WorldWideScience

Sample records for adoptive t-cell therapy

  1. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  2. Adoptive T cell therapy targeting CD1 and MR1

    Directory of Open Access Journals (Sweden)

    Tingxi eGuo

    2015-05-01

    Full Text Available Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating malignant and infectious diseases. However, much of these therapies have been focused on enhancing, or generating de novo, effector functions of conventional T cells recognizing HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible for current HLA-restricted adoptive T cell therapies. CD1 and MR1 are class I-like monomorphic molecules and their restricted T cells possess unique T cell receptor specificity against entirely different classes of antigens. CD1 and MR1 molecules present lipid and vitamin B metabolite antigens, respectively, and offer a new front of targets for T cell therapies. This review will cover the recent progress in the basic research of CD1, MR1, and their restricted T cells that possess translational potential.

  3. Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy

    Czech Academy of Sciences Publication Activity Database

    Vávrová, K.; Vrabcova, P.; Filipp, Dominik; Bartunkova, J.; Horváth, R.

    2016-01-01

    Roč. 33, č. 12 (2016), č. článku 136. ISSN 1357-0560 R&D Projects: GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : Cancer Immunotherapy * Prostate cancer * Adoptive T cell therapy * Tumor-specific T cell expansion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.634, year: 2016

  4. Engineered T Cells for the Adoptive Therapy of B-Cell Chronic Lymphocytic Leukaemia

    Directory of Open Access Journals (Sweden)

    Philipp Koehler

    2012-01-01

    Full Text Available B-cell chronic lymphocytic leukaemia (B-CLL remains an incurable disease due to the high risk of relapse, even after complete remission, raising the need to control and eliminate residual tumor cells in long term. Adoptive T cell therapy with genetically engineered specificity is thought to fulfil expectations, and clinical trials for the treatment of CLL are initiated. Cytolytic T cells from patients are redirected towards CLL cells by ex vivo engineering with a chimeric antigen receptor (CAR which binds to CD19 on CLL cells through an antibody-derived domain and triggers T cell activation through CD3ζ upon tumor cell engagement. Redirected T cells thereby target CLL cells in an MHC-unrestricted fashion, secret proinflammatory cytokines, and eliminate CD19+ leukaemia cells with high efficiency. Cytolysis of autologous CLL cells by patient's engineered T cells is effective, however, accompanied by lasting elimination of healthy CD19+ B-cells. In this paper we discuss the potential of the strategy in the treatment of CLL, the currently ongoing trials, and the future challenges in the adoptive therapy with CAR-engineered T cells.

  5. Rethinking the role of myeloid-derived suppressor cells in adoptive T-cell therapy for cancer

    Science.gov (United States)

    Arina, Ainhoa

    2014-01-01

    The expansion of cancer-induced myeloid cells is thought to be one of the main obstacles to successful immunotherapy. Nevertheless, in murine tumors undergoing immune-mediated destruction by adoptively transferred T cells, we have recently shown that such cells maintain their immunosuppressive properties. Therefore, adoptive T-cell therapy can, under certain conditions, overcome myeloid cell immunosuppression. PMID:25050213

  6. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Stone

    2013-08-01

    Full Text Available Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional alpha-beta T cell receptor (TCR against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR consisting of a single-chain antibody as an Fv fragment (scFv linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the alpha-beta TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.

  7. Beyond the antigen receptor: editing the genome of T-cells for cancer adoptive cellular therapies

    Directory of Open Access Journals (Sweden)

    Angharad eLloyd

    2013-08-01

    Full Text Available Recent early-stage clinical trials evaluating the adoptive transfer of patient CD8+ T-cells re-directed with antigen receptors recognising tumours have shown very encouraging results. These reports provide strong support for further development of the therapeutic concept as a curative cancer treatment. In this respect combining the adoptive transfer of tumour-specific T-cells with therapies that increase their anti-tumour capacity is viewed as a promising strategy to improve treatment outcome. The ex-vivo genetic engineering step that underlies T-cell re-direction offers a unique angle to combine antigen receptor delivery with the targeting of cell intrinsic pathways that restrict T-cell effector functions. Recent progress in genome editing technologies such as protein- and RNA-guided endonucleases raise the possibility of disrupting gene expression in T-cells in order to enhance effector functions or to bypass tumour immune suppression. This approach would avoid the systemic administration of compounds that disrupt immune homeostasis, potentially avoiding autoimmune adverse effects, and could improve the efficacy of T-cell based adoptive therapies.

  8. T-cell Responses in the Microenvironment of Primary Renal Cell Carcinoma-Implications for Adoptive Cell Therapy

    DEFF Research Database (Denmark)

    Andersen, Rikke; Westergaard, Marie Christine Wulff; Kjeldsen, Julie Westerlin

    2018-01-01

    In vitro expansion of large numbers of highly potent tumor-reactive T cells appears a prerequisite for effective adoptive cell therapy (ACT) with autologous tumor-infiltrating lymphocytes (TIL) as shown in metastatic melanoma (MM). We therefore sought to determine whether renal cell carcinomas (RCC...

  9. Adaptive T cell responses induced by oncolytic Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor therapy expanded by dendritic cell and cytokine-induced killer cell adoptive therapy.

    Science.gov (United States)

    Ren, Jun; Gwin, William R; Zhou, Xinna; Wang, Xiaoli; Huang, Hongyan; Jiang, Ni; Zhou, Lei; Agarwal, Pankaj; Hobeika, Amy; Crosby, Erika; Hartman, Zachary C; Morse, Michael A; H Eng, Kevin; Lyerly, H Kim

    2017-01-01

    Purpose : Although local oncolytic viral therapy (OVT) may enhance tumor lysis, antigen release, and adaptive immune responses, systemic antitumor responses post-therapy are limited. Adoptive immunotherapy with autologous dendritic cells (DC) and cytokine-induced killer cells (DC-CIK) synergizes with systemic therapies. We hypothesized that OVT with Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor (HSV-GM-CSF) would induce adaptive T cell responses that could be expanded systemically with sequential DC-CIK therapy. Patients and Methods : We performed a pilot study of intratumoral HSV-GM-CSF OVT followed by autologous DC-CIK cell therapy. In addition to safety and clinical endpoints, we monitored adaptive T cell responses by quantifying T cell receptor (TCR) populations in pre-oncolytic therapy, post-oncolytic therapy, and after DC-CIK therapy. Results : Nine patients with advanced malignancy were treated with OVT (OrienX010), of whom seven experienced stable disease (SD). Five of the OVT treated patients underwent leukapheresis, generation, and delivery of DC-CIKs, and two had SD, whereas three progressed. T cell receptor sequencing of TCR β sequences one month after OVT therapy demonstrates a dynamic TCR repertoire in response to OVT therapy in the majority of patients with the systematic expansion of multiple T cell clone populations following DC-CIK therapy. This treatment was well tolerated and long-term event free and overall survival was observed in six of the nine patients. Conclusions : Strategies inducing the local activation of tumor-specific immune responses can be combined with adoptive cellular therapies to expand the adaptive T cell responses systemically and further studies are warranted.

  10. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Baixin Ye

    2017-01-01

    Full Text Available A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR T-cell therapy and engineered T-cell receptor (TCR T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1 provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2 provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3 evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies.

  11. Management of patients with non-Hodgkin’s lymphoma: focus on adoptive T-cell therapy

    Directory of Open Access Journals (Sweden)

    Perna SK

    2015-03-01

    Full Text Available Serena Kimi Perna,1 Leslie E Huye,1,† Barbara Savoldo1,2 1Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, 2Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA  †Leslie E Huye passed away on January 1st, 2015 Abstract: Non-Hodgkin's lymphoma (NHL represents a heterogeneous group of malignancies with high diversity in terms of biology, clinical responses, and prognosis. Standard therapy regimens produce a 5-year relative survival rate of only 69%, with the critical need to increase the treatment-success rate of this patient population presenting at diagnosis with a median age of 66 years and many comorbidities. The evidence that an impaired immune system favors the development of NHL has opened the stage for new therapeutics, and specifically for the adoptive transfer of ex vivo-expanded antigen-specific T-cells. In this review, we discuss how T-cells specific for viral-associated antigens, nonviral-associated antigens expressed by the tumor, T-cells redirected through the expression of chimeric antigen receptors, and transgenic T-cell receptors against tumor cells have been developed and used in clinical trials for the treatment of patients with NHLs. Keywords: adoptive immunotherapy, cytotoxic T lymphocytes (CTLs, chimeric antigen receptor (CAR, transgenic T-cell receptors 

  12. Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Verdegaal, Els M

    2014-01-01

    Adoptive cell therapy (ACT) based on autologous T cell derived either from tumor as tumor-infiltrating lymphocytes (TILs) or from peripheral blood is developing as a key area of future personalized cancer therapy. TIL-based ACT is defined as the infusion of T cells harvested from autologous fresh...

  13. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  14. Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma

    Science.gov (United States)

    Ren, Pei-pei; Li, Ming; Li, Tian-fang; Han, Shuang-yin

    2017-01-01

    Glioblastoma (GBM) is one of the most devastating brain tumors with poor prognosis and high mortality. Although radical surgical treatment with subsequent radiation and chemotherapy can improve the survival, the efficacy of such regimens is insufficient because the GBM cells can spread and destroy normal brain structures. Moreover, these non-specific treatments may damage adjacent healthy brain tissue. It is thus imperative to develop novel therapies to precisely target invasive tumor cells without damaging normal tissues. Immunotherapy is a promising approach due to its capability to suppress the growth of various tumors in preclinical model and clinical trials. Adoptive cell therapy (ACT) using T cells engineered with chimeric antigen receptor (CAR) targeting an ideal molecular marker in GBM, e.g. epidermal growth factor receptor type III (EGFRvIII) has demonstrated a satisfactory efficacy in treating malignant brain tumors. Here we summarize the recent progresses in immunotherapeutic strategy using CAR-modified T cells oriented to EGFRvIII against GBM. PMID:28302023

  15. Large-scale Isolation of Highly Pure "Untouched" Regulatory T Cells in a GMP Environment for Adoptive Cell Therapy.

    Science.gov (United States)

    Haase, Doreen; Puan, Kia Joo; Starke, Mireille; Lai, Tuck Siong; Soh, Melissa Yan Ling; Karunanithi, Iyswariya; San Luis, Boris; Poh, Tuang Yeow; Yusof, Nurhashikin; Yeap, Chun Hsien; Phang, Chew Yen; Chye, Willis Soon Yuan; Chan, Marieta; Koh, Mickey Boon Chai; Goh, Yeow Tee; Bertin-Maghit, Sebastien; Nardin, Alessandra; Ho, Liam Pock; Rotzschke, Olaf

    2015-01-01

    Adoptive cell therapy is an emerging treatment strategy for a number of serious diseases. Regulatory T (Treg) cells represent 1 cell type of particular interest for therapy of inflammatory conditions, as they are responsible for controlling unwanted immune responses. Initial clinical trials of adoptive transfer of Treg cells in patients with graft-versus-host disease were shown to be safe. However, obtaining sufficient numbers of highly pure and functional Treg cells with minimal contamination remains a challenge. We developed a novel approach to isolate "untouched" human Treg cells from healthy donors on the basis of negative selection using the surface markers CD49d and CD127. This procedure, which uses an antibody cocktail and magnetic beads for separation in an automated system (RoboSep), was scaled up and adapted to be compatible with good manufacturing practice conditions. With this setup we performed 9 Treg isolations from large-scale leukapheresis samples in a good manufacturing practice facility. These runs yielded sufficient numbers of "untouched" Treg cells for immediate use in clinical applications. The cell preparations consisted of viable highly pure FoxP3-positive Treg cells that were functional in suppressing the proliferation of effector T cells. Contamination with CD4 effector T cells was cell types did not exceed 2% in the final product. Remaining isolation reagents were reduced to levels that are considered safe. Treg cells isolated with this procedure will be used in a phase I clinical trial of adoptive transfer into leukemia patients developing graft-versus-host disease after stem cell transplantation.

  16. BRAF and MEK Inhibitors Influence the Function of Reprogrammed T Cells: Consequences for Adoptive T-Cell Therapy

    Directory of Open Access Journals (Sweden)

    Jan Dörrie

    2018-01-01

    Full Text Available BRAF and MEK inhibitors (BRAFi/MEKi, the standard treatment for patients with BRAFV600 mutated melanoma, are currently explored in combination with various immunotherapies, notably checkpoint inhibitors and adoptive transfer of receptor-transfected T cells. Since two BRAFi/MEKi combinations with similar efficacy are approved, potential differences in their effects on immune cells would enable a rational choice for triple therapies. Therefore, we characterized the influence of the clinically approved BRAFi/MEKi combinations dabrafenib (Dabra and trametinib (Tram vs. vemurafenib (Vem and cobimetinib (Cobi on the activation and functionality of chimeric antigen receptor (CAR-transfected T cells. We co-cultured CAR-transfected CD8+ T cells and target cells with clinically relevant concentrations of the inhibitors and determined the antigen-induced cytokine secretion. All BRAFi/MEKi reduced this release as single agents, with Dabra having the mildest inhibitory effect, and Dabra + Tram having a clearly milder inhibitory effect than Vem + Cobi. A similar picture was observed for the upregulation of the activation markers CD25 and CD69 on CAR-transfected T cells after antigen-specific stimulation. Most importantly, the cytolytic capacity of the CAR-T cells was significantly inhibited by Cobi and Vem + Cobi, whereas the other kinase inhibitors showed no effect. Therefore, the combination Dabra + Tram would be more suitable for combining with T-cell-based immunotherapy than Vem + Cobi.

  17. Continuous 4-1BB co-stimulatory signals for the optimal expansion of tumor-infiltrating lymphocytes for adoptive T-cell therapy.

    Science.gov (United States)

    Chacon, Jessica Ann; Pilon-Thomas, Shari; Sarnaik, Amod A; Radvanyi, Laszlo G

    2013-09-01

    Co-stimulation through members of the tumor necrosis factor receptor (TNFR) family appears to be critical for the generation of T cells with optimal effector-memory properties for adoptive cell therapy. Our work suggests that continuous 4-1BB/CD137 co-stimulation is required for the expansion of T cells with an optimal therapeutic profile and that the administration of 4-1BB agonists upon adoptive cell transfer further improves antitumor T-cell functions.

  18. Two is better than one: advances in pathogen-boosted immunotherapy and adoptive T-cell therapy.

    Science.gov (United States)

    Xin, Gang; Schauder, David M; Zander, Ryan; Cui, Weiguo

    2017-09-01

    The recent tremendous successes in clinical trials take cancer immunotherapy into a new era and have attracted major attention from both academia and industry. Among the variety of immunotherapy strategies developed to boost patients' own immune systems to fight against malignant cells, the pathogen-based and adoptive cell transfer therapies have shown the most promise for treating multiple types of cancer. Pathogen-based therapies could either break the immune tolerance to enhance the effectiveness of cancer vaccines or directly infect and kill cancer cells. Adoptive cell transfer can induce a strong durable antitumor response, with recent advances including engineering dual specificity into T cells to recognize multiple antigens and improving the metabolic fitness of transferred cells. In this review, we focus on the recent prospects in these two areas and summarize some ongoing studies that represent potential advancements for anticancer immunotherapy, including testing combinations of these two strategies.

  19. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma

    DEFF Research Database (Denmark)

    Lauss, Martin; Donia, Marco; Harbst, Katja

    2017-01-01

    Adoptive T-cell therapy (ACT) is a highly intensive immunotherapy regime that has yielded remarkable response rates and many durable responses in clinical trials in melanoma; however, 50-60% of the patients have no clinical benefit. Here, we searched for predictive biomarkers to ACT in melanoma. ...

  20. Focus on Adoptive T Cell Transfer Trials in Melanoma

    Directory of Open Access Journals (Sweden)

    Liat Hershkovitz

    2010-01-01

    Full Text Available Adoptive Cell Transfer (ACT of Tumor-Infiltrating Lymphocytes (TIL in combination with lymphodepletion has proven to be an effective treatment for metastatic melanoma patients, with an objective response rate in 50%–70% of the patients. It is based on the ex vivo expansion and activation of tumor-specific T lymphocytes extracted from the tumor and their administration back to the patient. Various TIL-ACT trials, which differ in their TIL generation procedures and patient preconditioning, have been reported. In the latest clinical studies, genetically engineered peripheral T cells were utilized instead of TIL. Further improvement of adoptive T cell transfer depends on new investigations which seek higher TIL quality, increased durable response rates, and aim to treat more patients. Simplifying this therapy may encourage cancer centers worldwide to adopt this promising technology. This paper focuses on the latest progress regarding adoptive T cell transfer, comparing the currently available protocols and discussing their advantages, disadvantages, and implication in the future.

  1. Endogenous T-Cell Therapy: Clinical Experience.

    Science.gov (United States)

    Yee, Cassian; Lizee, Greg; Schueneman, Aaron J

    2015-01-01

    Adoptive cellular therapy represents a robust means of augmenting the tumor-reactive effector population in patients with cancer by adoptive transfer of ex vivo expanded T cells. Three approaches have been developed to achieve this goal: the use of tumor-infiltrating lymphocytes or tumor-infiltrating lymphocytess extracted from patient biopsy material; the redirected engineering of lymphocytes using vectors expressing a chimeric antigen receptor and T-cell receptor; and third, the isolation and expansion of often low-frequency endogenous T cells (ETCs) reactive to tumor antigens from the peripheral blood of patients. This last form of adoptive transfer of T cells, known as ETC therapy, requires specialized methods to isolate and expand from peripheral blood the very low-frequency tumor-reactive T cells, methods that have been developed over the last 2 decades, to the point where such an approach may be broadly applicable not only for the treatment of melanoma but also for that of other solid tumor malignancies. One compelling feature of ETC is the ability to rapidly deploy clinical trials following identification of a tumor-associated target epitope, a feature that may be exploited to develop personalized antigen-specific T-cell therapy for patients with almost any solid tumor. With a well-validated antigen discovery pipeline in place, clinical studies combining ETC with agents that modulate the immune microenvironment can be developed that will transform ETC into a feasible treatment modality.

  2. Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy.

    Science.gov (United States)

    Sandri, Sara; De Sanctis, Francesco; Lamolinara, Alessia; Boschi, Federico; Poffe, Ornella; Trovato, Rosalinda; Fiore, Alessandra; Sartori, Sara; Sbarbati, Andrea; Bondanza, Attilio; Cesaro, Simone; Krampera, Mauro; Scupoli, Maria T; Nishimura, Michael I; Iezzi, Manuela; Sartoris, Silvia; Bronte, Vincenzo; Ugel, Stefano

    2017-10-20

    Telomerase (TERT) is a ribonucleoprotein enzyme that preserves the molecular organization at the ends of eukaryotic chromosomes. Since TERT deregulation is a common step in leukaemia, treatments targeting telomerase might be useful for the therapy of hematologic malignancies. Despite a large spectrum of potential drugs, their bench-to-bedside translation is quite limited, with only a therapeutic vaccine in the clinic and a telomerase inhibitor at late stage of preclinical validation. We recently demonstrated that the adoptive transfer of T cell transduced with an HLA-A2-restricted T-cell receptor (TCR), which recognize human TERT with high avidity, controls human B-cell chronic lymphocytic leukaemia (B-CLL) progression without severe side-effects in humanized mice. In the present report, we show the ability of our approach to limit the progression of more aggressive leukemic pathologies, such as acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). Together, our findings demonstrate that TERT-based adoptive cell therapy is a concrete platform of T cell-mediated immunotherapy for leukaemia treatment.

  3. Selection of Shared and Neoantigen-Reactive T Cells for Adoptive Cell Therapy Based on CD137 Separation

    Directory of Open Access Journals (Sweden)

    Sivan Seliktar-Ofir

    2017-10-01

    Full Text Available Adoptive cell therapy (ACT of autologous tumor infiltrating lymphocytes (TIL is an effective immunotherapy for patients with solid tumors, yielding objective response rates of around 40% in refractory patients with metastatic melanoma. Most clinical centers utilize bulk, randomly isolated TIL from the tumor tissue for ex vivo expansion and infusion. Only a minor fraction of the administered T cells recognizes tumor antigens, such as shared and mutation-derived neoantigens, and consequently eliminates the tumor. Thus, there are many ongoing effects to identify and select tumor-specific TIL for therapy; however, those approaches are very costly and require months, which is unreasonable for most metastatic patients. CD137 (4-1BB has been identified as a co-stimulatory marker, which is induced upon the specific interaction of T cells with their target cell. Therefore, CD137 can be a useful biomarker and an important tool for the selection of tumor-reactive T cells. Here, we developed and validated a simple and time efficient method for the selection of CD137-expressing T cells for therapy based on magnetic bead separation. CD137 selection was performed with clinical grade compliant reagents, and TIL were expanded in a large-scale manner to meet cell numbers required for the patient setting in a GMP facility. For the first time, the methodology was designed to comply with both clinical needs and limitations, and its feasibility was assessed. CD137-selected TIL demonstrated significantly increased antitumor reactivity and were enriched for T cells recognizing neoantigens as well as shared tumor antigens. CD137-based selection enabled the enrichment of tumor-reactive T cells without the necessity of knowing the epitope specificity or the antigen type. The direct implementation of the CD137 separation method to the cell production of TIL may provide a simple way to improve the clinical efficiency of TIL ACT.

  4. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Mingxue Fan

    2017-08-01

    Full Text Available Abstract Currently, conventional therapies for acute myeloid leukemia (AML have high failure and relapse rates. Thus, developing new strategies is crucial for improving the treatment of AML. With the clinical success of anti-CD19 chimeric antigen receptor (CAR T cell therapies against B-lineage malignancies, many studies have attempted to translate the success of CAR T cell therapy to other malignancies, including AML. This review summarizes the current advances in CAR T cell therapy against AML, including preclinical studies and clinical trials, and discusses the potential AML-associated surface markers that could be used for further CAR technology. Finally, we describe strategies that might address the current issues of employing CAR T cell therapy in AML.

  5. Perspectives on Regulatory T Cell Therapies.

    Science.gov (United States)

    Probst-Kepper, Michael; Kröger, Andrea; Garritsen, Henk S P; Buer, Jan

    2009-01-01

    Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (T(reg)) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, T(reg) cell therapies and development of drugs that specifically enhance T(reg) cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human T(reg) cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 at different levels, hampered such an approach. Recent identification of the orphan receptor glycoprotein-A repetitions predominant (GARP or LRRC32) as T(reg) cell-specific key molecule that dominantly controls FOXP3 via a positive feedback loop opens up new perspectives for molecular and cellular therapies. This brief review focuses on the role of GARP as a safeguard of a complex regulatory network of human T(reg) cells and its implications for regulatory T cell therapies in autoimmunity and graft-versus-host disease.

  6. CMV-specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies

    Directory of Open Access Journals (Sweden)

    Corinne J Smith

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous virus that causes chronic infection, and thus is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8+ T cell response. Finally mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.

  7. Adoptive regulatory T cell therapy: challenges in clinical transplantation.

    Science.gov (United States)

    Safinia, Niloufar; Sagoo, Pervinder; Lechler, Robert; Lombardi, Giovanna

    2010-08-01

    The identification and characterisation of regulatory T cells (Tregs) has recently opened up exciting opportunities for Treg cell therapy in transplantation. In this review, we outline the basic biology of Tregs and discuss recent advances and challenges for the identification, isolation and expansion of these cells for cell therapy. Tregs of thymic origin have been shown to be key regulators of immune responses in mice and humans, preventing autoimmunity, graft-versus-host disease and organ graft rejection in the transplantation setting. To date, a variety of different methods to isolate and expand Tregs ex vivo have been advocated. Although promising, relatively few clinical trials of human Treg cell infusion have been initiated. Many key questions about Treg cell therapy still remain and here we provide an in-depth analysis and highlight the challenges and opportunities for immune intervention with Treg-based therapeutics in clinical transplantation.

  8. Application of Adoptive T-Cell Therapy Using Tumor Antigen-Specific T-Cell Receptor Gene Transfer for the Treatment of Human Leukemia

    Directory of Open Access Journals (Sweden)

    Toshiki Ochi

    2010-01-01

    Full Text Available The last decade has seen great strides in the field of cancer immunotherapy, especially the treatment of melanoma. Beginning with the identification of cancer antigens, followed by the clinical application of anti-cancer peptide vaccination, it has now been proven that adoptive T-cell therapy (ACT using cancer antigen-specific T cells is the most effective option. Despite the apparent clinical efficacy of ACT, the timely preparation of a sufficient number of cancer antigen-specific T cells for each patient has been recognized as its biggest limitation. Currently, therefore, attention is being focused on ACT with engineered T cells produced using cancer antigen-specific T-cell receptor (TCR gene transfer. With regard to human leukemia, ACT using engineered T cells bearing the leukemia antigen-specific TCR gene still remains in its infancy. However, several reports have provided preclinical data on TCR gene transfer using Wilms' tumor gene product 1 (WT1, and also preclinical and clinical data on TCR gene transfer involving minor histocompatibility antigen, both of which have been suggested to provide additional clinical benefit. In this review, we examine the current status of anti-leukemia ACT with engineered T cells carrying the leukemia antigen-specific TCR gene, and discuss the existing barriers to progress in this area.

  9. Dynamic imaging for CAR-T-cell therapy.

    Science.gov (United States)

    Emami-Shahri, Nia; Papa, Sophie

    2016-04-15

    Chimaeric antigen receptor (CAR) therapy is entering the mainstream for the treatment of CD19(+)cancers. As is does we learn more about resistance to therapy and the role, risks and management of toxicity. In solid tumour CAR therapy research the route to the clinic is less smooth with a wealth of challenges facing translating this, potentially hugely valuable, therapeutic option for patients. As we strive to understand our successes, and navigate the challenges, having a clear understanding of how adoptively transferred CAR-T-cells behavein vivoand in human trials is invaluable. Harnessing reporter gene imaging to enable detection and tracking of small numbers of CAR-T-cells after adoptive transfer is one way by which we can accomplish this. The compatibility of certain reporter gene systems with tracers available routinely in the clinic makes this approach highly useful for future appraisal of CAR-T-cell success in humans. © 2016 Authors; published by Portland Press Limited.

  10. Proliferation-linked apoptosis of adoptively transferred T cells after IL-15 administration in macaques.

    Directory of Open Access Journals (Sweden)

    Carolina Berger

    Full Text Available The adoptive transfer of antigen-specific effector T cells is being used to treat human infections and malignancy. T cell persistence is a prerequisite for therapeutic efficacy, but reliably establishing a high-level and durable T cell response by transferring cultured CD8(+ T cells remains challenging. Thus, strategies that promote a transferred high-level T cell response may improve the efficacy of T cell therapy. Lymphodepletion enhances persistence of transferred T cells in mice in part by reducing competition for IL-15, a common γ-chain cytokine that promotes T cell memory, but lymphodepleting regimens have toxicity. IL-15 can be safely administered and has minimal effects on CD4(+ regulatory T cells at low doses, making it an attractive adjunct in adoptive T cell therapy. Here, we show in lymphoreplete macaca nemestrina, that proliferation of adoptively transferred central memory-derived CD8(+ effector T (T(CM/E cells is enhanced in vivo by administering IL-15. T(CM/E cells migrated to memory niches, persisted, and acquired both central memory and effector memory phenotypes regardless of the cytokine treatment. Unexpectedly, despite maintaining T cell proliferation, IL-15 did not augment the magnitude of the transferred T cell response in blood, bone marrow, or lymph nodes. T cells induced to proliferate by IL-15 displayed increased apoptosis demonstrating that enhanced cycling was balanced by cell death. These results suggest that homeostatic mechanisms that regulate T cell numbers may interfere with strategies to augment a high-level T cell response by adoptive transfer of CD8(+ T(CM/E cells in lymphoreplete hosts.

  11. Perspectives on Regulatory T Cell Therapies

    OpenAIRE

    Probst-Kepper, Michael; Kröger, Andrea; Garritsen, Henk S.P.; Buer, Jan

    2009-01-01

    Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (Treg) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, Treg cell therapies and development of drugs that specifically enhance Treg cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human Treg cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 ...

  12. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  13. Molecular mechanisms of macrophage activation induced by the synergistic effects of low dose irradiation and adoptive T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Noemi

    2016-12-19

    The detection of cancerous cells by the immune system elicits spontaneous antitumour immune responses. Still, during their progression, tumours acquire characteristics that enable them to escape immune surveillance. Cancer immunotherapy aims to reverse tumour immune evasion by activating and directing the immune system against transformed tumour cells. However, the tumours' intrinsic resistance mechanisms limit the success of many immunotherapeutic approaches. The functionally and morphologically abnormal tumour vasculature forms a physical barrier and prevents the entry of tumour-reactive immune effector cells, while the immunosuppressive tumour microenvironment impairs their function. To block tumour immune evasion, therapeutic strategies are being developed that combine cancer immunotherapy with treatment modalities, such as radiotherapy, that reprogram the tumour microenvironment to increase treatment efficacies and improve clinical outcome. In various preclinical models radiotherapy was shown to enhance the efficacy of adoptive T cell therapy. Our group showed that in the RIP1-TAg5 mouse model of spontaneous insulinoma, the transfer of in vitro-activated tumour-specific T cells induces T cell infiltration and promotes long-term survival only in combination with neoadjuvant local low dose irradiation (LDI). These treatment effects were mediated by iNOS+ macrophages. In this thesis, we investigated the mechanisms underlying the improved T cell infiltration and prolonged survival upon combination therapy with adoptive T cell transfer and local LDI. We demonstrate that combination therapy leads to a normalization of the aberrant tumour vasculature and endothelial activation, an increase in intratumoural macrophages, a reduction of intratumoural myeloid derived suppressor cells and, most importantly, to tumour regression. These findings suggest that this treatment inhibits tumour immune suppression but also facilitates immune effector cell infiltration through

  14. Molecular mechanisms of macrophage activation induced by the synergistic effects of low dose irradiation and adoptive T cell therapy

    International Nuclear Information System (INIS)

    Bender, Noemi

    2016-01-01

    The detection of cancerous cells by the immune system elicits spontaneous antitumour immune responses. Still, during their progression, tumours acquire characteristics that enable them to escape immune surveillance. Cancer immunotherapy aims to reverse tumour immune evasion by activating and directing the immune system against transformed tumour cells. However, the tumours' intrinsic resistance mechanisms limit the success of many immunotherapeutic approaches. The functionally and morphologically abnormal tumour vasculature forms a physical barrier and prevents the entry of tumour-reactive immune effector cells, while the immunosuppressive tumour microenvironment impairs their function. To block tumour immune evasion, therapeutic strategies are being developed that combine cancer immunotherapy with treatment modalities, such as radiotherapy, that reprogram the tumour microenvironment to increase treatment efficacies and improve clinical outcome. In various preclinical models radiotherapy was shown to enhance the efficacy of adoptive T cell therapy. Our group showed that in the RIP1-TAg5 mouse model of spontaneous insulinoma, the transfer of in vitro-activated tumour-specific T cells induces T cell infiltration and promotes long-term survival only in combination with neoadjuvant local low dose irradiation (LDI). These treatment effects were mediated by iNOS+ macrophages. In this thesis, we investigated the mechanisms underlying the improved T cell infiltration and prolonged survival upon combination therapy with adoptive T cell transfer and local LDI. We demonstrate that combination therapy leads to a normalization of the aberrant tumour vasculature and endothelial activation, an increase in intratumoural macrophages, a reduction of intratumoural myeloid derived suppressor cells and, most importantly, to tumour regression. These findings suggest that this treatment inhibits tumour immune suppression but also facilitates immune effector cell infiltration through the

  15. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Sonoda, Koh-Hei, E-mail: sonodak@med.kyushu-u.ac.jp [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan)

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  16. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    International Nuclear Information System (INIS)

    Zhang, Han; Sonoda, Koh-Hei; Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro

    2009-01-01

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8 + T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8 + T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  17. Adoptive T cell cancer therapy

    Science.gov (United States)

    Dzhandzhugazyan, Karine N.; Guldberg, Per; Kirkin, Alexei F.

    2018-06-01

    Tumour heterogeneity and off-target toxicity are current challenges of cancer immunotherapy. Karine Dzhandzhugazyan, Per Guldberg and Alexei Kirkin discuss how epigenetic induction of tumour antigens in antigen-presenting cells may form the basis for multi-target therapies.

  18. Toward precision manufacturing of immunogene T-cell therapies.

    Science.gov (United States)

    Xu, Jun; Melenhorst, J Joseph; Fraietta, Joseph A

    2018-05-01

    Cancer can be effectively targeted using a patient's own T cells equipped with synthetic receptors, including chimeric antigen receptors (CARs) that redirect and reprogram these lymphocytes to mediate tumor rejection. Over the past two decades, several strategies to manufacture genetically engineered T cells have been proposed, with the goal of generating optimally functional cellular products for adoptive transfer. Based on this work, protocols for manufacturing clinical-grade CAR T cells have been established, but these complex methods have been used to treat only a few hundred individuals. As CAR T-cell therapy progresses into later-phase clinical trials and becomes an option for more patients, a major consideration for academic institutions and industry is developing robust manufacturing processes that will permit scaling-out production of immunogene T-cell therapies in a reproducible and efficient manner. In this review, we will discuss the steps involved in cell processing, the major obstacles surrounding T-cell manufacturing platforms and the approaches for improving cellular product potency. Finally, we will address the challenges of expanding CAR T-cell therapy to a global patient population. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Circulating CD8+CD28- suppressor T cells tied to poorer prognosis among metastatic breast cancer patients receiving adoptive T-cell therapy: A cohort study.

    Science.gov (United States)

    Song, Qingkun; Ren, Jun; Zhou, Xinna; Wang, Xiaoli; Song, Guohong; Hobeika, Amy; Yuan, Yanhua; Lyerly, Herbert Kim

    2018-01-01

    This study aimed to determine the prognostic value of circulating CD8 + CD28 - T lymphocytes among breast cancer patients treated with adoptive T-lymphocyte immunotherapy after chemotherapy. Two hundred and thirty-two breast cancer patients underwent adoptive T-cell immunotherapy. Circulating CD8 + CD28 - proportion was measured by flow cytometry. Median proportion of CD8 + CD28 - was 24.2% and set as the categorical cutoff value for further analysis. The median survival was estimated by Kaplan-Meier curve, with difference detection and hazard ratio estimation by log-rank test and Cox hazard proportion regression model. With adoptive T-cell therapy, patients with higher CD8 + CD28 - levels experienced median progression-free and overall survival of 7.1 months and 26.9 months, respectively-significantly shorter than patients with lower levels (11.8 and 36.2 months). CD8 + CD28 - proportion >24.2% demonstrated a hazard ratio (HR) of 2.06 (95% confidence interval [CI] 1.31-3.12) for progression and an HR of 1.97 (95% CI 1.06-3.67) for death. Among patients who had received previous first-line chemotherapy, CD8 + CD28 - proportion >24.2% demonstrated an HR of 2.66 (95% CI 1.45-4.88) for progression. Among patients exposed to previous second-line or higher chemotherapy, CD8 + CD28 - proportion >24.2% demonstrated a 486% higher risk for death (HR = 5.86, 95% CI 1.77-19.39). A 1% increase in suppressive T cells was associated with a 5% increased risk of death. Elevated peripheral blood CD8 + CD28 - was associated with poorer prognosis for metastatic breast cancer, especially for higher risk of progression among patients with first-line chemotherapy and higher risk of death among patients with more than second-line chemotherapy. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models.

    Directory of Open Access Journals (Sweden)

    Shujing Shi

    Full Text Available INTRODUCTION: Cytokine-induced killer cells (CIK cells are a heterogeneous subset of ex-vivo expanded T lymphocytes which are characterized with a MHC-unrestricted tumor-killing activity and a mixed T-NK phenotype. Adoptive CIK cells transfer, one of the adoptive immunotherapy represents a promising nontoxic anticancer therapy. However, in clinical studies, the therapeutic activity of adoptive CIK cells transfer is not as efficient as anticipated. Possible explanations are that abnormal tumor vasculature and hypoxic tumor microenvironment could impede the infiltration and efficacy of lymphocytes. We hypothesized that antiangiogenesis therapy could improve the antitumor activity of CIK cells by normalizing tumor vasculature and modulating hypoxic tumor microenvironment. METHODS: We combined recombinant human endostatin (rh-endostatin and CIK cells in the treatment of lung carcinoma murine models. Intravital microscopy, dynamic contrast enhanced magnetic resonance imaging, immunohistochemistry, and flow cytometry were used to investigate the tumor vasculature and hypoxic microenvironment as well as the infiltration of immune cells. RESULTS: Our results indicated that rh-endostatin synergized with adoptive CIK cells transfer to inhibit the growth of lung carcinoma. We found that rh-endostatin normalized tumor vasculature and reduced hypoxic area in the tumor microenvironment. Hypoxia significantly inhibited the proliferation, cytotoxicity and migration of CIK cells in vitro and impeded the homing of CIK cells into tumor parenchyma ex vivo. Furthermore, we found that treatment with rh-endostatin significantly increased the homing of CIK cells and decreased the accumulation of suppressive immune cells in the tumor tissue. In addition, combination therapy produced higher level of tumor-infiltration lymphocytes compared with other treatments. CONCLUSIONS: Our results demonstrate that rh-endostatin improves the therapeutic effect of adoptive CIK cells

  1. Chimeric PD-1:28 Receptor Upgrades Low-Avidity T cells and Restores Effector Function of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy.

    Science.gov (United States)

    Schlenker, Ramona; Olguín-Contreras, Luis Felipe; Leisegang, Matthias; Schnappinger, Julia; Disovic, Anja; Rühland, Svenja; Nelson, Peter J; Leonhardt, Heinrich; Harz, Hartmann; Wilde, Susanne; Schendel, Dolores J; Uckert, Wolfgang; Willimsky, Gerald; Noessner, Elfriede

    2017-07-01

    Inherent intermediate- to low-affinity T-cell receptors (TCR) that develop during the natural course of immune responses may not allow sufficient activation for tumor elimination, making the majority of T cells suboptimal for adoptive T-cell therapy (ATT). TCR affinity enhancement has been implemented to provide stronger T-cell activity but carries the risk of creating undesired cross-reactivity leading to potential serious adverse effects in clinical application. We demonstrate here that engineering of low-avidity T cells recognizing a naturally processed and presented tumor-associated antigen with a chimeric PD-1:28 receptor increases effector function to levels seen with high-avidity T cells of identical specificity. Upgrading the function of low-avidity T cells without changing the TCR affinity will allow a large arsenal of low-avidity T cells previously thought to be therapeutically inefficient to be considered for ATT. PD-1:28 engineering reinstated Th1 function in tumor-infiltrating lymphocytes that had been functionally disabled in the human renal cell carcinoma environment without unleashing undesired Th2 cytokines or IL10. Involved mechanisms may be correlated to restoration of ERK and AKT signaling pathways. In mouse tumor models of ATT, PD-1:28 engineering enabled low-avidity T cells to proliferate stronger and prevented PD-L1 upregulation and Th2 polarization in the tumor milieu. Engineered T cells combined with checkpoint blockade secreted significantly more IFNγ compared with T cells without PD-1:28, suggesting a beneficial combination with checkpoint blockade therapy or other therapeutic strategies. Altogether, the supportive effects of PD-1:28 engineering on T-cell function make it an attractive tool for ATT. Cancer Res; 77(13); 3577-90. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. PET imaging of adoptive progenitor cell therapies

    International Nuclear Information System (INIS)

    Gelovani, Juri G.

    2008-01-01

    The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive 'tracking' of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to stem cell imaging

  3. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  4. Methods to Improve Adoptive T-Cell Therapy for Melanoma

    DEFF Research Database (Denmark)

    Donia, Marco; Hansen, Morten; Sendrup, Sarah L

    2013-01-01

    desirable. In this study, we demonstrated that a high in vitro tumor reactivity of infusion products was associated with clinical responses upon adoptive transfer. In addition, we systematically characterized the responses of a series of TIL products to relevant autologous short term-cultured melanoma cell...... lines from 12 patients. We provide evidence that antitumor reactivity of both CD8(+) and CD4(+) T cells could be enhanced in most TIL products by autologous melanoma sensitization by pretreatment with low-dose IFN-γ. IFN-γ selectively enhanced responses to tumor-associated antigens other than melanoma...... differentiation antigens. In addition, IFN-γ treatment was invariably associated with restored/increased cancer immunogenicity as demonstrated by upregulation of major histocompatibility complex molecules. These findings suggest a potential synergism between IFN-γ and ACT, and have important implications...

  5. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    Science.gov (United States)

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  6. Chimeric antigen receptor T cells: a novel therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-03-01

    Full Text Available Abstract The chimeric antigen receptor T (CAR-T cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2, and mesothelin (MSLN, as well as the challenges for CAR-T cell therapy.

  7. Gene Therapy With Regulatory T Cells: A Beneficial Alliance

    Directory of Open Access Journals (Sweden)

    Moanaro Biswas

    2018-03-01

    Full Text Available Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based antigen receptors (CARs in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.

  8. Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors.

    Science.gov (United States)

    Jindal, Vishal; Arora, Ena; Gupta, Sorab

    2018-05-05

    Chimeric antigen receptor (CAR) T cell therapy is a novel and innovative immunotherapy. CAR-T cells are genetically engineered T cells, carrying MHC independent specific antigen receptor and co-stimulatory molecule which can activate an immune response to a cancer specific antigen. This therapy showed great results in hematological malignancies but were unable to prove their worth in solid tumors. Likely reasons for their failure are lack of antigens, poor trafficking, and hostile tumor microenvironment. Excessive amount of research is going on to improve the efficacy of CAR T cell therapy in solid tumors. In this article, we will discuss the challenges faced in improving the outcome of CAR T cell therapy in solid tumors and various strategies adopted to curb them.

  9. Improving the efficacy and safety of engineered T cell therapy for cancer.

    Science.gov (United States)

    Shi, Huan; Liu, Lin; Wang, Zhehai

    2013-01-28

    Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a powerful immunotherapeutics approach against metastatic melanoma. The success of TIL therapy has led to novel strategies for redirecting normal T cells to recognize tumor-associated antigens (TAAs) by genetically engineering tumor antigen-specific T cell receptors (TCRs) or chimeric antigen receptor (CAR) genes. In this manner, large numbers of antigen-specific T cells can be rapidly generated compared with the longer term expansion of TILs. Great efforts have been made to improve these approaches. Initial clinical studies have demonstrated that genetically engineered T cells can mediate tumor regression in vivo. In this review, we discuss the development of TCR and CAR gene-engineered T cells and the safety concerns surrounding the use of these T cells in patients. We highlight the importance of judicious selection of TAAs for modified T cell therapy and propose solutions for potential "on-target, off-organ" toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma.

    Science.gov (United States)

    Lynch, Adam; Hawk, William; Nylen, Emily; Ober, Sean; Autin, Pierre; Barber, Amorette

    2017-11-01

    Adoptive transfer of T cells is a promising cancer therapy and expression of chimeric antigen receptors can enhance tumour recognition and T-cell effector functions. The programmed death protein 1 (PD1) receptor is a prospective target for a chimeric antigen receptor because PD1 ligands are expressed on many cancer types, including lymphoma. Therefore, we developed a murine chimeric PD1 receptor (chPD1) consisting of the PD1 extracellular domain fused to the cytoplasmic domain of CD3ζ. Additionally, chimeric antigen receptor therapies use various co-stimulatory domains to enhance efficacy. Hence, the inclusion of a Dap10 or CD28 co-stimulatory domain in the chPD1 receptor was compared to determine which domain induced optimal anti-tumour immunity in a mouse model of lymphoma. The chPD1 T cells secreted pro-inflammatory cytokines and lysed RMA lymphoma cells. Adoptive transfer of chPD1 T cells significantly reduced established tumours and led to tumour-free survival in lymphoma-bearing mice. When comparing chPD1 receptors containing a Dap10 or CD28 domain, both receptors induced secretion of pro-inflammatory cytokines; however, chPD1-CD28 T cells also secreted anti-inflammatory cytokines whereas chPD1-Dap10 T cells did not. Additionally, chPD1-Dap10 induced a central memory T-cell phenotype compared with chPD1-CD28, which induced an effector memory phenotype. The chPD1-Dap10 T cells also had enhanced in vivo persistence and anti-tumour efficacy compared with chPD1-CD28 T cells. Therefore, adoptive transfer of chPD1 T cells could be a novel therapy for lymphoma and inclusion of the Dap10 co-stimulatory domain in chimeric antigen receptors may induce a preferential cytokine profile and T-cell differentiation phenotype for anti-tumour therapies. © 2017 John Wiley & Sons Ltd.

  11. CAR-T cell therapy in ovarian cancer: from the bench to the bedside.

    Science.gov (United States)

    Zhu, Xinxin; Cai, Han; Zhao, Ling; Ning, Li; Lang, Jinghe

    2017-09-08

    Ovarian cancer (OC) is the most lethal gynecological malignancy and is responsible for most gynecological cancer deaths. Apart from conventional surgery, chemotherapy, and radiotherapy, chimeric antigen receptor-modified T (CAR-T) cells as a representative of adoptive cellular immunotherapy have received considerable attention in the research field of cancer treatment. CARs combine antigen specificity and T-cell-activating properties in a single fusion molecule. Several preclinical experiments and clinical trials have confirmed that adoptive cell immunotherapy using typical CAR-engineered T cells for OC is a promising treatment approach with striking clinical efficacy; moreover, the emerging CAR-Ts targeting various antigens also exert great potential. However, such therapies have side effects and toxicities, such as cytokine-associated and "on-target, off-tumor" toxicities. In this review, we systematically detail and highlight the present knowledge of CAR-Ts including the constructions, vectors, clinical applications, development challenges, and solutions of CAR-T-cell therapy for OC. We hope to provide new insight into OC treatment for the future.

  12. Simple and efficient generation of virus-specific T cells for adoptive therapy using anti-4-1BB antibody.

    Science.gov (United States)

    Imahashi, Nobuhiko; Nishida, Tetsuya; Goto, Tatsunori; Terakura, Seitaro; Watanabe, Keisuke; Hanajiri, Ryo; Sakemura, Reona; Imai, Misa; Kiyoi, Hitoshi; Naoe, Tomoki; Murata, Makoto

    2015-01-01

    Although recent studies of virus-specific T-cell (VST) therapy for viral infections after allogeneic hematopoietic stem cell transplantation have shown promising results, simple and less time-intensive and labor-intensive methods are required to generate VSTs for the wider application of VST therapy. We investigated the efficacy of anti-CD28 and anti-4-1BB antibodies, which can provide T cells with costimulatory signals similar in strength to those of antigen-presenting cells, in generating VSTs. When peripheral blood mononuclear cells were stimulated with viral peptides together with isotype control, anti-CD28, or anti-4-1BB antibodies, anti-4-1BB antibodies yielded the highest numbers of VSTs, which were on an average 7.9 times higher than those generated with isotype control antibody. The combination of anti-CD28 and anti-4-1BB antibodies did not result in increased numbers of VSTs compared with anti-4-1BB antibody alone. Importantly, the positive effect of anti-4-1BB antibody was observed regardless of the epitopes of the VSTs. In contrast, the capacity of dendritic cells (DCs) to generate VSTs differed considerably depending on the epitopes of the VSTs. Furthermore, the numbers of VSTs generated with DCs were at most similar to those generated with the anti-4-1BB antibody. Generation of VSTs with anti-4-1BB antibody did not result in excessive differentiation or deteriorated function of the generated VSTs compared with those generated with control antibody or DCs. In conclusion, VSTs can be generated rapidly and efficiently by simply stimulating peripheral blood mononuclear cells with viral peptide and anti-4-1BB antibody without using antigen-presenting cells. We propose using anti-4-1BB antibody as a novel strategy to generate VSTs for adoptive therapy.

  13. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients

    Directory of Open Access Journals (Sweden)

    Ellebaek Eva

    2012-08-01

    Full Text Available Abstract Background Adoptive cell therapy may be based on isolation of tumor-specific T cells, e.g. autologous tumor infiltrating lymphocytes (TIL, in vitro activation and expansion and the reinfusion of these cells into patients upon chemotherapy induced lymphodepletion. Together with high-dose interleukin (IL-2 this treatment has been given to patients with advanced malignant melanoma and impressive response rates but also significant IL-2 associated toxicity have been observed. Here we present data from a feasibility study at a Danish Translational Research Center using TIL adoptive transfer in combination with low-dose subcutaneous IL-2 injections. Methods This is a pilot trial (ClinicalTrials.gov identifier: NCT00937625 including patients with metastatic melanoma, PS ≤1, age Results Low-dose IL-2 considerably decreased the treatment related toxicity with no grade 3–4 IL-2 related adverse events. Objective clinical responses were seen in 2 of 6 treated patients with ongoing complete responses (30+ and 10+ months, 2 patients had stable disease (4 and 5 months and 2 patients progressed shortly after treatment. Tumor-reactivity of the infused cells and peripheral lymphocytes before and after therapy were analyzed. Absolute number of tumor specific T cells in the infusion product tended to correlate with clinical response and also, an induction of peripheral tumor reactive T cells was observed for 1 patient in complete remission. Conclusion Complete and durable responses were induced after treatment with adoptive cell therapy in combination with low-dose IL-2 which significantly decreased toxicity of this therapy.

  14. Clinical manufacturing of CAR T cells: foundation of a promising therapy

    Science.gov (United States)

    Wang, Xiuyan; Rivière, Isabelle

    2016-01-01

    The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR) is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality. PMID:27347557

  15. Clinical manufacturing of CAR T cells: foundation of a promising therapy

    Directory of Open Access Journals (Sweden)

    Xiuyan Wang

    2016-01-01

    Full Text Available The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality.

  16. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy.

    Science.gov (United States)

    Tang, Xiang-Jun; Sun, Xu-Yong; Huang, Kuan-Ming; Zhang, Li; Yang, Zhuo-Shun; Zou, Dan-Dan; Wang, Bin; Warnock, Garth L; Dai, Long-Jun; Luo, Jie

    2015-12-29

    Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable.

  17. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Hamid R. Mirzaei

    2017-12-01

    Full Text Available Adoptive cellular immunotherapy (ACT employing engineered T lymphocytes expressing chimeric antigen receptors (CARs has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.

  18. CAR-T cells and combination therapies: What's next in the immunotherapy revolution?

    Science.gov (United States)

    Ramello, Maria C; Haura, Eric B; Abate-Daga, Daniel

    2018-03-01

    Cancer immunotherapies are dramatically reshaping the clinical management of oncologic patients. For many of these therapies, the guidelines for administration, monitoring, and management of associated toxicities are still being established. This is especially relevant for adoptively transferred, genetically-modified T cells, which have unique pharmacokinetic properties, due to their ability to replicate and persist long-term, following a single administration. Furthermore, in the case of CAR-T cells, the use of synthetic immune receptors may impact signaling pathways involved in T cell function and survival in unexpected ways. We, herein, comment on the most salient aspects of CAR-T cell design and clinical experience in the treatment of solid tumors. In addition, we discuss different possible scenarios for combinations of CAR-T cells and other treatment modalities, with a special emphasis on kinase inhibitors, elaborating on the strategies to maximize synergism. Finally, we discuss some of the technologies that are available to explore the molecular events governing the success of these therapies. The young fields of synthetic and systems biology are likely to be major players in the advancement of CAR-T cell therapies, providing the tools and the knowledge to engineer patients' T lymphocytes into intelligent cancer-fighting micromachines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A balanced review of the status T cell-based therapy against cancer

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2005-04-01

    Full Text Available Abstract A recent commentary stirred intense controversy over the status of anti-cancer immunotherapy. The commentary suggested moving beyond current anti-cancer vaccines since active-specific immunization failed to match expectations toward a more aggressive approach involving the adoptive transfer of in vitro expanded tumor antigen-specific T cells. Although the same authors clarified their position in response to others' rebuttal more discussion needs to be devoted to the current status of T cell-based anti-cancer therapy. The accompanying publications review the status of adoptive transfer of cancer vaccines on one hand and active-specific immunization on the other. Hopefully, reading these articles will offer a balanced view of the current status of antigen-specific ant-cancer therapies and suggest future strategies to foster unified efforts to complement either approach with the other according to specific biological principles.

  20. Lymphoma immunotherapy: vaccines, adoptive cell transfer and immunotransplant

    Science.gov (United States)

    Brody, Joshua; Levy, Ronald

    2017-01-01

    Therapy for non-Hodgkin lymphoma has benefited greatly from basic science and clinical research such that chemotherapy and monoclonal antibody therapy have changed some lymphoma subtypes from uniformly lethal to curable, but the majority of lymphoma patients remain incurable. Novel therapies with less toxicity and more specific targeting of tumor cells are needed and immunotherapy is among the most promising of these. Recently completed randomized trials of idiotype vaccines and earlier-phase trials of other vaccine types have shown the ability to induce antitumor T cells and some clinical responses. More recently, trials of adoptive transfer of antitumor T cells have demonstrated techniques to increase the persistence and antitumor effect of these cells. Herein, we discuss lymphoma immunotherapy clinical trial results and what lessons can be taken to improve their effect, including the combination of vaccination and adoptive transfer in an approach we have dubbed ‘immunotransplant’. PMID:20636025

  1. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor (CAR-redirected T cells.

    Directory of Open Access Journals (Sweden)

    Hinrich eAbken

    2013-11-01

    Full Text Available Adoptive T cell therapy has recently shown powerful in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR which consists in the extracellular part of an antibody-derived domain for binding with a tumor-associated antigen and in the intracellular part of a TCR-derived signaling moiety for T cell activation. The specificity of CAR mediated T cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T cell targeting by an engineered CAR and review most significant progress recently made in early stage clinical trials to treat cancer.

  2. Changes in T-cell subsets after radiation therapy

    International Nuclear Information System (INIS)

    Yang, S.J.; Rafla, S.; Youssef, E.; Selim, H.; Salloum, N.; Chuang, J.Y.

    1988-01-01

    The T-cell subsets of 129 patients with cancer were counted before and after radiation therapy. The cells were labeled with monoclonal antibodies that were specific for each type of T cell. Significant changes after therapy were decreases in the proportion of T-helper/inducer cells, pan-T cells, and in the ratio of T-helper/inducer to T-suppressor/cytotoxic cells. There was an increase in the percentage of T-suppressor/cytotoxic cells. When the site of the primary cancer was considered, genitourinary cancer and cancer of the head and neck both showed a decreased percentage of T-helper/inducer cells and a reduced ratio of T-helper/inducer to T-suppressor/cytotoxic cells. The percentage of pan-T cells in head and neck cancer and the ratio of T-helper/inducer to T-suppressor/cytotoxic cells in breast cancer were decreased. The percentage of T-helper cells was particularly decreased by radiation therapy in advanced stages of cancer, in higher grade tumors, and in larger tumors. The absolute numbers of various T-cell subsets were decreased in all groups

  3. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+ melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy.

    Directory of Open Access Journals (Sweden)

    Jessica Ann Chacon

    Full Text Available Adoptive T-cell therapy (ACT using tumor-infiltrating lymphocytes (TIL can induce tumor regression in up to 50% or more of patients with unresectable metastatic melanoma. However, current methods to expand melanoma TIL, especially the "rapid expansion protocol" (REP were not designed to enhance the generation of optimal effector-memory CD8(+ T cells for infusion. One approach to this problem is to manipulate specific co-stimulatory signaling pathways to enhance CD8(+ effector-memory T-cell expansion. In this study, we determined the effects of activating the TNF-R family member 4-1BB/CD137, specifically induced in activated CD8(+ T cells, on the yield, phenotype, and functional activity of expanded CD8(+ T cells during the REP. We found that CD8(+ TIL up-regulate 4-1BB expression early during the REP after initial TCR stimulation, but neither the PBMC feeder cells in the REP or the activated TIL expressed 4-1BB ligand. However, addition of an exogenous agonistic anti-4-1BB IgG4 (BMS 663513 to the REP significantly enhanced the frequency and total yield of CD8(+ T cells as well as their maintenance of CD28 and increased their anti-tumor CTL activity. Gene expression analysis found an increase in bcl-2 and survivin expression induced by 4-1BB that was associated with an enhanced survival capability of CD8(+ post-REP TIL when re-cultured in the absence or presence of cytokines. Our findings suggest that adding an agonistic anti-4-1BB antibody during the time of TIL REP initiation produces a CD8(+ T cell population capable of improved effector function and survival. This may greatly improve TIL persistence and anti-tumor activity in vivo after adoptive transfer into patients.

  4. Adoptive Cell Therapies for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Kevin James Bielamowicz

    2013-11-01

    Full Text Available Glioblastoma (GBM is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard-of-care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients(1. Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly self, it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer (LAK cells, natural killer (NK cells, cytotoxic T lymphocytes (CTL, and transgenic chimeric antigen receptor (CAR- or αβ T cell receptor (TCR grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system towards the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts.

  5. Adoptive Cell Therapies for Glioblastoma

    Science.gov (United States)

    Bielamowicz, Kevin; Khawja, Shumaila; Ahmed, Nabil

    2013-01-01

    Glioblastoma (GBM) is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard of care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients (1). Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly “self,” it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer cells, natural killer cells, cytotoxic T lymphocytes, and transgenic chimeric antigen receptor or αβ T cell receptor grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system toward the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts. PMID:24273748

  6. Efficient tumor regression by adoptively transferred CEA-specific CAR-T cells associated with symptoms of mild cytokine release syndrome.

    Science.gov (United States)

    Wang, Linan; Ma, Ning; Okamoto, Sachiko; Amaishi, Yasunori; Sato, Eiichi; Seo, Naohiro; Mineno, Junichi; Takesako, Kazutoh; Kato, Takuma; Shiku, Hiroshi

    2016-01-01

    Carcinoembryonic antigen (CEA) is a cell surface antigen highly expressed in various cancer cell types and in healthy tissues. It has the potential to be a target for chimeric antigen receptor (CAR)-modified T-cell therapy; however, the safety of this approach in terms of on-target/off-tumor effects needs to be determined. To address this issue in a clinically relevant model, we used a mouse model in which the T cells expressing CEA-specific CAR were transferred into tumor-bearing CEA-transgenic (Tg) mice that physiologically expressed CEA as a self-antigen. The adoptive transfer in conjunction with lymphodepleting and myeloablative preconditioning mediated significant tumor regression but caused weight loss in CEA-Tg, but not in wild-type mice. The weight loss was not associated with overt inflammation in the CEA-expressing gastrointestinal tract but was associated with malnutrition, reflected in elevated systemic levels of cytokines linked to anorexia, which could be controlled by the administration of an anti-IL-6 receptor monoclonal antibody without compromising efficacy. The apparent relationship between lymphodepleting and myeloablative preconditioning, efficacy, and off-tumor toxicity of CAR-T cells would necessitate the development of CEA-specific CAR-T cells with improved signaling domains that require less stringent preconditioning for their efficacy. Taken together, these results suggest that CEA-specific CAR-based adoptive T-cell therapy may be effective for patients with CEA + solid tumors. Distinguishing the fine line between therapeutic efficacy and off-tumor toxicity would involve further modifications of CAR-T cells and preconditioning regimens.

  7. Prospects and limitations of T cell receptor gene therapy

    NARCIS (Netherlands)

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A.; Schumacher, Ton N. M.

    2011-01-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining

  8. Biomarkers in T cell therapy clinical trials

    Directory of Open Access Journals (Sweden)

    Kalos Michael

    2011-08-01

    Full Text Available Abstract T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity. This review will focus on biomarker studies as they relate to T cell therapy trials, and more specifically: i. An overview and description of categories and classes of biomarkers that are specifically relevant to T cell therapy trials, and ii. Insights into future directions and challenges for the appropriate development of biomarkers to evaluate both product bioactivity and treatment efficacy of T cell therapy trials.

  9. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy.

    Directory of Open Access Journals (Sweden)

    Shou-Hui Du

    Full Text Available Gamma delta (γδ T cells and cytokine-induced killer (CIK cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs using Zometa, interferon-gamma (IFN-γ, interleukin 2 (IL-2, anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR, anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer.

  10. CARs and other T cell therapies for MM: The clinical experience.

    Science.gov (United States)

    Danhof, Sophia; Hudecek, Michael; Smith, Eric L

    2018-06-01

    Harnessing the endogenous immune system to eliminate malignant cells has long been an intriguing approach. After considerable success in the treatment of B-cell acute lymphoblastic leukemia, chimeric antigen receptor (CAR)-modified T cells have entered early clinical evaluation in the field of multiple myeloma (MM). The choice of suitable non-CD19 target antigens is challenging and a variety of myeloma-associated surface molecules have been under preclinical investigation. Most recent clinical protocols have focused on targeting B-cell maturation antigen (BCMA), and early results are promising. The trials differ in receptor constructs, patient selection, dosing strategies and conditioning chemotherapy and will thus pave the way to eventually define the optimal parameters. Other sources for autologous T-cell therapy of MM include affinity-enhanced T-cell receptor-modified cells and marrow infiltrating lymphocytes. In summary, adoptive T-cell transfer for the treatment of MM is still in its infancy, but if early response rates indicate durability, will be a paradigm changing therapeutic modality for the treatment of MM. Copyright © 2018. Published by Elsevier Ltd.

  11. T-cell involvement in adoptive transfer of line 10 tumor immunity in strain 2 guinea pigs

    International Nuclear Information System (INIS)

    de Jong, W.H.; Steerenberg, P.A.; van de Plas, M.M.; Kruizinga, W.; Ruitenberg, J.

