Sample records for admr receptor mediates

  1. Endothelin receptor-mediated vasodilatation

    Nilsson, David; Wackenfors, Angelica; Gustafsson, Lotta;


    Culture of intact arteries is a frequently employed experimental model for investigating the mechanisms governing the regulation of vascular endothelin receptors. Endothelin type A (ET(A)) and type B (ET(B)) receptors on vascular smooth muscle cells are up-regulated in organ culture and the...... enhanced vasoconstriction mimics the changes that occur in cardiovascular disease. The effect of organ culture on endothelial dilatory endothelin ET(B) receptors is not known. We hypothesize that organ culture decreases the endothelin receptor-mediated dilatation and that this is one possible mechanism by...... denudation. The increase in sarafotoxin 6c contraction after removal of the endothelium was more pronounced before than after organ culture, suggesting down-regulated endothelial endothelin ET(B) receptors. Also, the immunofluorescence staining intensities for endothelial endothelin ET(B) receptors were...

  2. Tachykinin receptors mediating airway marcomolecular secretion

    Three tachykinin receptor types, termed NK1, NK2, and NK3, can be distinguished by the relative potency of various peptides in eliciting tissue responses. Airway macromolecular secretion is stimulated by the tachykinin substance P (SP). The purposes of this study were to determine the tachykinin receptor subtype responsible for this stimulation, and to examine the possible involvement of other neurotransmitters in mediating this effect. Ferret tracheal explants maintained in organ culture were labeled with 3H-glucosamine, a precursor of high molecular weight glycoconjugates (HMWG) which are released by airway secretory cells. Secretion of labeled HMWG then was determined in the absence and presence of the tachykinins SP, neurokinin A (NKA), neurokinin B (NKB), physalaemin (PHY), and eledoisin (ELE). To evaluate the possible contribution of other mediators, tachykinin stimulation was examined in the presence of several receptor blockers

  3. NMDA receptors mediate synaptic competition in culture.

    Kevin She

    Full Text Available BACKGROUND: Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. METHODOLOGY/PRINCIPAL FINDINGS: GluN1 -/- (KO mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. CONCLUSIONS/SIGNIFICANCE: The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde 'reward' signal generated by WT neurons, although in this paradigm there was no 'punishment' signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the

  4. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis.

    Singh, Bijay; Maharjan, Sushila; Kim, You-Kyoung; Jiang, Tai; Islam, Mohammad Ariful; Kang, Sang-Kee; Cho, Myung-Haing; Choi, Yun-Jaie; Cho, Chong-Su


    Receptor-mediated endocytosis is a promising approach of gene delivery into the target cells via receptor-ligand interaction. Vimentins at the cell surface are recently known to bind N-acetylglucosamine (GlcNAc) residue, therefore, the cell surfaces of vimentin-expressing cells could be targeted by using the GlcNAc residue as a specific ligand for receptor-mediated gene delivery. Here, we have developed polymeric gene delivery vectors, based on poly(ethylene oxide)(PEO) and poly(aspartamide), namely poly[(aspartamide)(diethylenetriamine)]-b-[PEO-(GlcNAc)] (PADPG) and poly[(aspartamide)(diethylenetriamine)]-b-[PEO] (PADP) to elucidate the efficiency of GlcNAc ligand for gene delivery through receptor mediated endocytosis. To determine the efficiency of these polymeric vectors for specific gene delivery, the DNA condensation ability of PADPG and PADP and the subsequent formation of polymeric nanoparticles were confirmed by gel retardation assay and transmission electron microscopy respectively. Both PADPG and PADP had lower cytotoxicity than polyethylenimine 25 K (PEI 25 K). However, their transfection efficiency was comparatively lower than PEI 25 K due to hydrophilic property of PEO in the vectors. To observe the stability of polymeric nanoparticles, the transfection of PADPG and PADP was carried out in the presence of serum. Favorably, the interfering effect of serum on the transfection efficiency of PADPG and PADP was also very low. Finally, when the cell specificity of these polymeric vectors was investigated, PADPG had high gene transfection in vimentin-expressing cells than vimentin-deficiency cells. The high transfection efficiency of PADPG was attributed to the GlcNAc in the polymeric vector which interact specifically with vimentin in the cells for the receptor-mediated endocytosis. The competitive inhibition assay further proved the receptor-mediated endocytosis of PADPG. Thus, this study demonstrates that conjugation of GlcNAc is an effective and rational

  5. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T


    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  6. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    Bushue, Nathan; Wan, Yu-Jui Yvonne


    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  7. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  8. Nicotinic acetylcholine receptors mediate lung cancer growth



