Costa, Miguel S; Oliveira, Miguel; Penedones, João; Santos, Jorge E
2015-01-01
We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global $AdS_{4}$ with conformal boundary $S^{2}\\times\\mathbb{R}_{t}$. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic $AdS$ behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an $AdS$ soliton that includes the full backreaction of the electric field on the $AdS$ geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both $AdS$ soliton and black hole phases. The corresponding phase diagram generalizes the Hawkin...
Small black holes in global AdS spacetime
Jokela, Niko; Vuorinen, Aleksi
2015-01-01
We study finite temperature correlation functions and quasinormal modes in a strongly coupled conformal field theory holographically dual to a small black hole in global Anti-de Sitter spacetime. Upon variation of the black hole radius, our results smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, implying that a non-Hermitian eigenvalue problem gets continuously transitioned into a Hermitian one. This provides justification for the use of small black holes as regulators in studies of black hole formation in global AdS spacetime.
Spectrum and Statistical Entropy of AdS Black Holes
Vaz, Cenalo; Wijewardhana, L. C. R.
2009-01-01
Popular approaches to quantum gravity describe black hole microstates differently and apply different statistics to count them. Since the relationship between the approaches is not clear, this obscures the role of statistics in calculating the black hole entropy. We address this issue by discussing the entropy of eternal AdS black holes in dimension four and above within the context of a midisuperspace model. We determine the black hole eigenstates and find that they describe the quantization...
Complexity Growth for AdS Black Holes
Cai, Rong-Gen; Wang, Shao-Jiang; Yang, Run-Qiu; Peng, Rong-Hui
2016-01-01
We further investigate the Complexity-Action (CA) duality conjecture for stationary anti de-Sitter (AdS) black holes and derive some exact results for the growth rate of action within Wheeler-DeWitt (WDW) patch at late time approximation, which is dual to the growth rate of quantum complexity of holographic state. Based on the results from the general $D$-dimensional Reissner-Nordstr\\"{o}m (RN)-AdS black hole, rotating/charged Ba\\~{n}ados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a new complexity bound but leave unchanged the conjecture that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.
Thermodynamics of large AdS black holes
We consider leading order quantum corrections to the geometry of large AdS black holes in a spherical reduction of four-dimensional Einstein gravity with negative cosmological constant. The Hawking temperature grows without bound with increasing black hole mass, yet the semiclassical back-reaction on the geometry is relatively mild, indicating that observers in free fall outside a large AdS black hole never see thermal radiation at the Hawking temperature. The positive specific heat of large AdS black holes is a statement about the dual gauge theory rather than an observable property on the gravity side. Implications for string thermodynamics with an AdS infrared regulator are briefly discussed
Thermal Fluctuations in a Charged AdS Black Hole
Pourhassan, B
2015-01-01
In this paper, we will analyze the effects of thermal fluctuations on a charged AdS black hole. This will be done by analyzing the corrections to black hole thermodynamics due to these thermal fluctuations. We will demonstrate that the entropy of this black hole get corrected by logarithmic term. We will also calculate other corrections to other important thermodynamic quantities for this black hole. Finally, we will use the corrected value of the specific heat to analyze the phase transition in this system.
Evaporation of large black holes in AdS
The AdS/CFT correspondence offers a new perspective on the long-standing black hole information paradox. However, to be able to use the available gauge/gravity machinery one is forced to consider so-called 'large' black holes in AdS, and these objects are thermodynamically stable - they do not evaporate. We describe a simple toy model that allows large AdS black holes to decay, by coupling the emitted radiation to an external scalar field propagating in an auxiliary space. This effectively changes the properties of the boundary of AdS, making it partly absorbing. We demonstrate that the evaporation process never ceases by explicitly presenting (a) the transmission coefficient for a wave scattering from the bulk into auxiliary space and (b) the greybody factor for a black 3-brane in an AdS background. Therefore, the model provides an interesting framework to address the information paradox using AdS/CFT techniques.
Thermodynamics of charged Lovelock: AdS black holes
Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Cochin (India)
2016-04-15
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)
Thermodynamics of charged Lovelock: AdS black holes
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)
AdS black holes as reflecting cavities
We use the identification between null singularities of correlators in the bulk with time singularities in the boundary correlators to study the analytic structure of time-dependent thermal Green functions using the eikonal approximation for classical solutions in the AdS black hole background. We show that the location of singularities in complex time can be understood in terms of null rays bouncing on the boundaries and singularities of the eternal black hole, giving the picture of a 'reflecting cavity'. We can then extract the general analytic expression for the asymptotic values of the frequencies of quasinormal modes in large AdS black holes.
AdS black holes as reflecting cavities
Amado, Irene
2008-01-01
We use the identification between null singularities of correlators in the bulk with time singularities in the boundary correlators to study the analytic structure of time-dependent thermal Green functions using the eikonal approximation for classical solutions in the AdS black hole background. We show that the location of singularities in complex time can be understood in terms of null rays bouncing on the boundaries and singularities of the eternal black hole, giving the picture of a `reflecting cavity'. We can then extract the general analytic expression for the asymptotic values of the frequencies of quasinormal modes in large AdS black holes.
Smooth Causal Patches for AdS Black Holes
Raju, Suvrat
2016-01-01
We review the paradox of low energy excitations about an AdS black hole. An appropriately chosen unitary operator in the boundary theory can create a locally strong excitation near the black hole horizon, whose global energy is small as a result of the gravitational redshift. The paradox is that this seems to violate a general rule of statistical mechanics, which states that an operator with energy parametrically smaller than $k T$ cannot create a significant excitation in a thermal system. W...
Internal Structure of Charged AdS Black Holes
Bhattacharjee, Srijit; Virmani, Amitabh
2016-01-01
When an electrically charged black hole is perturbed its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached. Nevertheless, the mass inflation singularity is still a weak singularity: although spacetime curvature becomes infinite, tidal distortions remain finite on physical objects attempting to cross it.
Small black holes in global AdS spacetime
Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi
2016-04-01
We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.
Internal Structure of Charged AdS Black Holes
Bhattacharjee, Srijit(Astroparticle Physics & Cosmology Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India); Sarkar, Sudipta; Virmani, Amitabh
2016-01-01
When an electrically charged black hole is perturbed its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached...
Phases of Global AdS Black Holes
Basu, Pallab; Subramanian, P N Bala
2016-01-01
We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ($AdS_4$) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.
Phases of global AdS black holes
Basu, Pallab; Krishnan, Chethan; Subramanian, P. N. Bala
2016-06-01
We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ( AdS 4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.
Maldacena, Juan M.
2001-01-01
We propose a dual non-perturbative description for maximally extended Schwarzschild Anti-de-Sitter spacetimes. The description involves two copies of the conformal field theory associated to the AdS spacetime and an initial entangled state. In this context we also discuss a version of the information loss paradox and its resolution.
The Mixed Phase of Charged AdS Black Holes
Piyabut Burikham
2016-01-01
Full Text Available We study the mixed phase of charged AdS black hole and radiation when the total energy is fixed below the threshold to produce a stable charged black hole branch. The coexistence conditions for the charged AdS black hole and radiation are derived for the generic case when radiation particles carry charge. The phase diagram of the mixed phase is demonstrated for both fixed potential and charge ensemble. In the dual gauge picture, they correspond to the mixed phase of quark-gluon plasma (QGP and hadron gas in the fixed chemical potential and density ensemble, respectively. In the nuclei and heavy-ion collisions at intermediate energies, the mixed phase of exotic QGP and hadron gas could be produced. The mixed phase will condense and evaporate into the hadron gas as the fireball expands.
Self-dual warped AdS3 black holes
Chen, Bin; Ning, Bo
2010-12-01
We study a new class of solutions of three-dimensional topological massive gravity. These solutions can be taken as nonextremal black holes, with their extremal counterparts being discrete quotients of spacelike warped AdS3 along the U(1)L isometry. We study the thermodynamics of these black holes and show that the first law is satisfied. We also show that for consistent boundary conditions, the asymptotic symmetry generators form only one copy of the Virasoro algebra with central charge cL=(4νℓ)/(G(ν2+3)), with which the Cardy formula reproduces the black hole entropy. We compute the real-time correlators of scalar perturbations and find a perfect match with the dual conformal field theory (CFT) predictions. Our study provides a novel example of warped AdS/CFT correspondence: the self-dual warped AdS3 black hole is dual to a CFT with nonvanishing left central charge. Moreover, our investigation suggests that the quantum topological massive gravity asymptotic to the same spacelike warped AdS3 in different consistent ways may be dual to different two-dimensional CFTs.
Self-Dual Warped AdS$_3$ Black Holes
Chen, Bin; Ning, Bo
2010-01-01
We propose a new class of solutions of three-dimensional topological massive gravity. These solutions are non-extremal black holes, with their extremal counterparts being discrete quotients of spacelike warped AdS$_3$ along the $U(1)_L$ isometry. We study the thermodynamics of these black holes and show that the first law is satisfied. We also show that for consistent boundary conditions, the asymptotic symmetry generators form only one copy of the Virasoro algebra with central charge $c_L = \\frac{4\
Spectrum and statistical entropy of AdS black holes
Popular approaches to quantum gravity describe black hole microstates differently and apply different statistics to count them. Since the relationship between the approaches is not clear, this obscures the role of statistics in calculating the black hole entropy. We address this issue by discussing the entropy of eternal AdS black holes in dimension four and above within the context of a midisuperspace model. We determine the black hole eigenstates and find that they describe the quantization in half integer units of a certain function of the Arnowitt-Deser-Misner (ADM) mass and the cosmological constant. In the limit of a vanishing cosmological constant (the Schwarzschild limit) the quantized function becomes the horizon area and in the limit of a large cosmological constant it approaches the ADM mass of the black holes. We show that in the Schwarzschild limit the area quatization leads to the Bekenstein-Hawking entropy if Boltzmann statistics are employed. In the limit of a large cosmological constant the Bekenstein-Hawking entropy can be recovered only via Bose statistics. The two limits are separated by a first order phase transition, which seems to suggest a shift from ''particlelike'' degrees of freedom at large cosmological constant to geometric degrees of freedom as the cosmological constant approaches zero.
Entanglement Entropy of AdS Black Holes
Maurizio Melis
2010-11-01
Full Text Available We review recent progress in understanding the entanglement entropy of gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions using the AdS/CFT correspondence. We derive simple expressions for the entanglement entropy of two- and three-dimensional black holes. In both cases, the leading term of the entanglement entropy in the large black hole mass expansion reproduces exactly the Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In particular, for the BTZ black hole the leading term of the entanglement entropy can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus.
Scalar perturbations of Kerr-AdS black holes
We numerically study the scalar perturbation of a rotating black hole in anti-de Sitter spacetime (Kerr-AdS black hole). It is found that small Kerr-AdS black holes characterized by r+ + and l stand, respectively, for the radial coordinate value of the black hole event horizon in the Boyer-Lindquist coordinates and the cosmological length-scale, defined by l=(-3/Λ)1/2. Here Λ is the (negative) cosmological constant.
No Holography for Eternal AdS Black Holes
Avery, Steven G
2013-01-01
It is generally believed that the eternal AdS black hole is dual to two conformal field theories with compact spatial sections that are together in a thermofield double state. We argue that this proposal is incorrect, and by extension so are the "entanglement=geometry" proposal of Van Raamsdonk and "ER=EPR" proposal of Maldacena and Susskind. We show that in the bulk there is an interaction needed between the two halves of the Hilbert space for connectivity across the horizon; however, there is no such interaction between the CFTs. This rules out the possibility of the dual to the CFTs being the eternal AdS black hole. We argue the correct dual "geometries" resemble the exterior of the black hole outside the stretched horizon but cap off before the global horizon. This disallows the possibility of a shared future (and past) wedge where Alice falling from one side can meet Bob falling from the other. We expect that in the UV complete theory the aforementioned caps will be fuzzballs.
Thermodynamic and classical instability of AdS black holes in fourth-order gravity
We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermodynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity
Smooth Causal Patches for AdS Black Holes
Raju, Suvrat
2016-01-01
We review the paradox of low energy excitations about an AdS black hole. An appropriately chosen unitary operator in the boundary theory can create a locally strong excitation near the black hole horizon, whose global energy is small as a result of the gravitational redshift. The paradox is that this seems to violate a general rule of statistical mechanics, which states that an operator with energy parametrically smaller than $k T$ cannot create a significant excitation in a thermal system. When we carefully examine the position dependence of the boundary unitary operator that produces the excitation and the bulk observable necessary to detect the anomalously large effect, we find that they do not both fit in a single causal patch. This follows from a remarkable property of position space AdS correlators that we establish explicitly, and resolves the paradox in a generic state of the system, since no combination of observers can both create the excitation and observe its effect. As a special case of our analy...
Canonical energy and hairy AdS black holes
Hyun, Seungjoon; Park, Sang-A.; Yi, Sang-Heon
2016-08-01
We propose the modified version of the canonical energy which was introduced originally by Hollands and Wald. Our construction depends only on the Euler-Lagrange expression of the system and thus is independent of the ambiguity in the Lagrangian. After some comments on our construction, we briefly mention on the relevance of our construction to the boundary information metric in the context of the AdS/CFT correspondence. We also study the stability of three-dimensional hairy extremal black holes by using our construction.
Refined holographic entanglement entropy for the AdS solitons and AdS black holes
We consider the refinement of the holographic entanglement entropy for the holographic dual theories to the AdS solitons and AdS black holes, including the corrected ones by the Gauss–Bonnet term. The refinement is obtained by extracting the UV-independent piece of the holographic entanglement entropy, the so-called renormalized entanglement entropy which is independent of the choices of UV cutoff. Our main results are: (i) the renormalized entanglement entropies of the AdSd+1 soliton for d=4,5 are neither monotonically decreasing along the RG flow nor positive-definite, especially around the deconfinement/confinement phase transition; (ii) there is no topological entanglement entropy for AdS5 soliton even with Gauss–Bonnet correction; (iii) for the AdS black holes, the renormalized entanglement entropy obeys an expected volume law at IR regime, and the transition between UV and IR regimes is a smooth crossover even with Gauss–Bonnet correction; (iv) based on AdS/MERA conjecture, we postulate that the IR fixed-point state for the non-extremal AdS soliton is a trivial product state
Geometrothermodynamics of phantom AdS black holes
Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica ed ICRANet, Rome (Italy); Quevedo, Maria N. [Facultad de Ciencias Basicas, Universidad Militar Nueva Granada, Departamento de Matematicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)
2016-03-15
We show that to investigate the thermodynamic properties of charged phantom spherically symmetric anti-de Sitter black holes, it is necessary to consider the cosmological constant as a thermodynamic variable so that the corresponding fundamental equation is a homogeneous function defined on an extended equilibrium space. We explore all the thermodynamic properties of this class of black holes by using the classical physical approach, based upon the analysis of the fundamental equation, and the alternative mathematical approach as proposed in geometrothermodynamics. We show that both approaches are compatible and lead to equivalent results. (orig.)
Geometrothermodynamics of phantom AdS black holes
Quevedo, H; Sanchez, A
2016-01-01
We show that to investigate the thermodynamic properties of charged phantom spherically symmetric anti-de-Sitter black holes, it is necessary to consider the cosmological constant as a thermodynamic variable so that the corresponding fundamental equation is a homogeneous function defined on an extended equilibrium space. We explore all the thermodynamic properties of this class of black holes by using the classical physical approach, based upon the analysis of the fundamental equation, and the alternative mathematical approach as proposed in geometrothermodynamics. We show that both approaches are compatible and lead to equivalent results.
Near horizon data and physical charges of extremal AdS black holes
Astefanesei, D.; Banerjee, N.; Dutta, S.
2011-01-01
We compute the physical charges and discuss the properties of a large class of five-dimensional extremal AdS black holes by using the near horizon data. Our examples include baryonic and electromagnetic black branes, as well as supersymmetric spinning black holes. In the presence of the gauge Chern–
Black holes in a box: towards the numerical evolution of black holes in AdS
Witek, Helvi; Herdeiro, Carlos; Nerozzi, Andrea; Sperhake, Ulrich; Zilhao, Miguel
2010-01-01
The evolution of black holes in "confining boxes" is interesting for a number of reasons, particularly because it mimics the global structure of Anti-de Sitter geometries. These are non-globally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data is supplemented by boundary conditions at the time-like conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirror-like boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is only observed in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing bound...
Geometric finiteness, holography and quasinormal modes for the warped AdS3 black hole
We show that there exists a precise kinematical notion of holography for the Euclidean warped AdS3 black hole. This follows from the fact that the Euclidean warped AdS3 black hole spacetime is a geometrically finite hyperbolic manifold. For such manifolds a theorem of Sullivan provides a one-to-one correspondence between the hyperbolic structure in the bulk and the conformal structure of its boundary. Using this theorem we obtain the holographic quasinormal modes for the warped AdS3 black hole.
Hawking radiation from AdS black holes
We investigate Hawking radiation from black holes in (d+1)-dimensional anti--de Sitter space. We focus on s waves, make use of the geometrical optics approximation, and follow three approaches to analyze the radiation. First, we compute a Bogoliubov transformation between Kruskal and asymptotic coordinates and compare the different vacua. Second, following a method due to Kraus, Parikh, and Wilczek, we view Hawking radiation as a tunneling process across the horizon and compute the tunneling probability. This approach uses an anti--de Sitter version of a metric originally introduced by Painleve for Schwarzschild black holes. From the tunneling probability one also finds a leading correction to the semiclassical emission rate arising from back reaction to the background geometry. Finally, we consider a spherically symmetric collapse geometry and the Bogoliubov transformation between the initial vacuum state and the vacuum of an asymptotic observer
Testing quantum gravity effects through Dyonic charged AdS black hole
Sadeghi, J.; Pourhassan, B.; Rostami, M.
2016-01-01
In this paper, we consider dyonic charged AdS black hole which is holographic dual of a van der Waals fluid. We use logarithmic corrected entropy and study thermodynamics of the black hole and show that holographic picture is still valid. Critical behaviors and stability also discussed. Logarithmic corrections arises due to thermal fluctuations which are important when size of black hole be small. So, thermal fluctuations interpreted as quantum effect. It means that we can see quantum effect ...