    1985-01-01

    Several aspects of adoptive transfer of tumor immunity were studied in the line 10 hepatocarcinoma in the syngeneic Sewall-Wright strain 2 guinea pig. In particular, the need for cooperation between donor and recipient T-cells was investigated. Donor immune spleen cells remained immunologically capable of inducing tumor rejection for at least 160 days after adoptive transfer. Irradiated (1,000 rad) or mitomycin-treated immune spleen cells lacked tumor-rejection activity, which is indicative of the necessity for in vivo proliferation after adoptive transfer of immunity. Furthermore, adoptive transfer of tumor immunity was abrogated after treatment of the line 10 immune spleen cells with rabbit anti-guinea pig-thymocyte serum (ATS) plus complement. The role of recipient T-cells was investigated in strain 2 guinea pigs which were T-cell depleted by thymectomy, irradiation, and bone marrow reconstitution (T-XBM animals). Severe suppression of T-cell activity was present at 2 and 6 weeks after irradiation and bone marrow reconstitution. At 10 weeks nonspecific T-cell activity was partially restored. The induction of antigen-specific responses, measured by delayed-type hypersensitivity skin testing in vivo and antigenic stimulation in vitro, was suppressed at 2 weeks after irradiation and bone marrow reconstitution. Additional in vivo treatment of T-XBM animals with a rabbit ATS improved the T-cell depletion only moderately. Tumor growth and tumor rejection after adoptive transfer of immunity were equal in normal and T-cell-deprived recipient animals, thus indicating that recipient T-cells are not needed for tumor rejection after adoptive transfer of line 10 tumor immunity

  12. Phase I clinical trial of fibronectin CH296-stimulated T cell therapy in patients with advanced cancer.

    Directory of Open Access Journals (Sweden)

    Takeshi Ishikawa

    Full Text Available BACKGROUND: Previous studies have demonstrated that less-differentiated T cells are ideal for adoptive T cell transfer therapy (ACT and that fibronectin CH296 (FN-CH296 together with anti-CD3 resulted in cultured cells that contain higher amounts of less-differentiated T cells. In this phase I clinical trial, we build on these prior results by assessing the safety and efficacy of FN-CH296 stimulated T cell therapy in patients with advanced cancer. METHODS: Patients underwent fibronectin CH296-stimulated T cell therapy up to six times every two weeks and the safety and antitumor activity of the ACT were assessed. In order to determine immune function, whole blood cytokine levels and the number of peripheral regulatory T cells were analyzed prior to ACT and during the follow up. RESULTS: Transferred cells contained numerous less-differentiated T cells greatly represented by CD27+CD45RA+ or CD28+CD45RA+ cell, which accounted for approximately 65% and 70% of the total, respectively. No ACT related severe or unexpected toxicities were observed. The response rate among patients was 22.2% and the disease control rate was 66.7%. CONCLUSIONS: The results obtained in this phase I trial, indicate that FN-CH296 stimulated T cell therapy was very well tolerated with a level of efficacy that is quite promising. We also surmise that expanding T cell using CH296 is a method that can be applied to other T- cell-based therapies. TRIAL REGISTRATION: UMIN UMIN000001835.

  13. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  14. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    International Nuclear Information System (INIS)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku; Okada, Naoki

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8"+ CAR-T cells had antigen-specific cytotoxic activity. • CD4"+ CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  15. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku, E-mail: nakagawa@phs.osaka-u.ac.jp; Okada, Naoki, E-mail: okada@phs.osaka-u.ac.jp

    2016-04-22

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  16. Systematic immunosuppression induced by photodynamic therapy (PDT) is adoptively transferred by macrophages

    International Nuclear Information System (INIS)

    Lynch, D.H.; Haddad, S; King, V.J.; Ott, M.J.; Jolles, C.J.; Straight, R. C.

    1989-01-01

    The purpose of this study was to determine whether photodynamic therapy induced suppression of contact hypersensitivity (CHS) responses was an active phenomenon that could be adoptively transferred by viable splenocytes from PDT-treated mice. Although induction of adoptively transferable suppressor cells in PDT-treated mice required exposure to antigen, the suppressor cells were found to be antigen nonspecific in their function. Furthermore, splenocytes from PDT-treated mice were capable of generating levels of allospecific cytotoxic T lymphocyte (CTL) activity which were comparable to those generated by normal control mice, but the ability of irradiated spleen cells from PDT-treated mice to stimulate a mixed lymphocyte response (MLR) was dramatically impaired. Finally, chromatographic separation of T cells, B cells and macrophages showed that the cell type which mediates adoptively transferable suppression of CHS responsiveness is in the macrophage lineage. (author)

  17. Use of high throughput qPCR screening to rapidly clone low frequency tumour specific T-cells from peripheral blood for adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Serrano Oscar K

    2008-10-01

    Full Text Available Abstract Background The adoptive transfer of autologous tumor reactive lymphocytes can mediate significant tumor regression in some patients with refractory metastatic cancer. However, a significant obstacle for this promising therapy has been the availability of highly efficient methods to rapidly isolate and expand a variety of potentially rare tumor reactive lymphocytes from the natural repertoire of cancer patients. Methods We developed a novel in vitro T cell cloning methodology using high throughput quantitative RT-PCR (qPCR assay as a rapid functional screen to detect and facilitate the limiting dilution cloning of a variety of low frequency T cells from bulk PBMC. In preclinical studies, this strategy was applied to the isolation and expansion of gp100 specific CD8+ T cell clones from the peripheral blood of melanoma patients. Results In optimization studies, the qPCR assay could detect the reactivity of 1 antigen specific T cell in 100,000 background cells. When applied to short term sensitized PBMC microcultures, this assay could detect T cell reactivity against a variety of known melanoma tumor epitopes. This screening was combined with early limiting dilution cloning to rapidly isolate gp100154–162 reactive CD8+ T cell clones. These clones were highly avid against peptide pulsed targets and melanoma tumor lines. They had an effector memory phenotype and showed significant proliferative capacity to reach cell numbers appropriate for adoptive transfer trials (~1010 cells. Conclusion This report describes a novel high efficiency strategy to clone tumor reactive T cells from peripheral blood for use in adoptive immunotherapy.

  18. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice.

    Science.gov (United States)

    Klebanoff, Christopher A; Gattinoni, Luca; Palmer, Douglas C; Muranski, Pawel; Ji, Yun; Hinrichs, Christian S; Borman, Zachary A; Kerkar, Sid P; Scott, Christopher D; Finkelstein, Steven E; Rosenberg, Steven A; Restifo, Nicholas P

    2011-08-15

    Adoptive cell transfer (ACT) of tumor infiltrating or genetically engineered T cells can cause durable responses in patients with metastatic cancer. Multiple clinically modifiable parameters can comprise this therapy, including cell dose and phenotype, in vivo antigen restimulation, and common gamma-chain (γ(c)) cytokine support. However, the relative contributions of each these individual components to the magnitude of the antitumor response have yet to be quantified. To systematically and quantitatively appraise each of these variables, we employed the Pmel-1 mouse model treating large, established B16 melanoma tumors. In addition to cell dose and magnitude of in vivo antigen restimulation, we also evaluated the relative efficacy of central memory (T(CM)), effector memory (T(EM)), and stem cell memory (T(SCM)) subsets on the strength of tumor regression as well as the dose and type of clinically available γ(c) cytokines, including IL-2, IL-7, IL-15, and IL-21. We found that cell dose, T-cell differentiation status, and viral vaccine titer each were correlated strongly and significantly with the magnitude of tumor regression. Surprisingly, although the total number of IL-2 doses was correlated with tumor regression, no significant benefit to prolonged (≥6 doses) administration was observed. Moreover, the specific type and dose of γ(c) cytokine only moderately correlated with response. Collectively, these findings elucidate some of the key determinants of successful ACT immunotherapy for the treatment of cancer in mice and further show that γ(c) cytokines offer a similar ability to effectively drive antitumor T-cell function in vivo. ©2011 AACR.

  19. Adoptive Immunotherapy for Hematological Malignancies Using T Cells Gene-Modified to Express Tumor Antigen-Specific Receptors

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujiwara

    2014-12-01

    Full Text Available Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as “cellular drugs”. As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs, transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  20. A case of malignant melanoma of the maxilla treated by adoptive immunotherapy after fast neutron therapy

    International Nuclear Information System (INIS)

    Morifuji, Masayo; Ohishi, Masamichi; Higuchi, Yoshinori; Ozeki, Satoru; Tashiro, Hideo

    1992-01-01

    A 77-year-old male patient with malignant melanoma was treated by fast neutron therapy and immunotherapy. Total dose of fast neutron applied to the primary lesion was 1905 cGy per 21 fractionation for 46 days. For adoptive immunotherapy, lymphocytes were collected from the peripheral blood drawn from the patient 2 days after the injection of cyclophosphamide. T cells were further purified by passing the lymphocytes through nylon wool. Cytotoxic T cells were induced by incubating the T cells mixed with allogeneic malignant melanoma cells and a small number of patient's adherent cells, and activated with recombinant interleukin-2 (γ IL-2). Our patient and the patient from whom stimulating melanoma cells were derived shared A locous 24 and B locous 51 of MHC class I antigens in common. Thus prepared cytotoxic T cells were inoculated to the patient via the maxillary artery, 3 to 4 times a week for one month. Total amount of cells transferred was 5.6 x 10 8 (97% lymphocytes). Primary lesion reduced markedly by the therapies. During adoptive immunotherapy, increase in natural killer cells and decrease in both suppressor/inducer T-cells and macrophages were observed. However, lung metastases appeared 3 months after adoptive immunotherapy. While the nonspecific immunotherapy (OK-432 injection) was being conducted thereafter, growth of the metastatic lesions of the lung was kept gentle but became obvious after the suspension of the treatment. (author)

  1. A short CD3/CD28 costimulation combined with IL-21 enhance the generation of human memory stem T cells for adoptive immunotherapy.

    Science.gov (United States)

    Alvarez-Fernández, C; Escribà-Garcia, L; Vidal, S; Sierra, J; Briones, J

    2016-07-19

    Immunotherapy based on the adoptive transfer of gene modified T cells is an emerging approach for the induction of tumor-specific immune responses. Memory stem T cells, due to their enhanced antitumor and self-renewal capacity, have become potential candidate for adoptive T cell therapy of cancer. Methods to generate memory stem T cells ex vivo rely on CD3/CD28 costimulation and the use of cytokines such as IL-7 and IL-15 during the entire culture period. However, a strong costimulation may induce differentiation of memory stem T cells to effector memory T cells. Here we show that manipulation of the length of the costimulation and addition of IL-21 enhance the ex vivo expansion of memory stem T cells. Purified naïve T cells from healthy donors were cultured in the presence of anti-CD3/CD28 coated beads, IL-7, IL-15 and/or IL-21 (25 ng/ml). T cells phenotype from the different memory and effector subpopulations were analyzed by multiparametric flow cytometry. A short anti-CD3/CD28 costimulation of naïve T cells, combined with IL-7 and IL-15 significantly increased the frequencies of CD4(+) and CD8(+) memory stem T cells ex vivo, compared to a prolonged costimulation (34.6 ± 4.4 % vs 15.6 ± 4.24 % in CD4(+); p = 0.008, and 20.5 ± 4.00 % vs 7.7 ± 2.53 % in CD8(+); p = 0.02). Moreover, the addition of IL-21 to this condition further enhanced the enrichment and expansion of CD4(+) and CD8(+) memory stem T cells with an increase in the absolute numbers (0.7 × 10(6) ± 0.1 vs 0.26 × 10(6) ± 0.1 cells for CD4(+); p = 0.002 and 1.1 × 10(6) ± 0.1 vs 0.27 × 10(6) ± 0.1 cells for CD8(+); p = 0.0002; short + IL-21 vs long). These new in vitro conditions increase the frequencies and expansion of memory stem T cells and may have relevant clinical implications for the generation of this memory T cell subset for adoptive cell therapy of patients with cancer.

  2. Automated Expansion of Primary Human T Cells in Scalable and Cell-Friendly Hydrogel Microtubes for Adoptive Immunotherapy.

    Science.gov (United States)

    Lin, Haishuang; Li, Qiang; Wang, Ou; Rauch, Jack; Harm, Braden; Viljoen, Hendrik J; Zhang, Chi; Van Wyk, Erika; Zhang, Chi; Lei, Yuguo

    2018-05-11

    Adoptive immunotherapy is a highly effective strategy for treating many human cancers, such as melanoma, cervical cancer, lymphoma, and leukemia. Here, a novel cell culture technology is reported for expanding primary human T cells for adoptive immunotherapy. T cells are suspended and cultured in microscale alginate hydrogel tubes (AlgTubes) that are suspended in the cell culture medium in a culture vessel. The hydrogel tubes protect cells from hydrodynamic stresses and confine the cell mass less than 400 µm (in radial diameter) to ensure efficient mass transport, creating a cell-friendly microenvironment for growing T cells. This system is simple, scalable, highly efficient, defined, cost-effective, and compatible with current good manufacturing practices. Under optimized culture conditions, the AlgTubes enable culturing T cells with high cell viability, low DNA damage, high growth rate (≈320-fold expansion over 14 days), high purity (≈98% CD3+), and high yield (≈3.2 × 10 8 cells mL -1 hydrogel). All offer considerable advantages compared to current T cell culturing approaches. This new culture technology can significantly reduce the culture volume, time, and cost, while increasing the production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Technical Considerations for the Generation of Adoptively Transferred T Cells in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Anthony Visioni

    2016-09-01

    Full Text Available A significant function of the immune system is the surveillance and elimination of aberrant cells that give rise to cancer. Even when tumors are well established and metastatic, immune-mediated spontaneous regressions have been documented. While there are have been various forms of immunotherapy, one of the most widely studied for almost 40 years is adoptive cellular immunotherapy, but its success has yet to be fully realized. Adoptive cell transfer (ACT is a therapeutic modality that has intrigued physicians and researchers for its many theoretical benefits. Preclinical investigations and human trials have utilized natural killer (NK cells, dendritic cells (DC, macrophages, T-cells or B-cells for ACT with the most intense research focused on T-cell ACT. T-cells are exquisitely specific to the target of its T-cell receptor (TCR, thus potentially reducing the amount of collateral damage and off-target effects from treatment. T-cells also possess a memory subset that may reduce the risk of recurrence of a cancer after the successful treatment of the primary disease. There are several options for the source of T-cells used in the generation of cells for ACT. Perhaps the most widely known source is T-cells generated from tumor-infiltrating lymphocytes (TILs. However, studies have also employed peripheral blood mononuclear cells (PBMCs, lymph nodes, and even induced pluripotent stem cells (IPSCs as a source of T-cells. Several important technical considerations exist regarding benefits and limitations of each source of T-cells. Unique aspects of T-cells factor into their ability to be efficacious in ACT including the total number of cells available for ACT, the anti-tumor efficacy on a per cell basis, the repertoire of TCRs specific to tumor cells, and their ability to traffic to various organs that harbor tumor. Current research is attempting to unlock the full potential of these cells to effectively and safely treat cancer.

  4. Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. Requirement for T cell-deficient recipients

    International Nuclear Information System (INIS)

    Orme, I.M.; Collins, F.M.

    1983-01-01

    The results of this study demonstrate that spleen cells taken from mice at the height of the primary immune response to intravenous infection with Mycobacterium tuberculosis possess the capacity to transfer adoptive protection to M. tuberculosis-infected recipients, but only if these recipients are first rendered T cell-deficient, either by thymectomy and gamma irradiation, or by sublethal irradiation. A similar requirement was necessary to demonstrate the adoptive protection of the lungs after exposure to an acute aerosol-delivered M. tuberculosis infection. In both infectious models successful adoptive immunotherapy was shown to be mediated by T lymphocytes, which were acquired in the donor animals in response to the immunizing infection. It is proposed that the results of this study may serve as a basic model for the subsequent analysis of the nature of the T cell-mediated immune response to both systemic and aerogenic infections with M. tuberculosis

  5. A guide to manufacturing CAR T cell therapies.

    Science.gov (United States)

    Vormittag, Philipp; Gunn, Rebecca; Ghorashian, Sara; Veraitch, Farlan S

    2018-02-17

    In recent years, chimeric antigen receptor (CAR) modified T cells have been used as a treatment for haematological malignancies in several phase I and II trials and with Kymriah of Novartis and Yescarta of KITE Pharma, the first CAR T cell therapy products have been approved. Promising clinical outcomes have yet been tempered by the fact that many therapies may be prohibitively expensive to manufacture. The process is not yet defined, far from being standardised and often requires extensive manual handling steps. For academia, big pharma and contract manufacturers it is difficult to obtain an overview over the process strategies and their respective advantages and disadvantages. This review details current production processes being used for CAR T cells with a particular focus on efficacy, reproducibility, manufacturing costs and release testing. By undertaking a systematic analysis of the manufacture of CAR T cells from reported clinical trial data to date, we have been able to quantify recent trends and track the uptake of new process technology. Delivering new processing options will be key to the success of the CAR-T cells ensuring that excessive manufacturing costs do not disrupt the delivery of exciting new therapies to the wide possible patient cohort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Improve T Cell Therapy in Neuroblastoma

    Science.gov (United States)

    2012-07-01

    Savoldo B, Vigouroux S et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte...Natl Acad Sci U S A. 2004;101(suppl 2):14622–14626. 8. Eghtesad S, Morel PA, Clemens PR. The companions : regulatory T cells and gene therapy...were euthanized and examined for NKT cell localiza- tion to the tumor tissues. Animals treated with anti-CCL2 or anti- CCL20 mAb had lower frequency

  7. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy.

    Science.gov (United States)

    Golubovskaya, Vita; Wu, Lijun

    2016-03-15

    This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy--a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4⁺ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8⁺ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4⁺ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  8. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  9. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities.

    Science.gov (United States)

    Xia, An-Liang; Wang, Xiao-Chen; Lu, Yi-Jun; Lu, Xiao-Jie; Sun, Beicheng

    2017-10-27

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives.

  10. Adoptive T Cell Immunotherapy for Patients with Primary Immunodeficiency Disorders.

    Science.gov (United States)

    McLaughlin, Lauren P; Bollard, Catherine M; Keller, Michael

    2017-01-01

    Primary immunodeficiency disorders (PID) are a group of inborn errors of immunity with a broad range of clinical severity but often associated with recurrent and serious infections. While hematopoietic stem cell transplantation (HSCT) can be curative for some forms of PID, chronic and/or refractory viral infections remain a cause of morbidity and mortality both before and after HSCT. Although antiviral pharmacologic agents exist for many viral pathogens, these are associated with significant costs and toxicities and may not be effective for increasingly drug-resistant pathogens. Thus, the emergence of adoptive immunotherapy with virus-specific T lymphocytes (VSTs) is an attractive option for addressing the underlying impaired T cell immunity in many PID patients. VSTs have been utilized for PID patients following HSCT in many prior phase I trials, and may potentially be beneficial before HSCT in patients with chronic viral infections. We review the various methods of generating VSTs, clinical experience using VSTs for PID patients, and current limitations as well as potential ways to broaden the clinical applicability of adoptive immunotherapy for PID patients.

  11. CAR-T Cell Therapies From the Transfusion Medicine Perspective.

    Science.gov (United States)

    Fesnak, Andrew; Lin, ChieYu; Siegel, Don L; Maus, Marcela V

    2016-07-01

    The use of chimeric antigen receptor (CAR)-T cell therapy for the treatment of hematologic malignancies has generated significant excitement over the last several years. From a transfusion medicine perspective, the implementation of CAR-T therapy as a potential mainstay treatment for not only hematologic but also solid-organ malignancies represents a significant opportunity for growth and expansion. In this review, we will describe the rationale for the development of genetically redirected T cells as a cancer therapeutic, the different elements that are required to engineer these cells, as well as an overview of the process by which patient cells are harvested and processed to create and subsequently validate CAR-T cells. Finally, we will briefly describe some of the toxicities and clinical efficacy of CAR-T cells in the setting of patients with advanced malignancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However......, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells...

  13. New development in CAR-T cell therapy.

    Science.gov (United States)

    Wang, Zhenguang; Wu, Zhiqiang; Liu, Yang; Han, Weidong

    2017-02-21

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have yielded unprecedented efficacy in B cell malignancies, most remarkably in anti-CD19 CAR-T cells for B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate. However, tumor antigen escape has emerged as a main challenge for the long-term disease control of this promising immunotherapy in B cell malignancies. In addition, this success has encountered significant hurdles in translation to solid tumors, and the safety of the on-target/off-tumor recognition of normal tissues is one of the main reasons. In this mini-review, we characterize some of the mechanisms for antigen loss relapse and new strategies to address this issue. In addition, we discuss some novel CAR designs that are being considered to enhance the safety of CAR-T cell therapy in solid tumors.

  14. New development in CAR-T cell therapy

    Directory of Open Access Journals (Sweden)

    Zhenguang Wang

    2017-02-01

    Full Text Available Abstract Chimeric antigen receptor (CAR-engineered T cells (CAR-T cells have yielded unprecedented efficacy in B cell malignancies, most remarkably in anti-CD19 CAR-T cells for B cell acute lymphoblastic leukemia (B-ALL with up to a 90% complete remission rate. However, tumor antigen escape has emerged as a main challenge for the long-term disease control of this promising immunotherapy in B cell malignancies. In addition, this success has encountered significant hurdles in translation to solid tumors, and the safety of the on-target/off-tumor recognition of normal tissues is one of the main reasons. In this mini-review, we characterize some of the mechanisms for antigen loss relapse and new strategies to address this issue. In addition, we discuss some novel CAR designs that are being considered to enhance the safety of CAR-T cell therapy in solid tumors.

  15. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy.

    Science.gov (United States)

    Duncan, Brynn B; Highfill, Steven L; Qin, Haiying; Bouchkouj, Najat; Larabee, Shannon; Zhao, Peng; Woznica, Iwona; Liu, Yuxin; Li, Youhua; Wu, Wengen; Lai, Jack H; Jones, Barry; Mackall, Crystal L; Bachovchin, William W; Fry, Terry J

    2013-10-01

    Multimodality therapy consisting of surgery, chemotherapy, and radiation will fail in approximately 40% of patients with pediatric sarcomas and result in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (dipeptidyl peptidase IV activity and/or structural homologs) enzymes can mediate tumor regression by immune-mediated mechanisms. Herein, we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b) cells, particularly myeloid DCs, to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11bLy6-CLy6-G) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared with either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies, particularly as an adjuvant to tumor vaccines and ACT.

  16. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy

    Science.gov (United States)

    Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J.; Rivière, Isabelle

    2009-01-01

    Summary Based on promising pre-clinical data demonstrating the eradication of systemic B cell malignancies by CD19-targeted T lymphocytes in vivo in SCID beige mouse models, we are launching Phase 1 clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). We present here the validation of the bioprocess we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads® CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semi-closed culture system using the Wave bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in SCID beige mice bearing disseminated tumors. The validation requirements in terms of T cell expansion, T cell transduction with the 1928z CAR, biological activity, quality control testing and release criteria were met for all four validation runs using apheresis products from patients with CLL. Additionally, following expansion of the T cells, the diversity of the skewed Vβ T cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemo-refractory CLL and in patients with relapsed ALL. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any chimeric antigen receptor or T cell receptor. PMID:19238016

  17. Modulation of Autoimmune T-Cell Memory by Stem Cell Educator Therapy: Phase 1/2 Clinical Trial.

    Science.gov (United States)

    Delgado, Elias; Perez-Basterrechea, Marcos; Suarez-Alvarez, Beatriz; Zhou, Huimin; Revuelta, Eva Martinez; Garcia-Gala, Jose Maria; Perez, Silvia; Alvarez-Viejo, Maria; Menendez, Edelmiro; Lopez-Larrea, Carlos; Tang, Ruifeng; Zhu, Zhenlong; Hu, Wei; Moss, Thomas; Guindi, Edward; Otero, Jesus; Zhao, Yong

    2015-12-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes a deficit of pancreatic islet β cells. The complexities of overcoming autoimmunity in T1D have contributed to the challenges the research community faces when devising successful treatments with conventional immune therapies. Overcoming autoimmune T cell memory represents one of the key hurdles. In this open-label, phase 1/phase 2 study, Caucasian T1D patients (N = 15) received two treatments with the Stem Cell Educator (SCE) therapy, an approach that uses human multipotent cord blood-derived multipotent stem cells (CB-SCs). SCE therapy involves a closed-loop system that briefly treats the patient's lymphocytes with CB-SCs in vitro and returns the "educated" lymphocytes (but not the CB-SCs) into the patient's blood circulation. This study is registered with ClinicalTrials.gov, NCT01350219. Clinical data demonstrated that SCE therapy was well tolerated in all subjects. The percentage of naïve CD4(+) T cells was significantly increased at 26 weeks and maintained through the final follow-up at 56 weeks. The percentage of CD4(+) central memory T cells (TCM) was markedly and constantly increased at 18 weeks. Both CD4(+) effector memory T cells (TEM) and CD8(+) TEM cells were considerably decreased at 18 weeks and 26 weeks respectively. Additional clinical data demonstrated the modulation of C-C chemokine receptor 7 (CCR7) expressions on naïve T, TCM, and TEM cells. Following two treatments with SCE therapy, islet β-cell function was improved and maintained in individuals with residual β-cell function, but not in those without residual β-cell function. Current clinical data demonstrated the safety and efficacy of SCE therapy in immune modulation. SCE therapy provides lasting reversal of autoimmune memory that could improve islet β-cell function in Caucasian subjects. Obra Social "La Caixa", Instituto de Salud Carlos III, Red de Investigación Renal, European Union FEDER Funds, Principado de

  18. Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes in Advanced Melanoma Patients

    OpenAIRE

    Mélanie Saint-Jean; Anne-Chantal Knol; Christelle Volteau; Gaëlle Quéreux; Lucie Peuvrel; Anabelle Brocard; Marie-Christine Pandolfino; Soraya Saiagh; Jean-Michel Nguyen; Christophe Bedane; Nicole Basset-Seguin; Amir Khammari; Brigitte Dréno

    2018-01-01

    Immunotherapy for melanoma includes adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TILs). This monocenter retrospective study was undertaken to evaluate the efficacy and safety of this treatment of patients with advanced melanoma. All advanced melanoma patients treated with TILs using the same TIL expansion methodology and same treatment interleukin-2 (IL-2) regimen between 2009 and 2012 were included. After sterile intralesional excision of a cutaneous or subcutaneous ...

  19. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology.

    Science.gov (United States)

    Kalos, Michael; June, Carl H

    2013-07-25

    Adoptivecell transfer for cancer and chronic infection is an emerging field that shows promise in recent trials. Synthetic-biology-based engineering of T lymphocytes to express high-affinity antigen receptors can overcome immune tolerance, which has been a major limitation of immunotherapy-based strategies. Advances in cell engineering and culture approaches to enable efficient gene transfer and ex vivo cell expansion have facilitated broader evaluation of this technology, moving adoptive transfer from a "boutique" application to the cusp of a mainstream technology. The major challenge currently facing the field is to increase the specificity of engineered T cells for tumors, because targeting shared antigens has the potential to lead to on-target off-tumor toxicities, as observed in recent trials. As the field of adoptive transfer technology matures, the major engineering challenge is the development of automated cell culture systems, so that the approach can extend beyond specialized academic centers and become widely available. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus-Driven Production of a Bispecific T-cell Engager.

    Science.gov (United States)

    Wing, Anna; Fajardo, Carlos Alberto; Posey, Avery D; Shaw, Carolyn; Da, Tong; Young, Regina M; Alemany, Ramon; June, Carl H; Guedan, Sonia

    2018-05-01

    T cells expressing chimeric antigen receptors (CART) have shown significant promise in clinical trials to treat hematologic malignancies, but their efficacy in solid tumors has been limited. Oncolytic viruses have the potential to act in synergy with immunotherapies due to their immunogenic oncolytic properties and the opportunity of incorporating therapeutic transgenes in their genomes. Here, we hypothesized that an oncolytic adenovirus armed with an EGFR-targeting, bispecific T-cell engager (OAd-BiTE) would improve the outcome of CART-cell therapy in solid tumors. We report that CART cells targeting the folate receptor alpha (FR-α) successfully infiltrated preestablished xenograft tumors but failed to induce complete responses, presumably due to the presence of antigen-negative cancer cells. We demonstrated that OAd-BiTE-mediated oncolysis significantly improved CART-cell activation and proliferation, while increasing cytokine production and cytotoxicity, and showed an in vitro favorable safety profile compared with EGFR-targeting CARTs. BiTEs secreted from infected cells redirected CART cells toward EGFR in the absence of FR-α, thereby addressing tumor heterogeneity. BiTE secretion also redirected CAR-negative, nonspecific T cells found in CART-cell preparations toward tumor cells. The combinatorial approach improved antitumor efficacy and prolonged survival in mouse models of cancer when compared with the monotherapies, and this was the result of an increased BiTE-mediated T-cell activation in tumors. Overall, these results demonstrated that the combination of a BiTE-expressing oncolytic virus with adoptive CART-cell therapy overcomes key limitations of CART cells and BiTEs as monotherapies in solid tumors and encourage its further evaluation in human trials. Cancer Immunol Res; 6(5); 605-16. ©2018 AACR . ©2018 American Association for Cancer Research.

  1. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    Directory of Open Access Journals (Sweden)

    Vita Golubovskaya

    2016-03-01

    Full Text Available This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.; intracellular markers (FOXP3; epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic; and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  2. Effect of adoptive transfer or depletion of regulatory T cells on triptolide-induced liver injury

    Directory of Open Access Journals (Sweden)

    Xinzhi eWang

    2016-04-01

    Full Text Available ObjectiveThe aim of this study is to clarify the role of regulatory T cell (Treg in triptolide (TP-induced hepatotoxicity. MethodsFemale C57BL/6 mice received either adoptive transfer of Tregs or depletion of Tregs, then underwent TP administration and were sacrificed 24 hours after TP administration. Liver injury was determined according to ALT and AST levels in serum and histopathological change in liver tissue. Hepatic frequencies of Treg cells and the mRNA expression levles of transcription factor FoxP3 and RORγt, IL-10, SOCS and Notch/Notch ligand were investigated.ResultsDuring TP-induced liver injury, hepatic Treg and IL-10 decreased, while Th17 cell transcription factor RORγt, SOCS signaling and Notch signaling increased, accompanied with liver inflammation. Adoptive transfer of Tregs ameliorated the severity of TP-induced liver injury, accompanied with increased levels of hepatic Treg and IL-10. Adoptive transfer of Tregs remarkably inhibited the expression of RORγt, SOCS3, Notch1 and Notch3. On the contrary, depletion of Treg cells in TP-administered mice resulted in a notable increase of RORγt, SOCS1, SOCS3 and Notch3, while the Treg and IL-10 of liver decreased. Consistent with the exacerbation of liver injury, higher serum levels of ALT and AST were detected in Treg-depleted mice. ConclusionsThese results showed that adoptive transfer or depletion of Tregs attenuated or aggravated TP-induced liver injury, suggesting that Tregs could play important roles in the progression of liver injury. SOCS proteins and Notch signaling affected Tregs, which may contribute to the pathogenesis of TP-induced hepatotoxicity.

  3. Ibrutinib Therapy Increases T Cell Repertoire Diversity in Patients with Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Yin, Qingsong; Sivina, Mariela; Robins, Harlan; Yusko, Erik; Vignali, Marissa; O'Brien, Susan; Keating, Michael J; Ferrajoli, Alessandra; Estrov, Zeev; Jain, Nitin; Wierda, William G; Burger, Jan A

    2017-02-15

    The Bruton's tyrosine kinase inhibitor ibrutinib is a highly effective, new targeted therapy for chronic lymphocytic leukemia (CLL) that thwarts leukemia cell survival, growth, and tissue homing. The effects of ibrutinib treatment on the T cell compartment, which is clonally expanded and thought to support the growth of malignant B cells in CLL, are not fully characterized. Using next-generation sequencing technology, we characterized the diversity of TCRβ-chains in peripheral blood T cells from 15 CLL patients before and after 1 y of ibrutinib therapy. We noted elevated CD4 + and CD8 + T cell numbers and a restricted TCRβ repertoire in all pretreatment samples. After 1 y of ibrutinib therapy, elevated peripheral blood T cell numbers and T cell-related cytokine levels had normalized, and T cell repertoire diversity increased significantly. Dominant TCRβ clones in pretreatment samples declined or became undetectable, and the number of productive unique clones increased significantly during ibrutinib therapy, with the emergence of large numbers of low-frequency TCRβ clones. Importantly, broader TCR repertoire diversity was associated with clinical efficacy and lower rates of infections during ibrutinib therapy. These data demonstrate that ibrutinib therapy increases diversification of the T cell compartment in CLL patients, which contributes to cellular immune reconstitution. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. CAR T Cells in Trials: Recent Achievements and Challenges that Remain in the Production of Modified T Cells for Clinical Applications.

    Science.gov (United States)

    Köhl, Ulrike; Arsenieva, Stanislava; Holzinger, Astrid; Abken, Hinrich

    2018-04-05

    The adoptive transfer of chimeric antigen receptor (CAR)-modified T cells is attracting growing interest for the treatment of malignant diseases. Early trials with anti-CD19 CAR T cells have achieved spectacular remissions in B-cell leukemia and lymphoma, so far refractory, very recently resulting in the Food and Drug Administration approval of CD19 CAR T cells for therapy. With further applications and increasing numbers of patients, the reproducible manufacture of high-quality clinical-grade CAR T cells is becoming an ever greater challenge. New processing techniques, quality-control mechanisms, and logistic developments are required to meet both medical needs and regulatory restrictions. This paper summarizes the state-of-the-art in manufacturing CAR T cells and the current challenges that need to be overcome to implement this type of cell therapy in the treatment of a variety of malignant diseases and in a greater number of patients.

  5. Exploiting natural killer group 2D receptors for CAR T-cell therapy.

    Science.gov (United States)

    Demoulin, Benjamin; Cook, W James; Murad, Joana; Graber, David J; Sentman, Marie-Louise; Lonez, Caroline; Gilham, David E; Sentman, Charles L; Agaugue, Sophie

    2017-08-01

    Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.

  6. The development of CAR design for tumor CAR-T cell therapy.

    Science.gov (United States)

    Xu, Dandan; Jin, Guoliang; Chai, Dafei; Zhou, Xiaowan; Gu, Weiyu; Chong, Yanyun; Song, Jingyuan; Zheng, Junnian

    2018-03-02

    In recent years, the chimeric antigen receptor modified T cells (Chimeric antigen receptor T cells, CAR-T) immunotherapy has developed rapidly, which has been considered the most promising therapy. Efforts to enhance the efficacy of CAR-based anti-tumor therapy have been made, such as the improvement of structures of CAR-T cells, including the development of extracellular antigen recognition receptors, intracellular co-stimulatory molecules and the combination application of CARs and synthetic small molecules. In addition, effects on the function of the CAR-T cells that the space distance between the antigen binding domains and tumor targets and the length of the spacer domains have are also being investigated. Given the fast-moving nature of this field, it is necessary to make a summary of the development of CAR-T cells. In this review, we mainly focus on the present design strategies of CAR-T cells with the hope that they can provide insights to increase the anti-tumor efficacy and safety.

  7. Towards immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells

    Science.gov (United States)

    Mata, Melinda; Vera, Juan; Gerken, Claudia; Rooney, Cliona M.; Miller, Tasha; Pfent, Catherine; Wang, Lisa L.; Wilson-Robles, Heather M.; Gottschalk, Stephen

    2014-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising anti-tumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells we targeted HER2-positive OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2-positive canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy prior to conducting studies in humans. PMID:25198528

  8. Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy

    Directory of Open Access Journals (Sweden)

    Mark J Dobrzanski

    2013-03-01

    Full Text Available The importance of CD4 T cells in orchestrating the immune system and their role in inducing effective T cell-mediated therapies for the treatment of patients with select established malignancies are undisputable. Through a complex and balanced array of direct and indirect mechanisms of cellular activation and regulation, this functionally diverse family of lymphocytes can potentially promote tumor eradication, long-term tumor immunity and aid in establishing and/or rebalancing immune cell homeostasis through interaction with other immune cell populations within the highly dynamic tumor environment. However, recent studies have uncovered additional functions and roles for CD4 T cells, some of which are independent of other lymphocytes, that can not only influence and contribute to tumor immunity but paradoxically promote tumor growth and progression. Here, we review the recent advances in our understanding of the various CD4 T cell lineages and their signature cytokines in disease progression and/or regression. We discuss their direct and indirect mechanistic interplay among themselves and with other responding cells of the antitumor response, their potential roles and abilities for "plasticity" and memory cell generation within the hostile tumor environment and their potentials in cancer treatment and adoptive immunotherapies.

  9. CAR T Cell Therapy for Glioblastoma: Recent Clinical Advances and Future Challenges.

    Science.gov (United States)

    Bagley, Stephen J; Desai, Arati S; Linette, Gerald P; June, Carl H; O'Rourke, Donald M

    2018-03-02

    In patients with certain hematologic malignancies, the use of autologous T cells genetically modified to express chimeric antigen receptors (CARs) has led to unprecedented clinical responses. Although progress in solid tumors has been elusive, recent clinical studies have demonstrated the feasibility and safety of CAR T cell therapy for glioblastoma. In addition, despite formidable barriers to T cell localization and effector function in glioblastoma, signs of efficacy have been observed in select patients. In this review, we begin with a discussion of established obstacles to systemic therapy in glioblastoma and how these may be overcome by CAR T cells. We continue with a summary of previously published CAR T cell trials in GBM, and end by outlining the key therapeutic challenges associated with the use of CAR T cells in this disease.

  10. [Prerequisite for hematopoietic cellular therapy programs to set up chimeric antigen receptor T-cell therapy (CAR T-cells): Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)].

    Science.gov (United States)

    Yakoub-Agha, Ibrahim; Ferrand, Christophe; Chalandon, Yves; Ballot, Caroline; Castilla Llorente, Cristina; Deschamps, Marina; Gauthier, Jordan; Labalette, Myriam; Larghero, Jérôme; Maheux, Camille; Moreau, Anne-Sophie; Varlet, Pauline; Pétillon, Marie-Odile; Pinturaud, Marine; Rubio, Marie Thérèse; Chabannon, Christian

    2017-12-01

    CAR T-cells are autologous or allogeneic human lymphocytes that are genetically engineered to express a chimeric antigen receptor targeting an antigen expressed on tumor cells such as CD19. CAR T-cells represent a new class of medicinal products, and belong to the broad category of Advanced Therapy Medicinal Products (ATMPs), as defined by EC Regulation 2007-1394. Specifically, they are categorized as gene therapy medicinal products. Although CAR T-cells are cellular therapies, the organization for manufacturing and delivery is far different from the one used to deliver hematopoietic cell grafts, for different reasons including their classification as medicinal products. Currently available clinical observations were mostly produced in the context of trials conducted either in the USA or in China. They demonstrate remarkable efficacy for patients presenting advanced or poor-prognosis hematological malignancies, however with severe side effects in a significant proportion of patients. Toxicities can and must be anticipated and dealt with in the context of a full coordination between the clinical cell therapy ward in charge of the patient, and the neighboring intensive care unit. The present workshop aimed at identifying prerequisites to be met in order for French hospitals to get efficiently organized and fulfill sponsors' expectations before initiation of clinical trials designed to investigate CAR T-cells. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  11. Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia.

    Science.gov (United States)

    Li, Peiying; Mao, Leilei; Zhou, Guoqing; Leak, Rehana K; Sun, Bao-Liang; Chen, Jun; Hu, Xiaoming

    2013-12-01

    Cerebral ischemia has been shown to result in peripheral inflammatory responses followed by long-lasting immunosuppression. Our recent study demonstrated that intravenous delivery of regulatory T cells (Tregs) markedly protected against transient cerebral ischemia by suppressing neutrophil-derived matrix metallopeptidase 9 production in the periphery. However, the effect of Tregs on systemic inflammatory responses and immune status has not been fully characterized. Cerebral ischemia was induced by middle cerebral artery occlusion for 60 minutes in mice or 120 minutes in rats. Tregs were isolated from donor animals by CD4 and CD25 double selection and transferred intravenously to ischemic recipients at 2 hours after middle cerebral artery occlusion. Animals were euthanized on different days after reperfusion. The effects of Tregs on systemic inflammation and immune status were evaluated using flow cytometry, ELISAs, and immunohistochemistry. Systemic administration of purified Tregs raises functional Tregs in the blood and peripheral organs, including spleen and lymph nodes. These exogenous Tregs remain in the blood and peripheral organs for ≥12 days. Functionally, Treg adoptive transfer markedly inhibits middle cerebral artery occlusion-induced elevation of inflammatory cytokines (interleukin-6 and tumor necrosis factor α) in the blood. Furthermore, Treg treatment corrects long-term lymphopenia and improves cellular immune functions after ischemic brain injury. As a result, Treg-treated animals exhibit decreased bacterial loads in the blood during recovery from cerebral ischemic attack. Treg treatment did not exacerbate poststroke immunosuppression. On the contrary, Treg-treated animals displayed improved immune status after focal cerebral ischemia.

  12. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells.

    Science.gov (United States)

    Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K

    2017-01-01

    CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  13. Towards safe and effective CD38-CAR T cell therapy for myeloma

    NARCIS (Netherlands)

    Drent, Esther

    2018-01-01

    Immunotherapy is a promising field within cancer therapy. The recent progresses resulted in 'Immunotherapy for the treatment of cancer' as break-through of the year in 2013. This was partly due to the great successes with Chimeric Antigen Receptor (CAR) T cell therapy. With CAR T cells, recognition

  14. Natural and adoptive T-cell immunity against herpes family viruses after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Thomas, Simone; Herr, Wolfgang

    2011-06-01

    Reactivated infections with herpes family-related cytomegalovirus, Epstein-Barr virus and varicella zoster virus are serious and sometimes life-threatening complications for patients undergoing allogeneic hematopoietic stem cell transplantation. The pathogenesis of these infections critically involves the slow and inefficient recovery of antiviral T-cell immunity after transplantation. Although efficient drugs to decrease viral load during this vulnerable period have been developed, long-term control of herpes viruses and protection from associated diseases require the sufficient reconstitution of virus-specific memory T cells. To heal the deficiency by immunotherapeutic means, numerous research groups have developed antiviral vaccines and strategies based on the adoptive transfer of virus-specific T cells. This article summarizes the substantial progress made in this field during the past two decades and gives future perspectives about challenges that need to be addressed before antigen-specific immunotherapy against herpes family viruses can be implemented in general clinical practice.

  15. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy

    Directory of Open Access Journals (Sweden)

    Hua Li

    2017-04-01

    Full Text Available Abstract Chimeric antigen receptor (CAR T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or “on-target/off-tumor” toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumor-associated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal—curing cancer with high safety, high efficacy, and low cost.

  16. Effects of concomitant temozolomide and radiation therapies on WT1-specific T-cells in malignant glioma

    International Nuclear Information System (INIS)

    Chiba, Yasuyoshi; Hashimoto, Naoya; Tsuboi, Akihiro

    2010-01-01

    Immunotherapy targeting the Wilms' tumour 1 gene product has been proven safe and effective for treating malignant glioma in a phase II clinical study. Currently, radiation/temozolomide therapy is the standard treatment with only modest benefit. Whether combining radiation/temozolomide therapy with WT1 immunotherapy will have a negating effect on immunotherapy is still controversial because of the significant lymphocytopaenia induced by the former therapy. To address this issue, we investigated the changes in frequency and number of WT1-specific T-cells in patients with malignant gliomas. Twenty-two patients with newly diagnosed malignant glioma who received standard radiation/temozolomide therapy were recruited for the study. Blood samples were collected before treatment and on the sixth week of therapy. The frequencies and numbers of lymphocytes, CD8 + T-cells, WT1-specific T-cells, regulatory T-cells, natural killer cells and natural killer T-cells were measured and analysed using T-tests. Analysis of the frequency of T lymphocytes and its subpopulation showed an increase in regulatory T-cells, but no significant change was noted in the populations of T-cells, WT1-specific T-cells, natural killer (NK) cells and natural killer T (NKT) cells. Reductions in the total numbers of T-cells, WT1-specific T-cells, NK cells and NKT cells were mainly a consequence of the decrease in the total lymphocyte count. Radiation/temozolomide therapy did not significantly affect the frequency of WT1-specific T-cells, suggesting that the combination with WT1 immunotherapy may be possible, although further assessment in the clinical setting is warranted. (author)

  17. Characterization and comparison of "Standard" and "Young" tumor infiltrating lymphocytes for adoptive cell therapy at a Danish Translational Research Institution

    DEFF Research Database (Denmark)

    Donia, Marco; Junker, Niels; Ellebaek, Eva

    2012-01-01

    Adoptive cell therapy (ACT) with ex vivo expanded tumor infiltrating lymphocytes (TILs) in combination with IL-2 is an effective treatment for patients with metastatic melanoma. Modified protocols of cell expansion may allow treatment of most enrolled patients and improve the efficacy of adoptively...

  18. Clinical Grade Regulatory CD4+ T Cells (Tregs: Moving Toward Cellular-Based Immunomodulatory Therapies

    Directory of Open Access Journals (Sweden)

    Richard Duggleby

    2018-02-01

    Full Text Available Regulatory T cells (Tregs are CD4+ T cells that are key players of immune tolerance. They are powerful suppressor cells, able to impact the function of numerous immune cells, including key effectors of inflammation such as effector T cells. For this reason, Tregs are an ideal candidate for the development of cell therapy approaches to modulate immune responses. Treg therapy has shown promising results so far, providing key knowledge on the conditions in which these cells can provide protection and demonstrating that they could be an alternative to current pharmacological immunosuppressive therapies. However, a more comprehensive understanding of their characteristics, isolation, activation, and expansion is needed to be able design cost effective therapies. Here, we review the practicalities of making Tregs a viable cell therapy, in particular, discussing the challenges faced in isolating and manufacturing Tregs and defining what are the most appropriate applications for this new therapy.

  19. Cutting Edge: c-Maf Is Required for Regulatory T Cells To Adopt RORγt+ and Follicular Phenotypes.

    Science.gov (United States)

    Wheaton, Joshua D; Yeh, Chen-Hao; Ciofani, Maria

    2017-12-15

    Regulatory T cells (Tregs) adopt specialized phenotypes defined by coexpression of lineage-defining transcription factors, such as RORγt, Bcl-6, or PPARγ, alongside Foxp3. These Treg subsets have unique tissue distributions and diverse roles in maintaining organismal homeostasis. However, despite extensive functional characterization, the factors driving Treg specialization are largely unknown. In this article, we show that c-Maf is a critical transcription factor regulating this process in mice, essential for generation of both RORγt + Tregs and T follicular regulatory cells, but not for adipose-resident Tregs. c-Maf appears to function primarily in Treg specialization, because IL-10 production, expression of other effector molecules, and general immune homeostasis are not c-Maf dependent. As in other T cells, c-Maf is induced in Tregs by IL-6 and TGF-β, suggesting that a combination of inflammatory and tolerogenic signals promote c-Maf expression. Therefore, c-Maf is a novel regulator of Treg specialization, which may integrate disparate signals to facilitate environmental adaptation. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Erhao Zhang

    2017-01-01

    Full Text Available Abstract Adoptive cell therapy using chimeric antigen receptor (CAR-engineered T cells has emerged as a very promising approach to combating cancer. Despite its ability to eliminate tumors shown in some clinical trials, CAR-T cell therapy involves some significant safety challenges, such as cytokine release syndrome (CRS and “on-target, off-tumor” toxicity, which is related to poor control of the dose, location, and timing of T cell activity. In the past few years, some strategies to avoid the side effects of CAR-T cell therapy have been reported, including suicide gene, inhibitory CAR, dual-antigen receptor, and the use of exogenous molecules as switches to control the CAR-T cell functions. Because of the advances of the CAR paradigm and other forms of cancer immunotherapy, the most effective means of defeating the cancer has become the integration therapy with the combinatorial control system of switchable dual-receptor CAR-T cell and immune checkpoint blockade.

  1. The Multi-Purpose Tool of Tumor Immunotherapy: Gene-Engineered T Cells.

    Science.gov (United States)

    Mo, Zeming; Du, Peixin; Wang, Guoping; Wang, Yongsheng

    2017-01-01

    A detailed summary of the published clinical trials of chimeric antigen receptor T cells (CAR-T) and TCR-transduced T cells (TCR-T) was constructed to understand the development trend of adoptive T cell therapy (ACT). In contrast to TCR-T, the number of CAR-T clinical trials has increased dramatically in China in the last three years. The ACT seems to be very prosperous. But, the multidimensional interaction of tumor, tumor associated antigen (TAA) and normal tissue exacerbates the uncontrolled outcome of T cells gene therapy. It reminds us the importance that optimizing treatment security to prevent the fatal serious adverse events. How to balance the safety and effectiveness of the ACT? At least six measures can potentially optimize the safety of ACT. At the same time, with the application of gene editing techniques, more endogenous receptors are disrupted while more exogenous receptors are expressed on T cells. As a multi-purpose tool of tumor immunotherapy, gene-engineered T cells (GE-T) have been given different functional weapons. A network which is likely to link radiation therapy, tumor vaccines, CAR-T and TCR-T is being built. Moreover, more and more evidences indicated that the combination of the ACT and other therapies would further enhance the anti-tumor capacity of the GE-T.

  2. T-Cell Therapy Using Interleukin-21-Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression.

    Science.gov (United States)

    Chapuis, Aude G; Roberts, Ilana M; Thompson, John A; Margolin, Kim A; Bhatia, Shailender; Lee, Sylvia M; Sloan, Heather L; Lai, Ivy P; Farrar, Erik A; Wagener, Felecia; Shibuya, Kendall C; Cao, Jianhong; Wolchok, Jedd D; Greenberg, Philip D; Yee, Cassian

    2016-11-01

    Purpose Peripheral blood-derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti-CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8 + T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  3. Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient

    International Nuclear Information System (INIS)

    Bernal-Estévez, David; Sánchez, Ramiro; Tejada, Rafael E.; Parra-López, Carlos

    2016-01-01

    Experimental evidence and clinical studies in breast cancer suggest that some anti-tumor therapy regimens generate stimulation of the immune system that accounts for tumor clinical responses, however, demonstration of the immunostimulatory power of these therapies on cancer patients continues to be a formidable challenge. Here we present experimental evidence from a breast cancer patient with complete clinical response after 7 years, associated with responsiveness of tumor specific T cells. T cells were obtained before and after anti-tumor therapy from peripheral blood of a 63-years old woman diagnosed with ductal breast cancer (HER2/neu+++, ER-, PR-, HLA-A*02:01) treated with surgery, followed by paclitaxel, trastuzumab (suspended due to cardiac toxicity), and radiotherapy. We obtained a leukapheresis before surgery and after 8 months of treatment. Using in vitro cell cultures stimulated with autologous monocyte-derived dendritic cells (DCs) that produce high levels of IL-12, we characterize by flow cytometry the phenotype of tumor associated antigens (TAAs) HER2/neu and NY-ESO 1 specific T cells. The ex vivo analysis of the TCR-Vβ repertoire of TAA specific T cells in blood and Tumor Infiltrating Lymphocytes (TILs) were performed in order to correlate both repertoires prior and after therapy. We evidence a functional recovery of T cell responsiveness to polyclonal stimuli and expansion of TAAs specific CD8+ T cells using peptide pulsed DCs, with an increase of CTLA-4 and memory effector phenotype after anti-tumor therapy. The ex vivo analysis of the TCR-Vβ repertoire of TAA specific T cells in blood and TILs showed that whereas the TCR-Vβ04-02 clonotype is highly expressed in TILs the HER2/neu specific T cells are expressed mainly in blood after therapy, suggesting that this particular TCR was selectively enriched in blood after anti-tumor therapy. Our results show the benefits of anti-tumor therapy in a breast cancer patient with clinical complete response in

  4. Gamma-delta (γδ) T cells: friend or foe in cancer development?

    Science.gov (United States)

    Zhao, Yijing; Niu, Chao; Cui, Jiuwei

    2018-01-10

    γδ T cells are a distinct subgroup of T cells containing T cell receptors (TCRs) γ and TCR δ chains with diverse structural and functional heterogeneity. As a bridge between the innate and adaptive immune systems, γδ T cells participate in various immune responses during cancer progression. Because of their direct/indirect antitumor cytotoxicity and strong cytokine production ability, the use of γδ T cells in cancer immunotherapy has received a lot of attention over the past decade. Despite the promising potential of γδ T cells, the efficacy of γδ T cell immunotherapy is limited, with an average response ratio of only 21%. In addition, research over the past 2 years has shown that γδ T cells could also promote cancer progression by inhibiting antitumor responses, and enhancing cancer angiogenesis. As a result, γδ T cells have a dual effect and can therefore be considered as being both "friends" and "foes" of cancer. In order to solve the sub-optimal efficiency problem of γδ T cell immunotherapy, we review recent observations regarding the antitumor and protumor activities of major structural and functional subsets of human γδ T cells, describing how these subsets are activated and polarized, and how these events relate to subsequent effects in cancer immunity. A mixture of both antitumor or protumor γδ T cells used in adoptive immunotherapy, coupled with the fact that γδ T cells can be polarized from antitumor cells to protumor cells appear to be the likely reasons for the mild efficacy seen with γδ T cells. The future holds the promise of depleting the specific protumor γδ T cell subgroup before therapy, choosing multi-immunocyte adoptive therapy, modifying the cytokine balance in the cancer microenvironment, and using a combination of γδ T cells adoptive immunotherapy with immune checkpoint inhibitors.

  5. Antiviral T Cells for Adenovirus in the Pretransplant Period: A Bridge Therapy for Severe Combined Immunodeficiency.

    Science.gov (United States)

    Miller, Holly K; Hanley, Patrick J; Lang, Haili; Lazarski, Christopher A; Chorvinsky, Elizabeth A; McCormack, Sarah; Roesch, Lauren; Albihani, Shuroug; Dean, Marcus; Hoq, Fahmida; Adams, Roberta H; Bollard, Catherine M; Keller, Michael D

    2018-05-09

    Viral infections can be life threatening in patients with severe combined immunodeficiency (SCID) and other forms of profound primary immunodeficiency disorders both before and after hematopoietic stem cell transplantation (HSCT). Adoptive immunotherapy with virus-specific T cells (VSTs) has been utilized in many patients in the setting of HSCT, but has very rarely been attempted for treatment of viral infections before HSCT. Here we describe the use of VSTs in an infant with RAG1 SCID who had developed disseminated adenovirus which failed to improve on cidofovir. Adenovirus cleared following 2 doses of VSTs and marrow infusion from a matched unrelated donor, without incidence of graft versus host disease. T cell receptor-b sequencing demonstrated expansion of adenovirus-specific T cell fraction of the VSTs, suggesting that infusion facilitated viral clearance. This report suggests that VSTs are likely safe in the pre-HSCT period, and may be a useful bridge therapy for infants with SCID and persistent viral infections. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  6. Emerging immunotherapeutics in adenocarcinomas: A focus on CAR-T cells.

    Science.gov (United States)

    Yazdanifar, Mahboubeh; Zhou, Ru; Mukherjee, Pinku

    2016-01-01

    More than 80% of all cancers arise from epithelial cells referred to as carcinomas. Adenocarcinomas are the most common type of carcinomas arising from the specialized epithelial cells that line the ducts of our major organs. Despite many advances in cancer therapies, metastatic and treatment-refractory cancers remain the 2 nd leading cause of death. Immunotherapy has offered potential opportunities with specific targeting of tumor cells and inducing remission in many cancer patients. Numerous therapies using antibodies as antagonists or checkpoint inhibitors/immune modulators, peptide or cell vaccines, cytokines, and adoptive T cell therapies have been developed. The most innovative immunotherapy approach so far has been the use of engineered T cell, also referred to as chimeric antigen receptor T cells (CAR-T cells). CAR-T cells are genetically modified naïve T cells that express a chimeric molecule which comprises of the antigen-recognition domains (scFv) of an anti-tumor antibody and one, two, or three intracellular signaling domains of the T cell receptor (TCR). When these engineered T cells recognize and bind to the tumor antigen target via the scFv fragment, a signal is sent to the intracellular TCR domains of the CAR, leading to activation of the T cells to become cytolytic against the tumor cells. CAR-T cell therapy has shown tremendous success for certain hematopoietic malignancies, but this success has not been extrapolated to adenocarcinomas. This is due to multiple factors associated with adenocarcinoma that are different from hematopoietic tumors. Although many advances have been made in targeting multiple cancers by CAR-T cells, clinical trials have shown adverse effects and toxicity related to this treatment. New strategies are yet to be devised to manage side effects associated with CAR-T cell therapies. In this review, we report some of the promising immunotherapeutic strategies being developed for treatment of most common adenocarcinomas with

  7. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...

  8. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy.

    Science.gov (United States)

    Wang, Zhenguang; Han, Weidong

    2018-01-01

    Severe cytokine release syndrome (CRS) and neurotoxicity following chimeric antigen receptor T cell (CAR-T) therapy can be life-threatening in some cases, and management of those toxicities is still a great challenge for physicians. Researchers hope to understand the pathophysiology of CRS and neurotoxicity, and identify predictive biomarkers that can forecast those toxicities in advance. Some risk factors for severe CRS and/or neurotoxicity including patient and treatment characteristics have been identified in multiple clinical trials of CAR-T cell therapy. Moreover, several groups have identified some predictive biomarkers that are able to determine beforehand which patients may suffer severe CRS and/or neurotoxicity during CAR-T cell therapy, facilitating testing of early intervention strategies for those toxicities. However, further studies are needed to better understand the biology and related risk factors for CRS and/or neurotoxicity, and determine if those identified predictors can be extrapolated to other series. Herein, we review the pathophysiology of CRS and neurotoxicity, and summarize the progress of predictive biomarkers to improve CAR-T cell therapy in cancer.

  9. Enhanced CAR T cell therapy: A novel approach for head and neck cancers.

    Science.gov (United States)

    Wang, Songlin; Zhu, Zhao

    2018-05-05

    Head and neck cancer that presents in locally advanced stages often results in a bad prognosis with an increased recurrence rate even after curative resections. Radiation therapy is then applied, with multiple side effects, as adjuvant regional therapy. Because of the high rate of recurrence and mortality, new therapies are needed for patients suffering from head and neck malignant tumors.CAR (chimeric antigen receptor) T cell therapy, which was first devised about 25 years ago, causes the killing or apoptosis of target tumor cells through inducing the secretion of cytokines and granzymes by T cells (Cheadle et al., 2014). CARs are comprised of three canonical domains for antigen recognition, T cell activation, and co-stimulation, and are synthetic receptors that reprogram immune cells for therapeutic treatment of multiple tumors (Sadelain, 2017). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. T-Cell Therapy Using Interleukin-21–Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression

    Science.gov (United States)

    Chapuis, Aude G.; Roberts, Ilana M.; Thompson, John A.; Margolin, Kim A.; Bhatia, Shailender; Lee, Sylvia M.; Sloan, Heather L.; Lai, Ivy P.; Farrar, Erik A.; Wagener, Felecia; Shibuya, Kendall C.; Cao, Jianhong; Wolchok, Jedd D.; Greenberg, Philip D.

    2016-01-01

    Purpose Peripheral blood–derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti–CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8+ T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  11. Antifibrotic Therapy in Simian Immunodeficiency Virus Infection Preserves CD4+ T-Cell Populations and Improves Immune Reconstitution With Antiretroviral Therapy

    Science.gov (United States)

    Estes, Jacob D.; Reilly, Cavan; Trubey, Charles M.; Fletcher, Courtney V.; Cory, Theodore J.; Piatak, Michael; Russ, Samuel; Anderson, Jodi; Reimann, Thomas G.; Star, Robert; Smith, Anthony; Tracy, Russell P.; Berglund, Anna; Schmidt, Thomas; Coalter, Vicky; Chertova, Elena; Smedley, Jeremy; Haase, Ashley T.; Lifson, Jeffrey D.; Schacker, Timothy W.

    2015-01-01

    Even with prolonged antiretroviral therapy (ART), many human immunodeficiency virus-infected individuals have <500 CD4+ T cells/µL, and CD4+ T cells in lymphoid tissues remain severely depleted, due in part to fibrosis of the paracortical T-cell zone (TZ) that impairs homeostatic mechanisms required for T-cell survival. We therefore used antifibrotic therapy in simian immunodeficiency virus-infected rhesus macaques to determine whether decreased TZ fibrosis would improve reconstitution of peripheral and lymphoid CD4+ T cells. Treatment with the antifibrotic drug pirfenidone preserved TZ architecture and was associated with significantly larger populations of CD4+ T cells in peripheral blood and lymphoid tissues. Combining pirfenidone with an ART regimen was associated with greater preservation of CD4+ T cells than ART alone and was also associated with higher pirfenidone concentrations. These data support a potential role for antifibrotic drug treatment as adjunctive therapy with ART to improve immune reconstitution. PMID:25246534

  12. Chimeric Antigen Receptor (CAR) T cells: Lessons Learned from Targeting of CD19 in B cell malignancies

    Science.gov (United States)

    Hay, Kevin A; Turtle, Cameron J

    2017-01-01

    Adoptive immunotherapy with chimeric antigen receptor-modified T (CAR-T) cells is a rapidly growing therapeutic approach to treating patients with refractory cancer, with over 100 clinical trials in various malignancies in progress. The enthusiasm for CAR-T cells has been driven by the clinical success of CD19-targeted CAR-T therapy in B-cell acute lymphoblastic leukemia, and the promising data in B-cell non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Despite the success of targeting CD19 with CAR-T cells in early clinical studies, many challenges remain to improve outcomes, reduce toxicity, and determine the appropriate settings for CAR-T cell immunotherapy. Reviewing the lessons learned thus far in CD19 CAR-T cell trials and how some of these challenges may be overcome will help guide the development of CAR-T cell therapy for malignancies of B-cell origin, as well as for other hematopoietic and non-hematopoietic cancers. PMID:28110394

  13. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside.

    Science.gov (United States)

    Zhang, Qi; Zhang, Zimu; Peng, Meiyu; Fu, Shuyu; Xue, Zhenyi; Zhang, Rongxin

    2016-01-01

    The chimeric antigen receptor (CAR) is a genetically engineered receptor that combines a scFv domain, which specifically recognizes the tumor-specific antigen, with T cell activation domains. CAR-T cell therapies have demonstrated tremendous efficacy against hematologic malignancies in many clinical trials. Recent studies have extended these efforts to the treatment of solid tumors. However, the outcomes of CAR-T cell therapy for solid tumors are not as remarkable as the outcomes have been for hematologic malignancies. A series of hurdles has arisen with respect to CAR-T cell-based immunotherapy, which needs to be overcome to target solid tumors. The major challenge for CAR-T cell therapy in solid tumors is the selection of the appropriate specific antigen to demarcate the tumor from normal tissue. In this review, we discuss the application of CAR-T cells to gastrointestinal and hepatic carcinomas in preclinical and clinical research. Furthermore, we analyze the usefulness of several specific markers in the study of gastrointestinal tumors and hepatic carcinoma.

