittsburgh, PA (United States)

    1995-12-01

    Rosebud SynCoal{reg_sign} Partnership`s Advanced Coal Conversion Process (ACCP) is an advanced thermal coal upgrading process coupled with physical cleaning techniques to upgrade high moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal is processed through two vibrating fluidized bed reactors where oxygen functional groups are destroyed removing chemically bound water, carboxyl and carbonyl groups, and volatile sulfur compounds. After thermal upgrading, the SynCoal{reg_sign} is cleaned using a deep-bed stratifier process to effectively separate the pyrite rich ash. The SynCoal{reg_sign} process enhances low-rank western coals with moisture contents ranging from 2555%, sulfur contents between 0.5 and 1.5 %, and heating values between 5,500 and 9,000 Btu/lb. The upgraded stable coal product has moisture contents as low as 1 %, sulfur contents as low as 0.3%, and heating values up to 12,000 Btu/lb.

  3. Clean Coal Technology: Region 4 Market Description, South Atlantic

    International Nuclear Information System (INIS)

    1993-09-01

    The Region 4 Market Description Summary provides information that can be used in developing an understanding of the potential markets for clean coal technologies (CCTs) in the South Atlantic Region. This region (which geographically is Federal Region 4) consists of the following eight states: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee. In order to understand the potential market. A description is provided of the region's energy use, power generation capacity, and potential growth. Highlights of state government activities that could have a bearing on commercial deployment of CCTs are also presented. The potential markets characterized in this summary center on electric power generation by investor-owned, cooperative, and municipal electric utilities and involve planned new capacity additions and actions taken by utilities to comply with Phases I and II of the Clean Air Act Amendments (CAAA) of 1990. Regulations, policies, utility business strategies, and organizational changes that could impact the role of CCTs as a utility option are identified and discussed. The information used to develop the Region 4 Market Description is based mainly on an extensive review of plans and annual reports of 29 investor-owned, cooperative, and municipal coal-using electric utilities and public information on strategies and actions for complying with the CAAA of 1990

  4. Clean Coal: myth or reality? At the heart of the energy-climate equation, capturing and storing CO2 - Proceedings of the 2007 Le Havre's international meetings

    International Nuclear Information System (INIS)

    Rufenacht, Antoine; Brodhag, Christian; Mocilnikar, Antoine-Tristan; Bennaceur, Kamel; Esseid, Ablaziz; Lemoine, Stephane; Prevot, Henri; Diercks, Thorsten; Jaclot, Francois; Fache, Dominique; Coulon, Pierre-Jean; Capris, Renaud; TRANIE, Jean-Pascal; Le Thiez, Pierre; Marliave, Luc de; Perrin, Nicolas; Paelinck, Philippe; Clodic, Denis; Thabussot, Laurent; Alf, Martin; Boon, Gustaaf; Giger, Francois; Bisseaud, Jean-Michel; Michel, Patrick; Poyer, Luc; Biebuyck, Christian; Kalaydjian, Francois; Roulet, Claude; Bonijoly, Didier; Gresillon, Francois Xavier; Bonneville, Alain; Tauziede, Christian; Munier, Gilles; Moncomble, Jean-Eudes; Frois, Bernard; Charmant, Marcel; Thybaud, Nathalie; Fares, Tewfik; Lacave, Jean-Marc; Duret, Benoit; Gerard, Bernard

    2007-03-01

    emissions of fossil-fired power plants (Martin ALF); - The difficult task of choosing a technology for new production assets (Gustaaf BOON); - Clean coal power plants: best available techniques and perspectives (Francois GIGER); - Coal IGCC: facts and perspectives (Jean-Michel BISSEAUD); - Clean coal power plants: the opinion of an industrialist (Patrick MICHEL); - Climate neutral combustion technology: Clean Energy Systems (Christian BIEBUYCK); - Questions; 5 - Fifth Session - CO 2 transport and storage technologies: - Geological storage of CO 2 : risks and technological challenges (Francois KALAYDJIAN); - Methodology and optimization of management of risks linked to CO 2 storage (Claude ROULET); - Geological storage of CO 2 in France, context and perspective (Didier BONIJOLY); - The contribution of seismic reflection in monitoring CO 2 storage (Francois Xavier GRESILLON); - The scientific of geological CO 2 storage (Alain BONNEVILLE); - CO 2 storage potential in coal deposits in France (Christian TAUZIEDE); - Geological storage of CO 2 , advances in R and D and forecasts for industrial application (Gilles MUNIER); - Questions; 6 - Sixth Session - Players, Development and Land: - The viewpoint of other countries (Jean-Eudes MONCOMBLE); - An R and D policy for CO 2 capture and storage (Bernard FROIS); - The Nievre and coal: balancing economy/land/environment (Marcel CHARMANT); - Activities and programmes on CO 2 capture and storage - The work of the ADEME (Nathalie THYBAUD); - Coal and the French Psyche (Tewfik FARES); - The port of Le Havre: economic development area (Jean-Marc LACAVE); - Industrial Ecology and port zones (Benoit DURET); - CO 2 management in the Le Havre region: rational planning opportunities (Luc POYER); - Questions; 7 - Conclusion of the meetings (Christian BRODHAG)

  5. Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-14

    This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

  6. Overview of current and future - clean coal technologies

    International Nuclear Information System (INIS)

    Darthenay, A.

    1995-01-01

    A new generation of advanced coal technology, environmentally cleaner and in many cases more efficient, has been developed: flue gas treatment of pulverized coal combustion, circulating fluidized bed (CFB), integrated gasification with combined cycle (IGCC) and pressurized fluidized bed combustion (PFBC). These techniques are described, giving a balance of their references and of the steps which are still to be got over in order to have industrial processes applicable to large size power plants. 4 tabs

  7. Applications of micellar enzymology to clean coal technology. [Laccase

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, C.T.

    1990-04-27

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  8. Clean coal technologies

    International Nuclear Information System (INIS)

    Bourillon, C.

    1994-01-01

    In 1993 more than 3.4 billion tonnes of coal was produced, of which half was used to generate over 44 per cent of the world's electricity. The use of coal - and of other fossil fuels- presents several environmental problems such as emissions of sulphur dioxide (SO 2 ), nitrogen oxides (NO 2 ), and carbon dioxide (CO 2 ) into the atmosphere. This article reviews the measures now available to mitigate the environmental impacts of coal. (author)

  9. Carbonia Municipal Administration s commitment to clean coal technologies; Impegno dell Amministrazione comunale di Carbonia a sostegno delle

    Energy Technology Data Exchange (ETDEWEB)

    Guadagnini, G [Comune di Carbonia, Carbonia (Italy)

    2002-07-01

    The Sulcis coalfield was discovered in 1851. For several years it was mined at very low rate until 1936 when the Italian government decided to intensify its exploitation, founding the 'Carbonifera Sarda' company. Resumption of work led to the construction of new coal washeries, the renovation of old power stations and the creation of new ones. Some attempts were made to convert coal through the application of gasification technology, at San Gavino foundry and in a small plant near the town of S. Antioco. Thus the town of Carbonia was founded and was opened in December 1938. As a result of growing social and economic needs in the area, Carbonia s Municipal Administration has always been committed to utilizing the local reserves of coal. For example, the town was actively involved in the IGCC Sulcis project and, at present, it is working on a very important town planning initiative which involves the restoration of the old Serbariu mine buildings on the outskirts of the town. The Municipal Administration will renovate the 'Lampisteria' building turning it into a mining museum as well as restoring the old warehouse (thanks to an agreement with Sotacarbo) and making it a Research Centre for advanced coal technologies development. This Research Centre will be a national centre for developing clean coal technologies and for promoting coal utilization. 14 refs., 12 figs.

  10. Coal, energy and environment: Proceedings

    International Nuclear Information System (INIS)

    Mead, J.S.; Hawse, M.L.

    1994-01-01

    This international conference held in Czechoslovakia was a bold attempt to establish working relationships among scientists and engineers from three world areas: Taiwan, the United States of America, and Czechoslovakia. The magic words unifying this gathering were ''clean coal utilization.'' For the ten nationalities represented, the common elements were the clean use of coal as a domestic fuel and as a source of carbon, the efficient and clean use of coal in power generation, and other uses of coal in environmentally acceptable processes. These three world areas have serious environmental problems, differing in extent and nature, but sufficiently close to create a working community for discussions. Beyond this, Czechoslovakia is emerging from the isolation imposed by control from Moscow. The need for each of these nations to meet and know one another was imperative. The environmental problems in Czechoslovakia are extensive and deep-seated. These proceedings contain 63 papers grouped into the following sections: The research university and its relationship with accrediting associations, government and private industry; Recent advances in coal utilization research; New methods of mining and reclamation; Coal-derived waste disposal and utilization; New applications of coal and environmental technologies; Mineral and trace elements in coal; Human and environmental impacts of coal production and utilization in the Silesian/Moravian region; and The interrelationships between fossil energy use and environmental objectives. Most papers have been processed separately for inclusion on the data base

  11. Evaluation, engineering and development of advanced cyclone processes

    International Nuclear Information System (INIS)

    Durney, T.E.; Cook, A.; Ferris, D.D.

    1995-01-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal's heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation's coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel

  12. Applying environmental externalities to US Clean Coal Technologies for Asia

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1993-01-01

    The United States is well positioned to play an expanding role in meeting the energy technology demands of the Asian Pacific Basin, including Indonesia, Thailand, and the Republic of China (ROC-Taiwan). The US Department of Energy Clean Coal Technology (CCT) Demonstration Program provides a proving ground for innovative coal-related technologies that can be applied domestically and abroad. These innovative US CCTs are expected to satisfy increasingly stringent environmental requirements while substantially improving power generation efficiencies. They should also provide distinct advantages over conventional pulverized coal-fired combustors. Finally, they are expected to be competitive with other energy options currently being considered in the region. This paper presents potential technology scenarios for Indonesia, Thailand, and the ROC-Taiwan and considers an environmental cost-benefit approach employing a newly developed method of applying environmental externalities. Results suggest that the economic benefits from increased emission control can indeed be quantified and used in cost-benefit comparisons, and that US CCTs can be very cost effective in reducing emissions

  13. Determination of properties of clean coal technology post-process residue

    Directory of Open Access Journals (Sweden)

    Agnieszka Klupa

    2016-01-01

    Full Text Available This article presents the possibilities of using modern measuring devices to determine the properties of process residues (Polish acronym: UPP. UPP was taken from the combustion process from a power plant in Silesia. Determining the properties of UPP is the basis for making decisions about its practical application, for example, as a raw material to obtain useful products such as: pozzolan, cenosphere or zeolite, for which there is demand. The development of advanced technology and science has given rise to modern and precise research tools that contribute to the development of appropriate methods to assess the properties of post-process residue. For this study the following were used: scanning electron microscope with EDS microanalysis and an analyzer for particle size-, shape- and number- analysis. The study conducted confirms the effectiveness of SEM analysis to determine the properties of post-process residue from Clean Coal Technologies (CCT. The results obtained are an introduction to further research on the determination of properties of CCT post-process residue. Research to determine the properties of CCT post-process residue only began relatively recently.

  14. US Department of Energy first annual clean coal technology conference

    International Nuclear Information System (INIS)

    1992-11-01

    The first public review of the US DOE/Industry co-funded program to demonstrate the commercial readiness of Clean Coal Technologies (CCT) was held at Cleveland, Ohio Sept. 22--24, 1992. The objectives were to provide electric utilities, independent power producers, and potential foreign users information on the DOE-supported CCT projects including status, results, and technology performance potential; to further understanding of the institutional, financial, and technical considerations in applying CCTs to Clean Air Act compliance strategies; to discuss to export market, financial and institutional assistance, and the roles of government and industry in pursuing exports of CCTs; and to facilitate meetings between domestic and international attendees to maximize export opportunities

  15. Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M.R.; Keohane, N.O. [University of California Berkeley, Berkeley, CA (United States)

    2007-01-01

    Many environmental regulations encourage the use of 'clean' inputs. When the suppliers of such an input have market power, environmental regulation will affect not only the quantity of the input used but also its price. We investigate the effect of the Title IV emissions trading program for sulfur dioxide on the market for low-sulfur coal. We find that the two railroads transporting coal were able to price discriminate on the basis of environmental regulation and geographic location. Delivered prices rose for plants in the trading program relative to other plants, and by more at plants near a low-sulfur coal source.

  16. Low-grade coals: a review of some prospective upgrading technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hassan Katalambula; Rajender Gupta [University of Alberta, Edmonton, AB (Canada). Department of Chemical and Materials Engineering

    2009-07-15

    There is a growing need of using low-grade coals because of higher quest for power generation. In the present carbon-constrained environment, there is a need of upgrading these coals in terms of moisture, ash, and/or other trace elements. The current paper reviews technologies used mainly categorized as drying for reducing moisture and cleaning the coal for reducing mineral content of coal and related harmful constituents, such as sulfur and mercury. The earliest upgrading of high-moisture lignite involved drying and manufacturing of briquettes. Drying technologies consist of both evaporative and non-evaporative (dewatering) types. The conventional coal cleaning used density separation in water medium. However, with water being a very important resource, conservation of water is pushing toward the development of dry cleaning of coal. There are also highly advanced coal-cleaning technologies that produce ultra-clean coals and produce coals with less than 0.1% of ash. The paper discusses some of the promising upgrading technologies aimed at improving these coals in terms of their moisture, ash, and other pollutant components. It also attempts to present the current status of the technologies in terms of development toward commercialization and highlights on problems encountered. It is obvious that still the upgrading goal has not been realized adequately. It can therefore be concluded that, because reserves for low-grade coals are quite plentiful, it is important to intensify efforts that will make these coals usable in an acceptable manner in terms of energy efficiency and environmental protection. 68 refs., 7 figs.

  17. Technology options for clean coal power generation with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Song; Bergins, Christian; Kikkawa, Hirofumi; Kobayashi, Hironobu; Kawasaki, Terufumi

    2010-09-15

    The state-of-the-art coal-fired power plant today is about 20% more efficient than the average operating power plants, and can reduce emissions such as SO2, NOx, and mercury to ultra-low levels. Hitachi is developing a full portfolio of clean coal technologies aimed at further efficiency improvement, 90% CO2 reduction, and near-zero emissions, including 700 deg C ultrasupercritical boilers and turbines, post-combustion CO2 absorption, oxyfuel combustion, and IGCC with CCS. This paper discusses the development status, performance and economic impacts of these technologies with focus on post combustion absorption and oxyfuel combustion - two promising CO2 solutions for new and existing power plants.

  18. Clean coal technology deployment: From today into the next millennium

    Energy Technology Data Exchange (ETDEWEB)

    Papay, L.T.; Trocki, L.K.; McKinsey, R.R. [Bechtel Technology and Consulting, San Francisco, CA (United States)

    1997-12-31

    The Department of Energy`s clean coal technology (CCT) program succeeded in developing more efficient, cleaner, coal-fired electricity options. The Department and its private partners succeeded in the demonstration of CCT -- a major feat that required more than a decade of commitment between them. As with many large-scale capital developments and changes, the market can shift dramatically over the course of the development process. The CCT program was undertaken in an era of unstable oil and gas prices, concern over acid rain, and guaranteed markets for power suppliers. Regulations, fuel prices, emergency of competing technologies, and institutional factors are all affecting the outlook for CCT deployment. The authors identify the major barriers to CCT deployment and then introduce some possible means to surmount the barriers.

  19. Status of Westinghouse coal-fueled combustion turbine programs

    International Nuclear Information System (INIS)

    Scalzo, A.J.; Amos, D.J.; Bannister, R.L.; Garland, R.V.

    1992-01-01

    Developing clean, efficient, cost effective coal utilization technologies for future power generation is an essential part of our National Energy Strategy. Westinghouse is actively developing power plants utilizing advanced gasification, atmospheric fluidized beds (AFB), pressurized fluidized beds (PFB), and direct firing technology through programs sponsored by the U.S. Dept. of Energy (DOE). The DOE Office of Fossil Energy is sponsoring the Direct Coal-Fired Turbine program. This paper presents the status of current and potential Westinghouse Power Generation Business Unit advanced coal-fueled power generation programs as well as commercial plans

  20. Research, development, demonstration, and early deployment policies for advanced-coal technology in China

    International Nuclear Information System (INIS)

    Zhao Lifeng; Gallagher, Kelly Sims

    2007-01-01

    Advanced-coal technologies will increasingly play a significant role in addressing China's multiple energy challenges. This paper introduces the current status of energy in China, evaluates the research, development, and demonstration policies for advanced-coal technologies during the Tenth Five-Year Plan, and gives policy prospects for advanced-coal technologies in the Eleventh Five-Year Plan. Early deployment policies for advanced-coal technologies are discussed and some recommendations are put forward. China has made great progress in the development of advanced-coal technologies. In terms of research, development, and demonstration of advanced-coal technologies, China has achieved breakthroughs in developing and demonstrating advanced-coal gasification, direct and indirect coal liquefaction, and key technologies of Integrated Gasification Combined Cycle (IGCC) and co-production systems. Progress on actual deployment of advanced-coal technologies has been more limited, in part due to insufficient supporting policies. Recently, industry chose Ultra Super Critical (USC) Pulverized Coal (PC) and Super Critical (SC) PC for new capacity coupled with pollution-control technology, and 300 MW Circulating Fluidized Bed (CFB) as a supplement

  1. Present state in coal preparation. Stanje u pripremi uglja

    Energy Technology Data Exchange (ETDEWEB)

    Jevremovic, C. (Rudarsko-Geoloski Fakultet, Tuzla (Yugoslavia))

    1990-01-01

    Describes the low technological state of Yugoslav coal enterprises,in particular of those that exploit low grade lignite and brown coal with high ash and sulfur content. Unadjusted coal prices (almost the same price level for low and high energy coal) and absence of stringent laws on environmental pollution are regarded as main reasons for the low technological level of coal preparation and beneficiation plants. Modern preparation equipment for coal classification, coal washing, coal drying and briquetting is pointed out. Advanced coal carbonization and gasification should have a wider application in Yugoslavia for reducing environmental pollution and producing clean fuel.

  2. International prospects for clean coal technologies (Focus on Asia)

    Energy Technology Data Exchange (ETDEWEB)

    Gallaspy, D.T. [Southern Energy, Inc., Atlanta, GA (United States)

    1997-12-31

    The purpose of this paper is to propose Asia as a focus market for commercialization of CCT`s; describe the principles for successful penetration of CCT`s in the international market; and summarize prospects for CCT`s in Asia and other international markets. The paper outlines the following: Southern Company`s clean coal commitment; acquisition of Consolidated Electric Power Asia (CEPA); the prospects for CCT`s internationally; requirements for CCT`s widespread commercialization; CEPA`s application of CCT`s; and gas turbine power plants as a perfect example of a commercialization driver.

  3. Clean coal technologies---An international seminar: Seminar evaluation and identification of potential CCT markets

    International Nuclear Information System (INIS)

    Guziel, K.A.; Poch, L.A.; Gillette, J.L.; Buehring, W.A.

    1991-07-01

    The need for environmentally responsible electricity generation is a worldwide concern. Because coal is available throughout the world at a reasonable cost, current research is focusing on technologies that use coal with minimal environmental effects. The United States government is supporting research on clean coal technologies (CCTs) to be used for new capacity additions and for retrofits to existing capacity. To promote the worldwide adoption of US CCTs, the US Department of Energy, the US Agency for International Development, and the US Trade and Development Program sponsored a two-week seminar titled Clean Coal Technologies -- An International Seminar. Nineteen participants from seven countries were invited to this seminar, which was held at Argonne National Laboratory in June 1991. During the seminar, 11 US CCT vendors made presentations on their state-of-the-art and commercially available technologies. The presentations included technical, environmental, operational, and economic characteristics of CCTs. Information on financing and evaluating CCTs also was presented, and participants visited two CCT operating sites. The closing evaluation indicated that the seminar was a worthwhile experience for all participants and that it should be repeated. The participants said CCT could play a role in their existing and future electric capacity, but they agreed that more CCT demonstration projects were needed to confirm the reliability and performance of the technologies

  4. Clean coal technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    The oil- and gas-fired turbine combined-cycle penetration of industrial and utility applications has escalated rapidly due to the lower cost, higher efficiency and demonstrated reliability of gas turbine equipment in combination with fuel economics. Gas turbine technology growth has renewed the interest in the use of coal and other solid fuels in combined cycles for electrical and thermal energy production to provide environmentally acceptable plants without extra cost. Four different types of systems utilizing the gas turbine advantages with solid fuel have been studied: direct coal combustion, combustor processing, fuel processing and indirect cycles. One of these, fuel processing (exemplified by coal gasification), is emerging as the superior process for broad scale commercialization at this time. Advances in gas turbine design, proven in operation above 200 MW, are establishing new levels of combined-cycle net plant efficiencies up to 55% and providing the potential for a significant shift to gas turbine solid fuel power plant technology. These new efficiencies can mitigate the losses involved in gasifying coal and other solid fuels, and economically provide the superior environmental performance required today. Based on demonstration of high baseload reliability for large combined cycles (98%) and the success of several demonstrations of Integrated Gasification Combined Cycle (IGCC) plants in the utility size range, it is apparent that many commercial IGCC plants will be sites in the late 1990s. This paper discusses different gas turbine systems for solid fuels while profiling available IGCC systems. The paper traces the IGCC option as it moved from the demonstration phase to the commercial phase and should now with planned future improvements, penetrate the solid fuel power generation market at a rapid pace.

  5. Economic and environmental aspects of coal preparation and the impact on coal use for power generation

    International Nuclear Information System (INIS)

    Lockhart, N.C.

    1995-01-01

    Australia is the world's largest coal exporter, and coal is the nation's largest export and dominant revenue earner. The future competitiveness of coal will be maintained through improved preparation of coal for traditional markets, by upgrading for new markets, and via coal utilization processes that are more efficient and environmentally acceptable. Australia is also a niche supplier of technologies and services with the potential to expand. This potential extends to the increasing vertical integration of coal supplies (whether Australian, indigenous or blended) with downstream utilization such as power generation. Technological advancement is a key element of industry strategy and coal preparation research and development, and clean coal technologies are critical aspects. This paper summarizes these issues, linking the economic and environmental aspects across the coal production and utilization chain. (author). 2 tabs., 1 fig., 6 refs

  6. The role of clean coal technologies in a deregulated rural utility market

    Energy Technology Data Exchange (ETDEWEB)

    Neal, J.W. [National Rural Electric Cooperative Association, Arlington, VA (United States)

    1997-12-31

    The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generation option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.

  7. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  8. Proceedings of the Clean and Efficient Use of Fossil Energy for Power Generation in Thailand. The Joint Eighth APEC Clean Fossil Energy Technical Seminar and the Seventh APEC Coal Flow Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-30

    The convention named above held jointly by the two seminars also named above took place in Bangkok, Thailand, in the period October 30 through November 3. Open remarks were delivered by Mr. Piromsakdi Laparojkit, Secretary General of National Energy Policy Council, Thailand; Mr. Yoshito Yoshimura, Ministry of International Trade and Industry, Japan; Mr. Paul Toghe, Embassy of Australia in Bangkok; and Mr. Robert Gee, Department of Energy, U.S.A. There were ten technical sessions, in which presentations were made and discussion was held over coal in the APEC (Asia-Pacific Economic Cooperation Conference) economy, important role of coal and natural gas in developing economies, coal and environmental situation in Thailand, coal fired power plant related environmental issues, commercially available CCTs (clean coal technologies) in the APEC region, emerging technologies for reducing GHG (greenhouse gas) emissions, clean fuels in the APEC region, growing importance of IPPs (independent power producers) in the APEC region, cooperation among APEC economies, and the like. (NEDO)

  9. Applications of micellar enzymology to clean coal technology. Second quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, C.T.

    1990-04-27

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  10. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-20

    ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also

  11. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Doug Strickland; Albert Tsang

    2002-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis

  12. Comprehensive report to Congress Clean Coal Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This project will demonstrate Integrated Gasification Combined Cycle (IGCC) technology in a commercial application by the repowering of an existing City Water, Light and Power (CWL P) Plant in Springfield, Illinois. The project duration will be 126 months, including a 63-month demonstration period. The estimated cost of the project is $270,700,000 of which $129,357,204 will be funded by DOE. The IGCC system will consist of CE's air-blown, entrained-flow, two-stage, pressurized coal gasifier; an advanced hot gas cleanup process; a combustion turbine modified to use low Btu coal gas; and all necessary coal handling equipment. An existing 25-MWe steam turbine and associated equipment will also be part of the IGCC system. The result of repowering will be an IGCC power plant with low environmental emissions and high net plant efficiency. The repowering will increase plant output by 40 MWe through addition of the combustion turbine, thus providing a total IGCC capacity of a nominal 65 MWe. 3 figs., 2 tabs.

  13. Clean coal technology: coal's link to the future

    International Nuclear Information System (INIS)

    Siegel, J.S.

    1992-01-01

    Coal, the world's most abundant fossil fuel, is very important to the world's economy. It represents about 70% of the world's fossil energy reserves. It produces about 27% of the world's primary energy, 33% of the world's electricity, and it is responsible for about $21 billion in coal trade - in 1990, 424 million tons were traded on the international market. And, most importantly, because of its wide and even distribution throughout the world, and because of its availability, coal is not subject to the monopolistic practices of other energy options. How coal can meet future fuel demand in an economical, efficient and environmentally responsive fashion, with particular reference to the new technologies and their US applications is discussed. (author). 6 figs

  14. Wabash River coal gasification repowering project -- first year operation experience

    Energy Technology Data Exchange (ETDEWEB)

    Troxclair, E.J. [Destec Energy, Inc., Houston, TX (United States); Stultz, J. [PSI Energy, Inc., West Terre Haute, IN (United States)

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  15. Proceedings of the Third APEC Coal Flow Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-26

    This proceedings includes papers presented at the Third APEC Coal Flow Seminar held at Terrigal, Australia in November, 1996. Keynote addresses, three sessions for discussions, and presentations by members economies are included. `Future investment requirements for coal in the APEC region,` `Barriers to investment across the APEC region coal chain,` `International commercial financier`s perspective on coal,` `The role of advanced coal technologies in greenhouse gas abatement and financing its development and uptake,` `Investment issues affecting the uptake of clean coal technology (CCT),` `Role of multilateral development banks in financing CCT to reduce greenhouse gas emissions,` and `Strategies for addressing regional coal issues` were presented as keynote addresses. In the sessions, investment issues facing coal power development, financing coal and investment, and investment strategies for CCT were discussed. 58 refs., 42 figs., 40 tabs.

  16. Use of advanced chemical fingerprinting in PAH source identification and allocation at a coal tar processing site

    International Nuclear Information System (INIS)

    Brown, J.S.; Boehm, P.D.; Douglas, G.S.

    1995-01-01

    Advanced chemical fingerprinting analyses were used to determine source allocation at a former coal tar processing facility which had been converted to a petroleum recycling site. Soil samples from the site had high petroleum hydrocarbon concentrations and elevated levels of polynuclear aromatic hydrocarbons (PAH). Comparisons of PAH distributions were used to differentiate the coal tar hydrocarbons from the petroleum hydrocarbons in soil samples. A more specific technique was needed to accurately allocate the contribution of the two sources to the observed PAH contamination in the soil. Petroleum biomarkers (steranes and triterpanes) which are present in crude oils and many refined petroleum products but are absent in coal tar were used to quantitatively allocate the source of the PAH contamination based on the relative ratio of the PAH to the biomarkers in soil samples. Using the resulting coal tar/petroleum source ratio the contribution of petroleum to the overall PAH contamination at the site was calculated. A multivariate statistical technique (principal component analysis or PCA) was used to provide an independent validation of the source allocation. The results of the source allocation provided a foundation for the site clean-up and remediation costs

  17. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  18. Study on Economic Aspects and the Introduction of Clean Coal Technologies with CCS

    Science.gov (United States)

    Yoshizaki, Haruki; Nakata, Toshihiko

    The advantages of coal are the largest reserves among any other fossil fuels, and can be found in many places including some developed countries. Due to the weak energy security of Japan, it is necessary to use coal as an energy source. We have designed the detailed energy model of electricity sector in which we take both energy conversion efficiency and economic aspects into consideration. The Japan model means an energy-economic model focusing on the structure of the energy supply and demand in Japan. Furthermore, the most suitable carbon capture and storage (CCS) system consisting of CO2 collection, transportation, storages are assumed. This paper examines the introduction of clean coal technologies (CCT's) with CCS into the electricity market in Japan, and explores policy options for the promotion of CCT's combined with CCS. We have analyzed the impacts of carbon tax where each fossil technology, combined with CCS, becomes competitive in possible market. CO2 mitigation costs for all plants with CCS are detailed and compared.