A Mean-Field Description for AdS Black Hole
Dutta, Suvankar
2016-01-01
In this paper we find an equivalent mean-field description for asymptotically $AdS$ black hole in high temperature limit and in arbitrary dimensions. We obtain a class of mean-field potential for which the description is valid. We explicitly show that there is an one to one correspondence between the thermodynamics of a gas of interacting particles moving under a mean-field potential and an $AdS$ black hole, namely the equation of state, temperature, pressure, entropy and enthalpy of both the systems match. In $3+1$ dimensions, in particular, the mean-field description can be thought of as an ensemble of tiny interacting {\\it asymptotically flat} black holes moving in volume $V$ and at temperature $T$. This motivates us to identify these asymptotically flat black holes as microstructure of asymptotically $AdS$ black holes in $3+1$ dimensions.
WIRELESS AD-HOC NETWORK UNDER BLACK-HOLE ATTACK
Shree Om
2011-01-01
Full Text Available Wireless Ad-hoc Network is a temporary and decentralized type of wireless network. Due to security vulnerabilities in the routing protocol currently, this type of network is unprotected to network layer attacks. Black-hole attack is such a type of attack and is a Denial-of-Service (DoS attack. Due to its nature, the attack makes the source node send all the data packets to a Black-hole node that ends up dropping all the packets. The aim of this paper is to reflect light on the severe effects of a Black-hole attack in a Wireless Ad-hoc network and the drawbacks of the security mechanisms being used for the mitigation of this attack.
On thermodynamics of AdS black holes in M-theory
Motivated by recent work on asymptotically AdS4 black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdSp+2 x S11-p-2, where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)
Critical phenomena in higher curvature charged AdS black holes
Arindam Lala
2012-01-01
In this paper we have studied the critical phenomena in higher curvature charged black holes in the anti-de Sitter (AdS) space-time. As an example we have considered the third order Lovelock-Born-Infeld black holes in AdS space-time. We have analytically derived the thermodynamic quantities of the system. Our analysis revealed the onset of a higher order phase transition in the black hole leading to an infinite discontinuity in the specific heat at constant charge at the critical points. Our ...
Horizon Conformal Field Theories from $AdS_2$ Black Holes
Halyo, Edi
2015-01-01
We show that the very near horizon region of nonextreme black holes, which can be described by horizon CFTs, are related to $AdS_2$ Rindler spaces. The latter are $AdS_2$ black holes with specific masses and can be described by states of either $D=1$ or $D=2$ CFTs. The central charges of these CFTs and the conformal weights of their states that correspond to the nonextreme black holes exactly match those predicted by the horizon CFTs, providing supporting evidence for this description.
Black hole microstates in AdS$_4$ from supersymmetric localization
Benini, Francesco; Zaffaroni, Alberto
2015-01-01
This paper addresses a long standing problem, the counting of the microstates of supersymmetric asymptotically AdS black holes in terms of a holographically dual field theory. We focus on a class of asymptotically AdS$_4$ static black holes preserving two real supercharges which are dual to a topologically twisted deformation of the ABJM theory. We evaluate in the large $N$ limit the topologically twisted index of the ABJM theory and we show that it correctly reproduces the entropy of the AdS$_4$ black holes. An extremization of the index with respect to a set of chemical potentials is required. We interpret it as the selection of the exact R-symmetry of the superconformal quantum mechanics describing the horizon of the black hole.
On thermodynamics of AdS black holes in M-theory
Belhaj, A. [Universite Sultan Moulay Slimane, Departement de Physique, LIRST, Faculte Polydisciplinaire, Beni Mellal (Morocco); Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Chabab, M.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Universite Ibn Zohr, Departement de Physique, Faculte des Sciences, Agadir (Morocco); Sedra, M.B. [Universite Ibn Tofail, Departement de Physique, LASIMO, Faculte des Sciences, Kenitra (Morocco)
2016-02-15
Motivated by recent work on asymptotically AdS{sub 4} black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdS{sub p+2} x S{sup 11-p-2}, where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)
The Black Hole Singularity in AdS/CFT
Fidkowski, Lukasz; Hubeny, Veronika; Kleban, Matthew; Shenker, Stephen
2003-01-01
We explore physics behind the horizon in eternal AdS Schwarzschild black holes. In dimension d >3, where the curvature grows large near the singularity, we find distinct but subtle signals of this singularity in the boundary CFT correlators. Building on previous work, we study correlation functions of operators on the two disjoint asymptotic boundaries of the spacetime by investigating the spacelike geodesics that join the boundaries. These dominate the correlators for large mass bulk fields....
Mo, Jie-Xiong
2014-01-01
To provide an analytic verification of the nature of phase transition at the critical point of $P-V$ criticality, the original expressions of Ehrenfest equations have been introduced directly. By treating the cosmological constant and its conjugate quantity as thermodynamic pressure and volume respectively, we carry out analytical check of classical Ehrenfest equations. To show that our approach is universal, we investigate not only higher-dimensional charged AdS black holes, but also rotating AdS black holes. Not only are the examples of Einstein gravity shown, but also the example of modified gravity is presented for Gauss-Bonnet AdS black holes. The specific heat at constant pressure $C_P$, the volume expansion coefficient $\\alpha$ and the isothermal compressibility coefficient $\\kappa_T$ are found to diverge exactly at the critical point. It has been verified that both Ehrenfest equations hold at the critical point of $P-V$ criticality in the extended phase spaces of AdS black holes. So the nature of the ...
Effects of dark energy on P-V criticality of charged AdS black holes
Li, Gu-Qiang
2014-01-01
In this Letter, we investigate the effects of dark energy on $P-V$ criticality of charged AdS black holes by considering the case of the RN-AdS black holes surrounded by quintessence. By treating the cosmological constant as thermodynamic pressure, we study its thermodynamics in the extended phase space. It is shown that quintessence dark energy does not affect the existence of small/large black hole phase transition. For the case $\\omega_q=-2/3$ we derive analytic expressions of critical phy...
Superradiance Instability of Small Rotating AdS Black Holes in Arbitrary Dimensions
Delice, Özgür
2015-01-01
We investigate the stability of $D$ dimensional singly rotating Myers-Perry-AdS black holes under superradiance against scalar field perturbations. It is well known that small four dimensional rotating or charged AdS black holes are unstable against superradiance instability of a scalar field. Recent works extended the existence of this instability to five dimensional rotating charged AdS black holes or static charged AdS Black holes in arbitrary dimensions. In this work we analytically prove that, rotating small AdS black holes in arbitrary dimensions also show superradiance instability irrespective of the value of the (positive) angular momentum quantum number. To do this we solve the Klein-Gordon equation in the slow rotation, low frequency limit. By using the asymptotic matching technique, we are able to calculate the real and imaginary parts of the correction terms to the frequency of the scalar field due to the presence of the black hole, confirming the presence of superradiance instability. We see that...
Effects of dark energy on P–V criticality of charged AdS black holes
In this Letter, we investigate the effects of dark energy on P–V criticality of charged AdS black holes by considering the case of the RN-AdS black holes surrounded by quintessence. By treating the cosmological constant as thermodynamic pressure, we study its thermodynamics in the extended phase space. It is shown that quintessence dark energy does not affect the existence of small/large black hole phase transition. For the case ωq=−2/3 we derive analytic expressions of critical physical quantities, while for cases ωq≠−2/3 we appeal to numerical method for help. It is shown that quintessence dark energy affects the critical physical quantities near the critical point. Critical exponents are also calculated. They are exactly the same as those obtained before for arbitrary other AdS black holes, which implies that quintessence dark energy does not change the critical exponents
Hairy Black Holes in AdS$_5\\times S^5$
Markeviciute, J
2016-01-01
We use numerical methods to exhaustively study a novel family of hairy black hole solutions in AdS$_5$. These solutions can be uplifted to solutions of type IIB supergravity with AdS$_5\\times S^5$ asymptotics and are thus expected to play an important role in our understanding of AdS/CFT. We find an intricate phase diagram, with the aforementioned family of hairy black hole solutions branching from the Reissner-Nordstr\\"om black hole at the onset of the superradiance instability. We analyse black holes with spherical and planar horizon topology and explain how they connect in the phase diagram. Finally, we detail their global and local thermodynamic stability across several ensembles.
Charged and rotating AdS black holes and their CFT duals
Hawking, Stephen William
2000-01-01
Black hole solutions that are asymptotic to $ AdS_5 \\times S^5$ or $ AdS_4 then one can obtain a Reissner-Nordstrom-AdS black hole. If the asymptotically AdS space rotates then one can obtain a Kerr-AdS hole. One might expect superradiant scattering to be possible in either of these cases. Superradiant modes reflected off the potential barrier outside the hole would be re-amplified at the horizon, and a classical instability would result. We point out that the existence of a Killing vector field timelike everywhere outside the horizon prevents this from occurring for black holes with negative action. Such black holes are also thermodynamically stable in the grand canonical ensemble. The CFT duals of these black holes correspond to a theory in an Einstein universe with a chemical potential and a theory in a rotating Einstein universe. We study these CFTs in the zero coupling limit. In the first case, Bose-Einstein condensation occurs on the boundary at a critical value of the chemical potential. However the su...
Charge Loss (or the Lack Thereof) for AdS Black Holes
Ong, Yen Chin
2014-01-01
The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordstrom black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rate governed by Schwinger pair-production process. The same model can be generalized to study the evaporation of AdS Reissner-Nordstrom black holes with flat horizon. It was recently found that such black holes always evolve towards extremality since charge loss is inefficient. This property is completely opposite to the asymptotically flat case in which the black hole eventually loses its charges and tends towards Schwarzschild limit. We clarify the underlying reason for this different behavior.
Generalized thermodynamic identity and new Maxwell's law for charged AdS black hole
Zhao, Zixu
2016-01-01
We study the thermodynamic properties of the RN-AdS black hole in full phase space and propose a generalized thermodynamic identity. As an example, we use it to find relations of thermodynamical coefficients between the grand canonical and canonical ensembles. We also show, for the first order phase transition, that the usual Maxwell's equal area law should be extended to a new form for the RN-AdS black hole.
Small black holes in $AdS_5\\times S^5$
Buchel, Alex
2015-01-01
We consider small black holes in $AdS_5\\times S^5$, smeared on $S^5$. We compute the spectrum of $\\ell=1$ $S^5$-quasinormal modes corresponding to fluctuations leading to localization of these black holes on $S^5$. We recover the zero mode found by Hubeny and Rangamani (HR) previously \\cite{Hubeny:2002xn}, and explicitly demonstrate the Gregory-Laflamme instability. As expected, the instability is associated with the expectation value of a dimension-5 operator.
Horizon Fluffs: Near Horizon Soft Hairs as Microstates of Generic AdS_3 Black Holes
Sheikh-Jabbari, M M
2016-01-01
In \\cite{Afshar:2016uax} the \\emph{horizon fluffs} proposal is put forward to identify the microstates of three-dimensional Ba\\~nados--Teitelboim--Zanelli (BTZ) black holes. The proposal is that black hole microstates, the horizon fluffs, are states labelled by the conserved charges associated with non-trivial diffeomorphisms on the near horizon geometry which are not distinguishable by the (Brown-Henneaux) conserved charges associated with the asymptotic symmetry algebra. It is also known that AdS_3 Einstein gravity has more general black hole solutions than the BTZ family. These black holes are generically described by two periodic, but otherwise arbitrary, holomorphic and anti-holomorphic functions. We show that these general AdS_3 black holes appear as coherent states in the enhanced asymptotic symmetry algebra, which is the Brown-Henneaux Virasoro algebra plus a u(1) current. These black holes are typically conformal descendants of the BTZ black holes, characterised by specific Virasoro coadjoint orbits....
Warped AdS_3 Black Holes in Higher Derivative Gravity Theories
Detournay, Stéphane; Ng, Gim Seng; Zwikel, Céline
2016-01-01
We consider warped AdS_3 black holes in generic higher derivatives gravity theories in 2+1 dimensions. The asymptotic symmetry group of the phase space containing these black holes is the semi-direct product of a centrally extended Virasoro algebra and an affine u(1) Kac-Moody algebra. Previous works have shown that in some specific theories, the entropy of these black holes agrees with a Cardy-like entropy formula derived for warped conformal field theories. In this paper, we show that this entropy matching continues to hold for the most general higher derivative theories of gravity. We also discuss the existence of phase transitions.
Warped AdS3 black holes in higher derivative gravity theories
Detournay, Stéphane; Douxchamps, Laure-Anne; Ng, Gim Seng; Zwikel, Céline
2016-06-01
We consider warped AdS3 black holes in generic higher derivatives gravity theories in 2+1 dimensions. The asymptotic symmetry group of the phase space containing these black holes is the semi-direct product of a centrally extended Virasoro algebra and an affine u(1) Kac-Moody algebra. Previous works have shown that in some specific theories, the entropy of these black holes agrees with a Cardy-like entropy formula derived for warped conformal field theories. In this paper, we show that this entropy matching continues to hold for the most general higher derivative theories of gravity. We also discuss the existence of phase transitions.
Vacuum energy in Kerr-AdS black holes
Olavarria, Gonzalo
2014-01-01
We compute the vacuum energy for Kerr black holes with anti-de Sitter (AdS) asymptotics in dimensions $5\\leq D\\leq 9$ with all rotation parameters. The calculations are carried out employing an alternative regularization scheme for asymptotically AdS gravity, which considers supplementing the bulk action with counterterms which are a given polynomial in the extrinsic and intrinsic curvatures of the boundary (also known as Kounterterms). The Kerr-Schild form of the rotating solutions enables us to identify the vacuum energy as coming from the part of the metric that corresponds to global AdS spacetime written in oblate spheroidal coordinates. We find that the zero-point energy for higher-dimensional Kerr-AdS reduces to the one of Schwarzschild-AdS black hole when all the rotation parameters are equal to each other, fact that is well-known in five dimensions. We also sketch a compact expression for the vacuum energy formula in terms of asymptotic quantities that might be useful to extend the computations to hig...
AdS backgrounds from black hole horizons
We utilize the classification of IIB horizons with 5-form flux to present a unified description for the geometry of AdSn, n = 3, 5, 7 solutions. In particular, we show that all such backgrounds can be constructed from eight-dimensional 2-strong Calabi–Yau geometries with torsion which admit some additional isometries. We explore the geometry of AdS3 and AdS5 solutions but we do not find AdS7 solutions. (paper)
Critical Phenomena in Higher Curvature Charged AdS Black Holes
Arindam Lala
2013-01-01
Full Text Available In this paper, we have studied the critical phenomena in higher curvature charged AdS black holes. We have considered Lovelock-Born-Infeld-AdS black hole as an example. The thermodynamics of the black hole have been studied which reveals the onset of a higher-order phase transition in the black hole in the canonical ensemble (fixed charge ensemble framework. We have analytically derived the critical exponents associated with these thermodynamic quantities. We find that our results fit well with the thermodynamic scaling laws and consistent with the mean field theory approximation. The suggestive values of the other two critical exponents associated with the correlation function and correlation length on the critical surface have been derived.
Stability of rapidly-rotating charged black holes in $AdS_5 \\times S^5$
Berkooz, Micha; Zait, Amir
2013-01-01
We study the stability of charged rotating black holes in a consistent truncation of Type $IIB$ Supergravity on $AdS_5 \\times S^5$ that degenerate to extremal black holes with zero entropy. These black holes have scaling properties between charge and angular momentum similar to those of Fermi surface-like operators in a subsector of ${\\cal N}=4$ SYM. By solving the equation of motion for a massless scalar field in this background, using matched asymptotic expansion followed by a numerical solution scheme, we are able to compute its Quasi-Normal modes, and analyze it's regime of (in)stability. We find that the black hole is unstable when its angular velocity with respect to the horizon exceeds 1 (in units of $1/l_{AdS}$). A study of the relevant thermodynamic Hessian reveals a local thermodynamic instability which occurs at the same region of parameter space. We comment on the endpoints of this instability.
Fermions Tunnelling from Black String and Kerr AdS Black Hole with Consideration of Quantum Gravity
Li, Zhong-hua; Zhang, Li-mei
2016-01-01
In this paper, using the Hamilton-Jacobi Ansatz, we discuss the tunnelling of fermions when effects of quantum gravity are taken into account. We investigate two cases, black string and Kerr AdS black hole. For black string, the uncharged and un-rotating case, we find that the correction of Hawking temperature is only affected by the mass of emitted fermions and the quantum gravitational corrections slow down the increases of the temperature, which naturally leads to remnants left in the evaporation. For another case, the Kerr AdS black hole, we find that the quantum gravitational corrections are not only determined by the mass of the emitted fermions but also affected by the rotating properties of the AdS black hole. So with consideration of the quantum gravity corrections, an offset around the standard temperature always exists.
A Mean-Field Description for AdS Black Hole
Dutta, Suvankar; P, Sachin Shain
2016-01-01
In this paper we find an equivalent mean-field description for asymptotically $AdS$ black hole in high temperature limit and in arbitrary dimensions. We obtain a class of mean-field potential for which the description is valid. We explicitly show that there is an one to one correspondence between the thermodynamics of a gas of interacting particles moving under a mean-field potential and an $AdS$ black hole, namely the equation of state, temperature, pressure, entropy and enthalpy of both the...
Flowing along the edge: spinning up black holes in AdS spacetimes with test particles
Rocha, Jorge V
2014-01-01
We investigate the consequences of throwing point particles into odd-dimensional Myers-Perry black holes in asymptotically anti-de Sitter (AdS) backgrounds. We restrict our attention to the case in which the angular momenta of the background geometry are all equal. This process allows us to test the generalization of the weak cosmic censorship conjecture to asymptotically AdS spacetimes in higher dimensions. We find no evidence for overspinning in D = 5, 7, 9 and 11 dimensions. Instead, test particles carrying the maximum possible angular momentum that still fall into an extremal rotating black hole generate a flow along the curve of extremal solutions.
Fermionic Wigs for AdS-Schwarzschild Black Holes
Gentile, L G C; Mezzalira, A
2012-01-01
We provide the metric, the gravitino fields and the gauge fields to all orders in the fermionic zero modes for D=5 and D=4, N=2 gauged supergravity solutions starting from non-extremal AdS--Schwarzschild black holes. We compute the Brown-York stress--energy tensor on the boundary of AdS_5 / AdS_4 spaces and we discuss some implications of the fermionic corrections to perfect fluid interpretation of the boundary theory. The complete non-linear solution, which we denote as fermionic wig, is achieved by acting with supersymmetry transformations upon the supergravity fields and that expansion naturally truncates at some order in the fermionic zero modes.