    Full Text Available Ion channels modulate ion flux across cell membranes, activate signal transduction pathways, and influence cellular transport – vital biological functions that are inexorably linked to cellular processes that go awry during carcinogenesis. Indeed, deregulation of ion channel function has been implicated in cancer-related phenomena such as unrestrained cell proliferation and apoptotic evasion. As the prototype for ligand-gated ion channels, nicotinic acetylcholine receptors (nAChRs have been extensively studied in the context of neuronal cells but accumulating evidence also indicate a role for nAChRs in carcinogenesis. Recently, variants in the nAChR genes CHRNA3, CHRNA5, and CHRNB4 have been implicated in nicotine dependence and lung cancer susceptibility. Here, we silenced the expression of these three genes to investigate their function in lung cancer. We show that these genes are necessary for the viability of small cell lung carcinomas (SCLC, the most aggressive type of lung cancer. Furthermore, we show that nicotine promotes SCLC cell viability whereas an α3β4-selective antagonist, α-conotoxin AuIB, inhibits it. Our findings posit a mechanism whereby signaling via α3/α5/β4-containing nAChRs promotes lung carcinogenesis.

  9. The pathophysiological functions mediated by D-1 dopamine receptors

    This chapter describes some behavioral responses which might be mediated by D1 and D2 DA receptors, and the authors discuss their clinical relevance. It was of considerable interest to determine whether a selective D1 DA antagonist, such as SCH 23390, will induce catalepsy and whether this behavior is mediated by D1, or by both D1 and D2 DA receptors. Rats were used in the experiments. The authors examined whether the addition of the S2 antagonist ketanserin affects the displacement of 3H-Spi by SCH 23390. Induction of self-mutilating biting (SMB) behavior in monkeys with unilateral ventromedial tegmental (VMT) lesions by DA agonists and its prevention by DA antagonists is examined. The authors also discuss the possible relationships between abnormal guanine nucleotide metabolism and dopaminergic neuronal function through the implications in LeschNyhan syndrome and in some mental disorders

  10. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Talia H Swartz


    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  11. Bombesin receptor-mediated imaging and cytotoxicity: review and current status

    Sancho, Veronica; Di Florio, Alessia; Moody, Terry W.; Jensen, Robert T.


    The three mammalian bombesin (Bn) receptors (gastrin-releasing peptide [GRP] receptor, neuromedin B [NMB] receptor, BRS-3) are one of the classes of G protein-coupled receptors that are most frequently over-express/ectopically expressed by common, important malignancies. Because of the clinical success of somatostatin receptor-mediated imaging and cytotoxicity with neuroendocrine...

  12. The phosphatidylserine receptor TIM-4 does not mediate direct signaling.

    Park, Daeho; Hochreiter-Hufford, Amelia; Ravichandran, Kodi S


    Engulfment of apoptotic cells is an active process coordinated by receptors on phagocytes and ligands on apoptotic cells [1]. Phosphatidylserine (PtdSer) is a key ligand on apoptotic cells, and recently three PtdSer recognition receptors have been identified, namely, TIM-4, BAI1, and Stabilin-2 [1-6]. Whereas BAI1 is dependent on the ELMO1/Dock180/Rac signaling module, and Stablilin-2 appears to use the intracellular adaptor GULP [2, 3, 7], little is known about how TIM-4 transduces signals downstream of PtdSer recognition [8]. To test the role of known engulfment signaling pathways in TIM-4-mediated engulfment, we used a combination of dominant-negative mutants, knockdown of specific signaling proteins, and knockout cell lines. TIM-4 appears to be largely independent of the two known engulfment signaling pathways [7, 9-17], yet the TIM-4-mediated uptake is inhibited by cytoskeleton disrupting drugs. Remarkably, a version of TIM-4 lacking its cytoplasmic tail promoted corpse uptake via PtdSer recognition. Moreover, replacement of the transmembrane region of TIM-4 with a glycophosphatidylinositol anchor still promoted engulfment comparable to wild-type TIM-4. Thus, the transmembrane region and cytoplasmic tail of TIM-4 are dispensable for apoptotic cell engulfment, and we propose that TIM-4 is a PtdSer tethering receptor without any direct signaling of its own. PMID:19217291