  19. Prospects for coal and clean coal technologies in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Baruya, P. [IEA Clean Coal Centre, London (United Kingdom)

    2010-02-15

    Vietnam's energy economy is largely served by traditional biofuels and oil products. Within the power generating sector, hydropower and gas-fired power dominate. However, Vietnam still maintains a 40 Mt/y coal industry, parts of which have recently undergone a long overdue programme of renovation and expansion. Vietnam has been a successful exporter of anthracite, with more than half of the country's production being shipped or barged to steel mills in Japan or power stations in southern China, as well as most other Far Eastern coal importers. The industry is due to take a different form. Opencast mining has recently accounted for around 60% of production but this mining method could be phased out as reserves become more difficult and costly to extract. A shift to underground mining is expected, with a greater emphasis on more modern and mechanised production techniques. Coal is located mainly in the coalfields in Quang Ninh in the north easternmost province of Vietnam. The lower rank reserves located within the Red River coalfields, close to the existing anthracite operations, may yield many more millions of tonnes of coal for exploitation. Underground coal gasification could possibly be exploited in the deeper reserves of the Red River Basin. While coal production could rapidly change in future years, the power generation sector is also transforming with the country's 12,000 MWe development programme for new coal-fired power capacity. The economy suffers from a threat of power shortages due to a lack of generating and transmission capacity, while inefficiencies blight both energy production and end-users. Delivering power to the regions of growth remains difficult as the economy and the demand for power outpaces power generation. While hydroelectric power is being pursued, coal is therefore becoming a growing factor in the future prosperity of the Vietnamese economy. 111 refs., 33 figs., 11 tabs.

  20. Southern Coal Corporation Clean Water Settlement

    Science.gov (United States)

    Southern Coal Corporation is a coal mining and processing company headquartered in Roanoke, VA. Southern Coal Corporation and the following 26 affiliated entities are located in Alabama, Kentucky, Tennessee, Virginia and West Virginia

  1. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  2. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  3. Electrostatic beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Tennal, K.B.; Lindquist, D.

    1994-10-01

    Dry physical beneficiation of coal has many advantages over wet cleaning methods and post combustion flue gas cleanup processes. The dry beneficiation process is economically competitive and environmentally safe and has the potential of making vast amounts of US coal reserves available for energy generation. While the potential of the electrostatic beneficiation has been studied for many years in laboratories and in pilot plants, a successful full scale electrostatic coal cleaning plant has not been commercially realized yet. In this paper the authors review some of the technical problems that are encountered in this method and suggest possible solutions that may lead toward its full utilization in cleaning coal.

  4. Prospects For Coal And Clean Coal Technologies In Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    The coal sector in Kazakhstan is said to have enough reserves to last over 100 years, but the forecasted reserves are expected to last several hundreds of years. This makes investing in the fuel and energy sector of the country an attractive option for many international and private organisations. The proven on-shore reserves will ensure extraction for over 30 years for oil and 75 years for gas. The future development of the domestic oil sector depends mainly on developing the Kazakh sector of the Caspian Sea. The coal sector, while not a top priority for the Kazakh government, puts the country among the world's top ten coal-rich countries. Kazakhstan contains Central Asia's largest recoverable coal reserves. In future, the development of the raw materials base will be achieved through enriching and improving the quality of the coal and the deep processing of coal to obtain fluid fuel and synthetic substances. Developing shale is also topical. The high concentration of methane in coal layers makes it possible to extract it and utilise it on a large scale. However, today the country's energy sector, which was largely established in the Soviet times, has reached its potential. Kazakhstan has about 18 GW of installed electricity capacity, of which about 80% is coal fired, most of it built before 1990. Being alert to the impending problems, the government is planning to undertake large-scale modernisation of the existing facilities and construct new ones during 2015-30. The project to modernise the national electricity grid aims to upgrade the power substations to ensure energy efficiency and security of operation. The project will result in installation of modern high-voltage equipment, automation and relay protection facilities, a dispatch control system, monitoring and data processing and energy management systems, automated electricity metering system, as well as a digital corporate telecommunication network.

  5. Health effects of coal technologies: research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  6. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  7. 6th Conference on Coal Utilization Technology; Dai 6 kai sekitan riyo gijutsu kaigi koenshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper compiled the papers presented in the 6th Conference on Coal Utilization Technology held in September 1996. With relation to the fluidized bed boiler, reported were Field operation test of Wakamatsu PFBC combined cycle power plant and Development of pressurized internally circulating fluidized bed combustion technology. Regarding the coal reformation, Development of advanced coal cleaning process, Coal preparation and coal cleaning in the dry process, etc. Concerning the combustion technology, Study of the O2/CO2 combustion technology, Development of pressurized coal partial combustor, etc. About the CWM, Development of low rank coals upgrading and their CWM producing technology, Technique of CWM distribution system, etc. Relating to the coal ash, Engineering characteristics of the improved soil by deep mixing method using coal ash, Employment of fluidized bed ash as a basecourse material, On-site verification trials using fly ash for reclamation behind bulkheads, Water permeabilities of pulverized fuel ash, Separation of unburned carbon from coal fly ash through froth flotation, Practical use technology of coal ash (POZ-O-TEC), etc

  8. Emission allowance trading under the Clean Air Act Amendments: An incentive mechanism for the adoption of Clean Coal Technologies

    International Nuclear Information System (INIS)

    South, D.W.; McDermott, K.A.

    1993-01-01

    Title IV of the Clean Air Act Amendments of 1990 (P.L. 101-549) uses tradeable SO 2 allowances as a means of reducing acidic emissions from the electricity generating industry. The use of emission allowances generates two important results; first, utilities are given the flexibility to choose their optimal (least cost) compliance strategies and second, the use of emission allowances creates greater incentives for the development and commercialization of innovative emissions control technology. Clean Coal Technologies (CCTs) are able to generate electricity more efficiently, use a wide variety of coal grades and types, and dramatically reduce emissions of SO 2 , NO x , CO 2 , and PM per kWh. However, development and adoption of the technology is limited by a variety of regulatory and technological risks. The use of SO 2 emission allowances may be able to provide incentives for utility (and nonutility) adoption of this innovative technology. Emission allowances permit the utility to minimize costs on a systemwide basis and provides rewards for addition emission reductions. As CCTs are a more efficient and low emitting source of electricity, the development and implementation of this technology is desirable. This paper will explore the relationship between the incentives created by the SO 2 allowance market and CCT development. Regulatory hindrances and boons for the allowance market shall also be identified to analyze how market development, state mandates, and incentive regulation will effect the ability of allowances to prompt CCT adoption

  9. Investigation of the remaining major and trace elements in clean coal generated by organic solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jie Wang; Chunqi Li; Kinya Sakanishi; Tetsuya Nakazato; Hiroaki Tao; Toshimasa Takanohashi; Takayuki Takarada; Ikuo Saito [National Institute Advanced Industrial Science and Technology (AIST), Ibaraki (Japan). Energy Technology Research Institute

    2005-09-01

    A sub-bituminous Wyodak coal (WD coal) and a bituminous Illinois No. 6 coal (IL coal) were thermally extracted with 1-methylnaphthalene (1-MN) and N-methyl-2-pyrrolidone (NMP) to produce clean extract. A mild pretreatment with acetic acid was also carried out. Major and trace inorganic elements in the raw coals and resultant extracts were determined by means of inductively coupled plasma optical emission spectrometry (ICP-OES), flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS), and cold vapor atomic absorption spectrometry (CV-AAS). It was found that the extraction with 1-MN resulted in 73-100% reductions in the concentration of Li, Be, V, Ga, As, Se, Sr, Cd, Ba, Hg, and Pb. The extraction with NMP yielded more extract than that with 1-MN, but it retained more organically associated major and trace metals in the extracts. In the extraction of WD coal with NMP, the acid pretreatment not only significantly enhanced the extraction yield but also significantly reduced the concentrations of alkaline earth elements such as Be, Ca, Mg, Sr, and Ba in the extract. In addition, the modes of occurrence of trace elements in the coals were discussed according to their extraction behaviors. 30 refs., 2 figs., 5 tabs.

  10. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  11. Sustainable global energy development: The case of coal

    International Nuclear Information System (INIS)

    Brendow, Klaus

    2004-01-01

    . Even more expensive advanced clean coal combustion technologies could noticeably displace gas-fired combined cycle plants in regions with 'reasonably cheap gas prices' (EU) at regimes higher than 6500 h/year and even 4500 h/year. The worldwide replacement of old coal power plants by advanced coal combustion technologies would reduce world CO 2 emissions by 7 - 8 %. For the next decade or more, advanced clean coal combustion may well be the most effective single technology option to combat climate change, bridging the time for coal sequestration to gain maturity. Carbon sequestration in integrated multi-product chemical refineries - the next step - and carbon disposal are the subject of intense research. Against these realities and perspectives, coal's image remained poor. The global coal and associated industries would be well advised to join forces in a proactive campaign highlighting the potential of sustainable development from coal. Acceptance by the public and more balanced policies are at that price. Coal is not part of the problem of sustainability and energy poverty, but part of the solution. (author)

  12. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million

  13. Lab-scale investigation of Middle-Bosnia coals to achieve high-efficient and clean combustion technology

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2014-01-01

    Full Text Available This paper describes full lab-scale investigation of Middle-Bosnia coals launched to support selection an appropriate combustion technology and to support optimization of the boiler design. Tested mix of Middle-Bosnia brown coals is projected coal for new co-generation power plant Kakanj Unit 8 (300-450 MWe, EP B&H electricity utility. The basic coal blend consisting of the coals Kakanj: Breza: Zenica at approximate mass ratio of 70:20:10 is low grade brown coal with very high percentage of ash - over 40%. Testing that coal in circulated fluidized bed combustion technique, performed at Ruhr-University Bohum and Doosan Lentjes GmbH, has shown its inconveniency for fluidized bed combustion technology, primarily due to the agglomeration problems. Tests of these coals in PFC (pulverized fuel combustion technology have been performed in referent laboratory at Faculty of Mechanical Engineering of Sarajevo University, on a lab-scale PFC furnace, to provide reliable data for further analysis. The PFC tests results are fitted well with previously obtained results of the burning similar Bosnian coal blends in the PFC dry bottom furnace technique. Combination of the coals shares, the process temperature and the air combustion distribution for the lowest NOx and SO2 emissions was found in this work, provided that combustion efficiency and CO emissions are within very strict criteria, considering specific settlement of lab-scale furnace. Sustainability assessment based on calculation economic and environmental indicators, in combination with Low Cost Planning method, is used for optimization the power plant design. The results of the full lab-scale investigation will help in selection optimal Boiler design, to achieve sustainable energy system with high-efficient and clean combustion technology applied for given coals.

  14. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  15. Life cycle assessment ultra-clean micronized coal-water-oil fuel preparation and its usage in diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Fu, X.; Wang, Z.; Novelli, G.; Benedetti, B. [China University of Mining and Technology, Beijing (China)

    2005-08-15

    The study described the preparation of ultra-clean micronized coal-water-oil fuel (UCMWOF) and its usage in diesel engine. The production and usage of UCMCWOF and diesel oil, on a Life Cycle Assessment (LCA) basis, were evaluated. A comparison between the two systems shows that beside reducing of photochemical ozone creation potential and rest indicators in UCMCWOF increase. This predicates that the system of UCMCWOF is characterized by high global environmental impact, but its local impacts are lower if compared with the use of diesel and traditional coal. 3 refs., 3 figs., 3 tabs.

  16. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  17. A clean coal: myth or reality?

    International Nuclear Information System (INIS)

    2010-01-01

    The first part of this report comments the evolution of coal demand which has doubled during the last 35 years for different reasons (increase of electricity production, development of China and India), but is still based on local production although coal international trade increased indeed quicker than coal demand. It notices that there is still a lot of coal available for the future, and that demand will keep on increasing. It outlines that coal will have to reduce its impacts on the environment, and presents the technologies which will allow this reduction. It also presents the technologies for CO 2 capture and storage (CCS), and evokes its regulatory issues and its environmental impacts. Some research and development projects in CCS in different countries (Europe, Germany, United States, Australia) are presented. Finally, it stresses the importance of a global deployment of much less polluting technologies to limit greenhouse gas emissions

  18. 75 FR 18500 - Guidance on Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean...

    Science.gov (United States)

    2010-04-12

    ..., Monday through Friday, excluding legal holidays. The telephone number for the Public Reading Room is (202... recognizes the importance of this guidance to its Federal and state partners, to the regulated community, and... of Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental...

  19. Clean fuel for demanding environmental markets

    Energy Technology Data Exchange (ETDEWEB)

    Josewicz, W.; Natschke, D.E. [Acurex Environmental Corp., Research Triangle Park, NC (United States)

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54 percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.

  20. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR; F

    International Nuclear Information System (INIS)

    K.C. Kwon

    2002-01-01

    Removal of hydrogen sulfide (H(sub 2)S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H(sub 2)S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H(sub 2)S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H(sub 2)S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H(sub 2)S to elemental sulfur over selective catalysts in the presence of major

  1. Is there a future for coal in Ontario?

    International Nuclear Information System (INIS)

    Davies, G.

    2004-01-01

    This PowerPoint presentation examined the efficacy of a governmental decision in 2003 to close all Ontario coal stations by 2007. Coal currently represents one quarter of Ontario's energy and capacity. Projected supply and demand gaps for Ontario were presented for up to 2020. Ontario's supply options were outlined. It was noted that between $30 and $40 billion in investment in the electricity sector will be needed over the next 10 to 15 years. It was observed that closing coal plants may reduce pollution by 6 per cent at a cost of $2 billion. More than half the smog affecting Ontario comes from the United States, while much of the remaining half is caused by transportation emissions. Details of energy strategies related to coal in the United States were discussed. New coal power plant technologies include supercritical combustion; advanced air pollution control; circulating fluidized bed combustion and integrated coal gasification combined cycles. Coal power plant performance criteria were presented. Various research programs in the United States were reviewed, and roadmap performance targets were presented. It was concluded that high prices and uncertainty for natural gas fired options may reinforce views on the need to rethink coal closures. A strategy was recommended in which Ontario pursued economic options for reducing emissions across all sectors. New investments in latest and best technology for emissions reduction in Ontario's coal-fired stations were recommended, as well as a North American agreement on clean air, and increased Canadian participation in U.S. technology development efforts for clean coal and zero emissions plants by 2025. tabs., figs

  2. Engineering development of advanced coal-fired low-emissions boiler system. Phase II subsystem test design and plan - an addendum to the Phase II RD & T Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Shortly after the year 2000 it is expected that new generating plants will be needed to meet the growing demand for electricity and to replace the aging plants that are nearing the end of their useful service life. The plants of the future will need to be extremely clean, highly efficient and economical. Continuing concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further then regulations. In the late 1980`s it was commonly believed that coal-fired power plants of the future would incorporate either some form of Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBS) technologies. However, recent advances In emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements In steam turbine and cycle design have clearly indicated that pulverized coal technology can continue to be competitive In both cost and performance. In recognition of the competitive potential for advanced pulverized coal-fired systems with other emerging advanced coal-fired technologies, DOE`s Pittsburgh Energy Technology Center (PETC) began a research and development initiative In late 1990 named, Combustion 2000, with the intention of preserving and expanding coal as a principal fuel In the Generation of electrical power. The project was designed for two stages of commercialization, the nearer-term Low Emission Boiler System (LEBS) program, and for the future, the High Performance Power System (HIPPS) program. B&W is participating In the LEBS program.

  3. Increasing coal-fired power generation efficiency to reduce electric cost and environmental emissions

    International Nuclear Information System (INIS)

    Torrens, I.M.; Stenzel, W.C.

    1997-01-01

    New generating capacity required globally between 1993 and 2010 is estimated to be around 1500 GW, of which some two-thirds will be outside the OECD, and some 40 % in the Asian non-OECD countries. Coal is likely to account for a substantial fraction of this new generation. Today's state-of-the-art supercritical coal-fired power plant has a conversion efficiency of some 42-45 %. The capital cost increase associated with the supercritical or ultra-supercritical pulverized coal power plant compared to a conventional subcritical plant is small to negligible. The increased efficiency associated with the supercritical plant leads to an actual reduction in the total cost of electricity generated in cents/kWh, relative to a conventional plant. Despite this, the power sector continues to build subcritical plants and has no near term plans to increase the efficiency of power plants in the projects it is developing. Advanced clean coal technologies such as integrated gasification combined cycle and pressurized fluidized bed combustion will be selected for independent power projects only in very specific circumstances. Advanced clean coal plants can be operated reliably and with superior performance, and specifically that their present estimated capital costs can be reduced substantially to a point where they are competitive with state-of-the-art pulverized coal technologies. (R.P.)

  4. Upgrading of brown coal by slurry-dewatering; Kattan no yuchu dassui ni yoru clean kotai nenryo no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, O.; Shimizu, T.; Inoue, T.; Shigehisa, T.; Deguchi, T.; Katsushima, S. [Kobe Steel, Ltd., Kobe (Japan)

    1996-10-28

    This paper describes an outline of solid fuel production process from brown coal and the investigation results of its elemental techniques. Dried coal is produced by this process which consists of a dewatering of crushed brown coal in oil-based solvent, a solid and liquid separation of slurry, and a remained oil recovery by heating. This process is characterized by the higher thermal efficiency compared with usual drying and the restraint of spontaneous combustion of product coal. It was revealed that solid fuel with low moisture, low ash, low sulfur, and suppressed spontaneous combustion property can be produced from Australian brown coal through this process. From the comparison between kerosene and fuel oil A, it was confirmed that the oil content during dewatering was smaller and the oil recovery by heating was easier by using a solvent with lower boiling point. It was also confirmed that the spontaneous combustion property can be suppressed using small amount of asphalt by solving asphalt in the solvent and adsorbing asphalt on the surface of brown coal. From these results, low rank coals including brown coal, which are difficult to use, are expected to be used as clean coal with low ash and low sulfur through this process. 2 refs., 7 figs., 2 tabs.

  5. The Clean Development Mechanism and Sustainable Development in China's Electricity Sector

    Institute of Scientific and Technical Information of China (English)

    Paul A. Steenhof

    2005-01-01

    The Clean Development Mechanism,a flexibility mechanism contained in the Kyoto Protocol, offers China an important tool to attract investment in clean energy technology and processes into its electricity sector. The Chinese electricity sector places centrally in the country's economy and environment, being a significant contributor to the acid rain and air pollution problems that plague many of China's cities and regions, and therefore a focus of many related energy and environmental policies.China's electricity sector has also been the subject of a number of economic analyses that have showed that it contains the highest potential for clean energy investment through the Clean Development Mechanism of any economic sector in China. This mechanism, through the active participation from investors in more industrialized countries, can help alleviate the environmental problems attributable to electricity generation in China through advancing such technology as wind electricity generation, dean coal technology, high efficient natural gas electricity generation, or utilization of coal mine methane. In this context, the Clean Development Mechanism also compliments a range of environmental and energy policies which are strategizing to encourage the sustainable development of China's economy.

  6. Comparative analyses for selected clean coal technologies in the international marketplace

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment of existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.

  7. Clean fuel-magnesia bonded coal briquetting

    Energy Technology Data Exchange (ETDEWEB)

    Tosun, Yildirim I. [S. Demirel University Eng., Arch. Faculty Mining Eng. Department, Isparta (Turkey)

    2007-10-15

    Benefaction from coal fines as solid fuel in Turkey is very much important for economical development. Beneficiation from washed coal fines in the industry using solid fuel at lump size and in the municipal areas as an household solid fuel may be only provided by hot briquetting of the coal fines. The most practical common way of that benefication from coal fines in our country have been hot binding by sulfite liquor-sulfite liquor-melas and lime mixtures. Harmful the flue content of sulfite liquor-melas may only be eliminated by lime, a type of solid additive. However, cold bonded briquettes produced from coal fines are environmentally free. Just ash contents of these briquettes increase at a certain degree and heat content of them decrease at a certain extent. By using magnesia binder showed in this study, Tuncbilek lignite fines have been briquetted by cold and hot briquetting techniques. The qualities of briquettes produced by cold binders were compared with to those produced by other hot binding methods As a result, magnesia binder showed the similar characteristics with those of the briquettes produced by only cold bonded gypsum. Use of magnesite mixture and gypsum just as only cold binder was not suitable for the requirements from the coal briquettes to be used as solid fuels, particularly from household fuels, but just only as cold additive should be used. (author)

  8. Characterization and supply of coal based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  9. Pyritic waste from precombustion coal cleaning: Amelioration with oil shale retort waste and sewage sludge for growth of soya beans

    International Nuclear Information System (INIS)

    Lewis, B.G.; Gnanapragasam, N.; Stevens, M.L.

    1994-01-01

    Solid residue from fossil fuel mining and utilization generally present little hazard to human health. However, because of the high volumes generated, they do pose unique disposal problems in terms of land use and potential degradation of soil and water. In the specific case of wastes from precombustion coal cleaning, the materials include sulfur compounds that undergo oxidation when exposed to normal atmospheric conditions and microbial action and then produce sulfuric acid. The wastes also contain compounds of metals and nonmetals at concentrations many times those present in the original raw coal. Additionally, the residues often contain coal particles and fragments that combust spontaneously if left exposed to the air, thus contributing to the air pollution that the coal cleaning process was designed to prevent. Federal and state efforts in the United States to ameliorate the thousands of hectares covered with these wastes have focused on neutralizing the acidity with limestone and covering the material with soil. The latter procedure creates additional degraded areas, which were originally farmland or wildlife habitat. It would seem preferable to reclaim the coal refuse areas without earth moving. The authors describe here experiments with neutralization of coal waste acidity using an alkaline waste derived from the extraction of oil from oil shale to grow soya beans (Glycine max. [L]) on a mixture of wastes and sewage sludge. Yield of plant material and content of nutrients an potentially toxic elements in the vegetation and in the growth mixtures were determined; results were compared with those for plants grown on an agricultural soil, with particular focus on boron

  10. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine

  11. Flotation process diagnostics and modelling by coal grain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ofori, P; O' Brien, G.; Firth, B.; Jenkins, B. [CSIRO Energy Technology, Brisbane, Qld. (Australia)

    2006-05-15

    In coal flotation, particles of different components of the coal such as maceral groups and mineral matter and their associations have different hydrophobicities and therefore different flotation responses. By using a new coal grain analysis method for characterising individual grains, more detailed flotation performance analysis and modelling approaches have been developed. The method involves the use of microscopic imaging techniques to obtain estimates of size, compositional and density information on individual grains of fine coal. The density and composition partitioning of coal processed through different flotation systems provides an avenue to pinpoint the actual cause of poor process performance so that corrective action may be initiated. The information on grain size, density and composition is being used as input data to develop more detailed flotation process models to provide better predictions of process performance for both mechanical and column flotation devices. A number of approaches may be taken to flotation modelling such as the probability approach and the kinetic model approach or a combination of the two. In the work reported here, a simple probability approach has been taken, which will be further refined in due course. The use of grain data to map the responses of different types of coal grains through various fine coal cleaning processes provided a more advanced diagnostic capability for fine coal cleaning circuits. This enabled flotation performance curves analogous to partition curves for density separators to be produced for flotation devices.

  12. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  13. Development of the ultra-clean dry cleanup process for coal-based syngases: pilot-scale evaluation

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Slimane; P.V. Bush; J.L. Aderhold, Jr.; B.G. Bryan; R.A. Newby; D. A. Horazak; S.C. Jain [Gas Technology Institute, Des Plaines, IL (United States)

    2005-07-01

    This paper reports on a recent successful pilot-scale evaluation of the Ultra-Clean Process performance at a 10-ton/day coal gasifier facility. In these tests, carbonaceous feedstocks were gasified, using GTI's fluidized bed U-GAS{reg_sign} gasification technology, to generate syngas. The raw syngas was then conditioned and fed to the UCP test section for deep cleaning to meet very stringent cleaning requirements for chemical feedstocks or liquid-fuel synthesis applications, or for fuel-cell power generation. Fine particle sorbents for sulfur, halide, and mercury removal were injected into the syngas upstream of two stages of particulate controlled devices, 'barrier filter-reactors', coupling efficient particle capture with an effective entrained and filter cake reaction environment for very effective multiple contaminant removal. The goal of the test program was to confirm sorbent selection, filter-reactor operating parameters and sorbent-to-contaminant ratios, which were previously determined in the laboratory to have potential to reduce contaminant concentrations to very low levels. The pilot-scale data developed are being used to update conceptual evaluations, which have shown the technical feasibility, cost effectiveness and commercial merit for the Ultra-Clean Process compared to conventional, Rectisol-based syngas cleaning. 10 refs., 5 figs.

  14. The Crux of Clean Coal Technology for industrialization%合理的机制有效的政策是实现洁净煤技术产业化的关键

    Institute of Scientific and Technical Information of China (English)

    秦俊杰; 俞珠峰; 杜铭华

    2001-01-01

    Clean coal technology can be used as a leading technology forresolvi ng the coal use and environmental problem. Therefore, it was attached and develo ped by industrial countries. In China, to establish reasonable management system and policy is the key for clean coal technology industrialization. The law, pol icy and existing problem with concerned the clean coal technology in China are d iscussed in this paper. The obstacle to develop clean coal technology industrial ization is point out and an policy suggestion to speed up the clean coal technol ogy industrialization is put forward.%洁净煤技术作为解决煤炭利用和环境问题的主导技术,在各工业发达国家得到重视和发展,建立合理的机制、制定配套的政策对促进中国洁净煤技术产业化发展至关重要。本文阐述了中国现行的洁净煤技术相关法律、政策及其存在问题,指出了洁净煤技术产业化发展遇到的障碍,提出了加快洁净煤技术产业化发展的政策建议。

  15. Design manual for management of solid by-products from advanced coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  16. Integrated coal preparation

    International Nuclear Information System (INIS)

    Buchanan, D.J.; Jones, T.F.

    1992-01-01

    Perceptions of quality have changed over the years. The attributes of a certain coal (its rank, slagging propensity, ash content etc) are traditionally referred to as its quality. However, the subject of this paper is quality in a much wider sense: quality as fitness for purpose: and all that such a wide definition entails. British Standard BS 5750 (ISO 9000) Quality Systems defines a systems approach to quality, and includes both the supplier of raw materials and the final customer within this boundary. Coal preparation starts at the production face. The greater the proportion of dirt in run-of-mine product the greater the challenge in satisfying the customer's needs. Significant advances have been made in minimizing mined dirt. For example, the sue of vertical steering on longwall faces improves productivity and quality. Unfortunately modern mining methods produce large quantities of fines, despite efforts to reduce them at the point of production and during transportation to the surface. Coal preparation also produces further fines. It has been estimated that fine coal costs 2.5 times as much to clean as large coal, and the costs of handing wet fine coal product will inflate this estimate. Handling considerations rightly concern our customers and are part of the wider meaning of quality. In this paper the authors address some novel solutions to the challenge posed by fines

  17. Fiscal 1995 coal production/utilization technology promotion subsidy/clean coal technology promotion business/regional model survey. Study report on `Environmental load reduction measures: feasibility study of a coal utilization eco/energy supply system` (interim report); 1995 nendo sekitan seisan riyo gijutsu shinkohi hojokin clean coal technology suishin jigyo chiiki model chosa. `Kankyo fuka teigen taisaku: sekitan riyo eko energy kyokyu system no kanosei chosa` chosa hokokusho (chukan hokoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The coal utilization is expected to make substantial growth according to the long-term energy supply/demand plan. To further expand the future coal utilization, however, it is indispensable to reduce environmental loads in its total use with other energies, based on the coal use. In this survey, a regional model survey was conducted as environmental load reduction measures using highly cleaned coal which were taken in fiscal 1993 and 1994. Concretely, a model system was assumed which combined facilities for mixed combustion with coal and other energy (hull, bagasse, waste, etc.) and facilities for effective use of burned ash, and potential reduction in environmental loads of the model system was studied. The technology of mixed combustion between coal and other energy is still in a developmental stage with no novelties in the country. Therefore, the mixed combustion technology between coal and other energy is an important field which is very useful for the future energy supply/demand and environmental issues. 34 refs., 27 figs., 48 tabs.

  18. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  19. Clean coal technology optimization model

    International Nuclear Information System (INIS)

    Laseke, B.A.; Hance, S.B.

    1992-01-01

    Title IV of the Clean Air Act Amendments (CAAA) of 1990 contains provisions for the mitigation of acid rain precipitation through reductions in the annual emission of the acid rain precursors of sulfur dioxide (SO 2 ) and nitrogen oxide (NO x ). These provisions will affect primarily existing coal-fired power-generating plants by requiring nominal reductions of 5 millon and 10 million tons of SO 2 by the years 1995 and 2000, respectively, and 2 million tons of NO x by the year 2000 relative to the 1980 and 1985-87 reference period. The 1990 CAAA Title IV provisions are extremely complex in that they establish phased regulatory milestones, unit-level emission allowances and caps, a mechanism for inter-utility trading of emission allowances, and a system of emission allowance credits based on selection of control option and timing of its implementation. The net result of Title IV of the 1990 CAAA is that approximately 147 gigawatts (GW) of generating capacity is eligible to retrofit SO 2 controls by the year 2000. A number of options are available to bring affected boilers into compliance with Title IV. Market sharewill be influenced by technology performance and costs. These characteristics can be modeled through a bottom-up technology cost and performance optimization exercise to show their impact on the technology's potential market share. Such a model exists in the form of an integrated data base-model software system. This microcomputer (PC)-based software system consists of a unit (boiler)-level data base (ACIDBASE), a cost and performance engineering model (IAPCS), and a market forecast model (ICEMAN)

  20. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    Science.gov (United States)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This

  1. Optimization of design and operating parameters in a pilot scale Jameson cell for slime coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hacifazlioglu, Hasan; Toroglu, Ihsan [Department of Mining Engineering, University of Karaelmas, 67100 (Turkey)

    2007-07-15

    The Jameson flotation cell has been commonly used to treat a variety of ores (lead, zinc, copper etc.), coal and industrial minerals at commercial scale since 1989. It is especially known to be highly efficient at fine and ultrafine coal recovery. However, although the Jameson cell has quite a simple structure, it may be largely inefficient if the design and operating parameters chosen are not appropriate. In this study, the design and operating parameters of a pilot scale Jameson cell were optimized to obtain a desired metallurgical performance in the slime coal flotation. The optimized design parameters are the nozzle type, the height of the nozzle above the pulp level, the downcomer diameter and the immersion depth of the downcomer. Among the operating parameters optimized are the collector dosage, the frother dosage, the percentage of solids and the froth height. In the optimum conditions, a clean coal with an ash content of 14.90% was obtained from the sample slime having 45.30% ash with a combustible recovery of 74.20%. In addition, a new type nozzle was developed for the Jameson cell, which led to an increase of about 9% in the combustible recovery value.