Testing quantum gravity effects through Dyonic charged AdS black hole
Sadeghi, J; Rostami, M
2016-01-01
In this paper, we consider dyonic charged AdS black hole which is holographic dual of a van der Waals fluid. We use logarithmic corrected entropy and study thermodynamics of the black hole and show that holographic picture is still valid. Critical behaviors and stability also discussed. Logarithmic corrections arises due to thermal fluctuations which are important when size of black hole be small. So, thermal fluctuations interpreted as quantum effect. It means that we can see quantum effect of a black hole which is a gravitational system. Hence, one can use result of this paper to compare with that of van der Waals fluid in the lab and see quantum gravity effects.
Constructing the AdS dual of a Fermi liquid: AdS Black holes with Dirac hair
\\vCubrović, Mihailo; Schalm, Koenraad
2010-01-01
We provide new evidence that the holographic dual to a strongly coupled charged Fermi Liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the spatially averaged AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at $\\ome_F$, we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total probability density of the fermion field directly, we show that an AdS Reissner-Nordstr\\"{o}m black hole in a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis confirm that the solution with non-zero AdS fermion-profil...
Covariant anomalies and Hawking radiation from Kaluza–Klein AdS black holes
Chuan-Yi Bai
2013-02-01
In this paper, Hawking radiation is studied from four-dimensional (4D) Kaluza–Klein (KK) AdS black holes via the method of anomaly cancellation. The {|bf KK-AdS} black hole considered is a non-extremal charged rotating solution in the theory of 4D gauged supergravity. Its Hawking fluxes of electric charge, angular momentum and energy momentum tensor are derived here. Our results support the common view that Hawking radiation is the quantum effect arising at the event horizon.
Note on Stability and Holographic Renyi Entropy in New Hyperbolic AdS Black Holes
Fang, Zhen; Li, Danning
2016-01-01
We construct a series of new hyperbolic black hole solutions in Einstein-Dilaton system and we apply holographic approach to investigate the spherical Renyi entropy in various deformations. Especially, we introduce various powers in the scalar potential for massive and massless scalar cases. These scalar potentials correspond to deformation of dual CFTs. We make use of a systematic way to generate numerical hyperbolic AdS black hole solutions. Based on these solutions, we study the temperature dependent condensation of dual operator of massive and massless scalar respectively. These condensations show that there might be phase transitions in deformed CFTs. We also compare free energy between hyperbolic black hole solutions and hyperbolic AdS-SW black hole to judge phase transitions. In order to confirm the existence of phase transitions, we turn on linear in-homogenous perturbation to test stability of these hyperbolic AdS black holes. In this paper, we show how potential parameters affect the stability of hy...
Charged and rotating AdS black holes and their CFT duals
Hawking, S. W.; Reall, H. S.
2000-01-01
Black hole solutions that are asymptotic to AdS5×S5 or AdS4×S7 can rotate in two different ways. If the internal sphere rotates, then one can obtain a Reissner-Nordström-AdS black hole. If the asymptotically AdS space rotates, then one can obtain a Kerr-AdS hole. One might expect superradiant scattering to be possible in either of these cases. Superradiant modes reflected off the potential barrier outside the hole would be reamplified at the horizon, and a classical instability would result. We point out that the existence of a Killing vector field timelike everywhere outside the horizon prevents this from occurring for black holes with negative action. Such black holes are also thermodynamically stable in the grand canonical ensemble. The CFT duals of these black holes correspond to a theory in an Einstein universe with a chemical potential and a theory in a rotating Einstein universe. We study these CFTs in the zero coupling limit. In the first case, Bose-Einstein condensation occurs on the boundary at a critical value of the chemical potential. However, the supergravity calculation demonstrates that this is not to be expected at strong coupling. In the second case, we investigate the limit in which the angular velocity of the Einstein universe approaches the speed of light at finite temperature. This is a new limit in which to compare the CFT at strong and weak coupling. We find that the free CFT partition function and supergravity action have the same type of divergence but the usual factor of 4/3 is modified at finite temperature.
Time-dependent flow from an AdS Schwarzschild black hole
I discuss two examples of time-dependent flow which can be described in terms of an AdS Schwarzschild black hole via holography. The first example involves Bjorken hydrodynamics which should be applicable to the formation of the quark gluon plasma in heavy ion collisions. The second example is the cosmological evolution of our Universe
Entropy of near-extremal black holes in AdS_5
V. Balasubramanian; J. de Boer; V. Jejjala; J. Simón
2008-01-01
We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show that they dominate the entropy by directly enumerati
Evaporation of large black holes in AdS: coupling to the evaporon
Large black holes in an asymptotically AdS spacetime have a dual description in terms of approximately thermal states in the boundary CFT. The reflecting boundary conditions of AdS prevent such black holes from evaporating completely. On the other hand, the formulation of the information paradox becomes more stringent when a black hole is allowed to evaporate. In order to address the information loss problem from the AdS/CFT perspective we then need the boundary to become partially absorptive. We present a simple model that produces the necessary changes on the boundary by coupling a bulk scalar field to the evaporon, an external field propagating in one extra spatial dimension. The interaction is localized at the boundary of AdS and leads to partial transmission into the additional space. The transmission coefficient is computed in the planar limit and perturbatively in the coupling constant. Evaporation of the large black hole corresponds to cooling down the CFT by transferring energy to an external sector.
Small black holes in AdS5 × S5
Buchel, Alex; Lehner, Luis
2015-07-01
We consider small black holes in {{AdS}}5× {S}5, smeared on S5. We compute the spectrum of {\\ell } \\in [1, 10] S5-quasinormal modes corresponding to fluctuations leading to localization of these black holes on S5. We recover the zero mode found by Hubeny and Rangamani previously (Hubeny and Rangamani 2002 J. High Energy Phys. JHEP05(2002)027), and explicitly demonstrate that a Gregory-Laflamme type instability is at play in this system. The instability is associated with the expectation value of a dimension-5 operator.
Entropy of near-extremal black holes in AdS5
We construct the microstates of near-extremal black holes in AdS5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.
Entropy of near-extremal black holes in AdS5
We construct the microstates of near-extremal black holes in AdS5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities
Entropy of near-extremal black holes in AdS5
Simon, Joan; Balasubramanian, Vijay; de Boer, Jan; Jejjala, Vishnu; Simon, Joan
2007-07-24
We construct the microstates of near-extremal black holes in AdS_5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.
Superradiance and instability of small rotating charged AdS black holes in all dimensions
Aliev, Alikram N. [Yeni Yuezyil University, Faculty of Engineering and Architecture, Istanbul (Turkey)
2016-02-15
Rotating small AdS black holes exhibit the superradiant instability to low-frequency scalar perturbations, which is amenable to a complete analytic description in four dimensions. In this paper, we extend this description to all higher dimensions, focusing on slowly rotating charged AdS black holes with a single angular momentum. We divide the spacetime of these black holes into the near-horizon and far regions and find solutions to the scalar wave equation in each of these regions. Next, we perform the matching of these solutions in the overlap between the regions, by employing the idea that the orbital quantum number l can be thought of as an approximate integer. Thus, we obtain the complete low-frequency solution that allows us to calculate the complex frequency spectrum of quasinormal modes, whose imaginary part is determined by a small damping parameter. Finally, we find a remarkably instructive expression for the damping parameter, which appears to be a complex quantity in general. We show that the real part of the damping parameter can be used to give a universal analytic description of the superradiant instability for slowly rotating charged AdS black holes in all spacetime dimensions. (orig.)
Superradiance and instability of small rotating charged AdS black holes in all dimensions
Rotating small AdS black holes exhibit the superradiant instability to low-frequency scalar perturbations, which is amenable to a complete analytic description in four dimensions. In this paper, we extend this description to all higher dimensions, focusing on slowly rotating charged AdS black holes with a single angular momentum. We divide the spacetime of these black holes into the near-horizon and far regions and find solutions to the scalar wave equation in each of these regions. Next, we perform the matching of these solutions in the overlap between the regions, by employing the idea that the orbital quantum number l can be thought of as an approximate integer. Thus, we obtain the complete low-frequency solution that allows us to calculate the complex frequency spectrum of quasinormal modes, whose imaginary part is determined by a small damping parameter. Finally, we find a remarkably instructive expression for the damping parameter, which appears to be a complex quantity in general. We show that the real part of the damping parameter can be used to give a universal analytic description of the superradiant instability for slowly rotating charged AdS black holes in all spacetime dimensions. (orig.)
Dualities in D=5, N=2 supergravity, black hole entropy, and AdS central charges
The issue of microstate counting for general black holes in D=5, N=2 supergravity coupled to vector multiplets is discussed from various viewpoints. The statistical entropy is computed for the near-extremal case by using the central charge appearing in the asymptotic symmetry algebra of AdS2. Furthermore, we show that the considered supergravity theory enjoys a duality invariance which connects electrically charged black holes and magnetically charged black strings. The near-horizon geometry of the latter turns out to be AdS3 x S2, which allows a microscopic calculation of their entropy using the Brown-Hennaux central charges in Cardy's formula. In both approaches we find perfect agreement between statistical and thermodynamical entropy. (orig.)
Discrete D-branes in AdS3 and in the 2d black hole
I show how the AdS2 D-branes in the Euclidean AdS3 string theory are related to the continuous D-branes in Liouville theory. I then propose new discrete D-branes in the Euclidean AdS3 which correspond to the discrete D-branes in Liouville theory. These new D-branes satisfy the appropriate shift equations. They give rise to two families of discrete D-branes in the 2d black hole, which preserve di (registered) erent symmetries
Discrete D-branes in AdS3 and in the 2d black hole
Ribault, S
2006-01-01
I show how the AdS2 D-branes in the Euclidean AdS3 string theory are related to the continuous D-branes in Liouville theory. I then propose new discrete D-branes in the Euclidean AdS3 which correspond to the discrete D-branes in Liouville theory. These new D-branes satisfy the appropriate shift equations. They give rise to two families of discrete D-branes in the 2d black hole, which preserve different symmetries.
Discrete D-branes in AdS3 and in the 2d black hole
I show how the AdS2 D-branes in the Euclidean AdS3 string theory are related to the continuous D-branes in Liouville theory. I then propose new discrete D-branes in the Euclidean AdS3 which correspond to the discrete D-branes in Liouville theory. These new D-branes satisfy the appropriate shift equations. They give rise to two families of discrete D-branes in the 2d black hole, which preserve different symmetries. (orig.)
Black hole formation in AdS and thermalization on the boundary
We investigate black hole formation by a spherically collapsing thin shell of matter in AdS space. This process has been suggested to have a holographic interpretation as thermalization of the CFT on the boundary of the AdS space. The AdS/CFT duality relates the shell in the bulk to an off-equilibrium state of the boundary theory which evolves towards a thermal equilibrium when the shell collapses to a black hole. We use 2-point functions to obtain information about the spectrum of excitations in the off-equilibrium state, and discuss how it characterizes the approach towards thermal equilibrium. The full holographic interpretation of the gravitational collapse would require a kinetic theory of the CFT at strong coupling. We speculate that the kinetic equations should be interpreted as a holographic dual of the equation of motion of the collapsing shell. (author)
An alternative perspective to observe the critical phenomena of dilaton AdS black holes
Mo, Jie-Xiong
2016-01-01
The critical phenomena of dilaton AdS black holes are probed from a totally different perspective other than the $P-v$ criticality and the $q-U$ criticality discussed in the former literature. We investigate not only the two point correlation function but also the entanglement entropy of dilaton AdS black holes. We achieve this goal by solving the equation of motion constrained by the boundary condition numerically and we concentrate on $\\delta L$ and $\\delta S$ which have been regularized by subtracting the terms in pure AdS with the same boundary region. For both the two point correlation function and the entanglement entropy, we consider $4\\times2\\times2=16$ cases due to different choices of parameters. The van der Waals like behavior can be clearly witnessed from all the $T-\\delta L$ ($T-\\delta S$) graphs for $q
Critical phenomena in higher curvature charged AdS black holes
Lala, Arindam
2012-01-01
In this paper we have studied the critical phenomena in higher curvature charged black holes in the anti-de Sitter (AdS) space-time. As an example we have considered the third order Lovelock-Born-Infeld black holes in AdS space-time. We have analytically derived the thermodynamic quantities of the system. Our analysis revealed the onset of a higher order phase transition in the black hole leading to an infinite discontinuity in the specific heat at constant charge at the critical points. Our entire analysis is based on the canonical framework where we have fixed the charge of the black hole. In an attempt to study the behavior of the thermodynamic quantities near the critical points we have derived the critical exponents of the system explicitly. Although the values of the critical points have been determined numerically, the critical exponents are calculated analytically. Our results fit well with the thermodynamic scaling laws. The scaling hypothesis is also seen to be consistent with these scaling laws. We...
AdS and Lifshitz Scalar Hairy Black Holes in Gauss-Bonnet Gravity
Chen, Bin; Zhu, Lu-Yao
2016-01-01
We consider Gauss-Bonnet (GB) gravity in general dimensions, which is non-minimally coupled to a scalar field, together with a generic scalar potential. By choosing the scalar potential of the type $V(\\phi)=2\\Lambda_0+\\frac{1}{2}m^2\\phi^2+\\gamma_4\\phi^4$, we first obtain large classes of scalar hairy black holes with spherical/hyperbolic/planar topologies that are asymptotic to locally anti-de Sitter (AdS) space-times. We derive the first law of black hole thermodynamics using Wald formalism. In particular, for one class of the solutions, the scalar hair forms a thermodynamic conjugate with the graviton and nontrivially contributes to the thermodynamical first law. We observe that except for one class of planar black holes, all these solutions are constructed at the critical point of GB gravity where there exists an unique AdS vacua. Actually Lifshitz vacuum is also allowed at the critical point. We then construct many new classes of neutral and charged Lifshitz black hole solutions for a either minimally or ...
Thermodynamics of AdS Black Holes in Einstein-Scalar Gravity
Lu, H; Wen, Qiang
2014-01-01
We study the thermodynamics of $n$-dimensional static asymptotically AdS black holes in Einstein gravity coupled to a scalar field with a potential admitting a stationary point with an AdS vacuum. Such black holes with non-trivial scalar hair can exist provided that the mass-squared of the scalar field is negative, and above the Breitenlohner-Freedman bound. We use the Wald procedure to derive the first law of thermodynamics for these black holes, showing how the scalar hair (or charge) contributes non-trivially in the expression. We show in general that the black hole mass can be deduced by isolating an integrable contribution to the (non-integrable) variation of the Hamiltonian arising in the Wald construction, and that this is consistent with the mass calculated using the renormalised holographic stress tensor and also, in those cases where it is defined, with the mass calculated using the conformal method of Ashtekar, Magnon and Das. Similar arguments can also be given for the smooth solitonic solutions i...
String in AdS Black Hole: A Thermo Field Dynamic Approach
Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dafni F. Z.; Nedel, Daniel Luiz
2012-01-01
Based on Maldacena's description of an eternal AdS-black hole, we reassess the Thermo Field Dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied here involves the maximally extended AdS-Schwarschild solution and two (non-interacting) copies of the CFT associated to the global AdS spacetime, along with an extension of the string by imposing natural gluing conditions in the horizon. We show that the gluing conditions in the horizon define a string boundary st...
CFT dual of charged AdS black hole in the large dimension limit
Guo, Er-Dong; Sun, Jia-Rui
2015-01-01
We study the dual CFT description of the $d+1$-dimensional Reissner-Nordstr\\"om-Anti de Sitter (RN-AdS$_{d+1}$) black hole in the large dimension (large $d$) limit, both for the extremal and nonextremal cases. The central charge of the dual CFT$_2$ (or chiral CFT$_1$) is calculated for the near horizon near extremal geometry which possess an AdS$_2$ structure. Besides, the $Q$-picture hidden conformal symmetry in the nonextremal background can be naturally obtained by a probe charged scalar field in the large $d$ limit, without the need to input the usual limits to probe the hidden conformal symmetry. Furthermore, an new dual CFT description of the nonextremal RN-AdS$_{d+1}$ black hole is found in the large $d$ limit and the duality is analyzed by comparing the entropies, the absorption cross sections and the retarded Green's functions obtained both from the gravity and the dual CFT sides.
A Particle Probing Thermodynamics in Rotating AdS Black Hole
Gwak, Bogeun; Lee, Bum-Hoon
2016-07-01
We briefly review the thermodynamics of a probe particle absorption to a black hole in this proceeding. The particle energy has a relation to its momenta at the horizon of the black hole. Following this relation, the particle infinitesimally changes the black hole mass and momenta. Under these changes, the changes of properties of the black hole are consistent with the laws of thermodynamics.
Modified dispersion relations and (A)dS Schwarzschild Black holes
Han, Xin; Li, Huarun; Ling, Yi
2008-01-01
In this paper we investigate the impact of modified dispersion relations (MDR) on (Anti)de Sitter-Schwarzschild black holes. In this context we find the temperature of black holes can be derived with important corrections. In particular given a specific MDR the temperature has a maximal value such that it can prevent black holes from total evaporation. The entropy of the (A)dS black holes is also obtained with a logarithmic correction.
P-V criticality of charged AdS black holes
Kubiznak, David; Robert B. Mann
2012-01-01
Treating the cosmological constant as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume, we reconsider the critical behaviour of charged AdS black holes. We complete the analogy of this system with the liquid-gas system and study its critical point, which occurs at the point of divergence of specific heat at constant pressure. We calculate the critical exponents and show that they coincide with those of the Van der Waals system.
Ehrenfest's scheme and thermodynamic geometry in Born-Infeld AdS black holes
Lala, Arindam; Roychowdhury, Dibakar
2011-01-01
In this paper we analyze the phase transition phenomena in Born-Infeld AdS black holes using Ehrenfest's scheme of standard thermodynamics. The critical points are marked by the divergences in the heat capacity. In order to investigate the nature of the phase transition, we analytically check both the Ehrenfest's equations near the critical points. Our analysis reveals that this is indeed a second order phase transition. Finally, we analyze the nature of the phase transition using state space...
Exact microstate counting for dyonic black holes in AdS4
Benini, Francesco; Zaffaroni, Alberto
2016-01-01
We present a counting of microstates of a class of dyonic BPS black holes in AdS$_4$ which precisely reproduces their Bekenstein-Hawking entropy. The counting is performed in the dual boundary description, that provides a non-perturbative definition of quantum gravity, in terms of a twisted and mass-deformed ABJM theory. We evaluate its twisted index and propose an extremization principle to extract the entropy, which reproduces the attractor mechanism in gauged supergravity.