  14. CAR T-Cell Therapies in Glioblastoma: A First Look.

    Science.gov (United States)

    Migliorini, Denis; Dietrich, Pierre-Yves; Stupp, Roger; Linette, Gerald P; Posey, Avery D; June, Carl H

    2018-02-01

    Glioblastoma is an aggressive malignancy with a poor prognosis. The current standard of care for newly diagnosed glioblastoma patients includes surgery to the extent, temozolomide combined with radiotherapy, and alternating electric fields therapy. After recurrence, there is no standard therapy and survival is less than 9 months. Recurrent glioblastoma offers a unique opportunity to investigate new treatment approaches in a malignancy known for remarkable genetic heterogeneity, an immunosuppressive microenvironment, and a partially permissive anatomic blood-brain barrier. Results from three first-in-man chimeric antigen receptor (CAR) T-cell trials targeting IL13Rα2, Her2/CMV, and EGFRvIII have recently been reported. Each one of these trials addresses important questions, such as T-cell trafficking to CNS, engraftment and persistence, tumor microenvironment remodeling, and monitoring of glioma response to CAR T cells. Objective radiologic responses have been reported. Here, we discuss and summarize the results of these trials and suggest opportunities for the field. Clin Cancer Res; 24(3); 535-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies.

    Science.gov (United States)

    Hay, Kevin A; Turtle, Cameron J

    2017-03-01

    Adoptive immunotherapy with chimeric antigen receptor-modified (CAR)-T cells is a rapidly growing therapeutic approach to treating patients with refractory cancer, with over 100 clinical trials in various malignancies in progress. The enthusiasm for CAR-T cells has been driven by the clinical success of CD19-targeted CAR-T cell therapy in B-cell acute lymphoblastic leukemia, and the promising data in B-cell non-Hodgkin's lymphoma and chronic lymphocytic leukemia. Despite the success of targeting CD19 with CAR-T cells in early clinical studies, many challenges remain to improve outcomes, reduce toxicity, and determine the appropriate settings for CAR-T cell immunotherapy. Reviewing the lessons learned thus far in CD19 CAR-T cell trials and how some of these challenges may be overcome will help guide the development of CAR-T cell therapy for malignancies of B-cell origin, as well as for other hematopoietic and non-hematopoietic cancers.

  16. Clinical translation and regulatory aspects of CAR/TCR-based adoptive cell therapies-the German Cancer Consortium approach.

    Science.gov (United States)

    Krackhardt, Angela M; Anliker, Brigitte; Hildebrandt, Martin; Bachmann, Michael; Eichmüller, Stefan B; Nettelbeck, Dirk M; Renner, Matthias; Uharek, Lutz; Willimsky, Gerald; Schmitt, Michael; Wels, Winfried S; Schüssler-Lenz, Martina

    2018-04-01

    Adoptive transfer of T cells genetically modified by TCRs or CARs represents a highly attractive novel therapeutic strategy to treat malignant diseases. Various approaches for the development of such gene therapy medicinal products (GTMPs) have been initiated by scientists in recent years. To date, however, the number of clinical trials commenced in Germany and Europe is still low. Several hurdles may contribute to the delay in clinical translation of these therapeutic innovations including the significant complexity of manufacture and non-clinical testing of these novel medicinal products, the limited knowledge about the intricate regulatory requirements of the academic developers as well as limitations of funds for clinical testing. A suitable good manufacturing practice (GMP) environment is a key prerequisite and platform for the development, validation, and manufacture of such cell-based therapies, but may also represent a bottleneck for clinical translation. The German Cancer Consortium (DKTK) and the Paul-Ehrlich-Institut (PEI) have initiated joint efforts of researchers and regulators to facilitate and advance early phase, academia-driven clinical trials. Starting with a workshop held in 2016, stakeholders from academia and regulatory authorities in Germany have entered into continuing discussions on a diversity of scientific, manufacturing, and regulatory aspects, as well as the benefits and risks of clinical application of CAR/TCR-based cell therapies. This review summarizes the current state of discussions of this cooperative approach providing a basis for further policy-making and suitable modification of processes.

  17. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    Directory of Open Access Journals (Sweden)

    Vanesa Alonso-Camino

    2013-01-01

    Full Text Available A human single-chain variable fragment (scFv antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs. The repertoire was fused to a first-generation T cell receptor ζ (TCRζ-based chimeric antigen receptor (CAR. We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2 bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR and the selection context (cell synapse, which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.

  18. Transfection of tumor-infiltrating T cells with mRNA encoding CXCR2

    DEFF Research Database (Denmark)

    Idorn, Manja; thor Straten, Eivind Per; Svane, Inge Marie

    2016-01-01

    Adoptive T-cell therapy based on the infusion of patient’s own immune cells after ex vivo culturing is among the most potent forms of personalized treatment among recent clinical developments for the treatment of cancer. However, despite high rates of successful initial clinical responses, only...... infused T cells migrating to the tumor and the clinical response, but also that only a small fraction of adoptively transferred Tcells reach the tumor site. In this chapter, we describe a protocol for transfection of TILs with mRNA encoding the chemokine receptor CXCR2 transiently redirecting...

  19. Neoantigen landscape dynamics during human melanoma-T cell interactions

    DEFF Research Database (Denmark)

    Verdegaal, Els M. E.; De Miranda, Noel F. C. C.; Visser, Marten

    2016-01-01

    Recognition of neoantigens that are formed as a consequence of DNA damage is likely to form a major driving force behind the clinical activity of cancer immunotherapies such as T-cell checkpoint blockade and adoptive T-cell therapy. Therefore, strategies to selectively enhance T-cell reactivity...... against genetically defined neoantigens are currently under development. In mouse models, T-cell pressure can sculpt the antigenicity of tumours, resulting in the emergence of tumours that lack defined mutant antigens. However, whether the T-cell-recognized neoantigen repertoire in human cancers...... by overall reduced expression of the genes or loss of the mutant alleles. Notably, loss of expression of T-cell-recognized neoantigens was accompanied by development of neoantigen-specific T-cell reactivity in tumour-infiltrating lymphocytes. These data demonstrate the dynamic interactions between cancer...

  20. Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities.

    Science.gov (United States)

    Shum, Thomas; Kruse, Robert L; Rooney, Cliona M

    2018-05-04

    Cancer therapy has been transformed by the demonstration that tumor-specific T-cells can eliminate tumor cells in a clinical setting with minimal long-term toxicity. However, significant success in the treatment of leukemia and lymphoma with T-cells using native receptors or redirected with chimeric antigen receptors (CARs) has not been recapitulated in the treatment of solid tumors. This lack of success is likely related to the paucity of costimulatory and cytokine signaling available in solid tumors, in addition to a range of inhibitory mechanisms. Areas covered: We summarize the latest developments in engineered T-cell immunotherapy, describe the limitations of these approaches in treating solid tumors, and finally highlight several strategies that may be useful in mediating solid tumor responses in the future, while also ensuring safety of engineered cells. Expert opinion: CAR-T therapies require further engineering to achieve their potential against solid tumors. Facilitating cytokine signaling in CAR T-cells appears to be essential in achieving better responses. However, the engineering of T-cells with potentially unchecked proliferation and potency raises the question of whether the simultaneous combination of enhancements will prove safe, necessitating continued advancements in regulating CAR-T activity at the tumor site and methods to safely switch off these engineered cells.

  1. Engineered T cells for pancreatic cancer treatment

    Science.gov (United States)

    Katari, Usha L; Keirnan, Jacqueline M; Worth, Anna C; Hodges, Sally E; Leen, Ann M; Fisher, William E; Vera, Juan F

    2011-01-01

    Objective Conventional chemotherapy and radiotherapy produce marginal survival benefits in pancreatic cancer, underscoring the need for novel therapies. The aim of this study is to develop an adoptive T cell transfer approach to target tumours expressing prostate stem cell antigen (PSCA), a tumour-associated antigen that is frequently expressed by pancreatic cancer cells. Methods Expression of PSCA on cell lines and primary tumour samples was confirmed by immunohistochemistry. Healthy donor- and patient-derived T cells were isolated, activated in vitro using CD3/CD28, and transduced with a retroviral vector encoding a chimeric antigen receptor (CAR) targeting PSCA. The ability of these cells to kill tumour cells was analysed by chromium-51 (Cr51) release. Results Prostate stem cell antigen was expressed on >70% of the primary tumour samples screened. Activated, CAR-modified T cells could be readily generated in clinically relevant numbers and were specifically able to kill PSCA-expressing pancreatic cancer cell lines with no non-specific killing of PSCA-negative target cells, thus indicating the potential efficacy and safety of this approach. Conclusions Prostate stem cell antigen is frequently expressed on pancreatic cancer cells and can be targeted for immune-mediated destruction using CAR-modified, adoptively transferred T cells. The safety and efficacy of this approach indicate that it deserves further study and may represent a promising novel treatment for patients with pancreatic cancer. PMID:21843265

  2. Generation of autologous tumor-specific T cells for adoptive transfer based on vaccination, in vitro restimulation and CD3/CD28 dynabead-induced T cell expansion

    DEFF Research Database (Denmark)

    Brimnes, Marie Klinge; Gang, Anne Ortved; Donia, Marco

    2012-01-01

    Adoptive cell transfer (ACT) of in vitro expanded autologous tumor-infiltrating lymphocytes (TIL) has been shown to exert therapeutic efficacy in melanoma patients. We aimed to develop an ACT protocol based on tumor-specific T cells isolated from peripheral blood and in vitro expanded by Dynabeads...

  3. Effect of oxygen levels on the physiology of dendritic cells: implications for adoptive cell therapy.

    Science.gov (United States)

    Futalan, Diahnn; Huang, Chien-Tze; Schmidt-Wolf, Ingo G H; Larsson, Marie; Messmer, Davorka

    2011-01-01

    Dendritic cell (DC)-based adoptive tumor immunotherapy approaches have shown promising results, but the incidence of tumor regression is low and there is an evident call for identifying culture conditions that produce DCs with a more potent Th1 potential. Routinely, DCs are differentiated in CO(2) incubators under atmospheric oxygen conditions (21% O(2)), which differ from physiological oxygen levels of only 3-5% in tissue, where most DCs reside. We investigated whether differentiation and maturation of DCs under physiological oxygen levels could produce more potent T-cell stimulatory DCs for use in adoptive immunotherapy. We found that immature DCs differentiated under physiological oxygen levels showed a small but significant reduction in their endocytic capacity. The different oxygen levels did not influence their stimuli-induced upregulation of cluster of differentiation 54 (CD54), CD40, CD83, CD86, C-C chemokine receptor type 7 (CCR7), C-X-C chemokine receptor type 4 (CXCR4) and human leukocyte antigen (HLA)-DR or the secretion of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-10 in response to lipopolysaccharide (LPS) or a cytokine cocktail. However, DCs differentiated under physiological oxygen level secreted higher levels of IL-12(p70) after exposure to LPS or CD40 ligand. Immature DCs differentiated at physiological oxygen levels caused increased T-cell proliferation, but no differences were observed for mature DCs with regard to T-cell activation. In conclusion, we show that although DCs generated under atmospheric or physiological oxygen conditions are mostly similar in function and phenotype, DCs differentiated under physiological oxygen secrete larger amounts of IL-12(p70). This result could have implications for the use of ex vivo-generated DCs for clinical studies, since DCs differentiated at physiological oxygen could induce increased Th1 responses in vivo.

  4. Preclinical Models in Chimeric Antigen Receptor-Engineered T-Cell Therapy.

    Science.gov (United States)

    Siegler, Elizabeth Louise; Wang, Pin

    2018-05-01

    Cancer immunotherapy has enormous potential in inducing long-term remission in cancer patients, and chimeric antigen receptor (CAR)-engineered T cells have been largely successful in treating hematological malignancies in the clinic. CAR-T therapy has not been as effective in treating solid tumors, in part due to the immunosuppressive tumor microenvironment. Additionally, CAR-T therapy can cause dangerous side effects, including off-tumor toxicity, cytokine release syndrome, and neurotoxicity. Animal models of CAR-T therapy often fail to predict such adverse events and frequently overestimate the efficacy of the treatment. Nearly all preclinical CAR-T studies have been performed in mice, including syngeneic, xenograft, transgenic, and humanized mouse models. Recently, a few studies have used primate models to mimic clinical side effects better. To date, no single model perfectly recapitulates the human immune system and tumor microenvironment, and some models have revealed CAR-T limitations that were contradicted or missed entirely in other models. Careful model selection based on the primary goals of the study is a crucial step in evaluating CAR-T treatment. Advancements are being made in preclinical models, with the ultimate objective of providing safer, more effective CAR-T therapy to patients.

  5. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  6. Optogenetic control of chemokine receptor signal and T-cell migration

    Science.gov (United States)

    Xu, Yuexin; Hyun, Young-Min; Lim, Kihong; Lee, Hyunwook; Cummings, Ryan J.; Gerber, Scott A.; Bae, Seyeon; Cho, Thomas Yoonsang; Lord, Edith M.; Kim, Minsoo

    2014-01-01

    Adoptive cell transfer of ex vivo-generated immune-promoting or tolerogenic T cells to either enhance immunity or promote tolerance in patients has been used with some success. However, effective trafficking of the transferred cells to the target tissue sites is the main barrier to achieving successful clinical outcomes. Here we developed a strategy for optically controlling T-cell trafficking using a photoactivatable (PA) chemokine receptor. Photoactivatable-chemokine C-X-C motif receptor 4 (PA-CXCR4) transmitted intracellular CXCR4 signals in response to 505-nm light. Localized activation of PA-CXCR4 induced T-cell polarization and directional migration (phototaxis) both in vitro and in vivo. Directing light onto the melanoma was sufficient to recruit PA-CXCR4–expressing tumor-targeting cytotoxic T cells and improved the efficacy of adoptive T-cell transfer immunotherapy, with a significant reduction in tumor growth in mice. These findings suggest that the use of photoactivatable chemokine receptors allows remotely controlled leukocyte trafficking with outstanding spatial resolution in tissues and may be feasible in other cell transfer therapies. PMID:24733886

  7. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model

    DEFF Research Database (Denmark)

    Jespersen, Henrik; Lindberg, Mattias F; Donia, Marco

    2017-01-01

    Immune checkpoint inhibitors and adoptive cell transfer (ACT) of autologous tumor-infiltrating T cells have shown durable responses in patients with melanoma. To study ACT and immunotherapies in a humanized model, we have developed PDXv2.0 - a melanoma PDX model where tumor cells and tumor...

  8. Adoptive cell transfer using autologous tumor infiltrating lymphocytes in gynecologic malignancies.

    Science.gov (United States)

    Mayor, Paul; Starbuck, Kristen; Zsiros, Emese

    2018-05-23

    During the last decade, the field of cancer immunotherapy has been entirely transformed by the development of new and more effective treatment modalities with impressive response rates and the prospect of long survival. One of the major breakthroughs is adoptive cell transfer (ACT) based on autologous T cells derived from tumor-infiltrating lymphocytes (TILs). TIL-based ACT is a highly personalized cancer treatment. T cells are harvested from autologous fresh tumor tissues, and after ex vivo activation and extensive expansion, are reinfused to patients. TIL-based therapies have only been offered in small phase I/II studies in a few centers given the highly specialized care required, the complexity of TIL production and the very intensive nature of the three-step treatment protocol. The treatment includes high-dose lymphodepleting chemotherapy, the infusion of the expanded and activated T cells and interleukin-2 (IL-2) injections to increase survival of the T cells. Despite the limited data on ACT, the small published studies consistently confirm an impressive clinical response rate of up to 50% in metastatic melanoma patients, including a significant proportion of patients with durable complete response. These remarkable results justify the need for larger clinical trials in other solid tumors, including gynecologic malignancies. In this review we provide an overview of the current clinical results, future applications of TIL-based ACT in gynecologic malignancies, and on risks and challenges associated with modern T cell therapy. Copyright © 2018. Published by Elsevier Inc.

  9. Chimeric antigen receptor T cell therapy in pancreatic cancer: from research to practice.

    Science.gov (United States)

    Jindal, Vishal; Arora, Ena; Masab, Muhammad; Gupta, Sorab

    2018-05-04

    Chimeric antigen receptor (CAR) T cell therapy is genetically engineered tumor antigen-specific anticancer immunotherapy, which after showing great success in hematological malignancies is currently being tried in advanced solid tumors like pancreatic cancer. Immunosuppressive tumor microenvironment and dense fibrous stroma are some of the limitation in the success of this novel therapy. However, genetic modifications and combination therapy is the topic of the research to improve its efficacy. In this article, we summarize the current state of knowledge, limitations, and future prospects for CAR T cell therapy in pancreatic cancer.

  10. CAR-T therapy for leukemia: progress and challenges.

    Science.gov (United States)

    Wang, Xin; Xiao, Qing; Wang, Zhe; Feng, Wen-Li

    2017-04-01

    Despite the rapid development of therapeutic strategies, leukemia remains a type of difficult-to-treat hematopoietic malignancy that necessitates introduction of more effective treatment options to improve life expectancy and quality of patients. Genetic engineering in adoptively transferred T cells to express antigen-specific chimeric antigen receptors (CARs) has proved highly powerful and efficacious in inducing sustained responses in patients with refractory malignancies, as exemplified by the success of CD19-targeting CAR-T treatment in patients with relapsed acute lymphoblastic leukemia. Recent strategies, including manipulating intracellular activating domains and transducing viral vectors, have resulted in better designed and optimized CAR-T cells. This is further facilitated by the rapid identification of an accumulating number of potential leukemic antigens that may serve as therapeutic targets for CAR-T cells. This review will provide a comprehensive background and scrutinize recent important breakthrough studies on anti-leukemia CAR-T cells, with focus on recently identified antigens for CAR-T therapy design and approaches to overcome critical challenges. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes in Advanced Melanoma Patients

    Directory of Open Access Journals (Sweden)

    Mélanie Saint-Jean

    2018-01-01

    Full Text Available Immunotherapy for melanoma includes adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TILs. This monocenter retrospective study was undertaken to evaluate the efficacy and safety of this treatment of patients with advanced melanoma. All advanced melanoma patients treated with TILs using the same TIL expansion methodology and same treatment interleukin-2 (IL-2 regimen between 2009 and 2012 were included. After sterile intralesional excision of a cutaneous or subcutaneous metastasis, TILs were produced according to a previously described method and then infused into the patient who also received a complementary subcutaneous IL-2 regimen. Nine women and 1 man were treated for unresectable stage IIIC (n=4 or IV (n=6 melanoma. All but 1 patient with unresectable stage III melanoma (1st line had received at least 2 previous treatments, including anti-CTLA-4 antibody for 4. The number of TILs infused ranged from 0.23 × 109 to 22.9 × 109. Regarding safety, no serious adverse effect was reported. Therapeutic responses included a complete remission, a partial remission, 2 stabilizations, and 6 progressions. Among these 4 patients with clinical benefit, 1 is still alive with 9 years of follow-up and 1 died from another cause after 8 years of follow-up. Notably, patients treated with high percentages of CD4 + CD25 + CD127lowFoxp3+ T cells among their TILs had significantly shorter OS. The therapeutic effect of combining TILs with new immunotherapies needs further investigation.

  12. Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line.

    Science.gov (United States)

    Gomes-Silva, Diogo; Ramos, Carlos A

    2018-02-01

    The focus of cancer treatment has recently shifted toward targeted therapies, including immunotherapy, which allow better individualization of care and are hoped to increase the probability of success for patients. Specifically, T cells genetically modified to express chimeric antigen receptors (CARs; CAR-T cells) have generated exciting results. Recent clinical successes with this cutting-edge therapy have helped to push CAR-T cells toward approval for wider use. However, several limitations need to be addressed before the widespread use of CAR-T cells as a standard treatment. Here, a succinct background on adoptive T-cell therapy (ATCT)is given. A brief overview of the structure of CARs, how they are introduced into T cells, and how CAR-T cell expansion and selection is achieved in vitro is then presented. Some of the challenges in CAR design are discussed, as well as the difficulties that arise in large-scale CAR-T cell manufacture that will need to be addressed to achieve successful commercialization of this type of cell therapy. Finally, developments already on the horizon are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion.

    Science.gov (United States)

    Kaartinen, Tanja; Luostarinen, Annu; Maliniemi, Pilvi; Keto, Joni; Arvas, Mikko; Belt, Heini; Koponen, Jonna; Loskog, Angelica; Mustjoki, Satu; Porkka, Kimmo; Ylä-Herttuala, Seppo; Korhonen, Matti

    2017-06-01

    Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (T SCM , CD95 + CD45RO - CD45RA + CD27 + ) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CAR T cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CAR T cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10-fold cell expansion and the cells were functionally potent. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost-effective T-cell manufacturing. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  15. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    Science.gov (United States)

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  16. The effect of extracorporeal photopheresis alone or in combination therapy on circulating CD4+Foxp3+CD25- T-cells in patients with leukemic cutaneous T-cell lymphoma

    Science.gov (United States)

    Shiue, Lisa H.; Couturier, Jacob; Lewis, Dorothy E.; Wei, Caimiao; Ni, Xiao; Duvic, Madeleine

    2015-01-01

    Purpose Extracorporeal photopheresis (ECP) alone or in combination therapy is effective for treatment of leukemic cutaneous T-cell lymphoma (L-CTCL), but its mechanism(s) of action remain unclear. This study was designed to investigate the effect of ECP on regulatory T-cell and CD8+ T-cells in L-CTCL patients. Experimental Design Peripheral blood from 18 L-CTCL patients at baseline, Day 2, 1-month, 3-month, and 6-month post-ECP therapy were analyzed by flow cytometry for CD4+CD25+/high, CD4+Foxp3+CD25+/-, CD3+CD8+, CD3+CD8+CD69+, and CD3+CD8+IFN-γ+ T-cells. Clinical responses were assessed and correlated with changes in these T-cell subsets. Results Twelve of 18 patients achieved clinical responses. The average baseline number of CD4+CD25+/high T-cells of PBMCs in L-CTCL patients was normal (2.2%), but increased at 6-month post-therapy (4.3%, p<0.01). The average baseline number of CD4+Foxp3+ T-cells out of CD4+ T-cells in 9 evaluable patients was high (66.8±13.7%), mostly CD25 negative. The levels of CD4+Foxp3+ T cells in responders were higher (n=6, 93.1±5.7%) than non-responders (n=3, 14.2±16.0%, p<0.01), and they declined in parallel with malignant T-cells. The numbers of CD3+CD8+CD69+ and CD3+CD8+ IFN-γ+ T-cells increased at 3-month post-therapy in 5 of 6 patients studied. Conclusions ECP alone or in combination therapy might be effective in L-CTCL patients whose malignant T-cells have a CD4+Foxp3+CD25- phenotype. PMID:25772268

  17. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation.

    Science.gov (United States)

    Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey; Sukumaran, Sujita; Watanabe, Norihiro; Hoyos, Valentina; Lulla, Premal; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F

    2018-05-10

    The adoptive transfer of T cells redirected to tumor via chimeric antigen receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to breast cancer, we generated CAR T cells directed against mucin1 (MUC1), an aberrantly glycosylated neoantigen that is overexpressed by malignant cells and whose expression has been correlated with poor prognosis. Furthermore, to protect our tumor-targeted cells from the elevated levels of immune-inhibitory cytokines present in the tumor milieu, we co-expressed an inverted cytokine receptor linking the IL4 receptor exodomain with the IL7 receptor endodomain (4/7ICR) in order to transform the suppressive IL4 signal into one that would enhance the anti-tumor effects of our CAR T cells at the tumor site. First (1G - CD3ζ) and second generation (2G - 41BB.CD3ζ) MUC1-specific CARs were constructed using the HMFG2 scFv. Following retroviral transduction transgenic expression of the CAR±ICR was assessed by flow cytometry. In vitro CAR/ICR T cell function was measured by assessing cell proliferation and short- and long-term cytotoxic activity using MUC1+ MDA MB 468 cells as targets. In vivo anti-tumor activity was assessed using IL4-producing MDA MB 468 tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. In the IL4-rich tumor milieu, 1G CAR.MUC1 T cells failed to expand or kill MUC1+ tumors and while co-expression of the 4/7ICR promoted T cell expansion, in the absence of co-stimulatory signals the outgrowing cells exhibited an exhausted phenotype characterized by PD-1 and TIM3 upregulation and failed to control tumor growth. However, by co-expressing 2G CAR.MUC1 (signal 1 - activation + signal 2 - co-stimulation) and 4/7ICR (signal 3 - cytokine), transgenic T cells selectively expanded at the tumor site and produced potent and durable tumor control in vitro and in vivo. Our findings demonstrate the feasibility of targeting breast

  18. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia.

    Science.gov (United States)

    Zhou, Qing; Munger, Meghan E; Highfill, Steven L; Tolar, Jakub; Weigel, Brenda J; Riddle, Megan; Sharpe, Arlene H; Vallera, Daniel A; Azuma, Miyuki; Levine, Bruce L; June, Carl H; Murphy, William J; Munn, David H; Blazar, Bruce R

    2010-10-07

    Tumor-induced immune defects can weaken host immune response and permit tumor cell growth. In a systemic model of murine acute myeloid leukemia (AML), tumor progression resulted in increased regulatory T cells (Treg) and elevation of program death-1 (PD-1) expression on CD8(+) cytotoxic T cells (CTLs) at the tumor site. PD-1 knockout mice were more resistant to AML despite the presence of similar percentage of Tregs compared with wild type. In vitro, intact Treg suppression of CD8(+) T-cell responses was dependent on PD-1 expression by T cells and Tregs and PD-L1 expression by antigen-presenting cells. In vivo, the function of adoptively transferred AML-reactive CTLs was reduced by AML-associated Tregs. Anti-PD-L1 monoclonal antibody treatment increased the proliferation and function of CTLs at tumor sites, reduced AML tumor burden, and resulted in long-term survivors. Treg depletion followed by PD-1/PD-L1 blockade showed superior efficacy for eradication of established AML. These data demonstrated that interaction between PD-1 and PD-L1 can facilitate Treg-induced suppression of T-effector cells and dampen the antitumor immune response. PD-1/PD-L1 blockade coupled with Treg depletion represents an important new approach that can be readily translated into the clinic to improve the therapeutic efficacy of adoptive AML-reactive CTLs in advanced AML disease.

  19. Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms.

    Science.gov (United States)

    Bagnara, Davide; Ibatici, Adalberto; Corselli, Mirko; Sessarego, Nadia; Tenca, Claudya; De Santanna, Amleto; Mazzarello, Andrea; Daga, Antonio; Corvò, Renzo; De Rossi, Giulio; Frassoni, Francesco; Ciccone, Ermanno; Fais, Franco

    2009-07-01

    CD1d is a monomorphic antigen presentation molecule expressed in several hematologic malignancies. Alpha-galactosylceramide (alpha-GalCer) is a glycolipid that can be presented to cytotoxic CD1d-restricted T cells. These reagents represent a potentially powerful tool for cell mediated immunotherapy. We set up an experimental model to evaluate the use of adoptively transferred cytotoxic CD1d-restricted T cells and alpha-GalCer in the treatment of mice engrafted with CD1d(+) lymphoid neoplastic cells. To this end the C1R cell line was transfected with CD1c or CD1d molecules. In addition, upon retroviral infection firefly luciferase was expressed on C1R transfected cell lines allowing the evaluation of tumor growth in xenografted immunodeficient NOD/SCID mice. The C1R-CD1d cell line was highly susceptible to specific CD1d-restricted T cell cytotoxicity in the presence alpha-GalCer in vitro. After adoptive transfer of CD1d-restricted T cells and alpha-GalCer to mice engrafted with both C1R-CD1c and C1R-CD1d, a reduction in tumor growth was observed only in CD1d(+) masses. In addition, CD1d-restricted T-cell treatment plus alpha-GalCer eradicated small C1R-CD1d(+) nodules. Immunohistochemical analysis revealed that infiltrating NKT cells were mainly observed in CD1d nodules. Our results indicate that ex vivo expanded cytotoxic CD1d-restricted T cells and alpha-GalCer may represent a new immunotherapeutic tool for treatment of CD1d(+) hematologic malignancies.

  20. B-cell-rich T-cell lymphoma associated with Epstein-Barr virus-reactivation and T-cell suppression following antithymocyte globulin therapy in a patient with severe aplastic anemia

    Directory of Open Access Journals (Sweden)

    Nobuyoshi Hanaoka

    2015-09-01

    Full Text Available B-cell lymphoproliferative disorder (B-LPD is generally characterized by the proliferation of Epstein-Barr virus (EBV-infected B lymphocytes. We here report the development of EBV-negative B-LPD associated with EBV-reactivation following antithymocyte globulin (ATG therapy in a patient with aplastic anemia. The molecular autopsy study showed the sparse EBV-infected clonal T cells could be critically involved in the pathogenesis of EBV-negative oligoclonal B-LPD through cytokine amplification and escape from T-cell surveillances attributable to ATG-based immunosuppressive therapy, leading to an extremely rare B-cell-rich T-cell lymphoma. This report helps in elucidating the complex pathophysiology of intractable B-LPD refractory to rituximab.

  1. Genetic modification of T cells improves the effectiveness of adoptive tumor immunotherapy.

    Science.gov (United States)

    Jakóbisiak, Marek; Gołab, Jakub

    2010-10-01

    Appropriate combinations of immunotherapy and gene therapy promise to be more effective in the treatment of cancer patients than either of these therapeutic approaches alone. One such treatment is based on the application of patients' cytotoxic T cells, which can be activated, expanded, and genetically engineered to recognize particular tumor-associated antigens (TAAs). Because T cells recognizing TAAs might become unresponsive in the process of tumor development as a result of tumor evasion strategies, immunogenic viral antigens or alloantigens could be used for the expansion of cytotoxic T cells and then redirected through genetic engineering. This therapeutic approach has already demonstrated promising results in melanoma patients and could be used in the treatment of many other tumors. The graft-versus-leukemia, or more generally graft-versus-tumor, reaction based on the application of a donor lymphocyte infusion can also be ameliorated through the incorporation of suicide genes into donor lymphocytes. Such lymphocytes could be safely and more extensively used in tumor patients because they could be eliminated should a severe graft-versus-host reaction develop.

  2. Versatile strategy for controlling the specificity and activity of engineered T cells

    Science.gov (United States)

    Ma, Jennifer S. Y.; Kim, Ji Young; Kazane, Stephanie A.; Choi, Sei-hyun; Yun, Hwa Young; Kim, Min Soo; Rodgers, David T.; Pugh, Holly M.; Singer, Oded; Sun, Sophie B.; Fonslow, Bryan R.; Kochenderfer, James N.; Wright, Timothy M.; Schultz, Peter G.; Young, Travis S.; Kim, Chan Hyuk; Cao, Yu

    2016-01-01

    The adoptive transfer of autologous T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a promising cancer therapy. Despite impressive clinical efficacy, the general application of current CAR–T-cell therapy is limited by serious treatment-related toxicities. One approach to improve the safety of CAR-T cells involves making their activation and proliferation dependent upon adaptor molecules that mediate formation of the immunological synapse between the target cancer cell and T-cell. Here, we describe the design and synthesis of structurally defined semisynthetic adaptors we refer to as “switch” molecules, in which anti-CD19 and anti-CD22 antibody fragments are site-specifically modified with FITC using genetically encoded noncanonical amino acids. This approach allows the precise control over the geometry and stoichiometry of complex formation between CD19- or CD22-expressing cancer cells and a “universal” anti-FITC–directed CAR-T cell. Optimization of this CAR–switch combination results in potent, dose-dependent in vivo antitumor activity in xenograft models. The advantage of being able to titrate CAR–T-cell in vivo activity was further evidenced by reduced in vivo toxicity and the elimination of persistent B-cell aplasia in immune-competent mice. The ability to control CAR-T cell and cancer cell interactions using intermediate switch molecules may expand the scope of engineered T-cell therapy to solid tumors, as well as indications beyond cancer therapy. PMID:26759368

  3. Mechanisms of immunological eradication of a syngeneic guinea pig tumor. II. Effect of methotrexate treatment and T cell depletion of the recipient on adoptive immunity

    International Nuclear Information System (INIS)

    Shu, S.; Fonseca, L.S.; Hunter, J.T.; Rapp, H.J.

    1983-01-01

    The influence of methotrexate on the development of immunity to the line 10 hepatoma was studied in guinea pigs. Chronic methotrexate treatment had no apparent effect on the ability of immune guinea pigs to suppress the growth of inoculated tumor cells. In contrast, the same methotrexate regimen inhibited the development of tumor immunity if started before the 8th day after immunization with a vaccine containing viable line 10 cells admixed with Bacillus Calmette-Guerin (BCG) cell walls. Thus, methotrexate selectively inhibited the afferent limb of the immune response. In adoptive transfer experiments, methotrexate-treated recipient guinea pigs were capable of being passively sensitized with immune spleen cells, indicating that the primary cell-mediated immune response of the recipient was not required for adoptive immunity. The contribution of recipient T cells in adoptive immunity was further investigated in guinea pigs deleted of T cells by thymectomy, irradiation, and bone marrow reconstitution. Despite demonstrable deficiency in T lymphocyte reactions, B animals were fully capable of rejecting tumors after transfer of immune cells. These results suggest that the expression of adoptive immunity was independent of recipient T cell participation. In addition, sublethal irradiation of immune spleen cells prior to adoptive transfer abolished their efficacy. Proliferation of transferred immune cells in the recipient may be essential for expression of adoptive immunity

  4. T-cell receptor transfer into human T cells with ecotropic retroviral vectors.

    Science.gov (United States)

    Koste, L; Beissert, T; Hoff, H; Pretsch, L; Türeci, Ö; Sahin, U

    2014-05-01

    Adoptive T-cell transfer for cancer immunotherapy requires genetic modification of T cells with recombinant T-cell receptors (TCRs). Amphotropic retroviral vectors (RVs) used for TCR transduction for this purpose are considered safe in principle. Despite this, TCR-coding and packaging vectors could theoretically recombine to produce replication competent vectors (RCVs), and transduced T-cell preparations must be proven free of RCV. To eliminate the need for RCV testing, we transduced human T cells with ecotropic RVs so potential RCV would be non-infectious for human cells. We show that transfection of synthetic messenger RNA encoding murine cationic amino-acid transporter 1 (mCAT-1), the receptor for murine retroviruses, enables efficient transient ecotropic transduction of human T cells. mCAT-1-dependent transduction was more efficient than amphotropic transduction performed in parallel, and preferentially targeted naive T cells. Moreover, we demonstrate that ecotropic TCR transduction results in antigen-specific restimulation of primary human T cells. Thus, ecotropic RVs represent a versatile, safe and potent tool to prepare T cells for the adoptive transfer.

  5. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    Directory of Open Access Journals (Sweden)

    Gunter Rappl

    Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

  6. An Analysis of Natural T Cell Responses to Predicted Tumor Neoepitopes

    DEFF Research Database (Denmark)

    Bjerregaard, Anne-Mette; Nielsen, Morten; Jurtz, Vanessa Isabell

    2017-01-01

    Personalization of cancer immunotherapies such as therapeutic vaccines and adoptive T-cell therapy may benefit from efficient identification and targeting of patient-specific neoepitopes. However, current neoepitope prediction methods based on sequencing and predictions of epitope processing...

  7. CAR-T cells: the long and winding road to solid tumors.

    Science.gov (United States)

    D'Aloia, Maria Michela; Zizzari, Ilaria Grazia; Sacchetti, Benedetto; Pierelli, Luca; Alimandi, Maurizio

    2018-02-15

    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles.

  8. A Rapid Cell Expansion Process for Production of Engineered Autologous CAR-T Cell Therapies.

    Science.gov (United States)

    Lu, Tangying Lily; Pugach, Omar; Somerville, Robert; Rosenberg, Steven A; Kochenderfer, James N; Better, Marc; Feldman, Steven A

    2016-12-01

    The treatment of B-cell malignancies by adoptive cell transfer (ACT) of anti-CD19 chimeric antigen receptor T cells (CD19 CAR-T) has proven to be a highly successful therapeutic modality in several clinical trials. 1-6 The anti-CD19 CAR-T cell production method used to support initial trials relied on numerous manual, open process steps, human serum, and 10 days of cell culture to achieve a clinical dose. 7 This approach limited the ability to support large multicenter clinical trials, as well as scale up for commercial cell production. Therefore, studies were completed to streamline and optimize the original National Cancer Institute production process by removing human serum from the process in order to minimize the risk of viral contamination, moving process steps from an open system to functionally closed system operations in order to minimize the risk of microbial contamination, and standardizing additional process steps in order to maximize process consistency. This study reports a procedure for generating CD19 CAR-T cells in 6 days, using a functionally closed manufacturing process and defined, serum-free medium. This method is able to produce CD19 CAR-T cells that are phenotypically and functionally indistinguishable from cells produced for clinical trials by the previously described production process.

  9. Chimeric antigen receptor (CAR T cell therapy for malignant cancers: Summary and perspective

    Directory of Open Access Journals (Sweden)

    Aaron J. Smith

    2016-11-01

    Full Text Available This paper will summarize the data obtained primarily from the last decade of chimeric antigen receptor (CAR T cell immunotherapy. It will do so in a manner that provides an overview needed to set the foundation for perspective on the state of research associated with CAR T cell therapy. The topics covered will include the construction of engineered CAR T cells from the standpoint of the different generations, the mode in which autologous T cells are transfected, the various biomarkers that have been used in CAR T cell immunotherapy, and setbacks associated with engineered T cells. Perspective on priorities of CAR T cell immunotherapy will also be addressed as they are related to safety and efficacy.

  10. Human cytomegalovirus antigens in malignant gliomas as targets for adoptive cellular therapy

    Directory of Open Access Journals (Sweden)

    Daniel eLandi

    2014-11-01

    Full Text Available Malignant gliomas are the most common primary brain tumor in adults, with over 12,000 new cases diagnosed in the United States each year. Over the last decade, investigators have reliably identified human cytomegalovirus (HCMV proteins, nucleic acids, and virions in most high-grade gliomas, including glioblastoma (GBM. This discovery is significant because human cytomegalovirus gene products can be targeted by immune-based therapies.In this review, we describe the current level of understanding regarding the presence and role in pathogenesis of HCMV in GBM. We describe our success detecting and expanding HCMV-specific cytotoxic T lymphocytes to kill GBM cells and explain how these cells can be used as a platform for enhanced cellular therapies. We discuss alternative approaches that capitalize on HCMV infection to treat patients with HCMV-positive tumors. Adoptive cellular therapy for HCMV-positive GBM has been tried in a small number of patients with some benefit, but we reason why, to date, these approaches generally fail to generate long-term remission or cure. We conjecture how cellular therapy for GBM can be improved and describe the barriers that must be overcome to cure these patients.

  11. Adoptive immunotherapy using PRAME-specific T cells in medulloblastoma.

    Science.gov (United States)

    Orlando, Domenico; Miele, Evelina; De Angelis, Biagio; Guercio, Marika; Boffa, Iolanda; Sinibaldi, Matilde; Po, Agnese; Caruana, Ignazio; Abballe, Luana; Carai, Andrea; Caruso, Simona; Camera, Antonio; Moseley, Annemarie; Hagedoorn, Renate S; Heemskerk, Mirjam H M; Giangaspero, Felice; Mastronuzzi, Angela; Ferretti, Elisabetta; Locatelli, Franco; Quintarelli, Concetta

    2018-04-03

    Medulloblastoma is the most frequent malignant childhood brain tumor with a high morbidity. Identification of new therapeutic targets would be instrumental in improving patient outcomes. We evaluated the expression of the tumor-associated antigen PRAME in biopsies from 60 medulloblastoma patients. PRAME expression was detectable in 82% of tissues independent of molecular and histopathologic subgroups. High PRAME expression also correlated with worse overall survival. We next investigated the relevance of PRAME as a target for immunotherapy. Medulloblastoma cells were targeted using genetically modified T cells with a PRAME-specific TCR (SLL TCR T cells). SLL TCR T cells efficiently killed medulloblastoma HLA-A*02+ DAOY cells as well as primary HLA-A*02+ medulloblastoma cells. Moreover, SLL TCR T cells controlled tumor growth in an orthotopic mouse model of medulloblastoma. To prevent unexpected T cell-related toxicity,an inducible caspase 9 (iC9) gene was introduced in frame with the SLL TCR; this safety switch triggered prompt elimination of genetically-modified T cells. Altogether, these data indicate that T cells genetically modified with a high-affinity, PRAME-specific TCR and iC9 may represent a promising innovative approach for treating HLA-A*02+ medulloblastoma patients. Copyright ©2018, American Association for Cancer Research.

  12. Scientists adopt new strategy to find Huntington's disease therapies

    Science.gov (United States)

    ... Links PubMed Stem Cell Information OppNet NIDB NIH Blueprint for Neuroscience Research Institutes at NIH List of ... Release Friday, August 7, 2015 Scientists adopt new strategy to find Huntington’s disease therapies A skyline view ...

  13. IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas.

    Directory of Open Access Journals (Sweden)

    Xin Huang

    Full Text Available Patients with metastatic or recurrent and refractory sarcomas have a dismal prognosis. Therefore, new targeted therapies are urgently needed. This study was designed to evaluate chimeric antigen receptor (CAR T cells targeting the type I insulin-like growth factor receptor (IGF1R or tyrosine kinase-like orphan receptor 1 (ROR1 molecules for their therapeutic potential against sarcomas. Here, we report that IGF1R (15/15 and ROR1 (11/15 were highly expressed in sarcoma cell lines including Ewing sarcoma, osteosarcoma, alveolar or embryonal rhabdomyosarcoma, and fibrosarcoma. IGF1R and ROR1 CAR T cells derived from eight healthy donors using the Sleeping Beauty (SB transposon system were cytotoxic against sarcoma cells and produced high levels of IFN-γ, TNF-α and IL-13 in an antigen-specific manner. IGF1R and ROR1 CAR T cells generated from three sarcoma patients released significant amounts of IFN-γ in response to sarcoma stimulation. The adoptive transfer of IGF1R and ROR1 CAR T cells derived from a sarcoma patient significantly reduced tumor growth in pre-established, systemically disseminated and localized osteosarcoma xenograft models in NSG mice. Infusion of IGF1R and ROR1 CAR T cells also prolonged animal survival in a localized sarcoma model using NOD/scid mice. Our data indicate that both IGF1R and ROR1 can be effectively targeted by SB modified CAR T cells and that such CAR T cells may be useful in the treatment of high risk sarcoma patients.

  14. Improving the Safety of Cell Therapy Products by Suicide Gene Transfer

    Directory of Open Access Journals (Sweden)

    Antonio eDi Stasi

    2014-11-01

    Full Text Available Adoptive T-cell therapy can involve donor lymphocyte infusion (DLI after allogeneic hematopoietic stem cell transplantation, the administration of tumor infiltrating lymphocyte (TILs expanded ex-vivo, or more recently the use of T cell receptor (TCR or chimeric antigen receptor (CAR redirected T cells. However cellular therapies can pose significant risks, including graft-versus-host-disease and other on and off-target effects, and therefore strategies need to be implemented to permanently reverse any sign of toxicity. A suicide gene is a genetically encoded molecule that allows selective destruction of adoptively transferred cells. Suicide gene addition to cellular therapeutic products can lead to selective ablation of gene-modified cells, preventing collateral damage to contiguous cells and/or tissues. The ‘ideal’ suicide gene would ensure the safety of gene modified cellular applications by granting irreversible elimination of ‘all’ and ‘only’ the cells responsible for the unwanted toxicity. This review presents the suicide gene safety systems reported to date, with a focus on the state-of-the-art and potential applications regarding two of the most extensively validated suicide genes, including the clinical setting: herpes-simplex-thymidine-kinase (HSV-TK and inducible-caspase-9 (iCasp9.

  15. Transfer of in vitro expanded T lymphocytes after activation with dendritomas prolonged survival of mice challenged with EL4 tumor cells.

    Science.gov (United States)

    Li, Jinhua; Theofanous, Leigh; Stickel, Sara; Bouton-Verville, Hilary; Burgin, Kelly E; Jakubchak, Susan; Wagner, Thomas E; Wei, Yanzhang

    2007-07-01

    Adoptive T cell transfer after in vitro expansion represents an attractive cancer immunotherapy. The majority of studies so far have been focusing on the expansion of tumor infiltrated lymphocytes (TIL) and some have shown very encouraging results. Recently, we have developed a unique tumor immune response activator, dendritomas, by fusion of dendritic cells and tumor cells. Animal studies and early clinical trials have shown that dendritomas are able to activate tumor specific immune responses. In this study, we hypothesized that naïve T cells can be primed with dendritomas and expanded in vitro to develop an adoptive transfer therapy for patients who do not have solid tumors, such as leukemia. T cells were isolated and purified from lymph nodes of mice. The cells were then incubated with dendritomas made from syngeneic DCs and tumor cells and expanded in vitro using Dynabeads mouse CD3/CD28 T cell expander for approximately three weeks. The in vitro primed and expanded T cells showed tumor cell specific CTL activity and increased secretion of IFN-gamma. Tumor bearing mice receiving the in vitro expanded T cells survived significantly longer than control mice. Furthermore, the depletion of regulator T cells enhanced the survival of the mice that received the adoptive transfer therapy.

  16. Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer.

    Science.gov (United States)

    Liu, Hong; Xu, Yiyang; Xiang, Jingyi; Long, Li; Green, Shon; Yang, Zhiyuan; Zimdahl, Bryan; Lu, Jingwei; Cheng, Neal; Horan, Lucas H; Liu, Bin; Yan, Su; Wang, Pei; Diaz, Juan; Jin, Lu; Nakano, Yoko; Morales, Javier F; Zhang, Pengbo; Liu, Lian-Xing; Staley, Binnaz K; Priceman, Saul J; Brown, Christine E; Forman, Stephen J; Chan, Vivien W; Liu, Cheng

    2017-01-15

    The majority of tumor-specific antigens are intracellular and/or secreted and therefore inaccessible by conventional chimeric antigen receptor (CAR) T-cell therapy. Given that all intracellular/secreted proteins are processed into peptides and presented by class I MHC on the surface of tumor cells, we used alpha-fetoprotein (AFP), a specific liver cancer marker, as an example to determine whether peptide-MHC complexes can be targets for CAR T-cell therapy against solid tumors. We generated a fully human chimeric antigen receptor, ET1402L1-CAR (AFP-CAR), with exquisite selectivity and specificity for the AFP 158-166 peptide complexed with human leukocyte antigen (HLA)-A*02:01. We report that T cells expressing AFP-CAR selectively degranulated, released cytokines, and lysed liver cancer cells that were HLA-A*02:01 + /AFP + while sparing cells from multiple tissue types that were negative for either expressed proteins. In vivo, intratumoral injection of AFP-CAR T cells significantly regressed both Hep G2 and AFP 158 -expressing SK-HEP-1 tumors in SCID-Beige mice (n = 8 for each). Moreover, intravenous administration of AFP-CAR T cells in Hep G2 tumor-bearing NSG mice lead to rapid and profound tumor growth inhibition (n = 6). Finally, in an established intraperitoneal liver cancer xenograft model, AFP-CAR T cells showed robust antitumor activity (n = 6). This study demonstrates that CAR T-cell immunotherapy targeting intracellular/secreted solid tumor antigens can elicit a potent antitumor response. Our approach expands the spectrum of antigens available for redirected T-cell therapy against solid malignancies and offers a promising new avenue for liver cancer immunotherapy. Clin Cancer Res; 23(2); 478-88. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Recent advances in T-cell engineering for use in immunotherapy [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Preeti Sharma

    2016-09-01

    Full Text Available Adoptive T-cell therapies have shown exceptional promise in the treatment of cancer, especially B-cell malignancies. Two distinct strategies have been used to redirect the activity of ex vivo engineered T cells. In one case, the well-known ability of the T-cell receptor (TCR to recognize a specific peptide bound to a major histocompatibility complex molecule has been exploited by introducing a TCR against a cancer-associated peptide/human leukocyte antigen complex. In the other strategy, synthetic constructs called chimeric antigen receptors (CARs that contain antibody variable domains (single-chain fragments variable and signaling domains have been introduced into T cells. Whereas many reviews have described these two approaches, this review focuses on a few recent advances of significant interest. The early success of CARs has been followed by questions about optimal configurations of these synthetic constructs, especially for efficacy against solid tumors. Among the many features that are important, the dimensions and stoichiometries of CAR/antigen complexes at the synapse have recently begun to be appreciated. In TCR-mediated approaches, recent evidence that mutated peptides (neoantigens serve as targets for endogenous T-cell responses suggests that these neoantigens may also provide new opportunities for adoptive T-cell therapies with TCRs.

  18. Increased T cell trafficking as adjunct therapy for HIV-1

    Science.gov (United States)

    Wolinsky, Steven M.; McLean, Angela R.

    2018-01-01

    Although antiretroviral drug therapy suppresses human immunodeficiency virus-type 1 (HIV-1) to undetectable levels in the blood of treated individuals, reservoirs of replication competent HIV-1 endure. Upon cessation of antiretroviral therapy, the reservoir usually allows outgrowth of virus and approaches to targeting the reservoir have had limited success. Ongoing cycles of viral replication in regions with low drug penetration contribute to this persistence. Here, we use a mathematical model to illustrate a new approach to eliminating the part of the reservoir attributable to persistent replication in drug sanctuaries. Reducing the residency time of CD4 T cells in drug sanctuaries renders ongoing replication unsustainable in those sanctuaries. We hypothesize that, in combination with antiretroviral drugs, a strategy to orchestrate CD4 T cell trafficking could contribute to a functional cure for HIV-1 infection. PMID:29499057

  19. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.

    Science.gov (United States)

    Ren, Jiangtao; Zhao, Yangbing

    2017-09-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR) T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.

  20. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Jiangtao Ren

    2017-04-01

    Full Text Available ABSTRACT The clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated 9 (CRISPR/Cas9 system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.

  1. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors.

    Science.gov (United States)

    Smith, Tyrel T; Moffett, Howell F; Stephan, Sirkka B; Opel, Cary F; Dumigan, Amy G; Jiang, Xiuyun; Pillarisetty, Venu G; Pillai, Smitha P S; Wittrup, K Dane; Stephan, Matthias T

    2017-06-01

    Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.

  2. Young T cells age during a redirected anti-tumour attack: chimeric antigen receptor (CAR-provided dual costimulation is half the battle.

    Directory of Open Access Journals (Sweden)

    Andreas A Hombach

    2013-06-01

    Full Text Available Adoptive therapy with chimeric antigen receptor (CAR-redirected T cells showed spectacular efficacy in the treatment of leukaemia in recent early phase trials. Patient's T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG-1+ CD57+ CD7- CCR7- phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134 stimulation. We discuss the strategy with respect to prolong the anti-tumour response and to improve the over-all efficacy of adoptive cell therapy.

  3. Tumor-Targeted Human T Cells Expressing CD28-Based Chimeric Antigen Receptors Circumvent CTLA-4 Inhibition.

    Directory of Open Access Journals (Sweden)

    Maud Condomines

    Full Text Available Adoptive T cell therapy represents a promising treatment for cancer. Human T cells engineered to express a chimeric antigen receptor (CAR recognize and kill tumor cells in a MHC-unrestricted manner and persist in vivo when the CAR includes a CD28 costimulatory domain. However, the intensity of the CAR-mediated CD28 activation signal and its regulation by the CTLA-4 checkpoint are unknown. We investigated whether T cells expressing an anti-CD19, CD3 zeta and CD28-based CAR (19-28z displayed the same proliferation and anti-tumor abilities than T cells expressing a CD3 zeta-based CAR (19z1 costimulated through the CD80/CD28, ligand/receptor pathway. Repeated in vitro antigen-specific stimulations indicated that 19-28z+ T cells secreted higher levels of Th1 cytokines and showed enhanced proliferation compared to those of 19z1+ or 19z1-CD80+ T cells. In an aggressive pre-B cell leukemia model, mice treated with 19-28z+ T cells had 10-fold reduced tumor progression compared to those treated with 19z1+ or 19z1-CD80+ T cells. shRNA-mediated CTLA-4 down-regulation in 19z1-CD80+ T cells significantly increased their in vivo expansion and anti-tumor properties, but had no effect in 19-28z+ T cells. Our results establish that CTLA-4 down-regulation may benefit human adoptive T cell therapy and demonstrate that CAR design can elude negative checkpoints to better sustain T cell function.

  4. Genetically modified T cells in cancer therapy: opportunities and challenges

    Directory of Open Access Journals (Sweden)

    Michaela Sharpe

    2015-04-01

    Full Text Available Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR or through introducing antibody-like recognition in chimeric antigen receptors (CARs have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies.

  5. Regional Delivery of Chimeric Antigen Receptor (CAR) T-Cells for Cancer Therapy.

    Science.gov (United States)

    Sridhar, Praveen; Petrocca, Fabio

    2017-07-18

    Chimeric Antigen Receptor (CAR) T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.

  6. Regional Delivery of Chimeric Antigen Receptor (CAR T-Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Praveen Sridhar

    2017-07-01

    Full Text Available Chimeric Antigen Receptor (CAR T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.

  7. In Vitro T-Cell Generation From Adult, Embryonic, and Induced Pluripotent Stem Cells: Many Roads to One Destination.

    Science.gov (United States)

    Smith, Michelle J; Webber, Beau R; Mohtashami, Mahmood; Stefanski, Heather E; Zúñiga-Pflücker, Juan Carlos; Blazar, Bruce R

    2015-11-01

    T lymphocytes are critical mediators of the adaptive immune system and have the capacity to serve as therapeutic agents in the areas of transplant and cancer immunotherapy. While T cells can be isolated and expanded from patients, T cells derived in vitro from both hematopoietic stem/progenitor cells (HSPCs) and human pluripotent stem cells (hPSCs) offer great potential advantages in generating a self-renewing source of T cells that can be readily genetically modified. T-cell differentiation in vivo is a complex process requiring tightly regulated signals; providing the correct signals in vitro to induce T-cell lineage commitment followed by their development into mature, functional, single positive T cells, is similarly complex. In this review, we discuss current methods for the in vitro derivation of T cells from murine and human HSPCs and hPSCs that use feeder-cell and feeder-cell-free systems. Furthermore, we explore their potential for adoption for use in T-cell-based therapies. © 2015 AlphaMed Press.

  8. Regulation of CD4 T cells and their effects on immunopathological inflammation following viral infection.

    Science.gov (United States)

    Bhattacharyya, Mitra; Madden, Patrick; Henning, Nathan; Gregory, Shana; Aid, Malika; Martinot, Amanda J; Barouch, Dan H; Penaloza-MacMaster, Pablo

    2017-10-01

    CD4 T cells help immune responses, but knowledge of how memory CD4 T cells are regulated and how they regulate adaptive immune responses and induce immunopathology is limited. Using adoptive transfer of virus-specific CD4 T cells, we show that naive CD4 T cells undergo substantial expansion following infection, but can induce lethal T helper type 1-driven inflammation. In contrast, memory CD4 T cells exhibit a biased proliferation of T follicular helper cell subsets and were able to improve adaptive immune responses in the context of minimal tissue damage. Our analyses revealed that type I interferon regulates the expansion of primary CD4 T cells, but does not seem to play a critical role in regulating the expansion of secondary CD4 T cells. Strikingly, blockade of type I interferon abrogated lethal inflammation by primary CD4 T cells following viral infection, despite that this treatment increased the numbers of primary CD4 T-cell responses. Altogether, these data demonstrate important aspects of how primary and secondary CD4 T cells are regulated in vivo, and how they contribute to immune protection and immunopathology. These findings are important for rational vaccine design and for improving adoptive T-cell therapies against persistent antigens. © 2017 John Wiley & Sons Ltd.

  9. Supernatural T cells: genetic modification of T cells for cancer therapy.

    Science.gov (United States)

    Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K

    2005-12-01

    Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.

  10. Simian immunodeficiency virus infection induces severe loss of intestinal central memory T cells which impairs CD4+ T-cell restoration during antiretroviral therapy.

    Science.gov (United States)

    Verhoeven, D; Sankaran, S; Dandekar, S

    2007-08-01

    Simian immunodeficiency virus (SIV) infection leads to severe loss of intestinal CD4(+) T cells and, as compared to peripheral blood, restoration of these cells is slow during antiretroviral therapy (ART). Mechanisms for this delay have not been examined in context of which specific CD4(+) memory subsets or lost and fail to regenerate during ART. Fifteen rhesus macaques were infected with SIV, five of which received ART (FTC/PMPA) for 30 weeks. Viral loads were measured by real-time PCR. Flow cytometric analysis determined changes in T-cell subsets and their proliferative state. Changes in proliferative CD4(+) memory subsets during infection accelerated their depletion. This reduced the central memory CD4(+) T-cell pool and contributed to slow CD4(+) T-cell restoration during ART. There was a lack of restoration of the CD4(+) central memory and effector memory T-cell subsets in gut-associated lymphoid tissue during ART, which may contribute to the altered intestinal T-cell homeostasis in SIV infection.

  11. Regulation of allergic airway inflammation by adoptive transfer of CD4+ T cells preferentially producing IL-10.

    Science.gov (United States)

    Matsuda, Masaya; Doi, Kana; Tsutsumi, Tatsuya; Fujii, Shinya; Kishima, Maki; Nishimura, Kazuma; Kuroda, Ikue; Tanahashi, Yu; Yuasa, Rino; Kinjo, Toshihiko; Kuramoto, Nobuyuki; Mizutani, Nobuaki; Nabe, Takeshi

    2017-10-05

    Anti-inflammatory pharmacotherapy for asthma has mainly depended on the inhalation of glucocorticoids, which non-specifically suppress immune responses. If the anti-inflammatory cytokine interleukin (IL)-10 can be induced by a specific antigen, asthmatic airway inflammation could be suppressed when individuals are exposed to the antigen. The purpose of this study was to develop cellular immunotherapeutics for atopic diseases using IL-10-producing CD4 + T cells. Spleen cells isolated from ovalbumin (OVA)-sensitized mice were cultured with the antigen, OVA and growth factors, IL-21, IL-27 and TGF-β for 7 days. After the 7-day culture, the CD4 + T cells were purified using a murine CD4 magnetic beads system. When the induced CD4 + T cells were stimulated by OVA in the presence of antigen-presenting cells, IL-10 was preferentially produced in vitro. When CD4 + T cells were adoptively transferred to OVA-sensitized mice followed by intratracheal OVA challenges, IL-10 was preferentially produced in the serum and bronchoalveolar lavage fluid in vivo. IL-10 production coincided with the inhibition of eosinophilic airway inflammation and epithelial mucus plugging. Most of the IL-10-producing CD4 + T cells were negative for Foxp3 and GATA-3, transcription factors of naturally occurring regulatory T cells and Th2 cells, respectively, but double positive for LAG-3 and CD49b, surface markers of inducible regulatory T cells, Tr1 cells. Collectively, most of the induced IL-10-producing CD4 + T cells could be Tr1 cells, which respond to the antigen to produce IL-10, and effectively suppressed allergic airway inflammation. The induced Tr1 cells may be useful for antigen-specific cellular immunotherapy for atopic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High-Throughput Flow Cytometric Method for the Simultaneous Measurement of CAR-T Cell Characterization and Cytotoxicity against Solid Tumor Cell Lines.

    Science.gov (United States)

    Martinez, Emily M; Klebanoff, Samuel D; Secrest, Stephanie; Romain, Gabrielle; Haile, Samuel T; Emtage, Peter C R; Gilbert, Amy E

    2018-04-01

    High-throughput flow cytometry is an attractive platform for the analysis of adoptive cellular therapies such as chimeric antigen receptor T cell therapy (CAR-T) because it allows for the concurrent measurement of T cell-dependent cellular cytotoxicity (TDCC) and the functional characterization of engineered T cells with respect to percentage of CAR transduction, T cell phenotype, and measurement of T cell function such as activation in a single assay. The use of adherent tumor cell lines can be challenging in these flow-based assays. Here, we present the development of a high-throughput flow-based assay to measure TDCC for a CAR-T construct co-cultured with multiple adherent tumor cell lines. We describe optimal assay conditions (such as adherent cell dissociation techniques to minimize impact on cell viability) that result in robust cytotoxicity assays. In addition, we report on the concurrent use of T cell transduction and activation antibody panels (CD25) that provide further dissection of engineered T cell function. In conclusion, we present the development of a high-throughput flow cytometry method allowing for in vitro interrogation of solid tumor, targeting CAR-T cell-mediated cytotoxicity, CAR transduction, and engineered T cell characterization in a single assay.

  13. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke Birgitte

    2016-01-01

    -major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive...... cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer...

  14. CD19-Chimeric Antigen Receptor T Cells for Treatment of Chronic Lymphocytic Leukaemia and Acute Lymphoblastic Leukaemia

    DEFF Research Database (Denmark)

    Lorentzen, C L; thor Straten, Per

    2015-01-01

    Adoptive cell therapy (ACT) for cancer represents a promising new treatment modality. ACT based on the administration of cytotoxic T cells genetically engineered to express a chimeric antigen receptor (CAR) recognizing CD19 expressed by B cell malignancies has been shown to induce complete lasting...

  15. Risky business: target choice in adoptive cell therapy.

    Science.gov (United States)

    Morgan, Richard A

    2013-11-14

    In this issue of Blood, Casucci et al present an elegant study that describes a potential new target for adoptive cell transfer (ACT), in this case CD44 splice variant 6 (CD44v6), and detail why it may be a good target for ACT and how to manage expected off-tumor/on-target toxicities.

  16. SupT1 Cell Infusion as a Possible Cell-Based Therapy for HIV: Results from a Pilot Study in Hu-PBMC BRGS Mice

    Directory of Open Access Journals (Sweden)

    Jonathan Fior

    2016-04-01

    Full Text Available In a previous in vitro study, the SupT1 cell line was explored as a decoy target for HIV-1, proposing SupT1 cell infusion as a possible cell-based therapy for HIV. In the present work, the previous in vitro model was translated into an in vivo setting. Specifically, Hu-PBMC BRGS mice were infected with a high input of HIV-1 LAI (100,000 TCID50, and 40 million 30 Gy-irradiated SupT1 cells were infused weekly for 4 weeks as a therapy. Blood samples were taken to monitor CD4+ T cell count and viral load, and mice were monitored daily for signs of illness. At the earliest time point analyzed (Week 1, there was a significantly lower plasma viral load (~10-fold in all animals treated with SupT1 cell infusion, associated with a higher CD4+ T cell count. At later time points, infection proceeded with robust viral replication and evident CD4+ T cell depletion, except in one mouse that showed complete suppression of viral replication and preservation of CD4+ T cell count. No morbidity or mortality was associated with SupT1 cell infusion. The interesting tendencies observed in the generated data suggest that this approach should be further investigated as a possible cell-based HIV therapy.