  2. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  3. Status of advanced ultra-supercritical pulverised coal technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-01

    In pulverised coal combustion (PCC) power plant, increasing the maximum temperature of the steam cycle increases the electrical efficiency, which in turn lowers both coal consumption and flue gas emissions. However, the maximum steam temperature is limited by materials that can operate at these conditions for practical service lifetimes without failure. The EU, USA, Japan, India and China all have material research programmes aiming for the next generation of increased steam temperatures and efficiency, known as advanced ultra-supercritical (AUSC) or 700°C technology. This report reviews developments and status of these major material research programmes.

  4. Sahara Coal: the fine art of collecting fines for profit

    Energy Technology Data Exchange (ETDEWEB)

    Schreckengost, D.; Arnold, D.

    1984-09-01

    Because of a change in underground mining methods that caused a considerable increase in the amount of fine sizes in the raw coal, Sahara Coal Co. designed and constructed a unique and simple fine coal system at their Harrisburg, IL prep plant. Before the new system was built, the overload of the fine coal circuit created a cost crunch due to loss of salable coal to slurry ponds, slurry pond cleaning costs, and operating and maintenance costs--each and every one excessive. Motivated by these problems, Sahara designed a prototype system to dewater the minus 28 mesh refuse. The success of the idea permitted fine refuse to be loaded onto the coarse refuse belt. Sahara also realized a large reduction in pond cleaning costs. After a period of testing, an expanded version of the refuse system was installed to dewater and dry the 28 mesh X 0 clean coal. Clean coal output increased about 30 tph. Cost savings justified the expenditures for the refuse and clean coal systems. These benefits, combined with increased coal sales revenue, paid back the project costs in less than a year.

  5. FY 2000 report on the project for promotion of clean coal technology. Survey of overseas trends of technology to use hydrocarbon base energy such as coal; 2000 nendo clean coru technology suishin jigjyo. Sekitan tou tankasuiso kei energy riyo gijutsu ni kansuru kaigai doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For contributing to the study on the comprehensive development of technology to use hydrocarbon resource such as coal in Japan, survey was conducted of trends of supply/demand, policy, utilization technology, etc. of hydrocarbon base energy such as coal in developed countries such as the U.S., European countries, etc. Proved coal reserves in the world are 980 billion tons, and years of mining are 230. The resource amount of coal is more than those of oil and natural gas. In the U.S., the budget was largely cut in the 1990s because of the financial deficit, but the R and D are being promoted of power plant being aimed at substantial reduction in emissions of NOx, SOx, etc. and reduction in cost. European countries are tackling the technical development of petroleum substituting energy and the verification/commercialization. As to the clean coal technology, every country is making the technical development for coal liquefaction/gasification. Relating to the natural gas technology, studies are being made of GTL, coal bed methane, shale gas, methane hydrate, etc. The energy conversion use of waste, technical development of biomass energy, etc. were also being carried out. (NEDO)

  6. Coal liquefaction technologies for producing ultra clean fuel

    International Nuclear Information System (INIS)

    Tahir, M.S.; Haq, N.U.; Nasir, H.; Islam, N.

    2011-01-01

    The expanding demand for petroleum, accompanied by the diminishing petroleum reserves and the energy security, has intensified the significance in coal liquefaction technologies (CTL) globally and specially in Pakistan. Pakistan is rich in coal resources, but short of petroleum. The Geological Survey of Pakistan based on wide spread drilling over an area of 9000 sq. km, a total of 175 billion tons of coal resource potential has been assessed. This paper overviews a general introduction on the mechanisms and processes of CLT such as direct coal liquefaction (DCL) and indirect coal liquefaction (ICL) technologies. (author)

  7. 21st century energy solutions. Coal and Power Systems FY2001 program briefing

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The continued strength of American's economy depends on the availability of affordable energy, which has long been provided by the Nations rich supplies of fossil fuels. Forecasts indicate that fossil fuels will continue to meet much of the demand for economical electricity and transportation fuels for decades to come. It is projected that natural gas, oil, and coal will supply nearly 90% of US energy in 2020, with coal fueling around 50% of the electricity. It is essential to develop ways to achieve the objectives for a cleaner environment while using these low-cost, high-value fuels. A national commitment to improved technologies-for use in the US and abroad-is the solution. The Coal and Power Systems program is responding to this commitment by offering energy solutions to advance the clean, efficient, and affordable use of the Nations abundant fossil fuel resources. These solutions include: (1) Vision 21-A multi-product, pollution-free energy plant-producing electricity, fuels, and/or industry heat-could extract 80% or more of the energy value of coal and 85% or more of the energy value of natural gas; (2) Central Power Systems-Breakthrough turbines and revolutionary new gasification technologies that burn less coal and gas to obtain energy, while reducing emissions; (3) Distributed Generation-Fuel cell technology providing highly efficient, clean modular power; (4) Fuels-The coproduction of coal-derived transportation fuels and power from gasification-based technology; (5) Carbon Sequestration-Capturing greenhouse gases from the exhaust gases of combustion or other sources, or from the atmosphere itself, and storing them for centuries or recycling them into useful products; and (6) Advanced Research-Going beyond conventional thinking in the areas of computational science, biotechnology, and advanced materials

  8. 21st Century Coal: Advanced Technology and Global Energy Solution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Coal currently supplies with more than 40% of the world electricity consumption and it essential input of around 70% of world steel production, representing around 30% of the world primary energy supply. This is because coal is cheap, abundant, accessible, widely distributed and easy energy to transport, store and use. For these features, coal is projected to be intensively used in the future. Production and use of coal present a series of issues throughout the whole value chain. While existing technology allows addressing most of them (safety at work, land restoration, mercury, NOx and sulphur emissions avoidance, etc.), CO2 emissions continues to be the biggest challenge for coal use in the future. This report focuses on the technology path to near-zero emissions including useful insights in advanced coal power generation technologies and Carbon Capture, Utilisation and Storage, a promising technology with a large potential which can push Carbon Capture and Storage competitiveness. In addition, the report shows the features of the new generation of coal-fired power plants in terms of flexibility for dynamic operation and grid stability, requirements increasingly needed to operate on grids with significant wind and solar generation.

  9. Mercury concentration in coal - Unraveling the puzzle

    Science.gov (United States)

    Toole-O'Neil, B.; Tewalt, S.J.; Finkelman, R.B.; Akers, D.J.

    1999-01-01

    Based on data from the US Geological Survey's COALQUAL database, the mean concentration of mercury in coal is approximately 0.2 ??gg-1. Assuming the database reflects in-ground US coal resources, values for conterminous US coal areas range from 0.08 ??gg-1 for coal in the San Juan and Uinta regions to 0.22 ??gg-1 for the Gulf Coast lignites. Recalculating the COALQUAL data to an equal energy basis unadjusted for moisture differences, the Gulf Coast lignites have the highest values (36.4 lb of Hg/1012 Btu) and the Hams Fork region coal has the lowest value (4.8 lb of Hg/1012Btu). Strong indirect geochemical evidence indicates that a substantial proportion of the mercury in coal is associated with pyrite occurrence. This association of mercury and pyrite probably accounts for the removal of mercury with the pyrite by physical coal cleaning procedures. Data from the literature indicate that conventional coal cleaning removes approximately 37% of the mercury on an equal energy basis, with a range of 0% to 78%. When the average mercury reduction value is applied to in-ground mercury values from the COALQUAL database, the resulting 'cleaned' mercury values are very close to mercury in 'as-shipped' coal from the same coal bed in the same county. Applying the reduction fact or for coal cleaning to eastern US bituminous coal, reduces the mercury input load compared to lower-rank non-deaned western US coal. In the absence of analytical data on as-shipped coal, the mercury data in the COALQUAL database, adjusted for deanability where appropriate, may be used as an estimator of mercury contents of as-shipped coal. ?? 1998 Published by Elsevier Science Ltd. All rights reserved.

  10. Development and application of a probabilistic evaluation method for advanced process technologies

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  11. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  12. U.S. Near-Zero Emissions Program: CCS - Clean Coal R&D, FutureGen, & Demonstrations

    Energy Technology Data Exchange (ETDEWEB)

    K Der, Victor [Department of Energy (United States)

    2008-07-15

    In this paper a projection of the CO{sub 2} emissions in the United States is shown; the technical challenges in the capture and sequestration of the CO{sub 2}; what is understood by carbon sequestration; the three elements of the capture and CO{sub 2} storage that are: capture, transport, and storage; the FutureGen project; plants of coal combustion with sequestration, and at the end an initiative for the generation with clean coal is presented. [Spanish] En esta ponencia se muestra una proyeccion de las emisiones de CO{sub 2} en los Estados Unidos; los retos tecnicos en la captura y secuestro de CO{sub 2}; que entendemos por secuestro de carbono; los tres elementos de la captura y almacenamiento de CO{sub 2} que son captura, transporte y almacenamiento; el proyecto FutureGen; plantas de combustion de carbon con secuestro, y al final se presenta una iniciativa para la generacion con carbon limpio.

  13. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    International Nuclear Information System (INIS)

    Zhao Lifeng; Xiao Yunhan; Gallagher, Kelly Sims; Wang Bo; Xu Xiang

    2008-01-01

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China

  14. Tenth annual coal preparation, utilization, and environmental control contractors conference: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    Volume I contains papers presented at the following sessions: high efficiency preparation; advanced physical coal cleaning; superclean emission systems; air toxics and mercury measurement and control workshop; and mercury measurement and control workshop. Selected papers have been processed for inclusion in the Energy Science and Technology Database.

  15. Coal reverse flotation. Part II: Cleaning of a subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K.J.; Laskowski, J.S. [University of British Columbia, Vancouver, BC (Canada). Dept. for Mining Engineering

    2006-01-15

    Reverse flotation of a subbituminous coal was investigated and it turned out that a large amount of DTAC was needed in this process. The application of the zero-conditioning time method along with the use of PAM significantly reduced DTAC consumption from over 6 kg/t down to 1.375 kg/t. Dextrin was necessary to improve the selectivity. The addition of a dispersant (tannic acid) improved further the quality of concentrate. The concentrate ash content of 16.7% at 50.4% yield was obtained for the feed ash content of 34.6%. Although this gives only about 64% combustible recovery, since the inherent ash content for this coal was determined to be 10% the room for further improvement is very limited. The best separation was obtained around a natural pH of 7.5-8.4 for this coal.

  16. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.; Hedenhag, J.G. [AirPol Inc., Teterboro, NJ (United States); Marchant, S.K.; Pukanic, G.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Norwood, V.M.; Burnett, T.A. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  17. Micronized Coal Reburning Demonstration for NOx Control: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-08-15

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round IV, the Micronized Coal Reburning (MCR) Demonstration for NO{sub x} Control, as described in a report to Congress (U.S. Department of Energy 1999). The need to meet strict emissions requirements at a minimum cost prompted the Tennessee Valley Authority (TVA), in conjunction with Fuller Company, Energy and Environmental Research Corporation (EER), and Fluor Daniel, to submit the proposal for this project to be sited at TVA's Shawnee Fossil Plant. In July 1992, TVA entered into a cooperative agreement with DOE to conduct the study. However, because of operational and environmental compliance strategy changes, the Shawnee site became unavailable.

  18. Fundamental study of droplet spray characteristics in photomask cleaning for advanced lithography

    Science.gov (United States)

    Lu, C. L.; Yu, C. H.; Liu, W. H.; Hsu, Luke; Chin, Angus; Lee, S. C.; Yen, Anthony; Lee, Gaston; Dress, Peter; Singh, Sherjang; Dietze, Uwe

    2010-09-01

    The fundamentals of droplet-based cleaning of photomasks are investigated and performance regimes that enable the use of binary spray technologies in advanced mask cleaning are identified. Using phase Doppler anemometry techniques, the effect of key performance parameters such as liquid and gas flow rates and temperature, nozzle design, and surface distance on droplet size, velocity, and distributions were studied. The data are correlated to particle removal efficiency (PRE) and feature damage results obtained on advanced photomasks for 193-nm immersion lithography.

  19. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  20. Evaluating impacts of Clean Air Act compliance strategies

    International Nuclear Information System (INIS)

    Shirer, D.A.; Evans, R.J.; Harrison, C.D.; Kehoe, D.B.

    1993-01-01

    The Clean Air Act Amendments of 1990 requires that by the year 2000, US SO 2 emissions must be reduced by 10 million tons. This requirement will have significant impact on coal-fired electric utilities. As a result, most utilities are currently evaluating numerous compliance options, including buying allowances, coal cleaning/blending/switching, and flue gas scrubbing. Moreover, each utility must address its own unique circumstances with regard to competition, efficiency, capital expenditures, reliability, etc. and many utilities may choose a combination of compliance options to simultaneously satisfy their environmental, performance, and financial objectives. The Coal Quality Expert, which is being developed under a clean coal technology project funded by US DOE and EPRI, will predict the economic, operational, and environmental benefits of using higher-quality coals and provides an assessment of the merits of various post-combustion control technologies for specific utility applications. This paper presents background on how utilities evaluate their compliance options, and it describes how the Coal Quality Expert could be used for such evaluations in the future to assure that each utility can select the best combination of coal specifications and emission control technologies to meet its compliance objectives

  1. Industry perspectives on increasing the efficiency of coal-fired power generation

    Energy Technology Data Exchange (ETDEWEB)

    Torrens, I.M. [Shell Coal International, London (United Kingdom); Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  2. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  3. Coal preparation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The acid rain control legislation has prompted the Department of Energy (DOE) to seek new technology using the Clean Coal Technology program solicitation. The main goal of the program is to reduce SO 2 emissions below 9 Mt/a (10 million stpy) and NO x emission below 5.4 Mt/a (6 million stpy) by the year 2000. This would be accomplished by using precombustion, combustion, post combustion and conversion technology. Utilities are considering installing new scrubbers, switching fuel or possibly deep clean. However, the time required to implement the control technology is short. Due to the legislation, about 110 plants will have to adopt one of the approaches. This paper reports that in characterization of coal, Ames Laboratory used a scanning electron microscope- based, automated image analysis (SEM-AIA) technique to identify coal and mineral matter association. Various forms of organic sulfur were identified using peroxyacetic acid oxidation of coal. This was followed by subsequent microscopic, GC-MS, and HRMS analysis by Southern Illinois University. In ultrafine grinding of coal, it was reported by the Mining and Mineral Institute of Alabama that silica sand or flint shot used less energy compared to steel ball mills

  4. Advances in coal chemistry, 1950--1970. [21 refs

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J D

    1971-12-01

    During the 20 years under review, considerable advances were made at centers of coal research throughout the world in the determination of the chemical structure and reactions of coals. Important contributions came from the CSIRO group in Sydney. Activity was greatest during the first decade of the period under review and declined progressively during the second, as evidence of the extreme complexity of coal structures made it clear that further chemical research would be less rewarding. Some overseas investigations were related mainly to chemical processes for the conversion of coals to liquid and gaseous fuels, and to possible direct chemical utilization; but in Australia, because of the relatively small size of the potential market and the widely dispersed centers of population, such studies were not relevant to the current situation. Much of the Australian research in this field was related to carbonization processes and to the chemical and physical processes involved in the thermal treatment of coals. The high-light was perhaps the investigation, begun in 1960, which showed how coals, pitch, and bitumen resolidify during heating to form coke. Determinations were also made of the chemical composition of tars and pitches produced both industrially and in the laboratory and efforts were made to develop local outlets for these by-products of gas-making and of steelworks coke ovens. The pattern of Australian fuel consumption changed considerably during the 20-year period, and in particuar there was considerable development in the use of petroleum by-products for gas-making. Research on the manufacture of metallurgical coke was established within the steel industry, and in response to these factors basic work by CSIRO in bituminous coal chemistry had virtually ceased by the end of 1966.

  5. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  6. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  7. Removal of pollutants from poor quality coals by pyrolysis

    Directory of Open Access Journals (Sweden)

    Natas Panagiotis

    2006-01-01

    Full Text Available Combustion of poor quality coals and wastes is used today worldwide for energy production. However, this entails significant environmental risks due to the presence of polluting compounds in them, i. e. S, N, Hg, and Cl. In the complex environment of combustion these substances are forming conventional (i. e. SOx, NOx and toxic (PCDD/Fs pollutants, while, the highly toxic Hg is volatilized in the gas phase mainly as elemental mercury. Aiming to meet the recently adopted strict environmental standards, and the need of affordable in cost clean power production, a preventive fuels pre-treatment technique, based on low temperature carbonization, has been tested. Clean coals were produced from two poor quality Greek coals (Ptolemais and Megalopolis and an Australian coal sample, in a lab-scale fixed bed reactor under helium atmosphere and ambient pressure. The effect of carbonization temperature (200-900 °C and residence time (5-120 minutes on the properties of the chars, obtained after pyrolysis, was investigated. Special attention was paid to the removal of pollutants such as S, N, Hg, and Cl. To account for possible mineral matter effects, mainly on sulphur removal, tests were also performed with demineralized coal. Reactivity variation of produced clean coals was evaluated by performing non-isothermal combustion tests in a TA Q600 thermo gravimetric analyzer. Results showed that the low temperature carbonization technique might contribute to clean coal production by effectively removing the major part of the existing polluting compounds contained in coal. Therefore, depending on coal type, nitrogen, mercury, and chlorine abatement continuously increases with temperature, while sulphur removal seems to reach a plateau above 500-600 °C. More-over, the prolongation of carbonization time above 20 minutes does not affect the elemental conversion of the pollutants and carbonization at 500-600 °C for ~20 minutes may be considered sufficient for clean

  8. Coal Quality Expert: Status and software specifications

    International Nuclear Information System (INIS)

    Harrison, C.D.

    1992-01-01

    Under the Clean Coal Technology Program (Clean Coal Round 1), the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI) are funding the development and demonstration of a computer program called the Coal Quality Expert (CQE trademark). When finished, the CQE will be a comprehensive PC-based program which can be used to evaluate several potential coal cleaning, blending, and switching options to reduce power plant emissions while minimizing generation costs. The CQE will be flxible in nature and capable of evaluating various qualities of coal, available transportation options, performance issues, and alternative emissions control strategies. This allows the CQE to determine the most cost-effective coal and the least expensive emissions control strategy for a given plant. To accomplish this, the CQE will be composed of technical models to evaluate performance issues; environmental models to evaluate environmental and regulatory issues; and cost estimating models to predict costs for installations of new and retrofit coal cleaning processes, power production equipment, and emissions control systems as well as other production costs such as consumables (fuel, scrubber additive, etc.), waste disposal, operating and maintenance, and replacement energy costs. These technical, environmental, and economic models as well as a graphical user interface will be developed for the CQE. And, in addition, to take advantage of already existing capability, the CQE will rely on seamless integration of already proven and extensively used computer programs such as the EPRI Coal Quality Information Systems, Coal Quality Impact Model (CQIM trademark), and NO x Pert. 2 figs

  9. Development and application of a probabilistic evaluation method for advanced process technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C.; Rubin, E.S.

    1991-04-01

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  10. Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning

    Science.gov (United States)

    Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi

    2011-11-01

    Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle

  11. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million. Construction for the demonstration project was started in July 1993. Pre-operational tests were initiated in August 1995, and construction was completed in November 1995. Commercial operation began in November 1995, and the demonstration period was completed in December

  12. Energy options and the role of coal: an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Institute, Edmonton, AB (Canada)

    2006-07-01

    Considers energy goals and options with particular regard to providing affordable energy to Canada. Gasification of coal and carbon to provide a reliable source of clean power and heat to the oil sand industry and for feedstocks for the production of fertilizer, methanol, petrochemicals, and ultra-clean fuels is examined. The layout for integrated gasification polygeneration with carbon feed and plans for Canada's first commercial gasification plant (the Nexen Long Lake Project) are shown in diagrams. Progress in coal gasification at a clean coal Luscar/Sherritt pilot plant is outlined. Clean coal technology is part of a strategy to provide integration across energy systems, generate value for all hydrocarbon resources, and minimize emissions. 15 figs., 2 tabs.

  13. Comprehensive report to Congress Clean Coal Technology Program

    International Nuclear Information System (INIS)

    1992-06-01

    This project will provide a full-scale demonstration of Micronized Coal Reburn (MCR) technology for the control of NO x on a wall-fired steam generator. This demonstration is expected to reduce NO x emissions by 50 to 60%. Micronized coal is coal that has been very finely pulverized (80% less than 325 mesh). This micronized coal, which may comprise up to 30% of the total fuel fired in the furnace, is fired high in the furnace in a fuel-rich reburn zone at a stoichiometry of 0.8. Above the reburn zone, overfire air is injected into the burnout zone at high velocity for good mixing to ensure complete combustion. Overall excess air is 15%. MCR technology reduces NO x emissions with minimal furnace modifications, and the improved burning characteristics of micronized coal enhance boiler performance

  14. Micronized Coal Reburning Demonstration for NOx Control: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round IV, the Micronized Coal Reburning (MCR) Demonstration for NO(sub x) Control, as described in a report to Congress (U.S. Department of Energy 1999). The need to meet strict emissions requirements at a minimum cost prompted the Tennessee Valley Authority (TVA), in conjunction with Fuller Company, Energy and Environmental Research Corporation (EER), and Fluor Daniel, to submit the proposal for this project to be sited at TVA's Shawnee Fossil Plant. In July 1992, TVA entered into a cooperative agreement with DOE to conduct the study. However, because of operational and environmental compliance strategy changes, the Shawnee site became unavailable

  15. Clean coal and heavy oil technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    Global power generation markets have shown a steady penetration of GT/CC technology into oil and gas fired applications as the technology has matured. The lower cost, improved reliability and efficiency advantages of combined cycles can now be used to improve the cost of electricity and environmental acceptance of poor quality fuels such as coal, heavy oil, petroleum coke and waste products. Four different technologies have been proposed, including slagging combustors, Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC) and Integrated Gasification Combined Cycle (IGCC). Details of the technology for the three experimental technologies can be found in the appendix. IGCC is now a commercial technology. In the global marketplace, this shift is being demonstrated using various gasification technologies to produce a clean fuel for the combined cycle. Early plants in the 1980s demonstrated the technical/environmental features and suitability for power generation plants. Economics, however, were disappointing until the model F GT technologies were first used commercially in 1990. The economic break-through of matching F technology gas turbines with gasification was not apparent until 1993 when a number of projects were ordered for commercial operation in the mid-1990s. GE has started 10 new projects for operation before the year 2000. These applications utilize seven different gasification technologies to meet specific application needs. Early plants are utilizing low-cost fuels, such as heavy oil or petroleum coke, to provide economics in first-of-a-kind plants. Some special funding incentives have broadened the applications to include power-only coal plants. Next generation gas turbines projected for commercial applications after the year 2000 will contribute to another step change in technology. It is expected that the initial commercialization process will provide the basis for clear technology choices on future plants.

  16. Third symposium on coal preparation. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The third Symposium on Coal preparation, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Fourteen papers from the proceedings have been entered individually into EDB and ERA; five additional papers had been entered previously from other sources. Topics covered involved chemical comminution and chemical desulfurization of coal (aimed at reducing sulfur sufficiently with some coals to meet air quality standards without flue gas desulfurization), coal cleaning concepts, removing coal fines and recycling wash water, comparative evaluation of coal preparation methods, coal refuse disposal without polluting the environment, spoil bank reprocessing, noise control in coal preparation plants, etc. (LTN)

  17. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    Energy Technology Data Exchange (ETDEWEB)

    Burford, D.P. [Southern Company Services, Inc., Birmingham, AL (United States)

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of the scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.

  18. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-19

    {open_quotes}Evaluation Engineering and Development of Advanced Cyclone Processes{close_quotes} is one of the DOE-PETC sponsored advanced coal cleaning projects, which share a number of specific goals. These goals are to produce a 6% ash product, reject 85% of the parent coal`s pyritic sulfur, recover 85% of the parent coal`s Btu value, and provide products that are less than 30% moisture. The process in this project, as the name implies, relies on a cyclone or cyclonic separator to achieve physical beneficiation based on the gravimetric differences between clean coal and its impurities. Just as important as the cyclonic separator, if not more so, is the selection of a parting liquid or medium for use in the separator. Selection of a separating medium is regarded as a significant portion of the project because it has a profound impact on the required unit operations, the performance of the separator, and economics of the process. The choice of medium especially influences selection of media recovery system(s), and the characteristics of clean coal and refuse products. Since medium selection is such an important aspect of the project, portions of the project are dedicated to the study, evaluation, and selection of the most desirable medium. Though separators are an important component, this project initially focused on media study, rather than the separators themselves. In coal processing, discussion of media requires description of the handling and recovery system(s), separation performance, interaction with coal, cost, and health, environmental and safety issues. In order to be effective, a candidate must perform well in all of these categories.

  19. Clean coal technology choices relating to the future supply and demand of electricity in Southern Africa

    International Nuclear Information System (INIS)

    Lennon, S.J.

    1997-01-01

    The finalization of the United Nations Framework Convention on Climate Change (UNFCCC) has catalysed a high degree of debate and interest in the future of coal-fired power generation. Fossil fuel combustion is responsible for a significant percentage of pollutants emitted globally, and coal will continue to play a major role in the energy portfolios of many countries. This is particularly true for developing countries. This fact has resulted in a major focus on technologies which improve the efficiency of coal combustion and conversion to electrical energy, as well as technologies which directly of indirectly reduce overall emissions. The issues around clean coal technologies (CCT) and their evolution, development and uptake in both developed and developing countries are complex. This paper addresses these issues in a Southern African context, viewed from the policy perspective of developing countries and presented in a framework of electricity supply and demand considerations in the region. The principal climate change policy elements proposed for South Africa are presented in the context of the current electricity supply and demand situation in the region. These are presented in the context of Eskom's Integrated Electricity Planning (IEP) process including the environmental considerations inherent in decision-making processes. The potential future of the CCT, barriers to their introduction and potential measures to facilitate their accelerated adoption are discussed. (author). 4 refs., 5 tabs., 2 figs

  20. The theory and technology of enclosure dust-laying model in speeded advance of coal road

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Min Cheng; Xiang-Sheng Liu; Guo-Qiang Ruan; Yun-Xiang Guo; Gang Wang [Shandong University of Science and Technology, Qingdao (China). Key Laboratory of Mine Disaster Prevention and Control

    2009-02-15

    In order to solve the problem of high dust concentration caused by the rapid advance of coal roadways using the ABM20 development machine, a method suitable for the rapid advance of coal roadways in China was proposed. By using the mathematic model method to contrast the wind current field and dust field of the drivage face under different drivage velocities, an optimized drivage velocity of the fully-mechanized development machine was obtained. The theories were tested in an industry experiment. Analysis of the data indicates that the proposed enclosure dust-laying system can significantly lower the dust concentration at the heading face. It also has some advantages in accomplishing the effective advance of coal mines. 9 refs., 5 figs.

  1. Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. [Advanced Fuel Research, Inc., East Hartford, CT (United States)]|[Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  2. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    Science.gov (United States)

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  3. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  4. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    International Nuclear Information System (INIS)

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO 2 emissions by greater than 90% and limiting NO x emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today's conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated

  5. Sahara Coal: the fine art of collecting fines for profit

    Energy Technology Data Exchange (ETDEWEB)

    Schreckengost, D.; Arnold, D.

    1984-09-01

    A considerable increase in the volume of fines in rom coal caused Sahara Coal in Illinois to redesign the fine coal system in their Harrisburg preparation plant. Details of the new design, and particularly the fine refuse system which dewaters and dries 28 mesh x O clean coal, are given. Results have exceeded expectations in reducing product losses, operating costs and slurry pond cleaning costs.

  6. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  7. Comprehensive report to Congress Clean Coal Technology Program. Four Rivers Energy Modernization Project

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    One of the five projects selected for funding within the Clean Coal Technology Program is a project proposed by Air Products and Chemicals, Inc. (APCI) of Allentown, Pennsylvania. APCI requested financial assistance from DOE for the design, construction, and operation of a 95 megawatt-electric (MWe) gross equivalent, second generation, pressurized, circulating fluidized bed (PCFB) combustor cogeneration facility. The project, named the Four Rivers Energy Modernization Project, is co be located adjacent to an existing APCI chemicals manufacturing facility in Calvert City, Kentucky. Four Rivers Energy Partners, L.P. (FREP), will execute the project. The demonstration plant will produce approximately 70 MWe for the utility grid and an average of 310,000 pounds per hour of process steam for the chemicals manufacturing facility. The project, including the demonstration phase, will last 80 months at a total cost of $360,707,500. DOE`s share of the project cost will be 39.5 percent, or $142,460,000. The objective of the proposed project is to demonstrate a second generation PCFB system based on technology being supplied by Foster Wheeler Energy Corporation (FWEC), Westinghouse Electric Corporation (Westinghouse), and LLB Lurgi Lentjes Babcock Energietechnik GmbH (LLB). The integrated performance to be demonstrated will involve all of the process systems, including coal preparation and feed, sorbent feed, carbonizer, char transfer, PCFB combustor, carbonizer and combustor hot-gas filtration, carbonizer and combustor alkali removal, topping combustor, gas turbine-generator, heat recovery steam generator (HRSG), steam turbine-generator, and balance-of-plant systems. The project will utilize Western Kentucky and Southern Illinois bituminous coal.