Exact black hole formation in asymptotically (AdS and flat spacetimes
Xuefeng Zhang
2014-09-01
Full Text Available We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e−u/u0 with u0∼1/(α4M01/3, where M0 is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (AdS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (AdS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory.
Evaporation of large black holes in AdS: greybody factor and decay rate
We consider a massless, minimally coupled scalar field propagating through the geometry of a black 3-brane in an asymptotically AdS5 x S5 space. The wave equation for modes traveling purely in the holographic direction reduces to a Heun equation and the corresponding greybody factor is obtained numerically. Approximations valid in the low- and high-frequency regimes are also obtained analytically. The greybody factor is then used to determine the rate of evaporation of these large black holes in the context of the evaporon model proposed in [13]. This setting represents the evolution of a black hole under Hawking evaporation with a known CFT dual description and is therefore unitary. Information must then be preserved under this evaporation process.
Coexistence curves and molecule number densities of AdS black holes in the reduced parameter space
Mo, Jie-Xiong
2016-01-01
In this paper, we investigate the coexistence curves and molecule number densities of $f(R)$ AdS black holes and Gauss-Bonnet AdS black holes. Specifically, we work with the reduced parameter space and derive the analytic expressions of the universal coexistence curves that are independent of theory parameters. Moreover, we obtain the explicit expressions of the physical quantity describing the difference of the number densities of black hole molecules between the small and large black hole. It is found that both the coexistence curve and the difference of the molecule number densities of $f(R)$ AdS black holes coincide with those of RN-AdS black holes. It may be attributed to the same equation of state they share in the reduced parameter space. The difference of the molecule number densities between the small and large Gauss-Bonnet AdS black hole exhibits different behavior. This may be attributed to the fact that the charge of RN-AdS black hole is non-trivial. Our research will not only deepen the understan...
Warped-AdS3 black holes with scalar halo
Giribet, Gaston
2015-01-01
We construct a stretched (aka Warped) Anti-de Sitter black hole in 3 dimensions supported by a real scalar field configuration. The latter is regular everywhere outside and on the horizon. No hair theorems in 3 dimensions demand the matter to be coupled to the curvature in a non-minimal way; however, this coupling can still be of the Horndeski type, i.e. yielding second order field equations similar to those appearing in the context of Galileon theories. These Warped-Anti-de Sitter black holes exhibit interesting thermodynamical properties, such as finite Hawking temperature and entropy. We compute the black hole entropy in the gravity theory and speculate with the possibility of this to admit a microscopic description in terms of a dual (Warped) Conformal Field Theory. We also discuss the inner and outer black hole mechanics.
Static black holes with axial symmetry in asymptotically AdS4 spacetime
Kichakova, Olga; Kunz, Jutta; Radu, Eugen; Shnir, Yasha
2016-02-01
The known static electrovacuum black holes in a globally AdS4 background have an event horizon which is geometrically a round sphere. In this work we argue that the situation is different in models with matter fields possessing an explicit dependence on the azimuthal angle φ , which, however, does not manifest at the level of the energy-momentum tensor. As a result, the full solutions are axially symmetric only, possessing a single (timelike) Killing vector field. Explicit examples of such static black holes are constructed in Einstein-(complex) scalar field and Einstein-Yang-Mills theories. The basic properties of these solutions are discussed, looking for generic features. For example, we notice that the horizon has an oblate spheroidal shape for solutions with a scalar field and a prolate one for black holes with Yang-Mills fields. The deviation from sphericity of the horizon geometry manifests itself in the holographic stress tensor. Finally, based on the results obtained in the probe limit, we conjecture the existence in Einstein-Maxwell theory of static black holes with axial symmetry only.
P-V criticality of conformal anomaly corrected AdS black holes
Mo, Jie-Xiong
2015-01-01
The effects of conformal anomaly on the thermodynamics of black holes are investigated in this Letter from the perspective of $P-V$ criticality of AdS black holes. Treating the cosmological constant as thermodynamic pressure, we extend the recent research to the extended phase space. Firstly, we study the $P$-$V$ criticality of the uncharged AdS black holes with conformal anomaly and find that conformal anomaly does not influence whether there exists Van der Waals like critical behavior. Secondly, we investigate the $P$-$V$ criticality of the charged cases and find that conformal anomaly influences not only the critical physical quantities but also the ratio $\\frac{P_cr_c}{T_c}$. The ratio is no longer a constant as before but a function of conformal anomaly parameter $\\tilde{\\alpha}$. We also show that the conformal parameter should satisfy a certain range to guarantee the existence of critical point that has physical meaning. Our results show the effects of conformal anomaly.
String in AdS black hole: A thermo field dynamic approach
Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz
2012-10-01
Based on Maldacena’s description of an eternal anti-de Sitter (AdS) black hole, we reassess the thermo field dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied here involves the maximally extended AdS-Schwarschild solution and two (noninteracting) copies of the conformal field theory (CFT) associated to the global AdS spacetime, along with an extension of the string by imposing natural gluing conditions in the horizon. We show that the gluing conditions in the horizon define a string boundary state which is identified with the TFD thermal vacuum, globally defined in the Kruskal extension of the AdS black hole. We emphasize the connection of this picture with unitary SU(1,1) TFD formulation, and we show that information about the bulk and the conformal boundary is present in the SU(1,1) parameters. Using the unitary SU(1,1) TFD formulation, a canonical prescription for calculating the world sheet real time thermal Green’s function is made, and the entropy associated with the entanglement of the two CFT’s is calculated.
Dyonic AdS_4 black hole entropy and attractors via entropy function
Goulart, Prieslei
2015-01-01
Using the Sen's entropy function formalism, we compute the entropy for the extremal dyonic black hole solutions of theories in the presence of dilaton field coupled to the field strength and a dilaton potential. We solve the attractor equations analytically and determine the near horizon metric, the value of the scalar fields and the electric field on the horizon, and consequently the entropy of these black holes. The attractor mechanism plays a very important role for these systems, and after studying the simplest systems involving dilaton fields, we propose a general ansatz for the value of the scalar field on the horizon, which allows us to solve the attractor equations for gauged supergravity theories in AdS_4 spaces.
Hidden Conformal Symmetry of Self-Dual Warped AdS_3 Black Holes in Topological Massive Gravity
Li, Ran; Ren, Ji-Rong
2010-01-01
We consider the hidden conformal symmetry of the self-dual warped $AdS_3$ black holes in topological massive gravity. It is shown that the wave equation of massive scalar field propagating in the self-dual warped $AdS_3$ black hole background can be reproduced by the Casimir operator of $SL_L(2, R)\\times SL_R(2, R)$ Lie algebra, which implies that self-dual warped $AdS_3$ black hole is holographically dual to a two dimensional conformal field theory with the left temperature $T_L=\\frac{\\alpha}{2\\pi}$ and the right temperature $T_R=\\frac{x_+-x_-}{4\\pi}$. Furthermore, we find the entropy of conformal field given by the Cardy formula matches exactly with the Bekenstein-Hawking entropy of self-dual warped $AdS_3$ black hole.
String in AdS Black Hole: A Thermo Field Dynamic Approach
Cantcheff, M Botta; Marchioro, Dafni F Z; Nedel, Daniel Luiz
2012-01-01
Based on Maldacena's description of an eternal AdS-black hole, we reassess the Thermo Field Dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied here involves the maximally extended AdS-Schwarschild solution and two (non-interacting) copies of the CFT associated to the global AdS spacetime, along with an extension of the string by imposing natural gluing conditions in the horizon. We show that the gluing conditions in the horizon define a string boundary state which is identified with the TFD thermal vacuum, globally defined in the Kruskal extension of the AdS black hole. We emphasize the connection of this picture with unitary SU(1,1) TFD formulation and we show that information about the bulk and the conformal boundary is present in the SU(1,1) parameters. Using the unitary SU(1,1) TFD formulation, a canonical prescription for calculating the worldsheet real time thermal Green's function is made and the entropy associated with the entanglement of the two CFT's is calculat...
Static black holes with no spatial isometries in AdS-electrovacuum
Herdeiro, Carlos A R
2016-01-01
We explicitly construct static black hole solutions to the fully non-linear, D=4, Einstein-Maxwell-AdS equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast with the uniqueness results for Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, BH solutions in AdS-electrovacuum admit an arbitrary multipole structure.
From accelerating and Poincare coordinates to black holes in spacelike warped AdS3, and back
We first review spacelike stretched warped AdS3 and we describe its black hole quotients by using accelerating and Poincare coordinates. We then describe the maximal analytic extension of the black holes and present their causal diagrams. Finally, we calculate spacetime limits of the black hole phase space (TR, TL). This is done by requiring that the identification vector ∂θ has a finite non-zero limit. The limits we obtain are the self-dual solution in accelerating or Poincare coordinates, depending respectively on whether the limiting spacetimes are non-extremal or extremal, and warped AdS3 with a periodic proper time identification.
Entropy of near-extremal black holes in AdS_5
Balasubramanian, Vijay; de Boer, Jan; Jejjala, Vishnu; Simon, Joan
2007-01-01
We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-ho...
Ehrenfest's scheme and thermodynamic geometry in Born-Infeld AdS black holes
Lala, Arindam; Roychowdhury, Dibakar
2012-10-01
In this paper, we analyze the phase transition phenomena in Born-Infeld anti-de Sitter (BI AdS) black holes using Ehrenfest’s scheme of standard thermodynamics. The critical points are marked by the divergences in the heat capacity. In order to investigate the nature of the phase transition, we analytically check both Ehrenfest equations near the critical points. Our analysis reveals that this is indeed a second order phase transition. Finally, we analyze the nature of the phase transition using the state space geometry approach. This is found to be compatible with Ehrenfest’s scheme.
Ehrenfest's scheme and thermodynamic geometry in Born-Infeld AdS black holes
Lala, Arindam
2011-01-01
In this paper we analyze the phase transition phenomena in Born-Infeld AdS black holes using Ehrenfest's scheme of standard thermodynamics. The critical points are marked by the divergences in the heat capacity. In order to investigate the nature of the phase transition, we analytically check both the Ehrenfest's equations near the critical points. Our analysis reveals that this is indeed a second order phase transition. Finally, we analyze the nature of the phase transition using state space geometry approach. This is found to be compatible with the Ehrenfest's scheme.
Entropy of near-extremal black holes in AdS5
Balasubramanian, Vijay
2008-01-01
We construct the microstates of near-extremal black holes in AdS_5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-hori...
Static black holes with no spatial isometries in AdS-electrovacuum
Herdeiro, Carlos A. R.; Radu, Eugen
2016-01-01
We explicitly construct static black hole solutions to the fully non-linear, D=4, Einstein-Maxwell-AdS equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast with the uniqueness results f...
Black Hole Formation in AdS Einstein-Gauss-Bonnet Gravity
Deppe, Nils; Frey, Andrew R; Kunstatter, Gabor
2016-01-01
AdS spacetime has been shown numerically to be unstable against a large class of arbitrarily small perturbations. In arXiv:1410.1869, the authors presented a preliminary study of the effects on stability of changing the local dynamics by adding a Gauss-Bonnet term to the Einstein action. Here we provide further details as well as new results with improved numerical methods. In particular, we elucidate new structure in Choptuik scaling plots. We also provide evidence of chaotic behavior at the transition between immediate horizon formation and horizon formation after the matter pulse reflects from the AdS conformal boundary. Finally, we present data suggesting the formation of naked singularities in spacetimes with ADM mass below the algebraic bound for black hole formation.
Static black holes with axial symmetry in asymptotically AdS$_4$ spacetime
Kichakova, Olga; Radu, Eugen; Shnir, Yasha
2015-01-01
The known static electro-vacuum black holes in a globally AdS$_4$ background have an event horizon which is geometrically a round sphere. In this work we argue that the situation is different in models with matter fields possessing an explicit dependence on the azimuthal angle $\\varphi$, which, however, does not manifest at the level of the energy-momentum tensor. As a result, the full solutions are axially symmetric only, possessing a single (timelike) Killing vector field. Explicit examples of such static black holes are constructed in Einstein--(complex) scalar field and Einstein--Yang-Mills theories. The basic properties of these solutions are discussed, looking for generic features. For example, we notice that the horizon has an oblate spheroidal shape for solutions with a scalar field and a prolate one for black holes with Yang-Mills fields. The deviation from sphericity of the horizon geometry manifests itself in the holographic stress-tensor. Finally, based on the results obtained in the probe limit, ...
On conserved charges and thermodynamics of the AdS4 dyonic black hole
Cárdenas, Marcela; Fuentealba, Oscar; Matulich, Javier
2016-05-01
We consider four-dimensional gravity in the presence of a dilatonic scalar field and an Abelian gauge field. This theory corresponds to the bosonic sector of a Kaluza-Klein reduction of eleven-dimensional supergravity which induces a specific self-interacting potential for the scalar field. We compute the conserved charges and carry out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution that was proposed recently. The charges coming from symmetries of the action are computed using the Regge-Teitelboim Hamiltonian approach. They correspond to the mass, which acquires contributions from the scalar field, and the electric charge. We introduce integrability conditions because the scalar field leads to non-integrable terms in the variation of the mass. These conditions are generically solved by introducing boundary conditions that relate the leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action, computed in the grand canonical ensemble, is obtained by demanding the action to have an extremum. Its value is given by a radial boundary term plus an additional polar angle boundary term due to the presence of a magnetic monopole. Remarkably, the magnetic charge can be identified from the variation of the additional polar angle boundary term, confirming that the first law of black hole thermodynamics is a consequence of having a well-defined and finite Hamiltonian action principle, even if the charge does not come from a symmetry of the action. The temperature and electrostatic potential are determined by demanding regularity of the black hole solution, whereas the value of the magnetic potential is determined by the variation of the additional polar angle boundary term. Consequently, the first law of black hole thermodynamics is identically satisfied by construction.
Hawking temperature of Kerr-Newman-AdS black hole from tunneling
Ma, Zheng Ze
2009-01-01
Using the null-geodesic tunneling method of Parikh and Wilczek, we derive the Hawking temperature of a general four-dimensional rotating black hole. In order to eliminate the motion of $\\phi$ degree of freedom of a tunneling particle, we have chosen a reference system that is co-rotating with the black hole horizon. Then we give the explicit result for the Hawking temperature of the Kerr-Newman-AdS black hole from the tunneling approach.
Stability of Horava-Lifshitz Black Holes in the Context of AdS/CFT
Ong, Yen Chin; /Taiwan, Natl. Taiwan U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC
2012-06-13
The anti-de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that promises to provide new insights toward a full understanding of field theories under extreme conditions, including but not limited to quark-gluon plasma, Fermi liquid, and superconductor. In many such applications, one typically models the field theory with asymptotically AdS black holes. These black holes are subjected to stringy effects that might render them unstable. Horava-Lifshitz gravity, in which space and time undergo different transformations, has attracted attention due to its power-counting renormalizability. In terms of AdS/CFT correspondence, Horava-Lifshitz black holes might be useful to model holographic superconductors with Lifshitz scaling symmetry. It is thus interesting to study the stringy stability of Horava-Lifshitz black holes in the context of AdS/CFT. We find that uncharged topological black holes in {lambda} = 1 Horava-Lifshitz theory are nonperturbatively stable, unlike their counterparts in Einstein gravity, with the possible exceptions of negatively curved black holes with detailed balance parameter {epsilon} close to unity. Sufficiently charged flat black holes for {epsilon} close to unity, and sufficiently charged positively curved black holes with {epsilon} close to zero, are also unstable. The implication to the Horava-Lifshitz holographic superconductor is discussed.
CFT dual of charged AdS black hole in the large dimension limit
Guo, Er-Dong; Li, Miao; Sun, Jia-Rui
2016-05-01
We study the dual CFT description of the d + 1-dimensional Reissner-Nordström-Anti de Sitter (RN-AdSd+1) black hole in the large dimension (large d) limit, both for the extremal and nonextremal cases. The central charge of the dual CFT2 (or chiral CFT1) is calculated for the near-horizon near extremal geometry which possesses an AdS2 structure. Besides, the Q-picture hidden conformal symmetry in the nonextremal background can be naturally obtained by a probe charged scalar field in the large d limit, without the need to input the usual limits to probe the hidden conformal symmetry. Furthermore, a new dual CFT description of the nonextremal RN-AdSd+1 black hole is found in the large d limit and the duality is analyzed by comparing the entropies, the absorption cross-sections and the retarded Green’s functions obtained both from the gravity and the dual CFT sides.
Quantum compositeness of gravity: black holes, AdS and inflation
Gravitational backgrounds, such as black holes, AdS, de Sitter and inflationary universes, should be viewed as composite of N soft constituent gravitons. It then follows that such systems are close to quantum criticality of graviton Bose-gas to Bose-liquid transition. Generic properties of the ordinary metric description, including geodesic motion or particle-creation in the background metric, emerge as the large-N limit of quantum scattering of constituent longitudinal gravitons. We show that this picture correctly accounts for physics of large and small black holes in AdS, as well as reproduces well-known inflationary predictions for cosmological parameters. However, it anticipates new effects not captured by the standard semi-classical treatment. In particular, we predict observable corrections that are sensitive to the inflationary history way beyond last 60 e-foldings. We derive an absolute upper bound on the number of e-foldings, beyond which neither de Sitter nor inflationary Universe can be approximated by a semi-classical metric. However, they could in principle persist in a new type of quantum eternity state. We discuss implications of this phenomenon for the cosmological constant problem
Near-horizon geometries of supersymmetric AdS5 black holes
We provide a classification of near-horizon geometries of supersymmetric, asymptotically anti-de Sitter, black holes of five-dimensional U(1)3-gauged supergravity which admit two rotational symmetries. We find three possibilities: a topologically spherical horizon, an S1 x S2 horizon and a toroidal horizon. The near-horizon geometry of the topologically spherical case turns out to be that of the most general known supersymmetric, asymptotically anti-de Sitter, black hole of U(1)3-gauged supergravity. The other two cases have constant scalars and only exist in particular regions of this moduli space - in particular they do not exist within minimal gauged supergravity. We also find a solution corresponding to the near-horizon geometry of a three-charge supersymmetric black ring held in equilibrium by a conical singularity; when lifted to type IIB supergravity this solution can be made regular, resulting in a discrete family of warped AdS3 geometries. Analogous results are presented in U(1)n gauged supergravity
Near-horizon geometries of supersymmetric AdS(5) black holes
Kunduri, Hari K
2007-01-01
We provide a classification of near-horizon geometries of supersymmetric, asymptotically anti-de Sitter, black holes of five-dimensional U(1)^3-gauged supergravity which admit two rotational symmetries. We find three possibilities: a topologically spherical horizon, an S^1 \\times S^2 horizon and a toroidal horizon. The near-horizon geometry of the topologically spherical case turns out to be that of the most general known supersymmetric, asymptotically anti-de Sitter, black hole of U(1)^3-gauged supergravity. The other two cases are parameterised by constant scalars and only exist in particular regions of this moduli space -- in particular they do not exist within minimal gauged supergravity. We also find a solution corresponding to the near-horizon geometry of a three-charge supersymmetric black ring held in equilibrium by a conical singularity; when lifted to type IIB supergravity this solution can be made regular, resulting in a discrete family of warped AdS(3) geometries. Analogous results are presented i...
Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity
Kim, Yong-Wan; Park, Young-Jai
2016-01-01
In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole.
Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei
2014-01-01
We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS 5 × S 5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curva...
A rotating hairy AdS$_3$ black hole with the metric having only one Killing vector field
Iizuka, Norihiro; Maeda, Kengo
2015-01-01
We perturbatively construct a three-dimensional rotating AdS black hole with a real scalar hair. We choose the mass of a scalar field slightly above the Breitenlohner-Freedman bound and impose a more general boundary condition for the bulk scalar field at AdS infinity. We first show that rotating BTZ black holes are unstable against superradiant modes under our more general boundary condition. Next we construct a rotating hairy black hole perturbatively with respect to a small amplitude $\\epsilon$ of the scalar field, up to $O(\\epsilon^4)$. The lumps of non-linearly perturbed geometry admit only one Killing vector field and co-rotate with the black hole, and it shows no dissipation. We numerically show that the entropy of our hairy black hole is larger than that of the BTZ black hole with the same energy and the angular momentum. This indicates, at least in the perturbative level, that our rotating hairy black hole in lumpy geometry can be the endpoint of the superradiant instability.
AdS and dS black hole solutions in analogue gravity: The relativistic and non-relativistic cases
Dey, Ramit; Turcati, Rodrigo
2016-01-01
We show that Schwarzschild black hole solutions in asymptotically Anti-de Sitter (AdS) and de Sitter (dS) spaces may, up to a conformal factor, be reproduced in the framework of analogue gravity. The aforementioned derivation is performed using relativistic and non-relativistic Bose-Einstein condensates. In addition, we demonstrate that the (2+1) planar AdS black hole can be mapped into the non-relativistic acoustic metric. Given that AdS black holes are extensively employed in the gauge/gravity duality, we then comment on the possibility to study the AdS/CFT correspondence and gravity/fluid duality from an analogue gravity perspective.
Zangeneh, M Kord; Sheykhi, A
2016-01-01
In their Letter [Phys. Rev. Lett. 115, 111302 (2015)], Shao-Wen Wei and Yu-Xiao Liu have introduced the number density of the black hole molecules as a measure for microscopic degrees of freedom of the black hole. Based on this, they have figured out some microscopic properties of the $4$-dimensional charged AdS black hole as an example relying on the thermodynamic phase transition and thermodynamic geometry, specially the behavior of the Ricci scalar of Ruppeiner geometry \\cite{Rup0}. At first glance, the obtained Ricci scalar seems surprising since shows no divergency as one usually expects for black holes \\cite{Rup1}. This motivates us to check whether the obtained Ricci scalar is correct. We observed that Ricci scalar is not correct as we guessed and therefore discussions and insights about microscopic structure of charged AdS black holes relying on this should be revised. In this Letter, we address the correct Ricci scalar of the $4$-dimensional charged AdS black holes and disclose the correct properties...
A Note on Physical Mass and the Thermodynamics of AdS-Kerr Black Holes
McInnes, Brett
2015-01-01
As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a "mass parameter" $M$ that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter $a$ if one fixes $M$; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not $M$ but rather the "physical" mass $E=M/(1-a^2/L^2)^2$; this is motivated by the First Law. For then the horizon area decreases with $a$. We recommend that $E$ always be used as the mass: for example, in attempts to "over-spin" AdS-Kerr black holes.
A note on physical mass and the thermodynamics of AdS-Kerr black holes
McInnes, Brett; Ong, Yen Chin
2015-11-01
As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a ``mass parameter'' M that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter a if one fixes M; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not M but rather the ``physical'' mass E=M/(1-a2/L2)2 this is motivated by the First Law. For then the horizon area decreases with a. We recommend that E always be used as the mass in physical processes: for example, in attempts to ``over-spin'' AdS-Kerr black holes.
Hawking Radiation of Topological Massive Warped-AdS3 Black Holes via Particles Tunnelling
Gecim, Ganim
2014-01-01
We investigate the Dirac and scalar particles tunnelling as a radiation of Warped AdS3 black holes in Topological Massive Gravity. Using Hamilton-Jacobi method, we discuss tunnelling probability and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. We observe the tunnelling probability and Hawking temperature to be same for the spin-1/2 and spin-0. We also examined the same procedure for the extremal case of the Warped AdS3 black holes, and thus, we show that the tunnelling process may occur, for both Dirac and scalar particles. Furthermore, in the extremal case, we find that the extremal case of the black hole has the Hawking Temperature in the Planck scale and thus it has a surface gravity although it has no surface gravity according to the classical method.
Miskovic, Olivera
2010-01-01
Motivated by possible applications within the framework of anti-de Sitter gravity/Conformal Field Theory (AdS/CFT) correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by a nonlinear electrodynamics (NED) are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary NED Lagrangian, in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Fall-off conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass...
Dirac and scalar particles tunnelling from topological massive warped-AdS3 black hole
Gecim, G.; Sucu, Y.
2015-06-01
We investigate the Dirac and scalar particles tunnelling as a radiation of Warped AdS3 black holes in Topological Massive Gravity. Using Hamilton-Jacobi method, we discuss tunnelling probability and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. We observe the tunnelling probability and Hawking temperature to be same for the spin-1/2 and spin-0. We show that the tunnelling process may occur, for both Dirac and scalar particles.
Complex entangling surfaces for AdS and Lifshitz black holes?
We discuss the possible relevance of complex codimension-two extremal surfaces to the Ryu–Takayanagi holographic entanglement proposal and its covariant Hubeny–Rangamani–Takayanagi generalization. Such surfaces live in a complexified bulk spacetime defined by analytic continuation. We identify surfaces of this type for BTZ, Schwarzschild–AdS, and Schwarzschild–Lifshitz planar black holes. Since the dual CFT interpretation for the imaginary part of their areas is unclear, we focus on a straw man proposal relating CFT entropy to the real part of the area alone. For Schwarzschild–AdS and Schwarzschild–Lifshitz, we identify families where the real part of the area agrees with qualitative physical expectations for the time-dependence of the appropriate CFT entropy and, in addition, where it is smaller than the area of corresponding real extremal surfaces. It is thus plausible that the CFT entropy is controlled by these complex extremal surfaces. (paper)
Holographic fermionic spectrum from Born-Infeld AdS black hole
Wu, Jian-Pin
2016-07-01
In this letter, we systematically explore the holographic (non-)relativistic fermionic spectrum without/with dipole coupling dual to Born-Infeld anti-de Sitter (BI-AdS) black hole. For the relativistic fermionic fixed point, this holographic fermionic system exhibits non-Fermi liquid behavior. Also, with the increase of BI parameter γ, the non-Fermi liquid becomes even "more non-Fermi". When the dipole coupling term is included, we find that the BI term makes it a lot tougher to form the gap. While for the non-relativistic fermionic system with large dipole coupling in BI-AdS background, with the increase of BI parameter, the gap comes into being again.
Holographic p-Wave Superconductors in Quintessence AdS Black Hole Spacetime
We construct a holographic p-wave superconductor model in the background of quintessence AdS black hole with an SU(2) Yang—Mills gauge field and then probe the effects of quintessence on the holographic p-wave superconductor. We investigate the relation between the critical temperature and the state parameter of quintessence, and present the numerical results for electric conductivity. It is shown that the condensation of the vector field becomes harder as the absolute value of the state parameter increases. Unlike the scalar condensate in the s-wave model, the condensation of the vector field in p-wave model can occur in the total value range of the state parameter wq of quintessence. These results could help us know more about holographic superconductor and dark energy. (physics of elementary particles and fields)
Hidden Conformal Symmetry of the Warped AdS_3 Black Holes
Fareghbal, Reza
2010-01-01
We show that for a certain low frequency limit the wave equation of a generic massive scalar field in the background of the spacelike warped AdS_3 black hole can be written as the Casimir of an SL(2,R) symmetry. Two sets of SL(2,R) generators are found which uncover the hidden SL(2,R)\\times SL(2,R) symmetry of the solution. This symmetry is only locally defined and is spontaneously broken to U(1)\\times U(1) by a periodic identification of the \\phi coordinate. By using the generator of the identification we read the left and right temperatures (T_L,T_R) of the proposed dual conformal field theory which are in complete agreement with the WAdS/CFT conjecture. Moreover, under the above condition of the scalar wave frequency, absorption cross section of the scalar field is consistent with the two-point function of the dual CFT.
On conserved charges and thermodynamics of the AdS$_{4}$ dyonic black hole
Cárdenas, Marcela; Matulich, Javier
2016-01-01
Four-dimensional gravity in the presence of a dilatonic scalar field and an Abelian gauge field is considered. This theory corresponds to the bosonic sector of a Kaluza-Klein dimensional reduction of eleven-dimensional supergravity which induces a determined self-interacting potential for the scalar field. We compute the conserved charges and carry out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution recently proposed. The charges coming from symmetries of the action are computed by using the Regge-Teitelboim Hamiltonian approach. These correspond to the mass, which acquires contributions from the scalar field, and the electric charge. Integrability conditions are introduced because the scalar field leads to non-integrable terms in the variation of the mass. These conditions are generically solved by introducing boundary conditions that arbitrarily relates the leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action, computed in the grand canonical en...
Holographic fermionic spectrum from Born–Infeld AdS black hole
Jian-Pin Wu
2016-07-01
Full Text Available In this letter, we systematically explore the holographic (non-relativistic fermionic spectrum without/with dipole coupling dual to Born–Infeld anti-de Sitter (BI-AdS black hole. For the relativistic fermionic fixed point, this holographic fermionic system exhibits non-Fermi liquid behavior. Also, with the increase of BI parameter γ, the non-Fermi liquid becomes even “more non-Fermi”. When the dipole coupling term is included, we find that the BI term makes it a lot tougher to form the gap. While for the non-relativistic fermionic system with large dipole coupling in BI-AdS background, with the increase of BI parameter, the gap comes into being again.
A new metric for rotating charged Gauss—Bonnet black holes in AdS space
In this paper, we study a new metric for slowly rotating charged Gauss-Bonnet black holes in higher-dimensional anti-de Sitter space. Taking the angular momentum parameter a up to second order, the slowly rotating charged black hole solutions are obtained by working directly in the action. (general)
Schwinger Effect in (A)dS and Charged Black Hole
Kim, Sang Pyo
2015-01-01
In an (Anti-) de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.
Schwinger effect in (A)dS and charged black hole
Kim, Sang Pyo
In an Anti-de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.
Phase transitions for the topological AdS-black holes and de Sitter spaces
mYung, Y S
2006-01-01
We study whether or not the Hawking-Page phase transition occurs in the topological AdS-black holes (TAdS), topological de Sitter spaces (TdS), and Schwarzschild-de Sitter black hole (SdS). It turns out that at the critical temperature $T=T_1$, the TAdS with a spherical horizon and TdS with a hyperbolic cosmological horizon can make a phase transition from thermal AdS (dS) space to the black hole. It is shown that there is no Hawking-Page transition for the TAdS and TdS with Ricci-flat horizons when the zero mass black hole and de Sitter are taken as the thermal background. Finally, we find that the SdS takes a kind of the Hawking-Page phase transition at T=0.
Asymptotically locally AdS and flat black holes in Horndeski theory
Anabalon, Andres; Oliva, Julio
2013-01-01
In this paper we construct asymptotically locally AdS and flat black holes in the presence of scalar field whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The field equations as well as the energy-momentum tensor are second order in the metric and the field, therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a cosmological term in the action, it is possible to have a real scalar field in the region outside of the event horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the topological case. The solution is disconnected from the maximally symmetric AdS background, however, within this family there exits a gravitational soliton which is everywhere regular. This soliton is therefore used as a background to define a finite Euclidean action and to obtain th...
Weak field black hole formation in asymptotically AdS spacetimes
We use the AdS/CFT correspondence to study the thermalization of a strongly coupled conformal field theory that is forced out of its vacuum by a source that couples to a marginal operator. The source is taken to be of small amplitude and finite duration, but is otherwise an arbitrary function of time. When the field theory lives on Rd-1,1, the source sets up a translationally invariant wave in the dual gravitational description. This wave propagates radially inwards in AdSd+1 space and collapses to form a black brane. Outside its horizon the bulk spacetime for this collapse process may systematically be constructed in an expansion in the amplitude of the source function, and takes the Vaidya form at leading order in the source amplitude. This solution is dual to a remarkably rapid and intriguingly scale dependent thermalization process in the field theory. When the field theory lives on a sphere the resultant wave either slowly scatters into a thermal gas (dual to a glueball type phase in the boundary theory) or rapidly collapses into a black hole (dual to a plasma type phase in the field theory) depending on the time scale and amplitude of the source function. The transition between these two behaviors is sharp and can be tuned to the Choptuik scaling solution in Rd,1.
$P-V$ Criticality In the Extended Phase Space of Charged Accelerating AdS Black Holes
Liu, Hang
2016-01-01
In this paper, we investigate the $P-V$ criticality and phase transition of charged accelerating AdS black holes in the extended thermodynamic phase space in analogy between black hole system and Van der Waals liquid-gas system, where the cosmological constant $\\Lambda$ is treated as a thermodynamical variable interpreted as dynamic pressure and its conjugate quantity is the thermodynamic volume of the black holes. When the electric charge vanishes, we find that no $P-V$ criticality will appear but the Hawking-Page like phase transition will be present, just as what Schwarzschild-AdS black holes behave like. For the charged case, the $P-V$ criticality appears and the accelerating black holes will undergo a small black hole/large phase transition under the condition that the acceleration parameter $A$ and the horizon radius $r_h$ meet a certain simple relation $A r_h=a$, where $a$ is a constant in our discussion. To make $P-V$ criticality appear, there exists an upper bounds for constant $a$. When $P-V$ critic...
We analyze the gravitational perturbations induced by particles falling into a three dimensional, asymptotically AdS black hole geometry. More specifically, we solve the linearized perturbation equations obtained from the geodesic motion of a ringlike distribution of test particles in the BTZ background. This setup ensures that the U(1) symmetry of the background is preserved. The nonasymptotic flatness of the background raises difficulties in attributing the significance of energy and angular momentum to the conserved quantities of the test particles. This issue is well known but, to the best of our knowledge, has never been addressed in the literature. We confirm that the naive expressions for energy and angular momentum are the correct definitions. Finally, we put an asymptotically AdS version of the weak cosmic censorship to a test: by attempting to overspin the BTZ black hole with test particles it is found that the black hole cannot be spun-up past its extremal limit.
From accelerating and Poincaré coordinates to black holes in spacelike warped AdS3, and back
Jugeau, Frederic; Moutsopoulos, George; Ritter, Patricia
2011-02-01
We first review spacelike stretched warped AdS3 and we describe its black hole quotients by using accelerating and Poincaré coordinates. We then describe the maximal analytic extension of the black holes and present their causal diagrams. Finally, we calculate spacetime limits of the black hole phase space (TR, TL). This is done by requiring that the identification vector ∂θ has a finite non-zero limit. The limits we obtain are the self-dual solution in accelerating or Poincaré coordinates, depending respectively on whether the limiting spacetimes are non-extremal or extremal, and warped AdS3 with a periodic proper time identification.
From accelerating and Poincar\\'e coordinates to black holes in spacelike warped AdS$_3$, and back
Jugeau, Frederic; Ritter, Patricia
2010-01-01
We first review spacelike stretched warped AdS$_3$ and we describe its black hole quotients by using accelerating and Poincar\\'e coordinates. We then describe the maximal analytic extension of the black holes and present their causal diagrams. Finally, we calculate spacetime limits of the black hole phase space $(T_R,T_L)$. This is done by requiring that the identification vector $\\partial_\\theta$ has a finite non-zero limit. The limits we obtain are the self-dual solution in accelerating or Poincar\\'e coordinates, depending respectively on whether the limiting spacetimes are non-extremal or extremal, and warped AdS with a periodic proper time identification.
A consistent and unified picture for critical phenomena of f(R) AdS black holes
Mo, Jie-Xiong; Li, Gu-Qiang; Wu, Yu-Cheng
2016-04-01
A consistent and unified picture for critical phenomena of charged AdS black holes in f(R) gravity is drawn in this paper. Firstly, we investigate the phase transition in canonical ensemble. We derive the explicit solutions corresponding to the divergence of CQ. The two solutions merge into one when the condition Qc=√(‑1/3R0) is satisfied. The curve of specific heat for Q Qc, the specific heat is always positive, implying the black holes are locally stable and no phase transition will take place. Secondly, both the T‑r+ curve and T‑S curve f(R) AdS black holes are investigated and they exhibit Van der Vaals like behavior as the P‑v curve in the former research. Critical physical quantities are obtained and they are consistent with those derived from the specific heat analysis. We carry out numerical check of Maxwell equal area law for the cases Q=0.2Qc, 0.4Qc, 0.6Qc, 0.8Qc. The relative errors are amazingly small and can be negligible. So the Maxwell equal area law holds for T‑S curve of f(R) black holes. Thirdly, we establish geometrothermodynamics for f(R) AdS black hole to examine the phase structure. It is shown that the Legendre invariant scalar curvature fraktur R would diverge exactly where the specific heat diverges. To summarize, the above three perspectives are consistent with each other, thus providing a unified picture which deepens the understanding of critical phenomena of f(R) AdS black holes.
Integrable models, degenerate horizons and AdS_2 black holes
J. Cruz; Fabbri, A; Navarro, D. J.; Navarro-Salas, J.; Navarro, P.
1999-01-01
The near extremal Reissner-Nordstrom black holes in arbitrary dimensions ca be modeled by the Jackiw-Teitelboim (JT) theory. The asymptotic Virasoro symmetry of the corresponding JT model exactly reproduces, via Cardy's formula, the deviation of the Bekenstein-Hawking entropy of the Reissner-Nordstrom black holes from extremality. We also comment how can we extend this approach to investigate the evaporation process.