  17. Engineering CAR-T cells.

    Science.gov (United States)

    Zhang, Cheng; Liu, Jun; Zhong, Jiang F; Zhang, Xi

    2017-01-01

    Chimeric antigen receptor redirected T cells (CAR-T cells) have achieved inspiring outcomes in patients with B cell malignancies, and are now being investigated in other hematologic malignancies and solid tumors. CAR-T cells are generated by the T cells from patients' or donors' blood. After the T cells are expanded and genetically modified, they are reinfused into the patients. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. In this review, we first discuss the structure and evolution of chimeric antigen receptors. We then report on the tools used for production of CAR-T cells. Finally, we address the challenges posed by CAR-T cells.

  18. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis.

    Science.gov (United States)

    Rachidi, Saleh; Metelli, Alessandra; Riesenberg, Brian; Wu, Bill X; Nelson, Michelle H; Wallace, Caroline; Paulos, Chrystal M; Rubinstein, Mark P; Garrett-Mayer, Elizabeth; Hennig, Mirko; Bearden, Daniel W; Yang, Yi; Liu, Bei; Li, Zihai

    2017-05-05

    Cancer-associated thrombocytosis has long been linked to poor clinical outcome, but the underlying mechanism is enigmatic. We hypothesized that platelets promote malignancy and resistance to therapy by dampening host immunity. We show that genetic targeting of platelets enhances adoptive T cell therapy of cancer. An unbiased biochemical and structural biology approach established transforming growth factor β (TGFβ) and lactate as major platelet-derived soluble factors to obliterate CD4 + and CD8 + T cell functions. Moreover, we found that platelets are the dominant source of functional TGFβ systemically as well as in the tumor microenvironment through constitutive expression of the TGFβ-docking receptor glycoprotein A repetitions predominant (GARP) rather than secretion of TGFβ per se. Platelet-specific deletion of the GARP-encoding gene Lrrc32 blunted TGFβ activity at the tumor site and potentiated protective immunity against both melanoma and colon cancer. Last, this study shows that T cell therapy of cancer can be substantially improved by concurrent treatment with readily available antiplatelet agents. We conclude that platelets constrain T cell immunity through a GARP-TGFβ axis and suggest a combination of immunotherapy and platelet inhibitors as a therapeutic strategy against cancer. Copyright © 2017, American Association for the Advancement of Science.

  19. CAR T-cell therapy for glioblastoma: ready for the next round of clinical testing?

    Science.gov (United States)

    Prinzing, Brooke L; Gottschalk, Stephen M; Krenciute, Giedre

    2018-05-01

    The outcome for patients with glioblastoma (GBM) remains poor, and there is an urgent need to develop novel therapeutic approaches. T cells genetically modified with chimeric antigen receptors (CARs) hold the promise to improve outcomes since they recognize and kill cells through different mechanisms than conventional therapeutics. Areas covered: This article reviews CAR design, tumor associated antigens expressed by GBMs that can be targeted with CAR T cells, preclinical and clinical studies conducted with CAR T cells, and genetic approaches to enhance their effector function. Expert commentary: While preclinical studies have highlighted the potent anti-GBM activity of CAR T cells, the initial foray of CAR T-cell therapies into the clinic resulted only in limited benefits for GBM patients. Additional genetic modification of CAR T cells has resulted in a significant increase in their anti-GBM activity in preclinical models. We are optimistic that clinical testing of these enhanced CAR T cells will be safe and result in improved anti-glioma activity in GBM patients.

  20. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Davila, Marco L; Brentjens, Renier J

    2016-10-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the jump from the laboratory to the clinic, and the results have been remarkable. CD19-targeted CAR T cells have induced complete remissions of disease in up to 90% of patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL), who have an expected complete response rate of 30% in response to chemotherapy. The high efficacy of CAR T cells in B-ALL suggests that regulatory approval of this therapy for this routinely fatal leukemia is on the horizon. We review the preclinical development of CAR T cells and their early clinical application for lymphoma. We also provide a comprehensive analysis of the use of CAR T cells in patients with B-ALL. In addition, we discuss the unique toxicities associated with this therapy and the management schemes that have been developed.

  1. Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Morita

    2018-03-01

    Full Text Available Adoptivecell therapy using chimeric antigen receptor (CAR-modified T cells is a promising cancer immunotherapy. We previously developed a non-viral method of gene transfer into T cells using a piggyBac transposon system to improve the cost-effectiveness of CAR-T cell therapy. Here, we have further improved our technology by a novel culture strategy to increase the transfection efficiency and to reduce the time of T cell manufacturing. Using a CH2CH3-free CD19-specific CAR transposon vector and combining irradiated activated T cells (ATCs as feeder cells and virus-specific T cell receptor (TCR stimulation, we achieved 51.4% ± 14% CAR+ T cells and 2.8-fold expansion after 14 culture days. Expanded CD19.CAR-T cells maintained a significant fraction of CD45RA+CCR7+ T cells and demonstrated potent antitumor activity against CD19+ leukemic cells both in vitro and in vivo. Therefore, piggyBac-based gene transfer may provide an alternative to viral gene transfer for CAR-T cell therapy.

  2. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice.

    Directory of Open Access Journals (Sweden)

    Olga Antsiferova

    2014-08-01

    Full Text Available Epstein Barr virus (EBV infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice. However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.

  3. TCR's genetically linked to CD28 and CD3e do not mispair with endogous TCR chains and mediate enhanced T cell persistance and anti-melanoma activity

    NARCIS (Netherlands)

    Govers, C.C.F.M.; Sebestyen, Z.; Roszik, J.; Brakel, van M.; Berrevoets, C.; Szoor, A.; Panoutsopoulou, K.; Broertjes, M.; Van, T.; Vereb, G.; Szollosi, J.; Debets, R.

    2014-01-01

    Adoptive transfer of T cells that are gene engineered to express a defined TCR represents a feasible and promising therapy for patients with tumors. However, TCR gene therapy is hindered by the transient presence and effectiveness of transferred T cells, which are anticipated to be improved by

  4. Immunomodulatory Effects of Hemagglutinin- (HA- Modified A20 B-Cell Lymphoma Expanded as a Brain Tumor on Adoptively Transferred HA-Specific CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Valentin P. Shichkin

    2014-01-01

    Full Text Available Previously, the mouse A20 B-cell lymphoma engineered to express hemagglutinin (HA antigen (A20HA was used as a systemic tumor model. In this work, we used the A20HA cells as a brain tumor. HA-specific CD4+ T cells were transferred intravenously in a tail vein 5 days after A20HA intracranial inoculation and analyzed on days 2, 9, and 16 after the adoptive transfer by different methods. The transferred cells demonstrated state of activation as early as day 2 after the adoptive transfer and most the of viable HA-specific cells became anergic on day 16. Additionally, symptoms of systemic immunosuppression were observed in mice with massive brain tumors at a late stage of the brain tumor progression (days 20–24 after the A20HA inoculation. Despite that, a deal of HA-specific CD4+ T cells kept the functional activity even at the late stage of A20HA tumor growth. The activated HA-specific CD4+ T cells were found also in the brain of brain-tumor-bearing mice. These cells were still responding to reactivation with HA-peptide in vitro. Our data support an idea about sufficient role of both the tumor-specific and -nonspecific mechanisms inducing immunosuppression in cancer patients.

  5. Regulatory dendritic cell therapy: from rodents to clinical application.

    Science.gov (United States)

    Raïch-Regué, Dalia; Glancy, Megan; Thomson, Angus W

    2014-10-01

    Dendritic cells (DC) are highly-specialized, bone marrow-derived antigen-presenting cells that induce or regulate innate and adaptive immunity. Regulatory or "tolerogenic" DC play a crucial role in maintaining self tolerance in the healthy steady-state. These regulatory innate immune cells subvert naïve or memory T cell responses by various mechanisms. Regulatory DC (DCreg) also exhibit the ability to induce or restore T cell tolerance in many animal models of autoimmune disease or transplant rejection. There is also evidence that adoptive transfer of DCreg can regulate T cell responses in non-human primates and humans. Important insights gained from in vitro studies and animal models have led recently to the development of clinical grade human DCreg, with potential to treat autoimmune disease or enhance transplant survival while reducing patient dependency on immunosuppressive drugs. Phase I trials have been conducted in type-1 diabetes and rheumatoid arthritis, with results that emphasize the feasibility and safety of DCreg therapy. This mini-review will outline how observations made using animal models have been translated into human use, and discuss the challenges faced in further developing this form of regulatory immune cell therapy in the fields of autoimmunity and transplantation. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse.

    Science.gov (United States)

    Martelli, Massimo F; Di Ianni, Mauro; Ruggeri, Loredana; Falzetti, Franca; Carotti, Alessandra; Terenzi, Adelmo; Pierini, Antonio; Massei, Maria Speranza; Amico, Lucia; Urbani, Elena; Del Papa, Beatrice; Zei, Tiziana; Iacucci Ostini, Roberta; Cecchini, Debora; Tognellini, Rita; Reisner, Yair; Aversa, Franco; Falini, Brunangelo; Velardi, Andrea

    2014-07-24

    Posttransplant relapse is still the major cause of treatment failure in high-risk acute leukemia. Attempts to manipulate alloreactive T cells to spare normal cells while killing leukemic cells have been unsuccessful. In HLA-haploidentical transplantation, we reported that donor-derived T regulatory cells (Tregs), coinfused with conventional T cells (Tcons), protected recipients against graft-versus-host disease (GVHD). The present phase 2 study investigated whether Treg-Tcon adoptive immunotherapy prevents posttransplant leukemia relapse. Forty-three adults with high-risk acute leukemia (acute myeloid leukemia 33; acute lymphoblastic leukemia 10) were conditioned with a total body irradiation-based regimen. Grafts included CD34(+) cells (mean 9.7 × 10(6)/kg), Tregs (mean 2.5 × 10(6)/kg), and Tcons (mean 1.1 × 10(6)/kg). No posttransplant immunosuppression was given. Ninety-five percent of patients achieved full-donor type engraftment and 15% developed ≥grade 2 acute GVHD. The probability of disease-free survival was 0.56 at a median follow-up of 46 months. The very low cumulative incidence of relapse (0.05) was significantly better than in historical controls. These results demonstrate the immunosuppressive potential of Tregs can be used to suppress GVHD without loss of the benefits of graft-versus-leukemia (GVL) activity. Humanized murine models provided insights into the mechanisms underlying separation of GVL from GVHD, suggesting the GVL effect is due to largely unopposed Tcon alloantigen recognition in bone marrow. © 2014 by The American Society of Hematology.

  7. The cryo-thermal therapy eradicated melanoma in mice by eliciting CD4+ T-cell-mediated antitumor memory immune response.

    Science.gov (United States)

    He, Kun; Liu, Ping; Xu, Lisa X

    2017-03-23

    Tumor metastasis is a major concern in tumor therapy. In our previous studies, a novel tumor therapeutic modality of the cryo-thermal therapy has been presented, highlighting its effect on the suppression of distal metastasis and leading to long-term survival in 4T1 murine mammary carcinoma model. To demonstrate the therapeutic efficacy in other aggressive tumor models and further investigate the mechanism of long-term survival induced, in this study, spontaneous metastatic murine B16F10 melanoma model was used. The cryo-thermal therapy induced regression of implanted melanoma and prolonged long-term survival while inhibiting lung metastasis. It also promoted the activation of CD4 + CD25 - conventional T cells, while reduced the percentage of CD4 + CD25 + regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the spleen, lung and blood. Furthermore, the cryo-thermal therapy enhanced the cytolytic function of CD8 + T cells and induced differentiation of CD8 + T cells into memory stem T cell (T SCM ), and differentiation of CD4 + T cells into dominant CD4-CTL, Th1 and Tfh subsets in the spleen for 90 days after the treatment. It was found that good therapeutic effect was mainly dependent on CD4 + T cells providing a durable memory antitumor immune response. At the same time, significant increase of serum IFN-γ was also observed to provide an ideal microenvironment of antitumor immunity. Further study showed that the rejection of re-challenge of B16F10 but not GL261 tumor in the treated mice in 45 or 60 days after the treatment, implied a strong systemic and melanoma-specific memory antitumor immunity induced by the treatment. Thus the cryo-thermal therapy would be considered as a new therapeutic strategy to prevent tumor recurrence and metastasis with potential clinical applications in the near future.

  8. CAR T-Cell therapy can lead to long-lasting remissions in patients with lymphoma | Center for Cancer Research

    Science.gov (United States)

    More than three years after treatment, some clinical trial participants who received CAR T-cell therapy for diffuse large B-cell lymphoma remain in remission. These results are reported in a paper in Molecular Therapy by James Kochenderfer, M.D., of CCR's Experimental Transplantation and Immunology Branch. “This raises the possibility that CAR T cells can be curative for diffuse large B cell lymphoma,” Kochenderfer says.

  9. Gene Therapy of T Helper Cells in HIV Infection. Mathematical Model of the Criteria for Clinical Effect

    DEFF Research Database (Denmark)

    Lund, Ole; Lund, Ole søgaard; Gram, Gregers

    1997-01-01

    The paper presents a mathematical model of the criteria for gene therapy of T helper cells to have a clinical effect on HIV infection. Our main results are that the therapy should be designed to give the transduced cells a significant but not necessarily total protection against HIV-induced cell...... deaths, and to avoid the production of viral mutants that are insensitive to gene therapy. The transduced cells will not survive if the gene therapy only blocks the spread of virus....

  10. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy.

    Science.gov (United States)

    Gauthier, Jordan; Turtle, Cameron J

    2018-04-03

    T-cells engineered to express CD19-specific chimeric antigen receptors (CD19 CAR-T cells) can achieve high response rates in patients with refractory/relapsed (R/R) CD19+ hematologic malignancies. Nonetheless, the efficacy of CD19-specific CAR-T cell therapy can be offset by significant toxicities, such as cytokine release syndrome (CRS) and neurotoxicity. In this report of our presentation at the 2018 Second French International Symposium on CAR-T cells (CAR-T day), we describe the clinical presentations of CRS and neurotoxicity in a cohort of 133 adults treated with CD19 CAR-T cells at the Fred Hutchinson Cancer Research Center, and provide insights into the mechanisms contributing to these toxicities. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Chimeric antigen receptor (CAR-specific monoclonal antibody to detect CD19-specific T cells in clinical trials.

    Directory of Open Access Journals (Sweden)

    Bipulendu Jena

    Full Text Available Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63. We describe a novel anti-idiotype monoclonal antibody (mAb to detect CD19-specific CAR(+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1 was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+ tumor targets. This clone can be used to detect CD19-specific CAR(+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1 will be useful to investigators implementing CD19-specific CAR(+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

  12. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad A

    2013-01-01

    Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking...

  13. Influence of radiation therapy on T-lymphocyte subpopulations

    International Nuclear Information System (INIS)

    Job, G.

    1984-01-01

    The author claims this to be the first time where monoclonal antibodies are used in a long-term study in order to determine the influence of radiation therapy on T-lymphozyte-subpopulations in patients suffering from malignant growths. The influence of radiation therapy on B-cells, T-cells and macrophages was also checked. Two groups of patients were given two different radiation doses, and examined separately in order to discover possible effects of the dosage. Radiation therapy reduced B- and T-lymphocytes to the same degree as the total lymphozyte population so that their shares in percent remained unchanged. The same was also found for macrophages. Determination of clones and suppressor T-lymphozytes before, during and after radiation showed T-lymphozytes to have a higher resistance against the influence of radiation than clones. Suppressor cells also regenerated more quickly than clones after the end of the therapy. While radiation therapy was applied the clone/suppressor cell ratio dropped to values lower than those of the healthy reference group. After the end of the therapy this quotient dropped even further in some cases while in others it began to rise slowly, but even 6 months after the end of the therapy it was still lower than normal. As a number of diseases show an increased 'immunoregulatory quotient' it would be conceivable to influence this quotient with radiation therapy in order to achieve a therapeutic effect. (orig./MG) [de

  14. Engineering Specificity and Function of Therapeutic Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Jenny L. McGovern

    2017-11-01

    Full Text Available Adoptive therapy with polyclonal regulatory T cells (Tregs has shown efficacy in suppressing detrimental immune responses in experimental models of autoimmunity and transplantation. The lack of specificity is a potential limitation of Treg therapy, as studies in mice have demonstrated that specificity can enhance the therapeutic potency of Treg. We will discuss that vectors encoding T cell receptors or chimeric antigen receptors provide an efficient gene-transfer platform to reliably produce Tregs of defined antigen specificity, thus overcoming the considerable difficulties of isolating low-frequency, antigen-specific cells that may be present in the natural Treg repertoire. The recent observations that Tregs can polarize into distinct lineages similar to the Th1, Th2, and Th17 subsets described for conventional T helper cells raise the possibility that Th1-, Th2-, and Th17-driven pathology may require matching Treg subsets for optimal therapeutic efficacy. In the future, genetic engineering may serve not only to enforce FoxP3 expression and a stable Treg phenotype but it may also enable the expression of particular transcription factors that drive differentiation into defined Treg subsets. Together, established and recently developed gene transfer and editing tools provide exciting opportunities to produce tailor-made antigen-specific Treg products with defined functional activities.

  15. Adoptive cell therapy and modulation of the tumour microenvironment: new insights from ASCO 2016

    Science.gov (United States)

    Khoja, Leila; Gyawali, Bishal

    2016-01-01

    Abstract Immuno-oncology has changed the landscape of cancer treatment in recent years. Immune checkpoint inhibitors (ICI) have shown survival advantage with long term remissions in a variety of cancers. However, there is another approach to harnessing the power of the immune system in combating cancer: the adoptive cell therapy (ACT) strategy. Although ACT is restricted to small specialized centres and has yet to deliver as much success as ICI, some important results were presented at this year’s ASCO meeting. Important lessons have been learned from these studies, including the prospects and challenges ahead. In this editorial, we summarize the important studies on ACT presented at the ASCO 2016 meeting and discuss the way forward. PMID:27610200

  16. Extensive CD4 and CD8 T Cell cross-reactivity between alphaherpesviruses

    DEFF Research Database (Denmark)

    Jing, Lichen; Laing, Kerry J.; Dong, Lichun

    2016-01-01

    The Alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansi...... be useful for multi-alphaherpesvirus vaccine design and adoptive cellular therapy....

  17. Fine-tuning the CAR spacer improves T-cell potency

    Science.gov (United States)

    Watanabe, Norihiro; Bajgain, Pradip; Sukumaran, Sujita; Ansari, Salma; Heslop, Helen E.; Rooney, Cliona M.; Brenner, Malcolm K.; Leen, Ann M.; Vera, Juan F.

    2016-01-01

    ABSTRACT The adoptive transfer of genetically engineered T cells expressing chimeric antigen receptors (CARs) has emerged as a transformative cancer therapy with curative potential, precipitating a wave of preclinical and clinical studies in academic centers and the private sector. Indeed, significant effort has been devoted to improving clinical benefit by incorporating accessory genes/CAR endodomains designed to enhance cellular migration, promote in vivo expansion/persistence or enhance safety by genetic programming to enable the recognition of a tumor signature. However, our efforts centered on exploring whether CAR T-cell potency could be enhanced by modifying pre-existing CAR components. We now demonstrate how molecular refinements to the CAR spacer can impact multiple biological processes including tonic signaling, cell aging, tumor localization, and antigen recognition, culminating in superior in vivo antitumor activity. PMID:28180032

  18. Curtailed T-cell activation curbs effector differentiation and generates CD8+ T cells with a naturally-occurring memory stem cell phenotype.

    Science.gov (United States)

    Zanon, Veronica; Pilipow, Karolina; Scamardella, Eloise; De Paoli, Federica; De Simone, Gabriele; Price, David A; Martinez Usatorre, Amaia; Romero, Pedro; Mavilio, Domenico; Roberto, Alessandra; Lugli, Enrico

    2017-09-01

    Human T memory stem (T SCM ) cells with superior persistence capacity and effector functions are emerging as important players in the maintenance of long-lived T-cell memory and are thus considered an attractive population to be used in adoptive transfer-based immunotherapy of cancer. However, the molecular signals regulating their generation remain poorly defined. Here we show that curtailed T-cell receptor stimulation curbs human effector CD8 + T-cell differentiation and allows the generation of CD45RO - CD45RA + CCR7 + CD27 + CD95 + -phenotype cells from highly purified naïve T-cell precursors, resembling naturally-occurring human T SCM . These cells proliferate extensively in vitro and in vivo, express low amounts of effector-associated genes and transcription factors and undergo considerable self-renewal in response to IL-15 while retaining effector differentiation potential. Such a phenotype is associated with a lower number of mitochondria compared to highly-activated effector T cells committed to terminal differentiation. These results shed light on the molecular signals that are required to generate long-lived memory T cells with potential application in adoptive cell transfer immunotherapy. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.

  19. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis.

    Science.gov (United States)

    Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek

    2013-09-15

    Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.

    Science.gov (United States)

    Zhang, Bing-Lan; Qin, Di-Yuan; Mo, Ze-Ming; Li, Yi; Wei, Wei; Wang, Yong-Sheng; Wang, Wei; Wei, Yu-Quan

    2016-04-01

    Recent reports on the impressive efficacy of chimeric antigen receptor (CAR)-modified T cells against hematologic malignancies have inspired oncologists to extend these efforts for the treatment of solid tumors. Clinical trials of CAR-T-based cancer immunotherapy for solid tumors showed that the efficacies are not as remarkable as in the case of hematologic malignancies. There are several challenges that researchers must face when treating solid cancers with CAR-T cells, these include choosing an ideal target, promoting efficient trafficking and infiltration, overcoming the immunosuppressive microenvironment, and avoiding associated toxicity. In this review, we discuss the obstacles imposed by solid tumors on CAR-T cell-based immunotherapy and strategies adopted to improve the therapeutic potential of this approach. Continued investigations are necessary to improve therapeutic outcomes and decrease the adverse effects of CAR-T cell therapy in patients with solid malignancies in the future.

  1. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    Directory of Open Access Journals (Sweden)

    Vijayendra Dasari

    2016-01-01

    Full Text Available Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients.

  2. PD-1 Blockade Expands Intratumoral Memory T Cells

    DEFF Research Database (Denmark)

    Ribas, Antoni; Shin, Daniel Sanghoon; Zaretsky, Jesse

    2016-01-01

    by multicolor flow cytometry using two computational approaches to resolve the leukocyte phenotypes at the single-cell level. There was a statistically significant increase in the frequency of T cells in patients who responded to therapy. The frequency of intratumoral B cells and monocytic myeloid......-derived suppressor cells significantly increased in patients' biopsies taken on treatment. The percentage of cells with a regulatory T-cell phenotype, monocytes, and natural killer cells did not change while on PD-1 blockade therapy. CD8+ memory T cells were the most prominent phenotype that expanded intratumorally...... on therapy. However, the frequency of CD4+ effector memory T cells significantly decreased on treatment, whereas CD4+ effector T cells significantly increased in nonresponding tumors on therapy. In peripheral blood, an unusual population of blood cells expressing CD56 was detected in two patients...

  3. Reprogramming T-cells for adoptive immunotherapy of ovarian cancer.

    Science.gov (United States)

    Genta, Sofia; Ghisoni, Eleonora; Giannone, Gaia; Mittica, Gloria; Valabrega, Giorgio

    2018-04-01

    Epithelial ovarian cancer (EOC) is the most common cause of death among gynecological malignancies. Despite surgical and pharmacological efforts to improve patients' outcome, persistent and recurrent EOC remains an un-eradicable disease. Chimeric associated antigens (CAR) T cells are T lymphocytes expressing an engineered T cell receptor that activate the immune response after an MHC unrestricted recognition of specific antigens, including tumor associated antigens (TAAs). CART cells have been shown to be effective in the treatment of hematologic tumors even if frequently associated with potentially severe toxicity and high production costs. Areas covered: In this review, we will focus on preclinical and clinical studies evaluating CART activity in EOC in order to identify possible difficulties and advantages of their use in this particular setting. Expert Opinion: The pattern of diffusion within the peritoneal cavity, the tumor microenvironment and the high rate of TAAs make EOC a particularly interesting model for CART cells use. Data from preclinical studies indicate a potential activity of CARTs in EOC, but robust clinical data are still awaited. Further studies are needed to determine the best methods of administration and the most effective CAR type to treat EOC patients.

  4. Adoptive cell transfer in the treatment of metastatic melanoma

    DEFF Research Database (Denmark)

    Straten, Per thor; Becker, Jürgen C

    2009-01-01

    Adoptive cell therapy (ACT) for metastatic cancer is the focus of considerable research effort. Rosenberg's laboratory demonstrated a 50% response rate in stage IV melanoma patients treated with in vitro expanded tumor-infiltrating lymphocytes (TILs) and high-dose IL-2 administered after...

  5. Effect of anti-IgE therapy on food allergen specific T cell responses in eosinophil associated gastrointestinal disorders

    Directory of Open Access Journals (Sweden)

    Prussin Calman

    2011-04-01

    Full Text Available Abstract Background Anti-IgE therapy inhibits mast cell and basophil activation, blocks IgE binding to both FcεRI and CD23 and down regulates FcεRI expression by antigen (Ag presenting cells (APCs. In addition to its classical role in immediate hypersensitivity, IgE has been shown in vitro to facilitate Ag presentation of allergens, whereby APC bound IgE preferentially takes up allergens for subsequent processing and presentation. The purpose of this study was to determine whether anti-IgE therapy, by blocking facilitated Ag presentation in vivo, attenuates allergen specific Th2 cell responses. Methods To test this hypothesis, food allergen specific T cell responses were examined during a 16-week clinical trial of omalizumab in nine subjects with eosinophilic gastroenteritis and food sensitization. Allergen specific T cell responses were measured using carboxyfluorescein succinimidyl ester dye dilution coupled with intracellular cytokine staining and polychromatic flow cytometry. Four independent indices of allergen specific T cell response (proliferation, Ag dose response, precursor frequency, and the ratio of Th2:Th1 cytokine expression were determined. Results Eight of the 9 subjects had measurable food allergen specific responses, with a median proliferation index of 112-fold. Allergen specific T cell proliferation was limited to CD4 T cells, whereas CD8 T cell did not proliferate. Food allergen specific responses were Th2 skewed relative to tetanus specific responses in the same subjects. In contradistinction to the original hypothesis, anti-IgE treatment did not diminish any of the four measured indices of allergen specific T cell response. Conclusions In sum, using multiple indices of T cell function, this study failed to demonstrate that anti-IgE therapy broadly or potently inhibits allergen specific T cell responses. As such, these data do not support a major role for IgE facilitated Ag presentation augmenting allergen specific T cell

  6. Efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy in patients with haematological and solid malignancies: protocol for a systematic review and meta-analysis.

    Science.gov (United States)

    Grigor, Emma J M; Fergusson, Dean A; Haggar, Fatima; Kekre, Natasha; Atkins, Harold; Shorr, Risa; Holt, Robert A; Hutton, Brian; Ramsay, Tim; Seftel, Matthew; Jonker, Derek; Daugaard, Mads; Thavorn, Kednapa; Presseau, Justin; Lalu, Manoj M

    2017-12-29

    Patients with relapsed or refractory malignancies have a poor prognosis. Immunotherapy with chimeric antigen receptor T (CAR-T) cells redirects a patient's immune cells against the tumour antigen. CAR-T cell therapy has demonstrated promise in treating patients with several haematological malignancies, including acute B-cell lymphoblastic leukaemia and B-cell lymphomas. CAR-T cell therapy for patients with other solid tumours is also being tested. Safety is an important consideration in CAR-T cell therapy given the potential for serious adverse events, including death. Previous reviews on CAR-T cell therapy have been limited in scope and methodology. Herein, we present a protocol for a systematic review to identify CAR-T cell interventional studies and examine the safety and efficacy of this therapy in patients with haematology malignancies and solid tumours. We will search MEDLINE, including In-Process and Epub Ahead of Print, EMBASE and the Cochrane Central Register of Controlled Trials from 1946 to 22 February 2017. Studies will be screened by title, abstract and full text independently and in duplicate. Studies that report administering CAR-T cells of any chimeric antigen receptor construct targeting antigens in patients with haematological malignancies and solid tumours will be eligible for inclusion. Outcomes to be extracted will include complete response rate (primary outcome), overall response rate, overall survival, relapse and adverse events. A meta-analysis will be performed to synthesise the prevalence of outcomes reported as proportions with 95% CIs. The potential for bias within included studies will be assessed using a modified Institute of Health Economics tool. Heterogeneity of effect sizes will be determined using the Cochrane I 2 statistic. The review findings will be submitted for peer-reviewed journal publication and presented at relevant conferences and scientific meetings to promote knowledge transfer. CRD42017075331. © Article author(s) (or

  7. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor.

    Science.gov (United States)

    Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G; Scholler, John; Levine, Bruce L; Albelda, Steven M; June, Carl H

    2010-11-15

    Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor-reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CAR). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high-level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week after electroporation. Multiple injections of RNA CAR-electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(-/-) mice. Dramatic tumor reduction also occurred when the preexisting intraperitoneal human-derived tumors, which had been growing in vivo for >50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes showing that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA-engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. Copyright © 2010 AACR.

  8. T-cells fighting B-cell lymphoproliferative malignancies: the emerging field of CD19 CAR T-cell therapy

    NARCIS (Netherlands)

    Heijink, D. M.; Kater, A. P.; Hazenberg, M. D.; Hagenbeek, A.; Kersten, M. J.

    2016-01-01

    CAR T-cells are autologous T-cells transduced with a chimeric antigen receptor (CAR). The CAR contains an antigen recognition part (originating from an antibody), a T-cell receptor transmembrane and cytoplasmic signalling part, and one or more co-stimulatory domains. While CAR T-cells can be

  9. Cell banking for regulatory T cell-based therapy: strategies to overcome the impact of cryopreservation on the Treg viability and phenotype.

    Science.gov (United States)

    Gołąb, Karolina; Grose, Randall; Placencia, Veronica; Wickrema, Amittha; Solomina, Julia; Tibudan, Martin; Konsur, Evelyn; Ciepły, Kamil; Marek-Trzonkowska, Natalia; Trzonkowski, Piotr; Millis, J Michael; Fung, John; Witkowski, Piotr

    2018-02-09

    The first clinical trials with adoptive Treg therapy have shown safety and potential efficacy. Feasibility of such therapy could be improved if cells are cryopreserved and stored until optimal timing for infusion. Herein, we report the evaluation of two cell-banking strategies for Treg therapy: 1) cryopreservation of CD4 + cells for subsequent Treg isolation/expansion and 2) cryopreservation of ex-vivo expanded Tregs (CD4 + CD25 hi CD127 lo/- cells). First, we checked how cryopreservation affects cell viability and Treg markers expression. Then, we performed Treg isolation/expansion with the final products release testing. We observed substantial decrease in cell number recovery after thawing and overnight culture. This observation might be explained by the high percentage of necrotic and apoptotic cells found just after thawing. Furthermore, we noticed fluctuations in percentage of CD4 + CD25 hi CD127 - and CD4 + FoxP3 + cells obtained from cryopreserved CD4 + as well as Treg cells. However, after re-stimulation Tregs expanded well, presented a stable phenotype and fulfilled the release criteria at the end of expansions. Cryopreservation of CD4 + cells for subsequent Treg isolation/expansion and cryopreservation of expanded Tregs with re-stimulation and expansion after thawing, are promising solutions to overcome detrimental effects of cryopreservation. Both of these cell-banking strategies for Treg therapy can be applied when designing new clinical trials.

  10. T-cell responses targeting HIV Nef uniquely correlate with infected cell frequencies after long-term antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Allison S Thomas

    2017-09-01

    Full Text Available HIV-specific CD8+ T-cell responses limit viral replication in untreated infection. After the initiation of antiretroviral therapy (ART, these responses decay and the infected cell population that remains is commonly considered to be invisible to T-cells. We hypothesized that HIV antigen recognition may persist in ART-treated individuals due to low-level or episodic protein expression. We posited that if persistent recognition were occurring it would be preferentially directed against the early HIV gene products Nef, Tat, and Rev as compared to late gene products, such as Gag, Pol, and Env, which have higher barriers to expression. Using a primary cell model of latency, we observed that a Nef-specific CD8+ T-cell clone exhibited low-level recognition of infected cells prior to reactivation and robust recognition shortly thereafter. A Gag-specific CD8+ T-cell clone failed to recognized infected cells under these conditions, corresponding with a lack of detectable Gag expression. We measured HIV-specific T-cell responses in 96 individuals who had been suppressed on ART for a median of 7 years, and observed a significant, direct correlation between cell-associated HIV DNA levels and magnitudes of IFN-γ-producing Nef/Tat/Rev-specific T-cell responses. This correlation was confirmed in an independent cohort (n = 18. Correlations were not detected between measures of HIV persistence and T-cell responses to other HIV antigens. The correlation with Nef/Tat/Rev-specific T-cells was attributable to Nef-specific responses, the breadth of which also correlated with HIV DNA levels. These results suggest that ongoing Nef expression in ART-treated individuals drives preferential maintenance and/or expansion of T-cells reactive to this protein, implying sensing of infected cells by the immune system. The direct correlation, however, suggests that recognition does not result in efficient elimination of infected cells. These results raise the possibility that

  11. EBV-positive immunodeficiency lymphoma after alemtuzumab-CHOP therapy for peripheral T-cell lymphoma

    NARCIS (Netherlands)

    Kluin-Nelemans, Hanneke C.; Coenen, Jules L.; Boers, James E.; van Imhoff, Gustaaf W.; Rosati, Stefano

    2008-01-01

    Chemotherapy with alemtuzumab and the combination of cyclophosphamide, adriamycin, oncovin, and prednisone (CHOP) has become experimental trial therapy for aggressive T-cell lymphoma. Several multicenter phase 3 trials; will incorporate this scheme. As part of an ongoing phase 2 trial in which we

  12. Long-Lasting Complete Responses in Patients with Metastatic Melanoma after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes and an Attenuated IL2 Regimen

    DEFF Research Database (Denmark)

    Andersen, Rikke; Donia, Marco; Ellebæk, Eva

    2016-01-01

    PURPOSE: Adoptive cell transfer therapy (ACT) based on autologous tumor-infiltrating lymphocytes (TIL) has achieved impressive clinical results in several phase I and II trials performed outside of Europe. Although transient, the toxicities associated with high-dose (HD) bolus IL2 classically...

  13. Imaging TCR-Dependent NFAT-Mediated T-Cell Activation with Positron Emission Tomography In Vivo

    Directory of Open Access Journals (Sweden)

    Vladimir Ponomarev

    2001-01-01

    Full Text Available A noninvasive method for molecular imaging of T-cell activity in vivo would be of considerable value. It would aid in understanding the role of specific genes and signal transduction pathways in the course of normal and pathologic immune responses, could elucidate temporal dynamics and immune regulation at different stages of disease and following therapy. We developed and assessed a novel method for monitoring the T-cell receptor (TCR -dependent nuclear factor of activated T cells (NFAT -mediated activation of T cells by optical fluorescence imaging (OFI and positron emission tomography (PET. The herpes simplex virus type 1 thymidine kinase/green fluorescent protein [HSV1-tk/GFP (TKGFP ] dual reporter gene was used to monitor NFAT-mediated transcriptional activation in human Jurkat cells. A recombinant retrovirus bearing the NFAT-TKGFP reporter system was constructed in which the TKGFP reporter gene was placed under control of an artificial cis-acting NFAT-specific enhancer. Transduced Jurkat cells were used to establish subcutaneous infiltrates in nude rats. We demonstrated that noninvasive OR and nuclear imaging of T-cell activation is feasible using the NFAT-TKGFP reporter system. PET imaging with [124]FIAU using the NFAT-TKGFP reporter system is sufficiently sensitive to detect T-cell activation in vivo. PET images were confirmed by independent measurements of T-cell activation (e.g., CD69 and induction of GFP fluorescence. PET imaging of TCR-induced NFAT-dependent transcriptional activity may be useful in the assessment of T cell responses, T-cell-based adoptive therapies, vaccination strategies and immunosuppressive drugs.

  14. Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors

    Directory of Open Access Journals (Sweden)

    Chuan Jin

    2014-01-01

    Full Text Available Adoptive T-cell therapy of cancer is a treatment strategy where T cells are isolated, activated, in some cases engineered, and expanded ex vivo before being reinfused to the patient. The most commonly used T-cell expansion methods are either anti-CD3/CD28 antibody beads or the “rapid expansion protocol” (REP, which utilizes OKT-3, interleukin (IL-2, and irradiated allogeneic feeder cells. However, REP-expanded or bead-expanded T cells are sensitive to the harsh tumor microenvironment and often short-lived after reinfusion. Here, we demonstrate that when irradiated and preactivated allosensitized allogeneic lymphocytes (ASALs are used as helper cells to license OKT3-armed allogeneic mature dendritic cells (DCs, together they expand target T cells of high quality. The ASAL/DC combination yields an enriched Th1-polarizing cytokine environment (interferon (IFN-γ, IL-12, IL-2 and optimal costimulatory signals for T-cell stimulation. When genetically engineered antitumor T cells were expanded by this coculture system, they showed better survival and cytotoxic efficacy under oxidative stress and immunosuppressive environment, as well as superior proliferative response during tumor cell killing compared to the REP protocol. Our result suggests a robust ex vivo method to expand T cells with improved quality for adoptive cancer immunotherapy.

  15. Establishing guidelines for CAR-T cells: challenges and considerations.

    Science.gov (United States)

    Wang, Wei; Qin, Di-Yuan; Zhang, Bing-Lan; Wei, Wei; Wang, Yong-Sheng; Wei, Yu-Quan

    2016-04-01

    T cells, genetically modified by chimeric antigen receptors (CAR-T), are endowed with specificity to a desired antigen and are cytotoxic to cells expressing the targeted antigen. CAR-T-based cancer immunotherapy is a promising therapy for curing hematological malignancy, such as acute lymphoid leukemia, and is promising for extending their efficacy to defeat solid tumors. To date, dozens of different CAR-T cells have been evaluated in clinical trials to treat tumors; this necessitates the establishment of guidelines for the production and application of CAR-T cells. However, it is challenging to standardize CAR-T cancer therapy because it involves a combination of gene therapy and cell therapy. In this review, we compare the existing guidelines for CAR-T cells and discuss the challenges and considerations for establishing guidance for CAR-T-based cancer immunotherapy.

  16. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    Science.gov (United States)

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  17. Regulatory T cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to intravenous immunoglobulin therapy.

    Science.gov (United States)

    Maddur, Mohan S; Stephen-Victor, Emmanuel; Das, Mrinmoy; Prakhar, Praveen; Sharma, Varun K; Singh, Vikas; Rabin, Magalie; Trinath, Jamma; Balaji, Kithiganahalli N; Bolgert, Francis; Vallat, Jean-Michel; Magy, Laurent; Kaveri, Srini V; Bayry, Jagadeesh

    2017-03-20

    Intravenous immunoglobulin (IVIG) is a polyspecific pooled immunoglobulin G preparation and one of the commonly used therapeutics for autoimmune diseases including those of neurological origin. A recent report in murine model proposed that IVIG expands regulatory T (T reg ) cells via induction of interleukin 33 (IL-33). However, translational insight on these observations is lacking. Ten newly diagnosed Guillain-Barré syndrome (GBS) patients were treated with IVIG at the rate of 0.4 g/kg for three to five consecutive days. Clinical evaluation for muscular weakness was performed by Medical Research Council (MRC) and modified Rankin scoring (MRS) system. Heparinized blood samples were collected before and 1, 2, and 4-5 weeks post-IVIG therapy. Peripheral blood mononuclear cells were stained for surface CD4 and intracellular Foxp3, IFN-γ, and tumor necrosis factor alpha (TNF-α) and were analyzed by flow cytometry. IL-33 and prostaglandin E2 in the plasma were measured by ELISA. The fold changes in plasma IL-33 at week 1 showed no correlation with the MRC and MRS scores at weeks 1, 2, and ≥4 post-IVIG therapy. Clinical recovery following IVIG therapy appears to be associated with T reg cell response. Contrary to murine study, there was no association between the fold changes in IL-33 at week 1 and T reg cell frequency at weeks 1, 2, and ≥4 post-IVIG therapy. T reg cell-mediated clinical response to IVIG therapy in GBS patients was associated with reciprocal regulation of effector T cells-expressing TNF-α. T reg cell expansion by IVIG in patients with autoimmune diseases lack correlation with IL-33. T reg cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to IVIG therapy.

  18. Improve T Cell Therapy in Neuroblastoma

    Science.gov (United States)

    2014-07-01

    relapsed lymphoma following genetic modi - fi cation of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 110:2838–2845 4. Heslop HE et...CD4þCD25þFOXP3þ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 2006;177:8338–47. 32. HeslopHE, SlobodKS,PuleMA

  19. CD8+ T Cells Specific to Apoptosis-Associated Antigens Predict the Response to Tumor Necrosis Factor Inhibitor Therapy in Rheumatoid Arthritis.

    Directory of Open Access Journals (Sweden)

    Alessandra Citro

    Full Text Available CD8+ T cells specific to caspase-cleaved antigens derived from apoptotic T cells (apoptotic epitopes represent a principal player in chronic immune activation, which is known to amplify immunopathology in various inflammatory diseases. The purpose of the present study was to investigate the relationship involving these autoreactive T cells, the rheumatoid arthritis immunopathology, and the response to tumor necrosis factor-α inhibitor therapy. The frequency of autoreactive CD8+ T cells specific to various apoptotic epitopes, as detected by both enzyme-linked immunospot assay and dextramers of major histocompatibility complex class I molecules complexed with relevant apoptotic epitopes, was longitudinally analyzed in the peripheral blood of rheumatoid arthritis patients who were submitted to etanercept treatment (or other tumor necrosis factor inhibitors as a control. The percentage of apoptotic epitope-specific CD8+ T cells was significantly higher in rheumatoid arthritis patients than in healthy donors, and correlated with the disease activity. More important, it was significantly more elevated in responders to tumor necrosis factor-α inhibitor therapy than in non-responders before the start of therapy; it significantly dropped only in the former following therapy. These data indicate that apoptotic epitope-specific CD8+ T cells may be involved in rheumatoid arthritis immunopathology through the production of inflammatory cytokines and that they may potentially represent a predictive biomarker of response to tumor necrosis factor-α inhibitor therapy to validate in a larger cohort of patients.

  20. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells.

    Science.gov (United States)

    Kamiya, Takahiro; Wong, Desmond; Png, Yi Tian; Campana, Dario

    2018-03-13

    Practical methods are needed to increase the applicability and efficacy of chimeric antigen receptor (CAR) T-cell therapies. Using donor-derived CAR-T cells is attractive, but expression of endogenous T-cell receptors (TCRs) carries the risk for graft-versus-host-disease (GVHD). To remove surface TCRαβ, we combined an antibody-derived single-chain variable fragment specific for CD3ε with 21 different amino acid sequences predicted to retain it intracellularly. After transduction in T cells, several of these protein expression blockers (PEBLs) colocalized intracellularly with CD3ε, blocking surface CD3 and TCRαβ expression. In 25 experiments, median TCRαβ expression in T lymphocytes was reduced from 95.7% to 25.0%; CD3/TCRαβ cell depletion yielded virtually pure TCRαβ-negative T cells. Anti-CD3ε PEBLs abrogated TCRαβ-mediated signaling, without affecting immunophenotype or proliferation. In anti-CD3ε PEBL-T cells, expression of an anti-CD19-41BB-CD3ζ CAR induced cytokine secretion, long-term proliferation, and CD19 + leukemia cell killing, at rates meeting or exceeding those of CAR-T cells with normal CD3/TCRαβ expression. In immunodeficient mice, anti-CD3ε PEBL-T cells had markedly reduced GVHD potential; when transduced with anti-CD19 CAR, these T cells killed engrafted leukemic cells. PEBL blockade of surface CD3/TCRαβ expression is an effective tool to prepare allogeneic CAR-T cells. Combined PEBL and CAR expression can be achieved in a single-step procedure, is easily adaptable to current cell manufacturing protocols, and can be used to target other T-cell molecules to further enhance CAR-T-cell therapies. © 2018 by The American Society of Hematology.

  1. Single-cell characterization of in vitro migration and interaction dynamics of T cells expanded with IL-2 and IL-7

    Directory of Open Access Journals (Sweden)

    Johanna Maria Tauriainen

    2015-04-01

    Full Text Available T cells are pivotal in the immune defense against cancers and infectious agents. To mount an effector response against cancer cells, T cells need to migrate to the cancer-site, engage in contacts with cancer cells and perform their effector functions. Adoptive T cell therapy is an effective strategy as treatment of complications such as relapse or opportunistic infections after hematopoietic stem cell transplantations. This requires a sufficient amount of cells that are able to expand and respond to tumor or viral antigens. The cytokines interleukin (IL-2 and IL-7 drive T cell differentiation, proliferation and survival and are commonly used to expand T cells ex vivo. Here, we have used microchip-based live-cell imaging to follow the migration of individual T cells, their interactions with allogeneic monocytes, cell division and apoptosis for extended periods of time; something that cannot be achieved by commonly used methods. Our data indicate that cells grown in IL-7 + IL-2 had similar migration and contact dynamics as cells grown in IL-2 alone. However, the addition of IL-7 decreased cell death creating a more viable cell population, which should be beneficial when preparing cells for immunotherapy.

  2. Selected microRNAs define cell fate determination of murine central memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Gonzalo Almanza

    2010-06-01

    Full Text Available During an immune response T cells enter memory fate determination, a program that divides them into two main populations: effector memory and central memory T cells. Since in many systems protection appears to be preferentially mediated by T cells of the central memory it is important to understand when and how fate determination takes place. To date, cell intrinsic molecular events that determine their differentiation remains unclear. MicroRNAs are a class of small, evolutionarily conserved RNA molecules that negatively regulate gene expression, causing translational repression and/or messenger RNA degradation. Here, using an in vitro system where activated CD8 T cells driven by IL-2 or IL-15 become either effector memory or central memory cells, we assessed the role of microRNAs in memory T cell fate determination. We found that fate determination to central memory T cells is under the balancing effects of a discrete number of microRNAs including miR-150, miR-155 and the let-7 family. Based on miR-150 a new target, KChIP.1 (K (+ channel interacting protein 1, was uncovered, which is specifically upregulated in developing central memory CD8 T cells. Our studies indicate that cell fate determination such as surface phenotype and self-renewal may be decided at the pre-effector stage on the basis of the balancing effects of a discrete number of microRNAs. These results may have implications for the development of T cell vaccines and T cell-based adoptive therapies.

  3. Chimeric Antigen Receptor-Redirected Regulatory T Cells Suppress Experimental Allergic Airway Inflammation, a Model of Asthma

    Directory of Open Access Journals (Sweden)

    Jelena Skuljec

    2017-09-01

    Full Text Available Cellular therapy with chimeric antigen receptor (CAR-redirected cytotoxic T cells has shown impressive efficacy in the treatment of hematologic malignancies. We explored a regulatory T cell (Treg-based therapy in the treatment of allergic airway inflammation, a model for asthma, which is characterized by an airway hyper-reactivity (AHR and a chronic, T helper-2 (Th2 cell-dominated immune response to allergen. To restore the immune balance in the lung, we redirected Tregs by a CAR toward lung epithelia in mice upon experimentally induced allergic asthma, closely mimicking the clinical situation. Adoptively transferred CAR Tregs accumulated in the lung and in tracheobronchial lymph nodes, reduced AHR and diminished eosinophilic airway inflammation, indicated by lower cell numbers in the bronchoalveolar lavage fluid and decreased cell infiltrates in the lung. CAR Treg cells furthermore prevented excessive pulmonary mucus production as well as increase in allergen-specific IgE and Th2 cytokine levels in exposed animals. CAR Tregs were more efficient in controlling asthma than non-modified Tregs, indicating the pivotal role of specific Treg cell activation in the affected organ. Data demonstrate that lung targeting CAR Treg cells ameliorate key features of experimental airway inflammation, paving the way for cell therapy of severe allergic asthma.

  4. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    Science.gov (United States)

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    studies demonstrated that regulatory T cells completely abolished the tPA-induced elevation of MMP9 and CCL2 after stroke. Using MMP9 and CCL2 knockout mice, we discovered that both molecules partially contributed to the protective actions of regulatory T cells. In an in vitro endothelial cell-based model of the blood-brain barrier, we confirmed that regulatory T cells inhibited tPA-induced endothelial expression of CCL2 and preserved blood-brain barrier integrity after an ischaemic challenge. Lentivirus-mediated CCL2 knockdown in endothelial cells completely abolished the blood-brain barrier protective effect of regulatory T cells in vitro. Altogether, our studies suggest that regulatory T cell adoptive transfer may alleviate thrombolytic treatment-induced haemorrhage in stroke victims. Furthermore, regulatory T cell-afforded protection in the tPA-treated stroke model is mediated by two inhibitory mechanisms involving CCL2 and MMP9. Thus, regulatory T cell adoptive transfer may be useful as a cell-based therapy to improve the efficacy and safety of thrombolytic treatment for ischaemic stroke. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. [CD4 + CD25 + regulatory T cells and their importance to human illnesses].

    Science.gov (United States)

    Kelsen, Jens; Hvas, Christian Lodberg; Agnholt, Jørgen; Dahlerup, Jens F

    2006-01-03

    Regulatory T cells ensure a balanced immune response that is competent both to fight pathogens, at the same time, to recognize self-antigens and commensals as harmless. Regulatory mechanisms are essential in preventing autoimmune disorders but may also facilitate the progression of malignant diseases and the establishment of latent infections via suppression of the host immune response. Regulatory T cells arise in the thymus, and regulatory T cell function can be induced in the periphery, so-called infectious tolerance. An absolute or relative defect in regulatory T cell function may contribute to the development of autoimmune disorders such as rheumatoid arthritis, type 1 diabetes mellitus, multiple sclerosis and chronic inflammatory bowel disease. Regulatory T cell therapy is a tempting strategy for reestablishing the immune balance and thus preventing or reversing these disorders. Reestablishment of the immune balance may be accomplished by adoptive transfer of ex vivo-propagated regulatory T cells or by induction of regulatory functions locally in the organs, although such strategies are in their infancy in human research.

  6. γδ T cells confer protection against murine cytomegalovirus (MCMV.

    Directory of Open Access Journals (Sweden)

    Camille Khairallah

    2015-03-01

    Full Text Available Cytomegalovirus (CMV is a leading infectious cause of morbidity in immune-compromised patients. γδ T cells have been involved in the response to CMV but their role in protection has not been firmly established and their dependency on other lymphocytes has not been addressed. Using C57BL/6 αβ and/or γδ T cell-deficient mice, we here show that γδ T cells are as competent as αβ T cells to protect mice from CMV-induced death. γδ T cell-mediated protection involved control of viral load and prevented organ damage. γδ T cell recovery by bone marrow transplant or adoptive transfer experiments rescued CD3ε-/- mice from CMV-induced death confirming the protective antiviral role of γδ T cells. As observed in humans, different γδ T cell subsets were induced upon CMV challenge, which differentiated into effector memory cells. This response was observed in the liver and lungs and implicated both CD27+ and CD27- γδ T cells. NK cells were the largely preponderant producers of IFNγ and cytotoxic granules throughout the infection, suggesting that the protective role of γδ T cells did not principally rely on either of these two functions. Finally, γδ T cells were strikingly sufficient to fully protect Rag-/-γc-/- mice from death, demonstrating that they can act in the absence of B and NK cells. Altogether our results uncover an autonomous protective antiviral function of γδ T cells, and open new perspectives for the characterization of a non classical mode of action which should foster the design of new γδ T cell based therapies, especially useful in αβ T cell compromised patients.

  7. Tenofovir-Based Highly Active Antiretroviral Therapy Is Associated with Superior CD4 T Cells Repopulation Compared to Zidovudine-Based HAART in HIV 1 Infected Adults

    Directory of Open Access Journals (Sweden)

    Vitus Sambo Badii

    2018-01-01

    Full Text Available Tenofovir-based highly active antiretroviral therapy (HAART is one of the preferred first-line therapies in the management of HIV 1 infection. Ghana has since 2014 adopted this recommendation; however there is paucity of scientific data that reflects the safety and efficacy of the tenofovir-based therapy compared to zidovudine in the Ghanaian health system. This study sought to assess the comparative immune reconstitution potential between tenofovir and zidovudine-based HAART regimens, which includes lamivudine and efavirenz in combination therapy. It also aimed to investigate the adverse drug reactions/events (ADREs associated with pharmacotherapy with these agents in a total of 106 HAART naïve HIV patients. The study included 80 patients in the tenofovir cohort while 26 patients were on the zidovudine regimen. The occurrence of HIV comorbidities profile was assessed at diagnosis and throughout the study period. The baseline CD4 T cells count of the participants was also assessed at diagnosis and repeated at a median period of five months (range 4–6 months, after commencing treatment with either tenofovir- or zidovudine-based HAART. After five months of the HAART, the tenofovir cohort recorded higher CD4 T cell count change from baseline compared to the zidovudine cohort (p<0.0001. The patients on the tenofovir-based HAART and female sex however appeared to be associated with more multiple ADREs.

  8. Circulating gamma delta T cells are activated and depleted during progression of high-grade gliomas: Implications for gamma delta T cell therapy of GBM

    Science.gov (United States)

    Glioblastoma multiforme (GBM) remains frustratingly impervious to any existing therapy. We have previously shown that GBM is sensitive to recognition and lysis by ex vivo activated gamma delta T cells, a minor subset of lymphocytes that innately recognize autologous stress-associated target antigens...

  9. Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells

    DEFF Research Database (Denmark)

    Kirkin, Alexei F.; Dzhandzhugazyan, Karine N.; Guldberg, Per

    2018-01-01

    In cancer cells, cancer/testis (CT) antigens become epigenetically derepressed through DNA demethylation and constitute attractive targets for cancer immunotherapy. Here we report that activated CD4+ T helper cells treated with a DNA-demethylating agent express a broad repertoire of endogenous CT...... antigens and can be used as antigen-presenting cells to generate autologous cytotoxic T lymphocytes (CTLs) and natural killer cells. In vitro, activated CTLs induce HLA-restricted lysis of tumor cells of different histological types, as well as cells expressing single CT antigens. In a phase 1 trial of 25...... patients with recurrent glioblastoma multiforme, cytotoxic lymphocytes homed to the tumor, with tumor regression ongoing in three patients for 14, 22, and 27 months, respectively. No treatment-related adverse effects were observed. This proof-of-principle study shows that tumor-reactive effector cells can...

  10. T-Cell Subsets Predict Mortality in Malnourished Zambian Adults Initiating Antiretroviral Therapy.

    Directory of Open Access Journals (Sweden)

    Caroline C Chisenga

    Full Text Available To estimate the prognostic value of T-cell subsets in Zambian patients initiating antiretroviral therapy (ART, and to assess the impact of a nutritional intervention on T-cell subsets.This was a sub-study of a randomised clinical trial of a nutritional intervention for malnourished adults initiating ART. Participants in a randomised controlled trial (NUSTART trial were enrolled between April and December 2012. Participants received lipid-based nutritional supplement either with or without additional vitamins and minerals. Immunophenotyping was undertaken at baseline and, in survivors, after 12 weeks of ART to characterize T-cell subsets using the markers CD3, CD4, CD8, CD45RA, CCR7, CD28, CD57, CD31, α4β7, Ki67, CD25 and HLA-DR. Univariate and multivariate survival analysis was performed, and responses to treatment were analysed using the Wicoxon rank-sum test.Among 181 adults, 36 (20% died by 12 weeks after starting ART. In univariate analysis, patients who died had fewer proliferating, more naïve and fewer gut homing CD4+ T-cells compared to survivors; and more senescent and fewer proliferating CD8+ T-cells. In a multivariate Cox regression model high naïve CD4+, low proliferating CD4+, high senescent CD8+ and low proliferating CD8+ subsets were independently associated with increased risk of death. Recent CD4+ thymic emigrants increased less between recruitment and 12 weeks of ART in the intervention group compared to the control group.Specific CD4+ T-cell subsets are of considerable prognostic significance for patients initiating ART in Zambia, but only thymic output responded to this nutritional intervention.

  11. Combined influence of adjuvant therapy and interval after surgery on peripheral CD4+ T lymphocytes in patients with esophageal squamous cell carcinoma

    Science.gov (United States)

    LING, YANG; FAN, LIEYING; DONG, CHUNLEI; ZHU, JING; LIU, YONGPING; NI, YAN; ZHU, CHANGTAI; ZHANG, CHANGSONG

    2010-01-01

    The aim of this study was to investigate possible differences in cellular immunity between chemo- and/or radiotherapy groups during a long interval after surgery in esophageal squamous cell carcinoma (ESCC) patients. Cellular immunity was assessed as peripheral lymphocyte subsets in response to chemotherapy (CT), radiotherapy (RT) and CT+RT by flow cytometric analysis. There were 139 blood samples obtained at different time points relative to surgery from 73 patients with ESCC. The changes in the absolute and relative proportions of lymphocyte phenotypes were significant among the adjuvant therapy groups. There were significant differences in the absolute counts of CD4+ and CD8+ T cells among the interval groups, and a lower CD4/CD8 ratio was found in patients following a prolonged interval. RT alone had a profound effect on the absolute counts of CD3+, CD4+ and CD8+ T cells compared with the other groups. CD4+ T cells exhibited a decreasing trend during a long interval, leading to a prolonged T-cell imbalance after surgery. Univariate analysis revealed that the interaction of the type of adjuvant therapy and the interval after surgery was correlated only with the percentage of CD4+ T cells. The percentage of CD4+ T cells can be used as an indicator of the cellular immunity after surgery in ESCC patients. However, natural killer cells consistently remained suppressed in ESCC patients following adjuvant therapy after surgery. These findings confirm an interaction between adjuvant therapy and the interval after surgery on peripheral CD4+ T cells, and implies that adjuvant therapy may have selective influence on the cellular immunity of ESCC patients after surgery. PMID:23136603

  12. Breast and other cancer dormancy as a therapeutic endpoint: speculative recombinant T cell receptor ligand (RTL) adjuvant therapy worth considering?

    International Nuclear Information System (INIS)

    Bakács, Tibor; Mehrishi, Jitendra N

    2010-01-01

    Most individuals who died of trauma were found to harbour microscopic primary cancers at autopsies. Surgical excision of the primary tumour, unfortunately, seems to disturb tumour dormancy in over half of all metastatic relapses. A recently developed immune model suggested that the evolutionary pressure driving the creation of a T cell receptor repertoire was primarily the homeostatic surveillance of the genome. The model is based on the homeostatic role of T cells, suggesting that molecular complementarity between the positively selected T cell receptors and the self peptide-presenting major histocompatibility complex molecules establishes and regulates homeostasis, strictly limiting variations of its components. The repertoire is maintained by continuous peripheral stimulation via soluble forms of self-peptide-presenting major histocompatibility complex molecules governed by the law of mass action. The model states that foreign peptides inhibit the complementary interactions between the major histocompatibility complexes and T cell receptors. Since the vast majority of clinically detected cancers present self-peptides the model assumes that tumour cells are, paradoxically, under homeostatic T cell control. The novelty of our hypothesis therefore is that resection of the primary tumour mass is perceived as loss of 'normal' tissue cells. Consequently, T cells striving to reconstitute homeostasis stimulate rather than inhibit the growth of dormant tumour cells and avascular micrometastases. Here we suggest that such kick-start growths could be prevented by a recombinant T cell receptor ligand therapy that modifies T cell behaviour through a partial activation mechanism. The homeostatic T cell regulation of tumours can be tested in a tri-transgenic mice model engineered to express potent oncogenes in a doxycycline-dependent manner. We suggest seeding dissociated, untransformed mammary cells from doxycycline naïve mice into the lungs of two mice groups: one

  13. Colitis-inducing potency of CD4+ T cells in immunodeficient, adoptive hosts depends on their state of activation, IL-12 responsiveness, and CD45RB surface phenotype

    DEFF Research Database (Denmark)

    Claesson, M H; Bregenholt, S; Bonhagen, K

    1999-01-01

    We studied the induction, severity and rate of progression of inflammatory bowel disease (IBD) induced in SCID mice by the adoptive transfer of low numbers of the following purified BALB/c CD4+ T cell subsets: 1) unfractionated, peripheral, small (resting), or large (activated) CD4+ T cells; 2......RBhigh CD4+ T lymphocytes and activated CD4+ T blasts induced early (6-12 wk posttransfer) and severe disease, while small resting and unfractionated CD4+ T cells or CD45RBlow T lymphocytes induced a late-onset disease 12-16 wk posttransfer. SCID mice transplanted with STAT-4-/- CD4+ T cells showed...

  14. Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin A

    OpenAIRE

    Mazor, Ronit; Vassall, Aaron N.; Eberle, Jaime A.; Beers, Richard; Weldon, John E.; Venzon, David J.; Tsang, Kwong Y.; Benhar, Itai; Pastan, Ira

    2012-01-01

    Recombinant immunotoxins (RITs) are chimeric proteins that are being developed for cancer treatment. We have produced RITs that contain PE38, a portion of the bacterial protein Pseudomonas exotoxin A. Because the toxin is bacterial, it often induces neutralizing antibodies, which limit the number of treatment cycles and the effectiveness of the therapy. Because T cells are essential for antibody responses to proteins, we adopted an assay to map the CD4+ T-cell epitopes in PE38. We incubated p...

  15. How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia.

    Science.gov (United States)

    Ruella, Marco; Gill, Saar

    2015-06-01

    Antigen-specific T cell-based immunotherapy is getting its day in the sun. The contemporaneous development of two potent CD19-specific immunotherapeutic modalities for the treatment of B-cell malignancies provides exciting opportunities for patients, physicians and scientists alike. Patients with relapsed, refractory or poor-risk B-cell acute lymphoblastic leukemia (ALL) previously had few therapeutic options and now have two potential new lifelines. Physicians will have the choice between two powerful modalities and indeed could potentially enroll some patients on trials exploring both modalities if needed. For scientists interested in tumor immunology, the advent of chimeric antigen receptor T-cell therapy and of bispecific T-cell engagers (BiTEs) provides unprecedented opportunities to explore the promise and limitations of antigen-specific T-cell therapy in the context of human leukemia. In this article, we compare chimeric antigen receptor T cells and BiTEs targeting CD19 in B-cell ALL in the setting of the available clinical literature.