  8. Burnout prediction using advance image analysis coal characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Edward Lester; Dave Watts; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

    2003-07-01

    The link between petrographic composition and burnout has been investigated previously by the authors. However, these predictions were based on 'bulk' properties of the coal, including the proportion of each maceral or the reflectance of the macerals in the whole sample. Combustion studies relating burnout with microlithotype analysis, or similar, remain less common partly because the technique is more complex than maceral analysis. Despite this, it is likely that any burnout prediction based on petrographic characteristics will become more accurate if it includes information about the maceral associations and the size of each particle. Chars from 13 coals, 106-125 micron size fractions, were prepared using a Drop Tube Furnace (DTF) at 1300{degree}C and 200 millisecond and 1% Oxygen. These chars were then refired in the DTF at 1300{degree}C 5% oxygen and residence times of 200, 400 and 600 milliseconds. The progressive burnout of each char was compared with the characteristics of the initial coals. This paper presents an extension of previous studies in that it relates combustion behaviour to coals that have been characterized on a particle by particle basis using advanced image analysis techniques. 13 refs., 7 figs.

  9. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  10. Development of upgraded brown coal process

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, N.; Sugita, S.; Deguchi, T.; Shigehisa, T.; Makino, E. [Kobe Steel Ltd., Hyogo (Japan). Coal and Energy Project Department

    2004-07-01

    Half of the world's coal resources are so-called low rank coal (LRC) such as lignite, subbituminous coal. Utilization of such coal is limited due to low heat value and high propensity of spontaneous combustion. Since some of LRCs have advantages as clean coal, i.e. low ash and low sulfur content, LRC can be the excellent feedstock for power generation and metallurgy depending on the upgrading technology. The UBC (upgraded brown coal) process introduced here converts LRC to solid fuel with high heat value and less propensity of self-heating. Various world coals, such as Australian, Indonesian and USA LRC, were tested using the Autoclave and Bench Scale Unit, and the process application to LRC of wide range is proven. The R & D activities of the UBC process are introduced including a demonstration project with a 5 ton/day test plant in progress in Indonesia, expecting near future commercialisation in order to utilize abundant LRC of clean properties. 8 refs., 12 figs., 3 tabs.

  11. The relationship of fluidized bed technology to the U.S. Clean Coal Technology demonstration program

    International Nuclear Information System (INIS)

    Weth, G.; Geffken, J.; Huber, D.A.

    1991-01-01

    Fluidized Bed Combustion projects (both AFBCs and PFBCs) have a prominent role in the US DOE Clean Coal Technology (CCT) Program. This program has the successful commercialization of these technologies as its primary objective and this is the basic criterion for government funding and participation in the development and demonstration of the technologies. Under the CCT program the US DOE is actively involved in the development and operation of three Fluidized Bed Technology projects, NUCLA, TIDD, and SPORN, and is in the negotiation stage on others, Dairyland, Nichols and Tallahassee. All of these projects, along with the operating information on fluidized beds in the industrial sector, will provide a basis for evaluating future utilization of Fluidized Bed Technology in the market place. Impacting upon further utilization will be the time-frame and the Clean Air Act Amendments of 1990. This paper presents the results of a study to ascertain the commercial readiness of Fluidized Bed Technology to meet the emissions and time-frame requirements of the Clean Air Act Amendments of 1990. Specifically addressed are: Commercialization criteria/factors which candidate and/or existing CCTs must achieve in order to gain market acceptance. The status of Fluidized Bed Technology in achieving these commercialization criteria for market acceptance (industrial and utility) consistent with the time frame of the Clean Air Act Amendments of 1990. Recommendations of commercialization criteria for future fluidized bed CCT demonstration projects

  12. Materials performance in advanced fossil technologies

    International Nuclear Information System (INIS)

    Natesan, K.

    1991-01-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as a feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. This article identifies several modes of materials degradation and possible mechanisms for metal wastage. Available data on the performance of materials in several of the environments are highlighted, and examples of promising research activities to improve the corrosion resistance of materials are presented

  13. Clean coal technology project to Polk Power Station, Tampa Electric Company, Florida, Volume 1: Report

    International Nuclear Information System (INIS)

    1994-06-01

    Tampa Electric Company proposes to construct and operate a 1,150-MW power station in southwestern Polk County, Florida. The proposed Polk Power Station would require an EPA NPDES permit for a new source and would include a 260-MW IGCC unit as a DOE Clean Coal Technology demonstration project. This EIS document assesses the proposed project and alternatives with respect to environmental impacts. Mitigative measures are also evaluated for the preferred alternative. Included in this Volume I are the following: alternatives including Tampa Electric Companies proposed project (preferred alternative with DOE financial assistance); affected environment; environmental consequences of the alternatives

  14. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  15. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO x emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO x removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  16. Method selection for mercury removal from hard coal

    Directory of Open Access Journals (Sweden)

    Dziok Tadeusz

    2017-01-01

    Full Text Available Mercury is commonly found in coal and the coal utilization processes constitute one of the main sources of mercury emission to the environment. This issue is particularly important for Poland, because the Polish energy production sector is based on brown and hard coal. The forecasts show that this trend in energy production will continue in the coming years. At the time of the emission limits introduction, methods of reducing the mercury emission will have to be implemented in Poland. Mercury emission can be reduced as a result of using coal with a relatively low mercury content. In the case of the absence of such coals, the methods of mercury removal from coal can be implemented. The currently used and developing methods include the coal cleaning process (both the coal washing and the dry deshaling as well as the thermal pretreatment of coal (mild pyrolysis. The effectiveness of these methods various for different coals, which is caused by the diversity of coal origin, various characteristics of coal and, especially, by the various modes of mercury occurrence in coal. It should be mentioned that the coal cleaning process allows for the removal of mercury occurring in mineral matter, mainly in pyrite. The thermal pretreatment of coal allows for the removal of mercury occurring in organic matter as well as in the inorganic constituents characterized by a low temperature of mercury release. In this paper, the guidelines for the selection of mercury removal method from hard coal were presented. The guidelines were developed taking into consideration: the effectiveness of mercury removal from coal in the process of coal cleaning and thermal pretreatment, the synergy effect resulting from the combination of these processes, the direction of coal utilization as well as the influence of these processes on coal properties.

  17. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  18. Economic aspects of advanced coal-fired gas turbine locomotives

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  19. Is coal a four letter word?

    International Nuclear Information System (INIS)

    Davies, G.

    2004-01-01

    Political promises about the future phasing out of coal-fired power plants were presented in this paper, as well as a demonstration of coal's importance for baseload. Ontario's other energy supply options were discussed and compared, including imported hydro, nuclear projects, natural gas and green initiatives. It was stated that closing coal plants might reduce emissions by 6 per cent, but at a cost of 2 billion dollars per year. The importance of recognizing air sheds was stated, as well as financial penalties along with worsening air quality. A map of Ontario's air shed covering much of eastern North America illustrated this point. A comparison of approaches in the United States was drawn, where coal is the fuel of choice for new supply, with 92 new coal fired plants announced, and many new gas plants being cancelled. A chart of markets for new coal power plant technology was presented, as well as environmental statistics of clean coal. Criteria for coal power plant performance are: air emissions; by-product utilization; water use and discharge; efficiency and reliability; and, capital and product cost. Various research programs in the US were also discussed, with new performance targets examined. Options for Canada were presented. It was concluded that financial penalties, combined with the fact that air pollution has no borders may lead to a reevaluation of coal plant closure. Suggestions for improving coal plants include: the development of a clean air strategy; new investments in new technology for emission reduction; establishing a North American agreement on clean air with meaningful targets. Additionally, it was also suggested that treaty undertakings should involve Canadian participation in US technology development efforts. tabs., figs

  20. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  1. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  2. Computer application in coal preparation industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Lu, M.; Wu, L.; Ni, Q. (China Univ. of Mining and Technology, Xuzhou (China))

    1990-01-01

    This paper describes several packages of microcomputer programs developed for designing and managing the coal preparation plants. Three parts are included: Coal Cleaning Package (CCP), Coal Preparation Optimization Program (CPO) and Coal Preparation Computer Aided Design System (CPCAD). The function of CCP is: evaluating and predicting coal cleaning result. Coal presentation process modelling and optimization; coal preparation flowsheet design and optimization. The CPO is a nonlinear optimization program. It can simulate and optimize the profit for different flowsheet to get the best combination of the final products. The CPCAD was developed based upon AutoCAD and makes full use of AutoLISP, digitizer menus and AutoCAD commands, combining the functions provided by AutoCAD and the principle used in conventional coal preparation plant design, forming a designer-oriented CPCAD system. These packages have proved to be reliable, flexible and easy to learn and use. They are a powerful tool for coal preparation plant design and management. (orig.).

  3. July 2011 Memorandum: Improving EPA Review of Appalachian Surface Coal Mining Operations Under the Clean Water Act, National Environmental Policy Act, and the Environmental Justice Executive Order

    Science.gov (United States)

    Memorandum: Improving EPA Review of Appalachian Surface Coal Mining Operations Under the Clean Water Act, National Environmental Policy Act, and the Environmental Justice Executive Order, July 21, 2011

  4. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  5. Coal yearbook 1993

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is the first coal yearbook published by ATIC (France). In a first chapter, economical context of coal worldwide market is analyzed: comparative evaluations on coal exports and imports, coal industry, prices, production in USA, Australia, South Africa, China, former USSR, Poland, Colombia, Venezuela and Indonesia are given. The second chapter describes the french energy context: national coal production, imports, sectorial analysis, maritime transport. The third chapter describes briefly the technologies of clean coal and energy saving developed by Charbonnages de France: fossil-fuel power plants with combined cycles and cogeneration, fluidized beds for the recovery of coal residues, recycling of agricultural wastes (sugar cane wastes) in thermal power plant, coal desulfurization for air pollution abatement. In the last chapter, statistical data on coal, natural gas and crude oil are offered: world production, world imports, world exports, french imports, deliveries to France, coal balance, french consumption of primary energy, power generation by fuel type

  6. Issue of fossil fuel resources and coal technology strategy for the 21st century - toward the globalization

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K. [Japan Coal Energy Center, Tokyo (Japan)

    2001-03-01

    The President of the Japan Coal Energy Centre gives an outlook on coal demand worldwide and particularly in Asia as a whole and Japan, and outlines the present day environmental concerns concerning coal. World reserves of coal, petroleum, natural gas and uranium are compared. The huge resources of coal may not be realized due to difficulty of development in both technical and economic terms. The 'triangle strategy' to resolve problems of supply and the environment is outlined - this considers the relationship between resources (supply) and utilization (demand); between resources and environment; and between utilization and environment. Technical tasks to tackle to exploit coal are listed. These include: advance in technology for resource exploration; improvement in refining and storing low-grade coal; establishing a highly efficient mining system; promoting of clean coal technology; recovery of coalbed methane; and CO{sub 2} fixation. 6 figs., 1 tab.

  7. Technological roadmap for production, clean and efficient use of Brazilian mineral coal: 2012 to 2035; Roadmap tecnologico para producao, uso limpo e eficiente do carvao mineral nacional: 2012 a 2035

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Brazil has one of the largest coal reserves in the world, but it is not among the largest producers in the world. Coal in Brazil, has two main applications: use as fuel for power generation, including industrial energy use, and in the iron and steel industry for production of coke, pig iron and steel. In the updated rates of use, the coal reserves can provide coal for more than 500 years. A public policy to better take advantage of the mineral coal, with horizons in 2022 and 2035 and the guidelines and strategies proposed for the country to reach the production, clean and efficient use of the expressive quantity of the mineral national coal are presented.

  8. Role of coal in the world and Asia

    International Nuclear Information System (INIS)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning

  9. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  10. Modes of occurrence of potentially hazardous elements in coal: levels of confidence

    Science.gov (United States)

    Finkelman, R.B.

    1994-01-01

    The modes of occurrence of the potentially hazardous elements in coal will be of significance in any attempt to reduce their mobilization due to coal combustion. Antimony and selenium may be present in solid solution in pyrite, as minute accessory sulfides dispersed throughout the organic matrix, or in organic association. Because of these modes of occurrence it is anticipated that less than 50% of these elements will be routinely removed by conventional coal cleaning procedures. Arsenic and mercury occur primarily in late-stage coarse-grained pyrite therefore physical coal cleaning procedures should be successful in removing substantial proportions of these elements. Cadmium occurs in sphalerite and lead in galena. Both of these minerals exhibit a wide range of particle sizes and textural relations. Depending on the particle size and textural relations, physical coal cleaning may remove as little as 25% of these elements or as much as 75%. Manganese in bituminous coal occurs in carbonates, especially siderite. Physical coal cleaning should remove a substantial proportion of this element. More information is needed to elucidate the modes of occurrence of beryllium, chromium, cobalt, and nickel. ?? 1994.

  11. Impact of fuel properties on advanced power systems

    Energy Technology Data Exchange (ETDEWEB)

    Sondreal, E.A.; Jones, M.L.; Hurley, J.P.; Benson, S.A.; Willson, W.G. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Advanced coal-fired combined-cycle power systems currently in development and demonstration have the goal of increasing generating efficiency to a level approaching 50% while reducing the cost of electricity from new plants by 20% and meeting stringent standards on emissions of SO{sub x} NO{sub x} fine particulates, and air toxic metals. Achieving these benefits requires that clean hot gas be delivered to a gas turbine at a temperature approaching 1350{degrees}C, while minimizing energy losses in the gasification, combustion, heat transfer, and/or gas cleaning equipment used to generate the hot gas. Minimizing capital cost also requires that the different stages of the system be integrated as simply and compactly as possible. Second-generation technologies including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), externally fired combined cycle (EFCC), and other advanced combustion systems rely on different high-temperature combinations of heat exchange, gas filtration, and sulfur capture to meet these requirements. This paper describes the various properties of lignite and brown coals.

  12. Coal utilization, the environment, and the role of geologists

    International Nuclear Information System (INIS)

    Dutcher, L.A.F.; Dutcher, R.R.

    1991-01-01

    The United States has demonstrated reserves (coal potentially minable with current technology) sufficient to meet demand for at least 300 yrs (Illinois Coal Association, 1990, p. 5) at the 1990 production rate of 930,900,000 tonnes (1,024,000,000 tons) (Energy Information Administration, 1991, p. 6). These deposits, underlying about 13% of the country's land area, are the energy equivalent of about 2,000,000,000,000 bbl of crude oil - more than triple the world's known oil reserves. About 85% of coal used in the nation goes to the electric utility industry to generate 55% of the electricity produced in the US. The remaining buyers include steel, other industrial facilities, and retail dealers to a limited extent. Future increases in demand will depend upon economic growth of domestic and foreign markets and the price of competing fuels. However, future demand especially will depend upon the scope of government regulation and the progress of research and technology development in reducing environmental impacts resulting from mining and utilization and in advancing clean coal-burning technologies

  13. One coal miner's perspective on the present United States coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.E. [Murray Energy Corp., Pepper Pike, OH (United States)

    2002-07-01

    The President and CEO of the Murray Energy Corporation presented his observations on and concerns about the coal and energy industries in the USA, as a coal miner and an energy trader. He outlines the coal mining operations of the Murray Energy Corporation. He offers critical comments about, for example, some unscrupulous energy trading activities, the future of Powder River Basin coal (which he believes may be curtailed by the introduction of clean coal technologies), the lack of expertise in coal mining, the need to revise the law concerning coal company bankruptcies, the need for the government to provide a means to secure bonds, the need to liberalize black lung disease benefits, and the factors deterring improvement of the performance of the eastern coal industry. He criticises current policy and puts forward some recommendations.

  14. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, December 1, 1980-February 28, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Garg, D.; Givens, E.N.; Schweighardt, F.K.; Curtis, C.W.; Guin, J.A.; Huang, W.J.; Shridharani, K.

    1981-04-01

    Results from screening studies showed that the pyrite samples separated from various coal seams had similar catalytic activity. The addition of all the pyrite samples to feed slurry increased conversion of coal and production of oil. A sample of fusinite was also tested for its liquefaction behavior with and without added pyrite. The addition of pyrite increased the conversion of fusinite and production of oil. These results show that pyrite catalyzes the conversion of fusinite and therefore improves overall coal conversion. Conversion of coal and oil production increased by impregnating coal with iron and molybdenum compounds. Coal conversion and oil production also increased with increasing concentration of both iron and molybdenum impregnated on coal. Addition of various transition metal sulfides increased coal conversion and oil production. Dramatic improvements were noted with nickel, vanadium, and tin sulfides. Addition of transition metal naphthenates produced mixed results; some of them improved coal conversion and others had no effect. The effect of metal concentration on coal conversion was also not clear. Deep cleaning of coal did not affect coal conversion, but it significantly reduced oil production. Addition of pyrite separated from coal to deep cleaned coal sample regained the oil production to the original value, i.e., oil produced from liquefaction of raw coal.Coal cleaned by oil agglomeration gave highest coal conversion and oil production. Basic and non-basic nitrogen compounds reduced the naphthalene hydrogenation activity of both Co-Mo-Al and sulfided Fe/sub 2/O/sub 3/. Sulfided Fe/sub 2/O/sub 3/ was inactive for denitrogenation of quinoline, and the reaction product mainly consisted of hydrogenated and hydrocracked quinoline. On the contrary, Co-Mo-Al was active for denitrogenation of quinoline, resulting in lower quinoline poisoning.

  15. Advanced coal combustion technologies and their environmental impact

    International Nuclear Information System (INIS)

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  16. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  17. Keeping condensers clean

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  18. Energy Servers Deliver Clean, Affordable Power

    Science.gov (United States)

    2010-01-01

    K.R. Sridhar developed a fuel cell device for Ames Research Center, that could use solar power to split water into oxygen for breathing and hydrogen for fuel on Mars. Sridhar saw the potential of the technology, when reversed, to create clean energy on Earth. He founded Bloom Energy, of Sunnyvale, California, to advance the technology. Today, the Bloom Energy Server is providing cost-effective, environmentally friendly energy to a host of companies such as eBay, Google, and The Coca-Cola Company. Bloom's NASA-derived Energy Servers generate energy that is about 67-percent cleaner than a typical coal-fired power plant when using fossil fuels and 100-percent cleaner with renewable fuels.

  19. Coal structure and reactivity changes induced by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Pevida, C.; Garcia, R.; Pis, J.J. [Department of Energy and Environment, Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Steel, K.M.; Patrick, J.W. [Fuel Technology Group, School of Chemical, Environmental and Mining Engineering, Nottingham University, University Park, NG7 2RD Nottingham (United Kingdom)

    2002-12-01

    The aim of this work was to determine the influence that an advanced demineralisation procedure has on the combustion characteristics of coal. A high-volatile bituminous coal with 6.2% ash content was treated in a mixture of hydrofluoric and fluorosilicic acids (HF/H{sub 2}SiF{sub 6}). Nitric acid was used either as a pretreatment, or as a washing stage after HF/H{sub 2}SiF{sub 6} demineralisation, with an ash content as low as 0.3% being attained in the latter case. The structural changes produced by the chemical treatment were evaluated by comparison of the FTIR spectra of the raw and treated coal samples. The devolatilisation and combustibility behaviour of the samples was studied by using a thermobalance coupled to a mass spectrometer (TGA-MS) for evolved gas analysis. The combustibility characteristics of the cleaned samples were clearly improved, there being a decrease in SO{sub 2} emissions.

  20. Advances in telescope mirror cleaning

    Science.gov (United States)

    Blanken, Maarten F.; Chopping, Alan K.; Dee, Kevin M.

    2004-09-01

    Metrology and cleaning techniques for telescope mirrors are generally well established. CO2 cleaning and water washing are mainly used. Water washing has proven to be the best method of removing oil and water stains and restoring the aluminium to nearly fresh values. The risk of water getting to unwanted places such as electronics or other optics prevents this method from being employed more often. Recently the Isaac Newton Group introduced a new cleaning technique for their telescope mirrors, which reduces the risks discussed above. This technique uses water vapour instead of water to wash the mirror. The advantage of this method is that the amount of water needed is drastically reduced. In addition the pressure of the vapour will blow away any large dust particles on the mirror and the temperature shock between the vapour and the mirror will help to de-bond the dust particles. Adding a soapy solution will help to clean oil and watermarks of the mirror. This paper describes the vapour cleaning method, tests that have been done and the overall findings.

  1. Upgraded Coal Interest Group -- A vision for coal-based power in 1999 and beyond

    International Nuclear Information System (INIS)

    Hughes, E.; Battista, J.; Stopek, D.; Akers, D.

    1999-01-01

    The US is at a critical junction. Global competition is now a reality for a large number of US businesses and, ultimately, almost all US businesses will compete to one degree or another in the global marketplace. Under these circumstances, maintaining and improving the standard of living of US citizens requires a plentiful supply of low-cost electric energy to reduce the cost of providing goods and services both in the US an abroad. At the same time, segments of the public demand increased environmental restrictions on the utility industry. If the electric utility industry is to successfully respond to the goals of reducing electricity costs, maintaining reliability, and reducing emissions, fuels technology research is critical. For coal-fired units, fuel cost typically represents from 60--70% of operating costs. Reducing fuel cost, reduces operating costs. This can provide revenue that could be used to finance emissions control systems or advanced type of boilers resulting from post-combustion research. At the same time, improving coal quality reduces emissions from existing boilers without the need for substantial capital investment by the utility. If quality improvements can be accomplished with little or no increase in fuel costs, an immediate improvement in emissions can be achieved without an increase in electricity costs. All of this is directly dependent on continued and expanded levels of research on coal with the cooperation and partnership between government and industry. The paper describes enhanced fuel technologies (use of waste coal, coal water slurries, biomass/composite fuels, improved dewatering technologies, precombustion control of HAPs, dry cleaning technologies, and international coal characterization) and enhanced emission control technologies

  2. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  3. Disordering fantasies of coal and technology: Carbon capture and storage in Australia

    International Nuclear Information System (INIS)

    Marshall, Jonathan Paul

    2016-01-01

    One of the main ways that continued use of coal is justified, and compensated for, is through fantasies of technology. This paper explores the politics of 'Carbon Capture and Storage' (CCS) technologies in Australia. These technologies involve capturing CO 2 emissions, usually to store them 'safely' underground in a process called 'geo-sequestration'. In Australia the idea of 'clean coal' has been heavily promoted, and is a major part of CO 2 emissions reduction plans, despite the technological difficulties, the lack of large scale working prototypes, the lack of coal company investment in such research, and the current difficulties in detecting leaks. This paper investigates the ways that the politics of 'clean coal' have functioned as psycho-social defence mechanisms, to prolong coal usage, assuage political discomfort and anxiety, and increase the systemic disturbance produced by coal power. - Highlights: • Clean coal and geological sequestration is part of Australian climate policy. • Governments have offered much to carbon capture and storage (CCS) projects. • Coal, and coal power, industries have been relatively uninterested. • Progress with CCS is problematic and has not lived up to expectations. • CCS defends against tackling the connection between coal and climate.

  4. Collimation Cleaning at the LHC with Advanced Secondary Collimator Materials

    CERN Document Server

    AUTHOR|(CDS)2085459; Bruce, Roderik; Mereghetti, Alessio; Redaelli, Stefano; Rossi, A

    2015-01-01

    The LHC collimation system must ensure efficient beam halo cleaning in all machine conditions. The first run in 2010-2013 showed that the LHC performance may be limited by collimator material-related concerns, such as the contribution from the present carbon-based secondary collimators to the machine impedance and, consequently, to the beam instability. Novel materials based on composites are currently under development for the next generation of LHC collimators to address these limitations. Particle tracking simulations of collimation efficiency were performed using the Sixtrack code and a material database updated to model these composites. In this paper, the simulation results will be presented with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  5. Metamorphosis of the coal sector. From dirty to clean?; Metamorfose van de kolensector. Van vies naar schoon?

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, S.

    2008-05-15

    The author surveys the extreme make-over of the coal industry: from dirty to clean. To many of us, coal might seem the energy source of the past. In many countries of Western Europe, coal mines were closed decades ago and in most cases gas has replaced coal for heating. However, the worldwide use of coal has never been as high as it is today and coal consumption is expected to increase by 70% until 2030. This increase has mainly to do with the rapid growth of energy consumption in China and India. There are, however, environmental problems related to coal, the most prominent being the very high CO2 emissions, causing climate change. Capturing CO2 and burying it in geological formation underground, a technology called Carbon Capture and Storage (CCS), could potentially alleviate the CO2 burden that is inevitably related to coal. However, CCS is not yet a proven method and there are many uncertainties to be taken away. This leaves a gap between the international and European policy goals of decreasing global CO2 emissions and the emissions caused by coal. In fact, it shows the necessity of reaching an international climate agreement (post Kyoto) and of creating a fair efforts sharing balance between the industrialized and developing countries. [Dutch] De auteur geeft een overzicht van de extreme veranderingen in de steenkoolindustrie om deze schoner te laten produceren. Voor velen van ons lijken kolen misschien de energiebron van het verleden. In veel landen van West-Europa, werden kolenmijnen tientallen jaren geleden gesloten en in de meeste gevallen heeft aardgas steenkool vervangen voor verwarming. Echter, het wereldwijde gebruik van steenkool is nog nooit zo hoog geweest als nu en het verbruik van steenkool zal naar verwachting met 70% stijgen tot 2030. Deze stijging heeft vooral te maken met de snelle groei van het energieverbruik in China en India. Er zijn echter milieuproblemen in verband met steenkool, waarvan de meest prominente de zeer hoge CO2-uitstoot

  6. Recovery of clean coal fines through a combination of gravity concentrator and flotation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Banerjee, P.K.; Dutta, A.; Mishra, A. [Tata Steel, Jamshedpur (India). Research & Development

    2007-07-01

    Flotation feed is a mixture of coarse and ultra-fine fractions. During conditioning of the flotation feed with collector and frother, the finer fraction consumes more reagents as compared to coarser particles. This is mainly due to more specific surface area of the ultra fine than the coarse fraction. This favors the adsorption of reagents toward ultra-finer fractions leads to less complete surface coverage of coarse particles and more entrainment of finer gangue particles. This results in the lower yield of coarse fractions from the flotation circuit and loss in selectivity. Hence, the major challenge is to improve the recovery of the coarser fraction and selectivity of ultra-fine fractions by improving flotation kinetics of all size fractions. This article deals with an approach to overcome the improper reagent adsorption by fine and coarse coal fractions in the flotation circuit through an innovative washing circuit containing gravity operation and flotation processes. Flotation performance between a new washing circuit having stub cyclone and flotation and normal single-stage reagent addition flotation process is compared in terms of selectivity, separation efficiency, rate constant, and size-wise recovery. The washing circuit having stub cyclone and flotation processes improves the fine clean coal yield by 10% and reduces the consumption of reagent compared to the normal single-stage reagent addition flotation process.

  7. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  8. Energy strategy would slow coal's growth, says DOE

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The National Energy Strategy (NES) recently announced by the Bush Administration would slow the growth in use of coal by hundreds of millions of tons of coal by hundreds of millions of tons after 2000, according to the Department of Energy's (DOE) own figures. If today's policies are continued, coal consumption will nearly triple by 2030. Current annual consumption of more than 900 million tons (19 quadrillion Btus) would rise to 1,550 million tons in 2010 and to nearly 2,600 million tons by 2030. Coal's share of electricity generation, now about 55%, would grow to 75% by 2030 under the current policy base assumptions of the DOE. The NES, however, projects that surge of nuclear power plant construction will stem the growth of coal use. The strategy would still increase coal use, from 19 quadrillion Btus today to about 28 quads in 2010, but to only 32 quads by 2030. By 2030, coal would account for less than 50% of electricity generation under the NES. Total clean coal technologies capacity is substantially lower under the NES scenario case than under the clean coal actions alone. The strategy also contains good news for the coal industry in the short run. It holds out two main goals for coal policy: maintaining coal's competitiveness while meeting environmental, health and safety requirements; and creating a favorable export climate for US coal and coal technology

  9. World coal prices and future energy demand

    International Nuclear Information System (INIS)

    Bennett, J.

    1992-01-01

    The Clean Air Act Amendments will create some important changes in the US domestic steam coal market, including price increases for compliance coal by the year 2000 and price decreases for high-sulfur coal. In the international market, there is likely to be a continuing oversupply which will put a damper on price increases. The paper examines several forecasts for domestic and international coal prices and notes a range of predictions for future oil prices

  10. The prospects of hard and brown coal in Poland and in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, Lidia; Majchrzak, Henryk; Mokrzycki, Eugeniusz; Uliasz-Bochenczyk, Alicja

    2010-09-15

    Poland possess significant reserves of hard and brown coal and is an important producer of these fuels, for that reason coal has a dominant position in Polish energy balance. The government document describing energy policy of Poland up to the year 2030 treats Polish coal as an stabilizer of national energy safety. The progress in clean coal technologies development is a key element to determine the role of Polish coal both in Polish and EU economy. The possibilities of prospective use of coal pointing at the main direction of clean technology development has also been discussed in the paper.