Charge loss (or the lack thereof) for AdS black holes
Yen Chin Ong; Pisin Chen
2014-01-01
The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordstrom black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rat...
Dyonic (A)dS Black Holes in Einstein-Born-Infeld Theory in Diverse Dimensions
Li, Shoulong; Wei, Hao
2016-01-01
We study Einstein-Born-Infeld gravity and construct the dyonic (A)dS planar black holes in general even dimensions, that carry both the electric charge and magnetic fluxes along the planar space. In four dimensions, the solution can be constructed with also spherical and hyperbolic topologies. We study the black hole thermodynamics and obtain the first law. We also classify the singularity structure.
Equal Area Laws and Latent Heat for d-Dimensional RN-AdS Black Hole
We study the equal area laws of d-dimensional RN-AdS black hole. We choose two kinds of phase diagrams, P-V and T-S. We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole
Dyonic (A)dS black holes in Einstein-Born-Infeld theory in diverse dimensions
Li, Shoulong; Lü, H.; Wei, Hao
2016-07-01
We study Einstein-Born-Infeld gravity and construct the dyonic (A)dS planar black holes in general even dimensions, that carry both the electric charge and magnetic fluxes along the planar space. In four dimensions, the solution can be constructed with also spherical and hyperbolic topologies. We study the black hole thermodynamics and obtain the first law. We also classify the singularity structure.
Equal Area Laws and Latent Heat for d-Dimensional RN-AdS Black Hole
Li-Chun Zhang
2014-01-01
Full Text Available We study the equal area laws of d-dimensional RN-AdS black hole. We choose two kinds of phase diagrams, P-V and T-S. We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole.
Brick Walls for Black Holes in AdS/CFT
Iizuka, Norihiro
2013-01-01
We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields show the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic setting in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum ...
Brick walls for black holes in AdS/CFT
Norihiro Iizuka
2015-06-01
Full Text Available We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.
Brick walls for black holes in AdS/CFT
Iizuka, Norihiro, E-mail: iizuka@yukawa.kyoto-u.ac.jp; Terashima, Seiji, E-mail: terasima@yukawa.kyoto-u.ac.jp
2015-06-15
We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.
Brick walls for black holes in AdS/CFT
Iizuka, Norihiro; Terashima, Seiji
2015-06-01
We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.
Brick walls for black holes in AdS/CFT
We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase
Motion of particles on a Four-Dimensional Asymptotically AdS Black Hole with Scalar Hair
Gonzalez, P A; Vasquez, Yerko
2015-01-01
Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields in the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss about the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar h...
Motion of particles on a four-dimensional asymptotically AdS black hole with scalar hair
Gonzalez, P.A.; Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)
2015-10-15
Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields on the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light, and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar hair, in order to explain the discrepancy between the theory and the observations, for the perihelion precession of Mercury and light deflection. (orig.)
Bosonic excitations of the AdS4 Reissner-Nordstrom black hole
Davison, Richard A
2011-01-01
We study the long-lived modes of the charge density and energy density correlators in the strongly-coupled, finite density field theory dual to the AdS4 Reissner-Nordstrom black hole. For small momenta q<<\\mu, these correlators contain a pole due to sound propagation, as well as a pole due to a long-lived, purely imaginary mode analogous to the \\mu=0 hydrodynamic charge diffusion mode. As the temperature is raised in the range T\\lesssim\\mu, the sound attenuation shows no significant temperature dependence. When T\\gtrsim\\mu, it quickly approaches the \\mu=0 hydrodynamic result where it decreases like 1/T. It does not share any of the temperature-dependent properties of the 'zero sound' of Landau Fermi liquids observed in the strongly-coupled D3/D7 field theory. For such small momenta, the energy density spectral function is dominated by the sound mode at all temperatures, whereas the charge density spectral function undergoes a crossover from being dominated by the sound mode at low temperatures to being ...
Zhang, Jia-Lin; Yu, Hongwei
2014-01-01
We study thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in $AdS_5\\times{S^5}$ spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively and we find that the divergence of scalar curvature is related to the divergence of specific heat with fixed chemical potential in the Weinhold metric and Ruppeiner metric, while in the Quevedo metric the divergence of scalar curvature is related to the divergence of specific heat with fixed number of colors and the vanishing of the specific heat with fixed chemical potential.
Area functional relation for 5D-Gauss-Bonnet-AdS black hole
Pradhan, Parthapratim
2016-08-01
We present area (or entropy) functional relation for multi-horizons five dimensional (5D) Einstein-Maxwell-Gauss-Bonnet-AdS black hole. It has been observed by exact and explicit calculation that some complicated function of two or three horizons area is mass-independent whereas the entropy product relation is not mass-independent. We also study the local thermodynamic stability of this black hole. The phase transition occurs at certain condition. Smarr mass formula and first law of thermodynamics have been derived. This mass-independent relation suggests they could turn out to be an universal quantity and further helps us to understanding the nature of black hole entropy (both interior and exterior) at the microscopic level. In the "Appendix", we have derived the thermodynamic products for 5D Einstein-Maxwell-Gauss-Bonnet black hole with vanishing cosmological constant.
Critical phenomena in the extended phase space of Kerr-Newman-AdS black holes
Cheng, Peng; Liu, Yu-Xiao
2016-01-01
Treating the cosmological constant as a thermodynamic pressure, we investigate the critical behavior of a Kerr-Newman-AdS black hole system. The critical points for the van der Waals like phase transition are numerically solved. The highly accurate fitting formula for them is given and is found to be dependent of the charge $Q$ and angular momentum $J$. In the reduced parameter space, we find that the temperature, Gibbs free energy, and coexistence curve depend only on the dimensionless angular momentum-charge ratio $\\epsilon=J/Q^2$ rather than $Q$ and $J$. Moreover, when varying $\\epsilon$ from 0 to $\\infty$, the coexistence curve will continuously change from that of the Reissner-Nordstr\\"{o}m-AdS black hole to the Kerr-AdS black hole. These results may guide us to study the critical phenomena for other thermodynamic systems with two characteristic parameters.
On thermodynamics of charged AdS black holes in extended phases space via M2-branes background
Chabab, M.; El Moumni, H.; Masmar, K.
2016-06-01
Motivated by a recent work on asymptotically AdS_4 black holes in M-theory, we investigate both thermodynamics and the thermodynamical geometry of Reissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in AdS4× S7, with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner, and Quevedo metrics for M2-branes geometry to study the stability of such a black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results to those obtained by the phase transition diagram via the heat capacities in different ensembles either when the number of the M2 branes or the charge is held fixed. Also, we note that all results derived in Belhaj et al. (Eur Phys J C 76(2):73, 2016) are recovered in the limit of the vanishing charge.
Thermodynamics of Charged AdS Black Holes in Extended Phases Space via M2-branes Background
Chabab, M; Masmar, K
2015-01-01
Motivated by a recent work on asymptotically Ad$S_4$ black holes in M-theory, we investigate both thermodynamics and thermodynamical geometry of Raissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in $AdS_{4}\\times S^{7}$, with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner and Quevedo metrics for M2-branes geometry to study the stability of such black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results obtained by the phase transition program via the heat capacities in different ensembles either when the number of the M2 branes or the charge are held fixed. Also, we note that all results derived in [1] are recovered in the ...
Conformal invariance and near-extreme rotating AdS black holes
We obtain retarded Green's functions for massless scalar fields in the background of near-extreme, near-horizon rotating charged black holes of five-dimensional minimal gauged supergravity. The radial part of the (separable) massless Klein-Gordon equation in such general black hole backgrounds is Heun's equation, due to the singularity structure associated with the three black hole horizons. On the other hand, we find the scaling limit for the near-extreme, near-horizon background where the radial equation reduces to a hypergeometric equation whose SL(2,R)2 symmetry signifies the underlying two-dimensional conformal invariance, with the two sectors governed by the respective Frolov-Thorne temperatures.
Rotating AdS black hole stealth solution in D=3
Hassaine, Mokhtar
2013-01-01
We show that the rotating asymptotically anti de Sitter black hole solution of new massive gravity in three dimensions can support a static stealth configuration given by a conformally coupled scalar field. By static stealth configuration, we mean a nontrivial time independent scalar field whose energy-momentum tensor vanishes identically on the rotating black hole metric solution of new massive gravity. The existence of this configuration is rendered possible because of the presence of a gravitational hair in the black hole metric that prevents the scalar field to be trivial. In the extremal case, the stealth scalar field diverges at the horizon as it occurs for the conformal scalar field of the Bocharova-Bronnikov-Melnikov-Bekenstein solution in four dimensions.
Born–Infeld AdS black holes as heat engines
Johnson, Clifford V.
2016-07-01
We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the first law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born–Infeld nonlinear electrodynamics sector. We compare the results for these ‘holographic’ heat engines to previous results obtained for Einstein–Maxwell black holes, and for the case where there is a Gauss–Bonnet sector.
(Un)attractor black holes in higher derivative AdS gravity
We investigate five-dimensional static (non-)extremal black hole solutions in higher derivative Anti-de Sitter gravity theories with neutral scalars non-minimally coupled to gauge fields. We explicitly identify the boundary counterterms to regularize the gravitational action and the stress tensor. We illustrate these results by applying the method of holographic renormalization to computing thermodynamical properties in several concrete examples. We also construct numerical extremal black hole solutions and discuss the attractor mechanism by using the entropy function formalism.
Born-Infeld AdS Black Holes as Heat Engines
Johnson, Clifford V
2015-01-01
We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the First Law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born-Infeld non-linear electrodynamics sector. We compare the results for these `holographic' heat engines to previous results obtained for Einstein-Maxwell black holes, and for the case where there is a Gauss-Bonnet sector.
Thermodynamics of spinning AdS4 black holes in gauged supergravity
Toldo, Chiara
2016-01-01
In this paper we study the thermodynamics of rotating black hole solutions arising from four-dimensional gauged N=2 supergravity. We analyze two different supergravity models, characterized by prepotentials $F = -i X^0 X^1$ and $F= -2i \\sqrt{X^0 (X^1)^3}$. The black hole configurations are supported by electromagnetic charges and scalar fields with different kinds of boundary conditions. We perform our analysis in the canonical ensemble, where we find a first order phase transition for a suit...
On particles tunneling from the Taub-NUT-AdS black hole
Zeng Xiao-Xiong; Li Qiang
2009-01-01
This paper discusses tunneling of scalar particles and Dirac particles from the Taub-NUT-AdS black hole by the Hamilton-Jacobi equation, initially used by Angheben et al, and the Dirac equation, recently proposed by Kerner and Mann. This is performed in the dragging coordinate frame so as to avoid the ergosphere dragging effect. A general form is obtained for the temperature of scalar and Dirac particles tunneling from the Taub-NUT-Ads black hole, which is commensurate with other methods as expected.
GENERAL: On particles tunneling from the Taub-NUT-AdS black hole
Zeng, Xiao-Xiong; Li, Qiang
2009-11-01
This paper discusses tunneling of scalar particles and Dirac particles from the Taub-NUT-AdS black hole by the Hamilton-Jacobi equation, initially used by Angheben et al, and the Dirac equation, recently proposed by Kerner and Mann. This is performed in the dragging coordinate frame so as to avoid the ergosphere dragging effect. A general form is obtained for the temperature of scalar and Dirac particles tunneling from the Taub-NUT-Ads black hole, which is commensurate with other methods as expected.
(Un)attractor black holes in higher derivative AdS gravity
Astefanesei, D.; Banerjee, N.; Dutta, S.
2008-01-01
We investigate five-dimensional static (non-)extremal black hole solutions in higher derivative Anti-de Sitter gravity theories with neutral scalars non- minimally coupled to gauge fields. We explicitly identify the boundary counterterms to regularize the gravitational action and the stress tensor. We illustrate these results by applying the method of holographic renormalization to computing thermodynamical properties in several concrete examples. We also construct numerical extremal black ho...
Guard against cooperative black hole attack in Mobile Ad-Hoc Network
Harsh Pratap Singh
2011-07-01
Full Text Available A mobile ad-hoc network is an autonomous network that consists of nodes which communicate with each other with wireless channel. Due to its dynamic nature and mobility of nodes, mobile ad hoc networks are more vulnerable to security attack than conventional wired and wireless networks. One of the principal routing protocols AODV used in MANETs. The security of AODV protocol is influence by the particular type of attack called Black Hole attack. In a black hole attack, a malicious node injects a faked route reply claiming to havethe shortest and freshest route to the destination. However, when the data packets arrive, the malicious node discards them. To preventing black hole attack, this paper presents RBS (Reference Broadcast Synchronization & Relative velocity distance method for clock synchronization process in Mobile ad-hoc Network for removal of cooperative black hole node. This paper evaluates the performance in NS2 network simulator and our analysis indicates that this method is very suitable to remove black hole attack.
Thermodynamics of higher spin black holes in AdS3
de Boer, Jan; Jottar, Juan I.
2014-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.
Thermodynamics of higher spin black holes in AdS3
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,ℝ)×SL(N,ℝ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges
Phase transitions and statistical mechanics for BPS Black Holes in AdS/CFT
Using the general framework developed in hep-th/0607056, we study in detail the phase space of BPS Black Holes in AdS, for the case where all three electric charges are equal. Although these solitons are supersymmetric with zero Hawking temperature, it turns out that these Black Holes have rich phase structure with sharp phase transitions associated to a corresponding critical generalized temperature. We are able to rewrite the gravity variables in terms of dual CFT variables and compare the gravity phase diagram with the free dual CFT phase diagram. In particular, the elusive supergravity constraint characteristic of these Black Holes is particularly simple and in fact appears naturally in the dual CFT in the definition of the BPS Index. Armed with this constraint, we find perfect match between BH and free CFT charges up to expected constant factors
AODV Robust (AODVR: An Analytic Approach to Shield Ad-hoc Networks from Black Holes
Mohammad Abu Obaida
2011-08-01
Full Text Available Mobile ad-hoc networks are vulnerable to several types of malicious routing attacks, black hole is one of those, where a malicious node advertise to have the shortest path to all other nodes in the network by the means of sending fake routing reply. As a result the destinations are deprived of desired information. In this paper, we propose a method AODV Robust (AODVR a revision to the AODV routing protocol, in which black hole is perceived as soon as they emerged and other nodes are alerted to prevent the network of such malicious threats thereby isolating the black hole. In AODVR method, the routers formulate the range of acceptable sequence numbers and define a threshold. If a node exceeds the threshold several times then it is black listed thereby increasing the network robustness.
Thermodynamics of spinning AdS4 black holes in gauged supergravity
Toldo, Chiara
2016-01-01
In this paper we study the thermodynamics of rotating black hole solutions arising from four-dimensional gauged N=2 supergravity. We analyze two different supergravity models, characterized by prepotentials $F = -i X^0 X^1$ and $F= -2i \\sqrt{X^0 (X^1)^3}$. The black hole configurations are supported by electromagnetic charges and scalar fields with different kinds of boundary conditions. We perform our analysis in the canonical ensemble, where we find a first order phase transition for a suitable range of charges and angular momentum. We perform the thermodynamic stability check on the configurations. Using the holographic dictionary we interpret the phase transition in terms of expectation values of operators in the dual field theory, which pertains to the class of ABJM theories living on a rotating Einstein universe. We extend the analysis to dyonic configurations as well. Lastly, we show the computation of the on-shell action and mass via holographic renormalization techniques.
Renormalized vacuum polarization on rotating warped AdS3 black holes
Ferreira, Hugo R C
2014-01-01
We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2+1)-dimensional rotating, spacelike stretched black hole solutions to Topologically Massive Gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.
Renormalized vacuum polarization on rotating warped AdS3 black holes
Ferreira, Hugo R. C.; Louko, Jorma
2015-01-01
We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2 +1 )-dimensional rotating, spacelike stretched black hole solutions to topologically massive gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.
Luminet, Jean-Pierre
1992-09-01
Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.
Thermodynamics of Higher Spin Black Holes in AdS$_{3}$
de Boer, Jan
2013-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in $SL(N,\\mathds{R})\\times SL(N,\\mathds{R})$ Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with $\\mathcal{W}_{N}$ symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural...
Non-extended phase space thermodynamics of Lovelock AdS black holes in the grand canonical ensemble
Recently, extended phase space thermodynamics of Lovelock AdS black holes has been of great interest. To provide insight from a different perspective and gain a unified phase transition picture, the non-extended phase space thermodynamics of (n+1)-dimensional charged topological Lovelock AdS black holes is investigated in detail in the grand canonical ensemble. Specifically, the specific heat at constant electric potential is calculated and the phase transition in the grand canonical ensemble is discussed. To probe the impact of the various parameters, we utilize the control variate method and solve the phase transition condition equation numerically for the cases k = 1,-1. There are two critical points for the case n = 6, k = 1, while there is only one for the other cases. For k = 0, there exists no phase transition point. To figure out the nature of the phase transition in the grand canonical ensemble, we carry out an analytic check of the analog form of the Ehrenfest equations proposed by Banerjee et al. It is shown that Lovelock AdS black holes in the grand canonical ensemble undergo a second-order phase transition. To examine the phase structure in the grand canonical ensemble, we utilize the thermodynamic geometry method and calculate both the Weinhold metric and the Ruppeiner metric. It is shown that for both analytic and graphical results that the divergence structure of the Ruppeiner scalar curvature coincides with that of the specific heat. Our research provides one more example that Ruppeiner metric serves as a wonderful tool to probe the phase structures of black holes. (orig.)
Area Functional Relation for 5D-Gauss-Bonnet-AdS Black Hole
Pradhan, Parthapratim
2016-01-01
We present \\emph{area functional relation} and \\emph{entropy functional relation} for multi-horizon five dimensional Einstein-Maxwell-Gauss-Bonnet-AdS Black Hole. It has been observed by exact calculation that some complicated function of two or three horizons area is \\emph{mass-independent} whereas the entropy product relation is \\emph{not} mass-independent. We study the thermodynamic stability of this black hole. The phase transition occurs at certain condition. \\emph{Smarr mass formula} and \\emph{first law} of thermodynamics is also discussed. Thermodynamic product formula for 5D Einstein-Maxwell-Gauss-Bonnet black hole without Cosmological parameter is also derived in appendix. This \\emph{mass-independent} relation suggests they could turn out to be an \\emph{universal} quantity.