  16. Tumor infiltrating BRAFV600E-specific CD4 T cells correlated with complete clinical response in melanoma. | Office of Cancer Genomics

    Science.gov (United States)

    T cells specific for neoantigens encoded by mutated genes in cancers are increasingly recognized as mediators of tumor destruction after immune checkpoint inhibitor therapy or adoptive cell transfer. Unfortunately, most neoantigens result from random mutations and are patient specific, and some cancers contain few mutations to serve as potential antigens. We describe a patient with stage IV acral melanoma who obtained a complete response following adoptive transfer of tumor infiltrating lymphocytes (TIL).

  17. Changes in T-cell subpopulations and cytokine network during early period of ibrutinib therapy in chronic lymphocytic leukemia patients: the significant decrease in T regulatory cells number.

    Science.gov (United States)

    Podhorecka, Monika; Goracy, Aneta; Szymczyk, Agnieszka; Kowal, Malgorzata; Ibanez, Blanca; Jankowska-Lecka, Olga; Macheta, Arkadiusz; Nowaczynska, Aleksandra; Drab-Urbanek, Elzbieta; Chocholska, Sylwia; Jawniak, Dariusz; Hus, Marek

    2017-05-23

    B cell receptor (BCR) stimulation signal plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), and kinase inhibitors directed toward the BCR pathway are now the promising anti-leukemic drugs. Ibrutinib, a Bruton tyrosine kinase inhibitor, demonstrates promising clinical activity in CLL. It is reported that ibrutinib, additionally to directly targeting leukemic cells, also inhibits the interactions of these cells with T cells, macrophages and accessory cells. Assessment of these mechanisms is important because of their non -direct anti-leukemic effects and to identify possible side effects connected with long-term drug administration.The aim of this study was to assess the in vivo effects of ibrutinib on T-cell subpopulations and cytokine network in CLL. The analysis was performed on a group of 19 patients during first month of ibrutinib therapy. The standard multicolor flow cytometry and cytometric bead array methods were used for assessment of T-cell subsets and cytokines/chemokines, respectively.The data obtained indicates that Ibrutinib treatment results in changes in T-cell subpopulations and cytokine network in CLL patients. Particularly, a significant reduction of T regulatory cells in peripheral blood was observed. By targeting these populations of T cells Ibrutinib can stimulate rejection of tumor cells by the immune system.

  18. Improve T Cell Therapy in Neuroblastoma

    Science.gov (United States)

    2015-09-01

    bioluminescence was then measured overtime. The graph is representative of one of 4 experiments using CMV-CTLs from 4 donors. Panel E. Kaplan-Meier...whole-cell vaccine expressing the iC9 gene and labeled with an enhanced firefly luciferase. Tumor growth was measured by in vivo imaging. Panel E...down regulation in LTE -T cells is not caused by specific culture conditions. T lymphocytes were activated with immobilized OKT3 (1 μg ml) and

  19. A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy

    Directory of Open Access Journals (Sweden)

    Miki Ando

    2015-10-01

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs has created promising new avenues for therapies in regenerative medicine. However, the tumorigenic potential of undifferentiated iPSCs is a major safety concern for clinical translation. To address this issue, we demonstrated the efficacy of suicide gene therapy by introducing inducible caspase-9 (iC9 into iPSCs. Activation of iC9 with a specific chemical inducer of dimerization (CID initiates a caspase cascade that eliminates iPSCs and tumors originated from iPSCs. We introduced this iC9/CID safeguard system into a previously reported iPSC-derived, rejuvenated cytotoxic T lymphocyte (rejCTL therapy model and confirmed that we can generate rejCTLs from iPSCs expressing high levels of iC9 without disturbing antigen-specific killing activity. iC9-expressing rejCTLs exert antitumor effects in vivo. The system efficiently and safely induces apoptosis in these rejCTLs. These results unite to suggest that the iC9/CID safeguard system is a promising tool for future iPSC-mediated approaches to clinical therapy.

  20. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma

    DEFF Research Database (Denmark)

    Drent, Esther; Groen, Richard W. J.; Noort, Willy A. Noort

    2016-01-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody...... sequences to generate second-generation retroviral CD38- chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence......, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite...

  1. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses

    Directory of Open Access Journals (Sweden)

    Anja Ten Brinke

    2017-12-01

    Full Text Available Adoptive therapy with regulatory T cells or tolerance-inducing antigen (Ag-presenting cells is innovative and promising therapeutic approach to control undesired and harmful activation of the immune system, as observed in autoimmune diseases, solid organ and bone marrow transplantation. One of the critical issues to elucidate the mechanisms responsible for success or failure of these therapies and define the specificity of the therapy is the evaluation of the Ag-specific T-cell responses. Several efforts have been made to develop suitable and reproducible assays. Here, we focus on dye-based proliferation assays. We highlight with practical examples the fundamental issues to take into consideration for implementation of an effective and sensitive dye-based proliferation assay to monitor Ag-specific responses in patients. The most critical points were used to design a road map to set up and analyze the optimal assay to assess Ag-specific T-cell responses in patients undergoing different treatments. This is the first step to optimize monitoring of tolerance induction, allowing comparison of outcomes of different clinical studies. The road map can also be applied to other therapeutic interventions, not limited to tolerance induction therapies, in which Ag-specific T-cell responses are relevant such as vaccination approaches and cancer immunotherapy.

  2. Clinical potential of regulatory T cell therapy in liver diseases: An overview and current perspectives

    Directory of Open Access Journals (Sweden)

    Hannah Claire Jeffery

    2016-09-01

    Full Text Available The increasing demand for liver transplantation and the decline in donor organs has highlighted the need for alternative novel therapies to prevent chronic active hepatitis, which eventually leads to liver cirrhosis and liver cancer. Liver histology of chronic hepatitis is composed of both effector and regulatory lymphocytes. The human liver contains different subsets of effector lymphocytes, that are kept in check by a subpopulation of T cells known as Regulatory T cells (Treg. The balance of effector and regulatory lymphocytes generally determines the outcome of hepatic inflammation: resolution, fulminant hepatitis or chronic active hepatitis. Thus, maintaining and adjusting this balance is crucial in immunological manipulation of liver diseases. One of the options to restore this balance is to enrich Treg in the liver disease patients.Advances in the knowledge of Treg biology and development of clinical grade isolation reagents, cell sorting equipment and Good Manufacturing Practice (GMP facilities have paved the way to apply Treg cells as a potential therapy to restore peripheral self-tolerance in autoimmune liver diseases, chronic rejection and post-transplantation. Past and on-going studies have applied Treg in type-1 diabetes mellitus, systemic lupus erythematosus, graft versus host diseases (GVHD and solid organ transplantations. There have not been any new therapies for the autoimmune liver diseases for more than three decades; thus the clinical potential for the application of autologous Treg cell therapy to treat autoimmune liver disease is an attractive and novel option. However, it is fundamental to understand the deep immunology, genetic profiles, biology, homing behavior and microenvironment of Treg before applying the cells to the patients.

  3. Stable, Nonviral Expression of Mutated Tumor Neoantigen-specific T-cell Receptors Using the Sleeping Beauty Transposon/Transposase System

    Science.gov (United States)

    Deniger, Drew C; Pasetto, Anna; Tran, Eric; Parkhurst, Maria R; Cohen, Cyrille J; Robbins, Paul F; Cooper, Laurence JN; Rosenberg, Steven A

    2016-01-01

    Neoantigens unique to each patient's tumor can be recognized by autologous T cells through their T-cell receptor (TCR) but the low frequency and/or terminal differentiation of mutation-specific T cells in tumors can limit their utility as adoptive T-cell therapies. Transfer of TCR genes into younger T cells from peripheral blood with a high proliferative potential could obviate this problem. We generated a rapid, cost-effective strategy to genetically engineer cancer patient T cells with TCRs using the clinical Sleeping Beauty transposon/transposase system. Patient-specific TCRs reactive against HLA-A*0201-restriced neoantigens AHNAKS2580F or ERBB2H473Y or the HLA-DQB*0601-restricted neoantigen ERBB2IPE805G were assembled with murine constant chains and cloned into Sleeping Beauty transposons. Patient peripheral blood lymphocytes were coelectroporated with SB11 transposase and Sleeping Beauty transposon, and transposed T cells were enriched by sorting on murine TCRβ (mTCRβ) expression. Rapid expansion of mTCRβ+ T cells with irradiated allogeneic peripheral blood lymphocytes feeders, OKT3, interleukin-2 (IL-2), IL-15, and IL-21 resulted in a preponderance of effector (CD27−CD45RA−) and less-differentiated (CD27+CD45RA+) T cells. Transposed T cells specifically mounted a polyfunctional response against cognate mutated neoantigens and tumor cell lines. Thus, Sleeping Beauty transposition of mutation-specific TCRs can facilitate the use of personalized T-cell therapy targeting unique neoantigens. PMID:26945006

  4. Approved CAR T cell therapies : Ice bucket challenges on glaring safety risks and long-term impacts

    NARCIS (Netherlands)

    P.P. Zheng (Pingpin); J.M. Kros (Johan); J. Li (Jin)

    2018-01-01

    textabstractTwo autologous chimeric antigen receptor (CAR) T cell therapies (Kymriah™ and Yescarta™) were recently approved by the FDA. Kymriah™ is for the treatment of pediatric patients and young adults with refractory or relapse (R/R) B cell precursor acute lymphoblastic leukemia and Yescarta™ is

  5. Distribution of adoptively transferred porcine T-lymphoblasts tracked by 18F-2-fluoro-2-deoxy-D-glucose and position emission tomography

    International Nuclear Information System (INIS)

    Eriksson, Olof; Sadeghi, Arian; Carlsson, Bjoern; Eich, Torsten; Lundgren, Torbjoern; Nilsson, Bo; Toetterman, Thomas; Korsgren, Olle; Sundin, Anders

    2011-01-01

    Introduction: Autologous or allogeneic transfer of tumor-infiltrating T-lymphocytes is a promising treatment for metastatic cancers, but a major concern is the difficulty in evaluating cell trafficking and distribution in adoptive cell therapy. This study presents a method of tracking transfusion of T-lymphoblasts in a porcine model by 18 F-2-fluoro-2-deoxy-D-glucose ([ 18 F]FDG) and positron emission tomography. Methods: T-lymphoblasts were labeled with the positron-emitting tracer [ 18 F]FDG through incubation. The T-lymphoblasts were administered into the bloodstream, and the distribution was followed by positron emission tomography for 120 min. The cells were administered either intravenously into the internal jugular vein (n=5) or intraarterially into the ascending aorta (n=1). Two of the pigs given intravenous administration were pretreated with low-molecular-weight dextran sulphate. Results: The cellular kinetics and distribution were readily quantifiable for up to 120 min. High (78.6% of the administered cells) heterogeneous pulmonary uptake was found after completed intravenous transfusion. The pulmonary uptake was decreased either by preincubating and coadministrating the T-lymphoblasts with low-molecular-weight dextran sulphate or by administrating them intraarterially. Conclusions: The present work shows the feasibility of quantitatively monitoring and evaluating cell trafficking and distribution following administration of [ 18 F]FDG-labeled T-lymphoblasts. The protocol can potentially be transferred to the clinical setting with few modifications.

  6. Modified T-cells (using TCR and CTAs, chimeric antigen receptor (CAR and other molecular tools in recent gene therapy

    Directory of Open Access Journals (Sweden)

    A.S. Odiba

    2018-07-01

    Full Text Available T-cell-based cancer immunotherapy by the transfer of cloned TCRs that are isolated from tumor penetrating T-cells becomes a possibility through NY-ESOc259; a human-derived affinity-enhanced TCR that provides a level of sufficiency in long-term safety and efficacy. NY-ESOc259 recognizes a peptide common to CTAs (LAGE-1 and NY-ESO-1 in melanoma. Risks associated with insertion related transformation in gene therapy have been alleviated through strategies that include the engineering of transcription activator like effector nucleases (TALEN, RNA-guided nucleases (CRISPR/Cas9, Zinc-finger nucleases (ZFN. Cancer immunotherapy based on the genetic modification of autologous T-cells (dependent on the engineered autologous CD8+ T-cells, designed to distinguish and destroy cells bearing tumor-specific antigens via a CAR is able to exterminate B-cell leukemias and lymphomas that are resilient to conventional therapies. A tool with a very large reservoir of potentials in molecular therapy strategy is the Pluripotent Stem Cells (PSC, with pluripotency factors that include Klf4, Sox2, c-Myc, Oct4, differentiating into disease-associated cell phenotypes of three germ layers, comprising of mesoderm (e.g. cardiac cells, blood and muscle, endoderm (liver, pancreas and ectoderm (epidermis, neurons. It finds good application in disease modelling as well as therapeutic options in the restoration of CGD by using AAVS1 as the vector where the therapeutic cassette is integrated into the locus to restore superoxide production in the granulocytes. Fascinatingly, Clinical trial involving iPSC are already underway where scientists have plans to use iPSC-derived cells to treat macular degeneration (a devastating age-related eye disease. Application of these findings has redefined incurable diseases disorders as curable. Keywords: Clinical trials, Disorders, Gene therapy, Molecular biology, Pharmacotherapy, Vector

  7. Pre-transplant donor-specific T-cell alloreactivity is strongly associated with early acute cellular rejection in kidney transplant recipients not receiving T-cell depleting induction therapy.

    Directory of Open Access Journals (Sweden)

    Elena Crespo

    Full Text Available Preformed T-cell immune-sensitization should most likely impact allograft outcome during the initial period after kidney transplantation, since donor-specific memory T-cells may rapidly recognize alloantigens and activate the effector immune response, which leads to allograft rejection. However, the precise time-frame in which acute rejection is fundamentally triggered by preformed donor-specific memory T cells rather than by de novo activated naïve T cells is still to be established. Here, preformed donor-specific alloreactive T-cell responses were evaluated using the IFN-γ ELISPOT assay in a large consecutive cohort of kidney transplant patients (n = 90, to assess the main clinical variables associated with cellular sensitization and its predominant time-frame impact on allograft outcome, and was further validated in an independent new set of kidney transplant recipients (n = 67. We found that most highly T-cell sensitized patients were elderly patients with particularly poor HLA class-I matching, without any clinically recognizable sensitizing events. While one-year incidence of all types of biopsy-proven acute rejection did not differ between T-cell alloreactive and non-alloreactive patients, Receiver Operating Characteristic curve analysis indicated the first two months after transplantation as the highest risk time period for acute cellular rejection associated with baseline T-cell sensitization. This effect was particularly evident in young and highly alloreactive individuals that did not receive T-cell depletion immunosuppression. Multivariate analysis confirmed preformed T-cell sensitization as an independent predictor of early acute cellular rejection. In summary, monitoring anti-donor T-cell sensitization before transplantation may help to identify patients at increased risk of acute cellular rejection, particularly in the early phases after kidney transplantation, and thus guide decision-making regarding the use of induction

  8. A single exercise bout enhances the manufacture of viral-specific T-cells from healthy donors: implications for allogeneic adoptive transfer immunotherapy

    OpenAIRE

    Guillaume Spielmann; Catherine M. Bollard; Hawley Kunz; Patrick J. Hanley; Richard J. Simpson

    2016-01-01

    Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exer...

  9. A novel murine T-cell receptor targeting NY-ESO-1.

    Science.gov (United States)

    Rosati, Shannon F; Parkhurst, Maria R; Hong, Young; Zheng, Zhili; Feldman, Steven A; Rao, Mahadev; Abate-Daga, Daniel; Beard, Rachel E; Xu, Hui; Black, Mary A; Robbins, Paul F; Schrump, David A; Rosenberg, Steven A; Morgan, Richard A

    2014-04-01

    Cancer testis antigens, such as NY-ESO-1, are expressed in a variety of prevalent tumors and represent potential targets for T-cell receptor (TCR) gene therapy. DNA encoding a murine anti-NY-ESO-1 TCR gene (mTCR) was isolated from immunized HLA-A*0201 transgenic mice and inserted into a γ-retroviral vector. Two mTCR vectors were produced and used to transduce human PBL. Transduced cells were cocultured with tumor target cell lines and T2 cells pulsed with the NY-ESO-1 peptide, and assayed for cytokine release and cell lysis activity. The most active TCR construct was selected for production of a master cell bank for clinical use. mTCR-transduced PBL maintained TCR expression in short-term and long-term culture, ranging from 50% to 90% efficiency 7-11 days after stimulation and 46%-82% 10-20 days after restimulation. High levels of interferon-γ secretion were observed (1000-12000 pg/mL), in tumor coculture assays and recognition of peptide-pulsed cells was observed at 0.1 ng/mL, suggesting that the new mTCR had high avidity for antigen recognition. mTCR-transduced T cells also specifically lysed human tumor targets. In all assays, the mTCR was equivalent or better than the comparable human TCR. As the functional activity of TCR-transduced cells may be affected by the formation of mixed dimers, mTCRs, which are less likely to form mixed dimers with endogenous hTCRs, may be more effective in vivo. This new mTCR targeted to NY-ESO-1 represents a novel potential therapeutic option for adoptive cell-transfer therapy for a variety of malignancies.

  10. Preservation of Antigen-Specific Functions of αβ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy.

    Science.gov (United States)

    Li Pira, Giuseppina; Di Cecca, Stefano; Biagini, Simone; Girolami, Elia; Cicchetti, Elisabetta; Bertaina, Valentina; Quintarelli, Concetta; Caruana, Ignazio; Lucarelli, Barbarella; Merli, Pietro; Pagliara, Daria; Brescia, Letizia Pomponia; Bertaina, Alice; Montanari, Mauro; Locatelli, Franco

    2017-01-01

    Hematopoietic stem cell transplantation is standard therapy for numerous hematological diseases. The use of haploidentical donors, sharing half of the HLA alleles with the recipient, has facilitated the use of this procedure as patients can rely on availability of a haploidentical donor within their family. Since HLA disparity increases the risk of graft-versus-host disease, T-cell depletion has been used to remove alloreactive lymphocytes from the graft. Selective removal of αβ T cells, which encompass the alloreactive repertoire, combined with removal of B cells to prevent EBV-related lymphoproliferative disease, proved safe and effective in clinical studies. Depleted αβ T cells and B cells are generally discarded as by-products. Considering the possible use of donor T cells for donor lymphocyte infusions or for generation of pathogen-specific T cells as mediators of graft-versus-infection effect, we tested whether cells in the discarded fractions were functionally intact. Response to alloantigens and to viral antigens comparable to that of unmanipulated cells indicated a functional integrity of αβ T cells, in spite of the manipulation used for their depletion. Furthermore, B cells proved to be efficient antigen-presenting cells, indicating that antigen uptake, processing, and presentation were fully preserved. Therefore, we propose that separated αβ T lymphocytes could be employed for obtaining pathogen-specific T cells, applying available methods for positive selection, which eventually leads to indirect allodepletion. In addition, these functional T cells could undergo additional manipulation, such as direct allodepletion or genetic modification.

  11. Preservation of Antigen-Specific Functions of αβ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy

    Science.gov (United States)

    Li Pira, Giuseppina; Di Cecca, Stefano; Biagini, Simone; Girolami, Elia; Cicchetti, Elisabetta; Bertaina, Valentina; Quintarelli, Concetta; Caruana, Ignazio; Lucarelli, Barbarella; Merli, Pietro; Pagliara, Daria; Brescia, Letizia Pomponia; Bertaina, Alice; Montanari, Mauro; Locatelli, Franco

    2017-01-01

    Hematopoietic stem cell transplantation is standard therapy for numerous hematological diseases. The use of haploidentical donors, sharing half of the HLA alleles with the recipient, has facilitated the use of this procedure as patients can rely on availability of a haploidentical donor within their family. Since HLA disparity increases the risk of graft-versus-host disease, T-cell depletion has been used to remove alloreactive lymphocytes from the graft. Selective removal of αβ T cells, which encompass the alloreactive repertoire, combined with removal of B cells to prevent EBV-related lymphoproliferative disease, proved safe and effective in clinical studies. Depleted αβ T cells and B cells are generally discarded as by-products. Considering the possible use of donor T cells for donor lymphocyte infusions or for generation of pathogen-specific T cells as mediators of graft-versus-infection effect, we tested whether cells in the discarded fractions were functionally intact. Response to alloantigens and to viral antigens comparable to that of unmanipulated cells indicated a functional integrity of αβ T cells, in spite of the manipulation used for their depletion. Furthermore, B cells proved to be efficient antigen-presenting cells, indicating that antigen uptake, processing, and presentation were fully preserved. Therefore, we propose that separated αβ T lymphocytes could be employed for obtaining pathogen-specific T cells, applying available methods for positive selection, which eventually leads to indirect allodepletion. In addition, these functional T cells could undergo additional manipulation, such as direct allodepletion or genetic modification. PMID:28386262

  12. Possible neuroimmunomodulation therapy in T-cell-mediated oral diseases

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sato

    2015-01-01

    Full Text Available Introduction: Recurrent aphthous stomatitis and oral lichen planus are local chronic inflammatory diseases which are implicated in T cell-mediated immunity. According to the systematic review, there is insufficient evidence to support any specific treatment for T-cell mediated oral diseases. The hypothesis: In this paper, we propose a hypothesis that recurrent aphthous stomatitis and oral lichen planus can be treated with selective α7 subunit of nicotinic acetylcholine receptor (α7 -nAChR agonists. Our hypothesis is supported by the following two facts. First, the pathophysiological conditions, T h 1/T h 17 cell activation and autonomic nervous system dysfunction, are observed in T-cell mediated oral diseases as well as in T-cell mediated systemic diseases such as rheumatoid arthritis. Second, the cholinergic anti-inflammatory pathway is inhibited in systemic T-cell mediated chronic inflammatory diseases. On the other hand, treatment with α7 -nAChR agonists which activate the cholinergic anti-inflammatory pathway suppresses neuroinflammation via inhibition of T h 1/T h 17 responses in animal model of systemic T-cell mediated chronic inflammatory diseases. We thus expect that selective α7 -nAChR agonists will be effective for the treatment of T-cell mediated oral diseases. Evaluation of the hypothesis: To test our hypothesis, we need to develop in vivo mouse model of T-cell mediated oral diseases. To evaluate the therapeutic effect of a selective α7 -nAChR agonist, we choose ABT-107 because of its safety and tolerability. We believe that the selective α7 -nAChR agonist, especially ABT-107, may be a therapeutic drug to treat T-cell mediated oral diseases.

  13. [gammadelta T cells stimulated by zoledronate kill osteosarcoma cells].

    Science.gov (United States)

    Jiang, Hui; Xu, Qiang; Yang, Chao; Cao, Zhen-Guo; Li, Zhao-Xu; Ye, Zhao-Ming

    2010-12-01

    To investigate the cytotoxicity of human γδT cells from PBMCs stimulated by zoledronate against osteosarcoma cell line HOS in vitro and in vivo and evaluate the relavent pathways. The peripheral blood mononuclear cells (PBMCs)of healthy donors were stimulated by single dose zoledronate and cultured in the present of IL-2 for two weeks, analysising the percentage of γδT cells on a FACSCalibur cytometer.Study the cytotoxicity of γδT cells against the osteosarcoma line HOS using LDH release assay kit. Pre-treatment of γδT cells with anti-human γδTCR antibody, anti-human NKG2D antibody and concanamycin A to bolck the relavent pathways for evaluating the mechenisms of its cytotoxicity. In vivo, BALB/c mice were inoculated subcutaneously osteosarcoma cell HOS for developing hypodermal tumors. And they were randomized into two groups: unteated group, γδT cell therapy group. Tumor volume and weight of the two groups were compared. After two weeks of culture, γδT cells from zoledronate-stimulated PBMCs could reach (95±3)%. When the E:T as 6:1, 12:1, 25:1, 50:1, the percentage of osteosarcoma cell HOS killed by γδT cells was 26.8%, 31.5%, 37.8%, 40.9%, respectively.When anti-huma γδTCR antibody, anti-human NKG2D antibody and concanamycin A blocked the relavent pathways, the percentage was 32.3%, 4.7%, 16.7% ( E:T as 25:1), respectively. In vivo, the tumor inhibition rate of the group of γδT cell therapy was 42.78%. γδT cells derived from PBMCs stimulated by zoledronate can acquired pure γδT cells. And they show strong cytoxicity against osteosarcoma cell line HOS in vitro and in vivo.

  14. Towards adoptive cellular therapy of chronic autoimmune arthritis

    NARCIS (Netherlands)

    Flierman, Roelof

    2008-01-01

    Rheumatoid arthritis (RA) is a relatively common disease that is characterized by chronic inflammation of joints. The research as described in this thesis focused on the question of whether adoptive cellular therapy is effective in a mouse model of RA. The most generally known type of adoptive

  15. Successful generation of primary virus-specific and anti-tumor T-cell responses from the naive donor T-cell repertoire is determined by the balance between antigen-specific precursor T cells and regulatory T cells.

    NARCIS (Netherlands)

    Jedema, I.; Meent, M. van de; Pots, J.M.; Kester, M.G.; Beek, M.T. van der; Falkenburg, J.H.F.

    2011-01-01

    BACKGROUND: One of the major challenges in allogeneic stem cell transplantation is to find a balance between the harmful induction of graft-versus-host disease and the beneficial graft-versus-leukemia and pathogen-specific immune responses. Adoptive transfer of in-vitro generated donor T cells with

  16. The changing landscape of peripheral T-cell lymphoma in the era of novel therapies.

    Science.gov (United States)

    Karlin, Lionel; Coiffier, Bertrand

    2014-01-01

    Peripheral T-cell lymphomas (PTCLs) are the most common sub-entity of mature T-cell lymphomas, and apart from particular presentations, share a poor prognosis with frequent short-term, agressive, and chemorefractory relapses. Because of the rarity and also the heterogeneity of the disease, we lack randomized clinical trials. However, to date, neither intensification of frontline chemotherapy or autologous transplant has led to any improvement of survival, and the standard CHOP (cyclophosphamide, doxorubicine, vincristine, and prednisone) regimen remains the most employed as induction therapy. In the past few years, new chemotherapeutic agents, with the capability to encompass the resistance to conventional chemotherapy, such as pralatrexate or bendamustine, have been evaluated. Furthermore, identification of cell surface molecular markers (CD52, CD30, CCR4) has led to the development of new monoclonal antibodies. Similarly, the better comprehension of physiopathological mechanisms and detection of deregulated intracellular pathways encouraged the use of novel therapies such as histone deacetylase inhibitors or immunomodulatory drugs. Some of these compounds have been approved for relapse, and are currently evaluated upfront in ongoing clinical trials. Despite these efforts, the global prognosis still remains much inferior to those of B-cell lymphomas, highlighting the necessity of multicenter clinical trials. © 2013 Elsevier Inc. All rights reserved.

  17. A single exercise bout enhances the manufacture of viral-specific T-cells from healthy donors: implications for allogeneic adoptive transfer immunotherapy.

    Science.gov (United States)

    Spielmann, Guillaume; Bollard, Catherine M; Kunz, Hawley; Hanley, Patrick J; Simpson, Richard J

    2016-05-16

    Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exercise bout on the ex vivo manufacture of multi-VSTs. PBMCs isolated from healthy CMV/EBV seropositive participants before (PRE) and immediately after (POST) 30-minutes of cycling exercise were stimulated with CMV (pp65 and IE1) and EBV (LMP2A and BMLF1) peptides and expanded over 8 days. The number (fold difference from PRE) of T-cells specific for CMV pp65 (2.6), EBV LMP2A (2.5), and EBV BMLF1 (4.4) was greater among the VSTs expanded POST. VSTs expanded PRE and POST had similar phenotype characteristics and were equally capable of MHC-restricted killing of autologous target cells. We conclude that a single exercise bout enhances the manufacture of multi-VSTs from healthy donors without altering their phenotype or function and may serve as a simple and economical adjuvant to boost the production of multi-VSTs for allogeneic adoptive transfer immunotherapy.

  18. Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals.

    Science.gov (United States)

    Banga, Riddhima; Procopio, Francesco A; Ruggiero, Alessandra; Noto, Alessandra; Ohmiti, Khalid; Cavassini, Matthias; Corpataux, Jean-Marc; Paxton, William A; Pollakis, Georgios; Perreau, Matthieu

    2018-01-01

    We recently demonstrated that lymph nodes (LNs) PD-1 + /T follicular helper (Tfh) cells from antiretroviral therapy (ART)-treated HIV-infected individuals were enriched in cells containing replication competent virus. However, the distribution of cells containing inducible replication competent virus has been only partially elucidated in blood memory CD4 T-cell populations including the Tfh cell counterpart circulating in blood (cTfh). In this context, we have investigated the distribution of (1) total HIV-infected cells and (2) cells containing replication competent and infectious virus within various blood and LN memory CD4 T-cell populations of conventional antiretroviral therapy (cART)-treated HIV-infected individuals. In the present study, we show that blood CXCR3-expressing memory CD4 T cells are enriched in cells containing inducible replication competent virus and contributed the most to the total pool of cells containing replication competent and infectious virus in blood. Interestingly, subsequent proviral sequence analysis did not indicate virus compartmentalization between blood and LN CD4 T-cell populations, suggesting dynamic interchanges between the two compartments. We then investigated whether the composition of blood HIV reservoir may reflect the polarization of LN CD4 T cells at the time of reservoir seeding and showed that LN PD-1 + CD4 T cells of viremic untreated HIV-infected individuals expressed significantly higher levels of CXCR3 as compared to CCR4 and/or CCR6, suggesting that blood CXCR3-expressing CD4 T cells may originate from LN PD-1 + CD4 T cells. Taken together, these results indicate that blood CXCR3-expressing CD4 T cells represent the major blood compartment containing inducible replication competent virus in treated aviremic HIV-infected individuals.

  19. Chimeric antigen receptor T-cell therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Kheng Newick

    2016-01-01

    Full Text Available Chimeric antigen receptor (CAR T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias. This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment.

  20. Adoptive Transfer of Dying Cells Causes Bystander-Induced Apoptosis

    Science.gov (United States)

    Schwulst, Steven J.; Davis, Christopher G.; Coopersmith, Craig M.; Hotchkiss, Richard S.

    2009-01-01

    The anti-apoptotic Bcl-2 protein has the remarkable ability to prevent cell death from several noxious stimuli. Intriguingly, Bcl-2 overexpression in one cell type has been reported to protect against cell death in neighboring non-Bcl-2 overexpressing cell types. The mechanism of this “trans” protection has been speculated to be secondary to the release of a cytoprotective factor by Bcl-2 overexpressing cells. We employed a series of adoptive transfer experiments in which lymphocytes that overexpress Bcl-2 were administered to either wild type mice or mice lacking mature T and B cells (Rag-1-/-) to detect the presence or absence of the putative protective factor. We were unable to demonstrate “trans” protection. However, adoptive transfer of apoptotic or necrotic cells exacerbated the degree of apoptotic death in neighboring non-Bcl-2 overexpressing cells (p≤0.05). Therefore, this data suggests that dying cells emit signals triggering cell death in neighboring non-Bcl-2 overexpressing cells, i.e. a “trans” destructive effect. PMID:17194455

  1. Toxicity and management in CAR T-cell therapy

    Directory of Open Access Journals (Sweden)

    Challice L Bonifant

    2016-01-01

    Full Text Available T cells can be genetically modified to target tumors through the expression of a chimeric antigen receptor (CAR. Most notably, CAR T cells have demonstrated clinical efficacy in hematologic malignancies with more modest responses when targeting solid tumors. However, CAR T cells also have the capacity to elicit expected and unexpected toxicities including: cytokine release syndrome, neurologic toxicity, “on target/off tumor” recognition, and anaphylaxis. Theoretical toxicities including clonal expansion secondary to insertional oncogenesis, graft versus host disease, and off-target antigen recognition have not been clinically evident. Abrogating toxicity has become a critical step in the successful application of this emerging technology. To this end, we review the reported and theoretical toxicities of CAR T cells and their management.

  2. Phase I Escalating-Dose Trial of CAR-T Therapy Targeting CEA+ Metastatic Colorectal Cancers.

    Science.gov (United States)

    Zhang, Chengcheng; Wang, Zhe; Yang, Zhi; Wang, Meiling; Li, Shiqi; Li, Yunyan; Zhang, Rui; Xiong, Zhouxing; Wei, Zhihao; Shen, Junjie; Luo, Yongli; Zhang, Qianzhen; Liu, Limei; Qin, Hong; Liu, Wei; Wu, Feng; Chen, Wei; Pan, Feng; Zhang, Xianquan; Bie, Ping; Liang, Houjie; Pecher, Gabriele; Qian, Cheng

    2017-05-03

    Chimeric antigen receptor T (CAR-T) cells have shown promising efficacy in treatment of hematological malignancies, but its applications in solid tumors need further exploration. In this study, we investigated CAR-T therapy targeting carcino-embryonic antigen (CEA)-positive colorectal cancer (CRC) patients with metastases to evaluate its safety and efficacy. Five escalating dose levels (DLs) (1 × 10 5 to 1 × 10 8 /CAR + /kg cells) of CAR-T were applied in 10 CRC patients. Our data showed that severe adverse events related to CAR-T therapy were not observed. Of the 10 patients, 7 patients who experienced progressive disease (PD) in previous treatments had stable disease after CAR-T therapy. Two patients remained with stable disease for more than 30 weeks, and two patients showed tumor shrinkage by positron emission tomography (PET)/computed tomography (CT) and MRI analysis, respectively. Decline of serum CEA level was apparent in most patients even in long-term observation. Furthermore, we observed persistence of CAR-T cells in peripheral blood of patients receiving high doses of CAR-T therapy. Importantly, we observed CAR-T cell proliferation especially in patients after a second CAR-T therapy. Taken together, we demonstrated that CEA CAR-T cell therapy was well tolerated in CEA + CRC patients even in high doses, and some efficacy was observed in most of the treated patients. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  3. Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner

    Science.gov (United States)

    McDonald-Hyman, Cameron; Flynn, Ryan; Panoskaltsis-Mortari, Angela; Peterson, Nicholas; MacDonald, Kelli P. A.; Hill, Geoffrey R.; Luznik, Leo; Serody, Jonathan S.; Murphy, William J.; Maillard, Ivan; Munn, David H.; Turka, Laurence A.; Koreth, John; Cutler, Corey S.; Soiffer, Robert J.; Antin, Joseph H.; Ritz, Jerome

    2016-01-01

    Chronic graft-versus-host disease (cGVHD) is a major complication of allogeneic hematopoietic stem cell transplantation. In cGVHD, alloreactive T cells and germinal center (GC) B cells often participate in GC reactions to produce pathogenic antibodies. Although regulatory T cells (Tregs) can inhibit GC reactions, Treg numbers are reduced in cGVHD, contributing to cGVHD pathogenesis. Here, we explored 2 means to increase Tregs in cGVHD: interleukin-2/monoclonal antibody (IL-2/mAb) complexes and donor Treg infusions. IL-2/mAb complexes given over 1 month were efficacious in expanding Tregs and treating established cGVHD in a multi-organ-system disease mouse model characterized by GC reactions, antibody deposition, and lung dysfunction. In an acute GVHD (aGVHD) model, IL-2/mAb complexes given for only 4 days resulted in rapid mortality, indicating IL-2/mAb complexes can drive conventional T-cell (Tcon)-mediated injury. In contrast, Treg infusions, which uniformly suppress aGVHD, increased Treg frequency and were effective in preventing the onset of, and treating, established cGVHD. Efficacy was dependent upon CXCR5-sufficient Tregs homing to, and inhibiting, GC reactions. These studies indicate that the infusion of Tregs, especially ones enriched for GC homing, may be desirable for cGVHD therapy. Although IL-2/mAb complexes can be efficacious in cGVHD, a cautious approach needs to be taken in settings in which aGVHD elements, and associated Tcon, are present. PMID:27385791

  4. Combination of Ipilimumab and Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes for Patients with Metastatic Melanoma

    Directory of Open Access Journals (Sweden)

    John E. Mullinax

    2018-03-01

    Full Text Available PurposeAdoptive cell therapy (ACT using tumor-infiltrating lymphocytes (TIL for metastatic melanoma can be highly effective, but attrition due to progression before TIL administration (32% in prior institutional experience remains a limitation. We hypothesized that combining ACT with cytotoxic T lymphocyte-associated antigen 4 blockade would decrease attrition and allow more patients to receive TIL.Experimental designThirteen patients with metastatic melanoma were enrolled. Patients received four doses of ipilimumab (3 mg/kg beginning 2 weeks prior to tumor resection for TIL generation, then 1 week after resection, and 2 and 5 weeks after preconditioning chemotherapy and TIL infusion followed by interleukin-2. The primary endpoint was safety and feasibility. Secondary endpoints included of clinical response at 12 weeks and at 1 year after TIL transfer, progression free survival (PFS, and overall survival (OS.ResultsAll patients received at least two doses of ipilimumab, and 12 of the 13 (92% received TIL. A median of 6.5 × 1010 (2.3 × 1010 to 1.0 × 1011 TIL were infused. At 12 weeks following infusion, there were five patients who experienced objective response (38.5%, four of whom continued in objective response at 1 year and one of which became a complete response at 52 months. Median progression-free survival was 7.3 months (95% CI 6.1–29.9 months. Grade ≥ 3 immune-related adverse events included hypothyroidism (3, hepatitis (2, uveitis (1, and colitis (1.ConclusionIpilimumab plus ACT for metastatic melanoma is feasible, well tolerated, and associated with a low rate of attrition due to progression during cell expansion. This combination approach serves as a model for future efforts to improve the efficacy of ACT.

  5. Combination of Ipilimumab and Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes for Patients with Metastatic Melanoma.

    Science.gov (United States)

    Mullinax, John E; Hall, MacLean; Prabhakaran, Sangeetha; Weber, Jeffrey; Khushalani, Nikhil; Eroglu, Zeynep; Brohl, Andrew S; Markowitz, Joseph; Royster, Erica; Richards, Allison; Stark, Valerie; Zager, Jonathan S; Kelley, Linda; Cox, Cheryl; Sondak, Vernon K; Mulé, James J; Pilon-Thomas, Shari; Sarnaik, Amod A

    2018-01-01

    Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) for metastatic melanoma can be highly effective, but attrition due to progression before TIL administration (32% in prior institutional experience) remains a limitation. We hypothesized that combining ACT with cytotoxic T lymphocyte-associated antigen 4 blockade would decrease attrition and allow more patients to receive TIL. Thirteen patients with metastatic melanoma were enrolled. Patients received four doses of ipilimumab (3 mg/kg) beginning 2 weeks prior to tumor resection for TIL generation, then 1 week after resection, and 2 and 5 weeks after preconditioning chemotherapy and TIL infusion followed by interleukin-2. The primary endpoint was safety and feasibility. Secondary endpoints included of clinical response at 12 weeks and at 1 year after TIL transfer, progression free survival (PFS), and overall survival (OS). All patients received at least two doses of ipilimumab, and 12 of the 13 (92%) received TIL. A median of 6.5 × 10 10 (2.3 × 10 10 to 1.0 × 10 11 ) TIL were infused. At 12 weeks following infusion, there were five patients who experienced objective response (38.5%), four of whom continued in objective response at 1 year and one of which became a complete response at 52 months. Median progression-free survival was 7.3 months (95% CI 6.1-29.9 months). Grade ≥ 3 immune-related adverse events included hypothyroidism (3), hepatitis (2), uveitis (1), and colitis (1). Ipilimumab plus ACT for metastatic melanoma is feasible, well tolerated, and associated with a low rate of attrition due to progression during cell expansion. This combination approach serves as a model for future efforts to improve the efficacy of ACT.

  6. Estimated average annual rate of change of CD4(+) T-cell counts in patients on combination antiretroviral therapy

    DEFF Research Database (Denmark)

    Mocroft, Amanda; Phillips, Andrew N; Ledergerber, Bruno

    2010-01-01

    BACKGROUND: Patients receiving combination antiretroviral therapy (cART) might continue treatment with a virologically failing regimen. We sought to identify annual change in CD4(+) T-cell count according to levels of viraemia in patients on cART. METHODS: A total of 111,371 CD4(+) T-cell counts...... and viral load measurements in 8,227 patients were analysed. Annual change in CD4(+) T-cell numbers was estimated using mixed models. RESULTS: After adjustment, the estimated average annual change in CD4(+) T-cell count significantly increased when viral load was cells/mm(3), 95......% confidence interval [CI] 26.6-34.3), was stable when viral load was 500-9,999 copies/ml (3.1 cells/mm(3), 95% CI -5.3-11.5) and decreased when viral load was >/=10,000 copies/ml (-14.8 cells/mm(3), 95% CI -4.5--25.1). Patients taking a boosted protease inhibitor (PI) regimen had more positive annual CD4(+) T-cell...

  7. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells.

    Directory of Open Access Journals (Sweden)

    Shan He

    Full Text Available BACKGROUND: Cellular metabolism plays a critical role in regulating T cell responses and the development of memory T cells with long-term protections. However, the metabolic phenotype of antigen-activated T cells that are responsible for the generation of long-lived memory cells has not been characterized. DESIGN AND METHODS: Using lymphocytic choriomeningitis virus (LCMV peptide gp33-specific CD8(+ T cells derived from T cell receptor transgenic mice, we characterized the metabolic phenotype of proliferating T cells that were activated and expanded in vitro in the presence or absence of rapamycin, and determined the capability of these rapamycin-treated T cells to generate long-lived memory cells in vivo. RESULTS: Antigen-activated CD8(+ T cells treated with rapamycin gave rise to 5-fold more long-lived memory T cells in vivo than untreated control T cells. In contrast to that control T cells only increased glycolysis, rapamycin-treated T cells upregulated both glycolysis and oxidative phosphorylation (OXPHOS. These rapamycin-treated T cells had greater ability than control T cells to survive withdrawal of either glucose or growth factors. Inhibition of OXPHOS by oligomycin significantly reduced the ability of rapamycin-treated T cells to survive growth factor withdrawal. This effect of OXPHOS inhibition was accompanied with mitochondrial hyperpolarization and elevation of reactive oxygen species that are known to be toxic to cells. CONCLUSIONS: Our findings indicate that these rapamycin-treated T cells may represent a unique cell model for identifying nutrients and signals critical to regulating metabolism in both effector and memory T cells, and for the development of new methods to improve the efficacy of adoptive T cell cancer therapy.

  8. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy.

    Science.gov (United States)

    Gardner, Rebecca; Wu, David; Cherian, Sindhu; Fang, Min; Hanafi, Laïla-Aïcha; Finney, Olivia; Smithers, Hannah; Jensen, Michael C; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J

    2016-05-19

    Administration of lymphodepletion chemotherapy followed by CD19-specific chimeric antigen receptor (CAR)-modified T cells is a remarkably effective approach to treating patients with relapsed and refractory CD19(+) B-cell malignancies. We treated 7 patients with B-cell acute lymphoblastic leukemia (B-ALL) harboring rearrangement of the mixed lineage leukemia (MLL) gene with CD19 CAR-T cells. All patients achieved complete remission (CR) in the bone marrow by flow cytometry after CD19 CAR-T-cell therapy; however, within 1 month of CAR-T-cell infusion, 2 of the patients developed acute myeloid leukemia (AML) that was clonally related to their B-ALL, a novel mechanism of CD19-negative immune escape. These reports have implications for the management of patients with relapsed and refractory MLL-B-ALL who receive CD19 CAR-T-cell therapy. © 2016 by The American Society of Hematology.

  9. Regression of established renal cell carcinoma in nude mice using lentivirus-transduced human T cells expressing a human anti-CAIX chimeric antigen receptor

    Directory of Open Access Journals (Sweden)

    Agnes Shuk-Yee Lo

    2014-01-01

    Full Text Available Carbonic anhydrase IX (CAIX is a tumor-associated antigen and marker of hypoxia that is overexpressed on > 90% of clear-cell type renal cell carcinoma (RCC but not on neighboring normal kidney tissue. Here, we report on the construction of two chimeric antigen receptors (CARs that utilize a carbonic anhydrase (CA domain mapped, human single chain antibody (scFv G36 as a targeting moiety but differ in their capacity to provide costimulatory signaling for optimal T cell proliferation and tumor cell killing. The resulting anti-CAIX CARs were expressed on human primary T cells via lentivirus transduction. CAR-transduced T cells (CART cells expressing second-generation G36-CD28-TCRζ exhibited more potent in vitro antitumor effects on CAIX+ RCC cells than first-generation G36-CD8-TCRζ including cytotoxicity, cytokine secretion, proliferation, and clonal expansion. Adoptive G36-CD28-TCRζ CART cell therapy combined with high-dose interleukin (IL-2 injection also lead to superior regression of established RCC in nude mice with evidence of tumor cell apoptosis and tissue necrosis. These results suggest that the fully human G36-CD28-TCRζ CARs should provide substantial improvements over first-generation mouse anti-CAIX CARs in clinical use through reduced human anti-mouse antibody responses against the targeting scFv and administration of lower doses of T cells during CART cell therapy of CAIX+ RCC.

  10. TCR-Engineered, Customized, Antitumor T Cells for Cancer Immunotherapy: Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Arvind Chhabra

    2011-01-01

    Full Text Available The clinical outcome of the traditional adoptive cancer immunotherapy approaches involving the administration of donor-derived immune effectors, expanded ex vivo, has not met expectations. This could be attributed, in part, to the lack of sufficient high-avidity antitumor T-cell precursors in most cancer patients, poor immunogenicity of cancer cells, and the technological limitations to generate a sufficiently large number of tumor antigen-specific T cells. In addition, the host immune regulatory mechanisms and immune homeostasis mechanisms, such as activation-induced cell death (AICD, could further limit the clinical efficacy of the adoptively administered antitumor T cells. Since generation of a sufficiently large number of potent antitumor immune effectors for adoptive administration is critical for the clinical success of this approach, recent advances towards generating customized donor-specific antitumor-effector T cells by engrafting human peripheral blood-derived T cells with a tumor-associated antigen-specific transgenic T-cell receptor (TCR are quite interesting. This manuscript provides a brief overview of the TCR engineering-based cancer immunotherapy approach, its advantages, and the current limitations.

  11. TCR-engineered, customized, antitumor T cells for cancer immunotherapy: advantages and limitations.

    Science.gov (United States)

    Chhabra, Arvind

    2011-01-05

    The clinical outcome of the traditional adoptive cancer immunotherapy approaches involving the administration of donor-derived immune effectors, expanded ex vivo, has not met expectations. This could be attributed, in part, to the lack of sufficient high-avidity antitumor T-cell precursors in most cancer patients, poor immunogenicity of cancer cells, and the technological limitations to generate a sufficiently large number of tumor antigen-specific T cells. In addition, the host immune regulatory mechanisms and immune homeostasis mechanisms, such as activation-induced cell death (AICD), could further limit the clinical efficacy of the adoptively administered antitumor T cells. Since generation of a sufficiently large number of potent antitumor immune effectors for adoptive administration is critical for the clinical success of this approach, recent advances towards generating customized donor-specific antitumor-effector T cells by engrafting human peripheral blood-derived T cells with a tumor-associated antigen-specific transgenic T-cell receptor (TCR) are quite interesting. This manuscript provides a brief overview of the TCR engineering-based cancer immunotherapy approach, its advantages, and the current limitations.

  12. CAR T Cells Targeting Podoplanin Reduce Orthotopic Glioblastomas in Mouse Brains.

    Science.gov (United States)

    Shiina, Satoshi; Ohno, Masasuke; Ohka, Fumiharu; Kuramitsu, Shunichiro; Yamamichi, Akane; Kato, Akira; Motomura, Kazuya; Tanahashi, Kuniaki; Yamamoto, Takashi; Watanabe, Reiko; Ito, Ichiro; Senga, Takeshi; Hamaguchi, Michinari; Wakabayashi, Toshihiko; Kaneko, Mika K; Kato, Yukinari; Chandramohan, Vidyalakshmi; Bigner, Darell D; Natsume, Atsushi

    2016-03-01

    Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in adults with a 5-year overall survival rate of less than 10%. Podoplanin (PDPN) is a type I transmembrane mucin-like glycoprotein, expressed in the lymphatic endothelium. Several solid tumors overexpress PDPN, including the mesenchymal type of GBM, which has been reported to present the worst prognosis among GBM subtypes. Chimeric antigen receptor (CAR)-transduced T cells can recognize predefined tumor surface antigens independent of MHC restriction, which is often downregulated in gliomas. We constructed a lentiviral vector expressing a third-generation CAR comprising a PDPN-specific antibody (NZ-1-based single-chain variable fragment) with CD28, 4-1BB, and CD3ζ intracellular domains. CAR-transduced peripheral blood monocytes were immunologically evaluated by calcein-mediated cytotoxic assay, ELISA, tumor size, and overall survival. The generated CAR T cells were specific and effective against PDPN-positive GBM cells in vitro. Systemic injection of the CAR T cells into an immunodeficient mouse model inhibited the growth of intracranial glioma xenografts in vivo. CAR T-cell therapy that targets PDPN would be a promising adoptive immunotherapy to treat mesenchymal GBM. ©2016 American Association for Cancer Research.

  13. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice.

    Directory of Open Access Journals (Sweden)

    Hao Hong

    Full Text Available New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM were then genetically modified to express an anti-L1-CAM CAR (CE7R, which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p. administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.

  14. Plasmodium chabaudi in mice. Adoptive transfer of immunity with enriched populations of spleen T and B lymphocytes

    International Nuclear Information System (INIS)

    McDonald, V.; Phillips, R.S.

    1978-01-01

    Thymectomized NIH and C57BL mice were more susceptible to Plasmodium chabaudi than controls, indicating a role for T cells in acquired immunity to the parasite. Enriched populations of T and B cells were prepared from the spleens of immune mice using nylon-wool columns, and were adoptively transferred to syngeneic non-irradiated mice or mice irradiated with 600 or 800 rad. Some immunity could usually be transferred with immune T, B and glass-wool (g.w.) filtered spleen cell populations. In the heavily irradiated mice g.w. filtered immune spleen cells gave the best protection and the immune T cells the least. Preliminary attempts to show synergistic activity between immune T and B cells in irradiated mice were not successful. (author)

  15. Human T cell leukemia virus reactivation with progression of adult T-cell leukemia-lymphoma.

    Directory of Open Access Journals (Sweden)

    Lee Ratner

    Full Text Available Human T-cell leukemia virus-associated adult T-cell leukemia-lymphoma (ATLL has a very poor prognosis, despite trials of a variety of different treatment regimens. Virus expression has been reported to be limited or absent when ATLL is diagnosed, and this has suggested that secondary genetic or epigenetic changes are important in disease pathogenesis.We prospectively investigated combination chemotherapy followed by antiretroviral therapy for this disorder. Nineteen patients were prospectively enrolled between 2002 and 2006 at five medical centers in a phase II clinical trial of infusional chemotherapy with etoposide, doxorubicin, and vincristine, daily prednisone, and bolus cyclophosphamide (EPOCH given for two to six cycles until maximal clinical response, and followed by antiviral therapy with daily zidovudine, lamivudine, and alpha interferon-2a for up to one year. Seven patients were on study for less than one month due to progressive disease or chemotherapy toxicity. Eleven patients achieved an objective response with median duration of response of thirteen months, and two complete remissions. During chemotherapy induction, viral RNA expression increased (median 190-fold, and virus replication occurred, coincident with development of disease progression.EPOCH chemotherapy followed by antiretroviral therapy is an active therapeutic regimen for adult T-cell leukemia-lymphoma, but viral reactivation during induction chemotherapy may contribute to treatment failure. Alternative therapies are sorely needed in this disease that simultaneously prevent virus expression, and are cytocidal for malignant cells.

  16. Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study.

    Science.gov (United States)

    Davies, Benjamin M; Rikabi, Sarah; French, Anna; Pinedo-Villanueva, Rafael; Morrey, Mark E; Wartolowska, Karolina; Judge, Andrew; MacLaren, Robert E; Mathur, Anthony; Williams, David J; Wall, Ivan; Birchall, Martin; Reeve, Brock; Atala, Anthony; Barker, Richard W; Cui, Zhanfeng; Furniss, Dominic; Bure, Kim; Snyder, Evan Y; Karp, Jeffrey M; Price, Andrew; Carr, Andrew; Brindley, David A

    2014-01-01

    There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community.

  17. Oligoclonal CD8+ T-cell expansion in patients with chronic hepatitis C is associated with liver pathology and poor response to interferon-alpha therapy.

    Science.gov (United States)

    Manfras, Burkhard J; Weidenbach, Hans; Beckh, Karl-Heinz; Kern, Peter; Möller, Peter; Adler, Guido; Mertens, Thomas; Boehm, Bernhard O

    2004-05-01

    The role of CD8(+) T lymphocytes in chronic hepatitis C virus (HCV) infection and in liver injury with subsequent development of fibrosis and cirrhosis is poorly understood. To address this question, we performed a follow-up study including 27 chronically HCV-infected individuals. We determined clonality and phenotypes of circulating CD8(+) T cells employing TCRBV spectratyping. Antigen specificity was tested by rMHC-peptide tetramer staining and stimulation with recombinant HCV antigens. In addition, T-cell clonality and phenotypes were followed during the variable clinical response of interferon- (IFN) alpha treatment. We could demonstrate that CD8(+) T-cell expansions were significantly associated with liver fibrosis and cirrhosis. Likewise, increased oligoclonality of circulating CD8(+) T cells in chronic HCV infection was identified as an indicator for poor clinical response to IFN-alpha therapy. Moreover, we also found that IFN-alpha therapy enhanced the differentiation of CD8(+) T cells towards a late differentiation phenotype (CD28(-) CD57(+)). In cases of virus elimination the disappearance of expanded terminally differentiated CD8(+) cells was observed. Thus, this study identifies an association of clonal expansions of circulating CD8(+) T cells with liver pathology and provides a possible explanation for the fact that response to IFN-alpha therapy diminishes with the duration of infection.

  18. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor.

    Science.gov (United States)

    Adachi, Keishi; Kano, Yosuke; Nagai, Tomohiko; Okuyama, Namiko; Sakoda, Yukimi; Tamada, Koji

    2018-04-01

    Infiltration, accumulation, and survival of chimeric antigen receptor T (CAR-T) cells in solid tumors is crucial for tumor clearance. We engineered CAR-T cells to express interleukin (IL)-7 and CCL19 (7 × 19 CAR-T cells), as these factors are essential for the maintenance of T-cell zones in lymphoid organs. In mice, 7 × 19 CAR-T cells achieved complete regression of pre-established solid tumors and prolonged mouse survival, with superior anti-tumor activity compared to conventional CAR-T cells. Histopathological analyses showed increased infiltration of dendritic cells (DC) and T cells into tumor tissues following 7 × 19 CAR-T cell therapy. Depletion of recipient T cells before 7 × 19 CAR-T cell administration dampened the therapeutic effects of 7 × 19 CAR-T cell treatment, suggesting that CAR-T cells and recipient immune cells collaborated to exert anti-tumor activity. Following treatment of mice with 7 × 19 CAR-T cells, both recipient conventional T cells and administered CAR-T cells generated memory responses against tumors.

  19. Patients with discordant responses to antiretroviral therapy have impaired killing of HIV-infected T cells.

    Directory of Open Access Journals (Sweden)

    Sekar Natesampillai

    2010-11-01

    Full Text Available In medicine, understanding the pathophysiologic basis of exceptional circumstances has led to an enhanced understanding of biology. We have studied the circumstance of HIV-infected patients in whom antiretroviral therapy results in immunologic benefit, despite virologic failure. In such patients, two protease mutations, I54V and V82A, occur more frequently. Expressing HIV protease containing these mutations resulted in less cell death, caspase activation, and nuclear fragmentation than wild type (WT HIV protease or HIV protease containing other mutations. The impaired induction of cell death was also associated with impaired cleavage of procaspase 8, a requisite event for HIV protease mediated cell death. Primary CD4 T cells expressing I54V or V82A protease underwent less cell death than with WT or other mutant proteases. Human T cells infected with HIV containing these mutations underwent less cell death and less Casp8p41 production than WT or HIV containing other protease mutations, despite similar degrees of viral replication. The reductions in cell death occurred both within infected cells, as well as in uninfected bystander cells. These data indicate that single point mutations within HIV protease which are selected in vivo can significantly impact the ability of HIV to kill CD4 T cells, while not impacting viral replication. Therefore, HIV protease regulates both HIV replication as well as HIV induced T cell depletion, the hallmark of HIV pathogenesis.

  20. T-Cell-Mediated Immune Responses in Patients with Cutaneous or Mucosal Leishmaniasis: Long-Term Evaluation after Therapy

    Science.gov (United States)

    Da-Cruz, Alda Maria; Bittar, Rita; Mattos, Marise; Oliveira-Neto, Manuel P.; Nogueira, Ricardo; Pinho-Ribeiro, Vanessa; Azeredo-Coutinho, Rilza Beatriz; Coutinho, Sergio G.

    2002-01-01

    T-cell immune responses in patients with cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML) were studied during the active disease, at the end of therapy, and 1 to 17 years posttherapy (long-term follow-up). Lymphocyte proliferative responses, phenotypic characterization of CD4+ and CD8+ Leishmania-reactive T cells, and cytokine production were assayed. Patients with active ML and CL showed higher proportions of CD4+ than CD8+ T cells. In CL, the healing process was associated with a decrease of CD4+ and an increase of CD8+, leading to similar CD4+ and CD8+ proportions. This pattern was only seen in ML after long-term therapy. Long-term follow-up of patients with CL showed a positive CD4+/CD8+ ratio as observed during the active disease, although the percentages of these T cell subsets were significantly lower. Patients with CL did not show significant differences between gamma interferon (IFN-γ) and interleukin-5 (IL-5) production during the period of study. Patients with active ML presented higher IFN-γ and IL-5 levels compared to patients with active CL. IL-4 was only detected during active disease. Patients long term after cure from ML showed increasing production of IFN-γ, significant decrease of IL-5, and no IL-4 production. Two apparently beneficial immunological parameters were detected in tegumentary leishmaniasis: (i) decreasing proportions of CD4+ Leishmania-reactive T cells in the absence of IL-4 production associated with cure of CL and ML and (ii) decreasing levels of IL-5 long after cure, better detected in patients with ML. The observed T-cell responses maintained for a long period in healed patients could be relevant for immunoprotection against reinfection and used as a parameter for determining the prognosis of patients and selecting future vaccine preparations. PMID:11874860

  1. Interferon-β therapy reduces CD4+ and CD8+ T-cell reactivity in multiple sclerosis

    NARCIS (Netherlands)

    Zafranskaya, M.; Oschmann, P.; Engel, R.; Weishaupt, A.; Noort, J.M. van; Jomaa, H.; Eberl, M.

    2007-01-01

    Therapy with interferon-β (IFN-β) has well-established clinical effects in multiple sclerosis (MS), albeit the immunomodulatory mechanisms are not fully understood. We assessed the prevalence and functional capacity of CD4+ and CD8+ T cells in healthy donors, and in untreated and IFN-β-treated MS

  2. Memory T Cell Migration

    OpenAIRE

    Qianqian eZhang; Qianqian eZhang; Fadi G. Lakkis

    2015-01-01

    Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review...

  3. Forkhead-Box-P3 Gene Transfer in Human CD4+ T Conventional Cells for the Generation of Stable and Efficient Regulatory T Cells, Suitable for Immune Modulatory Therapy

    Directory of Open Access Journals (Sweden)

    Laura Passerini

    2017-10-01

    Full Text Available The development of novel approaches to control immune responses to self- and allogenic tissues/organs represents an ambitious goal for the management of autoimmune diseases and in transplantation. Regulatory T cells (Tregs are recognized as key players in the maintenance of peripheral tolerance in physiological and pathological conditions, and Treg-based cell therapies to restore tolerance in T cell-mediated disorders have been designed. However, several hurdles, including insufficient number of Tregs, their stability, and their antigen specificity, have challenged Tregs clinical applicability. In the past decade, the ability to engineer T cells has proven a powerful tool to redirect specificity and function of different cell types for specific therapeutic purposes. By using lentivirus-mediated gene transfer of the thymic-derived Treg transcription factor forkhead-box-P3 (FOXP3 in conventional CD4+ T cells, we converted effector T cells into Treg-like cells, endowed with potent in vitro and in vivo suppressive activity. The resulting CD4FOXP3 T-cell population displays stable phenotype and suppressive function. We showed that this strategy restores Treg function in T lymphocytes from patients carrying mutations in FOXP3 [immune-dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX], in whom CD4FOXP3 T cell could be used as therapeutics to control autoimmunity. Here, we will discuss the potential advantages of using CD4FOXP3 T cells for in vivo application in inflammatory diseases, where tissue inflammation may undermine the function of natural Tregs. These findings pave the way for the use of engineered Tregs not only in IPEX syndrome but also in autoimmune disorders of different origin and in the context of stem cell and organ transplantation.

  4. Distribution of adoptively transferred porcine T-lymphoblasts tracked by {sup 18}F-2-fluoro-2-deoxy-D-glucose and position emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Olof, E-mail: olof.eriksson@radiol.uu.se [Division of Radiology, Department of Oncology, Radiology, Oncology and Radiation Science, Uppsala University, Uppsala 751 87 (Sweden); Uppsala Imanet AB, GE Healthcare, Uppsala 751 85 (Sweden); Sadeghi, Arian; Carlsson, Bjoern; Eich, Torsten [Division of Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 87 (Sweden); Lundgren, Torbjoern [Division of Transplantation Surgery, CLINTEC, Karolinska Institute, Stockholm 171 77 (Sweden); Nilsson, Bo; Toetterman, Thomas; Korsgren, Olle [Division of Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 751 87 (Sweden); Sundin, Anders [Division of Radiology, Department of Oncology, Radiology, Oncology and Radiation Science, Uppsala University, Uppsala 751 87 (Sweden); Department of Radiology, Karolinska University Hospital and Molecular Medicine and Surgery, Karolinska Institute, Stockholm 171 77 (Sweden)

    2011-08-15

    Introduction: Autologous or allogeneic transfer of tumor-infiltrating T-lymphocytes is a promising treatment for metastatic cancers, but a major concern is the difficulty in evaluating cell trafficking and distribution in adoptive cell therapy. This study presents a method of tracking transfusion of T-lymphoblasts in a porcine model by {sup 18}F-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG) and positron emission tomography. Methods: T-lymphoblasts were labeled with the positron-emitting tracer [{sup 18}F]FDG through incubation. The T-lymphoblasts were administered into the bloodstream, and the distribution was followed by positron emission tomography for 120 min. The cells were administered either intravenously into the internal jugular vein (n=5) or intraarterially into the ascending aorta (n=1). Two of the pigs given intravenous administration were pretreated with low-molecular-weight dextran sulphate. Results: The cellular kinetics and distribution were readily quantifiable for up to 120 min. High (78.6% of the administered cells) heterogeneous pulmonary uptake was found after completed intravenous transfusion. The pulmonary uptake was decreased either by preincubating and coadministrating the T-lymphoblasts with low-molecular-weight dextran sulphate or by administrating them intraarterially. Conclusions: The present work shows the feasibility of quantitatively monitoring and evaluating cell trafficking and distribution following administration of [{sup 18}F]FDG-labeled T-lymphoblasts. The protocol can potentially be transferred to the clinical setting with few modifications.