  11. Selected results of the slovak coal research

    Directory of Open Access Journals (Sweden)

    Hredzák Slavomír

    1997-09-01

    Full Text Available The contribution gives the review of Slovak brown coal research in the last 10 years. The state and development trends of the coal research in Slovakia from the point of view of the clean coal technologies application are described. Some selected results which have been obtained at the Institute of Geotechnics of the Slovak Academy of Sciences are also introduced.

  12. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards

    International Nuclear Information System (INIS)

    Oliveira, Marcos L.S.; Marostega, Fabiane; Taffarel, Silvio R.; Saikia, Binoy K.; Waanders, Frans B.; DaBoit, Kátia; Baruah, Bimala P.

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles. - Highlights: • We research changes in the level of ultrafine and nanoparticles about coal–ash quality. • Increasing dates will increase human health quality in this Indian coal area. • Welfare effects depend on ex-ante or ex-post assumptions about

  13. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  14. Indirect coal liquefaction - the first commercial CTL project in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, K.; Battensby, D.; Marsico, C.; Hooper, M.; Mather, C. [Uhde GmbH (Germany)

    2006-07-01

    The polygeneration of fuels, chemical and power offers an innovative and economically advantageous way to utilise disadvantaged fuels, such as lignite, waste coal and petroleum coke, in a coal-to-liquids (CTL) plant by means of integration of three main process blocks: gasification island to convert coal into clean synthesis gas; Fischer-Tropsch synthesis to convert synthesis gas into clean liquid fuels and chemicals; and combustion of synthesis gas to produce electric power and steam. This paper describes the process and technology side of this indirect coal liquefaction project with key plant data that has been elaborated for a commercial scale CTL project, which is expected to be the first CTL plant in the USA. The plant will use the Shell Coal Gasification process. 6 figs.

  15. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  16. Washability and Distribution Behaviors of Trace Elements of a High-Sulfur Coal, SW Guizhou, China

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2018-02-01

    Full Text Available The float-sink test is a commonly used technology for the study of coal washability, which determines optimal separation density for coal washing based on the desired sulfur and ash yield of the cleaned coal. In this study, the float-sink test is adopted for a high-sulfur Late Permian coal from Hongfa coalmine (No.26, southwestern Guizhou, China, to investigate its washability, and to analyze the organic affinities and distribution behaviors of some toxic and valuable trace elements. Results show that the coal is difficult to separate in terms of desulfurization. A cleaned coal could theoretically be obtained with a yield of 75.50%, sulfur 2.50%, and ash yield 11.33% when the separation density is 1.57 g/cm3. Trace elements’ distribution behaviors during the gravity separation were evaluated by correlation analysis and calculation. It was found that Cs, Ga, Ta, Th, Rb, Sb, Nb, Hf, Ba, Pb, In, Cu, and Zr are of significant inorganic affinity; while Sn, Co, Re, U, Mo, V, Cr, Ni, and Be are of relatively strong organic affinity. LREE (Light rare earth elements, however, seem to have weaker organic affinity than HREE (Heavy rare earth elements, which can probably be attributed to lanthanide contraction. When the separation density is 1.60 g/cm3, a large proportion of Sn, Be, Cr, U, V, Mo, Ni, Cd, Pb, and Cu migrate to the cleaned coal, but most of Mn, Sb and Th stay in the gangue. Coal preparation provides alternativity for either toxic elements removal or valuable elements preconcentration in addition to desulfurization and deashing. The enrichment of trace elements in the cleaned coal depends on the predetermined separation density which will influence the yields and ash yields of the cleaned coal.

  17. Surface chemical problems in coal flotation

    Science.gov (United States)

    Taylor, S. R.; Miller, K. J.; Deurbrouck, A. W.

    1981-02-01

    As the use of coal increases and more fine material is produced by mining and processing, the need for improved methods of coal beneficiation increases. While flotation techniques can help meet these needs, the technique is beset with many problems. These problems involve surface chemical and interfacial properties of the coal-mineral-water slurry systems used in coal flotation. The problems associated with coal flotation include non-selectivity, inefficient reagent utilization, and excessive variablity of results. These problems can be broadely classified as a lack of predictability. The present knowledge of coal flotation is not sufficient, in terms of surface chemical parameters, to allow prediction of the flotation response of a given coal. In this paper, some of the surface chemical properties of coal and coal minerals that need to be defined will be discussed in terms of the problems noted above and their impact on coal cleaning.

  18. Extractable trace elements and sodium in Illinois coal-cleaning wastes: correlation with concentrations in tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.G.

    1983-07-01

    Trace element concentrations in shoots of tall fescue (Festuca arundinacea Schreb.) were correlated with extractable element concentrations in five southern Illinois coal-cleaning wastes limed to pH 6.5, in a greenhouse study to determine applicability of soil tests to coal-waste evaluation. There was little or no correlation between shoot concentrations of Fe, and Fe extracted from the wastes by dilute acid (r equals 0.60), DTPA at pH 6.4 (r equals 0.47) or DTPA at pH 8.4 (r equals -0.17). The corresponding r values for Mn were 0.94, 0.97, and 0.96; for Zn, 0.96, 0.96, and 0.88; and for Cu, 0.67, 0.90, and 0.88, respectively. Shoot B correlated well with hot water-soluble B(r equals 0.96) and acid-soluble B(r equals 0.91). Correlations for shoot Na were also good with water-soluble Na and acid-soluble Na (r equals 0.96 in both cases). Concentrations of Al, As, Cd, Ni, Pb, and Se in the shoots were well below reported upper critical levels, and similar to concentrations in the grass grown on a silt loam under the same greenhouse conditions. 21 references.

  19. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  20. U.S. DOE indirect coal liquefaction program: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R. [Dept. of Energy, Germantown, MD (United States); Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  1. Update of progress for Phase II of B&W`s advanced coal-fired low-emission boiler system

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.K. [Babcock & Wilcox, Barberton, OH (United States); Madden, D.A.; Rodgers, L.W. [Babcock & Wilcox, Alliance, OH (United States)] [and others

    1995-11-01

    Over the past five years, advances in emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements in steam turbine and cycle design have significantly altered the governing criteria by which advanced technologies have been compared. With these advances, it is clear that pulverized coal technology will continue to be competitive in both cost and performance with other advanced technologies such as Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBC) technologies for at least the next decade. In the early 1990`s it appeared that if IGCC and PFBC could achieve costs comparable to conventional pulverized coal plants, their significantly reduced NO{sub x} and SO{sub 2} emissions would make them more attractive. A comparison of current emission control capabilities shows that all three technologies can already achieve similarly low emissions levels.

  2. The contemporary coal industry: dancing to faster music

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R. [World Coal Institute, London (United Kingdom)

    1997-09-01

    Within a framework that supports sustainable development, the issues of changing coal markets, environmental policy and climate change, and the positive marketing of coal as a solution to energy demand are discussed. Changes affect both domestic and international markets, and each subset of the market is different. In Europe, coal consumption is declining in contrast with expanding Asian energy markets. Clean coal technologies improve efficiency and make coal more acceptable. The greatest reductions in carbon dioxide emissions can be realized within the least efficient areas of coal consumption, in particular the domestic markets in Asia, eastern Europe, and Africa.

  3. The application of the coal grain analysis method to coal liberation studies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Firth, B.; Adair, B. [CSIRO Earth Science & Resource Engineering Brisbane, Qld. (Australia)

    2011-07-01

    Emerging coal markets such as the use of coal for conversion to liquid fuels and its use in fuels cells and as coal water slurries in diesel engines require coal products with different coal quality specifications than those applicable to traditional coal markets of coke making and conventional power generation. As well as quantifying coals in terms of their chemical and physical properties, detailed knowledge of the mineral inclusions within the coal particles is required to identify coals that are suited to economically produce the low-ash value coals required for these markets. After mining and processing, some particles can consist of essentially pure components of a single maceral or mineral phase whilst others are composite particles that are comprised of varying amounts of macerals and minerals. The proportion of particles that are present as pure components or as composites will be a function of the characteristics of the coal and the particle size. In general, it is considered that size reduction will result in liberation and hence increased yield. The amount of liberation that occurs during crushing or grinding a coal is however coal specific. Particle characterization information provided by an optical microscopic-imaging method, Coal Grain Analysis, was used to identify coals that might benefit from additional crushing to improve recovery of clean coal by new density separation techniques and by flotation. As expected, the results of these studies suggest that the degree of liberation that is obtained is coal specific, and, hence, yield improvements are also coal specific. Hence a quantitative method of investigating this issue is required.

  4. Nuclear refinery - advanced energy complex for electricity generation, clean fuel production, and heat supply

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1992-01-01

    In planning for increased U.S. energy users' demand after the year 2000 there are essentially four salient vectors: (1) reduced reliance on imported crude oil; (2) provide a secure supply with stable economics; (3) supply system must be in concert with improved environment goals; and (4) maximum use to be made of indigenous resources. For the last decade of this century the aforementioned will likely be met by increasing utilization of natural gas. Early in the next century, however, in the U.S. and the newly industrializing nations, the ever increasing energy demand will only be met by the combined use of uranium and coal. The proposed nuclear refinery concept is an advanced energy complex that has at its focal point an advanced modular helium reactor (MHR). This nuclear facility, together with a coal feedstock, could contribute towards meeting the needs of the four major energy sectors in the U.S., namely electricity, transportation, industrial heating and chemical feedstock, and space and water heating. Such a nuclear/coal synergistic system would be in concert with improved air quality goals. This paper discusses the major features and multifaceted operation of a nuclear refinery concept, and identifies the enabling technologies needed for such an energy complex to become a reality early in the 21st century. (Author)

  5. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This report contains papers which were presented at the advanced coal-fired power sytems review meeting. This is volume II. Topics include: hot gas filter issues, hazardous air pollutants, sorbent development, and separation technologies. Individual papers were processed separately for the United States Department of Energy databases.

  6. Development of biological coal gasification (MicGAS Process)

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.

    1994-10-01

    The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

  7. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  8. Beneficiation of power grade coals: its relevance to future coal use in India

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1992-01-01

    With consumption increasing from the current level of 220 mt. to over 600 mt. by the year 2010 A.D., coal will continue to enjoy a prime position in the overall energy scene in India. India being endowed with coal resources of high ash content, the major coal consuming industries have, by and large, adjusted the combustion techniques to suit the quality of coal available. However, wide fluctuations in the quality of coal supplies adversely affect their plant performance. With the coal deposits being localised in the eastern and central parts of peninsular India, the load on railway network in carrying coal to other parts of the country will continue to increase and this will emerge as a major constraint in managing the coal supply to the consuming centres located away from the coal fields. It is in this context, the author has discussed the need of setting up of coal cleaning facilities at the pit heads. The extent to which the transport network will be relieved of carrying avoidable muck in coal has been quantified along with the benefits that will accrue in the form of extra transport capacity, better power plant performance and reduced air pollution and solid waste at consumer end. (author). 5 refs., 6 tabs., 8 figs

  9. Experimental study of desulfurization of Zhong Liang Shau high sulfur coal by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.; Huang, B.; Cao, J. [China University of Mining and Technology (China). Beijing Graduate School

    1994-12-01

    Emission of large amount of SO{sub 2} from combustion of high sulfur coal causes serious environmental pollution. Pre-combustion desulfurization of high sulfur coal has become a necessity. This paper reports test results of fine coal desulfurization with different flotation technology and the effect of pyrite depressant. Test work showed that when the coal sample from Zhong Liang Shau was processed with a Free Jet Flotation Column its pyritic sulfur content was reduced from 3.08% to 0.84%, with 72.22% recovery of combustible matter in clean coal. The concept of Desulfurization Efficiency Index E{sub ds} for comprehensive evaluation of desulfurization process is proposed, which is defined as the product of the ratio of sulfur content reduction of clean coal and the recovery of combustible matters. 6 refs., 4 figs., 3 tabs.

  10. Evaluation of Ultra Clean Fuels from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  11. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.

    1992-09-01

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

  12. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    International Nuclear Information System (INIS)

    Szpunar, C.B.

    1992-09-01

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions)

  13. Research of coal flash hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Zhu, H.; Wu, Y.; Tang, L.; Cheng, L.; Xu, Z. [East China University of Science and Technology, Shanghai (China)

    2001-02-01

    Using x-ray photoelectron spectroscopy (XPS) analyses the organic sufur of seven different Chinese coals and their semi-cokes from flash hydropyrolysis were studied. The results showed that the organic sulfur in coal was alkyal sulfur and thiophene with the peak of XPS located in 163.1-163.5 eV and 164.1-164.5 eV. The relative thiophene content in coal increased with the coal rank. The type of organic sulfur in semi-coke in flash hydropyrolysis was generally thiophene species; its XPS peak also located in 164.1-164.5 eV, and was in accord with its corresponding coal. Total alkyl sulfur and some thiophene sulfur were removed during the flash hydropyrolysis process. The alkyl sulfur had very high activity in hydrogenation reaction. Flash hydropyrolysis was an important new clean-coal technique and had notable desulfurization effect. 13 refs., 2 figs., 4 tabs.

  14. Profit from plant experience in specifying coal conveyors

    Energy Technology Data Exchange (ETDEWEB)

    Rajter, L C

    1985-09-01

    Most coal conveyors in operation today were designed to handle raw unwashed coal and are experiencing difficulties when dealing with fine, wet coal which has been cleaned. Conveyor designers should base their designs for new systems on the worst possible materials. Design criteria are discussed in detail and recommendations made for chute liners and radii, skirt system, belt speed, transfer points, belt wipers, weather protection and access. 3 references.

  15. Research of coal flash hydropyrolysis. I. Chemical type analysis of nitrogen in coal and semi-coke

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Ni, Y.; Tang, L.; Zheng, Z.; Zhu, Z. [East China University of Science and Technology, Shanghai (China)

    2001-04-01

    Using XPS analyses the chemical types of nitrogen of ten different types of Chinese coals and their semi-cokes from flash hydropyrolysis (FHP) are studied. The results shows that XPS can effectively determined the chemical types of nitrogen in coal and semi-coke. Peak of XPS located in 398.8 ({plus_minus}0.1) eV and 400.2 ({plus_minus}0.1) eV, which corresponds to pyrrole and pyridine. The nitrogen types are different in coals but mainly are pyrrole and pyridine, and often the pyrrole is more than pyridine. The nitrogen type in coals from FHP is the same as in coal. In FHP, the relative content of pyrrole increases and pyridine reduces. Therefore, it was put forward that flash hydropyrolysis is a new important clean-coal technique and has notable effect of denitrogenation.

  16. FY 2001 report on the coal engineer training project. Advanced course; 2001 nendo sekitan gijutsusha yose jigyo. Jokyu kosu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    The paper summed up the details of the training in the coal engineer training project (advanced course) carried out in FY 2001. The term of training was from June 1 to November 14, 2001. In the business training, lectures were given on coal geology, coal exploration technology, coal mining technology, draft survey, coal sampling and analysis method, maritime freight transport mainly of coal, coal utilization technology, environmental protection technology related to coal utilization, projects on overseas coal development, physical properties/chemical characteristics and usage of coal, and coal situation in China. In the inspection training, inspectional visits were paid to Taiheiyo Coal Mining Co., Noshiro Power Plant of the Tohoku Electric Power Co., Kumagaya Plant of Taiheiyo Cement Corp. and Keihin Steelworks of NKK Corp. In the training overseas, inspectional visits were paid to the following in Australia: coal mines of Moonee, Rix's Creek, West Wallsend, Bloomfield, Beltana, Bulga, South Bulga, Mt. Thorley, Warkworth, Liddell, Wambo, Mount Owen, Camberwell, etc. and harbors of Port Newcastle, Port Kembla Coal Terminal, etc. (NEDO)

  17. Advanced mask cleaning for 0.20-μm technology: an integrated user-supplier approach

    Science.gov (United States)

    Poschenrieder, Rudolf; Hay, Bernd; Beier, Matthias; Hourd, Andrew C.; Stuemer, Harald; Gairing, Thomas M.

    1998-12-01

    A newly developed photomask final cleaning system, STEAG HamaTech's Advanced Single Substrate Cleaner, ASC 500, was assessed and optimized at the Siemens mask shop in Munich, Germany, under production conditions within the Esprit European Semiconductor Equipment Assessment programme (SEA). The project was carried out together with the active participation of Compugraphics Intl. Ltd. (UK), DuPont Photomasks, Inc. (Germany; Photronics-MZD, Germany). The results of the assessment are presented, focusing on the cleaning performance at the 0.25 micrometer defect level on photomasks, equipment reliability and Cost of Ownership data. A reticle free of soft defects on glass and on chrome down to the 0.25 micrometer level requires an excellent cleaning process and the use of high-end inspection tools like the KLA STARlight. In order to get a full understanding of the nature of the detected features additional investigations on the blank quality have been carried out. These investigations include the questions whether a detection is a hard or a soft defect and whether small defects on chrome are able to move on the reticle surface. Final cleaning recipes have been optimized in respect to cleaning efficiency while maintaining high throughput and low Cost of Ownership. A benchmark comparison against other final cleaning tools at the partner's maskshops showed the leading data of the ASC 500. It was found that a cleaning program which includes several substrate flips and a combination of the available cleaning methods acid- dispense, water pressure jet clean, brush and megasonic clean was best suitable to achieve these goals. In particular the use of the brush unit was shown to improve the yield while not adding damage to the plate.

  18. Gasification Studies Task 4 Topical Report, Utah Clean Coal Program

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Fletcher, Thomas [Univ. of Utah, Salt Lake City, UT (United States); Pugmire, Ronald [Univ. of Utah, Salt Lake City, UT (United States); Smith, Philip [Univ. of Utah, Salt Lake City, UT (United States); Sutherland, James [Univ. of Utah, Salt Lake City, UT (United States); Thornock, Jeremy [Univ. of Utah, Salt Lake City, UT (United States); Hunsacker, Isaac [Univ. of Utah, Salt Lake City, UT (United States); Li, Suhui [Univ. of Utah, Salt Lake City, UT (United States); Kelly, Kerry [Univ. of Utah, Salt Lake City, UT (United States); Puntai, Naveen [Univ. of Utah, Salt Lake City, UT (United States); Reid, Charles [Univ. of Utah, Salt Lake City, UT (United States); Schurtz, Randy [Univ. of Utah, Salt Lake City, UT (United States)

    2011-10-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical (Subtask 4.4) and physical (Subtask 4.5) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation.

  19. Release of inorganic trace elements from high-temperature gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Blaesing, Marc

    2012-05-30

    The development of cleaner, more efficient techniques in next-generation coal power plants is becoming increasingly important, especially regarding to the discussion of the influence of CO{sub 2} emissions on global warming. A promising coal utilisation process is the integrated gasification combined cycle process. The direct use of the raw gas requires gas clean-up to prevent downstream parts of the gasifier from several problems. An increased efficiency and a decreased amount of harmful species can be achieved through hot fuel gas cleaning. This clean-up technique requires a comprehensive knowledge of the release characteristics of inorganic coal constituents. The aim of this thesis was to provide enhanced knowledge of the effect of key process parameters and of the chemical constitution of coal on the release of Na, K, S, and Cl species from high-temperature coal gasification. The experimental setup consisted of atmospheric flow tube furnaces and a pressurised furnace. In-situ analysis of the product gas was carried out using molecular beam mass spectrometry. A broad spectrum of different coals with assumed qualitative and quantitative differences in the release characteristics was investigated. Additionally, experiments with model substances were performed. The results of the experimental investigation were compared with thermodynamic calculations. Finally, recommendations, for the operation of a high-temperature gasifier are formulated. (orig.)

  20. Development of zero conditioning procedure for coal reverse flotation

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Patil; J.S. Laskowski [University of British Columbia, Vancouver, BC (Canada). Mining Engineering Department

    2008-04-15

    The zero conditioning method was developed to facilitate the flotation of gangue minerals in the reverse coal flotation process. Batch and continuous methods were developed to maintain the zero conditioning principle during reverse flotation. Batch zero conditioning was achieved by adding the required amount of DTAB in one step, as soon as the air was introduced into the system. The continuous zero conditioning method involves uninterrupted addition of DTAB through a specially built sparger in the form of aerosol during the flotation experiment. This produces active bubbles that carry collector. The addition of DTAB in the form of aerosol during reverse flotation proved to be better in reducing the ash of a sub-bituminous (LS-26) coal from 34.7% to 22.9% with a froth product (gangue) yield of 36.8% without any depressant. In the presence of coal depressant (dextrin, 0.5 kg/t), the ash content of LS-26 coal was reduced from 34.7% to 16.5% at a clean coal yield of 55%, whereas the conventional (forward) flotation with fuel oil provided a clean coal containing 16.5% ash with only 29.2% yield. These results prove that flotation of gangue minerals is very much improved by maintaining zero conditioning time conditions in a coal reverse flotation process.

  1. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, September 28, 1996--March 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Pisupati, S.V. [and others

    1997-07-22

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. Preliminary pilot-scale NO{sub x} reduction catalyst tests were conducted when firing natural gas in Penn State`s down-fired combustor. This is the first step in the scale-up of bench-scale results obtained in Phase II to the demonstration boiler scale when firing coal. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio. The evaluation of deeply-cleaned coal as boiler fuel included installing a ribbon mixer into Penn State`s micronized coal-water mixture circuit for reentraining filter cake. In addition, three cleaned coals were received from CQ Inc. and three cleaned coals were received from Cyprus-Amax.

  2. Indian coal industry: Growth perspective

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1993-01-01

    Growth perspective of Indian coal industry and their environmental aspects, are discussed. The complete coal chain comprises of mining including preparation and processing, transport, usage and disposal of solid, liquid and gaseous wastes. Proper environmental protection measures are therefore, required to be integrated at every stage. At mining stage, land reclamation, restoration of surface damaged by subsidence and proper treatment of effluents are the minimum requirement for effective environmental protection. Since coal will continue to be the major source of commercial energy in coming decades initiative will have to be taken in making coal a clean fuel from the point of view of its usage in different industries. Washing of high ash coals for reducing the ash content will go a long way in reducing the atmospheric pollution through better plant performance and reduced environmental pollution at the power plants. (author)

  3. Development of clean coal technologies in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M. [Electric Power Research Industry, Yokosuka (Japan). Central Research Inst.

    2013-07-01

    In Japan, we have to import almost of primary energy resources from all over the world. We depend on foreign countries for 96% of our primary energy supply. Following the two oil crises in the 1970s, Japan has diversified its energy resources through increased use of nuclear energy, natural gas and coal as well as the promotion of energy efficiency and conservation.

  4. Catching the wind - clean and sustainable solutions to China's energy shortfall

    International Nuclear Information System (INIS)

    Hayes, D.

    2002-01-01

    China's power generating capacity has increased markedly in recent years largely due new coal-fired power stations, but sadly, the environmental consequences were largely ignored. Apart from the coal used for power generation, coal is also used to fuel industrial boilers and in houses: some of the world's most polluted cities are in China. In the late 1990s, China began to curb the environmental impact by closing smaller power stations and retrofitting clean-up plant to the bigger stations, but there is still a lot of cleaning-up still to do. The government of China is now offering incentives for the development of renewable sources of energy, and wind power is seen as a clean and sustainable solution to the air pollution problem. The government has identified various geographical regions suitable for wind farms. Solar energy is also seen as a promising source of energy and is being employed in areas remote from power grids. The paper discusses incentives and bank loans for the development and application of renewables

  5. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  6. MERLIN Cleaning Studies with Advanced Collimator Materials for HL-LHC

    CERN Document Server

    Valloni, A.; Mereghetti, A.; Molson, J. G.; Appleby, R.; Bruce, R.; Quaranta, E.; Redaelli, S.

    2016-01-01

    The challenges of the High-Luminosity upgrade of the Large Hadron Collider require improving the beam collimation system. An intense R&D program has started at CERN to explore novel materials for new collimator jaws to improve robustness and reduce impedance. Particle tracking simulations of collimation efficiency are performed using the code MERLIN which has been extended to include new materials based on composites. After presenting two different implementations of composite materials tested in MERLIN, we present simulation studies with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  7. Milliken Clean Coal Technology Demonstration Project. Environmental monitoring report, July--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    New York State Electric and Gas Corporation (NYSEG) has installed and is presently operating a high-efficiency flue gas desulfurization (FGD) system to demonstrate innovative emissions control technology and comply with the Clean Air Act Amendments of 1990. The host facility for this demonstration project is NYSEG`s Milliken Station, in the Town of Lansing, New York. The primary objective of this project is to demonstrate a retrofit of energy-efficient SO{sub 2} and NO{sub x} control systems with minimal impact on overall plant efficiency. The demonstration project has added a forced oxidation, formic acid-enhanced wet limestone FGD system, which is expected to reduce SO{sub 2} emissions by at least 90 percent. NYSEG also made combustion modifications to each boiler and plans to demonstrate selective non-catalytic reduction (SNCR) technology on unit 1, which will reduce NO{sub x} emissions. Goals of the proposed demonstration include up to 98 percent SO{sub 2} removal efficiency while burning high-sulfur coal, 30 percent NO{sub x} reductions through combustion modifications, additional NO{sub x} reductions using SNCR technology, production of marketable commercial-grade gypsum and calcium chloride by-products to minimize solid waste disposal, and zero wastewater discharge.

  8. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  9. Advancing clean energy technology in Canada

    International Nuclear Information System (INIS)

    Munro, G.

    2011-01-01

    This paper discusses the development of clean energy technology in Canada. Energy is a major source of Canadian prosperity. Energy means more to Canada than any other industrialized country. It is the only OECD country with growing oil production. Canada is a stable and secure energy supplier and a major consumer. Promoting clean energy is a priority to make progress in multiple areas.

  10. Feasibility of zeolitic imidazolate framework membranes for clean energy applications

    NARCIS (Netherlands)

    Thornton, A. W.; Dubbeldam, D.; Liu, M. S.; Ladewig, B. P.; Hill, A. J.; Hill, M. R.

    2012-01-01

    Gas separation technologies for carbon-free hydrogen and clean gaseous fuel production must efficiently perform the following separations: (1) H2/CO2 (and H2/N2) for pre-combustion coal gasification, (2) CO2/N2 for post-combustion of coal, (3) CO2/CH4 for natural gas sweetening and biofuel

  11. Passamaquoddy Innovative Clean Coal Technology Program: Public design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Passamaquoddy Technology Recovery Scrubber{trademark} was conceived and developed specifically to address two problems experienced by the Dragon cement plant; meeting increasingly stringent gas emission limits for sulfur dioxide, and disposing of kiln dust, containing alkali oxides, which had to be wasted in order to avoid kiln operating and product quality problems. The idea involved making the kiln dust into a slurry in order to leach out the species (primarily potassium and sulfur) which rendered it unacceptable for return to kiln feed. This slurry, the liquid part of which is an alkaline solution, acts as a scrubbing reagent for SO{sub 2} in the flue gas while CO{sub 2} in the gas serves to precipitate soluble calcium and release sulfate for combination with the potassium. The effect of the process is to scrub SO{sub 2} from kiln flue gas, extract the volatile species from the dust allowing it to be returned to the kiln, and yield a leachate comprising potassium sulfate which can be crystallized (using heat recovered from the flue gas) and sold as fertilizer. Apart from widespread application in the cement industry, it was evident that, if the process could be demonstrated, its potential would extend to any plant burning fossil fuel where an alkaline waste either occurs intrinsically or can be juxtaposed. Obvious candidates appeared to include the pulp and paper industry and waste incineration. The chemistry was proved in a 1/100th scale pilot plant using actual kiln dust and a slip stream of kiln gas. A full scale demonstration installation was commissioned in 1989 by CDN (USA), the owners of the Dragon plant with the financial support of the US Department of Energy under its innovative Clean Coal Technology Program.

  12. Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic Based Super Absorbent Polymers

    Directory of Open Access Journals (Sweden)

    Sheila Devasahayam

    2015-09-01

    Full Text Available With the rising cost of energy and fuel oils, clean coal technologies will continue to play an important role during the transition to a clean energy future. Victorian brown coals have high oxygen and moisture contents and hence low calorific value. This paper presents an alternative non evaporative drying technology for high moisture brown coals based on osmotic dewatering. This involves contacting and mixing brown coal with anionic super absorbent polymers (SAP which are highly crossed linked synthetic co-polymers based on a cross-linked copolymer of acryl amide and potassium acrylate. The paper focuses on evaluating the water absorption potential of SAP in contact with 61% moisture Loy Yang brown coal, under varying SAP dosages for different contact times and conditions. The amount of water present in Loy Yang coal was reduced by approximately 57% during four hours of SAP contact. The extent of SAP brown coal drying is directly proportional to the SAP/coal weight ratio. It is observed that moisture content of fine brown coal can readily be reduced from about 59% to 38% in four hours at a 20% SAP/coal ratio.

  13. Advanced Emissions Control Development Program: Mercury Control

    International Nuclear Information System (INIS)

    Evans, A.P.; Redinger, K.W.; Holmes, M.J.