Liu, Hang
2016-01-01
In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions $d>4$ with at least one rotation parameter $a_i=0$, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions ($d>4$) and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affe...
Liu, Hang; Meng, Xin-he
2016-08-01
In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d > 4 with at least one rotation parameter ai = 0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d > 4) and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.
Mišković, Olivera; Olea, Rodrigo
2011-01-01
Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.
Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.
Li, Gu-Qiang; Mo, Jie-Xiong
2016-06-01
The phase transition of a four-dimensional charged AdS black hole solution in the R +f (R ) gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in the canonical ensemble. There exists no critical point for T -S curve while in former research critical point was found for both the T -S curve and T -r+ curve when the electric charge of f (R ) black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of f (R ) AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 b . This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat CQ . To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.
Li, Gu-Qiang
2016-01-01
The phase transition of four-dimensional charged AdS black hole solution in the $R+f(R)$ gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in canonical ensemble. There exists no critical point for $T-S$ curve while in former research critical point was found for both the $T-S$ curve and $T-r_+$ curve when the electric charge of $f(R)$ black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of $f(R)$ AdS black hole is fixed. The specific heat $C_\\Phi$ encounters a divergence when $0b$. This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat $C_Q$. To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and de...
A consistent and unified picture for critical phenomena of $f(R)$ AdS black holes
Mo, Jie-Xiong; Wu, Yu-Cheng
2016-01-01
A consistent and unified picture for critical phenomena of charged AdS black holes in $f(R)$ gravity is drawn in this paper. Firstly, we investigate the phase transition in canonical ensemble. We derive the explicit solutions corresponding to the divergence of $C_Q$. The two solutions merge into one when the condition $Q_c=\\sqrt{\\frac{-1}{3R_0}}$ is satisfied. The curve of specific heat for $QQ_c$, the specific heat is always positive, implying the black holes are locally stable and no phase transition will take place. Secondly, both the $T-r_+$ curve and $T-S$ curve $f(R)$ AdS black holes are investigated and they exhibit Van der Vaals like behavior as the $P-v$ curve in the former research. Critical physical quantities are obtained and they are consistent with those derived from the specific heat analysis. We carry out numerical check of Maxwell equal area law for the cases $Q=0.2Q_c, 0.4Q_c, 0.6Q_c, 0.8Q_c$. The relative errors are amazingly small and can be negligible. So the Maxwell equal area law holds ...
1/16-BPS Black Holes and Giant Gravitons in the AdS_5 X S^5 Space
Kim, S; Kim, Seok; Lee, Ki-Myeong
2006-01-01
We explore 1/16-BPS objects of type IIB string theory in AdS_5 * S^5. First, we consider supersymmetric AdS_5 black holes, which should be 1/16-BPS and have a characteristic that not all physical charges are independent. We point out that the Bekenstein-Hawking entropy of these black holes admits a remarkably simple expression in terms of (dependent) physical charges, which suggests its microscopic origin via certain Cardy or Hardy-Ramanujan formula. We also note that there is an upper bound for the angular momenta given by the electric charges. Second, we construct a class of 1/16-BPS giant graviton solutions in AdS_5 * S^5 and explore their properties. The solutions are given by the intersections of AdS_5 * S^5 and complex 3 dimensional holomorphic hyperspaces in C^{1+5}, the latter being the zero loci of three holomorphic functions which are homogeneous with suitable weights on coordinates. We investigate examples of giant gravitons, including their degenerations to tensionless strings.
An equal area law for holographic entanglement entropy of the AdS-RN black hole
Nguyen, Phuc H.
2015-12-01
The Anti-de Sitter-Reissner-Nordström (AdS-RN) black hole in the canonical ensemble undergoes a phase transition similar to the liquid-gas phase transition, i.e. the isocharges on the entropy-temperature plane develop an unstable branch when the charge is smaller than a critical value. It was later discovered that the isocharges on the entanglement entropy -temperature plane also exhibit the same van der Waals-like structure, for spherical entangling regions. In this paper, we present numerical results which sharpen this similarity between entanglement entropy and black hole entropy, by showing that both of these entropies obey Maxwell's equal area law to an accuracy of around 1%. Moreover, we checked this for a wide range of size of the spherical entangling region, and the equal area law holds independently of the size. We also checked the equal area law for AdS-RN in 4 and 5 dimensions, so the conclusion is not specific to a particular dimension. Finally, we repeated the same procedure for a similar, van der Waals-like transition of the dyonic black hole in AdS in a mixed ensemble (fixed electric potential and fixed magnetic charge), and showed that the equal area law is not valid in this case. Thus the equal area law for entanglement entropy seems to be specific to the AdS-RN background.
Exact black hole formation in asymptotically (A)dS and flat spacetimes
We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e−u/u0 with u0∼1/(α4M0)1/3, where M0 is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (A)dS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory
Preventive Aspect of Black Hole Attack in Mobile AD HOC Network
Kumar Roshan
2012-06-01
Full Text Available Mobile ad hoc network is infrastructure less type of network. In this paper we present the prevention mechanism for black hole in mobile ad hoc network. The routing algorithms are analyzed and discrete properties of routing protocols are defined. The discrete properties support in distributed routing efficiently. The protocol is distributed and not dependent upon the centralized controlling node. Important features of Ad hoc on demand vector routing (AODV are inherited and new mechanism is combined with it to get the multipath routing protocol for Mobile ad hoc network (MANET to prevent the black hole attack. When the routing path is discovered and entered into the routing table, the next step is taken by combined protocol to search the new path with certain time interval. The old entered path is refreshed into the routing table. The simulation is taken on 50 moving nodes in the area of 1000 x 1000 square meter and the maximum speed of nodes are 5m/sec. The result is calculated for throughput verses number of black hole nodes with pause time of 0 sec. to 40 sec., 120 sec. and 160 sec. when the threshold value is 1.0.
Randall-Sundrum II cosmology, AdS/CFT, and the bulk black hole
Hebecker, A.; March-Russell, J.
2001-08-01
We analyse the cosmology of a brane world model where a single brane carrying the standard model fields forms the boundary of a 5-dimensional AdS bulk (the Randall-Sundrum II scenario). We focus on the thermal radiation of bulk gravitons, the formation of the bulk black hole, and the holographic AdS/CFT definition of the RSII theory. Our detailed calculation of bulk radiation reduces previous estimates to a phenomenologically acceptable, although potentially visible level. In late cosmology, in which the Friedmann equation depends linearly on the energy density /ρ, only about 1% of energy density is lost to the black hole or, equivalently, to the `dark radiation' (Ωd,N~=0.01 at nucleosynthesis). The preceding, unconventional ρ2 period can produce up to 10% dark radiation (Ωd,Ncorrection to the standard treatment at low matter density. However, the 4-dimensional effective theory of CFT /+ gravity breaks down due to higher curvature terms for energy densities where ρ2 behaviour in the Friedmann equation is usually predicted. We emphasize that, in going beyond this energy density, the microscopic formulation of the theory becomes essential. For example, the pure AdS5 and string-motivated AdS5×S5 definitions differ in their cosmological implications.
Randall-Sundrum II cosmology, AdS/CFT, and the bulk black hole
We analyse the cosmology of a brane world model where a single brane carrying the standard model fields forms the boundary of a 5-dimensional AdS bulk (the Randall-Sundrum II scenario). We focus on the thermal radiation of bulk gravitons, the formation of the bulk black hole, and the holographic AdS/CFT definition of the RSII theory. Our detailed calculation of bulk radiation reduces previous estimates to a phenomenologically acceptable, although potentially visible level. In late cosmology, in which the Friedmann equation depends linearly on the energy density ρ, only about 1% of energy density is lost to the black hole or, equivalently, to the 'dark radiation' (Ωd,N≅0.01 at nucleosynthesis). The preceding, unconventional ρ2 period can produce up to 10% dark radiation (Ωd,N 2 correction to the standard treatment at low matter density. However, the 4-dimensional effective theory of CFT + gravity breaks down due to higher curvature terms for energy densities where ρ2 behaviour in the Friedmann equation is usually predicted. We emphasize that, in going beyond this energy density, the microscopic formulation of the theory becomes essential. For example, the pure AdS5 and string-motivated AdS5xS5 definitions differ in their cosmological implications
Perturbation of Large Anti-deSitter Black Holes and AdS/CFT Correspondence
Ahmadzadegan, Aida
As the main goal of this thesis, the canonical form of the perturbation metric of anti-de Sitter black holes in four dimensions is derived by choosing the Regge-Wheeler gauge in the standard Schwarzschild coordinates (t, r, theta, ϕ). By assuming the perturbations to be small, the differential equations governing the perturbations are obtained from the equations deltaRmunu(h ) = 0. Then, by taking the limit of m > > R where R is the radius of AdS space, the perturbation metric and field equations of large AdS black holes are found. Finally, under the shadow of AdS/CFT correspondence, these perturbations can be compared to their corresponding three-dimensional theory of fluid dynamics on the dual space, R x S2. Furthermore, by using the definitions of stress-energy tensor and its perturbation, we can find energy density, pressure and shear viscosity which are the quantities we need to describe the behavior of the fluid on the boundary of the AdS space.
Shuang-Qing Wu
2015-06-01
Full Text Available We study thermodynamical properties of static dyonic AdS black holes in four-dimensional ω-deformed Kaluza–Klein gauged supergravity theory, and find that the differential first law requires a modification via introducing a new pair of thermodynamical conjugate variables (X,Y. To ensure such a modification, we then apply the quasi-local ADT formalism developed in Kim et al. (2013 [20] to calculate the quasi-local conserved charge and identify that the new pair is precisely the one previously introduced to modify the differential form of the first law.
Thermodynamics of the Schwarzschild-AdS black hole with a minimal length
Miao, Yan-Gang
2016-01-01
Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the ${\\delta}$-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the ${\\delta}$-function, and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the ...
Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.
Wei, Shao-Wen; Liu, Yu-Xiao
2015-09-11
Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole. PMID:26406818
Randall-Sundrum II Cosmology, AdS/CFT, and the Bulk Black Hole
Hebecker, A
2001-01-01
We analyse the cosmology of a brane world model where a single brane carrying the standard model fields forms the boundary of a 5-dimensional AdS bulk (the Randall-Sundrum II scenario). We focus on the thermal radiation of bulk gravitons, the formation of the bulk black hole, and the holographic AdS/CFT definition of the RSII theory. Our detailed calculation of bulk radiation reduces previous estimates to a phenomenologically acceptable, although potentially visible level. In late cosmology, in which the Friedmann equation depends linearly on the energy density \\rho, only about 1% of energy density is lost to the black hole or, equivalently, to the `dark radiation' (\\Omega_{d,N} \\simeq 0.01 at nucleosynthesis). The preceding, unconventional \\rho^2 period can produce up to 10% dark radiation (\\Omega_{d,N} <\\sim 0.1). The AdS/CFT correspondence provides an equivalent description of late RSII cosmology. We show how the AdS/CFT formulation can reproduce the \\rho^2 correction to the standard treatment at low ma...
Behavior of Quasinormal Modes and high dimension RN-AdS Black Hole phase transition
Chabab, M; Iraoui, S; Masmar, K
2016-01-01
In this work we use the quasinormal frequencies of a massless scalar perturbation to probe the phase transition of the high dimension charged-AdS black hole. The signature of the critical behavior of this black hole solution is detected in the isobaric as well as in isothermal process. This paper is a natural generalization of \\cite{base} to higher dimensional spacetime. More precisely our study shows a clear signal for any dimension $d$ in the isobaric process. As to the isothermal case, we find out that this signature can be affected by other parameters like the pressure and the horizon radius. We conclude that the quasinormal modes can be an efficient tool to investigate the first order phase transition, but fail to disclose the signature of the second order phase transition.
Exact Black Hole Formation in Asymptotically (A)dS and Flat Spacetimes
Zhang, Xuefeng
2014-01-01
We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supegravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on values of the cosmological constant parameter $\\Lambda$ in the potential. As the advanced time $u$ increases, the spacetime reaches equilibrium in an exponential fashion, i.e., $e^{-u/u_0}$ with $u_0\\sim1/(\\alpha^4 M_0)^{1/3}$, where $M_0$ is the mass of the final black hole and $\\alpha$ is the second parameter in the potential. Similar to Vaidya solution, at $u=0$, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution gives rise to an (A)dS generalization of Roberts solution, thereby making it relevant to cosmic censorship. Our results provide a new model for studying the formation of r...
In an arbitrary dimension D, we study quadratic corrections to Einstein-Hilbert action described by the Gauss-Bonnet term. We consider charged black hole solutions with anti-de Sitter (AdS) asymptotics, of interest in the context of gravity/gauge theory dualities (AdS/CFT). The electric charge here is due to the addition of an arbitrary nonlinear electrodynamics (NED) Lagrangian. Due to the existence of a vacuum energy for global AdS spacetime in odd dimensions in the framework of AdS/CFT correspondence, we derive a Quantum Statistical Relation directly from the Euclidean action and not from the First Law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists in supplementing the bulk action with counterterms that depend both on the extrinsic and intrinsic curvatures of the boundary (also known as Kounterterms). This procedure results in a consistent inclusion of the vacuum energy in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless the explicit form of the NED Lagrangian.
Miao, Yan-Gang; Xu, Zhen-Ming
2015-01-01
Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phas...
We consider curvature-squared corrections to Einstein-Hilbert gravity action in the form of a Gauss-Bonnet term in D>4 dimensions. In this theory, we study the thermodynamics of charged static black holes with anti-de Sitter (AdS) asymptotics, and whose electric field is described by nonlinear electrodynamics. These objects have received considerable attention in recent literature on gravity/gauge dualities. It is well-known that, within the framework of anti-de Sitter/conformal field theory (AdS/CFT) correspondence, there exists a nonvanishing Casimir contribution to the internal energy of the system, manifested as the vacuum energy for global AdS spacetime in odd dimensions. Because of this reason, we derive a quantum statistical relation directly from the Euclidean action and not from the integration of the first law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists, in addition to the bulk action, of counterterms that depend on both extrinsic and intrinsic curvatures of the boundary (Kounterterm series). This procedure results in a consistent inclusion of the vacuum energy and chemical potential in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless of the explicit form of the nonlinear electrodynamics Lagrangian.
Localised $\\bf{AdS_5\\times S^5}$ Black Holes
Dias, Oscar J C; Way, Benson
2016-01-01
We numerically construct asymptotically global $\\mathrm{AdS}_5\\times \\mathrm{S}^5$ black holes that are localised on the $\\mathrm{S}^5$. These are solutions to type IIB supergravity with $\\mathrm S^8$ horizon topology that dominate the theory in the microcanonical ensemble at small energies. At higher energies, there is a first-order phase transition to $\\mathrm{AdS}_5$-Schwarzschild$\\times \\mathrm{S}^5$. By the AdS/CFT correspondence, this transition is dual to spontaneously breaking the $SO(6)$ R-symmetry of $\\mathcal N=4$ super Yang-Mills down to $SO(5)$. We extrapolate the location of this phase transition and compute the expectation value of the resulting scalar operators in the low energy phase.
$Q-\\Phi$ criticality in the extended phase space of $(n+1)$-dimensional RN-AdS black holes
Ma, Yu-Bo; Cao, Shuo
2016-01-01
In order to achieve a deeper understanding of gravity theories, it is important to further investigate the thermodynamic properties of black hole at the critical point, besides the phase transition and critical behaviors. In this paper, by using Maxwell's equal area law, we choose $T,Q,\\Phi$ as the state parameters and study the phase equilibrium problem of general $(n+1)$-dimensional RN-AdS black holes thermodynamic system. The boundary of the two-phase coexistence region and its isotherm and isopotential lines are presented, which may provide theoretical foundation for studying the phase transition and phase structure of black hole systems.
A Mechanism for Detection of Cooperative Black Hole Attack in Mobile Ad Hoc Networks
Sen, Jaydip; Ukil, Arijit
2011-01-01
A mobile ad hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi-hop radio network and maintaining connections in a decentralized manner. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms,absence of centralized monitoring points, and lack of clear lines of defense. Most of the routing protocols for MANETs are thus vulnerable to various types of attacks. Ad hoc on-demand distance vector routing (AODV) is a very popular routing algorithm. However, it is vulnerable to the well-known black hole attack, where a malicious node falsely advertises good paths to a destination node during the route discovery process. This attack becomes more sever when a group of malicious nodes cooperate each other. In this paper, a defense mechanism is presented against a coordinated attack by multiple black hole nodes in a MANET. The simulation carried out on the propose...
Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei
2015-01-01
We study the thermodynamics and thermodynamic geometry of a five-dimensional Reissner-Nordstr\\"om-AdS black hole in the extended phase space by treating the cosmological constant as being related to the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the contribution of the charge of the black hole to the chemical potential is always positive and the existence of charge make the chemical potential become positive ...
Miskovic, Olivera
2010-01-01
We consider curvature-squared corrections to Einstein-Hilbert gravity action in the form of Gauss-Bonnet term in D>4 dimensions. In this theory, we study the thermodynamics of charged static black holes with anti-de Sitter (AdS) asymptotics, and whose electric field is described by nonlinear electrodynamics (NED). These objects have received considerable attention in recent literature on gravity/gauge dualities. It is well-known that, within the framework of anti de-Sitter/Conformal Field Theory (AdS/CFT) correspondence, there exists a nonvanishing Casimir contribution to the internal energy of the system, manifested as the vacuum energy for global AdS spacetime in odd dimensions. Because of this reason, we derive a Quantum Statistical Relation directly from the Euclidean action and not from the integration of the First Law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists in the addition to the bulk action of counterterms that depend on both extrinsic and...
Thermodynamics of Charged Kalb Ramond AdS black hole in presence of Gauss-Bonnet coupling
Choudhury, Sayantan
2013-01-01
We study the role of the Gauss-Bonnet corrections to the gravity action on the charged AdS black hole in presence of rank 3 antisymmetric Kalb Ramond tensor field strength. Analyzing the branch singularity and the killing horizon, we explicitly derive various thermodynamic parameters and study their behaviour in presence of five dimensional Gauss-Bonnet coupling in AdS space-time. The possibility of a second order phase transition is explored in the light of AdS/CMT correspondence and various critical exponents associated with the discontinuities of the various thermodynamic parameters are determined. We further comment on the universality of the well known Rushbrooke Josephson scaling law and derive a relation between the degree of homogeneity appearing in various free energies and the critical exponents by homogeneous hypothesis test. By making use of the constraints appearing from Hawking temperature and Gauss-Bonnet extended gravity version of Kubo formula we introduce a bound on the five dimensional Gaus...