  5. Antiviral therapy during primary simian immunodeficiency virus infection fails to prevent acute loss of CD4+ T cells in gut mucosa but enhances their rapid restoration through central memory T cells.

    Science.gov (United States)

    Verhoeven, David; Sankaran, Sumathi; Silvey, Melanie; Dandekar, Satya

    2008-04-01

    Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.

  6. Driving CAR T-cells forward

    Science.gov (United States)

    Jackson, Hollie J.; Rafiq, Sarwish; Brentjens, Renier J.

    2017-01-01

    The engineered expression of chimeric antigen receptors (CARs) on the surface of T cells enables the redirection of T-cell specificity. Early clinical trials using CAR T cells for the treatment of patients with cancer showed modest results, but the impressive outcomes of several trials of CD19-targeted CAR T cells in the treatment of patients with B-cell malignancies have generated an increased enthusiasm for this approach. Important lessons have been derived from clinical trials of CD19-specific CAR T cells, and ongoing clinical trials are testing CAR designs directed at novel targets involved in haematological and solid malignancies. In this Review, we discuss these trials and present strategies that can increase the antitumour efficacy and safety of CAR T-cell therapy. Given the fast-moving nature of this field, we only discuss studies with direct translational application currently or soon-to-be tested in the clinical setting. PMID:27000958

  7. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    Science.gov (United States)

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Current advances in T-cell-based cancer immunotherapy

    Science.gov (United States)

    Wang, Mingjun; Yin, Bingnan; Wang, Helen Y; Wang, Rong-Fu

    2015-01-01

    Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers for early detection or diagnosis, most patients present with late-stage disease at the time of diagnosis, thus limiting the potential for successful treatment. Traditional cancer treatments, including surgery, chemotherapy and radiation therapy, have demonstrated very limited efficacy for patients with late-stage disease. Therefore, innovative and effective cancer treatments are urgently needed for cancer patients with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive cell transfer, has shown great promise in the treatment of patients with late-stage disease, including those who are refractory to standard therapies. In this review, we will highlight recent advances and discuss future directions in adoptive cell transfer based cancer immunotherapy. PMID:25524383

  9. Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials.

    Science.gov (United States)

    Esensten, Jonathan H; Bluestone, Jeffrey A; Lim, Wendell A

    2017-01-24

    Engineered T cells are currently in clinical trials to treat patients with cancer, solid organ transplants, and autoimmune diseases. However, the field is still in its infancy. The design, and manufacturing, of T cell therapies is not standardized and is performed mostly in academic settings by competing groups. Reliable methods to define dose and pharmacokinetics of T cell therapies need to be developed. As of mid-2016, there are no US Food and Drug Administration (FDA)-approved T cell therapeutics on the market, and FDA regulations are only slowly adapting to the new technologies. Further development of engineered T cell therapies requires advances in immunology, synthetic biology, manufacturing processes, and government regulation. In this review, we outline some of these challenges and discuss the contributions that pathologists can make to this emerging field.

  10. CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering.

    Science.gov (United States)

    Ayala, Victor I; Deleage, Claire; Trivett, Matthew T; Jain, Sumiti; Coren, Lori V; Breed, Matthew W; Kramer, Joshua A; Thomas, James A; Estes, Jacob D; Lifson, Jeffrey D; Ott, David E

    2017-06-01

    Follicular helper CD4 T cells, T FH , residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8 hCXCR5 ) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8 hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8 hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8 hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8 hCXCR5 T cells were present throughout the follicles with some observed near infected T FH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication. IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, T FH , present inside B-cell follicles represent a

  11. Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study

    Directory of Open Access Journals (Sweden)

    Benjamin M Davies

    2014-09-01

    Full Text Available There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community.

  12. Vγ9Vδ2 T cells as a promising innovative tool for immunotherapy of hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Serena Meraviglia

    2011-12-01

    Full Text Available The potent anti-tumor activities of γδ T cells, their ability to produce pro-inflammatory cytokines, and their strong cytolytic activity have prompted the development of protocols in which γδ agonists or ex vivo-expanded γδ cells are administered to tumor patients. γδ T cells can be selectively activated by either synthetic phosphoantigens or by drugs that enhance their accumulation into stressed cells as aminobisphosphonates, thus offering new avenues for the development of γδ T cell-based immunotherapies. The recent development of small drugs selectively activating Vγ9Vδ2 T lymphocytes, which upregulate the endogenous phosphoantigens, has enabled the investigators to design the experimental approaches of cancer immunotherapies; several ongoing phase I and II clinical trials are focused on the role of the direct bioactivity of drugs and of adoptive cell therapies involving phosphoantigen- or aminobisphosphonate-activated Vγ9Vδ2 T lymphocytes in humans. In this review, we focus on the recent advances in the activation/expansion of γδ T cells in vitro and in vivo that may represent a promising target for the design of novel and highly innovative immunotherapy in patients with hematologic malignancies.

  13. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies.

    Science.gov (United States)

    Zhang, Li-Na; Song, Yongping; Liu, Delong

    2018-03-15

    The prognosis of adults with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL) remains dismal even at this day and age. With salvage chemotherapy, only 29% (range 18 to 44%) of the patients with R/R ALL can be induced into complete remission (CR), with a median overall survival (OS) of 4 months (range 2-6 months). Blinatumomab and inotuzumab ozogamycin (IO) are immunotherapeutic agents that increased CR to 80% and extended survival to 7.7 months in this high-risk population of patients. In the last few years, chimeric antigen receptor (CAR)--engineered T cells have led to major progress in cancer immunotherapy. CD-19 CAR-T cells have been recently approved for high-risk R/R ALL and lymphoma. The data from long-term follow-up of a single-center phase I study of 19-28z CAR-T cell therapy for adult R/R ALL were just published. At the same time, a multicenter phase II study of 19-41BB CAR-T cell therapy for children and young adults with R/R B cell ALL was also published. The two studies provided fresh information with long-term follow-up. This research highlight analyzed the data and proposed future perspectives for further investigation in this rapidly evolving field.

  14. Immuno-oncologic Approaches: CAR-T Cells and Checkpoint Inhibitors.

    Science.gov (United States)

    Gay, Francesca; D'Agostino, Mattia; Giaccone, Luisa; Genuardi, Mariella; Festuccia, Moreno; Boccadoro, Mario; Bruno, Benedetto

    2017-08-01

    Advances in understanding myeloma biology have shown that disease progression is not only the consequence of intrinsic tumor changes but also of interactions between the tumor and the microenvironment in which the cancer grows. The immune system is an important component of the tumor microenvironment in myeloma, and acting on the immune system is an appealing new treatment strategy. There are 2 ways to act toward immune cells and boost antitumor immunity: (1) to increase antitumor activity (acting on T and NK cytotoxic cells), and (2) to reduce immunosuppression (acting on myeloid-derived stem cells and T regulatory cells). Checkpoint inhibitors and adoptive cell therapy (ACT) are 2 of the main actors, together with monoclonal antibodies and immunomodulatory agents, in the immune-oncologic approach. The aim of checkpoint inhibitors is to release the brakes that block the action of the immune system against the tumor. Anti-programmed death-1 (PD-1) and PD-1-Ligand, as well as anti-CTLA4 and KIR are currently under evaluation, as single agents or in combination, with the best results achieved so far with combination of anti-PD-1 and immunomodulatory agents. The aim of ACT is to create an immune effector specific against the tumor. Preliminary results on chimeric antigen receptor (CAR) T cells, first against CD19, and more recently against B-cell maturation antigen, have shown to induce durable responses in heavily pretreated patients. This review focuses on the most recent clinical results available on the use of checkpoint inhibitors and CAR-T cells in myeloma, in the context of the new immune-oncologic approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Optimizing EphA2-CAR T Cells for the Adoptive Immunotherapy of Glioma

    Directory of Open Access Journals (Sweden)

    Zhongzhen Yi

    2018-06-01

    Full Text Available Glioblastoma is the most aggressive primary brain tumor in humans and is virtually incurable with conventional therapies. Chimeric antigen receptor (CAR T cell therapy targeting the glioblastoma antigen EphA2 is an attractive approach to improve outcomes because EphA2 is expressed highly in glioblastoma but only at low levels in normal brain tissue. Building upon our previous findings in this area, we generated and evaluated a panel of EphA2-specific CARs. We demonstrate here that T cells expressing CD28.ζ and 41BB.ζ CARs with short spacers had similar effector function, resulting in potent antitumor activity. In addition, incorporating the 41BB signaling domain into CD28.ζ CARs did not improve CAR T cell function. While we could not determine functional differences between CD28.ζ, 41BB.ζ, and CD28.41BB.ζ CAR T cells, we selected CD28.ζ CAR T cells for further clinical development based on safety consideration. Keywords: GBM, CAR T cells, EphA2, brain tumor

  16. Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy

    Directory of Open Access Journals (Sweden)

    Howard R. Seay

    2017-03-01

    Full Text Available Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 109 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR. Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.

  17. Innovative T Cell-Targeted Therapy for Ovarian Cancer

    Science.gov (United States)

    2014-10-01

    cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10(7): 467-78. 22. Gomes AQ, Martins DS...costimulator (ICOS) is critical for the development of human T(H)17 cells . Sci Transl Med 2010; 2(55): 55ra78. 36. Cua DJ, Tato CM. Innate IL-17...intestinal epithelial lympho- cytes (17, 18). In contrast, circulating γδ T cells can be found in the blood and lymphoid organs, and are dominated by γδ

  18. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  19. Does thyroidectomy, radioactive iodine therapy, or antithyroid drug treatment alter reactivity of patients` T cells to epitopes of thyrotropin receptor in autoimmune thyroid diseases?

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, M.; Kaplan, E.; Abdel-Latif, A. [Univ. of Chicago, IL (United States)] [and others

    1995-08-01

    The effect of treatment on thyroid antibody production and T cell reactivity to thyroid antigens was studied in 15 patients with Graves` disease (GD) before and after thyroidectomy, 19 patients with GD before and after radioactive iodine (RAI) therapy, and 9 patients maintained euthyroid on antithyroid drugs (ATD). In GD patients, the responses of peripheral blood mononuclear cells (PBMC) and TSH receptor (TSHR)-specific T cell lines to recombinant human TSHR extracellular domain, thyroglobulin, and TSHR peptides were examined on the day of surgery or RAI therapy (day 0) and also 6-8 weeks and 3-6 months thereafter. Reactivity to TSHR peptides before surgery was heterogeneous and spanned the entire extracellular domain. Six to 8 weeks after subtotal thyroidectomy, the number of patients` PBMC responding to any peptide and the average number of recognized peptides decreased. A further decrease in the T cell reactivity to TSHR peptides was observed 3-6 months after surgery. The responses of PBMC from Graves` patients before RAI therapy were less than those in the presurgical group. Six to 8 weeks after RAI therapy, the number of patients responding to any peptide and the average number of recognized peptides increased. Three to 6 months after RAI, T cell responses to TSHR peptides were less than those 6-8 weeks after RAI therapy, but still higher than the values on day 0. Responses of PBMC from patients with GD, maintained euthyroid on ATD, were lower than those before surgery or RAI therapy. The reactivity of T cell lines in different groups reflected a pattern similar to PBMC after treatment. TSHR antibody and microsomal antibody levels decreased after surgery, but increased after RAI therapy. The difference in the number of recognized peptides by patients` PBMC before RAI and surgery may reflect the effect of long term therapy with ATD in the patients before RAI vs. the shorter period in patients before surgery. 38 refs., 2 figs., 5 tabs.

  20. Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity.

    Science.gov (United States)

    Ma, Xingzhe; Bi, Enguang; Huang, Chunjian; Lu, Yong; Xue, Gang; Guo, Xing; Wang, Aibo; Yang, Maojie; Qian, Jianfei; Dong, Chen; Yi, Qing

    2018-05-09

    CD8 + T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8 + or CD4 + T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function. © 2018 Ma et al.

  1. Targeting of T Lymphocytes to Melanoma Cells Through Chimeric Anti-GD3 Immunoglobulin T-Cell Receptors

    Directory of Open Access Journals (Sweden)

    C.O. Yun

    2000-09-01

    Full Text Available Immunoglobulin T-cell receptors (IgTCRs combine the specificity of antibodies with the potency of cellular killing by grafting antibody recognition domains onto TCR signaling chains. IgTCR-modified T cells are thus redirected to kill tumor cells based on their expression of intact antigen on cell surfaces, bypassing the normal mechanism of activation through TCR—peptide—major histocompatibility complex (MHC recognition. Melanoma is one of the most immunoresponsive of human cancers and has served as a prototype for the development of a number of immunotherapies. The target antigen for this study is the ganglioside GD3, which is highly expressed on metastatic melanoma with only minor immunologic cross-reaction with normal tissues. To determine an optimal configuration for therapy, four combinations of IgTCRs were prepared and studied: sFv-ɛ, sFv-ζ, Fab-ɛ, Fab-ζ. These were expressed on the surface of human T cells by retroviral transduction. IgTCR successfully redirected T-cell effectors in an MHC-unrestricted manner, in this case against a non—T-dependent antigen, with specific binding, activation, and cytotoxicity against GD3+ melanoma cells. Soluble GD3 in concentrations up to 100 μg/ml did not interfere with recognition and binding of membrane-bound antigen. Based on the outcomes of these structural and functional tests, the sFv-ζ construct was selected for clinical development. These results demonstrate key features that emphasize the potential of anti-GD3 IgTCR-modified autologous T cells for melanoma therapies.

  2. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies.

    Science.gov (United States)

    Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K

    2015-02-01

    Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.

  3. Restoration of the CD4 T cell compartment after long-term highly active antiretroviral therapy without phenotypical signs of accelerated immunological aging

    NARCIS (Netherlands)

    Vrisekoop, Nienke; van Gent, Rogier; de Boer, Anne Bregje; Otto, Sigrid A.; Borleffs, Jan C. C.; Steingrover, Radjin; Prins, Jan M.; Kuijpers, Taco W.; Wolfs, Tom F. W.; Geelen, Sibyl P. M.; Vulto, Irma; Lansdorp, Peter; Tesselaar, Kiki; Borghans, José A. M.; Miedema, Frank

    2008-01-01

    It remains uncertain whether full T cell reconstitution can be established in HIV-infected children and adults with long-term sustained virological control by highly active antiretroviral therapy (HAART). In this study, we comprehensively analyzed various phenotypical markers of CD4 T cell recovery.

  4. Restoration of the CD4 T cell compartment after long-term highly active Antiretroviral therapy without phenotypical signs of accelerated immunological aging

    NARCIS (Netherlands)

    Vrisekoop, Nienke; van Gent, Rogier; de Boer, Anne Bregje; Otto, Sigrid A.; Borleffs, Jan C. C.; Stemgrover, Radjin; Prins, Jan M.; Kuijpers, Taco W.; Wolfs, Tom F. W.; Geelen, Sibyl P. M.; Vulto, Irma; Lansdorp, Peter; Tesselaar, Kiki; Borghans, Jose A. M.; Miedema, Frank

    2008-01-01

    It remains uncertain whether full T cell reconstitution can be established in HIV-infected children and adults with long-term sustained virological control by highly active antiretroviral therapy (HAART). In this study, we comprehensively analyzed various phenotypical markers of CD4 T cell recovery.

  5. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice.

    Science.gov (United States)

    Kruse, Robert L; Shum, Thomas; Tashiro, Haruko; Barzi, Mercedes; Yi, Zhongzhen; Whitten-Bauer, Christina; Legras, Xavier; Bissig-Choisat, Beatrice; Garaigorta, Urtzi; Gottschalk, Stephen; Bissig, Karl-Dimiter

    2018-04-06

    Chronic hepatitis B virus (HBV) infection remains incurable. Although HBsAg-specific chimeric antigen receptor (HBsAg-CAR) T cells have been generated, they have not been tested in animal models with authentic HBV infection. We generated a novel CAR targeting HBsAg and evaluated its ability to recognize HBV+ cell lines and HBsAg particles in vitro. In vivo, we tested whether human HBsAg-CAR T cells would have efficacy against HBV-infected hepatocytes in human liver chimeric mice. HBsAg-CAR T cells recognized HBV-positive cell lines and HBsAg particles in vitro as judged by cytokine production. However, HBsAg-CAR T cells did not kill HBV-positive cell lines in cytotoxicity assays. Adoptive transfer of HBsAg-CAR T cells into HBV-infected humanized mice resulted in accumulation within the liver and a significant decrease in plasma HBsAg and HBV-DNA levels compared with control mice. Notably, the fraction of HBV core-positive hepatocytes among total human hepatocytes was greatly reduced after HBsAg-CAR T cell treatment, pointing to noncytopathic viral clearance. In agreement, changes in surrogate human plasma albumin levels were not significantly different between treatment and control groups. HBsAg-CAR T cells have anti-HBV activity in an authentic preclinical HBV infection model. Our results warrant further preclinical exploration of HBsAg-CAR T cells as immunotherapy for HBV. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. CD4 T cells play important roles in maintaining IL-17-producing γδ T-cell subsets in naive animals.

    Science.gov (United States)

    Do, Jeong-Su; Visperas, Anabelle; O'Brien, Rebecca L; Min, Booki

    2012-04-01

    A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.

  7. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells.

    Science.gov (United States)

    Wang, Xiaomei; Su, Jin; Sherman, Alexandra; Rogers, Geoffrey L; Liao, Gongxian; Hoffman, Brad E; Leong, Kam W; Terhorst, Cox; Daniell, Henry; Herzog, Roland W

    2015-04-09

    Coagulation factor replacement therapy for the X-linked bleeding disorder hemophilia is severely complicated by antibody ("inhibitor") formation. We previously found that oral delivery to hemophilic mice of cholera toxin B subunit-coagulation factor fusion proteins expressed in chloroplasts of transgenic plants suppressed inhibitor formation directed against factors VIII and IX and anaphylaxis against factor IX (FIX). This observation and the relatively high concentration of antigen in the chloroplasts prompted us to evaluate the underlying tolerance mechanisms. The combination of oral delivery of bioencapsulated FIX and intravenous replacement therapy induced a complex, interleukin-10 (IL-10)-dependent, antigen-specific systemic immune suppression of pathogenic antibody formation (immunoglobulin [Ig] 1/inhibitors, IgE) in hemophilia B mice. Tolerance induction was also successful in preimmune mice but required prolonged oral delivery once replacement therapy was resumed. Orally delivered antigen, initially targeted to epithelial cells, was taken up by dendritic cells throughout the small intestine and additionally by F4/80(+) cells in the duodenum. Consistent with the immunomodulatory responses, frequencies of tolerogenic CD103(+) and plasmacytoid dendritic cells were increased. Ultimately, latency-associated peptide expressing CD4(+) regulatory T cells (CD4(+)CD25(-)LAP(+) cells with upregulated IL-10 and transforming growth factor-β (TGF-β) expression) as well as conventional CD4(+)CD25(+) regulatory T cells systemically suppressed anti-FIX responses. © 2015 by The American Society of Hematology.

  8. Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells.

    Science.gov (United States)

    Shum, Thomas; Omer, Bilal; Tashiro, Haruko; Kruse, Robert L; Wagner, Dimitrios L; Parikh, Kathan; Yi, Zhongzhen; Sauer, Tim; Liu, Daofeng; Parihar, Robin; Castillo, Paul; Liu, Hao; Brenner, Malcolm K; Metelitsa, Leonid S; Gottschalk, Stephen; Rooney, Cliona M

    2017-11-01

    Successful adoptive T-cell immunotherapy of solid tumors will require improved expansion and cytotoxicity of tumor-directed T cells within tumors. Providing recombinant or transgenic cytokines may produce the desired benefits but is associated with significant toxicities, constraining clinical use. To circumvent this limitation, we constructed a constitutively signaling cytokine receptor, C7R, which potently triggers the IL7 signaling axis but is unresponsive to extracellular cytokine. This strategy augments modified T-cell function following antigen exposure, but avoids stimulating bystander lymphocytes. Coexpressing the C7R with a tumor-directed chimeric antigen receptor (CAR) increased T-cell proliferation, survival, and antitumor activity during repeated exposure to tumor cells, without T-cell dysfunction or autonomous T-cell growth. Furthermore, C7R-coexpressing CAR T cells were active against metastatic neuroblastoma and orthotopic glioblastoma xenograft models even at cell doses that had been ineffective without C7R support. C7R may thus be able to enhance antigen-specific T-cell therapies against cancer. Significance: The constitutively signaling C7R system developed here delivers potent IL7 stimulation to CAR T cells, increasing their persistence and antitumor activity against multiple preclinical tumor models, supporting its clinical development. Cancer Discov; 7(11); 1238-47. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 1201 . ©2017 American Association for Cancer Research.

  9. New Approaches in CAR-T Cell Immunotherapy for Breast Cancer.

    Science.gov (United States)

    Wang, Jinghua; Zhou, Penghui

    2017-01-01

    Despite significant advances in surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of death from malignant tumors among women. Immunotherapy has recently become a critical component of breast cancer treatment with encouraging activity and mild safety profiles. CAR-T therapy using genetically modifying T cells with chimeric antigen receptors (CAR) is the most commonly used approach to generate tumor-specific T cells. It has shown good curative effect for a variety of malignant diseases, especially for hematological malignancies. In this review, we briefly introduce the history and the present state of CAR research. Then we discuss the barriers of solid tumors for CARs application and possible strategies to improve therapeutic response with a focus on breast cancer. At last, we outlook the future directions of CAR-T therapy including managing toxicities and developing universal CAR-T cells.

  10. Immunological role of CD4+CD28null T lymphocytes, natural killer cells, and interferon-gamma in pediatric patients with sickle cell disease: relation to disease severity and response to therapy.

    Science.gov (United States)

    ElAlfy, Mohsen Saleh; Adly, Amira Abdel Moneam; Ebeid, Fatma Soliman ElSayed; Eissa, Deena Samir; Ismail, Eman Abdel Rahman; Mohammed, Yasser Hassan; Ahmed, Manar Elsayed; Saad, Aya Sayed

    2018-06-20

    Sickle cell disease (SCD) is associated with alterations in immune phenotypes. CD4 + CD28 null T lymphocytes have pro-inflammatory functions and are linked to vascular diseases. To assess the percentage of CD4 + CD28 null T lymphocytes, natural killer cells (NK), and IFN-gamma levels, we compared 40 children and adolescents with SCD with 40 healthy controls and evaluated their relation to disease severity and response to therapy. Patients with SCD steady state were studied, focusing on history of frequent vaso-occlusive crisis, hydroxyurea therapy, and IFN-gamma levels. Analysis of CD4 + CD28 null T lymphocytes and NK cells was done by flow cytometry. Liver and cardiac iron overload were assessed. CD4 + CD28 null T lymphocytes, NK cells, and IFN-gamma levels were significantly higher in patients than controls. Patients with history of frequent vaso-occlusive crisis and those with vascular complications had higher percentage of CD4 + CD28 null T lymphocytes and IFN-gamma while levels were significantly lower among hydroxyurea-treated patients. CD4 + CD28 null T lymphocytes were positively correlated to transfusional iron input while these cells and IFN-gamma were negatively correlated to cardiac T2* and duration of hydroxyurea therapy. NK cells were correlated to HbS and indirect bilirubin. Increased expression of CD4 + CD28 null T lymphocytes highlights their role in immune dysfunction and pathophysiology of SCD complications.

  11. Transfer of allogeneic CD4+ T cells rescues CD8+ T cells in anti-PD-L1–resistant tumors leading to tumor eradication

    Science.gov (United States)

    Arina, Ainhoa; Karrison, Theodore; Galka, Eva; Schreiber, Karin; Weichselbaum, Ralph R.; Schreiber, Hans

    2017-01-01

    Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T cell–mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the “exhaustion” markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. PMID:28077434

  12. Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Th17 cells and polyfunctional HIV-specific T-cell responses.

    Science.gov (United States)

    Macal, M; Sankaran, S; Chun, T-W; Reay, E; Flamm, J; Prindiville, T J; Dandekar, S

    2008-11-01

    Human immunodeficiency virus (HIV) infection leads to severe CD4+ T-cell depletion in gut-associated lymphoid tissue (GALT) that persists despite the initiation of highly active antiretroviral therapy (HAART). It is not known whether restoration of gut mucosal CD4+ T cells and their functions is feasible during therapy and how that relates to immune correlates and viral reservoirs. Intestinal biopsies and peripheral blood samples from HIV-infected patients who were either HAART naive or on long-term HAART were evaluated. Our data demonstrated that gut CD4+ T-cell restoration ranged from modest (50%), compared with uninfected controls. Despite persistent CD4+ T-cell proviral burden and residual immune activation in GALT during HAART, effective CD4+ T-cell restoration (>50%) was achieved, which was associated with enhanced Th17 CD4+ T-cell accumulation and polyfunctional anti-HIV cellular responses. Our findings suggest that a threshold of>50% CD4+ T-cell restoration may be sufficient for polyfunctional HIV-specific T cells with implications in the evaluation of vaccines and therapeutics.

  13. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity.

    Science.gov (United States)

    Magee, Michael S; Kraft, Crystal L; Abraham, Tara S; Baybutt, Trevor R; Marszalowicz, Glen P; Li, Peng; Waldman, Scott A; Snook, Adam E

    2016-01-01

    Adoptive T-cell therapy (ACT) is an emerging paradigm in which T cells are genetically modified to target cancer-associated antigens and eradicate tumors. However, challenges treating epithelial cancers with ACT reflect antigen targets that are not tumor-specific, permitting immune damage to normal tissues, and preclinical testing in artificial xenogeneic models, preventing prediction of toxicities in patients. In that context, mucosa-restricted antigens expressed by cancers exploit anatomical compartmentalization which shields mucosae from systemic antitumor immunity. This shielding may be amplified with ACT platforms employing antibody-based chimeric antigen receptors (CARs), which mediate MHC-independent recog-nition of antigens. GUCY2C is a cancer mucosa antigen expressed on the luminal surfaces of the intestinal mucosa in mice and humans, and universally overexpressed by colorectal tumors, suggesting its unique utility as an ACT target. T cells expressing CARs directed by a GUCY2C-specific antibody fragment recognized GUCY2C, quantified by expression of activation markers and cytokines. Further, GUCY2C CAR-T cells lysed GUCY2C-expressing, but not GUCY2C-deficient, mouse colorectal cancer cells. Moreover, GUCY2C CAR-T cells reduced tumor number and morbidity and improved survival in mice harboring GUCY2C-expressing colorectal cancer metastases. GUCY2C-directed T cell efficacy reflected CAR affinity and surface expression and was achieved without immune-mediated damage to normal tissues in syngeneic mice. These observations highlight the potential for therapeutic translation of GUCY2C-directed CAR-T cells to treat metastatic tumors, without collateral autoimmunity, in patients with metastatic colorectal cancer.

  14. Analysis of Vδ1 T cells in clinical grade melanoma-infiltrating lymphocytes

    DEFF Research Database (Denmark)

    Donia, Marco; Ellebaek, Eva; Andersen, Mads Hald

    2012-01-01

    . In this study, we have detected low frequencies of Vδ1 T cells among tumor-infiltrating lymphocyte (TIL) products for adoptive cell transfer generated from melanoma metastases. An increased frequency of Vδ1 T cells was found among the cell products from patients with an advanced disease stage. Vδ1 T cells...

  15. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia.

    Science.gov (United States)

    Fraietta, Joseph A; Beckwith, Kyle A; Patel, Prachi R; Ruella, Marco; Zheng, Zhaohui; Barrett, David M; Lacey, Simon F; Melenhorst, Jan Joseph; McGettigan, Shannon E; Cook, Danielle R; Zhang, Changfeng; Xu, Jun; Do, Priscilla; Hulitt, Jessica; Kudchodkar, Sagar B; Cogdill, Alexandria P; Gill, Saar; Porter, David L; Woyach, Jennifer A; Long, Meixiao; Johnson, Amy J; Maddocks, Kami; Muthusamy, Natarajan; Levine, Bruce L; June, Carl H; Byrd, John C; Maus, Marcela V

    2016-03-03

    Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is highly promising but requires robust T-cell expansion and engraftment. A T-cell defect in chronic lymphocytic leukemia (CLL) due to disease and/or therapy impairs ex vivo expansion and response to CAR T cells. To evaluate the effect of ibrutinib treatment on the T-cell compartment in CLL as it relates to CAR T-cell generation, we examined the phenotype and function of T cells in a cohort of CLL patients during their course of treatment with ibrutinib. We found that ≥5 cycles of ibrutinib therapy improved the expansion of CD19-directed CAR T cells (CTL019), in association with decreased expression of the immunosuppressive molecule programmed cell death 1 on T cells and of CD200 on B-CLL cells. In support of these findings, we observed that 3 CLL patients who had been treated with ibrutinib for ≥1 year at the time of T-cell collection had improved ex vivo and in vivo CTL019 expansion, which correlated positively together and with clinical response. Lastly, we show that ibrutinib exposure does not impair CAR T-cell function in vitro but does improve CAR T-cell engraftment, tumor clearance, and survival in human xenograft models of resistant acute lymphocytic leukemia and CLL when administered concurrently. Our collective findings indicate that ibrutinib enhances CAR T-cell function and suggest that clinical trials with combination therapy are warranted. Our studies demonstrate that improved T-cell function may also contribute to the efficacy of ibrutinib in CLL. These trials were registered at www.clinicaltrials.gov as #NCT01747486, #NCT01105247, and #NCT01217749. © 2016 by The American Society of Hematology.

  16. Unraveling Natural Killer T-Cells Development

    Directory of Open Access Journals (Sweden)

    Sabrina Bianca Bennstein

    2018-01-01

    Full Text Available Natural killer T-cells are a subset of innate-like T-cells with the ability to bridge innate and adaptive immunity. There is great interest in harnessing these cells to improve tumor therapy; however, greater understanding of invariant NKT (iNKT cell biology is needed. The first step is to learn more about NKT development within the thymus. Recent studies suggest lineage separation of murine iNKT cells into iNKT1, iNKT2, and iNKT17 cells instead of shared developmental stages. This review will focus on these new studies and will discuss the evidence for lineage separation in contrast to shared developmental stages. The author will also highlight the classifications of murine iNKT cells according to identified transcription factors and cytokine production, and will discuss transcriptional and posttranscriptional regulations, and the role of mammalian target of rapamycin. Finally, the importance of these findings for human cancer therapy will be briefly discussed.

  17. A Subset of CD4/CD8 Double-Negative T Cells Expresses HIV Proteins in Patients on Antiretroviral Therapy

    NARCIS (Netherlands)

    DeMaster, Laura K.; Liu, Xiaohe; VanBelzen, D. Jake; Trinité, Benjamin; Zheng, Lingjie; Agosto, Luis M.; Migueles, Stephen A.; Connors, Mark; Sambucetti, Lidia; Levy, David N.; Pasternak, Alexander O.; O'Doherty, Una

    2016-01-01

    A major goal in HIV eradication research is characterizing the reservoir cells that harbor HIV in the presence of antiretroviral therapy (ART), which reseed viremia after treatment is stopped. In general, it is assumed that the reservoir consists of CD4(+) T cells that express no viral proteins.

  18. Clinical trials of CAR-T cells in China.

    Science.gov (United States)

    Liu, Bingshan; Song, Yongping; Liu, Delong

    2017-10-23

    Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China.

  19. Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    International Nuclear Information System (INIS)

    Bathe, Oliver F; Dalyot-Herman, Nava; Malek, Thomas R

    2003-01-01

    Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several

  20. Adoptive transfer of dendritic cells expressing CD11c reduces the immunological response associated with experimental colitis in BALB/c mice.

    Science.gov (United States)

    Paiatto, Lisiery N; Silva, Fernanda G D; Yamada, Áureo T; Tamashiro, Wirla M S C; Simioni, Patricia U

    2018-01-01

    In addition to conventional therapies, several new strategies have been proposed for modulating autoimmune diseases, including the adoptive transfer of immunological cells. In this context, dendritic cells (DCs) appear to be one of the most promising treatments for autoimmune disorders. The present study aimed to evaluate the effects of adoptive transfer of DCs obtained from both naïve and ovalbumin (OVA)-tolerant mice on the severity of TNBS induced colitis and analyze the eventual protective mechanisms. To induce oral tolerance, BALB/c mice were fed 4mg/mL OVA solution for seven consecutive days. Spleen DCs were isolated from tolerant (tDC) and naïve (nDC) mice, and then adoptively transferred to syngeneic mice. Three days later, colitis was induced in DC treated mice by intrarectal instillation of 100μg2,4,6-trinitrobenzenesulfonic acid (TNBS) dissolved in 50% ethanol. Control subjects received only intrarectal instillation of either TNBS solution or a vehicle. Five days later, mice from all groups were euthanized and examined for physiological and immunological parameters. Regarding the phenotype, we observed that the frequencies of CD11+ MHC II+ and CD11+ MHCII+ CD86+ cells were significantly lower in DCs isolated from tolerant mice than in those from naive mice. However, pretreatment with both types of DCs was able to significantly reduce clinical signs of colitis such as diarrhea, rectal prolapse, bleeding, and cachexia, although only treatment with tDCs was able to prevent weight loss from instillation of TNBS. In vitro proliferation of spleen cells from mice treated with either type of DCs was significantly lower than that observed in splenic cell cultures of naïve mice. Although no significant difference was observed in the frequencies of Treg cells in the experimental groups, the frequency of Th17+CD4+cellsand the secretion of IL-17 were more reduced in the cultures of spleen cells from mice treated with either type of DCs. The levels of IL-9 and IFN

  1. Biology and clinical application of CAR T cells for B cell malignancies.

    Science.gov (United States)

    Davila, Marco L; Sadelain, Michel

    2016-07-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.

  2. Rapid expansion of T cells: Effects of culture and cryopreservation and importance of short-term cell recovery.

    Science.gov (United States)

    Sadeghi, Arian; Ullenhag, Gustav; Wagenius, Gunnar; Tötterman, Thomas H; Eriksson, Fredrik

    2013-06-01

    Successful cell therapy relies on the identification and mass expansion of functional cells for infusion. Cryopreservation of cells is an inevitable step in most cell therapies which also entails consequences for the frozen cells. This study assessed the impact of cryopreservation and the widely used protocol for rapid expansion of T lymphocytes. The effects on cell viability, immunocompetence and the impact on apoptotic and immunosuppressive marker expression were analyzed using validated assays. Cryopreservation of lymphocytes during the rapid expansion protocol did not affect cell viability. Lymphocytes that underwent mass expansion or culture in high dose IL-2 were unable to respond to PHA stimulation by intracellular ATP production immediately after thawing (ATP = 16 ± 11 ng/ml). However, their reactivity to PHA was regained within 48 hours of recovery (ATP = 356 ± 61 ng/ml). Analysis of mRNA levels revealed downregulation of TGF-β and IL-10 at all time points. Culture in high dose IL-2 led to upregulation of p73 and BCL-2 mRNA levels while FoxP3 expression was elevated after culture in IL-2 and artificial TCR stimuli. FoxP3 levels decreased after short-term recovery without IL-2 or stimulation. Antigen specificity, as determined by IFNγ secretion, was unaffected by cryopreservation but was completely lost after addition of high dose IL-2 and artificial TCR stimuli. In conclusion, allowing short-time recovery of mass expanded and cryopreserved cells before reinfusion could enhance the outcome of adoptive cell therapy as the cells regain immune competence and specificity.

  3. Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts

    International Nuclear Information System (INIS)

    Cartellieri, M; Feldmann, A; Koristka, S; Arndt, C; Loff, S; Ehninger, A; Bonin, M von; Bejestani, E P; Ehninger, G; Bachmann, M P

    2016-01-01

    The adoptive transfer of CD19-specific chimeric antigen receptor engineered T cells (CAR T cells) resulted in encouraging clinical trials in indolent B-cell malignancies. However, they also show the limitations of this fascinating technology: CAR T cells can lead to even life-threatening off-tumor, on-target side effects if CAR T cells crossreact with healthy tissues. Here, we describe a novel modular universal CAR platform technology termed UniCAR that reduces the risk of on-target side effects by a rapid and reversible control of CAR T-cell reactivity. The UniCAR system consists of two components: (1) a CAR for an inert manipulation of T cells and (2) specific targeting modules (TMs) for redirecting UniCAR T cells in an individualized time- and target-dependent manner. UniCAR T cells can be armed against different tumor targets simply by replacement of the respective TM for (1) targeting more than one antigen simultaneously or subsequently to enhance efficacy and (2) reducing the risk for development of antigen-loss tumor variants under treatment. Here we provide ‘proof of concept' for retargeting of UniCAR T cells to CD33- and/or CD123-positive acute myeloid leukemia blasts in vitro and in vivo

  4. Circulating T-cell subsets in Graves' disease: differences between patients with active disease and in remission after 131I-therapy

    International Nuclear Information System (INIS)

    Canonica, G.W.; Bagnasco, M.; Ferrini, S.; Biassoni, P.; Giordano, G.; Corte, G.

    1983-01-01

    In the present investigation some surface markers in peripheral blood T lymphocytes of patients with active Graves' disease and subjects in remission after 131 I-therapy have been studied. We confirmed low TG levels in untreated patients and normal values in treated subjects. Increased percentages of DR+, MLR4+ (activated T cells), and 5/9+ (inducer-helper) T cells were detected in patients with active disease, thus indicating the presence of activated T cells and suggesting increased levels of helper T cells. High percentages of MLR4+ and 5/9+, but normal levels of DR+ were found in 131 I-treated subjects. The different distribution of DR and MLR4 positivities on 5/9+ and 5+9-T cells confirm the different meaning of these two markers of the activation state. The imbalance of T-cell subsets found in 131 I-treated subjects and the normal values observed in patients with hyperthyroidism due to toxic adenoma indicate that hyperthyroidism per se is not sufficient to explain the T-cell alterations. The possible meaning of these findings is discussed with respect to previous hypotheses on the pathogenesis of Graves' disease

  5. Clinical trials of CAR-T cells in China

    Directory of Open Access Journals (Sweden)

    Bingshan Liu

    2017-10-01

    Full Text Available Abstract Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China.

  6. Clinical trials of CAR-T cells in China

    OpenAIRE

    Bingshan Liu; Yongping Song; Delong Liu

    2017-01-01

    Abstract Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous...

  7. The effect of beta-interferon therapy on myelin basic protein-elicited CD4+ T cell proliferation and cytokine production in multiple sclerosis

    DEFF Research Database (Denmark)

    Hedegaard, Chris J; Krakauer, Martin; Bendtzen, Klaus

    2008-01-01

    Interferon (IFN)-beta therapy has well-established clinical benefits in multiple sclerosis (MS), but the underlying modulation of cytokine responses to myelin self-antigens remains poorly understood. We analysed the CD4+ T cell proliferation and cytokine responses elicited by myelin basic protein...... (MBP) and a foreign recall antigen, tetanus toxoid (TT), in mononuclear cell cultures from fourteen MS patients undergoing IFN-beta therapy. The MBP-elicited IFN-gamma-, TNF-alpha- and IL-10 production decreased during therapy (p...

  8. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease

    OpenAIRE

    Bagnara, Davide; Kaufman, Matthew S.; Calissano, Carlo; Marsilio, Sonia; Patten, Piers E. M.; Simone, Rita; Chum, Philip; Yan, Xiao-Jie; Allen, Steven L.; Kolitz, Jonathan E.; Baskar, Sivasubramanian; Rader, Christoph; Mellstedt, Hakan; Rabbani, Hodjattallah; Lee, Annette

    2011-01-01

    Chronic lymphocytic leukemia (CLL) is an incurable adult disease of unknown etiology. Understanding the biology of CLL cells, particularly cell maturation and growth in vivo, has been impeded by lack of a reproducible adoptive transfer model. We report a simple, reproducible system in which primary CLL cells proliferate in nonobese diabetes/severe combined immunodeficiency/γcnull mice under the influence of activated CLL-derived T lymphocytes. By cotransferring autologous T lymphocytes, activ...

  9. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    Science.gov (United States)

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  10. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells.

    Science.gov (United States)

    Levine, B L

    2015-03-01

    Performance enhancement of the immune system can now be generated through ex vivo gene modification of T cells in order to redirect native specificity to target tumor antigens. This approach combines the specificity of antibody therapy, the expanded response of cellular therapy and the memory activity of vaccine therapy. Recent clinical trials of chimeric antigen receptor (CAR) T cells directed toward CD19 as a stand-alone therapy have shown sustained complete responses in patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia. As these drug products are individually derived from a patient's own cells, a different manufacturing approach is required for this kind of personalized therapy compared with conventional drugs. Key steps in the CAR T-cell manufacturing process include the selection and activation of isolated T cells, transduction of T cells to express CARs, ex vivo expansion of modified T cells and cryopreservation in infusible media. In this review, the steps involved in isolating, genetically modifying and scaling-out the CAR T cells for use in a clinical setting are described in the context of in-process and release testing and regulatory standards.

  11. Significant Depletion of CD4+ T Cells Occurs in the Oral Mucosa during Simian Immunodeficiency Virus Infection with the Infected CD4+ T Cell Reservoir Continuing to Persist in the Oral Mucosa during Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Jeffy George

    2015-01-01

    Full Text Available Human and simian immunodeficiency virus (HIV and SIV infections are characterized by manifestation of numerous opportunistic infections and inflammatory conditions in the oral mucosa. The loss of CD4+ T cells that play a critical role in maintaining mucosal immunity likely contributes to this process. Here we show that CD4+ T cells constitute a minor population of T cells in the oral mucosa and display a predominantly central memory phenotype mirroring other mucosal sites such as the rectal mucosa. Chronic SIV infection was associated with a near total depletion of CD4+ T cells in the oral mucosa that appear to repopulate during antiretroviral therapy (ART. Repopulating CD4+ T cells harbored a large fraction of Th17 cells suggesting that ART potentially reconstitutes oral mucosal immunity. However, a minor fraction of repopulating CD4+ T cells harbored SIV DNA suggesting that the viral reservoir continues to persist in the oral mucosa during ART. Therapeutic approaches aimed at obtaining sustainable CD4+ T cell repopulation in combination with strategies that can eradicate the latent viral reservoir in the oral mucosa are essential for better oral health and long-term outcome in HIV infected patients.

  12. Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody-Activated Chimeric Antigen Receptor-Modified T Cells.

    Science.gov (United States)

    Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M

    2017-07-01

    The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Virus-Specific T Cells: Broadening Applicability.

    Science.gov (United States)

    Barrett, A John; Prockop, Susan; Bollard, Catherine M

    2018-01-01

    Virus infection remains an appreciable cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Although pharmacotherapy and/or antibody therapy may help prevent or treat viral disease, these drugs are expensive, toxic, and often ineffective due to primary or secondary resistance. Further, effective treatments are limited for many infections (eg, adenovirus, BK virus), which are increasingly detected after alternative donor transplants. These deficiencies in conventional therapeutics have increased interest in an immunotherapeutic approach to viral disorders, leading to adoptive transfer of virus-specific cytotoxic T lymphocytes (VSTs), which can rapidly reconstitute antiviral immunity post-transplantation without causing graft-versus-host disease. This review will explore how the VST field has improved outcomes for many patients with life-threatening viral infections after HSCT, and how to broaden applicability beyond the "patient-specific" products, as well as extending to other viral diseases even outside the context of HSCT. Copyright © 2017 The American Society for Blood and Marrow Transplantation. All rights reserved.

  14. Systemic treatment with CAR-engineered T cells against PSCA delays subcutaneous tumor growth and prolongs survival of mice

    International Nuclear Information System (INIS)

    Hillerdal, Victoria; Ramachandran, Mohanraj; Leja, Justyna; Essand, Magnus

    2014-01-01

    Adoptive transfer of T cells genetically engineered with a chimeric antigen receptor (CAR) has successfully been used to treat both chronic and acute lymphocytic leukemia as well as other hematological cancers. Experimental therapy with CAR-engineered T cells has also shown promising results on solid tumors. The prostate stem cell antigen (PSCA) is a protein expressed on the surface of prostate epithelial cells as well as in primary and metastatic prostate cancer cells and therefore a promising target for immunotherapy of prostate cancer. We developed a third-generation CAR against PSCA including the CD28, OX-40 and CD3 ζ signaling domains. T cells were transduced with a lentivirus encoding the PSCA-CAR and evaluated for cytokine production (paired Student’s t-test), proliferation (paired Student’s t-test), CD107a expression (paired Student’s t-test) and target cell killing in vitro and tumor growth and survival in vivo (Log-rank test comparing Kaplan-Meier survival curves). PSCA-CAR T cells exhibit specific interferon (IFN)-γ and interleukin (IL)-2 secretion and specific proliferation in response to PSCA-expressing target cells. Furthermore, the PSCA-CAR-engineered T cells efficiently kill PSCA-expressing tumor cells in vitro and systemic treatment with PSCA-CAR-engineered T cells significantly delays subcutaneous tumor growth and prolongs survival of mice. Our data confirms that PSCA-CAR T cells may be developed for treatment of prostate cancer

  15. The role of gamma delta T cells in haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Minculescu, L; Sengeløv, H

    2015-01-01

    transplantation modalities increasingly focuses on selective cell depletion and graft engineering with the aim of retaining beneficial immune donor cells for the graft-versus-leukaemia (GVL) effect. In this context, the adoptive and especially innate effector functions of γδ T cells together with clinical studies...... recognition independent from the major histocompatibility complex (MHC) allows for the theoretical possibility of mediating GVL without an allogeneic response in terms of GVHD. Early studies on the impact of γδ T cells in HSCT have reported conflicting results. Recent studies, however, do suggest an overall...

  16. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    Science.gov (United States)

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  17. Antigen-primed helper T cell function in CBA/N mice is radiosensitive

    International Nuclear Information System (INIS)

    Phillips, N.E.; Campbell, P.A.

    1981-01-01

    CBA/N mice have an X-linked immunodeficiency that includes a deficient humoral response to sheep red blood cells (SRBC). In order to study the cellular mechanisms of this deficiency we have examined helper T cell function to SRBC in an adoptive transfer system by using 2 different sources of helper T cells. When thymocytes were used as the source of helper T cell precursors in an adoptive transfer system, CBA/N thymocytes were as effective as CBA/Ca thymocytes in inducing CBA/Ca bone marrow cells to develop into both direct and indirect anti-SRBC plaque-forming cells (PFC). However, when SRBC-primed, irradiated recipient mice were used as the source of helper T cells, primed and irradiated CBA/N recipiets developed significantly fewer direct and indirect anti-SRBC PFC than similarly treated CBA/CA recipients when reconstituted with CBA/Ca bone marrow cells and challenged with SRBC. We conclude that antigen-primed helper T cell function in CBA/N mice is radiosensitive. Possible reasons for this are evaluated and discussed

  18. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    Science.gov (United States)

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  19. Low-dose (10-Gy) total skin electron beam therapy for cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Gniadecki, Robert; Iversen, Lars

    2015-01-01

    a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. RESULTS: The overall response rate was 95% with a complete cutaneous response......PURPOSE: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments...... or a very good partial response rate (response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. CONCLUSIONS...

  20. Hyper-IL-15 suppresses metastatic and autochthonous liver cancer by promoting tumour-specific CD8+ T cell responses.

    Science.gov (United States)

    Cheng, Liang; Du, Xuexiang; Wang, Zheng; Ju, Jianqi; Jia, Mingming; Huang, Qibin; Xing, Qiao; Xu, Meng; Tan, Yi; Liu, Mingyue; Du, Peishuang; Su, Lishan; Wang, Shengdian

    2014-12-01

    Liver cancer has a very dismal prognosis due to lack of effective therapy. Here, we studied the therapeutic effects of hyper-interleukin15 (hyper-IL-15), which is composed of IL-15 and the sushi domain of the IL-15 receptor α chain, on metastatic and autochthonous liver cancers. Liver metastatic tumour models were established by intraportally injecting syngeneic mice with murine CT26 colon carcinoma cells or B16-OVA melanoma cells. Primary hepatocellular carcinoma (HCC) was induced by diethylnitrosamine (DEN). A hydrodynamics-based gene delivery method was used to achieve sustained hyper-IL-15 expression in the liver. Liver gene delivery of hyper-IL-15 robustly expanded CD8(+) T and NK cells, leading to a long-term (more than 40 days) accumulation of CD8(+) T cells in vivo, especially in the liver. Hyper-IL-15 treatment exerted remarkable therapeutic effects on well-established liver metastatic tumours and even on DEN-induced autochthonous HCC, and these effects were abolished by depletion of CD8(+) T cells but not NK cells. Hyper-IL-15 triggered IL-12 and interferon-γ production and reduced the expression of co-inhibitory molecules on dendritic cells in the liver. Adoptive transfer of T cell receptor (TCR) transgenic OT-1 cells showed that hyper-IL-15 preferentially expanded tumour-specific CD8(+) T cells and promoted their interferon-γ synthesis and cytotoxicity. Liver delivery of hyper-IL-15 provides an effective therapy against well-established metastatic and autochthonous liver cancers in mouse models by preferentially expanding tumour-specific CD8(+) T cells and promoting their anti-tumour effects. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. CD4+ and CD8+ T cell activation are associated with HIV DNA in resting CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Leslie R Cockerham

    Full Text Available The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1 in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies.

  2. Long-term control of recurrent or refractory viral infections after allogeneic HSCT with third-party virus-specific T cells.

    Science.gov (United States)

    Withers, Barbara; Blyth, Emily; Clancy, Leighton E; Yong, Agnes; Fraser, Chris; Burgess, Jane; Simms, Renee; Brown, Rebecca; Kliman, David; Dubosq, Ming-Celine; Bishop, David; Sutrave, Gaurav; Ma, Chun Kei Kris; Shaw, Peter J; Micklethwaite, Kenneth P; Gottlieb, David J

    2017-11-14

    Donor-derived adoptive T-cell therapy is a safe and effective treatment of viral infection posttransplant, but it is limited by donor serostatus and availability and by its personalized nature. Off-the-shelf, third-party virus-specific T cells (VSTs) appear promising, but the long-term safety and durability of responses have yet to be established. We conducted a prospective study of 30 allogeneic hemopoietic stem cell transplant (HSCT) patients with persistent or recurrent cytomegalovirus (CMV) (n = 28), Epstein-Barr virus (n = 1), or adenovirus (n = 1) after standard therapy. Patients were treated with infusions of partially HLA-matched, third-party, ex vivo-expanded VSTs (total = 50 infusions) at a median of 75 days post-HSCT (range, 37 to 349 days). Safety, viral dynamics, and immune recovery were monitored for 12 months. Infusions were safe and well tolerated. Acute graft versus host disease occurred in 2 patients, despite a median HLA match between VSTs and the recipient of 2 of 6 antigens. At 12 months, the cumulative incidence of overall response was 93%. Virological control was durable in the majority of patients; the reintroduction of antiviral therapy after the final infusion occurred in 5 patients. CMV-specific T-cell immunity rose significantly and coincided with a rise in CD8 + terminal effector cells. PD-1 expression was elevated on CD8 + lymphocytes before the administration of third-party T cells and remained elevated at the time of viral control. Third-party VSTs show prolonged benefit, with virological control achieved in association with the recovery of CD8 + effector T cells possibly facilitated by VST infusion. This trial was registered at www.clinicaltrials.gov as #NCT02779439 and www.anzctr.org.au as #ACTRN12613000603718.

  3. Counter-flow elutriation of clinical peripheral blood mononuclear cell concentrates for the production of dendritic and T cell therapies.

    Science.gov (United States)

    Stroncek, David F; Fellowes, Vicki; Pham, Chauha; Khuu, Hanh; Fowler, Daniel H; Wood, Lauren V; Sabatino, Marianna

    2014-09-17

    Peripheral blood mononuclear cells (PBMC) concentrates collected by apheresis are frequently used as starting material for cellular therapies, but the cell of interest must often be isolated prior to initiating manufacturing. The results of enriching 59 clinical PBMC concentrates for monocytes or lymphocytes from patients with solid tumors or multiple myeloma using a commercial closed system semi-automated counter-flow elutriation instrument (Elutra, Terumo BCT) were evaluated for quality and consistency. Elutriated monocytes (n = 35) were used to manufacture autologous dendritic cells and elutriated lymphocytes (n = 24) were used manufacture autologous T cell therapies. Elutriated monocytes with >10% neutrophils were subjected to density gradient sedimentation to reduce neutrophil contamination and elutriated lymphocytes to RBC lysis. Elutriation separated the PBMC concentrates into 5 fractions. Almost all of the lymphocytes, platelets and red cells were found in fractions 1 and 2; in contrast, most of the monocytes, 88.6 ± 43.0%, and neutrophils, 74.8 ± 64.3%, were in fraction 5. In addition, elutriation of 6 PBMCs resulted in relatively large quantities of monocytes in fractions 1 or 2. These 6 PBMCs contained greater quantities of monocytes than the other 53 PBMCs. Among fraction 5 isolates 38 of 59 contained >10% neutrophils. High neutrophil content of fraction 5 was associated with greater quantities of neutrophils in the PBMC concentrate. Following density gradient separation the neutrophil counts fell to 3.6 ± 3.4% (all products contained <10% neutrophils). Following red cell lysis of the elutriated lymphocyte fraction the lymphocyte recovery was 86.7 ± 24.0% and 34.3 ± 37.4% of red blood cells remained. Elutriation was consistent and effective for isolating monocytes and lymphocytes from PBMC concentrates for manufacturing clinical cell therapies, but further processing is often required.

  4. Reduced Hepatitis B Virus (HBV)-Specific CD4+ T-Cell Responses in Human Immunodeficiency Virus Type 1-HBV-Coinfected Individuals Receiving HBV-Active Antiretroviral Therapy

    OpenAIRE

    Chang, J. Judy; Wightman, Fiona; Bartholomeusz, Angeline; Ayres, Anna; Kent, Stephen J.; Sasadeusz, Joseph; Lewin, Sharon R.

    2005-01-01

    Functional hepatitis B virus (HBV)-specific T cells are significantly diminished in individuals chronically infected with HBV compared to individuals with self-limiting HBV infection or those on anti-HBV therapy. In individuals infected with human immunodeficiency virus type 1 (HIV-1), coinfection with HBV is associated with an increased risk of worsening liver function following antiviral therapy and of more rapid HBV disease progression. Total HBV-specific T-cell responses in subjects with ...

  5. Genetic engineering with T cell receptors.

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  6. Co-Introduced Functional CCR2 Potentiates In Vivo Anti-Lung Cancer Functionality Mediated by T Cells Double Gene-Modified to Express WT1-Specific T-Cell Receptor

    Science.gov (United States)

    Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki

    2013-01-01

    Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer

  7. Co-introduced functional CCR2 potentiates in vivo anti-lung cancer functionality mediated by T cells double gene-modified to express WT1-specific T-cell receptor.

    Directory of Open Access Journals (Sweden)

    Hiroaki Asai

    Full Text Available BACKGROUND AND PURPOSE: Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR or chimeric antigen receptor (CAR has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. METHODOLOGY/PRINCIPAL FINDINGS: Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1, and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402(+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8(+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1(235-243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3(+ T cells both in vitro and in vivo. Double gene-modified CD3(+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modified CD3(+ T cells. CONCLUSION/SIGNIFICANCE: Introduction of the CCL2/CCR2 axis successfully potentiated in

  8. Evidence That Androgens Modulate Human Thymic T Cell Output

    Science.gov (United States)

    Olsen, Nancy J.; Kovacs, William J.

    2010-01-01

    Background The thymus has long been recognized as a target for the actions of androgenic hormones, but it has only been recently recognized that alterations in circulating levels of gonadal steroids might affect thymic output of T cells. We had the opportunity to examine parameters of thymic cellular output in several hypogonadal men undergoing androgen replacement therapy. Methods Circulating naive (CD4+CD45RA+) T cells were quantitated by flow cytometric analysis of peripheral blood mononuclear cells (PBMCs). Cells bearing T cell receptor excision circles (TRECs) were quantitated using real-time PCR amplification of DNA isolated from PBMCs from normal men and from hypogonadal men before and after testosterone replacement therapy. Results CD4+CD45+ (“naïve”) T cells comprised 10.5% of lymphocytes in normal males; this proportion was greatly increased in two hypogonadal men (35.5% and 44.4%). One man was studied sequentially during treatment with physiologic doses of testosterone. CD4+CD45RA+ cells fell from 37.36% to 20.05% after one month and to 12.51% after 7 months of normalized androgen levels. In two hypogonadal patients TREC levels fell by 83% and 78% after androgen replacement therapy. Conclusions Our observations indicate that the hypogonadal state is associated with increased thymic output of T cells and that this increase in recent thymic emigrants in peripheral blood is reversed by androgen replacement. PMID:21218609

  9. Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients.

    Science.gov (United States)

    Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G

    2014-06-01

    The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (T(regs)) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4(+) T cell count (> or response to long-term HAART, activation of CD4(+) and CD8(+) T cells, T(reg) percentages and very low-level viraemia. Causative interactions between T(regs) and CD4(+) T cells should now be explored prospectively in a large patients cohort. © 2014 British Society for Immunology.

  10. Rag Deletion in Peripheral T Cells Blocks TCR Revision

    Science.gov (United States)

    Hale, J. Scott; Ames, Kristina T.; Boursalian, Tamar E.; Fink, Pamela J.

    2010-01-01

    Mature CD4+Vβ5+ T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or T cell receptor (TCR) revision. In Vβ5 transgenic mice, this latter tolerance pathway results in the appearance of CD4+Vβ5−TCRβ+ T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of Vβ-DJβ recombination intermediates in peripheral CD4+ T cells. Because post-thymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We now show that Rag deletion in post-positive selection T cells in Vβ5 transgenic mice blocks TCR revision in vivo, and that mature peripheral T cells sorted to remove cells bearing endogenous TCRβ chains can express newly generated TCRβ molecules in adoptive hosts. These findings unambiguously demonstrate post-thymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4+ T cells. PMID:20435935

  11. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy.

    Science.gov (United States)

    Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F

    2004-07-01

    Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

  12. Regulation of CD8+ T cell responses to retinal antigen by local FoxP3+ regulatory T cells

    Directory of Open Access Journals (Sweden)

    Scott W McPherson

    2012-06-01

    Full Text Available While pathogenic CD4 T cells are well known mediators of autoimmune uveoretinitis, CD8 T cells can also be uveitogenic. Since preliminary studies indicated that C57BL/6 mice were minimally susceptible to autoimmune uveoretinitis induction by CD8 T cells, the basis of the retinal disease resistance was sought. Mice that express β-galactosidase (βgal on a retina-specific promoter (arrβgal mice were backcrossed to mice expressing green fluorescent protein and diphtheria toxin receptor under control of the Foxp3 promoter (Foxp3-DTR/GFP mice, and to T cell receptor transgenic mice that produce βgal specific CD8 T cells (BG1 mice. These mice were used to explore the role of regulatory T cells in the resistance to retinal autoimmune disease. Experiments with T cells from double transgenic BG1 x Foxp3-DTR/GFP mice transferred into Foxp3-DTR/GFP x arrβgal mice confirmed that the retina was well protected from attempts to induce disease by adoptive transfer of activated BG1 T cells. The successful induction of retinal disease following unilateral intraocular administration of diphtheria toxin to deplete regulatory T cells showed that the protective activity was dependent on local, toxin-sensitive regulatory T cells; the opposite, untreated eye remained disease-free. Although there were very few Foxp3+ regulatory T cells in the parenchyma of quiescent retina, and they did not accumulate in retina, their depletion by local toxin administration led to disease susceptibility. We propose that these regulatory T cells modulate the pathogenic activity of βgal-specific CD8 T cells in the retinas of arrβgal mice on a local basis, allowing immunoregulation to be responsive to local conditions.

  13. CD4+ T helper cells and regulatory T cells in active lupus nephritis: an imbalance towards a predominant Th1 response?

    Science.gov (United States)

    Mesquita, D; Kirsztajn, G Mastroianni; Franco, M F; Reis, L A; Perazzio, S F; Mesquita, F V; Ferreira, V da Silva; Andrade, L E Coelho; de Souza, A W Silva

    2018-01-01

    The objective of this study was to evaluate the frequency of CD4 + T cell subsets in peripheral blood mononuclear cells (PBMC), urine and renal tissue from patients with lupus nephritis (LN). PBMC and urinary cells were collected from 17 patients with active LN, 20 disease controls (DC) with primary glomerulonephritis and 10 healthy controls (HC) and were analysed by flow cytometry with markers for T helper type 1 (Th1), Th2, Th17 and regulatory T cells (T reg ) cells. T cell subsets were assessed by immunohistochemistry from LN biopsy specimens from 12 LN patients. T cell subtypes in PBMC were re-evaluated at 6 months of therapy. CD4 + T cells were decreased in PBMC in LN compared with DC and HC (P = 0·0001). No differences were observed in urinary CD4 + T cell subsets between LN and DC. The frequency of urinary Th17 cells was higher in patients with non-proliferative than in proliferative LN (P = 0·041). CD3 + and T-box 21 ( Tbet+) cells were found in glomeruli and interstitium of LN patients, while forkhead box protein 3 (FoxP3), retinoid-related orphan receptor gamma (ROR-γ) and GATA binding protein 3 (GATA-3) were present only in glomeruli. Th1 cells in PBMC were correlated negatively with urinary Th1 cells (Rho = -0·531; P = 0·028) and with T bet in renal interstitium (Rho = -0·782; P = 0·004). At 6 months, LN patients showed an increase in Th17 cells in PBMC. In conclusion, the inverse association between Th1 cells from PBMC and urinary/renal tissue indicate a role for Th1 in LN pathophysiology. Urinary Th17 cells were associated with less severe LN, and Th17 increased in PBMC during therapy. Urinary CD4 + T cells were not different between LN and DC. © 2017 British Society for Immunology.