    1997-07-01

    McDermott Technology, Inc. (a subsidiary of Babcock ampersand Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA's) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation's abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock ampersand Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of

  14. Clean coal technology - Study on the pilot project experiment of underground coal gasification

    International Nuclear Information System (INIS)

    Yang Lanhe; Liang Jie; Yu Li

    2003-01-01

    In this paper, the gasification conditions, the gasifier structure, the measuring system and the gasification rationale of a pilot project experiment of underground coal gasification (UCG) in the Liuzhuang Colliery, Tangshan, are illustrated. The technique of two-phase underground coal gasification is proposed. The detection of the moving speed and the length of the gasification working face is made using radon probing technology. An analysis of the experiment results indicates that the output of air gas is 3000 m 3 /h with a heating value of about 4.18 MJ/m 3 , while the output of water gas is 2000 m 3 /h with a heating value of over 11.00 MJ/m 3 , of which H 2 content is above 40% with a maximum of 71.68%. The cyclical time of two-phase underground gasification is 16 h, with 8 h for each phase. This prolongs the time when the high-heating value gas is produced. The moving speed of the gasification working face in two alternative gasifiers is identified, i.e. 0.204 and 0.487 m/d, respectively. The success of the pilot project experiment of the underground gasification reveals the strides that have been made toward the commercialization of the UCG in China. It also further justifies the reasonability and feasibility of the new technology of long channel, big section, two-phase underground gasification. A conclusion is also drawn that the technology of the pilot project experiment can be popularized in old and discarded coal mines

  15. Coal cleaning: A viable strategy for reduced carbon emissions and improved environment in China?

    OpenAIRE

    Glomsrød, Solveig; Taoyuan, Wei

    2003-01-01

    Abstract: China is a dominant energy consumer in a global context and current energy forecasts emphasise that China’s future energy consumption also will rely heavily on coal. The coal use is the major source of the greenhouse gas CO2 and particles causing serious health damage. This paper looks into the question if coal washing might work as low cost strategy for both CO2 and particle emission reductions. Coal washing removes dirt and rock from raw coal, resulting in a coal pr...

  16. Coal and recycling mark the way forward

    Energy Technology Data Exchange (ETDEWEB)

    Bignell, E.

    2000-11-01

    A report is given of this year's Mineral Engineering Society's annual conference held in Scarborough, UK. The themes of recycling and coal were chosen for the two days of technical presentations. Topics included the cleaning up of brown field sites; the use of recycled waste oxide to replace iron ore pellets for cooling furnaces in steel making; high pressure filtration of industrial mineral effluent; iron ore mining in Australia; screen development; the status of coal preparation technology, by RJB Mining; study of movement of material (to simulate coal) in a hopper; and a UK-Chinese project on reduction of sulphur in coal.

  17. Steam versus coking coal and the acid rain program

    International Nuclear Information System (INIS)

    Lange, Ian

    2010-01-01

    The Clean Air Act of 1990 initiated a tradable permit program for emissions of sulfur dioxide from coal-fired power plants. One effect of this policy was a large increase in the consumption of low-sulfur bituminous coal by coal-fired power plants. However, low-sulfur bituminous coal is also the ideal coking coal for steel production. The analysis presented here will attempt to determine how the market responded to the increased consumption of low-sulfur bituminous coal by the electricity generation sector. Was there a decrease in the quality and/or quantity of coking coal consumption or did extraction increase? Most evidence suggests that the market for coking coal was unaffected, even as the extraction and consumption of low-sulfur bituminous coal for electricity generation increased substantially.

  18. Environmental Policy Induced Input Substitution? The Case of Coking and Steam Coal

    OpenAIRE

    Ian Lange

    2007-01-01

    The Clean Air Act of 1990 initiated a tradable permit program for emissions of sulfur dioxide from coal-fired power plants. The effect of this enlightened policy on the coal industry was a large increase in consumption of low-sulfur bituminous and subbituminous coals. Low-sulfur bituminous coal is most attractive to coal-fired power plants as they have higher heat content and require less alteration to the boiler to burn as effectively the coal previously in use. However, low-sulfur bituminou...

  19. Applying environmental externalities to US Clean Coal Technologies for Taiwan

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1992-01-01

    During the period 1971 to 1980, electricity consumption in Taiwan increased remarkably at an average rate of 12.2% per year. Despite experiencing a record low in 1982 and 1983, electricity demand returned to double digit growth, reaching 11.6% and 10.2% in 1987 and 1988, respectively, due to a strong economic recovery. In 1988, 71.6 TWh of electricity was produced, 21.1 TWh of which was from coal-fired units (29%). The electricity demand for Taiwan is expected to continue to grow at a very rapid rate during the 1990--2006 time frame. The average load is expected to grow at an annual rate of 5.6% while the peak load is projected to increase at an annual rate of 6.0%. All new coal-fired power plants are expected to comply with government regulations on S0 2 , NO x , and particulate emissions. Taper reports that all of its proposed coal-fired units will be equipped with modern flue gas emission reduction devices, such as electrostatic precipitators or baghouse filters, flue gas desulfurization and deco x devices, to reduce the pollutants to their minimum practical levels. New coal-based generation requirements in the sizes needed in Taiwan create an opportunity for several of the Cats currently under demonstration in the United States. Options to be considered are described

  20. Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment

    International Nuclear Information System (INIS)

    Federal Energy Technology Center

    1999-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round 2. The project is described in the report ''Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NO(sub x)) Emissions from High-Sulfur, Coal-Fired Boilers'' (Southern Company Services 1990). In June 1990, Southern Company Services (Southern) entered into a cooperative agreement to conduct the study. Southern was a cofunder and served as the host at Gulf Power Company's Plant Crist. Other participants and cofunders were EPRI (formerly the Electric Power Research Institute) and Ontario Hydro. DOE provided 40 percent of the total project cost of$23 million. The long-term operation phase of the demonstration was started in July 1993 and was completed in July 1995. This independent evaluation is based primarily on information from Southern's Final Report (Southern Company Services 1996). The SCR process consists of injecting ammonia (NH(sub 3)) into boiler flue gas and passing the 3 flue gas through a catalyst bed where the NO(sub x) and NH(sub 3) react to form nitrogen and water vapor. The objectives of the demonstration project were to investigate: Performance of a wide variety of SCR catalyst compositions, geometries, and manufacturing methods at typical U.S. high-sulfur coal-fired utility operating conditions; Catalyst resistance to poisoning by trace metal species present in U.S. coals but not present, or present at much lower concentrations, in fuels from other countries; and Effects on the balance-of-plant equipment

  1. Electricity and fluid fuels from biomass and coal using advanced technologies: a cost comparison for developing country applications

    Energy Technology Data Exchange (ETDEWEB)

    Kartha, S; Larson, E D; Williams, R H [Center for Energy and Environment Studies School of Engineering and Applied Science, Princeton University, Princeton, NJ (United States); Katofsky, R E [Arthur D. Little Co., Cambridge, MA (United States); Chen, J [Thermo Fibertek, Inc., Auburn, MA (United States); Marrison, C I [Oliver, Wyman and Co., New York, NY (United States)

    1995-12-01

    Recent analyses of alternative global energy supply strategies, such as the forthcoming report of the Intergovernmental Panel on Climate Change (IPCC), to be published in 1996, have drawn attention to the possibility that biomass modernized with advanced technologies could play an important role in meeting global energy needs in the next century. This paper discusses two promising classes of advanced technologies that offer the potential for providing modem energy carriers (electricity and fluid fuels) from biomass at competitive costs within one or two decades. These technologies offer significantly more efficient use of land than currently commercial technologies for producing electricity and fluid fuels from biomass, as well as substantially improved energy balances. Electricity is Rely to be the first large market for modernized biomass, but the potential market for fluid fuel production is likely to be much larger. As coal is likely to present a more serious competitive challenge to biomass in the long run, we present an economic comparison with coal-based electricity and fluid fuels. A meaningful economic comparison between coal and biomass is possible because these feedstocks are sufficiently alike in their physical characteristics that similar conversion technologies may well be used for producing electricity and fluid fuels from them. When similar conversion technologies are used for both feedstocks, the relative costs of electricity or fluid fuels will be determined by the distinguishing technical characteristics of the feedstocks (sulphur content, moisture content and reactivity) and by the relative feedstock prices. Electric power generation from biomass and coal are compared here using an advanced integrated gasifier/gas turbine cycle that offers the potential for achieving high efficiency, low unit capital cost and low local pollutant emissions: the steam-injected gas turbine coupled to an air-blown gasifier. For both feedstocks, generation costs are

  2. Electricity and fluid fuels from biomass and coal using advanced technologies: a cost comparison for developing country applications

    International Nuclear Information System (INIS)

    Kartha, S.; Larson, E.D.; Williams, R.H.; Katofsky, R.E.; Chen, J.; Marrison, C.I.

    1995-01-01

    Recent analyses of alternative global energy supply strategies, such as the forthcoming report of the Intergovernmental Panel on Climate Change (IPCC), to be published in 1996, have drawn attention to the possibility that biomass modernized with advanced technologies could play an important role in meeting global energy needs in the next century. This paper discusses two promising classes of advanced technologies that offer the potential for providing modem energy carriers (electricity and fluid fuels) from biomass at competitive costs within one or two decades. These technologies offer significantly more efficient use of land than currently commercial technologies for producing electricity and fluid fuels from biomass, as well as substantially improved energy balances. Electricity is Rely to be the first large market for modernized biomass, but the potential market for fluid fuel production is likely to be much larger. As coal is likely to present a more serious competitive challenge to biomass in the long run, we present an economic comparison with coal-based electricity and fluid fuels. A meaningful economic comparison between coal and biomass is possible because these feedstocks are sufficiently alike in their physical characteristics that similar conversion technologies may well be used for producing electricity and fluid fuels from them. When similar conversion technologies are used for both feedstocks, the relative costs of electricity or fluid fuels will be determined by the distinguishing technical characteristics of the feedstocks (sulphur content, moisture content and reactivity) and by the relative feedstock prices. Electric power generation from biomass and coal are compared here using an advanced integrated gasifier/gas turbine cycle that offers the potential for achieving high efficiency, low unit capital cost and low local pollutant emissions: the steam-injected gas turbine coupled to an air-blown gasifier. For both feedstocks, generation costs are

  3. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  4. Coal, energy of the future

    International Nuclear Information System (INIS)

    Lepetit, V.; Guezel, J.Ch.

    2006-01-01

    Coal is no longer considered as a 'has been' energy source. The production and demand of coal is growing up everywhere in the world because it has some strategic and technological advantages with respect to other energy sources: cheap, abundant, available everywhere over the world, in particular in countries with no geopolitical problems, and it is independent of supplying infrastructures (pipelines, terminals). Its main drawback is its polluting impact (dusts, nitrogen and sulfur oxides, mercury and CO 2 ). The challenge is to develop clean and high efficiency coal technologies like supercritical steam power plants or combined cycle coal gasification plants with a 50% efficiency, and CO 2 capture and sequestration techniques (post-combustion, oxy-combustion, chemical loop, integrated gasification gas combined cycle (pre-combustion)). Germany, who will abandon nuclear energy by 2021, is massively investing in the construction of high efficiency coal- and lignite-fired power plants with pollution control systems (denitrification and desulfurization processes, dust precipitators). (J.S.)

  5. 77 FR 53199 - California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request...

    Science.gov (United States)

    2012-08-31

    ... cars, light-duty trucks and medium-duty passenger vehicles (and limited requirements related to heavy... ENVIRONMENTAL PROTECTION AGENCY [AMS-FRL-9724-4] California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request for Waiver of Preemption; Opportunity for Public Hearing and...

  6. Clean fuels from fossil sources

    International Nuclear Information System (INIS)

    Sanfilippo, D.

    2000-01-01

    Energy availability is determining to sustain the social development, but energy production involves environmental impacts at regional and global level. The central role of oil, natural gas, coal for energy supply will be kept for decades. The development of the engine-fuel combination to satisfy more stringent emissions limitations, is the challenge for an environmentally clean transportation system [it

  7. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  8. Coalbed methane: Clean energy for the world

    Science.gov (United States)

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  9. Sixth annual coal preparation, utilization, and environmental control contractors conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  10. Coal gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-29

    The proposal concerns a stage in the process of cooling the synthetic gas produced in a coal gasification plant at temperatures above 900/sup 0/C. The purpose is to keep the convection heating surface of the subsequent waste heat plant free of dirt. According to the invention, the waste heat plant has a radiation area connected before it, on the heating surfaces of which the slack carried over solidifies. This radiation area has a hydraulic and thermal cleaning system, which can be raised or lowered in a water bath. The subclaims concern all the constructional characteristics of this cleaning system, which causes the solidified slack to crack.

  11. Coal marketability: Effects of deregulation and regulation

    International Nuclear Information System (INIS)

    Attanasi, E.

    2000-01-01

    Electrical utility deregulation will force power plants to compete for sales because they will not longer have captive markets. Market uncertainty and uncertainty about future environmental regulations have encouraged power plants to shift to low sulfur coal and/or to use emissions allowances to comply with Phase 2 of the 1990 Clean Air Act Amendments. Mines in Northern and Central Appalachia and the Illinois Basin shipped 240 million tons of non-compliance coal to power plants without scrubbers in 1997. Under Phase 2, this coal will be replaced by low sulfur coal and/or be used with emission permits. It is possible that Powder River Basin coal production will have to increase by over 200 million tons/year to meet new demand. The prices of emissions permits will impose penalties on non-compliance coal that will probably drive out marginal coal producers. For example, if the cost of an emission permit is $200, coal from the Pittsburgh bed could bear a sulfur penalty of $6.55 per ton and similarly, coal from the Herrinbed could bear a penalty of $8.64 per ton

  12. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri,; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-11-30

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grinding and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.

  13. Fiscal 2000 survey report on project for promoting international cooperation. Survey on coal utilization in APEC region (Coal note); 2000 nendo kokusai kyoryoku suishin jigyo chosa hokokusho. APEC iki nai ni okeru sekitan riyo jokyo tou chosa (Koru note)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With the purpose of contributing to the infrastructure for promoting clean coal technology (CCT), there were compiled as the 'coal note' various kinds of coal-related information in China, Indonesia, Philippine, Thailand and Vietnam among APEC countries. Concerning China, for example, economic growth and energy supply/demand in the category of the energy outline were described in detail; as were the guiding principle. individual guidance plan, and specific energy policy of the 10th five year plan, in the category of the energy policy; coal deposits, geological summary, coal quality in each coal forming period, and the status quo of development, in the category of the coal mines and development; coal supply/demand, production, consumption, and export, in the category of the present status of the coal industry; producers, sales, quality of product coal, distribution, and price, in the category of the domestic supply; present state of environmental problems relating to coal, and environmental measures intended for coal, in the category of the coal-related environmental issues; and development, production, coal cleaning, quality control, safety control, and utilization (combustion, liquefaction and gasification), in the category of coal utilization technology, respectively. (NEDO)

  14. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  15. Coal 95

    International Nuclear Information System (INIS)

    Sparre, C.

    1995-01-01

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO 2 and NO x as given by county administrations or concession boards. The cogeneration plants all have some SO 2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO x cleaning system. Most other plants use low NO x burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  16. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    Science.gov (United States)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  17. International technologies market for coal thermal power plants

    International Nuclear Information System (INIS)

    1998-01-01

    This paper reports a general framework of potential market of clean coal combustion technologies in thermal power plants, specially for commercialization and market penetration in developing countries [it

  18. Effect of flotation on preparation of coal-water slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K.; Laskowski, J.S. [University of British Columbia, Vancouver, BC (Canada)

    2009-07-01

    In order to study the effect of flotation reagents on the properties of coal-water slurry, a sub-bituminous coal was cleaned via either forward flotation or reverse flotation. The froth product from the forward flotation, obtained with the use of diesel oil and MIBC, and the tailings of the reverse flotation, carried out with dextrin-tannic acid depressants and dodecyltrimethylammonium chloride collector, were used in the preparation of coal-water slurries. It was shown that while it was possible to obtain the coal-water slurry with a high-solids content from the coal rendered hydrophilic (tailings from the coal reverse flotation), in the case of the hydrophobic product (froth product from the forward flotation) a dispersing agent was required to obtain the coal-water slurry of the same high-solids content.

  19. Coal, the metamorphoses of an industry. The new geopolitics of the 21. century

    International Nuclear Information System (INIS)

    Martin-Amouroux, J.M.

    2008-01-01

    Coal consumption is growing up so fast and coal reserves are so abundant that coal might overtake petroleum in the future. The worldwide environment will not gain anything in this evolution except if 'clean coal' technologies make a significant jump. What is the driving force of this coal development? The pitfall encountered by nuclear energy and the rise of natural gas prices have been favorable conditions for the development of coal but they cannot hide the worldwide metamorphosis of coal industry. From China, undisputed world leader, to the USA, without omitting India, Russia and the big exporting countries (Australia, Indonesia, South Africa, Colombia), a new map is drawing up. In all these countries, coal companies are concentrating and internationalizing, open new strip mines and new commercial paths. The understanding of this metamorphosis has become one of the keys of the energy prospective and geopolitics of the 21. century. Content: 1 - entering the 21. century with the energy source of the 19. century?; 2 - consumption growth: new trends; 3 - the USA: the Saudi Arabia of coal; 4 - the unexpected rebirth of coal in Russia; 5 - China, world leader of coal industry; 6 - India and south-east Asia are entering the race; 7 - the rise of exporting industries; 8 - international markets and competitive dynamics of industries; 9 - advantage and drawbacks of coal during the coming decades; 10 - will clean coal technologies be ready on time?; 11 - technical appendix. (J.S.)

  20. Advances in ultrasonic fuel cleaning

    International Nuclear Information System (INIS)

    Blok, J.; Frattini, P.; Moser, T.

    2002-01-01

    The economics of electric generation is requiring PWR plant operators to consider higher fuel duty and longer cycles. As a result, sub-cooled nucleate boiling is now an accepted occurrence in the upper spans of aggressively driven PWR cores. Thermodynamic and hydraulic factors determine that the boiling surfaces of the fuel favor deposition of corrosion products. Thus, the deposits on high-duty fuel tend to be axially distributed in an inhomogeneous manner. Axial offset anomaly (AOA) is the result of axially non-homogeneous distribution of boron compounds in these axially variable fuel deposits. Besides their axial asymmetry, fuel deposits in boiling cores tend to be qualitatively different from deposits on non-boiling fuel. Thus, deposits on moderate-duty PWR fuel are generally iron rich, predominating in nickel ferrites. Deposits on cores with high boiling duty, on the other hand, tend to be rich in nickel, with sizeable fractions of NiO or elemental nickel. Other unexpected compounds such as m-ZrO 2 and Ni-Fe oxy-borates have been found in significant quantity in deposits on boiling cores. This paper describes the ultrasonic fuel cleaning technology developed by EPRI. Data will be presented to confirm that the method is effective for removing fuel deposits from both high-duty and normal-duty fuel. The report will describe full-core fuel cleaning using the EPRI technology for Callaway Cycle 12 reload fuel. The favorable impact of fuel cleaning on Cycle 12 AOA performance will also be presented. (authors)

  1. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  2. EPRI/Alberta Research Council Clean Soil Process

    International Nuclear Information System (INIS)

    Spear, C.E.

    1992-12-01

    The EPRI/Alberta Research Council Clean Soil Process can remove hydrocarbon contamination from waste material from manufactured gas plants. The process uses coal as an absorbent to remove hydrocarbons. For petroleum contaminated soils, the process can bring residual concentration of petroleum below 0.1 percent and polycyclic aromatic hydrocarbon (PAH) concentration to 1--5 ppM. For coal tar contaminated soils, the process can reduce tar concentrations to about 0.05-0.5 percent and the PAH concentration to about 10--60 ppM. Additional post-treatment may be required for some precleaned soils. The process yields by-product agglomerates suitable for combustion in industrial boilers. Light hydrocarbons such as benzene are vaporized from the soil, condensed and collected in the Process and disposed of off-site. The Clean Soil Process has been tested at pilot-plant scale. A conceptual design for a 200-tons-per-day plant yielded a capital cost estimated at $3.1 million with a per-ton operating cost of $40

  3. The importance of coal in energy

    International Nuclear Information System (INIS)

    Onal, Guven

    2006-01-01

    An 87% of the total energy requirement of the world is supplied by fossil fuels such as coal, fuel oil, and natural gas, while the rest comes from the other sources, like hydroelectric and nuclear power plants. Coal, as a fuel oil equivalent, has the greatest reserves (70%) among the fossil fuels and is very commonly found in the world. While the share of coal in the production of electricity was 39% in 2004 it is expected to rise to 48% in 2020. In the direction of sustainable development, the utilization of coal in energy production is constantly increasing and related researches are continuing. Today, the development and economics of hybrid electricity production; gas, fluid fuel, and hydrogen production from coal are being investigated and their industrial applications are slowly emerging. The surprisingly sharp increase in fuel oil and natural gas prices proves the defectiveness of the energy strategies of Turkey in effect since the 1990. Turkey should turn to coal without wasting more time, accept the utilization of clean coal in energy production, and determine her road-map. Increasing the efficiency of thermal power plants which utilize coal; hybrid technology; and gas, fluid fuel, and hydrogen production technologies from coal are investigated in this paper and suggestions are made.

  4. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1997--September 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L. [and others

    1998-01-06

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Phase I was completed on November 1, 1995. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included performing pilot-scale air toxics (i.e., trace elements and volatile organic compounds) testing and evaluating a ceramic filtering device on the demonstration boiler. Also, a sodium bicarbonate duct injection system was installed on the demonstration boiler. An economic analysis was conducted which investigated the benefits of decreased dependence on imported oil by using new coal combustion technologies. Work related to coal preparation and utilization was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, and surface-based separation processes. The evaluation of deeply-cleaned coal as boiler fuel included receiving three cleaned coals from Cyprus-Amax.

  5. Structural characteristics and gasification reactivity of chars prepared from K{sub 2}CO{sub 3} mixed HyperCoals and coals

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sharma; Hiroyuki Kawashima; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

    2009-04-15

    HyperCoal is a clean coal with mineral matter content <0.05 wt %. Oaky Creek (C = 82%), and Pasir (C = 68%) coals were subjected to solvent extraction method to prepare Oaky Creek HyperCoal, and Pasir HyperCoal. Experiments were carried out to compare the gasification reactivity of HyperCoals and parent raw coals with 20, 40, 50 and 60% K{sub 2}CO{sub 3} as a catalyst at 600, 650, 700, and 775{sup o}C with steam. Gasification rates of coals and HyperCoals were strongly influenced by the temperature and catalyst loading. Catalytic steam gasification of HyperCoal chars was found to be chemical reaction controlled in the 600-700{sup o}C temperature range for all catalyst loadings. Gasification rates of HyperCoal chars were found to be always higher than parent coals at any given temperature for all catalyst loadings. However, X-ray diffraction results showed that the microstructures of chars prepared from coals and HyperCoals were similar. Results from nuclear magnetic resonance spectroscopy show no significant difference between the chemical compositions of the chars. Significant differences were observed from scanning electron microscopy images, which showed that the chars from HyperCoals had coral-reef like structures whereas dense chars were observed for coals. 26 refs., 8 figs., 2 tabs.

  6. Technological and economic aspects of coal biodesulfurisation.

    Science.gov (United States)

    Klein, J

    1998-01-01

    The sulfur found in coal is either part of the molecular coal structure (organically bound sulfur), is contained in minerals such as pyrite (FeS2), or occurs in minor quantities in the form of sulfate and elemental sulfur. When pyrite crystals are finely distributed within the coal matrix, mechanical cleaning can only remove part of the pyrite. It can, however, be removed by microbial action requiring only mild conditions. The process involves simple equipment, almost no chemicals, but relatively long reaction times, and treatment of iron sulfate containing process water. Different process configurations are possible, depending on the coal particle size. Coal with particle sizes of less than 0.5 mm is preferably desulfurised in slurry reactors, while lump coal (> 0.5 mm) should be treated in heaps. Investment and operating costs are estimated for different process configurations on an industrial scale. Concerning the organically bound sulfur in coal there is up to now no promising biochemical pathway for the degradation and/or desulfurisation of such compounds.

  7. The future of coal-fired generation

    Energy Technology Data Exchange (ETDEWEB)

    White, G. [Sherritt International Corp., Calgary, AB (Canada)

    2004-07-01

    The 3 features that will ensure coal's place as a primary energy source are its affordability, availability and its abundance. Coal reserves represent more than 200 years of supply. Graphs depicting coal consumption in North America, Central and South America, Western Europe, Easter Europe, Middle East, Africa, and Asia show that coal use is expected to grow 1.5 per cent annually. Asia is the greatest consumer of coal, while the consumption of coal in Eastern Europe is steadily declining. About half of the electricity supply in the United States will continue to be generated by coal and non-electrical utilization is also expected to grow. Emerging technologies that are promoting efficiency of coal utilization include combustion technology, clean coal technology, conversion technology and emissions technology. These technologies also address environmental concerns regarding coal combustion, such as removal of carbon dioxide through sequestration and reduction in nitrogen oxides, sulphur dioxide and particulates. Mercury mitigation technologies are also being developed. It was noted that the use of coal is mitigated by other available supply such as nuclear, natural gas and hydro which provide the base load generation. Renewable energy supply can meet up to 20 per cent of the base load, while coal can fill be gap between base load and peak loads. It was noted that the use of coal in direct industrial processes allows for synergies such as syngas for bitumen upgrading, coal as a chemical feedstock with electricity as a by-product, combined heat and power and cogeneration. tabs., figs.

  8. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  9. CO2 reduction potential of future coal gasification based power generation technologies

    International Nuclear Information System (INIS)

    Jansen, D.; Oudhuis, A.B.J.; Van Veen, H.M.

    1992-03-01

    Assessment studies are carried out on coal gasification power plants integrated with gas turbines (IGCC) or molten carbonate fuel cells (MCFC) without and with CO 2 -removal. System elements include coal gasification, high-temperature gas-cleaning, molten carbonate fuel cells or gas turbines, CO shift, membrane separation, CO 2 recovery and a bottoming cycle. Various system configurations are evaluated on the basis of thermodynamic computations. The energy balances of the various system configurations clearly indicate that integrated coal gasification MCFC power plants (IGMCFC) with CO 2 removal have high efficiencies (42-47% LHV) compared to IGCC power plants with CO 2 -removal (33-38% LHV) and that the CO 2 -removal is simplified due to the specific properties of the molten carbonate fuel cells. IGMCFC is therefore an option with future prospective in the light of clean coal technologies for power generation with high energy efficiencies and low emissions. 2 figs., 3 tabs., 10 refs

  10. Comparative study of the performance of conventional and column flotation when treating coking coal fines

    Energy Technology Data Exchange (ETDEWEB)

    Jena, M.S.; Biswal, S.K.; Das, S.P.; Reddy, P.S.R. [Institute of Minerals and Materials Technology (CSIR), Bhubaneswar - 751 013 (India)

    2008-12-15

    Investigations were carried out on coking coal fines by conventional cell and column flotation techniques. The effects of different operating parameters were evaluated for both conventional and column flotation. The coal fines were collected from Bhojudih washery, India. These coal fines averaged 24.4% ash, 19.8% volatile matter and 53.8% fixed carbon on a dry basis. A commercial grade sodium silicate, light diesel oil and pine oil were used as depressant, collector and frother respectively. The flotation performance was compared with release analysis. The conventional flotation results indicated that a clean coal with 14.4% ash could be obtained at 78.0% yield with 88.4% combustible recovery. The ash of the clean coal could be further reduced to 10.1% at 72.0% yield with 85.6% combustible recovery by using column flotation. The column flotation results were close to those obtained by release analysis. (author)

  11. Thermodynamic comparison and efficiency enhancement mechanism of coal to alternative fuel systems

    International Nuclear Information System (INIS)

    Ji, Xiaozhou; Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Energy and exergy analysis are presented to three coal-to-alternative-fuels systems. • Internal reasons for performance differences for different systems are disclosed. • The temperature and heat release of synthesis reactions are key to plant efficiency. • The distillation unit and purge gas recovery are important to efficiency enhancement. - Abstract: Coal to alternative fuels is an important path to enforce energy security and to provide clean energy. In this paper, we use exergy analysis and energy utilization diagram (EUD) methods to disclose the internal reasons for performance differences in typical coal to alternative fuel processes. ASPEN plus software is used to simulate the coal-based energy systems, and the simulation results are verified with engineering data. Results show that coal to substitute natural gas (SNG) process has a higher exergy efficiency of 56.56%, while the exergy efficiency of traditional coal to methanol process is 48.65%. It is indicated that three key factors impact the performance enhancement of coal to alternative fuel process: (1) whether the fuel is distillated, (2) the synthesis temperature and the amount of heat release from reactions, and (3) whether the chemical purge gases from synthesis and distillation units are recovered. Distillation unit is not recommended and synthesis at high temperature and with large heat release is preferable for coal to alternative fuel systems. Gasification is identified as the main source of exergy destruction, and thereby how to decrease its destruction is the key direction of plant efficiency improvement in the future. Also, decreasing the power consumption in air separation unit by seeking for advanced technologies, i.e. membrane, or using another kind of oxidant is another direction to improve plant performance.

  12. Coal sulfur-premium models for SO2 allowance valuation

    International Nuclear Information System (INIS)

    Henry, J.B. II; Radulski, D.R.; Ellingson, E.G.; Engels, J.P.

    1995-01-01

    Clean Air Capital Markets, an investment bank structuring SO 2 Allowance transactions, has designed two allowance value models. The first forecasts an equilibrium allowance value based on coal supply and demand. The second estimates the sulfur premium of all reported coal deliveries to utilities. Both models demonstrate that the fundamental allowance value is approximately double current spot market prices for small volumes of off-system allowances

  13. Use of coal ash in production of concrete containing contaminated sand

    International Nuclear Information System (INIS)

    Ezeldin, A.S.