Black Holes in AdS/BCFT and Fluid/Gravity Correspondence
Magán, Javier M; Silva, Madson R O
2014-01-01
A proposal to describe gravity duals of conformal theories with boundaries (AdS/BCFT correspondence) was put forward by Takayanagi few years ago. However interesting solutions describing field theories at finite temperature and charge density are still lacking. In this paper we describe a class of theories with boundary, which admit black hole type gravity solutions. The theories are specified by stress-energy tensors that reside on the extensions of the boundary to the bulk. From this perspective AdS/BCFT appears analogous to the fluid/gravity correspondence. Among the class of the boundary extensions there is a special (integrable) one, for which the stress-energy tensor is fluid-like. We discuss features of that special solution as well as its thermodynamic properties.
Hairy Black Hole Stability in AdS, Quantum Mechanics on the Half-Line and Holography
Anabalon, Andres; Oliva, Julio
2015-01-01
We consider the linear stability of $4$-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged $\\mathcal{N}=8$ supergravity in four dimensions, $m^{2}=-2l^{-2}$. It is shown that the Schr\\"{o}dinger operator on the half-line, governing the $S^{2}$, $H^{2}$ or $\\mathbb{R}^{2}$ invariant mode around the hairy black hole, allows for non-trivial self-adjoint extensions and each of them correspons to a class of mixed boundary conditions in the gravitational theory. Discarding the self-adjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schr\\"{o}dinger operator resembling the estimate of Simon for Schr\\"{o}dinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.
Thermal String Vacuum in Black-Hole AdS Spacetime
Graça, E L
2005-01-01
In this letter we propose a new ansatz for the thermal string in the TFD formulation. From it, we derive the thermal vacuum for the closed bosonic string and calculate the thermal partition function in the blackhole $AdS$ background in the first order of the perturbative quantization.
We show that one may pass from bulk to boundary thermodynamic quantities for rotating anti-de Sitter (AdS) black holes in arbitrary dimensions so that if the bulk quantities satisfy the first law of thermodynamics then so do the boundary conformal field theory (CFT) quantities. This corrects recent claims that boundary CFT quantities satisfying the first law may only be obtained using bulk quantities measured with respect to a certain frame rotating at infinity, and which therefore do not satisfy the first law. We show that the bulk black-hole thermodynamic variables, or equivalently therefore the boundary CFT variables, do not always satisfy a Cardy-Verlinde type formula, but they do always satisfy an AdS-Bekenstein bound. The universal validity of the Bekenstein bound is a consequence of the more fundamental cosmic-censorship bound, which we find to hold in all cases examined. We also find that at fixed entropy, the temperature of a rotating black hole is bounded above by that of a nonrotating black hole, in four and five dimensions, but not in six or more dimensions. We find evidence for universal upper bounds for the area of cosmological event horizons and black-hole horizons in rotating black-hole spacetimes with a positive cosmological constant
Massive charged BTZ black holes in asymptotically (a)dS spacetimes
Hendi, S. H.; Panah, B. Eslam; Panahiyan, S.
2016-05-01
Motivated by recent developments of BTZ black holes and interesting results of massive gravity, we investigate massive BTZ black holes in the presence of Maxwell and Born-Infeld (BI) electrodynamics. We study geometrical properties such as type of singularity and asymptotical behavior as well as thermodynamic structure of the solutions through canonical ensemble. We show that despite the existence of massive term, obtained solutions are asymptotically (a)dS and have a curvature singularity at the origin. Then, we regard varying cosmological constant and examine the Van der Waals like behavior of the solutions in extended phase space. In addition, we employ geometrical thermodynamic approaches and show that using Weinhold, Ruppeiner and Quevedo metrics leads to existence of ensemble dependency while HPEM metric yields consistent picture. For neutral solutions, it will be shown that generalization to massive gravity leads to the presence of non-zero temperature and heat capacity for vanishing horizon radius. Such behavior is not observed for linearly charged solutions while generalization to nonlinearly one recovers this property.
Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)
Miao, Yan-Gang; Xu, Zhen-Ming
2016-04-01
Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range.
Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); CERN, PH-TH Division, Geneva 23 (Switzerland); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)
2016-04-15
Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)
Miao, Yan-Gang
2015-01-01
Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law maintains for the noncommutative black hole with the Hawking temperature within a specific range, but fails with the Hawking temperature beyond this range.
Naji, J
2014-01-01
In this paper, we considered new solutions for four-dimensional asymptotically AdS black holes with scalar hair and discuss about Hawking temperature in the context of dark energy by using the tunneling method. We obtain modification of the Hawking temperature due to presence of the dark energy.
Holographic superconductors in the AdS black hole with a magnetic charge
In this work, we study the analytical properties of a 2 + 1-dimensional magnetically charged holographic superconductor in AdS4. We obtain the critical chemical potential μc analytically, using the Sturm-Liouville variational approach. Further, by applying the perturbation scheme, we obtain the electrical conductivity of the model. We observe that the real part of the σ increases and the imaginary part of the conductivity decreases monotonously versus the frequency ω. Each module of σ has a minimum value, which is similar to the case of the uncharged Schwarachild-AdS background. Further, we also conclude that the value of ωε/Tc increases. For the condensate operator O2 we find that, as the frequency ω increases for fixed H, the real part has a common behavior. However, the imaginary part possesses a minimum value in this case and the location of this minimum value changes along right when H increases. We find that at ω = 0, the real part of conductivity behaves as a delta function and the imaginary part exists as a pole in the background. This pole may be related to the existence of a magnetic monopole. Also, the obtained analytic result can be used to back up numerical computations in the holographic superconductor in the probe limit.
$P\text{-}V$ Criticality of Conformal Anomaly Corrected AdS Black Holes
Liu, Wen-Biao; Mo, Jie-Xiong
2015-01-01
The effects of conformal anomaly on the thermodynamics of black holes are investigated in this paper from the perspective of P-V criticality of AdS black holes. Treating the cosmological constant as thermodynamic pressure, we extend the recent research to the extended phase space. Firstly, we study the P - V criticality of the uncharged AdS black holes with conformal anomaly and find that conformal anomaly does not influence whether there exists Van der Waals like critical behavior. Secondly,...
In this talk we discuss various aspects of the string landscape: D-brane model building and their statistics, the generation of non-perturbative superpotentials from D-brane instantons, moduli stabilization by fluxes and non-perturbative effects, the relation between flux vacua and BPS black holes, the construction of AdS4 vacua and related domain wall solutions, transitions between flux vacua and also some constraints on the string landscape from black hole considerations. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Hanada, Masanori
2016-01-01
Based on 4d ${\\cal N}=4$ SYM on $\\mathbb{R}^{1}\\times$S$^3$, a gauge theory description of a small black hole in AdS$_5\\times$S$^5$ is proposed. The change of the number of dynamical degrees of freedom associated with the emission of the scalar fields' eigenvalues plays a crucial role in this description. By analyzing the microcanonical ensemble, the Hagedorn behavior of long strings at low energy is obtained. Modulo an assumption based on the AdS/CFT duality for a large black hole, the energy of the small ten-dimensional Schwarzschild black hole $E\\sim 1/(G_{\\rm 10,N}T^7)$ is derived. %(We will eliminate necessity of this assumption by giving a heuristic argument based only on gauge theory.) A heuristic gauge theory argument supporting this assumption is also given. The same argument applied to the ABJM theory correctly reproduces the relation for the eleven-dimensional Schwarzschild black hole. One of the consequences of our proposal is that the small and large black holes are very similar when seen from th...
Hendi, Seyed Hossein
2015-01-01
In this paper, we obtain topological black hole solutions of third order Lovelock gravity couple with two classes of Born-Infeld type nonlinear electrodynamics with anti-de Sitter asymptotic structure. We investigate geometric and thermodynamics properties of the solutions and obtain conserved quantities of the black holes. We examine the first law of thermodynamics and find that the conserved and thermodynamic quantities of the black hole solutions satisfy the first law of thermodynamics. Finally, we calculate the heat capacity and determinant of Hessian matrix to evaluate thermal stability in both canonical and grand canonical ensembles. Moreover, we consider extended phase space thermodynamics to obtain generalized first law of thermodynamics as well as extended Smarr formula.
Hendi, S H; Panahiyan, S
2015-01-01
Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters on the horizons of black holes are studied and the conserved and thermodynamic quantities are calculated. Also, it is shown that the solutions satisfy the first law of thermodynamics. Furthermore using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in context of extended phase space is studied. It is show...
Roy, Shibaji
2015-01-01
It is known from the work in \\cite{Lu:2007bu} of Lu et. al. that the non-supersymmetric charged D3-brane (with anisotropies in time as well as one of the spatial directions of D3-brane) of type IIB string theory is characterized by five independent parameters. By fixing one of the parameters and zooming into a particular region of space-time we construct a four parameter family of solution in AdS$_5$, which interpolates between AdS$_5$ black hole and AdS$_5$ soliton (when one of spatial direc...
Nikolic, H
2015-01-01
We propose a new non-holographic formulation of AdS/CFT correspondence, according to which quantum gravity on AdS and its dual non-gravitational field theory both live in the same number D of dimensions. The field theory, however, appears (D-1)-dimensional because the interactions do not propagate in one of the dimensions. The D-dimensional action for the field theory can be identified with the sum over (D-1)-dimensional actions with all possible values $\\Lambda$ of the UV cutoff, so that the extra hidden dimension can be identified with $\\Lambda$. Since there are no interactions in the extra dimension, most of the practical results of standard holographic AdS/CFT correspondence transcribe to non-holographic AdS/CFT without any changes. However, the implications on black-hole entropy change significantly. The maximal black-hole entropy now scales with volume, while the Bekenstein-Hawking entropy is interpreted as the minimal possible black-hole entropy. In this way, the non-holographic AdS/CFT correspondence ...
Hennigar, Robie A; Tjoa, Erickson
2016-01-01
We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Discrete D-branes in AdS{sub 3} and in the 2d black hole
Ribault, S.
2005-12-01
I show how the AdS{sub 2} D-branes in the Euclidean AdS{sub 3} string theory are related to the continuous D-branes in Liouville theory. I then propose new discrete D-branes in the Euclidean AdS{sub 3} which correspond to the discrete D-branes in Liouville theory. These new D-branes satisfy the appropriate shift equations. They give rise to two families of discrete D-branes in the 2d black hole, which preserve different symmetries. (orig.)
Geodesic Motion in the Spacetime Of a SU(2)-Colored (A)dS Black Hole in Conformal Gravity
Hoseini, Bahareh; Soroushfar, Saheb
2016-01-01
In this paper we are interested to study the geodesic motion in the spacetime of a SU(2)-colored (A)dS black hole solving in conformal gravity. Using Weierstrass elliptic and Kleinian {\\sigma} hyperelliptic functions, we derive the analytical solutions for the equation of motion of test particles and light rays. Also, we classify the possible orbits according to the particle's energy and angular momentum.
Black hole nonmodal linear stability: the Schwarzschild (A)dS cases
Dotti, Gustavo
2016-01-01
The nonmodal linear stability of the Schwarzschild black hole established in Phys.\\ Rev.\\ Lett.\\ {\\bf 112} (2014) 191101 is generalized to the case of nonnegative cosmological constant $\\Lambda$. Two gauge invariant combinations $G_{\\pm}$ of perturbed scalars made out of the Weyl tensor and its first covariant derivative are found such that the map $[h_{\\alpha \\beta}] \\to \\left( G_- \\left([h_{\\alpha \\beta}] \\right), G_+ \\left([h_{\\alpha \\beta}] \\right) \\right)$, $[h_{\\alpha \\beta}]$ an equivalence class under gauge transformations of a solution of the linearized Einstein's equation, is invertible. The way to reconstruct a representative of $[h_{\\alpha \\beta}]$ in terms of $(G_-,G_+)$ is given. It is proved that, for an arbitrary perturbation consistent with the background asymptote, $G_+$ and $G_-$ are bounded in the the outer static region. At large times, the perturbation decays leaving a linearized Kerr black hole around the Schwarzschild or Schwarschild de Sitter background solution. For negative cosmolog...
Analytical and exact critical phenomena of d -dimensional singly spinning Kerr-AdS black holes
Wei, Shao-Wen; Cheng, Peng; Liu, Yu-Xiao
2016-04-01
In the extended phase space, the d -dimensional singly spinning Kerr-anti-de Sitter black holes exhibit the van der Waals phase transition and reentrant phase transition. Since the black hole system is a single-characteristic-parameter system, we show that the form of the critical point can be uniquely determined by the dimensional analysis. When d =4 , we get the analytical critical point. The coexistence curve and phase diagram are obtained. The result shows that the fitting form of the coexistence curve in the reduced parameter space is independent of the angular momentum. When d =5 - 9 , the exact critical points are numerically solved. It demonstrates that when d ≥6 , there are two critical points. However, the small one does not participate in the phase transition. Moreover, the exact critical reentrant phase transition points are also obtained. All the critical points are obtained without any approximation.
Wei, Shao-Wen
2014-01-01
In this paper, we first review the equal area laws and Clapeyron equations in the extended phase space of the charged AdS black holes. With different fixed parameters, the Maxwell's equal area law not only hold in $P-V$ (pressure-thermodynamic volume) oscillatory line, but also in $Q-\\Phi$ (charge-electric potential) and $T-S$ (temperature-entropy) oscillatory lines. The classical Clapeyron equation also obtains its generalizations that two extra equations are found. Moreover, we present the fitting formula of the coexistence curve that the small and large charged black holes coexist. The result shows that the fitting formula is charge independent in the reduced parameter space for any dimension of spacetime. Using such analytic expression of the coexistence curve, we find that the Clapeyron equations are highly consistent with the calculated values. The fitting formula is useful for further study on the thermodynamic property of the system varying along the coexistence curve.
Information Storage in Black Holes
Maia, M. D.
2005-01-01
The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the $M_6 (4,2)$ bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole
General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a cold, stable remnant
Vaz, Cenalo; Wijewardhana, L. C. R.
2013-12-01
General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.
Phase transition in black holes
Roychowdhury, Dibakar
2014-01-01
The present thesis is devoted towards the study of various aspects of the phase transition phenomena occurring in black holes defined in an Anti-de-Sitter (AdS) space. Based on the fundamental principles of thermodynamics and considering a grand canonical framework we examine various aspects of the phase transition phenomena occurring in AdS black holes. We analytically check that this phase transition between the smaller and larger mass black holes obey Ehrenfest relations defined at the critical point and hence confirm a second order phase transition. This include both the rotating and charged black holes in Einstein gravity. Apart from studying these issues, based on a canonical framework, we also investigate the critical behavior in charged AdS black holes. The scaling laws for these black holes are found to be compatible with the static scaling hypothesis. Finally, based on the usual framework of AdS/CFT duality, we investigate the phase transition phenomena occurring in charged hairy black holes defined...
Hawking Radiation of Massive Vector Particles From Warped AdS$_{\\text{3}}$ Black Hole
Gursel, H
2015-01-01
Hawking radiation (HR) of massive vector particles from a rotating Warped Anti-de Sitter black hole in 2+1 dimensions (WAdS$_{\\text{3}}$BH) is studied in detail. The quantum tunneling approach with the Hamilton-Jacobi method (HJM) is applied in the Proca equation (PE), and we show that the radial function yields the tunneling rate of the outgoing particles. Comparing the result obtained with the Boltzmann factor, we satisfactorly reproduce the Hawking temperature (HT) of the WAdS$_{\\text{3}}$BH.
The Klein–Gordon equation on the toric AdS-Schwarzschild black hole
Dunn, Jake; Warnick, Claude
2016-06-01
We consider the Klein–Gordon equation on the exterior of the toric anti de-Sitter Schwarzschild black hole with Dirichlet, Neumann and Robin boundary conditions at { I }. We define a non-degenerate energy for the equation which controls the renormalised H 1 norm of the field. We then establish both decay and integrated decay of this energy through vector field methods. Finally, we demonstrate the necessity of ‘losing a derivative’ in the integrated energy estimate through the construction of a Gaussian beam staying in the exterior of the event horizon for arbitrarily long coordinate time.
Are black holes totally black?
Grib, A A
2014-01-01
Geodesic completeness needs existence near the horizon of the black hole of "white hole" geodesics coming from the region inside of the horizon. Here we give the classification of all such geodesics with the energies $E/m \\le 1$ for the Schwarzschild and Kerr's black hole. The collisions of particles moving along the "white hole" geodesics with those moving along "black hole" geodesics are considered. Formulas for the increase of the energy of collision in the centre of mass frame are obtained and the possibility of observation of high energy particles arriving from the black hole to the Earth is discussed.
Black Hole Masses are Quantized
Dvali, Gia; Mukhanov, Slava
2011-01-01
We give a simple argument showing that in any sensible quantum field theory the masses of black holes cannot assume continuous values and must be quantized. Our proof solely relies on Poincare-invariance of the asymptotic background, and is insensitive to geometric characteristics of black holes or other peculiarities of the short distance physics. Therefore, our results are equally-applicable to any other localized objects on asymptotically Poincare-invariant space, such as classicalons. By adding a requirement that in large mass limit the quantization must approximately account for classical results, we derive an universal quantization rule applicable to all classicalons (including black holes) in arbitrary number of dimensions. In particular, this implies, that black holes cannot emit/absorb arbitrarily soft quanta. The effect has phenomenological model-independent implications for black holes and other classicalons that may be created at LHC. We predict, that contrary to naive intuition, the black holes a...
Einstein-Born-Infeld-Massive Gravity: adS-Black Hole Solutions and their Thermal Stability
Hendi, Seyed Hossein; Panahiyan, Shahram
2015-01-01
In this paper, we study massive gravity in the presence of Born-Infeld nonlinear electrodynamics. First, we obtain metric function related to this gravity and investigate the geometry of the solutions and find that there is an essential singularity at the origin ($r=0$). It will be shown that due to contribution of the massive part, the number, types and places of horizons may be changed. Next, we calculate the conserved and thermodynamic quantities and check the validation of the first law of thermodynamics. We also investigate thermal stability of these black holes in context of canonical ensemble. It will be shown that number, type and place of phase transitions points are functions of the different parameters which lead to dependency of stability conditions to these parameters. Also, it will be shown how the behavior of the temperature is modified due to extension of massive gravity and strong nonlinearity parameter.