  14. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis.

    Science.gov (United States)

    Safari, Fatemeh; Farajnia, Safar; Arya, Maryam; Zarredar, Habib; Nasrolahi, Ava

    2018-06-01

    Rheumatoid arthritis (RA), as one of the most disabling autoimmune diseases, is a common health problem that progressively reduces the life quality of patients. Although various biologics have been introduced for RA, attempts to establish an efficient long-term therapies failed due to the heterogeneity of this disease. In the last decade, immunomodulatory approaches such as T cell adoptive therapy have been developed for controlling autoimmunity. Regulatory T cells (Tregs), the major self-tolerance mediator, are crucial for down-regulation of aberrant immune stimulations. Hence, recruiting ex vivo Tregs emerged as a promising therapy for a variety of autoimmune diseases. The major bottleneck of the Treg adoptive therapy is maintaining the in vivo stability and plasticity of these fascinating cells. Recent progress in genome editing technology clustered regularly interspaced short palindromic repeats (CRISPR) in combination with CRISPR-associated (Cas) 9 system provided a new solution for this bottleneck. The present paper discusses RA pathogenesis and the potential application of new developments in CRISPR-mediated Treg genome editing in personalized therapy of RA.

  15. Peripheral blood T cell activation after radioiodine treatment for graves' disease

    International Nuclear Information System (INIS)

    Teng Weiping; Weetman, A.P.

    1992-01-01

    Radioiodine therapy for Graves' thyrotoxicosis produces a rise in thyroid autoantibodies in the first three months after treatment, but little is known of its effects on T cells. We have therefore followed the changes in T cells subsets in sequential samples from 23 patients with Graves' disease treated with radioiodine, using dual-colour flow cytometry. In the first month after treatment there was a significant rise in activated T cells, identified by the markers HLA-DR (Ia) and CDW 26/Ta 1 (P<0.025 in both case). CD45RO-positive T cells, which are the prime population containing memory cells, also increased (P<0.025), but there was no change in CD45R-positive, resting cells or in the CD4/CD8 (helper to cytotoxic/suppressor) ratio. Vicia villosa-binding T cells, containing the contra-suppressor population, showed a more variable response, but the trend was to an overall increase from pre-treatment values (P<0.025). The change did not appear to be related to antithyroid drugs treatment, since they were seen irrespective of whether patients convinced such therapy. These results suggest that T cell activation and enhanced contra-suppressor activity may in part be responsible for the rise in autoantibodies after radioiodine therapy

  16. Mycobacterium tuberculosis specific CD8(+ T cells rapidly decline with antituberculosis treatment.

    Directory of Open Access Journals (Sweden)

    Melissa R Nyendak

    Full Text Available Biomarkers associated with response to therapy in tuberculosis could have broad clinical utility. We postulated that the frequency of Mycobacterium tuberculosis (Mtb specific CD8(+ T cells, by virtue of detecting intracellular infection, could be a surrogate marker of response to therapy and would decrease during effective antituberculosis treatment.We sought to determine the relationship of Mtb specific CD4(+ T cells and CD8(+ T cells with duration of antituberculosis treatment.We performed a prospective cohort study, enrolling between June 2008 and August 2010, of HIV-uninfected Ugandan adults (n = 50 with acid-fast bacillus smear-positive, culture confirmed pulmonary TB at the onset of antituberculosis treatment and the Mtb specific CD4(+ and CD8(+ T cell responses to ESAT-6 and CFP-10 were measured by IFN-γ ELISPOT at enrollment, week 8 and 24.There was a significant difference in the Mtb specific CD8(+ T response, but not the CD4(+ T cell response, over 24 weeks of antituberculosis treatment (p<0.0001, with an early difference observed at 8 weeks of therapy (p = 0.023. At 24 weeks, the estimated Mtb specific CD8(+ T cell response decreased by 58%. In contrast, there was no significant difference in the Mtb specific CD4(+ T cell during the treatment. The Mtb specific CD4(+ T cell response, but not the CD8(+ response, was negatively impacted by the body mass index.Our data provide evidence that the Mtb specific CD8(+ T cell response declines with antituberculosis treatment and could be a surrogate marker of response to therapy. Additional research is needed to determine if the Mtb specific CD8(+ T cell response can detect early treatment failure, relapse, or to predict disease progression.

  17. Adoptive T cell Therapy Against Solid Tumors: Success Requires Safe TCRs and Countering Immune Evasion

    NARCIS (Netherlands)

    A. Kunert (Andre)

    2018-01-01

    textabstractImmune therapy has proven its feasibility in cancer treatment and in some cases even its preeminence over other treatment modalities such as chemotherapy. Despite promising results observed in clinical trials utilizing or targeting various components of the patient’s own immune system,

  18. Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors.

    Science.gov (United States)

    Aldoss, I; Bargou, R C; Nagorsen, D; Friberg, G R; Baeuerle, P A; Forman, S J

    2017-04-01

    Recent advances in antibody technology to harness T cells for cancer immunotherapy, particularly in the difficult-to-treat setting of relapsed/refractory acute lymphoblastic leukemia (r/r ALL), have led to innovative methods for directing cytotoxic T cells to specific surface antigens on cancer cells. One approach involves administration of soluble bispecific (or dual-affinity) antibody-based constructs that temporarily bridge T cells and cancer cells. Another approach infuses ex vivo-engineered T cells that express a surface plasma membrane-inserted antibody construct called a chimeric antigen receptor (CAR). Both bispecific antibodies and CARs circumvent natural target cell recognition by creating a physical connection between cytotoxic T cells and target cancer cells to activate a cytolysis signaling pathway; this connection allows essentially all cytotoxic T cells in a patient to be engaged because typical tumor cell resistance mechanisms (such as T-cell receptor specificity, antigen processing and presentation, and major histocompatibility complex context) are bypassed. Both the bispecific T-cell engager (BiTE) antibody construct blinatumomab and CD19-CARs are immunotherapies that have yielded encouraging remission rates in CD19-positive r/r ALL, suggesting that they might serve as definitive treatments or bridging therapies to allogeneic hematopoietic cell transplantation. With the introduction of these immunotherapies, new challenges arise related to unique toxicities and distinctive pathways of resistance. An increasing body of knowledge is being accumulated on how to predict, prevent, and manage such toxicities, which will help to better stratify patient risk and tailor treatments to minimize severe adverse events. A deeper understanding of the precise mechanisms of action and immune resistance, interaction with other novel agents in potential combinations, and optimization in the manufacturing process will help to advance immunotherapy outcomes in the r

  19. Natural Killer T Cells in Cancer Immunotherapy

    Science.gov (United States)

    Nair, Shiny; Dhodapkar, Madhav V.

    2017-01-01

    Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy. PMID:29018445

  20. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation.

    Science.gov (United States)

    Graessel, Anke; Hauck, Stefanie M; von Toerne, Christine; Kloppmann, Edda; Goldberg, Tatyana; Koppensteiner, Herwig; Schindler, Michael; Knapp, Bettina; Krause, Linda; Dietz, Katharina; Schmidt-Weber, Carsten B; Suttner, Kathrin

    2015-08-01

    Naive CD4(+) T cells are the common precursors of multiple effector and memory T-cell subsets and possess a high plasticity in terms of differentiation potential. This stem-cell-like character is important for cell therapies aiming at regeneration of specific immunity. Cell surface proteins are crucial for recognition and response to signals mediated by other cells or environmental changes. Knowledge of cell surface proteins of human naive CD4(+) T cells and their changes during the early phase of T-cell activation is urgently needed for a guided differentiation of naive T cells and may support the selection of pluripotent cells for cell therapy. Periodate oxidation and aniline-catalyzed oxime ligation technology was applied with subsequent quantitative liquid chromatography-tandem MS to generate a data set describing the surface proteome of primary human naive CD4(+) T cells and to monitor dynamic changes during the early phase of activation. This led to the identification of 173 N-glycosylated surface proteins. To independently confirm the proteomic data set and to analyze the cell surface by an alternative technique a systematic phenotypic expression analysis of surface antigens via flow cytometry was performed. This screening expanded the previous data set, resulting in 229 surface proteins, which were expressed on naive unstimulated and activated CD4(+) T cells. Furthermore, we generated a surface expression atlas based on transcriptome data, experimental annotation, and predicted subcellular localization, and correlated the proteomics result with this transcriptional data set. This extensive surface atlas provides an overall naive CD4(+) T cell surface resource and will enable future studies aiming at a deeper understanding of mechanisms of T-cell biology allowing the identification of novel immune targets usable for the development of therapeutic treatments. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Structure-based, rational design of T cell receptors

    Directory of Open Access Journals (Sweden)

    Vincent eZoete

    2013-09-01

    Full Text Available Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce TCR modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction pMHC. Using the well-characterized 2C TCR/SIYR/H-2K(b structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. 54% of the designed sequence replacements exhibited improved pMHC-binding as compared to the native TCR, with up to 150 fold increase in affinity, while preserving specificity. Genetically-engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes. We have complemented the approach with a simplified rigid method to predict the TCR orientation over pMHC. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of

  2. Cytokines affecting CD4+T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4+ T regulatory cells.

    Science.gov (United States)

    Hall, Bruce M; Plain, Karren M; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine M; Nomura, Masaru; Boyd, Rochelle; Hodgkinson, Suzanne J

    2017-08-01

    CD4 + T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4 + CD25 + FOXP3 + Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4 + , especially CD4 + CD25 + T cells. CD4 + T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4 + T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4 + CD25 + T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4 + T cells' survival in culture with specific-donor alloantigen. Tolerant CD4 + T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4 + T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4 + CD25 + T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4 + CD25 + T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4 + CD25 + T cells that mediate transplant tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. CD4 T cells mediate both positive and negative regulation of the immune response to HIV infection: complex role of T follicular helper cells and Regulatory T cells in pathogenesis

    Directory of Open Access Journals (Sweden)

    Chansavath ePhetsouphanh

    2015-01-01

    Full Text Available HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B cells and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely regulatory T cells (Tregs and T follicular helper cells (Tfh. These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B cell hyperplasia and increased germinal centre activity. Antiretroviral therapy (ART may reduce the lymphocyte activation, but not completely, and therefore there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B cell or Treg dysfunction.

  4. Age, sex, and nutritional status modify the CD4+ T-cell recovery rate in HIV-tuberculosis co-infected patients on combination antiretroviral therapy.

    Science.gov (United States)

    Ezeamama, Amara E; Mupere, Ezekiel; Oloya, James; Martinez, Leonardo; Kakaire, Robert; Yin, Xiaoping; Sekandi, Juliet N; Whalen, Christopher C

    2015-06-01

    Baseline age and combination antiretroviral therapy (cART) were examined as determinants of CD4+ T-cell recovery during 6 months of tuberculosis (TB) therapy with/without cART. It was determined whether this association was modified by patient sex and nutritional status. This longitudinal analysis included 208 immune-competent, non-pregnant, ART-naive HIV-positive patients from Uganda with a first episode of pulmonary TB. CD4+ T-cell counts were measured using flow cytometry. Age was defined as ≤24, 25-29, 30-34, and 35-39 vs. ≥40 years. Nutritional status was defined as normal (>18.5kg/m(2)) vs. underweight (≤18.5kg/m(2)) using the body mass index (BMI). Multivariate random effects linear mixed models were fitted to estimate differences in CD4+ T-cell recovery in relation to specified determinants. cART was associated with a monthly rise of 15.7 cells/μl (precovery during TB therapy (p = 0.655). However, among patients on cART, the age-associated CD4+ T-cell recovery rate varied by sex and nutritional status, such that age recovery among females (p=0.006) and among patients with a BMI ≥18.5kg/m(2) (p18.5kg/m(2) or they are female. These patients may benefit from increased monitoring and nutritional support during cART. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance.

    Science.gov (United States)

    Lei, Fengyang; Zhao, Baohua; Haque, Rizwanul; Xiong, Xiaofang; Budgeon, Lynn; Christensen, Neil D; Wu, Yuzhang; Song, Jianxun

    2011-07-15

    Adoptive T-cell immunotherapy has garnered wide attention, but its effective use is limited by the need of multiple ex vivo manipulations and infusions that are complex and expensive. In this study, we show how highly reactive antigen (Ag)-specific CTLs can be generated from induced pluripotent stem (iPS) cells to provide an unlimited source of functional CTLs for adoptive immunotherapy. iPS cell-derived T cells can offer the advantages of avoiding possible immune rejection and circumventing ethical and practical issues associated with other stem cell types. iPS cells can be differentiated into progenitor T cells in vitro by stimulation with the Notch ligand Delta-like 1 (DL1) overexpressed on bone marrow stromal cells, with complete maturation occurring upon adoptive transfer into Rag1-deficient mice. Here, we report that these iPS cells can be differentiated in vivo into functional CTLs after overexpression of MHC I-restricted Ag-specific T-cell receptors (TCR). In this study, we generated murine iPS cells genetically modified with ovalbumin (OVA)-specific and MHC-I restricted TCR (OT-I) by retrovirus-mediated transduction. After their adoptive transfer into recipient mice, the majority of OT-I/iPS cells underwent differentiation into CD8+ CTLs. TCR-transduced iPS cells developed in vivo responded in vitro to peptide stimulation by secreting interleukin 2 and IFN-γ. Most importantly, adoptive transfer of TCR-transduced iPS cells triggered infiltration of OVA-reactive CTLs into tumor tissues and protected animals from tumor challenge. Taken together, our findings offer proof of concept for a potentially more efficient approach to generate Ag-specific T lymphocytes for adoptive immunotherapy. ©2011 AACR.

  6. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    Science.gov (United States)

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  7. Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis

    Science.gov (United States)

    Cobb, Dustin A.; Bhadra, Rajarshi

    2016-01-01

    CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131

  8. Radiation therapy of lethal midline granuloma type nasal T-cell lymphoma

    International Nuclear Information System (INIS)

    Sakata, Koh-ichi; Hareyama, Masato; Ohuchi, Atushi; Sido, Mitsuo; Nagakura, Hisayasu; Morita, Kazuo; Harabuchi, Yasuaki; Kataura, Akikatsu

    1996-01-01

    Purpose/Objective: Lethal midline granuloma (LMG) is disorder characterized by progressive, unrelenting ulceration, and necrosis of the nasal cavity and midline facial tissues. Several investigators have demonstrated that LMG (polymorphic reticulosis) is a peripheral T-cell lymphoma, and the term nasal T-cell lymphoma of the LMG type (LMG-NTL) has since been widely used. Recently, expression of the natural killer (NK) cell marker CD56 on tumor cells has been reported in some cases. However, there is very little information about the optimal treatment for this disease. In this study, we report our observations on the clinical behavior of this tumor in comparison with nasal lymphoma of non-LMG-NTL type (non-LMG-NTL) that makes tumor mass and paranasal sinus lymphoma (PSL) to improve management of LMG-NTL. Materials and Methods: Sixteen patients (10 men, 6 women) with LMG-NTL, 8 patients (4 men, 4 women) with non-LMG-NTL, and 6 patients (4 men, 2 women) with PSL were treated with radiation therapy between January 1975 and December 1994. Four of 8 patients with non-LMG-NTL had tumors of B-cell origin and four had T-cell derived tumors. All 6 patients with PSL had B-cell tumors. They had stage I or II disease. The radiation portal encompassed clinically involved areas with a generous margin. The median dose received was 40 Gy (range, 9-74 Gy) and the median TDF delivered was 63.3 (range, 13.7-103.5). One or two courses of VEPA chemotherapy (same drugs as CHOP, however, drugs doses and treatment schedule are a little different) were administered to the patients with non-LMG-NTL after radiotherapy and the patients with PSL before radiotherapy. In patients with LMG-NTL, between 1975 and 1981 one patient was treated with COPP, one with VEMP after radiotherapy, and two with radiotherapy alone. From 1982 to 1986, all three patients treated for LMG-NTL received VEPA before radiotherapy. Since 1987, of 11 patients treated for LMG-NTL, all except one received two courses of

  9. Early transduction produces highly functional chimeric antigen receptor-modified virus-specific T-cells with central memory markers: a Production Assistant for Cell Therapy (PACT) translational application

    OpenAIRE

    Sun, Jiali; Huye, Leslie E; Lapteva, Natalia; Mamonkin, Maksim; Hiregange, Manasa; Ballard, Brandon; Dakhova, Olga; Raghavan, Darshana; Durett, April G; Perna, Serena K; Omer, Bilal; Rollins, Lisa A; Leen, Ann M; Vera, Juan F; Dotti, Gianpietro

    2015-01-01

    Background Virus-specific T-cells (VSTs) proliferate exponentially after adoptive transfer into hematopoietic stem cell transplant (HSCT) recipients, eliminate virus infections, then persist and provide long-term protection from viral disease. If VSTs behaved similarly when modified with tumor-specific chimeric antigen receptors (CARs), they should have potent anti-tumor activity. This theory was evaluated by Cruz et al. in a previous clinical trial with CD19.CAR-modified VSTs, but there was ...

  10. Chimeric Antigen Receptors in Different Cell Types: New Vehicles Join the Race.

    Science.gov (United States)

    Harrer, Dennis C; Dörrie, Jan; Schaft, Niels

    2018-05-01

    Adoptive cellular therapy has evolved into a powerful force in the battle against cancer, holding promise for curative responses in patients with advanced and refractory tumors. Autologous T cells, reprogrammed to target malignant cells via the expression of a chimeric antigen receptor (CAR) represent the frontrunner in this approach. Tremendous clinical regressions have been achieved using CAR-T cells against a variety of cancers both in numerous preclinical studies and in several clinical trials, most notably against acute lymphoblastic leukemia, and resulted in a very recent United States Food and Drug Administration approval of the first CAR-T-cell therapy. In most studies CARs are transferred to conventional αβT cells. Nevertheless, transferring a CAR into different cell types, such as γδT cells, natural killer cells, natural killer T cells, and myeloid cells has yet received relatively little attention, although these cell types possess unique features that may aid in surmounting some of the hurdles CAR-T-cell therapy currently faces. This review focuses on CAR therapy using effectors beyond conventional αβT cells and discusses those strategies against the backdrop of developing a safe, powerful, and durable cancer therapy.

  11. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    NARCIS (Netherlands)

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We

  12. Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γδT Cells.

    Science.gov (United States)

    Shimizu, Kanako; Shinga, Jun; Yamasaki, Satoru; Kawamura, Masami; Dörrie, Jan; Schaft, Niels; Sato, Yusuke; Iyoda, Tomonori; Fujii, Shin-Ichiro

    2015-01-01

    Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.

  13. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo.

    Science.gov (United States)

    Song, Yanjing; Tong, Chuan; Wang, Yao; Gao, Yunhe; Dai, Hanren; Guo, Yelei; Zhao, Xudong; Wang, Yi; Wang, Zizheng; Han, Weidong; Chen, Lin

    2017-03-10

    Human epidermal growth factor receptor 2 (HER2) proteins are overexpressed in a high proportion of gastric cancer (GC) cases and affect the maintenance of cancer stem cell (CSC) subpopulations, which are used as targets for the clinical treatment of patients with HER2-positive GC. Despite improvements in survival, numerous HER2-positive patients fail treatment with trastuzumab, highlighting the need for more effective therapies. In this study, we generated a novel type of genetically modified human T cells, expressing a chimeric antigen receptor (CAR), and targeting the GC cell antigen HER2, which harbors the CD137 and CD3ζ moieties. Our findings show that the expanded CAR-T cells, expressing an increased central memory phenotype, were activated by the specific recognition of HER2 antigens in an MHC-independent manner, and effectively killed patient-derived HER2-positive GC cells. In HER2-positive xenograft tumors, CAR-T cells exhibited considerably enhanced tumor inhibition ability, long-term survival, and homing to targets, compared with those of non-transduced T cells. The sphere-forming ability and in vivo tumorigenicity of patient-derived gastric cancer stem-like cells, expressing HER2 and the CD44 protein, were also inhibited. Our results support the future development and clinical application of this adoptive immunotherapy in patients with HER2-positive advanced GC.

  14. Stem cell therapy for the systemic right ventricle.

    Science.gov (United States)

    Si, Ming-Sing; Ohye, Richard G

    2017-11-01

    In specific forms of congenital heart defects and pulmonary hypertension, the right ventricle (RV) is exposed to systemic levels of pressure overload. The RV is prone to failure in these patients because of its vulnerability to chronic pressure overload. As patients with a systemic RV reach adulthood, an emerging epidemic of RV failure has become evident. Medical therapies proven for LV failure are ineffective in treating RV failure. Areas covered: In this review, the pathophysiology of the failing RV under pressure overload is discussed, with specific emphasis on the pivotal roles of angiogenesis and oxidative stress. Studies investigating the ability of stem cell therapy to improve angiogenesis and mitigate oxidative stress in the setting of pressure overload are then reviewed. Finally, clinical trials utilizing stem cell therapy to prevent RV failure under pressure overload in congenital heart disease will be discussed. Expert commentary: Although considerable hurdles remain before their mainstream clinical implementation, stem cell therapy possesses revolutionary potential in the treatment of patients with failing systemic RVs who currently have very limited long-term treatment options. Rigorous clinical trials of stem cell therapy for RV failure that target well-defined mechanisms will ensure success adoption of this therapeutic strategy.

  15. Ordinary Differential Equation Models for Adoptive Immunotherapy.

    Science.gov (United States)

    Talkington, Anne; Dantoin, Claudia; Durrett, Rick

    2018-05-01

    Modified T cells that have been engineered to recognize the CD19 surface marker have recently been shown to be very successful at treating acute lymphocytic leukemias. Here, we explore four previous approaches that have used ordinary differential equations to model this type of therapy, compare their properties, and modify the models to address their deficiencies. Although the four models treat the workings of the immune system in slightly different ways, they all predict that adoptive immunotherapy can be successful to move a patient from the large tumor fixed point to an equilibrium with little or no tumor.

  16. Viral-specific T-cell transfer from HSCT donor for the treatment of viral infections or diseases after HSCT.

    Science.gov (United States)

    Qian, C; Wang, Y; Reppel, L; D'aveni, M; Campidelli, A; Decot, V; Bensoussan, D

    2018-02-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative option for treatment of some malignant and non-malignant hematological diseases. However, post-HSCT patients are severely immunocompromised and susceptible to viral infections, which are a major cause of morbidity and mortality. Although antiviral agents are now available for most types of viral infections, they are not devoid of side effects and their efficacy is limited when there is no concomitant antiviral immune reconstitution. In recent decades, adoptive transfer of viral-specific T cells (VSTs) became an alternative treatment for viral infection after HSCT. However, two major issues are concerned in VST transfer: the risk of GVHD and antiviral efficacy. We report an exhaustive review of the published studies that focus on prophylactic and/or curative therapy by donor VST transfer for post-HSCT common viral infections. A low incidence of GVHD and a good antiviral efficacy was observed after adoptive transfer of VSTs from HSCT donor. Viral-specific T-cell transfer is a promising approach for a broad clinical application. Nevertheless, a randomized controlled study in a large cohort of patients comparing antiviral treatment alone to antiviral treatment combined with VSTs is still needed to demonstrate efficacy and safety.

  17. Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model

    Directory of Open Access Journals (Sweden)

    Ferrone Soldano

    2007-06-01

    Full Text Available Abstract Background The anti-tumor efficacy of human immune effector cells, such as cytolytic T lymphocytes (CTLs, has been difficult to study in lung cancer patients in the clinical setting. Improved experimental models for the study of lung tumor-immune cell interaction as well as for evaluating the efficacy of adoptive transfer of immune effector cells are needed. Methods To address questions related to the in vivo interaction of human lung tumor cells and immune effector cells, we obtained an HLA class I + lung tumor cell line from a fresh surgical specimen, and using the infiltrating immune cells, isolated and characterized tumor antigen-specific, CD8+ CTLs. We then established a SCID mouse-human tumor xenograft model with the tumor cell line and used it to study the function of the autologous CTLs provided via adoptive transfer. Results The tumor antigen specific CTLs isolated from the tumor were found to have an activated memory phenotype and able to kill tumor cells in an antigen specific manner in vitro. Additionally, the tumor antigen-specific CTLs were fully capable of homing to and killing autologous tumors in vivo, and expressing IFN-γ, each in an antigen-dependent manner. A single injection of these CTLs was able to provide significant but temporary control of the growth of autologous tumors in vivo without the need for IL-2. The timing of injection of CTLs played an essential role in the outcome of tumor growth control. Moreover, immunohistochemical analysis of surviving tumor cells following CTL treatment indicated that the surviving tumor cells expressed reduced MHC class I antigens on their surface. Conclusion These studies confirm and extend previous studies and provide additional information regarding the characteristics of CTLs which can be found within a patient's tumor. Moreover, the in vivo model described here provides a unique window for observing events that may also occur in patients undergoing adoptive cellular

  18. An "off-the-shelf" fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies.

    Science.gov (United States)

    Cooper, Matthew L; Choi, Jaebok; Staser, Karl; Ritchey, Julie K; Devenport, Jessica M; Eckardt, Kayla; Rettig, Michael P; Wang, Bing; Eissenberg, Linda G; Ghobadi, Armin; Gehrs, Leah N; Prior, Julie L; Achilefu, Samuel; Miller, Christopher A; Fronick, Catrina C; O'Neal, Julie; Gao, Feng; Weinstock, David M; Gutierrez, Alejandro; Fulton, Robert S; DiPersio, John F

    2018-02-20

    T cell malignancies represent a group of hematologic cancers with high rates of relapse and mortality in patients for whom no effective targeted therapies exist. The shared expression of target antigens between chimeric antigen receptor (CAR) T cells and malignant T cells has limited the development of CAR-T because of unintended CAR-T fratricide and an inability to harvest sufficient autologous T cells. Here, we describe a fratricide-resistant "off-the-shelf" CAR-T (or UCART7) that targets CD7+ T cell malignancies and, through CRISPR/Cas9 gene editing, lacks both CD7 and T cell receptor alpha chain (TRAC) expression. UCART7 demonstrates efficacy against human T cell acute lymphoblastic leukemia (T-ALL) cell lines and primary T-ALL in vitro and in vivo without the induction of xenogeneic GvHD. Fratricide-resistant, allo-tolerant "off-the-shelf" CAR-T represents a strategy for treatment of relapsed and refractory T-ALL and non-Hodgkin's T cell lymphoma without a requirement for autologous T cells.

  19. Tumor infiltrating lymphocyte therapy for ovarian cancer and renal cell carcinoma

    DEFF Research Database (Denmark)

    Andersen, Rikke; Donia, Marco; Westergaard, Marie Christine Wulff

    2015-01-01

    stimulated the interest in developing this approach for other indications. Here, we summarize the early clinical data in the field of adoptive cell transfer therapy (ACT) using tumor-infiltrating lymphocytes for patients with renal cell carcinoma (RCC) and ovarian cancer (OC). In addition we describe...

  20. Alteration of the gene expression profile of T-cell receptor αβ-modified T-cells with diffuse large B-cell lymphoma specificity.

    Science.gov (United States)

    Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu

    2013-05-01

    Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.

  1. T Cell Responses: Naive to Memory and Everything in Between

    Science.gov (United States)

    Pennock, Nathan D.; White, Jason T.; Cross, Eric W.; Cheney, Elizabeth E.; Tamburini, Beth A.; Kedl, Ross M.

    2013-01-01

    The authors describe the actions that take place in T cells because of their amazing capacity to proliferate and adopt functional roles aimed at clearing a host of an infectious agent. There is a drastic decline in the T cell population once the primary response is over and the infection is terminated. What remains afterward is a population of T…

  2. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer.

    Science.gov (United States)

    Priceman, Saul J; Gerdts, Ethan A; Tilakawardane, Dileshni; Kennewick, Kelly T; Murad, John P; Park, Anthony K; Jeang, Brook; Yamaguchi, Yukiko; Yang, Xin; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E; Wu, Anna M; Brown, Christine E; Forman, Stephen J

    2018-01-01

    Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies.

  3. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer

    Science.gov (United States)

    Priceman, Saul J.; Gerdts, Ethan A.; Tilakawardane, Dileshni; Kennewick, Kelly T.; Murad, John P.; Park, Anthony K.; Jeang, Brook; Yamaguchi, Yukiko; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E.; Brown, Christine E.; Forman, Stephen J.

    2018-01-01

    ABSTRACT Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with “on-target off-tumor” activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies. PMID:29308300

  4. Helminth antigens enable CpG-activated dendritic cells to inhibit the symptoms of collagen-induced arthritis through Foxp3+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Franco Carranza

    Full Text Available Dendritic cells (DC have the potential to control the outcome of autoimmunity by modulating the immune response. In this study, we tested the ability of Fasciola hepatica total extract (TE to induce tolerogenic properties in CpG-ODN (CpG maturated DC, to then evaluate the therapeutic potential of these cells to diminish the inflammatory response in collagen induced arthritis (CIA. DBA/1J mice were injected with TE plus CpG treated DC (T/C-DC pulsed with bovine collagen II (CII between two immunizations with CII and clinical scores CIA were determined. The levels of CII-specific IgG2 and IgG1 in sera, the histological analyses in the joints, the cytokine profile in the draining lymph node (DLN cells and in the joints, and the number, and functionality of CD4+CD25+Foxp3+ T cells (Treg were evaluated. Vaccination of mice with CII pulsed T/C-DC diminished the severity and incidence of CIA symptoms and the production of the inflammatory cytokine, while induced the production of anti-inflammatory cytokines. The therapeutic effect was mediated by Treg cells, since the adoptive transfer of CD4+CD25+ T cells, inhibited the inflammatory symptoms in CIA. The in vitro blockage of TGF-β in cultures of DLN cells plus CII pulsed T/C-DC inhibited the expansion of Treg cells. Vaccination with CII pulsed T/C-DC seems to be a very efficient approach to diminish exacerbated immune response in CIA, by inducing the development of Treg cells, and it is therefore an interesting candidate for a cell-based therapy for rheumatoid arthritis (RA.

  5. Involvement of IRF4 dependent dendritic cells in T cell dependent colitis

    DEFF Research Database (Denmark)

    Pool, Lieneke; Rivollier, Aymeric Marie Christian; Agace, William Winston

    in genetically susceptible individuals and pathogenic CD4+ T cells, which accumulate in the inflamed mucosa, are believed to be key drivers of the disease. While dendritic cells (DCs) are important in the priming of intestinal adaptive immunity and tolerance their role in the initiation and perpetuation...... of chronic intestinal inflammation remains unclear. In the current study we used the CD45RBhi T cell transfer model of colitis to determine the role of IRF4 dependent DCs in intestinal inflammation. In this model naïve CD4+ T cells when transferred into RAG-/- mice, proliferate and expand in response...... to bacterial derived luminal antigen, localize to the intestinal mucosa and induce colitis. Adoptive transfer of naïve T cells into CD11cCre.IRF4fl/fl.RAG-1-/- mice resulted in reduced monocyte recruitment to the intestine and mesenteric lymph nodes (MLN) compared to Cre- controls. Inflammatory cytokines...

  6. Total skin electron beam therapy for cutaneous T-cell lymphoma: A nationwide cohort study from Denmark

    International Nuclear Information System (INIS)

    Lindahl, Lise M.; Iversen, Lars; Kamstrup, Maria R.; Gniadecki, Robert; Petersen, Peter M.; Specht, Lena; Wiren, Johan; Fenger-Groen, Morten

    2011-01-01

    Background. Total skin electron beam therapy (TSEBT) is an effective palliative treatment for cutaneous T-cell lymphoma (CTCL). In the present study we reviewed the clinical response to TSEBT in Danish patients with CTCL. Material and methods. This retrospective study included 35 patients with CTCL treated with TSEBT in Denmark from 2001 to 2008 and followed for a median time of 7.6 months (range 3 days-3.7 years). Twenty five patients were treated with high-dose (30 Gy) and 10 patients in a protocol with low-dose (4 Gy) TSEBT. Results. Patients treated with low-dose therapy had inadequate response to treatment compared to patients treated with high-dose. Consequently the study with low-dose was discontinued and published. In patients treated with high-dose the overall response rate was 100%. Complete response (CR) rate was 68% and CR occurred after a median time of 2.1 months (range 1.8 months - 2.0 years). We found no difference in CR rate in patients with T2 (66.7%) and T3 disease (78.6%) (p = 0.64). Following CR 82.4% relapsed at a median time of four months (range 12 days-11.5 months). Relapse-free-survival was similar in patients with T2 and T3 disease (p 0.77). Progressive disease (PD) was experienced in 28.0% and the median time to PD was 9.0 months (range 4.6-44.3 months). Overall progression-free survival was 95.3%, 72.1% and 64.1% after 0.5-, 1- and 2-years. Effects of initial therapy on TSEBT treatment response and side effects to TSEBT were also analyzed. Conclusion. In conclusion, the present study confirms that high-dose TSEBT is an effective, but generally not a curative therapy in the management of CTCL. High-dose treatment yielded significantly better results than low-dose treatment with 4 Gy. TSEBT offers significant palliation in most patients when other skin-directed or systemic treatments have failed

  7. Progress of research on activation function of NK cell exposed to low dose radiation in adoptive cellular immunotherapy

    International Nuclear Information System (INIS)

    Pan Xiaosong; Shi Yujia; Yao Yimin; Xu Hong; Liu Fenju

    2009-01-01

    Natural killer cells is an important immunological factor in killing malignant cells. Low dose radiation can enhance proliferation and biological activity of NK cell. The involvement of P38MAPK signal pathway and endogenous glutathione induced by LDR may be the probable mechanism. Natural killer cell, especially adherent natural killer cell, is the preferential choice for adoptive cellular immunotherapy, which has a remarkable foreground in malignancy therapy.(authors)

  8. Strategy Escalation: An emerging paradigm for safe clinical development of T cell gene therapies

    Directory of Open Access Journals (Sweden)

    Junghans Richard

    2010-06-01

    Full Text Available Abstract Gene therapy techniques are being applied to modify T cells with chimeric antigen receptors (CARs for therapeutic ends. The versatility of this platform has spawned multiple options for their application with new permutations in strategies continually being invented, a testimony to the creative energies of many investigators. The field is rapidly expanding with immense potential for impact against diverse cancers. But this rapid expansion, like the Big Bang, comes with a somewhat chaotic evolution of its therapeutic universe that can also be dangerous, as seen by recently publicized deaths. Time-honored methods for new drug testing embodied in Dose Escalation that were suitable for traditional inert agents are now inadequate for these novel "living drugs". In the following, I propose an approach to escalating risk for patient exposures with these new immuno-gene therapy agents, termed Strategy Escalation, that accounts for the molecular and biological features of the modified cells and the methods of their administration. This proposal is offered not as a prescriptive but as a discussion framework that investigators may wish to consider in configuring their intended clinical applications.

  9. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    Directory of Open Access Journals (Sweden)

    Marc Cartellieri

    2010-01-01

    Full Text Available CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs. First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells.

  10. Systemic chemotherapy and extracorporeal photochemotherapy for T3 and T4 cutaneous T-cell lymphoma patients who have achieved a complete response to total skin electron beam therapy

    International Nuclear Information System (INIS)

    Wilson, Lynn D.; Licata, Anita L.; Braverman, Irwin M.; Edelson, Richard L.; Heald, Peter W.; Feldman, Andrea M.; Kacinski, Barry M.

    1995-01-01

    Purpose: To evaluate the impact of systemic adjuvant therapies on relapse-free (RFS) and overall survival (OS) of cutaneous T-cell lymphoma (CTCL) patients treated with total skin electron beam therapy (TSEBT). Methods and Materials: Between 1974 and 1990, TSEBT (36 Gy at 1 Gy/day; 9 weeks; 6 MeV electrons) was administered with curative intent to a total of 163 CTCL (mycosis fungoides) patients using six fields supplemented by orthovoltage boosts (120 kvp, 1 Gy x 20) to the perineum, soles of feet, and apical scalp (120 kvp, 2 Gy x 3). In this group, all patients who achieved a clinical complete response or a good partial response were offered one of two competing regimens of either adjuvant doxorubicin/cyclophosphamide or adjuvant extracorporeal photochemotherapy (ECP). Results: When the results for the group who achieved a complete response (CR) to TSEBT were analyzed, OS for T1 and T2 patients was excellent (85-90% at 5-10 years) and not improved by either adjuvant regimen. However, T3 and T4 patients who received either adjuvant doxorubicin/cyclophosphamide (75% at 3 years) or adjuvant ECP (100% at 3 years) had better overall survival than those who received neither adjuvant regimen (∼ 50% at 5 years). The difference between the OS curves for those who received ECP vs. those who received no adjuvant therapy approached statistical significance (p < 0.06), while a significant survival benefit from the addition of chemotherapy for TSEBT complete responders was not observed. Neither adjuvant therapy provided benefit with respect to relapse free survival after TSEBT. Conclusions: These results suggest that an adjuvant nontoxic regimen of extracorporeal photochemotherapy may prolong survival in advanced stage CTCL patients who have achieved a complete remission after TSEBT. The combination of doxorubicin/cyclophosphamide had no significant impact on overall survival in those patients who achieved CR to TSEBT, and neither adjuvant therapy had an impact on relapse

  11. Adoptive cell transfer after chemotherapy enhances survival in patients with resectable HNSCC.

    Science.gov (United States)

    Jiang, Pan; Zhang, Yan; J Archibald, Steve; Wang, Hua

    2015-09-01

    The aims of this study were to evaluate the therapeutic efficacy and to determine the immune factors for treatment success in patients with head and neck squamous cell carcinoma (HNSCC) treated with chemotherapy followed by adoptive cell transfer (ACT). A total of 43 HNSCC patients who received radical resection and chemotherapy were analysed in this study. Twenty-one of the patients were repeatedly treated with ACT after chemotherapy (ACT group), and the other twenty-two patients without ACT treatment were included as part of the control group. To investigate the immunological differences underlying these observations, we expanded and profiled improving cytokine-induced killer cells (iCIK) from peripheral blood mononuclear cells (PBMCs) with the timed addition of RetroNectin, OKT3 mAb, IFN γ and IL-2. The median of progression-free survival (PFS) and overall survival (OS) in the ACT group were significantly higher as compared to the control group (56 vs. 40; 58 vs. 45 months). In iCIK culture, there was a significant reduction in CD3+CD4+ T-cell proliferation and cytokines (IL-2, TNF) production from patients who received chemotherapy compared to patients without chemotherapy. Intra-arterial infusion of iCIK, in coordination with chemotherapy, considerably rescued iCIK culture from the suppression of systemic immunity induced by chemotherapy and induced tumour regression. Altogether, these findings suggest that ACT is an effective neo-adjuvant therapy for rescuing systemic immune suppression and improving survival time in patients with HNSCC. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T.

    Science.gov (United States)

    Yoon, Dok Hyun; Osborn, Mark J; Tolar, Jakub; Kim, Chong Jai

    2018-01-24

    Chimeric antigen receptor (CAR) T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  13. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts: Combination or Built-In CAR-T

    Directory of Open Access Journals (Sweden)

    Dok Hyun Yoon

    2018-01-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  14. Defective immunoregulatory T-cell function in chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Han, T.; Ozer, H.; Henderson, E.S.; Dadey, B.; Nussbaum-Blumenson, A.; Barcos, M.

    1981-01-01

    Chronic lymphocytic leukemia (CLL) of B-cell origin results in the malignant proliferation of small immunoglobulin-bearing lymphocytes. There is currently a controversy in the literature regarding both the ability of this leukemic population to differentiate into mature plasma cells, as well as the ability of apparently normal T cells from these patients to regulate allogeneic B-cell differentiation. In the present study we have examined the lymphocytes of CLL patients in various clinical stages of their disease and with different surface phenotypes of their leukemic B-cell population. Our results show that leukemic CLL B cells from all 20 patients (including one patient with a monoclonal IgM paraprotein and another with a monoclonal IgG paraprotein) are incapable of further differentiation even in the absence of suppressor T cells and the presence of helper T lymphocytes. This lack of capacity to differentiate is unaffected by clinical stage, by therapy, or by the phenotype of the malignant population. Since the leukemic B population did not suppress normal allogeneic B-cell differentiation, the maturation deficit is evidently intrinsic to the leukemic clone rather than a result of activity of non-T suppressor cells. T helper function was also variably depressed in the blood of some patients with CLL, and this depression did not correlate with clinical stage, with therapy, or with the degree of lymphocytosis. Dysfunction of radiosensitive T suppressor cells was found to be the most consistent regulatory deficit of CLL T cells. Each of 11 patients whose leukemic cell population was of the μdelta, μα, or μ phenotype had both helper and suppressor cell defects

  15. Genetically enhanced T lymphocytes and the intensive care unit

    Science.gov (United States)

    Tat, Tiberiu; Li, Huming; Constantinescu, Catalin-Sorin; Onaciu, Anca; Chira, Sergiu; Osan, Ciprian; Pasca, Sergiu; Petrushev, Bobe; Moisoiu, Vlad; Micu, Wilhelm-Thomas; Berce, Cristian; Tranca, Sebastian; Dima, Delia; Berindan-Neagoe, Ioana; Shen, Jianliang; Tomuleasa, Ciprian; Qian, Liren

    2018-01-01

    Chimeric antigen receptor-modified T cells (CAR-T cells) and donor lymphocyte infusion (DLI) are important protocols in lymphocyte engineering. CAR-T cells have emerged as a new modality for cancer immunotherapy due to their potential efficacy against hematological malignancies. These genetically modified receptors contain an antigen-binding moiety, a hinge region, a transmembrane domain, and an intracellular costimulatory domain resulting in lymphocyte T cell activation subsequent to antigen binding. In present-day medicine, four generations of CAR-T cells are described depending on the intracellular signaling domain number of T cell receptors. DLI represents a form of adoptive therapy used after hematopoietic stem cell transplant for its anti-tumor and anti-infectious properties. This article covers the current status of CAR-T cells and DLI research in the intensive care unit (ICU) patient, including the efficacy, toxicity, side effects and treatment. PMID:29662667

  16. An immune-modulating diet increases the regulatory T cells and reduces T helper 1 inflammatory response in Leishmaniosis affected dogs treated with standard therapy.

    Science.gov (United States)

    Cortese, Laura; Annunziatella, Mariangela; Palatucci, Anna Teresa; Lanzilli, Sarah; Rubino, Valentina; Di Cerbo, Alessandro; Centenaro, Sara; Guidetti, Gianandrea; Canello, Sergio; Terrazzano, Giuseppe

    2015-12-03

    Clinical appearance and evolution of Canine Leishmaniosis (CL) are the consequence of complex interactions between the parasite and the genetic and immunological backgrounds. We investigated the effect of an immune-modulating diet in CL. Dogs were treated with anti- Leishmania pharmacological therapy combined with standard diet (SD Group) or with the immune-modulating diet (IMMD Group). CD3+ CD4+ Foxp3+ Regulatory T cells (Treg) and CD3+ CD4+ IFN-γ + T helper 1 (Th1) were analyzed by flow cytometry. All sick dogs showed low platelet number at diagnosis (T0). A platelet increase was observed after six months (T6) SD Group, with still remaining in the normal range at twelve months (T12). IMMD Group showed an increase in platelet number becoming similar to healthy dogs at T6 and T12. An increase of CD4/CD8 ratio was revealed in SD Group after three months (T3), while at T6 and at T12 the values resembled to T0. The increase in CD4/CD8 ratio at T3 was maintained at T6 and T12 in IMMD Group. A reduction in the percentage of Treg of all sick dogs was observed at T0. A recovery of Treg percentage was observed only at T3 in SD Group, while this effect disappeared at T6 and T12. In contrast, Treg percentage became similar to healthy animals in IMDD Group at T3, T6 and T12. Sick dogs showed an increase of Th1 cells at T0 as compared with healthy dogs. We observed the occurrence of a decrease of Th1 cells from T3 to T12 in SD Group, although a trend of increase was observed at T6 and T12. At variance, IMMD Group dogs showed a progressive decrease of Th1 cells, whose levels became similar to healthy controls at T6 and T12. The immune-modulating diet appears to regulate the immune response in CL during the standard pharmacological treatment. The presence of nutraceuticals in the diet correlates with the decrease of Th1 cells and with the increase of Treg in sick dogs. Therefore, the administration of the specific dietary supplement improved the clinical response to the

  17. Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone.

    Science.gov (United States)

    Leung, K N; Nash, A A; Sia, D Y; Wildy, P

    1984-12-01

    A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed.

  18. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward.

    Science.gov (United States)

    Li, Jian; Li, Wenwen; Huang, Kejia; Zhang, Yang; Kupfer, Gary; Zhao, Qi

    2018-02-13

    Recently, the US Food and Drug Administration (FDA) approved the first chimeric antigen receptor T cell (CAR-T) therapy for the treatment CD19-positive B cell acute lymphoblastic leukemia. While CAR-T has achieved remarkable success in the treatment of hematopoietic malignancies, whether it can benefit solid tumor patients to the same extent is still uncertain. Even though hundreds of clinical trials are undergoing exploring a variety of tumor-associated antigens (TAA), no such antigen with comparable properties like CD19 has yet been identified regarding solid tumors CAR-T immunotherapy. Inefficient T cell trafficking, immunosuppressive tumor microenvironment, suboptimal antigen recognition specificity, and lack of safety control are currently considered as the main obstacles in solid tumor CAR-T therapy. Here, we reviewed the solid tumor CAR-T clinical trials, emphasizing the studies with published results. We further discussed the challenges that CAR-T is facing for solid tumor treatment and proposed potential strategies to improve the efficacy of CAR-T as promising immunotherapy.

  19. Tolerogenic dendritic cells for regulatory T cell induction in man

    Directory of Open Access Journals (Sweden)

    Verena eRaker

    2015-11-01

    Full Text Available Dendritic cells are (DC highly specialized professional antigen-presenting cells (APC that regulate immune responses, maintaining the balance between tolerance and immunity. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, inhibition of memory T cell responses, T cell anergy and induction of regulatory T cells. These properties have led to the analysis of human tolerogenic DC as a therapeutic strategy for induction or re-establishment of tolerance. In the recent years, numerous protocols for the generation of human tolerogenic DC have been developed and their tolerogenic mechanisms, including induction of regulatory T cells, are relatively well understood. Phase I trials have been conducted in autoimmune disease, with results that emphasize the feasibility and safety of treatments with tolerogenic DC. Therefore, the scientific rationale for the use of tolerogenic DC therapy in the fields of transplantation medicine and allergic and autoimmune diseases is strong. This review will give an overview on efforts and protocols to generate human tolerogenic DC with focus on IL-10-modulated DC as inducers of regulatory T cells and discuss their clinical applications and challenges faced in further developing this form of immunotherapy.

  20. A novel differentiation pathway from CD4⁺ T cells to CD4⁻ T cells for maintaining immune system homeostasis.

    Science.gov (United States)

    Zhao, X; Sun, G; Sun, X; Tian, D; Liu, K; Liu, T; Cong, M; Xu, H; Li, X; Shi, W; Tian, Y; Yao, J; Guo, H; Zhang, D

    2016-04-14

    CD4(+) T lymphocytes are key players in the adaptive immune system and can differentiate into a variety of effector and regulatory T cells. Here, we provide evidence that a novel differentiation pathway of CD4(+) T cells shifts the balance from a destructive T-cell response to one that favors regulation in an immune-mediated liver injury model. Peripheral CD4(-)CD8(-)NK1.1(-) double-negative T cells (DNT) was increased following Concanavalin A administration in mice. Adoptive transfer of DNT led to significant protection from hepatocyte necrosis by direct inhibition on the activation of lymphocytes, a process that occurred primarily through the perforin-granzyme B route. These DNT converted from CD4(+) rather than CD8(+) T cells, a process primarily regulated by OX40. DNT migrated to the liver through the CXCR3-CXCL9/CXCL10 interaction. In conclusion, we elucidated a novel differentiation pathway from activated CD4(+) T cells to regulatory DNT cells for maintaining homeostasis of the immune system in vivo, and provided key evidence that utilizing this novel differentiation pathway has potential application in the prevention and treatment of autoimmune diseases.

  1. Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells.

    Science.gov (United States)

    Spear, Timothy T; Wang, Yuan; Foley, Kendra C; Murray, David C; Scurti, Gina M; Simms, Patricia E; Garrett-Mayer, Elizabeth; Hellman, Lance M; Baker, Brian M; Nishimura, Michael I

    2017-11-01

    T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.

  2. Prevention and treatment of relapse after stem cell transplantation by cellular therapies.

    Science.gov (United States)

    Falkenburg, Fred; Ruggiero, Eliana; Bonini, Chaira; Porter, David; Miller, Jeff; Malard, Floran; Mohty, Mohamad; Kröger, Nicolaus; Kolb, Hans Jochem

    2018-05-24

    Despite recent advances in reducing therapy-related mortality after allogeneic stem cell transplantation (alloSCT) relapse remains the major cause of treatment failure and little progress has been achieved in the last decades. At the 3rd International Workshop on Biology, Prevention, and Treatment of Relapse held in Hamburg/Germany in November 2016 international experts presented and discussed recent developments in the field. Here, the potential of cellular therapies including unspecific and specific T cells, genetically modified T cells, CAR-T cells, NK-cells, and second allografting in prevention and treatment of relapse after alloSCT are summarized.

  3. CpG Oligodeoxynucleotides Enhance the Efficacy of Adoptive Cell Transfer Using Tumor Infiltrating Lymphocytes by Modifying the Th1 Polarization and Local Infiltration of Th17 Cells

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2010-01-01

    Full Text Available Adoptive cell transfer immunotherapy using tumor infiltrating lymphocytes (TILs was an important therapeutic strategy against tumors. But the efficacy remains limited and development of new strategies is urgent. Recent evidence suggested that CpG-ODNs might be a potent candidate for tumor immunotherapy. Here we firstly reported that CpG-ODNs could significantly enhance the antitumor efficacy of adoptively transferred TILs in vivo accompanied by enhanced activity capacity and proliferation of CD8+ T cells and CD8+ T cells, as well as a Th1 polarization immune response. Most importantly, we found that CpG-ODNs could significantly elevate the infiltration of Th17 cells in tumor mass, which contributed to anti-tumor efficacy of TILs in vivo. Our findings suggested that CpG ODNs could enhance the anti-tumor efficacy of adoptively transferred TILs through modifying Th1 polarization and local infiltration of Th17 cells, which might provide a clue for developing a new strategy for ACT based on TILs.

  4. A mouse model of adoptive immunotherapeutic targeting of autoimmune arthritis using allo-tolerogenic dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available OBJECTIVE: Tolerogenic dendritic cells (tDCs are immunosuppressive cells with potent tolerogenic ability and are promising immunotherapeutic tools for treating rheumatoid arthritis (RA. However, it is currently unknown whether allogeneic tDCs (allo-tDCs induce tolerance in RA, and whether the numbers of adoptively transferred allo-tDCs, or the requirement for pulsing with relevant auto-antigens are important. METHODS: tDCs were derived from bone marrow precursors of C57BL/B6 mice, which were induced in vitro by GM-CSF, IL-10 and TGF-β1. Collagen-induced arthritis (CIA was modeled in D1 mice by immunization with type II collagen (CII to test the therapeutic ability of allo-tDCs against CIA. Clinical and histopathologic scores, arthritic incidence, cytokine and anti-CII antibody secretion, and CD4(+Th subsets were analyzed. RESULTS: tDCs were characterized in vitro by a stable immature phonotype and a potent immunosuppressive ability. Following adoptive transfer of low doses (5×10(5 of CII-loaded allo-tDCs, a remarkable anti-arthritic activity, improved clinical scores and histological end-points were found. Serological levels of inflammatory cytokines and anti-CII antibodies were also significantly lower in CIA mice treated with CII-pulsed allo-tDCs as compared with allo-tDCs. Moreover, treatment with allo-tDCs altered the proportion of Treg/Th17 cells. CONCLUSION: These findings suggested that allo-tDCs, especially following antigen loading, reduced the severity of CIA in a dose-dependent manner. The dampening of CIA was associated with modulated cytokine secretion, Treg/Th17 polarization and inhibition of anti-CII secretion. This study highlights the potential therapeutic utility of allo-tDCs in autoimmune arthritis and should facilitate the future design of allo-tDC immunotherapeutic strategies against RA.

  5. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    NARCIS (Netherlands)

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O'Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J. W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    A "switch'' from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete

  6. Immune Cell-Mediated Protection against Vaginal Candidiasis: Evidence for a Major Role of Vaginal CD4+ T Cells and Possible Participation of Other Local Lymphocyte Effectors

    Science.gov (United States)

    Santoni, Giorgio; Boccanera, Maria; Adriani, Daniela; Lucciarini, Roberta; Amantini, Consuelo; Morrone, Stefania; Cassone, Antonio; De Bernardis, Flavia

    2002-01-01

    The protective roles of different lymphocyte subsets were investigated in a rat vaginal candidiasis model by adoptive transfer of vaginal lymphocytes (VL) or sorted, purified CD3+ T cells, CD4+ or CD8+ T cells, or CD3− CD5+ B cells from the vaginas of naïve or immune rats following three rounds of Candida albicans infection. The adoptive transfer of total VL from nonimmune animals did not alter the course of vaginal candidiasis of the recipient rats. In contrast, the animals receiving total VL or CD3+ T cells from immune rats showed a highly significant acceleration of fungus clearance compared with animals which received nonimmune VL. The animals with vaginal CD3− CD5+ B cells transferred from immune rats also had fewer Candida CFU than the controls, but fungal clearance was significantly retarded with respect to the animals administered immune T cells. Sorted, purified CD4+ and CD8+ vaginal T cells from immune rats were also adoptively transferred to naïve animals. Although both populations were seen to accelerate the clearance of the fungus from the vagina, CD4+ T cells were much more effective than CD8+ T cells. Overall, there was no difference between the antifungal effects of immune vaginal CD4+ T cells and those achievable with the transfer of whole, immune VL. Histological observations of the vaginal tissues of rats with adoptively transferred immune T cells demonstrated a remarkable accumulation of lymphocytes in the subepithelial lamina propria and also infiltrating the mucosal epithelium. These results strongly suggest that distinct vaginal lymphocyte subsets participate in the adaptive anti-Candida immunity at the vaginal level, with the vaginal CD4+ T cells probably playing a major role. PMID:12183521

  7. Complementarity-Determining Region 3 Size Spectratypes of T Cell Receptor β Chains in CD8+ T Cells following Antiviral Treatment of Chronic Hepatitis B▿

    Science.gov (United States)

    Ma, Shi-Wu; Li, Yong-Yin; Zhang, Guang-Wen; Huang, Xuan; Sun, Jian; Li, Chris; Abbott, William G. H.; Hou, Jin-Lin

    2011-01-01

    An increased CD8+ T cell response to hepatitis B virus (HBV) peptides occurs between 12 and 24 weeks after starting antiviral therapy for chronic hepatitis B. It is not known whether these cells have antiviral function. The aim of this study was to determine whether clonal expansions of CD8+ T cells at these time points predict the virological response to therapy. Peripheral blood CD8+ T cells were obtained from 20 patients treated with lamivudine or telbivudine for chronic hepatitis B at baseline, 12 weeks, and 24 weeks. The CDR3 spectratype of each T cell receptor (TCR) β chain variable region (Vβ) gene family was analyzed, and the changes in the numbers of Vβ families with clonal expansions were compared in subjects with (n = 12) and without (n = 8) a virological response (52 week HBV DNA < 300 copies/ml). The number of CD8+ TCR Vβ families with clonal expansions at 12 weeks relative to baseline (median [10th to 90th percentile], +2.5 [0 to +7] versus +1 [0 to +2], P = 0.03) and at 24 weeks relative to 12 weeks (+1 [0 to +2] versus −1 [−3 to +4], P = 0.006) was higher in subjects with a virological response versus subjects without a virological response, as were interleukin-2 (IL-2) but not IL-21 mRNA levels in peripheral blood mononuclear cells. The duration of new expansions at 12 weeks was higher (P < 0.0001) in responders. Increased numbers of CD8+ T cell expansions after antiviral therapy are associated with a virological response to treatment. These CD8+ T cells are a potential target for a therapeutic vaccine for chronic hepatitis B. PMID:21098256

  8. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels

    2012-01-01

    Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma-as...... from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined....

  9. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension.

    Science.gov (United States)

    Maston, Levi D; Jones, David T; Giermakowska, Wieslawa; Howard, Tamara A; Cannon, Judy L; Wang, Wei; Wei, Yongyi; Xuan, Weimin; Resta, Thomas C; Gonzalez Bosc, Laura V

    2017-05-01

    Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4 + T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension. Our objective was to test the hypothesis that CD4 + T cells, specifically the T helper 17 subset, contribute to chronic hypoxia-induced pulmonary hypertension. We compared indices of pulmonary hypertension resulting from chronic hypoxia (3 wk) in wild-type mice and recombination-activating gene 1 knockout mice (RAG1 -/- , lacking mature T and B cells). Separate sets of mice were adoptively transferred with CD4 + , CD8 + , or T helper 17 cells before normoxic or chronic hypoxic exposure to evaluate the involvement of specific T cell subsets. RAG1 -/- mice had diminished right ventricular systolic pressure and arterial remodeling compared with wild-type mice exposed to chronic hypoxia. Adoptive transfer of CD4 + but not CD8 + T cells restored the hypertensive phenotype in RAG1 -/- mice. Interestingly, RAG1 -/- mice receiving T helper 17 cells displayed evidence of pulmonary hypertension independent of chronic hypoxia. Supporting our hypothesis, depletion of CD4 + cells or treatment with SR1001, an inhibitor of T helper 17 cell development, prevented increased pressure and remodeling responses to chronic hypoxia. We conclude that T helper 17 cells play a key role in the development of chronic hypoxia-induced pulmonary hypertension. Copyright © 2017 the American Physiological Society.

  10. Effects of MicroRNA on Regulatory T Cells and Implications for Adoptive Cellular Therapy to Ameliorate Graft-versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Keli L. Hippen

    2018-01-01

    Full Text Available Regulatory T cells (Tregs are key mediators of the immune system. MicroRNAs (miRNAs are a family of ~22 nucleotide non-coding RNAs that are processed from longer precursors by the RNases Drosha and Dicer. miRNA regulates protein expression posttranscriptionally through mRNA destabilization or translational silencing. A critical role for miRNA in Treg function was initially discovered when both Dicer and Drosha knockout (KO mice were found to develop a fatal autoimmune disease phenotypically similar to Foxp3 KO mice.

  11. Using Merkel cell polyomavirus specific TCR gene therapy for treatment of Merkel cellcarcinoma

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte; Pedersen, Natasja Wulff; Linnemann, C.

    2016-01-01

    T cell receptor gene-therapy has entered the clinic and shown potential for successful cancer treatment. However, the clinical evaluation has also highlighted the need for selection of truly cancerspecific targets. Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated with Mer......T cell receptor gene-therapy has entered the clinic and shown potential for successful cancer treatment. However, the clinical evaluation has also highlighted the need for selection of truly cancerspecific targets. Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated...... with Merkel cell polyomavirus (MCPyV). Due to the clear viral correlation CD8+ T cells specific for viral epitopes could potentially form cancer-specific targets in MCC patients. We have identified MCPyV specific T cells using a high-throughput platform for T-cell enrichment and combinatorial encoding...

  12. Trial Watch: Adoptive cell transfer for oncological indications

    Science.gov (United States)

    Aranda, Fernando; Buqué, Aitziber; Bloy, Norma; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    One particular paradigm of anticancer immunotherapy relies on the administration of (potentially) tumor-reactive immune effector cells. Generally, these cells are obtained from autologous peripheral blood lymphocytes (PBLs) ex vivo (in the context of appropriate expansion, activation and targeting protocols), and re-infused into lymphodepleted patients along with immunostimulatory agents. In spite of the consistent progress achieved throughout the past two decades in this field, no adoptive cell transfer (ACT)-based immunotherapeutic regimen is currently approved by regulatory agencies for use in cancer patients. Nonetheless, the interest of oncologists in ACT-based immunotherapy continues to increase. Accumulating clinical evidence indicates indeed that specific paradigms of ACT, such as the infusion of chimeric antigen receptor (CAR)-expressing autologous T cells, are associated with elevated rates of durable responses in patients affected by various neoplasms. In line with this notion, clinical trials investigating the safety and therapeutic activity of ACT in cancer patients are being initiated at an ever increasing pace. Here, we review recent preclinical and clinical advances in the development of ACT-based immunotherapy for oncological indications. PMID:26451319

  13. Effective immunotherapy of weakly immunogenic solid tumours using a combined immunogene therapy and regulatory T-cell inactivation.

    LENUS (Irish Health Repository)

    Whelan, M C

    2012-01-31

    Obstacles to effective immunotherapeutic anti-cancer approaches include poor immunogenicity of the tumour cells and the presence of tolerogenic mechanisms in the tumour microenvironment. We report an effective immune-based treatment of weakly immunogenic, growing solid tumours using a locally delivered immunogene therapy to promote development of immune effector responses in the tumour microenvironment and a systemic based T regulatory cell (Treg) inactivation strategy to potentiate these responses by elimination of tolerogenic or immune suppressor influences. As the JBS fibrosarcoma is weakly immunogenic and accumulates Treg in its microenvironment with progressive growth, we used this tumour model to test our combined immunotherapies. Plasmids encoding GM-CSF and B7-1 were electrically delivered into 100 mm(3) tumours; Treg inactivation was accomplished by systemic administration of anti-CD25 antibody (Ab). Using this approach, we found that complete elimination of tumours was achieved at a level of 60% by immunogene therapy, 25% for Treg inactivation and 90% for combined therapies. Moreover, we found that these responses were immune transferable, systemic, tumour specific and durable. Combined gene-based immune effector therapy and Treg inactivation represents an effective treatment for weakly antigenic solid growing tumours and that could be considered for clinical development.