    1991-01-01

    There are between 2 to 3.5 million underground storage tanks located throughout the nation. Most of these tanks, which store oils and gasolines, are leaking making them one of the primary sources of soil contamination. Adding coal ash or cement to contaminated soil has been used to obtain stationary and inert wastecrete. By using this procedure, stabilization (limiting the solubility and mobility of the contaminants) and solidification (producing a solid waste block) of contaminated soils are successfully achieved. This paper investigates another re-use option of coal ash and contaminated soils. An experimental study evaluating the effectiveness of using coal ash with oil contaminated sand in concrete production is presented. A control mix made of clean sand was designed to yield 500 psi of compressive strength. Sand, artificially contaminated with 3% by weight of motor oil, was used as clean sand replacement. Six concrete mixtures were tested in compression and flexure. The six mixtures were obtained by increasing the ratio of contaminated sand to clean sand, namely; 10%, 20% and 40% and by introducing coal ash to the concrete mixture, namely; 20% of the cement weight. The test results indicate that the inclusion of oil contaminated sand in concrete reduces the compressive and flexural strengths. However, this decrease in strength is compensated by introducing coal ash in the mixture. Regaining that strength offers the possibility of using such concrete as a construction material in special structural applications. More research is required to establish better understanding of that composite and suggest feasible applications

  14. Pollution control technologies applied to coal-fired power plant operation

    Directory of Open Access Journals (Sweden)

    Maciej Rozpondek

    2009-09-01

    Full Text Available Burning of fossil fuels is the major source of energy in today's global economy with over one-third of the world's powergeneration derived from coal combustion. Although coal has been a reliable, abundant, and relatively inexpensive fuel source for mostof the 20th century, its future in electric power generation is under increasing pressure as environmental regulations become morestringent worldwide. Current pollution control technologies for combustion exhaust gas generally treat the release of regulatedpollutants: sulfur dioxide, nitrogen oxides and particulate matter as three separate problems instead of as parts of one problem. Newand improved technologies have greatly reduced the emissions produced per ton of burning coal. The term “Clean Coal CombustionTechnology” applies generically to a range of technologies designed to greatly reduce the emissions from coal-fired power plants.The wet methods of desulfurization at present are the widest applied technology in professional energetics. This method is economicand gives good final results but a future for clean technologies is the biomass. Power from biomass is a proven commercial optionof the electricity generation in the World. An increasing number of power marketers are starting to offer environmentally friendlyelectricity, including biomass power, in response to the consumer demand and regulatory requirements.

  15. Coal in Asia-Pacific. Vo1 7, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In China, there are bottle-necks of the coal transportation capacity in the major inter-regional routes. The Chinese Government`s eighth and ninth five-year plans intend to increase the capacity. In the 9% growth case, the planned railway transport capacity will be critical. Measures are considered, as to promotion of coal dressing, transport as electric power, construction of nuclear power plants and hydraulic power plants, and construction of coal water slurry pipe lines. Japan`s coal policy includes the structural adjustment of coal mining industry, and a new policy for coal in the total energy policy. To secure the stable overseas coal supply, NEDO has a leading part in overseas coal resources development. Coal demand and supply, mining technology, mine safety, coal preparation and processing technology, and comprehensive coal utilization technology including clean coal technology in Japan are described. At present, Thailand is progressing with the seventh plan, and the development of domestic energy emphasize lignite, natural gas, and oil. Thai import demand for high-quality coal is to be increasing. Japan`s cooperation is considered to be effective for the environmental problems. 12 figs., 40 tabs.

  16. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  17. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  18. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn [General Electric Global Research, Niskayuna, NY (United States); Subramanian, Ramanathan [General Electric Global Research, Niskayuna, NY (United States); Rizeq, George [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); McDermott, John [General Electric Global Research, Niskayuna, NY (United States); Eiteneer, Boris [General Electric Global Research, Niskayuna, NY (United States); Ladd, David [General Electric Global Research, Niskayuna, NY (United States); Vazquez, Arturo [General Electric Global Research, Niskayuna, NY (United States); Anderson, Denise [General Electric Global Research, Niskayuna, NY (United States); Bates, Noel [General Electric Global Research, Niskayuna, NY (United States)

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation

  19. Predicting the market penetration of the next generation of coal-fired technologies

    International Nuclear Information System (INIS)

    Guha, M.K.; McCall, G.W.

    1990-01-01

    This paper discusses what role clean coal-fired technology will have in future generating capacity based on availability and prices of coal and natural gas, the nuclear option, environmental regulations, limitations of current air pollution control technologies, and economics. The topics of the paper include the need for new electric generating capacity, why coal must remain a source of energy for generating electricity, technology effectiveness and market penetration analysis methodologies, coal-fired technology economic and technical assumptions, cost estimates, and high and low growth scenarios

  20. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  1. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  2. The properties of the nano-minerals and hazardous elements: Potential environmental impacts of Brazilian coal waste fire.

    Science.gov (United States)

    Civeira, Matheus S; Pinheiro, Rafael N; Gredilla, Ainara; de Vallejuelo, Silvia Fdez Ortiz; Oliveira, Marcos L S; Ramos, Claudete G; Taffarel, Silvio R; Kautzmann, Rubens M; Madariaga, Juan Manuel; Silva, Luis F O

    2016-02-15

    Brazilian coal area (South Brazil) impacted the environment by means of a large number of coal waste piles emplaced over the old mine sites and the adjacent areas of the Criciúma, Urussanga, and Siderópolis cities. The area studied here was abandoned and after almost 30 years (smokeless visual) some companies use the actual minerals derived from burning coal cleaning rejects (BCCRs) complied in the mentioned area for industry tiles or refractory bricks. Mineralogical and geochemical similarities between the BCCRs and non-anthropogenic geological environments are outlined here. Although no visible flames were observed, this study revealed that auto-combustion existed in the studied area for many years. The presence of amorphous phases, mullite, hematite and other Fe-minerals formed by high temperature was found. There is also pyrite, Fe-sulphates (eg. jarosite) and unburnt coal present, which are useful for comparison purposes. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present study using advanced analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and mineral formation. It is reporting huge numbers of rare minerals with alunite, montmorillonite, szomolnokite, halotrichite, coquimbite and copiapite at the BCCRs. The data showed the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing hazardous elements, such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. By Principal Component Analysis (PCA), the mineralogical composition was related with the range of elemental concentration of each sample. Most of the nano-minerals and ultra-fine particles

  3. Fossil fuels. Pace and focus of the clean coal technology program need to be assessed

    International Nuclear Information System (INIS)

    Fowler, James A.; Clark, Marcus R. Jr.; Kovalak, Francis J.; Kleigleng, Robert G.; Imbrogno, Frank W.

    1990-03-01

    DOE developed an elaborate process for evaluating, ranking, and selecting round-two project proposals. The criteria used to evaluate and select proposals for funding generally conformed to congressional and other program guidance. Also, the evaluation and selection process provided reasonable assurance that proposals were consistently and thoroughly evaluated and that projects were selected using the applicable criteria. GAO's analysis the evaluation and selection process showed that DOE picked the highest-ranked proposals submitted for the various mix of technologies that it was interested in seeing demonstrated. Of the 16 projects DOE selected in round two, 12 were rated weak in meeting certain of the evaluation criteria. Nine of the projects were rated weak in meeting the criterion that a project's technology has the potential to reduce nationwide emissions that cause acid rain. Although emphasis was to be focused on coal-burning projects nationwide to reduce emissions that cause acid rain, it still was only one of many criteria to be considered in evaluating proposals. If DOE had picked more projects with greater potential to reduce nationwide emissions from coal-fired facilities, it would have resulted in (1) the selection of lower ranked projects demonstrating technologies similar to the projects that were selected, and (2) projects selected which may not be successfully demonstrated or commercialized because of weaknesses in other criteria. GAO also noted that half of the 48 proposals that were evaluated in round-two fared poorly against 3 or more of the evaluation criteria. This could indicate that DOE may have problems in identifying and funding additional promising clean coal technology projects in future rounds. Furthermore, GAO's past work has shown that problems have delayed finalizing project cooperative agreements, delayed completion of various project phases, and extended the estimated completion dates for some projects in round-one. As of December

  4. Energy Policy Act transportation rate study: Interim report on coal transportation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  5. Comprehensive assessment of toxic emissions from coal-fired power plants

    International Nuclear Information System (INIS)

    Brown, T.D.; Schmidt, C.E.; Radziwon, A.S.

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS) to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  7. Report to Congress: Expressions of interest in commercial clean coal technology projects in foreign countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report was prepared in response to the guidance provided by the Congress in the course of the Fiscal Year 1995 appropriations process for the Department of Energy`s (DOE) Office of Fossil Energy (FE). As described in detail below, DOE was directed to make the international dissemination of Clean Coal Technologies (CCTs) an integral part of its policy to reduce greenhouse gas emissions in developing countries. Congress directed DOE to solicit ``Statements of Interest`` in commercial projects employing CCTs in countries projected to have significant growth in greenhouse gas emissions. Additionally, DOE was asked to submit to the Congress a report that analyzes the information contained in the Statements of Interest, and that identifies the extent to which various types of Federal incentives would accelerate the commercial availability of these technologies in an international context. In response to DOE`s solicitation of 18 November 1994, 77 Statements of Interest were received from 33 companies, as well as five additional materials. The contents of these submittals, including the requested Federal incentives, the CCTs proposed, the possible host countries, and the environmental aspects of the Statements of Interest, are described and analyzed in the chapters that follow.

  8. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  9. Analytical support for coal technologies

    Directory of Open Access Journals (Sweden)

    Valášek Václav

    1998-09-01

    Full Text Available On the basis of success in the selection negotiation The Brown Coal Research Institute j.s.c. Most was authorized to process the project Phare D5/93 with the title "Analytical support to clean coal technologies". The elaboration of the task run in 1997 in a close cooperation with the Mining University - TU Ostrava; DBI - AUA GmbH, Freiberg, Germany; DMT mbH, Essen, Germany and Cerchar, Mazingarbe, France. In the work the available reserves of brown and hard coal and from them following possible levels of annual minings in relation to prognosed needs of the electro-energetics and heating-industry were evaluated. The knowledge about the contents of selected trace elements (As, Be, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Ni, Pb, Sb, Se, Te, Tl, V, Zn in Czech (CZ coal were also evaluated it was investigated. Further, the distribution of trace elements during the burning process in four types of boilers in CZ. was investigated. The CZ and EU legislation related to trace elements in coal and combustion products was finally comparred. It was stated that the CZ legal standards are not at variant with EU the standards.

  10. Textural properties in density-separated coal fractions

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Parra, J.B.; Arenillas, A.; Hall, S.T.; Shah, C.L.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon

    1999-11-01

    The results presented in this work are part of a more extensive research programme aimed at assessing the impact of coal porous structure on density-based process evaluation and modelling. The coal samples used were obtained from two different density-based cleaning processes, a Vorsyl dense medium separator for treating an anthracite (TW) with a size fraction of 0.5-8.0 mm and a spiral concentrator for treating a bituminous coal (DH) with a size of less than 2 mm. Textural characterisation of the samples was carried out by measuring true (helium) and apparent (mercury) densities and mercury porosimetry up to a maximum pressure of 200 MPa. Adsorption isotherms in CO{sub 2} at 273 K were also determined for both coal series. In the case of the bituminous coal series a linear relationship between porosity and ash level was found. This may have important implications if coal porosity and/or textural parameters need to be incorporated into new density-based simulation models. 24 refs., 6 figs., 5 tabs.

  11. Picobubble column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Samuel Yu; Xiaohua Zhou; R.Q. Honaker; B.K. Parekh [University of Kentucky, Lexington, KY (United States). Department of Mining Engineering

    2008-01-15

    Froth flotation is widely used in the coal industry to clean -28 mesh (0.6 mm) or -100 mesh (0.15 mm) fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range, nominally 10-100 {mu}m, beyond which the flotation efficiency drops sharply. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. Experimental results have shown that the use of picobubbles in a 5-cm diameter column flotation increased the combustible recovery of a highly floatable coal by up to 10% and that of a poorly floatable coal by up to 40%, depending on the feed rate, collector dosage, and other flotation conditions. 14 refs.

  12. Combining Renewable Energy With Coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    There are various possibilities for incorporating biomass into coal-fuelled processes and a number of these are already being deployed commercially. Others are the focus of ongoing research and development. Biomass materials can vary widely, although the present report concentrates mainly on the use of woody biomass in the form of forest residues. Potentially, large amounts are available in some parts of the world. However, not all forested regions are very productive, and the degree of commercial exploitation varies considerably between individual countries. The level of wastage associated with timber production and associated downstream processing is frequently high and considerable quantities of potentially useful materials are often discarded. Overall, forest residues are a largely underexploited resource. Combining the use of biomass with coal can be beneficial, particularly from an environmental standpoint, although any such process may have its limitations or drawbacks. Each coal type and biomass feedstock has different characteristics although by combining the two, it may be possible to capitalise on the advantages of each, and minimise their individual disadvantages. An effective way is via cogasification, and useful operating experience has been achieved in a number of large-scale coal-fuelled gasification and IGCC plants. Cogasification can be the starting point for producing a range of products that include synthetic natural gas, chemicals, fertilisers and liquid transport fuels. It also has the potential to form the basis of systems that combine coal and biomass use with other renewable energy technologies to create clean, efficient energy-production systems. Thus, various hybrid energy concepts, some based on coal/biomass cogasification, have been proposed or are in the process of being developed or trialled. Some propose to add yet another element of renewable energy to the system, generally by incorporating electricity generated by intermittent

  13. Coal trends and prospects in Malaysia. Malaysia no sekitan doko to mitoshi

    Energy Technology Data Exchange (ETDEWEB)

    Husin, T. (Tenaga Nasional Berhad (Malaysia))

    1993-03-01

    This paper describes problems in coal development and coal processing techniques used in Malaysia. Malaysia has a national organization placing importance on maximizing natural gas source development, but no such an organization is available for coal. Necessity exists in developing transportation infrastructures that can transport coal at a competitive price from coal mines to users inside and outside the country. Majority of the Merit Pila coal is produced in mines with relatively thin coal beds, which raise production cost higher. Coal resources are mostly of low calorific power. Since the coal resource development is a new economic activity, it requires training of people in related areas, and frameworks of legislative regulation. Important in coal development is to select technologies that can meet environmental requirements and stand with competitions in the world coal markets. New coal processing technologies available for discussion in coal refining processes include relaxed gasification or pyrolysis, coal liquefaction, coal-water mixture to mix coal powder and water with additives, coal pretreatment techniques, coal cleaning techniques, and fluidized bed combustion. 1 fig., 1 tab.

  14. Coal resources - issues and technological outlook for the future

    International Nuclear Information System (INIS)

    Ando, K.

    2000-01-01

    In presenting the need to consider resources, utilisation and environment as interrelated rather than separate aspects, Dr Ando puts the case for increased cooperation and mutual trust between the coal producer, Australia, and the coal consumer, Japan, to ensure not only the growth of the industry but also a rational and long term response to the greenhouse challenge. On the use side the top priority is considered to be the improvement in combustion efficiency by promoting further development of clean coal technology. To achieve these goals, parties on both sides must build programs of international cooperation that encompass the transfer of such technology

  15. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    International Nuclear Information System (INIS)

    Sebesta, J.J.; Hoskins, W.W.

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors

  16. Assessment and evaluation of ceramic filter cleaning techniques: Task Order 19

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Zaharchuk, R.; Harbaugh, L.B.; Klett, M.

    1994-10-01

    The objective of this study was to assess and evaluate the effectiveness, appropriateness and economics of ceramic barrier filter cleaning techniques used for high-temperature and high-pressure particulate filtration. Three potential filter cleaning techniques were evaluated. These techniques include, conventional on-line pulse driven reverse gas filter cleaning, off-line reverse gas filter cleaning and a novel rapid pulse driven filter cleaning. These three ceramic filter cleaning techniques are either presently employed, or being considered for use, in the filtration of coal derived gas streams (combustion or gasification) under high-temperature high-pressure conditions. This study was divided into six subtasks: first principle analysis of ceramic barrier filter cleaning mechanisms; operational values for parameters identified with the filter cleaning mechanisms; evaluation and identification of potential ceramic filter cleaning techniques; development of conceptual designs for ceramic barrier filter systems and ceramic barrier filter cleaning systems for two DOE specified power plants; evaluation of ceramic barrier filter system cleaning techniques; and final report and presentation. Within individual sections of this report critical design and operational issues were evaluated and key findings were identified.

  17. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  18. Sulphur self–retention and sulphur dioxide capture with active calcium minerals in mineral–rich coals / Mchabe, D.

    OpenAIRE

    Mchabe, Dursman

    2011-01-01

    In order to provide information for the development of clean coal technology, the sulphur self–retention and sulphur dioxide capturing properties of minerals present in low grade coals was investigated. This study consisted of detailed mineral analyses of coal and ash samples using results obtained from QEMSCAN and separate retention (coal) and capture (ash) experiments with laboratory scale reactors. Typical South African coal samples were used in this study. The ash content v...

  19. Clean coal technology: gasification of South African coals - 2nd CSIR Biennial Conference

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2008-11-01

    Full Text Available between climate change and the use of fossil fuels such as coal. The development of CCTs has therefore received increased attention worldwide. CCTs are defined as “Technologies designed to enhance both the efficiency and the environmental acceptability... be utilised • The heat and mass transfer rates are high • Good temperature control can be achieved • Lower temperature operation increases refractory life • Limestone can be added for in bed capture of hydrogen sulphide • As there are no moving parts...

  20. Scrubbing King Coal's dirty face : a new gasification project southeast of Edmonton hopes to make coal cleaner now and for future generations

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2008-01-15

    This article described the proposed Dodds-Roundhill Coal Gasification Project. This first commercial coal gasification plant in Canada will be developed by Edmonton-based Sherritt International Corporation, in a 50/50 partnership with the Ontario Teachers' Pension Plan. The project will include a surface coal mine and a coal gasification facility located approximately 80 km southeast of Edmonton, Alberta. Coal gasification is emerging as a clean alternative for converting coal into energy products. It involves the gasification process which breaks down coal to produce hydrogen, carbon monoxide and carbon dioxide, collectively known as synthesis gas (syngas). The syngas can then be used for fuel, as a petrochemical feedstock, or it can be further processed into hydrogen for use by bitumen upgraders and crude oil refineries in Alberta. Carbon dioxide, which is highly concentrated are relatively easy to capture will be either sequestered or used in enhanced oil recovery. Construction will begin in mid-2009 following project application and an environmental impact assessment. 3 figs.

  1. Water effects of the use of western coal for electrical production

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, E.A.

    1980-02-01

    Water may be a constraint on the expanded development of coal resources in the semi-arid western United States. Water allocation in the West has been determined by the appropriative rights doctrine which allows perpetual use of water sources by those who first claim it for beneficial purposes. This has had the effect of placing a dominative interest in water allocation in one economic sector: agriculture. New water sources are available to coal producers but political and economic problems must be overcome. Water is required by every phase of coal development. Mines use water for dust control and land reclamation. Coal slurry pipelines would use water as a transport medium. Steam electric power plants use water for cooling, cleaning, and in the boiler. Coal gasification plants would use water for cooling, cleaning, and as a material input. In addition to these direct uses of water by coal development, the people who build and operate the development demand water for domestic and recreational purposes. The quantity of water required for a given element of a coal development is site specific and dependent on many factors. The available literature cites a range of estimates of the amount of water required for each type of development. The width of this range seems related to the stage of development of the particular technology. Estimates of water requirements for various schemes to provide an average electrical load of 9 GWe to a load center 1000 miles from western mines are shown in Table 5.

  2. Panorama 2010: World coal resources

    International Nuclear Information System (INIS)

    Bessereau, G.; Saniere, A.

    2010-01-01

    At a time when the international community must face the key challenges posed by global warming as well as sustainability in general and many of our fellow citizens have come to look unfavorably upon fossil energies, the world is still heavily dependent on these energies to cover growing global energy demand. With proved reserves equivalent to more than 120 years at the present rate of extraction, with a better worldwide geographical distribution than petroleum, coal seems like an especially secure energy. While the renewable energies are showing rapid growth but still only represent a small proportion of the world energy mix, coal was the energy whose consumption grew at the fastest rate and for the sixth consecutive year. This gives cause for concern when one realizes that coal is also the most environmentally harmful energy at local level (its extraction generates pollution) and globally (its combustion emits CO 2 ). So how is it possible to reconcile the apparently irreconcilable, especially when, in some countries, coal represents the bulk of the energy resources? Since it is impossible to do without coal, the solution is to develop new 'clean coal' technologies, among which the capture and storage of CO 2 looks like a promising pathway. In the process, it will be necessary to overcome major technical, economic and social challenges. (author)

  3. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  5. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  6. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  7. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  8. Effect of a Dispersant Agent in Fine Coal Recovery from Washery Tailings by Oil Agglomeration (Preliminary Study)

    Science.gov (United States)

    Yasar, Özüm; Uslu, Tuncay

    2017-12-01

    Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.

  9. NEDO coal mining structure adjustment subcommittee. 18th project report meeting; NEDO sekitan kogyo kozo chosei bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Concerning the subject matter, a NEDO (New Energy and Industrial Technology Development Organization) director Keishiro Kawamo reports on NEDO's projects designed to smoothly implement the 'new coal policy'. Nobuaki Terasaka, chief of the planning division, coal and new energy department, Agency of Natural Resources and Energy, takes up the current status of the coal policy and the tasks it faces, and discusses, predicting the development of the coal policy, the assurance of stable supply of coal from abroad, development of clean coal technologies that will rightly deal with the world-wide environmental problems, and the international diffusion of the clean coal technologies and the completion of the basement therefor. Concerning the 'development of zeolite-related commodities,' a report is delivered on the manufacture of a soil improving material and a deodorant for fish grill from zeolite found rich in coal layers of Pacific Coal Mine Co., Ltd. Concerning the 'polycrystalline diamond manufacturing project,' a polycrystalline diamond synthesizing method making use of the blasting technique employed at coal mines is reported. (NEDO)

  10. High-sulfur coal: tonnage and money at risk

    International Nuclear Information System (INIS)

    McMahan, R.L.; Knutson, K.S.

    1991-01-01

    More than 286 million tons of coal exceeds the Phase I standard i.e. 2.5 lb SO 2 per mmBtu, of the US Clean Air Act (1990). 85 mmtpy goes to currently scrubbed or unaffected (i.e. small) units. This leaves 201 mmtpy of high-sulphur coal at risk. 129 mmtpy of this is moving on a spot basis or is shipped under contracts that expire by 1995. This leaves about 72 mmtpy of captive and longterm contracts which many utility fuel buyers assume will be cancelled or renegotiated at a lower price. The legal position remains uncertain. However, the massive cancellation and/or renegotiation of existing contracts will have a tremendous economic impact on the coal industry. The resultant price change will in turn influence decisions to scrub or switch to low sulphur coals. 2 figs., 2 tabs

  11. Clean Energy Solutions Center Services (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  12. Coal reburning technology for cyclone boilers

    International Nuclear Information System (INIS)

    Yagiela, A.S.; Maringo, G.J.; Newell, R.J.; Farzan, H.

    1990-01-01

    Babcock and Wilcox has obtained encouraging results from engineering feasibility and pilot-scale proof-of-concept studies of coal reburning for cyclone boiler NO x control. Accordingly, B and W completed negotiations for a clean coal cooperative agreement with the Department of Energy to demonstrate coal reburning technology for cyclone boilers. The host site for the demonstration is the Wisconsin Power and Light (WP and L) Company's 100MWe Nelson Dewey Station. Reburning involves the injection of a supplemental fuel (natural gas, oil, or coal) into the main furnace to produce locally reducing stoichiometric conditions which convert the NO x produced therein to molecular nitrogen, thereby reducing overall NO x emissions. There are currently no commercially-demonstrated combustion modification techniques for cyclone boilers which reduce NO x emissions. The emerging reburning technology offers cyclone boiler operators a promising alternative to expensive flue gas cleanup techniques for NO x emission reduction. This paper reviews baseline testing results at the Nelson Dewey Station and pilot-scale results simulating Nelson Dewey operation using pulverized coal (PC) as the reburning fuel. Outcomes of the model studies as well as the full-scale demonstration preliminary design are discussed

  13. Options for near-term phaseout of CO(2) emissions from coal use in the United States.

    Science.gov (United States)

    Kharecha, Pushker A; Kutscher, Charles F; Hansen, James E; Mazria, Edward

    2010-06-01

    The global climate problem becomes tractable if CO(2) emissions from coal use are phased out rapidly and emissions from unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology options for phasing out coal emissions in the United States by approximately 2030. We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO(2) in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. While we recognize that coal emissions must be phased out globally, we believe U.S. leadership is essential. A major challenge for reducing U.S. emissions is that coal provides the largest proportion of base load power, i.e., power satisfying minimum electricity demand. Because this demand is relatively constant and coal has a high carbon intensity, utility carbon emissions are largely due to coal. The current U.S. electric grid incorporates little renewable power, most of which is not base load power. However, this can readily be changed within the next 2-3 decades. Eliminating coal emissions also requires improved efficiency, a "smart grid", additional energy storage, and advanced nuclear power. Any further coal usage must be accompanied by carbon capture and storage (CCS). We suggest that near-term emphasis should be on efficiency measures and substitution of coal-fired power by renewables and third-generation nuclear plants, since these technologies have been successfully demonstrated at the relevant (commercial) scale. Beyond 2030, these measures can be supplemented by CCS at power plants and, as needed, successfully demonstrated fourth-generation reactors. We conclude that U.S. coal emissions could be phased out by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade. Elimination of fossil fuel subsidies and a substantial rising price on carbon emissions are the

  14. Clean Cities Now Vol. 16.1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  15. FY 2000 report on the project for promotion of clean coal technology. Survey of zero emission coal technology; 2000 nendo clean coru technology suishin jigyo. Zero emission coru technology chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The paper surveyed a plan on the zero emission coal technology including up to CO2 fixation which is proposed in the U.S. and the present situation of the related study, and studied the viability of this plan including the R and D similar to this plan in Japan. Los Alamos National Laboratory in the U.S. thought of a concept of the technology to produce hydrogen from coal and recover CO2 at the same time for underground fixation, and is proceeding with the practical application. The process does not need oxygen, combustion, nor heating to be newly made. What is needed except coal is only water and lime, both of which can be recycled. The process, which discharges nothing into the air, is a closed cycle. The HyPr-RING process in Japan is a technology to decompose coal in high temperature (about 650 degrees C)/high pressure (100-200 atm) water for hydrogen formation, absorbing the formed CO2 by CaO, etc. Both of the processes have the problem, but it is necessary to make information exchanges since Japan and the U.S. devised the process at the same time. (NEDO)

  16. SO2 emission reducing by Ca(OH)2 using at combustion of coal from East-Maritsa basin

    International Nuclear Information System (INIS)

    Batov, S.; Gadzhanov, P.; Popov, D.; Panchev, T.; Mikhajlov, Ya.; Shushulov, D.; Grozev, A.

    1997-01-01

    The 'Maritsa-Iztok' coal field contains about 65% of the lignite and 57% of the Bulgarian coal resources.The 'Maritsa-Iztok' lignite coal have a low combustion temperature and high concentration of ashes, moisture and sulfur. The concentration of sulphur oxides emitted is about 800 000 t per year, which is among the highest concentrations for Europe. In order to reduce the sulphur concentration, theoretical and experimental studies have been performed. A determination of the efficiency of some new methods for SO 2 reduction has been done. In this paper the results from experiments using Ca(OH) 2 as reagent, are presented. The experimental facility is a non-cooled combustion chamber which provides the same conditions as in the lignite coal boilers. In the experiments ground and dried lignite coal have been used. The controlled values are O 2 , CO, NO x , SO 2 , as well as the temperature of the hot and cold air and the combustion products after the cooler and absorber. Four different technologies have been performed. The first is adding of Ca(OH) 2 which give about 30% maximal SO 2 reducing for grain size 45μm and Ca/S=1.6. The obtaining of this small size is now difficult. The second technology is introduction of Ca(OH) 2 in the combustion chamber at a temperature 900-1050 o C. The cleaning efficiency is about 48.5% for the optimal concentration of the additive. As a washing of the combustion product with water in the absorber after the desulfurization. The second phase give 20% additional cleaning. Thus the total cleaning effect is 65-70%. The third method used lime washing of the combustion products. For the Bulgarian coal with a great S content it is the most suitable method. It gives a SO 2 cleaning up to 95%. Lime wash with pH=12.3 has been used with various amounts of the reagent. Experiments with different amounts of lime wash and different quality of the coal are performed and the specific reagent consumption has been determined

  17. Economics of coal-based electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hemming, D F; Johnston, R; Teper, M

    1979-01-01

    The report deals with base-load electricity generation from coal and compares the economics of four alternative technologies: conventional pulverised-fuel (PF) boiler with steam cycle; atmospheric fluidised-bed (AFB) boiler with steam cycle; pressurised fluidised-bed (PFB) boiler with combined cycle; and integrated air-blown coal gasification with combined cycle systems are compared for both a high sulphur (3.5%) coal with environmental regulations requiring 85% sulphur removal, and for a low sulphur coal without sulphur removal. The results indicate that there is no single clear 'winner' among the advanced technologies. The optimum system depends on coal price, required rate-of-return, sulphur content of the coal, taxation regime etc. (34 refs.) (Available from IEA Coal Research, Economic Assessment Service)

  18. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  19. Sustainable global energy development: the case of coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The report aims at developing an internationally consistent reply to the question whether and to what extent coal use could be economic and sustainable in meeting global energy demand to 2030 and beyond. It covers markets, trade and demand, mining and combustion technologies, restructuring and international policies, and perspectives. It considers both the contribution that coal could make to economic development as well as the need for coal to adapt to the exigencies of security of supply, local environmental protection and mitigation of climate change. The conclusion suggests that coal will continue to be an expanding, a cheap foundation for economic and social development. Backed by its vast and well-distributed resource base, coal will make a significant contribution to eradicating energy poverty and coal can be and will be increasingly clean, at a bearable cost in terms of technological sophistication and at little cost in terms of international technology transfer and RD & D in CO{sub 2} sequestration. For this to happen, even-handed energy and environmental policies are needed, not ideologies. Moreover, a more pro-active involvement of the coal and power industries is needed in 'globalizing' best technical and managerial practices and advocating coal's credentials.

  20. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  1. Hard coal as a source of clean energy in Poland; Wegiel kamienny jako zrodlo czystej energii w Polsce

    Energy Technology Data Exchange (ETDEWEB)

    Ney, R.; Blaschke, W.; Lorenz, U.; Gawlik, L. [Mineral and Energy Economy Research Institute of the Polish Academy of Sciences (Poland)

    2004-07-01

    The paper addresses the issues and problems related to hard coal usage for energy production in Poland. These include coal quality, coal reserves, coal preparation, coal pricing, pollution regulations, and organisation and modernisation of the Polish power industry. 11 refs., 12 tabs.

  2. An emissions audit of a chain grate stoker burning coal

    International Nuclear Information System (INIS)

    Jackson, P.M.; King, P.G.

    1993-01-01

    This report describes the Emissions Audit carried out on a chain-grate stoker boiler burning coal. The boiler rated at 4.6MW(th) was installed at the Senior Foster Wheeler test facility in Wakefield where it had been modified so that it could burn both coal and dRDF. This report is based on test work undertaken as part of a programme to assess the environmental impact of the combustion of a variety of wastes as fuels. Emissions monitoring tests were carried out using coal as the fuel for comparison with the other wastes. Combustion of coal in boilers of this size are regulated by the Clean Air Acts whilst combustion of wastes is regulated by the more recent Environmental Protection Act. (author)

  3. Center for Advanced Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  4. Coal-related research, organic chemistry, and catalysis

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Coal chemistry research topics included: H exchange at 400 0 C, breaking C-C bonds in coal, molecular weight estimation using small-angle neutron scattering, 13 C NMR spectra of coals, and tunneling during H/D isotope effects. Studies of coal conversion chemistry included thermolysis of bibenzyl and 1-naphthol, heating of coals in phenol, advanced indirect liquefaction based on Koelbel slurry Fischer-Tropsch reactor, and plasma oxidation of coal minerals. Reactions of PAHs in molten SbCl 3 , a hydrocracking catalyst, were studied. Finally, heterogeneous catalysis (desulfurization etc.) was studied using Cu, Au, and Ni surfaces. 7 figures, 6 tables

  5. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  6. Manufacturing of ashless coal by using solvent de-ashing technology

    Energy Technology Data Exchange (ETDEWEB)

    Sang-Do Kim; Kwang-Jae Woo; Soon-Kwan Jeong; Young-Jun Rhim; Si-Huyn Lee [Korea Institute of Energy Research, Daejeon (Republic of Korea). Clean Energy Research Center

    2007-07-01

    Maintenance of a high oil value has an influence to energy crisis and national security in South Korea which does not have energy resources. The coals which have characterized by the abundant reserves and the inexpensive price can be said to be the alternative energy source. Hyper-coal process, which has been developed in Japan since 1999, is a new effective process to produce a clean coal by using the solvent de-ashing technology. When coal is extracted with organic solvent, only the organic portion of coal is dissolved in the solvents. That is possible to apply the low rank coal. This study was performed to produce ashless coal by using the solvent de-ashing technology. The experiment was conducted in the batch(or semi-batch) type reactor with two solvents such as NMP(N-methyl-2-pyrrolidinone) and 1-MN(1-methylnaphthalene) and various coals such as Kideko coal, Roto South coal and Sunhwa coal at 200-400{sup o}C. As a result of the test, extraction yield of coals was more than 60% on daf. Ash concentration which contains the extracted coal was 0.11-1.0wt%. The heat value was increased from 5,400 kcal/kg to 7,920 kcal/kg in the Roto South coal. 10 refs., 4 figs., 2 tabs.

  7. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  8. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  9. Residual coal exploitation and its impact on sustainable development of the coal industry in China

    International Nuclear Information System (INIS)

    Zhang, Yujiang; Feng, Guorui; Zhang, Min; Ren, Hongrui; Bai, Jinwen; Guo, Yuxia; Jiang, Haina; Kang, Lixun

    2016-01-01

    Although China owns large coal reserves, it now faces the problem of depletion of its coal resources in advance. The coal-based energy mix in China will not change in the short term, and a means of delaying the coal resources depletion is therefore urgently required. The residual coal was exploited first with a lower recovery percentage and was evaluated as commercially valuable damaged coal. This approach is in comparison to past evaluations when the residual coal was allocated as exploitation losses. Coal recovery rates, the calculation method of residual coal reserves and statistics of its mines in China were given. On this basis, a discussion concerning the impacts on the delay of China's coal depletion, development of coal exploitation and sustainable developments, as well as technologies and relevant policies, were presented. It is considered that the exploitation of residual coal can effectively delay China's coal depletion, inhibit the construction of new mines, redress the imbalance between supply and demand of coal in eastern China, improve the mining area environment and guarantee social stability. The Chinese government supports the exploitation technologies of residual coal. Hence, exploiting residual coal is of considerable importance in sustainable development of the coal industry in China. - Highlights: •Pay attention to residual coal under changing energy-mix environment in China. •Estimate residual coal reserves and investigate its exploitation mines. •Discuss impacts of residual coal exploitation on delay of coal depletion in China. •Discuss impacts on coal mining industry and residual coal exploitation technology. •Give corresponding policy prescriptions.

  10. Chemical and Pyrolytic Thermogravimetric Characterization of Nigerian Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The discovery of new coal deposits in Nigeria presents solutions for nation’s energy crises and prospects for socioeconomic growth and sustainable development. Furthermore, the quest for sustainable energy to limit global warming, climate change, and environmental degradation has necessitated the exploration of alternatives using cleaner technologies such as coal pyrolysis. However, a lack of comprehensive data on physico-chemical and thermal properties of Nigerian coals has greatly limited their utilization. Therefore, the physico-chemical properties, rank (classification, and thermal decomposition profiles of two Nigerian bituminous coals – Afuze (AFZ and Shankodi-Jangwa (SKJ – were examined in this study. The results indicate that the coals contain high proportions of C, H, N, S, O and a sufficiently high heating value (HHV for energy conversion. The coal classification revealed that the Afuze (AFZ coal possesses a higher rank, maturity, and coal properties compared to the Shankodi-Jangwa (SKJ coal. A thermal analysis demonstrated that coal pyrolysis in both cases occurred in three stages; drying (30-200 °C, devolatilization (200-600 °C, and char decomposition (600-1000 °C. The results also indicated that pyrolysis at 1000 °C is not sufficient for complete pyrolysis. In general, the thermochemical and pyrolytic fuel properties indicate that the coal from both places can potentially be utilized for future clean energy applications.

  11. Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam

    Directory of Open Access Journals (Sweden)

    Fa-qiang Su

    2018-04-01

    Full Text Available The Underground Coal Gasification (UCG system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining.

  12. Size distribution of rare earth elements in coal ash

    Science.gov (United States)

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  13. Coal 95; Kol - 95

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C

    1996-12-31

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO{sub 2} and NO{sub x} as given by county administrations or concession boards. The cogeneration plants all have some SO{sub 2} removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO{sub x} cleaning system. Most other plants use low NO{sub x} burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs.

  14. Queensland coal sets new records in 2001

    International Nuclear Information System (INIS)

    Smith, R.; Coffey, D.; Abbott, E.

    2002-01-01

    In 2001 the Queensland coal industry consolidated on record expansion in the export market over the past two years and again, increased its sales to overseas customers. New sales records were set in both the export and domestic markets. Unprecedented international demand for Queensland metallurgical coals coupled with improved prices and a favourable A$-US$ exchange rate created strong market conditions for the Queensland coal export industry, boosting confidence for further expansion and new developments. Australian coal exports in 2001 amounted to 194 Mt and are forecast to reach 275 million tonnes per annum (Mtpa) in 2020. The Queensland coal industry is poised to capture a significant share of this market growth. Queensland's large inventory of identified coal, currently estimated at more than 37 billion tonnes (raw coal m situ), is adequate to sustain the industry for many years and allow new opencut and underground mines to develop according to future market demand. Recent coal exploration successes are expected to add significant tonnage to the inventory (Coxhead, Smith and Coffey, 2002). Most of the coal exported from Queensland is mined in the Bowen Basin of central Queensland and additional tonnage of Walloon coal is exported by mines in the Moreton Basin and Surat Basin in south-east Queensland. The Walloon Coal Measures and its equivalents contain large resources of undeveloped opencut, high volatile, clean-burning thermal coal. The environmental advantages in the utilisation of these coals are now recognised and strong growth in production is expected in the near future for supply to both the domestic and export markets. Establishment of new rail transport and civil infrastructure will however, be required to support the development of large scale mining operations in this region

  15. Clean Cities Now, Vol. 18, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-19

    This is version 18.2 of Clean Cities Now, the official biannual newsletter of the Clean Cities program. Clean Cities is an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  16. Further Investigations on Simultaneous Ultrasonic Coal Flotation

    Directory of Open Access Journals (Sweden)

    Safak Gokhan Ozkan

    2017-09-01

    Full Text Available This study investigates the flotation performance of a representative hard coal slime sample (d80 particle size of minus 0.2 mm obtained from the Prosper-Haniel coal preparation plant located in Bottrop, Germany. Flotation was carried out with a newly designed flotation cell refurbished from an old ultrasonic cleaning bath (2.5 L volume equipped with a single frequency (35 kHz and two different power levels (80–160 W and a sub-aeration-type flotation machine operating at a stable impeller speed (1200 rpm and air rate (2.5 L/min. The reagent combination for conventional and simultaneous ultrasonic coal flotation tests was Ekofol-440 at variable dosages (40–300 g/t with controlling water temperature (20–25 °C at natural pH (6.5–7.0. The batch coal flotation results were analyzed by comparing the combustible recovery (% and separation efficiency (% values, taking mass yield and ash concentrations of the froths and tailings into account. It was found that simultaneous ultrasonic coal flotation increased yield and recovery values of the floated products with lower ash values than the conventional flotation despite using similar reagent dosages. Furthermore, particle size distribution of the ultrasonically treated and untreated coals was measured. Finely distributed coal particles seemed to be agglomerated during the ultrasonic treatment, while ash-forming slimes were removed by hydrodynamic cavitation.

  17. Co-gasification of coal and wood to reduce environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni Pino; Martino Paolucci; Francesco Geri; F. Tunzio; G. Spazzafumo [APAT - National Agency for Environmental Protection and Technical Services, Rome (Italy)

    2005-07-01

    After presenting the paper 'Co-firing and Co-gasification Wood and Coal' at the First International Conference on Clean Coal Technologies, the authors thought about studying in depth the gasification process of woody biomass and coal. This would lead, once all the technical difficulties related to hybrid feeding were solved, to bear a system which mainly presents two advantages. The first advantage is derived by knowing that woody biomass contains a mass percentage of sulphur which is hundred times smaller as much when compared to coal. The second advantage derives from the fact that, given a capturing and sequestration system for the carbon dioxide, it is feasible to control the biomass/coal ratio at the feeding state. In doing so, emissions of carbon dioxide which are not captured will quantitatively be equal to the ones that would derive from the plain combustion of the biomass. 3 refs., 4 figs.

  18. Effects of radiation on coal mine environment -a critical review

    International Nuclear Information System (INIS)

    Singh, A.K.; Varma, N.K.; Sahay, N.; Ahmad, I.

    2001-01-01

    Due to mass-scale industrialization, world's environment is being polluted every day endangering the existence of living beings on the earth. This has attracted the attention of environmental engineers, medical practitioners, planners and researchers throughout the world. Attempts are being made to make air, water and atmosphere clean and to prevent likely hazards arising out of various industrial activities. In addition, the radiation from natural sources is all around us and has been here since time immemorial. Coal miners have small occupational radiation which arise from naturally occurring radioactive substance(s) underground. The predominant source of natural radiation present in coal mines is the radon gas. This paper describes the origin of radon and its radiological hazards. An attempt has been made to review the status of the problem likely to be caused by the different radioactive elements present in Indian coal, coal ash and allied coal-based industries. (author)

  19. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler

  20. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  1. Chemical treatment of coal by grinding and aqueous caustic leaching

    Energy Technology Data Exchange (ETDEWEB)

    Balaz, P.; LaCount, R.B.; Kern, D.G.; Turcaniova, L. [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Geotechnics

    2001-04-01

    The aim of this work has been to point out the possibility of using GACL process for chemical cleaning of brown coal Nivaky (Slovakia) and Pittsburgh coal. Simultaneous grinding and aqueous chemical leaching, which is the principle of the process, reduces the inorganic and inorganic sulfur content in both coals. Dearsenificiation nearly up to 96% is detected in GACL-treated samples of Novaky coal. The possibility of enhancing the recovery of humic acid as a consequence of GACL treatment is demonstrated. The process under study works under atmospheric pressure, temperature of 90{degree}C and NaOH consumption, which is six times lower compared with the MCL process. Further research is needed to minimize the wear of grinding media and to improve the washing step. 24 refs., 7 figs., 3 tabs.

  2. Cleaning up gasoline will increase refinery hydrogen demand

    International Nuclear Information System (INIS)

    Pretorius, E.B.; Muan, A.

    1992-01-01

    This paper reports that hydrogen needs will increase two to five times as the world turns its attention to cleaning up engine exhaust. The subject of fuel trends and hydrogen needs at Foster Wheeler USA Corp.'s Hydrogen Plant Conference, June 2--4, in Orlando was addressed. The conference was attended by more than 100 people from 12 different countries. Drawing on knowledge from over 1 billion scfd of total installed hydrogen plant capacity, Foster Wheeler experts presented papers in the fields of steam reforming, partial oxidation (with all feedstocks, from natural gas to resids and coal), and steam reformer design. Other industry specialists gave papers on refinery balances, markets, coal feedstocks, utility systems, and components for hydrogen plants

  3. Clean Cities Now Vol. 17, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-05-24

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  4. Spin-mapping of Coal Structures with ESE and ENDOR

    Science.gov (United States)

    Belford, R. L.; Clarkson, R. B.

    1989-12-01

    The broad goals of this project are to determine by nondestructive magnetic resonance methods chemical and physical structural characteristics of organic parts of native and treated coals. In this project period, we have begun to explore a technique which promises to enable us to follow to course of coal cleaning processes with microscopic spatial resolution. For the past five years, our laboratory has worked on extensions of the EPR technique as applied to coal to address these analytical problems. In this report we (1) describe the world's first nuclear magnetic resonance imaging results from an Illinois {number sign}6 coal and (2) transmit a manuscript describing how organic sulfur affect the very-high-frequency EPR spectra of coals. Magnetic resonance imaging (MRI) is a non-destructive technique that has found wide medical application as a means of visualizing the interior of human bodies. We have used MRI techniques to study the diffusion of an organic solvent (DMSO) into the pores of Illinois {number sign}6 coal. Proton MRI images reveal that this solvent at room temperature does not penetrate approximately 30% of the coal volume. Regions of the coal that exclude solvent could be related to inertinite and mineral components. A multi-technique imaging program is contemplated.

  5. Fiscal 1995 survey of the base arrangement promotion for foreign coal import. Investigation on the policy of coal demand stabilization using low grade coal; 1995 nendo kaigaitan yunyu kiban sokushin chosa. Teihin`itan riyo ni yoru sekitan jukyu anteika hosaku ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper investigated the trend of and the needs for low grade coal utilization and the seeds of low grade coal utilization technology and studied usability of low grade coal in the future. Importance of low grade coal utilization was described in consideration of features of the Asia/Pacific area in the world coal market, and the trend of production/utilization of low grade coal was examined mostly in countries holding main low grade coals in the Asia/Pacific area. The trend of the technical development contributing to the low grade coal utilization was studied to make it contribute to the extraction of technologies which are regarded as effective in the Asia/Pacific area. A study was made of applicability of the low grade coal utilization technology corresponding to the needs for low grade coal utilization, and at the same time, a study was made of the effect on the coal supply/demand in the Asia/Pacific area in case the low grade coal utilization is promoted helped by the study. Focusing on technical cooperation relating to clean coal technology, a study was conducted of the trend of international cooperation in Japan and various overseas countries and the trend of new cooperation in private sectors, and a discussion was made on how Japan should act toward promotion of low grade coal utilization. 12 figs., 91 tabs.

  6. Physico-chemical fracturing and cleaning of coal. [Treatment with CO/sub 2/ in water at high pressure

    Science.gov (United States)

    Sapienza, R.S.; Slegeir, W.A.R.

    1983-09-30

    This invention relates to a method of producing a crushable coal and reducing the metallic values in coal represented by Si, Al, Ca, Na, K, and Mg, which comprises contacting a coal/water mix in a weight ratio of from about 4:1 to 1:6 in the presence of CO/sub 2/ at pressures of about 100 to 1400 psi and a minimum temperature of about 15/sup 0/C for a period of about one or more hours to produce a treated coal/water mix. In the process the treated coal/water mix has reduced values for Ca and Mg of up to 78% over the starting mix and the advantageous CO/sub 2/ concentration is in the range of about 3 to 30 g/L. Below 5 g/L CO/sub 2/ only small effects are observed and above 30 g/L no further special advantages are achieved. The coal/water ratios in the range 1:2 to 2:1 are particularly desirable and such ratios are compatible with coal water slurry applications.

  7. Measurement and modeling of advanced coal conversion processes, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  8. Perspectives for the coal thermoelectric generation; Perspectivas para a geracao termeletrica a carvao

    Energy Technology Data Exchange (ETDEWEB)

    Marreco, Juliana de M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico; Pereira Junior, Amaro; Tavares, Marina E. [EPE - Empresa de Pesquisa Energetica, Rio de Janeiro, RJ (Brazil)

    2006-07-01

    This paper presents coal future perspectives on power generation. Based on a global market point of view and on demand scenarios. Positive and negative aspects are analysed: if on one hand it may be the solution for safety energy supply, by the other hand it may jeopardize the environment. Nevertheless, new clean coal technologies are now available overcoming some of these difficulties. Without any bias, the paper objective is to provide data for a fair valuation over the coal expansion on power generation in the world and in Brazil. (author)

  9. In search of a better burn

    Energy Technology Data Exchange (ETDEWEB)

    Charles, D; Anderson, I; Cross, M

    1993-01-23

    The versatility of coal as a fuel is examined. Many technologies for burning coal are far less polluting and more efficient than those used at present but few are commercial yet. The US Clean Coal Technology Program is supporting the development of advanced technologies including magnetohydrodynamics (MHD). The benefits of MHD are assessed but its practical difficulties are also noted. Other approaches such as combined-cycle power plants and chemical cleaning are noted as well as new methods for drying brown coals. Developments in fuel cells which can be combined with coal gasification are also described. Increased efficiency will reduce the amount of carbon dioxide emitted but not eliminate it. One of the constraints on the the adoption of advanced technology is the conservation of the electric power industry.

  10. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.

    Science.gov (United States)

    Yan, Linbo; He, Boshu

    2017-07-01

    A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  12. Management of coal combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    It has been estimated that 780 Mt of coal combustion products (CCPs) were produced worldwide in 2010. Only about 53.5% were utilised, the rest went to storage or disposal sites. Disposal of coal combustion waste (CCW) on-site at a power plant may involve decades-long accumulation of waste, with hundreds of thousands, if not millions, of tonnes of dry ash or wet ash slurry being stored. In December 2008, a coal combustion waste pond in Kingston, Tennessee, USA burst. Over 4 million cubic metres of ash sludge poured out, burying houses and rivers in tonnes of toxic waste. Clean-up is expected to continue into 2014 and will cost $1.2 billion. The incident drew worldwide attention to the risk of CCW disposal. This caused a number of countries to review CCW management methods and regulations. The report begins by outlining the physical and chemical characteristics of the different type of ashes generated in a coal-fired power plant. The amounts of CCPs produced and regulations on CCW management in selected countries have been compiled. The CCW disposal methods are then discussed. Finally, the potential environmental impacts and human health risks of CCW disposal, together with the methods used to prevent them, are reviewed.

  13. Forecast of advanced technology adoption for coal fired power generation towards the year of 2050

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Keiji [Japanese Center for Asia Pacific Coal Flow (JAPAC), Tokyo (Japan). Japan coal Energy Center (JCOAL)

    2013-07-01

    Needs for electricity is growing rapidly in many countries and it is expected the increase of electricity by 2030 is almost double. Fossil fuels, renewables, nuclear energy will play leading parts in the future, but fossil power generation will continue to play a major role. Especially, coal will be used continuously due to its stable supply and lower price. However, global warming countermeasures should be considered for large amount of coal use. High efficient systems and Carbon Capture and Storage (CCS) will be most applicable solution for the problems. USC, IGCC and A-USC have higher efficiencies, but costs are normally higher. So it is very important to evaluate the future trend of the plants, that is the cost, performance and the share of each plant. It is also essential to evaluate high efficient plants which will be constructed mainly and which system investment should be paid to. But no less important is to evaluate each system from the neutral position. So Japan Coal Energy Center (JCOAL) constructed its own program to expect the future trend of each plant. JCOAL made a basic concept and the programming was done by SRI International of the United States. The considered systems of coal fired power generation are Supercritical Unit, Ultra Supercritical Unit, Advanced- Supercritical Unit, Integrated Gasification Combined Cycle (IGCC) and Integrated Gasification Fuel Cell (IGFC). In order to compare with the natural gas case, Natural Gas Combined Cycle (NGCC) is included. Evaluation will be done for both without and with CCS cases. This program covers by the year of 2050. The results are trends of following items: capital cost, operational and maintenance cost, levelized cost of electricity, etc. We can also expect the future share of high efficient coal fired systems by 2050. Here the share will be decided by the levelized cost of electricity. The plant that has the lowest cost will get more share under the scenario of this program. This chapter summarizes

  14. Long Term Environment and Economic Impacts of Coal Liquefaction in China

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Jerald [West Virginia Univ., Morgantown, WV (United States)

    2014-03-31

    The project currently is composed of six specific tasks – three research tasks, two outreach and training tasks, and one project management and communications task. Task 1 addresses project management and communication. Research activities focused on Task 2 (Describe and Quantify the Economic Impacts and Implications of the Development and Deployment of Coal-to-Liquid Facilities in China), Task 3 (Development of Alternative Coal Gasification Database), and Task 4 (Geologic Carbon Management Options). There also were significant activities related to Task 5 (US-China Communication, Collaboration, and Training on Clean Coal Technologies) as well as planning activity performed in support of Task 6 (Training Programs).

  15. Carbon burnout of pulverised coal in power station furnaces

    Energy Technology Data Exchange (ETDEWEB)

    R.I. Backreedy; L.M. Fletcher; J.M. Jones; L. Ma; M. Pourkashanian; A. Williams; K. Johnson; D.J. Waldron; P. Stephenson [University of Leeds, Leeds (United Kingdom)

    2003-07-01

    The degree of carbon burnout in pulverised fuel fired power stations is important because it is linked with power plant efficiency and coal ash suitability for construction purposes. The use of computational methods to calculate carbon burnout in such systems has been aided by the increasing availability of fast computers and improvements in computational methodologies. Despite recent advances in fluid flow, coal devolatilisation and coal combustion models, the use of CFD methods for detailed design purposes or for the selection of commercial coals is still limited. In parallel, industrial engineering codes, which combine simplified thermal models with advanced coal combustion models, are still undergoing development since they provide economic advantages over detailed CFD analysis. Although the major coal combustion processes are well established, an understanding regarding the role of coal macerals and the influence of ash on the combustion process is still lacking. A successful coal model must be able to handle all the complexities of combustion, from the details of the burner geometry through to the formation of unburnt carbon as well as NOx. The development of such a model is described here.

  16. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R.W.; Liljedahl, G. [Combustion Engineering, Inc., Windsor, CT (United States)] [and others

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  17. Southeast Regional Clean Energy Policy Analysis

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-04-01

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  18. China and Cleaner Coal. A marriage of necessity destined for failure?

    International Nuclear Information System (INIS)

    Seaman, John

    2012-04-01

    For China, coal is a crucial source of abundant, indigenous and affordable energy and is a pillar of economic and social stability. From a logic of energy security, and because the industry itself maintains a formidable political presence through the sheer fact of its history and size, this resource will continue to play a central role in the country's energy mix. But in order to respond to the growing need to reduce the burden of coal use on the environment and the Chinese population, and to prevent catastrophic climate change, both Chinese leaders and the industry itself have faced a certain reality - coal must become cleaner. This has led to a tenuous compromise between those in China advocating for the use of coal as a matter of economic necessity and social stability (security of supply, reliable and cheap electricity, and indigenous energy technologies) and those who strive for more environmentally sustainable growth (and thus emphasize 'clean' coal). The convergence of these two concepts has spurred a major shift towards newer, more efficient, though still highly polluting technologies - notably larger scale, hotter burning supercritical and ultra-supercritical coal-fired plants. But it has also spawned a number of demonstration-scale projects in various cutting-edge technologies to include coal gasification and carbon capture and storage (CCS), which promise vast improvements in CO_2 and other, toxic emissions if widely adopted. Indeed, mitigating climate change while continuing to rely heavily on coal will only be possible if carbon can successfully be captured and stored on a broad scale. The push to develop new coal technologies opens doors for both foreign and Chinese businesses to work together, potentially creating new market opportunities at home and abroad. Chinese companies can receive much-needed capital and expertise, while foreign companies and researchers are given the chance to test and develop technologies at a level of speed and scale that

  19. New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning

    Science.gov (United States)

    Mylläri, Fanni; Asmi, Eija; Anttila, Tatu; Saukko, Erkka; Vakkari, Ville; Pirjola, Liisa; Hillamo, Risto; Laurila, Tuomas; Häyrinen, Anna; Rautiainen, Jani; Lihavainen, Heikki; O'Connor, Ewan; Niemelä, Ville; Keskinen, Jorma; Dal Maso, Miikka; Rönkkö, Topi

    2016-06-01

    Atmospheric emissions, including particle number and size distribution, from a 726 MWth coal-fired power plant were studied experimentally from a power plant stack and flue-gas plume dispersing in the atmosphere. Experiments were conducted under two different flue-gas cleaning conditions. The results were utilized in a plume dispersion and dilution model taking into account particle formation precursor (H2SO4 resulted from the oxidation of emitted SO2) and assessment related to nucleation rates. The experiments showed that the primary emissions of particles and SO2 were effectively reduced by flue-gas desulfurization and fabric filters, especially the emissions of particles smaller than 200 nm in diameter. Primary pollutant concentrations reached background levels in 200-300 s. However, the atmospheric measurements indicated that new particles larger than 2.5 nm are formed in the flue-gas plume, even in the very early phases of atmospheric ageing. The effective number emission of nucleated particles were several orders of magnitude higher than the primary particle emission. Modelling studies indicate that regardless of continuing dilution of the flue gas, nucleation precursor (H2SO4 from SO2 oxidation) concentrations remain relatively constant. In addition, results indicate that flue-gas nucleation is more efficient than predicted by atmospheric aerosol modelling. In particular, the observation of the new particle formation with rather low flue-gas SO2 concentrations changes the current understanding of the air quality effects of coal combustion. The results can be used to evaluate optimal ways to achieve better air quality, particularly in polluted areas like India and China.

  20. An overview of underground coal gasification and its applicability for Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Pekpak, E.; Yoncaci, S.; Kilic, M.G. [Middle East Technical Univ., Ankara (Turkey). Dept. of Mining Engineering

    2010-07-01

    Coal is expected to maintain its significance as an energy source for a longer time period than oil and natural gas. Environmental concerns have led to the development of clean coal technologies, such as coal gasification. Coal gasification can be used at either at surface or in underground coal gasification (UCG). UCG has several advantages over surface gasification and conventional mining such as rank low calorific value coals. Coal gasification also has the potential to contribute to the energy supply of a country. Most Turkish coals are lignite and UCG may enable diversification of energy sources of Turkey and may help decrease external dependency on energy. This paper presented a study that matched a UCG technique to the most appropriate (Afsin Elbistan) lignite reserve in Turkey. Two UCG techniques were presented, including the linked vertical well method, and the directional drilling-controlled retractable injection point (CRIP) method. The properties of coal seams and coal properties were also outlined. It was concluded that Cobanbey is the most preferable sector in the Elbistan Lignite Reserve for a pilot study, and that the linked vertical well method could be considered as a candidate method. 17 refs., 6 tabs., 1 fig.