  14. Reprint of: Virus-Specific T Cells: Broadening Applicability.

    Science.gov (United States)

    Barrett, A John; Prockop, Susan; Bollard, Catherine M

    2018-03-01

    Virus infection remains an appreciable cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Although pharmacotherapy and/or antibody therapy may help prevent or treat viral disease, these drugs are expensive, toxic, and often ineffective due to primary or secondary resistance. Further, effective treatments are limited for many infections (eg, adenovirus, BK virus), which are increasingly detected after alternative donor transplants. These deficiencies in conventional therapeutics have increased interest in an immunotherapeutic approach to viral disorders, leading to adoptive transfer of virus-specific cytotoxic T lymphocytes (VSTs), which can rapidly reconstitute antiviral immunity post-transplantation without causing graft-versus-host disease. This review will explore how the VST field has improved outcomes for many patients with life-threatening viral infections after HSCT, and how to broaden applicability beyond the "patient-specific" products, as well as extending to other viral diseases even outside the context of HSCT. Copyright © 2018. Published by Elsevier Inc.

  15. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    2017-05-01

    Full Text Available ABSTRACT The generation of T cells with maximal anti-tumor activities will significantly impact the field of T-cell-based adoptive immunotherapy. In this report, we found that OKT3/IL-2-stimulated T cells were phenotypically more heterogeneous, with enhanced anti-tumor activity in vitro and when locally administered in a solid tumor mouse model. To further improve the OKT3/IL-2-based T cell manufacturing procedure, we developed a novel T cell stimulation and expansion method in which peripheral blood mononuclear cells were electroporated with mRNA encoding a chimeric membrane protein consisting of a single-chain variable fragment against CD3 and the intracellular domains of CD28 and 4-1BB (OKT3-28BB. The expanded T cells were phenotypically and functionally similar to T cells expanded by OKT3/IL-2. Moreover, co-electroporation of CD86 and 4-1BBL could further change the phenotype and enhance the in vivo anti-tumor activity. Although T cells expanded by the co-electroporation of OKT3-28BB with CD86 and 4-1BBL showed an increased central memory phenotype, the T cells still maintained tumor lytic activities as potent as those of OKT3/IL-2 or OKT3-28BB-stimulated T cells. In different tumor mouse models, T cells expanded by OKT3-28BB RNA electroporation showed anti-tumor activities superior to those of OKT3/IL-2 T cells. Hence, T cells with both a less differentiated phenotype and potent tumor killing ability can be generated by RNA electroporation, and this T cell manufacturing procedure can be further optimized by simply co-delivering other splices of RNA, thus providing a simple and cost-effective method for generating high-quality T cells for adoptive immunotherapy.

  16. High epitope expression levels increase competition between T cells.

    Directory of Open Access Journals (Sweden)

    Almut Scherer

    2006-08-01

    Full Text Available Both theoretical predictions and experimental findings suggest that T cell populations can compete with each other. There is some debate on whether T cells compete for aspecific stimuli, such as access to the surface on antigen-presenting cells (APCs or for specific stimuli, such as their cognate epitope ligand. We have developed an individual-based computer simulation model to study T cell competition. Our model shows that the expression level of foreign epitopes per APC determines whether T cell competition is mainly for specific or aspecific stimuli. Under low epitope expression, competition is mainly for the specific epitope stimuli, and, hence, different epitope-specific T cell populations coexist readily. However, if epitope expression levels are high, aspecific competition becomes more important. Such between-specificity competition can lead to competitive exclusion between different epitope-specific T cell populations. Our model allows us to delineate the circumstances that facilitate coexistence of T cells of different epitope specificity. Understanding mechanisms of T cell coexistence has important practical implications for immune therapies that require a broad immune response.

  17. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors

    Directory of Open Access Journals (Sweden)

    A. А. Pavlova

    2017-01-01

    Full Text Available Significant mortality due to oncological diseases as a whole, and oncohematological diseases in particular, motivates scientific and medical community to develop new treatment methods. One of the newest methods is adoptive cell therapy using patient’s own T-cells modified to express chimeric antigen receptors (CAR to tumor-specific antigens. Despite high cost and side effects of treatment, promising clinical trials even in patients with advanced disease allow to anticipate successful use of this method in clinical practice.The article includes a review of the main principles of this technique, published results of clinical studies of CAR T-cells with a focus on CD19 gene targeting, complications of this therapy, mechanisms of tumor resistance to CAR T-cells, and potential ways to overcome it.

  18. Clinical, immunological and treatment-related factors associated with normalised CD4+/CD8+ T-cell ratio: effect of naïve and memory T-cell subsets.

    LENUS (Irish Health Repository)

    Tinago, Willard

    2014-01-01

    Although effective antiretroviral therapy(ART) increases CD4+ T-cell count, responses to ART vary considerably and only a minority of patients normalise their CD4+\\/CD8+ ratio. Although retention of naïve CD4+ T-cells is thought to predict better immune responses, relationships between CD4+ and CD8+ T-cell subsets and CD4+\\/CD8+ ratio have not been well described.

  19. IL-7 signaling imparts polyfunctionality and stemness potential to CD4+ T cells

    Science.gov (United States)

    Ding, Zhi-Chun; Liu, Chufeng; Cao, Yang; Habtetsion, Tsadik; Kuczma, Michal; Pi, Wenhu; Kong, Heng; Cacan, Ercan; Greer, Susanna F.; Cui, Yan; Blazar, Bruce R.; Munn, David H.; Zhou, Gang

    2016-01-01

    ABSTRACT The functional status of CD4+ T cells is a critical determinant of antitumor immunity. Polyfunctional CD4+ T cells possess the ability to concomitantly produce multiple Th1-type cytokines, exhibiting a functional attribute desirable for cancer immunotherapy. However, the mechanisms by which these cells are induced are neither defined nor it is clear if these cells can be used therapeutically to treat cancer. Here, we report that CD4+ T cells exposed to exogenous IL-7 during antigenic stimulation can acquire a polyfunctional phenotype, characterized by their ability to simultaneously express IFNγ, IL-2, TNFα and granzyme B. This IL-7-driven polyfunctional phenotype was associated with increased histone acetylation in the promoters of the effector genes, indicative of increased chromatin accessibility. Moreover, forced expression of a constitutively active (CA) form of STAT5 recapitulated IL-7 in inducing CD4+ T-cell polyfunctionality. Conversely, the expression of a dominant negative (DN) form of STAT5 abolished the ability of IL-7 to induce polyfunctional CD4+ T cells. These in-vitro-generated polyfunctional CD4+ T cells can traffic to tumor and expand intratumorally in response to immunization. Importantly, adoptive transfer of polyfunctional CD4+ T cells following lymphodepletive chemotherapy was able to eradicate large established tumors. This beneficial outcome was associated with the occurrence of antigen epitope spreading, activation of the endogenous CD8+ T cells and persistence of donor CD4+ T cells exhibiting memory stem cell attributes. These findings indicate that IL-7 signaling can impart polyfunctionality and stemness potential to CD4+ T cells, revealing a previously unknown property of IL-7 that can be exploited in adoptive T-cell immunotherapy. PMID:27471650

  20. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy.

    Science.gov (United States)

    Geng, Jie-Jie; Tang, Juan; Yang, Xiang-Min; Chen, Ruo; Zhang, Yang; Zhang, Kui; Miao, Jin-Lin; Chen, Zhi-Nan; Zhu, Ping

    2017-06-01

    CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative) and fully committed DP (double positive) cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  1. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Jie-Jie Geng

    2017-06-01

    Full Text Available CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative and fully committed DP (double positive cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy.

  2. Isolation of highly suppressive CD25+FoxP3+ T regulatory cells from G-CSF-mobilized donors with retention of cytotoxic anti-viral CTLs: application for multi-functional immunotherapy post stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Edward R Samuel

    Full Text Available Previous studies have demonstrated the effective control of cytomegalovirus (CMV infections post haematopoietic stem cell transplant through the adoptive transfer of donor derived CMV-specific T cells (CMV-T. Strategies for manufacturing CMV immunotherapies has involved a second leukapheresis or blood draw from the donor, which in the unrelated donor setting is not always possible. We have investigated the feasibility of using an aliquot of the original G-CSF-mobilized graft as a starting material for manufacture of CMV-T and examined the activation marker CD25 as a targeted approach for identification and isolation following CMVpp65 peptide stimulation. CD25+ cells isolated from G-CSF-mobilized apheresis revealed a significant increase in the proportion of FoxP3 expression when compared with conventional non-mobilized CD25+ cells and showed a superior suppressive capacity in a T cell proliferation assay, demonstrating the emergence of a population of Tregs not present in non-mobilized apheresis collections. The expansion of CD25+ CMV-T in short-term culture resulted in a mixed population of CD4+ and CD8+ T cells with CMV-specificity that secreted cytotoxic effector molecules and lysed CMVpp65 peptide-loaded phytohaemagglutinin-stimulated blasts. Furthermore CD25 expanded cells retained their suppressive capacity but did not maintain FoxP3 expression or secrete IL-10. In summary our data indicates that CD25 enrichment post CMV stimulation in G-CSF-mobilized PBMCs results in the simultaneous generation of both a functional population of anti-viral T cells and Tregs thus illustrating a potential single therapeutic strategy for the treatment of both GvHD and CMV reactivation following allogeneic haematopoietic stem cell transplantation. The use of G-CSF-mobilized cells as a starting material for cell therapy manufacture represents a feasible approach to alleviating the many problems incurred with successive donations and procurement of cells from

  3. Regulatory T-Cell-Associated Cytokines in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Akiko Okamoto

    2011-01-01

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disease characterized by autoantibody production, complement activation, and immune complex deposition, resulting in tissue and organ damage. An understanding of the mechanisms responsible for homeostatic control of inflammation, which involve both innate and adoptive immune responses, will enable the development of novel therapies for SLE. Regulatory T cells (Treg play critical roles in the induction of peripheral tolerance to self- and foreign antigens. Naturally occurring CD4+CD25+ Treg, which characteristically express the transcription factor forkhead box protein P3 (Foxp3, have been intensively studied because their deficiency abrogates self-tolerance and causes autoimmune disease. Moreover, regulatory cytokines such as interleukin-10 (IL-10 also play a central role in controlling inflammatory processes. This paper focuses on Tregs and Treg-associated cytokines which might regulate the pathogenesis of SLE and, hence, have clinical applications.

  4. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... recognition utilizing DNA barcode labeled MHC multimers to screen peripheral blood lymphocytes from breast cancer patients and healthy donor samples. Signif-icantly more TAA specific T cell responses were detected in breast cancer patients than healthy donors for both HLA-A*0201 (P

  5. CAR T Cells Releasing IL-18 Convert to T-Bethigh FoxO1low Effectors that Exhibit Augmented Activity against Advanced Solid Tumors

    Directory of Open Access Journals (Sweden)

    Markus Chmielewski

    2017-12-01

    Full Text Available Adoptive therapy with chimeric antigen receptor (CAR-redirected T cells has achieved remarkable efficacy in the treatment of hematopoietic malignancies. However, eradicating large solid tumors in advanced stages of the disease remains challenging. We explored augmentation of the anti-tumor immune reaction by establishing an acute inflammatory reaction. Systematic screening indicates that IL-18 polarizes CAR T cells toward T-bethigh FoxO1low effectors with an acute inflammatory response. CAR T cells engineered with inducible IL-18 release exhibited superior activity against large pancreatic and lung tumors that were refractory to CAR T cells without cytokines. IL-18 CAR T cell treatment was accompanied by an overall change in the immune cell landscape associated with the tumor. More specifically, CD206− M1 macrophages and NKG2D+ NK cells increased in number, whereas Tregs, suppressive CD103+ DCs, and M2 macrophages decreased, suggesting that “iIL18 TRUCKs” can be used to sensitize large solid tumor lesions for successful immune destruction.

  6. Cellular therapies: Day by day, all the way.

    Science.gov (United States)

    Atilla, Erden; Kilic, Pelin; Gurman, Gunhan

    2018-04-18

    Tremendous effort and knowledge have elucidated a new era of 'cellular therapy,' also called "live" or "living" drugs. There are currently thousands of active clinical trials that are ongoing, seeking hope for incurable conditions thanks to the increased accessibility and reliability of gene editing and cellular reprogramming. Accomplishments in various adoptive T cell immunotherapies and chimeric antigen receptor (CART) T cell therapies oriented researchers to the field. Cellular therapies are believed to be the next generation of curative therapeutics in many ways, the classification and nomenclature for these applications have not yet reached a consensus. Trends in recent years are moving towards making tissues and cell processes only in centers with production permits. It is quite promising that competent authorities have increased licensing activities of tissue and cell establishments in their countries, under good practice (GxP) rules, and preclinical and clinical trials involving cell-based therapies have led to significant investments. Despite the initiatives undertaken and the large budgets that have been allocated, only limited success has been achieved in cellular therapy compared to conventional drug development. Cost, and cost effectiveness, are important issues for these novel therapies to meet unmet clinical needs, and there are still many scientific, translational, commercializational, and ethical questions that do not have answers. The main objectives of this review is to underline the current position of cellular therapies in research, highlight the timely topic of immunotherapy and chimeric antigen receptor (CAR) T-cell treatment, and compile information related to regulations and marketing of cellular therapeutic approaches worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Induction of transplantation tolerance to fully mismatched cardiac allografts by T cell mediated delivery of alloantigen

    Science.gov (United States)

    Tian, Chaorui; Yuan, Xueli; Jindra, Peter T.; Bagley, Jessamyn; Sayegh, Mohamed H.; Iacomini, John

    2010-01-01

    Induction of transplantation tolerance has the potential to allow for allograft acceptance without the need for life-long immunosuppression. Here we describe a novel approach that uses delivery of alloantigen by mature T cells to induce tolerance to fully allogeneic cardiac grafts. Adoptive transfer of mature alloantigen-expressing T cells into myeloablatively conditioned mice results in long-term acceptance of fully allogeneic heart transplants without evidence of chronic rejection. Since myeloablative conditioning is clinically undesirable we further demonstrated that adoptive transfer of mature alloantigen-expressing T cells alone into mice receiving non-myeloablative conditioning resulted in long-term acceptance of fully allogeneic heart allografts with minimal evidence of chronic rejection. Mechanistically, tolerance induction involved both deletion of donor-reactive host T cells and the development of regulatory T cells. Thus, delivery of alloantigen by mature T cells induces tolerance to fully allogeneic organ allografts in non-myeloablatively conditioned recipients, representing a novel approach for tolerance induction in transplantation. PMID:20452826

  8. Peripheral T cell lymphoma: clinical utility of romidepsin

    Directory of Open Access Journals (Sweden)

    Sawey K

    2012-06-01

    Full Text Available Jasmine Zain, Kathryn SaweyNYU Langone Medical Center, New York, USAIntroduction: Direct therapeutic targets, such as aberrant tumor cell genes and tumor cell markers, have been the focus of cancer treatment for more than 50 years. The resulting damage to normal cells and emergence of drug-resistant tumor cells after exposure to conventional chemotherapy have led researchers to study indirect targets, like the tumor vasculature. A more recent indirect approach involves targeting the epigenetic modifiers, DNA methyltransferase and histone deacetylase. Histone deacetylase inhibitors have been shown to be active cytotoxic agents in T cell lymphoma. The current treatments approved by the US Food and Drug Administration for relapsed cutaneous T cell lymphoma are vorinostat and romidepsin. The diversity and rarity of peripheral T cell lymphomas present a challenge for effective treatment. With their poor overall survival rate, new targeted therapies need to be developed.Keywords: peripheral T cell lymphoma, treatment, romidepsin

  9. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed...... whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays...

  10. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Bongiovanni, Deborah; Saccomani, Valentina

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy. PMID:28872614

  11. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Simone Thomas

    2015-07-01

    Full Text Available Reactivation of human cytomegalovirus (HCMV can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease.

  12. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution.

    Science.gov (United States)

    Zeng, Ming; Paiardini, Mirko; Engram, Jessica C; Beilman, Greg J; Chipman, Jeffrey G; Schacker, Timothy W; Silvestri, Guido; Haase, Ashley T

    2012-08-30

    Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1-infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution.

  13. Methods of Controlling Invasive Fungal Infections Using CD8+ T Cells

    Directory of Open Access Journals (Sweden)

    Pappanaicken R. Kumaresan

    2018-01-01

    Full Text Available Invasive fungal infections (IFIs cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4+ T cells, while CD8+ T cells also play a role. CD8+ T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8+ T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets β-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to β-glucan. Mice treated with D-CAR+ T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV, or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy.

  14. Tolerogenic dendritic cells from poorly compensated type 1 diabetes patients have decreased ability to induce stable antigen-specific T cell hyporesponsiveness and generation of suppressive regulatory T cells

    DEFF Research Database (Denmark)

    Dánova, Klara; Grohova, Anna; Strnadova, Pavla

    2017-01-01

    state of patients. tolDCs differentiated from both groups of patients acquired a regulatory phenotype and an anti-inflammatory profile. Interestingly, tolDCs from well-controlled patients expressed higher levels of inhibitory molecules IL-T3 and PD-L1. Additionally, glutamic acid decarboxylase (GAD)65......Tolerogenic dendritic cells (tolDCs) may offer an interesting intervention strategy to re-establish Ag-specific tolerance in autoimmune diseases, including type 1 diabetes (T1D). T1D results from selective destruction of insulin-producing b cells leading to hyperglycemia that, in turn, specifically...... suppressive abilities. The functionality of tolDCs was confirmed in the adoptive transfer model of NOD-SCID mice where tolDCs delayed diabetes onset. These results suggest that metabolic control of T1D affects the functional characteristics of tolDCs and subsequent effector T cell responses. Metabolic control...

  15. Src-family kinases negatively regulate NFAT signaling in resting human T cells.

    Directory of Open Access Journals (Sweden)

    Alan Baer

    Full Text Available T cell signaling is required for activation of both natural and therapeutic T cells including chimeric antigen receptor (CAR T cells. Identification of novel factors and pathways regulating T cell signaling may aid in development of effective T cell therapies. In resting human T cells, the majority of Src-family of tyrosine kinases (SFKs are inactive due to phosphorylation of a conserved carboxy-terminal tyrosine residue. Recently, a pool of enzymatically active SFKs has been identified in resting T cells; however, the significance of these is incompletely understood. Here, we characterized the role of active SFKs in resting human T cells. Pharmacologic inhibition of active SFKs enhanced distal TCR signaling as measured by IL-2 release and CD25 surface expression following TCR-independent activation. Mechanistically, inhibition of the active pool of SFKs induced nuclear translocation of NFAT1, and enhanced NFAT1-dependent signaling in resting T cells. The negative regulation of NFAT1 signaling was in part mediated by the Src-kinase Lck as human T cells lacking Lck had increased levels of nuclear NFAT1 and demonstrated enhanced NFAT1-dependent gene expression. Inhibition of active SFKs in resting primary human T cells also increased nuclear NFAT1 and enhanced NFAT1-dependent signaling. Finally, the calcineurin inhibitor FK506 and Cyclosporin A reversed the effect of SFKs inhibition on NFAT1. Together, these data identified a novel role of SFKs in preventing aberrant NFAT1 activation in resting T cells, and suggest that maintaining this pool of active SFKs in therapeutic T cells may increase the efficacy of T cell therapies.

  16. Central memory CD4 T cells are associated with incomplete restoration of the CD4 T cell pool after treatment-induced long-term undetectable HIV viraemia.

    Science.gov (United States)

    Rallón, Norma; Sempere-Ortells, José M; Soriano, Vincent; Benito, José M

    2013-11-01

    It is unclear to what extent T cell reconstitution may be possible in HIV-1-infected individuals on continuous successful highly active antiretroviral therapy (HAART). Herein, we analysed distinct phenotypic markers of immune recovery in patients with undetectable viraemia for 8 years, taking as reference untreated patients and healthy controls. Seventy-two subjects were examined: 28 HIV-1+ patients on successful long-term HAART, 24 HIV-1+ untreated viraemic patients and 20 age-matched healthy controls. Analysis of naive and memory CD4 and CD8 T cells was combined with measurements of activation status (expression of CD38) and with thymic function (expression of CD31). Statistical significance was determined by non-parametric tests. After long-term HAART, the majority of parameters were normalized compared with age-matched control values, including T cell activation and thymic function. However, absolute counts of naive and central memory CD4 T cells remained below normal levels. The only parameters significantly associated with CD4 counts at the end of follow-up were the pre-HAART CD4 count ( β ± SD = 0.54 ± 0.16, P = 0.003) and the level of CD4 central memory cells at the end of follow-up (β ± SD = 1.18 ± 0.23, P 350 cells/mm(3) reached a complete normalization of CD4 counts. Even after long-term successful HAART, complete CD4 restoration may be attainable only in patients starting therapy with moderately high CD4 counts, prompting early initiation of antiretroviral therapy. Incomplete CD4 restoration may be associated with a defective restoration of central memory CD4 T cells, a cell subset with a pivotal role in T cell homeostasis.

  17. The role of CD8+ T cells during allograft rejection

    Directory of Open Access Journals (Sweden)

    V. Bueno

    2002-11-01

    Full Text Available Organ transplantation can be considered as replacement therapy for patients with end-stage organ failure. The percent of one-year allograft survival has increased due, among other factors, to a better understanding of the rejection process and new immunosuppressive drugs. Immunosuppressive therapy used in transplantation prevents activation and proliferation of alloreactive T lymphocytes, although not fully preventing chronic rejection. Recognition by recipient T cells of alloantigens expressed by donor tissues initiates immune destruction of allogeneic transplants. However, there is controversy concerning the relative contribution of CD4+ and CD8+ T cells to allograft rejection. Some animal models indicate that there is an absolute requirement for CD4+ T cells in allogeneic rejection, whereas in others CD4-depleted mice reject certain types of allografts. Moreover, there is evidence that CD8+ T cells are more resistant to immunotherapy and tolerance induction protocols. An intense focal infiltration of mainly CD8+CTLA4+ T lymphocytes during kidney rejection has been described in patients. This suggests that CD8+ T cells could escape from immunosuppression and participate in the rejection process. Our group is primarily interested in the immune mechanisms involved in allograft rejection. Thus, we believe that a better understanding of the role of CD8+ T cells in allograft rejection could indicate new targets for immunotherapy in transplantation. Therefore, the objective of the present review was to focus on the role of the CD8+ T cell population in the rejection of allogeneic tissue.

  18. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids.

    Science.gov (United States)

    Seet, Christopher S; He, Chongbin; Bethune, Michael T; Li, Suwen; Chick, Brent; Gschweng, Eric H; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B; Baltimore, David; Crooks, Gay M; Montel-Hagen, Amélie

    2017-05-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3 + TCR-αβ + single-positive CD8 + or CD4 + cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.

  19. Challenges and future perspectives of T cell immunotherapy in cancer

    Science.gov (United States)

    de Aquino, Maria Teresa P; Malhotra, Anshu; Mishra, Manoj K; Shanker, Anil

    2015-01-01

    Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signaling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer. PMID:26096822

  20. Acyclovir Therapy Reduces the CD4+ T Cell Response against the Immunodominant pp65 Protein from Cytomegalovirus in Immune Competent Individuals.

    Directory of Open Access Journals (Sweden)

    Annette Pachnio

    Full Text Available Cytomegalovirus (CMV infects the majority of the global population and leads to the development of a strong virus-specific immune response. The CMV-specific CD4+ and CD8+ T cell immune response can comprise between 10 and 50% of the T cell pool within peripheral blood and there is concern that this may impair immunity to other pathogens. Elderly individuals with the highest magnitude of CMV-specific immune response have been demonstrated to be at increased risk of mortality and there is increasing interest in interventions that may serve to moderate this. Acyclovir is an anti-viral drug with activity against a range of herpes viruses and is used as long term treatment to suppress reactivation of herpes simplex virus. We studied the immune response to CMV in patients who were taking acyclovir to assess if therapy could be used to suppress the CMV-specific immune response. The T cell reactivity against the immunodominant late viral protein pp65 was reduced by 53% in people who were taking acyclovir. This effect was seen within one year of therapy and was observed primarily within the CD4+ response. Acyclovir treatment only modestly influenced the immune response to the IE-1 target protein. These data show that low dose acyclovir treatment has the potential to modulate components of the T cell response to CMV antigen proteins and indicate that anti-viral drugs should be further investigated as a means to reduce the magnitude of CMV-specific immune response and potentially improve overall immune function.

  1. Virus-Specific T Cells for the Immunocompromised Patient

    Directory of Open Access Journals (Sweden)

    Amy Houghtelin

    2017-10-01

    Full Text Available While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST, which are not only effective but also confer protection in 70–90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo.

  2. Virus-Specific T Cells for the Immunocompromised Patient.

    Science.gov (United States)

    Houghtelin, Amy; Bollard, Catherine M

    2017-01-01

    While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST), which are not only effective but also confer protection in 70-90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo .

  3. FoxP3+CD4+CD25+ T cells with regulatory properties can be cultured from colonic mucosa of patients with Crohn's disease

    Science.gov (United States)

    Kelsen, J; Agnholt, J; Hoffmann, H J; Rømer, J L; Hvas, C L; Dahlerup, J F

    2005-01-01

    CD4+CD25+ regulatory T cells (Tregs) are involved in the maintenance of peripheral tolerance and ensure a balanced immune response competent of fighting pathogens and at the same time recognizing commensals as harmless. This feature is lost in Crohn's disease (CD). The forkhead/winged helix transcription factor FoxP3 is a master gene for Treg function and defects in the FoxP3 gene lead to a clinical picture similar to inflammatory bowel disease (IBD). Murine colitis can be cured by adoptive transfer of Tregs and ex vivo-generated gut-specific Tregs represent an attractive option for therapy in CD. Thus, defective Tregs could contribute to the development of CD. We cultured biopsies of colonic mucosa in the presence of high concentrations of interleukin (IL)-2 and IL-4 to overcome the anergic nature of naturally occurring CD4+CD25+ Tregs in the mucosa. We investigated the expression of FoxP3 and regulatory potential of gut-derived CD4+CD25+ T cells cultured from patients with CD and healthy individuals. The FoxP3 expression was analysed by reverse transcriptase polymerase chain reaction (RT-PCR), and the suppressive effect of FoxP3+CD4+CD25+ T cells on proliferation and cytokine production of autologous CD4+ T cells was assessed by flow cytometry. Cultured gut-derived T cells with CD4+CD25+ phenotype expressed FoxP3 and were able as the freshly isolated Tregs from peripheral blood to suppress proliferation and cytokine production of autologous CD4+ T cells. Thus, we demonstrate that FoxP3+CD4+CD25+ T cells with regulatory properties can be propagated in vitro from inflamed mucosa of CD patients, which may be of interest in adoptive immunotherapy. PMID:16045746

  4. Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation

    Directory of Open Access Journals (Sweden)

    Niloufar eSafinia

    2015-08-01

    Full Text Available Regulatory T cells (Tregs play an important role in immunoregulation and have been shown in animal models to promote transplantation tolerance and curb autoimmunity following their adoptive transfer. The safety and potential therapeutic efficacy of these cells has already been reported in Phase I trials of bone marrow transplantation and type I diabetes, the success of which has motivated the broadened application of these cells in solid organ transplantation. Despite major advances in the clinical translation of these cells, there are still key questions to be addressed to ensure that Tregs attest their reputation as ideal candidates for tolerance induction. In this review, we will discuss the unique traits of Tregs that have attracted such fame in the arena of tolerance induction. We will outline the protocols used for their ex vivo expansion and discuss the future directions of Treg cell therapy. In this regard, we will review the concept of Treg heterogeneity, the desire to isolate and expand a functionally superior Treg population and report on the effect of differing culture conditions. The relevance of Treg migratory capacity will also be discussed together with methods of in vivo visualization of the infused cells. Moreover, we will highlight key advances in the identification and expansion of antigen specific Tregs and discuss their significance for cell therapy application. We will also summarize the clinical parameters that are of importance, alongside cell manufacture, from the choice of immunosuppression regimens to the number of injections in order to direct the success of future efficacy trials of Treg cell therapy.Years of research in the field of tolerance have seen an accumulation of knowledge and expertise in the field of Treg biology. This perpetual progression has been the driving force behind the many successes to date and has put us now within touching distance of our ultimate success, immunological tolerance.

  5. Development of CAR T cells designed to improve antitumor efficacy and safety

    OpenAIRE

    Jaspers, Janneke E.; Brentjens, Renier J.

    2017-01-01

    Chimeric antigen receptor (CAR) T cell therapy has shown promising efficacy against hematologic malignancies. Antitumor activity of CAR T cells, however, needs to be improved to increase therapeutic efficacy in both hematologic and solid cancers. Limitations to overcome are ‘on-target, off-tumor’ toxicity, antigen escape, short CAR T cell persistence, little expansion, trafficking to the tumor and inhibition of T cell activity by an inhibitory tumor microenvironment. Here we will discuss how ...

  6. CAR-T Cells: A Systematic Review and Mixed Methods Analysis of the Clinical Trial Landscape.

    Science.gov (United States)

    Pettitt, David; Arshad, Zeeshaan; Smith, James; Stanic, Tijana; Holländer, Georg; Brindley, David

    2018-02-07

    CAR-T cells are a promising new therapy that offer significant advantages compared with conventional immunotherapies. This systematic review and clinical trial landscape identifies and critiques published CAR-T cell clinical trials and examines the critical factors required to enable CAR-T cells to become a standard therapy. A review of the literature was conducted to identify suitable studies from the MEDLINE and Ovid bibliographic databases. The literature and database searches identified 20 studies for inclusion. The average number of participants per clinical trial examined was 11 patients. All studies included in this systematic review investigated CAR-T cells and were prospective, uncontrolled clinical studies. Leukemia is the most common cancer subtype and accounts for 57.4% (n = 120) of disease indications. The majority of studies used an autologous cell source (85%, n = 17) rather than an allogeneic cell source. Translational challenges encompass technical considerations relating to CAR-T cell development, manufacturing practicability, clinical trial approaches, CAR-T cell quality and persistence, and patient management. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. Invariant natural killer T-cell control of type 1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette.

    Science.gov (United States)

    Driver, John P; Scheuplein, Felix; Chen, Yi-Guang; Grier, Alexandra E; Wilson, S Brian; Serreze, David V

    2010-02-01

    In part, activation of invariant natural killer T (iNKT)-cells with the superagonist alpha-galactosylceramide (alpha-GalCer) inhibits the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice by inducing the downstream differentiation of antigen-presenting dendritic cells (DCs) to an immunotolerogenic state. However, in other systems iNKT-cell activation has an adjuvant-like effect that enhances rather than suppresses various immunological responses. Thus, we tested whether in some circumstances genetic variation would enable activated iNKT-cells to support rather than inhibit type 1 diabetes development. We tested whether iNKT-conditioned DCs in NOD mice and a major histocompatibility complex-matched C57BL/6 (B6) background congenic stock differed in capacity to inhibit type 1 diabetes induced by the adoptive transfer of pathogenic AI4 CD8 T-cells. Unlike those of NOD origin, iNKT-conditioned DCs in the B6 background stock matured to a state that actually supported rather than inhibited AI4 T-cell-induced type 1 diabetes. The induction of a differing activity pattern of T-cell costimulatory molecules varying in capacity to override programmed death-ligand-1 inhibitory effects contributes to the respective ability of iNKT-conditioned DCs in NOD and B6 background mice to inhibit or support type 1 diabetes development. Genetic differences inherent to both iNKT-cells and DCs contribute to their varying interactions in NOD and B6.H2(g7) mice. This great variability in the interactions between iNKT-cells and DCs in two inbred mouse strains should raise a cautionary note about considering manipulation of this axis as a potential type 1 diabetes prevention therapy in genetically heterogeneous humans.

  8. Pre-TCRα supports CD3-dependent reactivation and expansion of TCRα-deficient primary human T-cells

    Directory of Open Access Journals (Sweden)

    Román Galetto

    2014-01-01

    Full Text Available Chimeric antigen receptor technology offers a highly effective means for increasing the anti-tumor effects of autologous adoptive T-cell immunotherapy, and could be made widely available if adapted to the use of allogeneic T-cells. Although gene-editing technology can be used to remove the alloreactive potential of third party T-cells through destruction of either the α or β T-cell receptor (TCR subunit genes, this approach results in the associated loss of surface expression of the CD3 complex. This is nonetheless problematic as it results in the lack of an important trophic signal normally mediated by the CD3 complex at the cell surface, potentially compromising T-cell survival in vivo, and eliminating the potential to expand TCR-knockout cells using stimulatory anti-CD3 antibodies. Here, we show that pre-TCRα, a TCRα surrogate that pairs with TCRβ chains to signal proper TCRβ folding during T-cell development, can be expressed in TCRα knockout mature T-cells to support CD3 expression at the cell surface. Cells expressing pre-TCR/CD3 complexes can be activated and expanded using standard CD3/CD28 T-cell activation protocols. Thus, heterologous expression of pre-TCRα represents a promising technology for use in the manufacturing of TCR-deficient T-cells for adoptive immunotherapy applications.

  9. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver.

    Science.gov (United States)

    Mailer, Reiner K W; Gisterå, Anton; Polyzos, Konstantinos A; Ketelhuth, Daniel F J; Hansson, Göran K

    2017-05-26

    The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. To investigate hepatic T-cell subsets upon hypercholesterolemia. We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-β1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient ( Ldlr -/- ) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr -/- mice led to intrahepatic Th1 cell differentiation and CD11b + CD11c + leukocyte accumulation. Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4 + T-cell pool in the atherosclerotic aorta. © 2017 American Heart Association, Inc.

  10. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15

    Science.gov (United States)

    Xu, Yang; Zhang, Ming; Ramos, Carlos A.; Durett, April; Liu, Enli; Dakhova, Olga; Liu, Hao; Creighton, Chad J.; Gee, Adrian P.; Heslop, Helen E.; Rooney, Cliona M.; Savoldo, Barbara

    2014-01-01

    Adoptive transfer of T lymphocytes expressing a CD19-specific chimeric antigen receptor (CAR.CD19) induces complete tumor regression in patients with lymphoid malignancies. Although in vivo persistence of CAR-T cells correlates with clinical responses, it remains unknown whether specific cell subsets within the CAR–T-cell product correlate with their subsequent in vivo expansion and persistence. We analyzed 14 patients with B-cell malignancies infused with autologous CAR.CD19-redirected T cells expanded ex vivo using IL-2, and found that their in vivo expansion only correlated with the frequency within the infused product of a CD8+CD45RA+CCR7+ subset, whose phenotype is closest to “T-memory stem cells.” Preclinical models showed that increasing the frequency of CD8+CD45RA+CCR7+ CAR-T cells in the infused line by culturing the cells with IL-7 and IL-15 produced greater antitumor activity of CAR-T cells mediated by increased resistance to cell death, following repetitive encounters with the antigen, while preserving their migration to secondary lymphoid organs. This trial was registered at www.clinicaltrials.gov as #NCT00586391 and #NCT00709033. PMID:24782509

  11. CD19-Targeted CAR T Cells as Novel Cancer Immunotherapy for Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia

    OpenAIRE

    Davila, Marco L.; Brentjens, Renier J.

    2016-01-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the ju...

  12. Peripheral blood T cell activation after radioiodine treatment for Graves' disease

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Teng; Stark, R.; Borysiewicz, L.K.; Weetman, A.P. (Department of Medicine, University of Cambridge Clinical School, Level 5, Addenbrooke' s Hospital, Cambridge (UK)); Munro, A.J. (Department of Clinical Oncology, Hammersmith Hospital, London (UK)); McHardy Young, S. (Department of Medicine, Central Middlesex Hospital, London (UK))

    1990-01-01

    Radioiodine therapy for Graves' thyrotoxicosis produces a rise in thyroid autoantibodies in the first three months after treatment, but little is known of its effects on T cells. We have therefore followed the changes in T cell subsets in sequential samples from 23 patients with Graves' disease treated with radioiodine, using dualcolour flow cytometry. In the first month after treatment there was a significant rise in activated T cells, identified by the markers HLA-DR(la) and CDw26/Tal (p<0.025 in both cases). CD45RO-positive T cells, which are the primed population containing memory cells, also increased (p<0.025), but there was no change in CD45R-positive, resting T cells or in the CD4 to CD8 (helper to cytotoxic/suppressor) ratio. Vicia villosa-binding T cells, containing the contrasuppressor population, showed a more variable response, but the trend was to an overall increase from pre-treatment values (p<0.025). The changes did not appear to be related to antithyroid drug treatment, since they were seen irrespective of whether patients continued such therapy. These results suggest that T cell activation and enhanced contrasuppressor activity may in part be responsible for the rise in autoantibodies after radioiodine. The T cell changes could also contribute to the worsening of ophthalmopathy seen in some radioiodine-treated patients. (author).

  13. Normalization of tumor microenvironment by neem leaf glycoprotein potentiates effector T cell functions and therapeutically intervenes in the growth of mouse sarcoma.

    Directory of Open Access Journals (Sweden)

    Subhasis Barik

    Full Text Available We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP. In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME. Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8(+ T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR(+ cells within CD8(+ T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8(+ T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8(+ T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.

  14. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation.

    Science.gov (United States)

    Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin

    2018-01-01

    The ability to engineer custom cell-contact-sensing output devices into human nonimmune cells would be useful for extending the applicability of cell-based cancer therapies and for avoiding risks associated with engineered immune cells. Here we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human nonimmune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell-target cell interface. We further show that designer nonimmune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to the advancement of synthetic biology by extending available design principles to transmit extracellular information to cells.

  15. T cells enhance gold nanoparticle delivery to tumors in vivo

    Science.gov (United States)

    Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.

    2011-12-01

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  16. NK cell-like behavior of Valpha14i NK T cells during MCMV infection.

    Directory of Open Access Journals (Sweden)

    Johnna D Wesley

    2008-07-01

    Full Text Available Immunity to the murine cytomegalovirus (MCMV is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/- mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/- mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.

  17. T cells for viral infections after allogeneic hematopoietic stem cell transplant.

    Science.gov (United States)

    Bollard, Catherine M; Heslop, Helen E

    2016-06-30

    Despite recent advances in the field of allogeneic hematopoietic stem cell transplantation (HSCT), viral infections are still a major complication during the period of immune suppression that follows the procedure. Adoptive transfer of donor-derived virus-specific cytotoxic T cells (VSTs) is a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after HSCT. Early proof of principle studies demonstrated that the administration of donor-derived T cells specific for cytomegalovirus or Epstein-Barr virus (EBV) could effectively restore virus-specific immunity and control viral infections. Subsequent studies using different expansion or direct selection techniques have shown that donor-derived VSTs confer protection in vivo after adoptive transfer in 70% to 90% of recipients. Because a major cause of failure is lack of immunity to the infecting virus in a naïve donor, more recent studies have infused closely matched third-party VSTs and reported response rates of 60% to 70%. Current efforts have focused on broadening the applicability of this approach by: (1) extending the number of viral antigens being targeted, (2) simplifying manufacture, (3) exploring strategies for recipients of virus-naïve donor grafts, and (4) developing and optimizing "off the shelf" approaches. © 2016 by The American Society of Hematology.

  18. The CD8⁺ memory stem T cell (T(SCM)) subset is associated with improved prognosis in chronic HIV-1 infection.

    Science.gov (United States)

    Ribeiro, Susan P; Milush, Jeffrey M; Cunha-Neto, Edecio; Kallas, Esper G; Kalil, Jorge; Somsouk, Ma; Hunt, Peter W; Deeks, Steven G; Nixon, Douglas F; SenGupta, Devi

    2014-12-01

    Memory stem T cells (T(SCM)) constitute a long-lived, self-renewing lymphocyte population essential for the maintenance of functional immunity. The hallmarks of HIV-1 pathogenesis are CD4(+) T cell depletion and abnormal cellular activation. We investigated the impact of HIV-1 infection on the T(SCM) compartment, as well as any protective role these cells may have in disease progression, by characterizing this subset in a cohort of 113 subjects with various degrees of viral control on and off highly active antiretroviral therapy (HAART). We observed that the frequency of CD8(+) T(SCM) was decreased in all individuals with chronic, untreated HIV-1 infection and that HAART had a restorative effect on this subset. In contrast, natural controllers of HIV-1 had the highest absolute number of CD4(+) T(SCM) cells among all of the infected groups. The frequency of CD4(+) T(SCM) predicted higher CD8(+) T(SCM) frequencies, consistent with a role for the CD4(+) subset in helping to maintain CD8(+) memory T cells. In addition, T(SCM) appeared to be progenitors for effector T cells (TEM), as these two compartments were inversely correlated. Increased frequencies of CD8(+) T(SCM) predicted lower viral loads, higher CD4(+) counts, and less CD8(+) T cell activation. Finally, we found that T(SCM) express the mucosal homing integrin α4β7 and can be identified in gut-associated lymphoid tissue (GALT). The frequency of mucosal CD4(+) T(SCM) was inversely correlated with that in the blood, potentially reflecting the ability of these self-renewing cells to migrate to a crucial site of ongoing viral replication and CD4(+) T cell depletion. HIV-1 infection leads to profound impairment of the immune system. T(SCM) constitute a recently identified lymphocyte subset with stem cell-like qualities, including the ability to generate other memory T cell subtypes, and are therefore likely to play an important role in controlling viral infection. We investigated the relationship between the size

  19. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Jesse J R Masson

    Full Text Available Metabolism plays a fundamental role in supporting the growth, proliferation and effector functions of T cells. We investigated the impact of HIV infection on key processes that regulate glucose uptake and mitochondrial biogenesis in subpopulations of CD4+ and CD8+ T cells from 18 virologically-suppressed HIV-positive individuals on combination antiretroviral therapy (cART; median CD4+ cell count: 728 cells/μl and 13 HIV seronegative controls. Mitochondrial membrane potential (MMP and reactive oxygen species (ROS production were also analysed in total CD4+ and CD8+ T cells. Among HIV+/cART individuals, expression of glucose transporter (Glut1 and mitochondrial density were highest within central memory and naïve CD4+ T cells, and lowest among effector memory and transitional memory T cells, with similar trends in HIV-negative controls. Compared to HIV-negative controls, there was a trend towards higher percentage of circulating CD4+Glut1+ T cells in HIV+/cART participants. There were no significant differences in mitochondrial dynamics between subject groups. Glut1 expression was positively correlated with mitochondrial density and MMP in total CD4+ T cells, while MMP was also positively correlated with ROS production in both CD4+ and CD8+ T cells. Our study characterizes specific metabolic features of CD4+ and CD8+ T cells in HIV-negative and HIV+/cART individuals and will invite future studies to explore the immunometabolic consequences of HIV infection.

  20. Aborted germinal center reactions and B cell memory by follicular T cells specific for a B cell receptor V region peptide.

    Science.gov (United States)

    Heiser, Ryan A; Snyder, Christopher M; St Clair, James; Wysocki, Lawrence J

    2011-07-01

    A fundamental problem in immunoregulation is how CD4(+) T cells react to immunogenic peptides derived from the V region of the BCR that are created by somatic mechanisms, presented in MHC II, and amplified to abundance by B cell clonal expansion during immunity. BCR neo Ags open a potentially dangerous avenue of T cell help in violation of the principle of linked Ag recognition. To analyze this issue, we developed a murine adoptive transfer model using paired donor B cells and CD4 T cells specific for a BCR-derived peptide. BCR peptide-specific T cells aborted ongoing germinal center reactions and impeded the secondary immune response. Instead, they induced the B cells to differentiate into short-lived extrafollicular plasmablasts that secreted modest quantities of Ig. These results uncover an immunoregulatory process that restricts the memory pathway to B cells that communicate with CD4 T cells via exogenous foreign Ag.

  1. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    OpenAIRE

    Engela, Anja; Baan, Carla; Peeters, Anna; Weimar, Willem; Hoogduijn, Martin

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We investigated the interaction between both cell types using perirenal adipose tissue-derived MSCs (ASCs) from kidney donors and Tregs from blood bank donors or kidney recipients 6 months after transplant...

  2. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy

    Directory of Open Access Journals (Sweden)

    Caminade Anne-Marie

    2009-09-01

    Full Text Available Abstract Background Adoptive cell therapy with allogenic NK cells constitutes a promising approach for the treatment of certain malignancies. Such strategies are currently limited by the requirement of an efficient protocol for NK cell expansion. We have developed a method using synthetic nanosized phosphonate-capped dendrimers allowing such expansion. We are showing here that this is due to a specific inhibitory activity towards CD4+ T cell which could lead to further medical applications of this dendrimer. Methods Mononuclear cells from human peripheral blood were used to investigate the immunomodulatory effects of nanosized phosphonate-capped dendrimers on interleukin-2 driven CD4+T cell expansion. Proliferation status was investigated using flow cytometry analysis of CFSE dilution and PI incorporation experiments. Magnetic bead cell sorting was used to address activity towards individual or mixed cell sub-populations. We performed equilibrium binding assay to assess the interaction of fluorescent dendrimers with pure CD4+ T cells. Results Phosphonate-capped dendrimers are inhibiting the activation, and therefore the proliferation; of CD4+ T cells in IL-2 stimulated PBMCs, without affecting their viability. This allows a rapid enrichment of NK cells and further expansion. We found that dendrimer acts directly on T cells, as their regulatory property is maintained when stimulating purified CD4+ T cells with anti-CD3/CD28 microbeads. Performing equilibrium binding assays using a fluorescent analogue, we show that the phosphonate capped-dendrimers are specifically interacting with purified CD4+ T cells. Ultimately, we found that our protocol prevents the IL-2 related expansion of regulatory T cells that would be deleterious for the activity of infused NK cells. Conclusion High yield expansion of NK cells from human PBMCs by phosphonate-capped dendrimers and IL-2 occurs through the specific inhibition of the CD4+ lymphocyte compartment. Given the

  3. Functional and morphological recovery of the T-cell compartment in lethally irradiated and reconstituted mice

    International Nuclear Information System (INIS)

    Kraal, G.; Hilst, B. van der; Boden, D.

    1979-01-01

    The recovery of the T-cell compartment in mice after lethal irradiation and reconstitution was studied using functional and morphological parameters. T-helper cell activity, determined by the direct SRBC-plaque-forming cell (PFC) response, recovered in a similar fashion as T-memory function which was studied by adoptive transfer of carrier-primed cells. Both functions returned to control levels in 2.5 to 3 months. Using immunoperoxidase staining of frozen sections with anti-T cell serum, the morphological recovery of the T-cell dependent areas in the white pulp of the spleen could be studied and compared with the functional recovery. (author)

  4. Anti-cancer vaccine therapy for hematologic malignancies: An evolving era.

    Science.gov (United States)

    Nahas, Myrna R; Rosenblatt, Jacalyn; Lazarus, Hillard M; Avigan, David

    2018-02-15

    The potential promise of therapeutic vaccination as effective therapy for hematologic malignancies is supported by the observation that allogeneic hematopoietic cell transplantation is curative for a subset of patients due to the graft-versus-tumor effect mediated by alloreactive lymphocytes. Tumor vaccines are being explored as a therapeutic strategy to re-educate host immunity to recognize and target malignant cells through the activation and expansion of effector cell populations. Via several mechanisms, tumor cells induce T cell dysfunction and senescence, amplifying and maintaining tumor cell immunosuppressive effects, resulting in failure of clinical trials of tumor vaccines and adoptive T cell therapies. The fundamental premise of successful vaccine design involves the introduction of tumor-associated antigens in the context of effective antigen presentation so that tolerance can be reversed and a productive response can be generated. With the increasing understanding of the role of both the tumor and tumor microenvironment in fostering immune tolerance, vaccine therapy is being explored in the context of immunomodulatory therapies. The most effective strategy may be to use combination therapies such as anti-cancer vaccines with checkpoint blockade to target critical aspects of this environment in an effort to prevent the re-establishment of tumor tolerance while limiting toxicity associated with autoimmunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Hypofractionated radiation therapy for the treatment of feline facial squamous cell carcinoma; Hypofractionated radiation therapy for the treatment of feline facial squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, S.C.S.; Corgozinho, K.B.; Holguin, P.G.; Ferreira, A.M.R., E-mail: simonecsc@gmail.co [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Carvalho, L.A.V. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Canary, P.C.; Reisner, M. [Hospital Universitario Clementino Fraga Filho (HUCFF/UFRJ), Rio de Janeiro, RJ (Brazil); Pereira, A.N.; Souza, H.J.M. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil)

    2010-07-01

    The efficacy of hypofractionated radiation protocol for feline facial squamous cell carcinoma was evaluated. Hypofractionated radiation therapy was applied to five cats showing single or multiple facial squamous cell carcinomas, in a total of ten histologically confirmed neoplastic lesions. Of the lesions, two were staged as T{sub 1}, four as T{sub 2}, two as T{sub 3}, and two as T{sub 4}. The animals were submitted to four radiation fractions from 7.6 to 10 grays each, with one week intervals. The equipment was a linear accelerator with electrons beam. The cats were evaluated weekly during the treatment and 30 and 60 days after the end of the radiation therapy. In this study, 40% of the lesions had complete remission, 40% partial remission, and 20% did not respond to the treatment. Response rates were lower as compared to other protocols previously used. However, hypofractionated radiation protocol was considered safe for feline facial squamous cell carcinoma. (author)

  6. Inhibition of CSF-1R supports T-cell mediated melanoma therapy.

    Directory of Open Access Journals (Sweden)

    Marjolein Sluijter

    Full Text Available Tumor associated macrophages (TAM can promote angiogenesis, invasiveness and immunosuppression. The cytokine CSF-1 (or M-CSF is an important factor of TAM recruitment and differentiation and several pharmacological agents targeting the CSF-1 receptor (CSF-1R have been developed to regulate TAM in solid cancers. We show that the kinase inhibitor PLX3397 strongly dampened the systemic and local accumulation of macrophages driven by B16F10 melanomas, without affecting Gr-1(+ myeloid derived suppressor cells. Removal of intratumoral macrophages was remarkably efficient and a modest, but statistically significant, delay in melanoma outgrowth was observed. Importantly, CSF-1R inhibition strongly enhanced tumor control by immunotherapy using tumor-specific CD8 T cells. Elevated IFNγ production by T cells was observed in mice treated with the combination of PLX3397 and immunotherapy. These results support the combined use of CSF-1R inhibition with CD8 T cell immunotherapy, especially for macrophage-stimulating tumors.

  7. An Analysis of Natural T Cell Responses to Predicted Tumor Neoepitopes

    Directory of Open Access Journals (Sweden)

    Anne-Mette Bjerregaard

    2017-11-01

    Full Text Available Personalization of cancer immunotherapies such as therapeutic vaccines and adoptive T-cell therapy may benefit from efficient identification and targeting of patient-specific neoepitopes. However, current neoepitope prediction methods based on sequencing and predictions of epitope processing and presentation result in a low rate of validation, suggesting that the determinants of peptide immunogenicity are not well understood. We gathered published data on human neopeptides originating from single amino acid substitutions for which T cell reactivity had been experimentally tested, including both immunogenic and non-immunogenic neopeptides. Out of 1,948 neopeptide-HLA (human leukocyte antigen combinations from 13 publications, 53 were reported to elicit a T cell response. From these data, we found an enrichment for responses among peptides of length 9. Even though the peptides had been pre-selected based on presumed likelihood of being immunogenic, we found using NetMHCpan-4.0 that immunogenic neopeptides were predicted to bind significantly more strongly to HLA compared to non-immunogenic peptides. Investigation of the HLA binding strength of the immunogenic peptides revealed that the vast majority (96% shared very strong predicted binding to HLA and that the binding strength was comparable to that observed for pathogen-derived epitopes. Finally, we found that neopeptide dissimilarity to self is a predictor of immunogenicity in situations where neo- and normal peptides share comparable predicted binding strength. In conclusion, these results suggest new strategies for prioritization of mutated peptides, but new data will be needed to confirm their value.

  8. Immunity War: A Novel Therapy for Lymphoma Using T-cell Bispecific Antibodies.

    Science.gov (United States)

    Prakash, Ajay; Diefenbach, Catherine S

    2018-06-08

    The activity of T cell mediated immunotherapies in B cell lymphoma has been limited to date. The novel bi-specific antibody CD20-TCB, has a 2:1 antibody design to maximize T cell engagement, and demonstrates activity in preclinical models. This may represent a novel therapeutic approach for patients with relapsed/refractory NHL. Copyright ©2018, American Association for Cancer Research.

  9. Radiation Enhances Regulatory T Cell Representation

    Energy Technology Data Exchange (ETDEWEB)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Economou, James S. [Department of Surgical Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +} Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  10. Radiation Enhances Regulatory T Cell Representation

    International Nuclear Information System (INIS)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Dörthe

    2011-01-01

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4 + CD25 hi Foxp3 + lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4 + CD25 hi Foxp3 + Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  11. Low-dose narrow-band UVB phototherapy combined with topical therapy is effective in psoriasis and does not inhibit systemic T-cell activation

    NARCIS (Netherlands)

    de Rie, M. A.; Out, T. A.; Bos, J. D.

    1998-01-01

    Psoriasis is a chronic T-cell-mediated inflammatory skin disease which can be treated with topical medication, phototherapy or systemic medication. A subgroup of psoriatic patients does not respond to monotherapy and needs combination therapy. We used low-dose narrow-band UVB phototherapy, combined

  12. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells.

    Science.gov (United States)

    Hurton, Lenka V; Singh, Harjeet; Najjar, Amer M; Switzer, Kirsten C; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N

    2016-11-29

    Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (T SCM ) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR + T cells with preserved T SCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19 + leukemia. Long-lived T cells were CD45RO neg CCR7 + CD95 + , phenotypically most similar to T SCM , and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR + T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.

  13. Immunoglobulin therapy in hematologic neoplasms and after hematopoietic cell transplantation.

    Science.gov (United States)

    Ueda, Masumi; Berger, Melvin; Gale, Robert Peter; Lazarus, Hillard M

    2018-03-01

    Immunoglobulins are used to prevent or reduce infection risk in primary immune deficiencies and in settings which exploit its anti-inflammatory and immune-modulatory effects. Rigorous proof of immunoglobulin efficacy in persons with lympho-proliferative neoplasms, plasma cell myeloma, and persons receiving hematopoietic cell transplants is lacking despite many clinical trials. Further, there are few consensus guidelines or algorithms for use in these conditions. Rapid development of new therapies targeting B-cell signaling and survival pathways and increased use of chimeric antigen receptor T-cell (CAR-T) therapy will likely result in more acquired deficiencies of humoral immunity and infections in persons with cancer. We review immunoglobulin formulations and discuss efficacy and potential adverse effects in the context of preventing infections and in graft-versus-host disease. We suggest an algorithm for evaluating acquired deficiencies of humoral immunity in persons with hematologic neoplasms and recommend appropriate use of immunoglobulin therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. A Convenient Model of Severe, High Incidence Autoimmune Gastritis Caused by Polyclonal Effector T Cells and without Perturbation of Regulatory T Cells

    Science.gov (United States)

    Tu, Eric; Ang, Desmond K. Y.; Hogan, Thea V.; Read, Simon; Chia, Cheryl P. Z.; Gleeson, Paul A.; van Driel, Ian R.

    2011-01-01

    Autoimmune gastritis results from the breakdown of T cell tolerance to the gastric H+/K+ ATPase. The gastric H+/K+ ATPase is responsible for the acidification of gastric juice and consists of an α subunit (H/Kα) and a β subunit (H/Kβ). Here we show that CD4+ T cells from H/Kα-deficient mice (H/Kα−/−) are highly pathogenic and autoimmune gastritis can be induced in sublethally irradiated wildtype mice by adoptive transfer of unfractionated CD4+ T cells from H/Kα−/− mice. All recipient mice consistently developed the most severe form of autoimmune gastritis 8 weeks after the transfer, featuring hypertrophy of the gastric mucosa, complete depletion of the parietal and zymogenic cells, and presence of autoantibodies to H+/K+ ATPase in the serum. Furthermore, we demonstrated that the disease significantly affected stomach weight and stomach pH of recipient mice. Depletion of parietal cells in this disease model required the presence of both H/Kα and H/Kβ since transfer of H/Kα−/− CD4+ T cells did not result in depletion of parietal cells in H/Kα−/− or H/Kβ−/− recipient mice. The consistency of disease severity, the use of polyclonal T cells and a specific T cell response to the gastric autoantigen make this an ideal disease model for the study of many aspects of organ-specific autoimmunity including prevention and treatment of the disease. PMID:22096532

  15. A convenient model of severe, high incidence autoimmune gastritis caused by polyclonal effector T cells and without perturbation of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Eric Tu

    Full Text Available Autoimmune gastritis results from the breakdown of T cell tolerance to the gastric H(+/K(+ ATPase. The gastric H(+/K(+ ATPase is responsible for the acidification of gastric juice and consists of an α subunit (H/Kα and a β subunit (H/Kβ. Here we show that CD4(+ T cells from H/Kα-deficient mice (H/Kα(-/- are highly pathogenic and autoimmune gastritis can be induced in sublethally irradiated wildtype mice by adoptive transfer of unfractionated CD4(+ T cells from H/Kα(-/- mice. All recipient mice consistently developed the most severe form of autoimmune gastritis 8 weeks after the transfer, featuring hypertrophy of the gastric mucosa, complete depletion of the parietal and zymogenic cells, and presence of autoantibodies to H(+/K(+ ATPase in the serum. Furthermore, we demonstrated that the disease significantly affected stomach weight and stomach pH of recipient mice. Depletion of parietal cells in this disease model required the presence of both H/Kα and H/Kβ since transfer of H/Kα(-/- CD4(+ T cells did not result in depletion of parietal cells in H/Kα(-/- or H/Kβ(-/- recipient mice. The consistency of disease severity, the use of polyclonal T cells and a specific T cell response to the gastric autoantigen make this an ideal disease model for the study of many aspects of organ-specific autoimmunity including prevention and treatment of the disease.

  16. Efficacy and toxicity management of CAR-T-cell immunotherapy: a matter of responsiveness control or tumour-specificity?

    Science.gov (United States)

    Alonso-Camino, Vanesa; Harwood, Seandean Lykke; Álvarez-Méndez, Ana; Alvarez-Vallina, Luis

    2016-04-15

    Chimaeric antigen receptor (CAR)-expressing T-cells have demonstrated potent clinical efficacy in patients with haematological malignancies. However, the use of CAR-T-cells targeting solid tumour-associated antigens (TAAs) has been limited by organ toxicities related to activation of T-cell effector functions through the CAR. Most existing CARs recognize TAAs, which are also found in normal tissues. CAR-T-cell-mediated destruction of normal tissues constitutes a major roadblock to CAR-T-cell therapy, and must be avoided or mitigated. There is a broad range of strategies for modulating antigen responsiveness of CAR-T-cells, with varying degrees of complexity. Some of them might ameliorate the acute and chronic toxicities associated with current CAR constructs. However, further embellishments to CAR therapy may complicate clinical implementation and possibly create new immunogenicity issues. In contrast, the development of CARs targeting truly tumour-specific antigens might circumvent on-target/off-tumour toxicities without adding additional complexity to CAR-T-cell therapies, but these antigens have been elusive and may require novel selection strategies for their discovery. © 2016 Authors; published by Portland Press Limited.

  17. Quarter Century of Anti-HIV CAR T Cells.

    Science.gov (United States)

    Wagner, Thor A

    2018-04-01

    A therapy that might cure HIV is a very important goal for the 30-40 million people living with HIV. Chimeric antigen receptor T cells have recently had remarkable success against certain leukemias, and there are reasons to believe they could be successful for HIV. This manuscript summarizes the published research on HIV CAR T cells and reviews the current anti-HIV chimeric antigen receptor strategies. Research on anti-HIV chimeric antigen receptor T cells has been going on for at least the last 25 years. First- and second-generation anti-HIV chimeric antigen receptors have been developed. First-generation anti-HIV chimeric antigen receptors were studied in clinical trials more than 15 years ago, but did not have meaningful clinical efficacy. There are some reasons to be optimistic about second-generation anti-HIV chimeric antigen receptor T cells, but they have not yet been tested in vivo.

  18. Cancer incidence and novel therapies developed in Japan

    Directory of Open Access Journals (Sweden)

    Masaru Iwasaki

    2012-01-01

    Oncology. JMAJ 54(1: 44–46, 20114.Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology 2002; 43(1:33–56.5.Levin WP, Kooy H, Loeffler JS, DeLaney TF. Proton beam therapy. Br J Cancer.2005; 93(8:849-54. 6.Widakowich C, de Castro G Jr, de Azambuja E, Dinh P, Awada A. Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist. 2007; 12(12:1443-55.7.Egawa K. Immuno-cell therapy of cancer in Japan. Anticancer Res. 2004;24(5C:3321-6. 8.Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y, Kakizoe T. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet. 2000; 356(9232:802-7. 9.Kimura H, Yamaguchi Y. A phase III randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma. Cancer. 1997;80(1:42-9. 10.Kono K, Takahashi A, Ichihara F, Amemiya H, Iizuka H, Fujii H, Sekikawa T, Matsumoto Y: Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: a randomized trial. Clin Cancer Res. 2002; 8: 1767-71. 11.Fujita K, Ikarashi H, Takakuwa K, Kodama S, Tokunaga A, Takahashi T, Tanaka K. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin Cancer Res. 1995; 1(5:501-7.12.Goto S, Shirotani N, Hatakeyama M, Tagami C, Arakawa H, Kuwata E, Noguchi K, Egawa K. Clinical benefit of non-toxic therapy in patients with advanced cancer (opinion. Anticancer Res. 2002; 22(4:2461-4.

  19. Therapy of solid cancers using T cells and running shoes

    DEFF Research Database (Denmark)

    Straten, Per Thor

    2017-01-01

    of tumor specific T cells at the tumor site, and underscores the need to define ways as how to increase immune cell infiltration to the tumor site. Regular exercise reduces the risk of cancer and disease recurrence, by largely unknown mechanisms. We recently demonstrated that voluntary wheel running showed...

  20. Transplantation Tolerance Induction: Cell Therapies and Their Mechanisms

    OpenAIRE

    Scalea, Joseph R.; Tomita, Yusuke; Lindholm, Christopher R.; Burlingham, William

    2016-01-01

    Cell based therapies have been studied extensively in the context of transplantation tolerance induction. The most successful protocols have relied on transfusion of bone marrow prior to the transplantation of a renal allograft. However, it is not clear that stem cells found in bone marrow are required in order to render a transplant candidate immunologically tolerant. Accordingly, mesenchymal stem cells, regulatory myeloid cells, T regulatory cells, and other cell types, are being tested as ...