  13. Environmental phthalate monoesters activate pregnane X receptor-mediated transcription

    Phthalate esters, widely used as plasticizers in the manufacture of products made of polyvinyl chloride, induce reproductive and developmental toxicities in rodents. The mechanism that underlies these effects of phthalate exposure, including the potential role of members of the nuclear receptor superfamily, is not known. The present study investigates the effects of phthalates on the pregnane X receptor (PXR), which mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The ability of phthalate monoesters to activate PXR-mediated transcription was assayed in a HepG2 cell reporter assay following transfection with mouse PXR (mPXR), human PXR (hPXR), or the hPXR allelic variants V140M, D163G, and A370T. Mono-2-ethylhexyl phthalate (MEHP) increased the transcriptional activity of both mPXR and hPXR (5- and 15-fold, respectively) with EC50 values of 7-8 μM. mPXR and hPXR were also activated by monobenzyl phthalate (MBzP, up to 5- to 6-fold) but were unresponsive to monomethyl phthalate and mono-n-butyl phthalate (M(n)BP) at the highest concentrations tested (300 μM). hPXR-V140M and hPXR-A370T exhibited patterns of phthalate responses similar to the wild-type receptor. By contrast, hPXR-D163G was unresponsive to all phthalate monoesters tested. Further studies revealed that hPXR-D163G did respond to rifampicin, but required approximately 40-fold higher concentrations than wild-type receptor, suggesting that the ligand-binding domain D163G variant has impaired ligand-binding activity. The responsiveness of PXR to activation by phthalate monoesters demonstrated here suggests that these ubiquitous environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid hormone metabolism with potential adverse health effects in exposed individuals

  14. The liver taxis of receptor mediated lactosaminated human growth hormone

    Radiography imaging is used to assess liver taxis mechanism of anti-dwarfism drug lactosaminated human growth hormone (L-rhGH). Both L-rhGH and rhGH labelled with 131I are used to study their biodistribution in animals (including rabbits, cocks and rats). The results show that L-rhGH is of specific hepatic targeting property, and the maximum hepatic concentration rate is 76.8%, which is two times of rhGH. Its hepatic binding is receptor mediated

  15. Crosstalk between purinergic receptors and lipid mediators in leishmaniasis.

    Chaves, Mariana M; Canetti, Cláudio; Coutinho-Silva, Robson


    Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of the genus Leishmania. Parasite escape mechanisms of the immune system confer the possibility of resistance and dissemination of the disease. A group of molecules that has become a target for Leishmania survival strategies are lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of activating cells of the immune system to combat Leishmania. In an opposite way, prostaglandin E2 (PGE2) is a lipid mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of LTB4 and PGE2 in Leishmania fate, survival or death. PMID:27595742

  16. Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines.

    Hussain, Ashiq; Zhang, Mo; Üçpunar, Habibe K; Svensson, Thomas; Quillery, Elsa; Gompel, Nicolas; Ignell, Rickard; Grunwald Kadow, Ilona C


    The ability to find and consume nutrient-rich diets for successful reproduction and survival is fundamental to animal life. Among the nutrients important for all animals are polyamines, a class of pungent smelling compounds required in numerous cellular and organismic processes. Polyamine deficiency or excess has detrimental effects on health, cognitive function, reproduction, and lifespan. Here, we show that a diet high in polyamine is beneficial and increases reproductive success of flies, and we unravel the sensory mechanisms that attract Drosophila to polyamine-rich food and egg-laying substrates. Using a combination of behavioral genetics and in vivo calcium imaging, we demonstrate that Drosophila uses multisensory detection to find and evaluate polyamines present in overripe and fermenting fruit, their favored feeding and egg-laying substrate. In the olfactory system, two coexpressed ionotropic receptors (IRs), IR76b and IR41a, mediate the long-range attraction to the odor. In the gustatory system, multimodal taste sensation by IR76b receptor and GR66a bitter receptor neurons is used to evaluate quality and valence of the polyamine providing a mechanism for the fly's high attraction to polyamine-rich and sweet decaying fruit. Given their universal and highly conserved biological roles, we propose that the ability to evaluate food for polyamine content may impact health and reproductive success also of other animals including humans. PMID:27145030

  17. Protease activated receptors (PARS) mediation in gyroxin biological activity

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH2, respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  18. Serotonin Receptor 2B Mediates Mechanical Hyperalgesia by Regulating Transient Receptor Potential Vanilloid 1.

    Su, Yeu-Shiuan; Chiu, Yuan-Yi; Lin, Shih-Yuan; Chen, Chih-Cheng; Sun, Wei-Hsin


    Serotonin [5-hydroxytryptamine (5-HT)], an inflammatory mediator, contributes to inflammatory pain. The presence of multiple 5-HT subtype receptors on peripheral and central nociceptors complicates the role of 5-HT in pain. Previously, we found that 5-HT2B/2C antagonist could block 5-HT-induced mechanical hyperalgesia. However, the types of neurons or circuits underlying this effect remained unsolved. Here, we demonstrate that the Gq/11-phospholipase Cβ-protein kinase Cε (PKCε) pathway mediated by 5-HT2B is involved in 5-HT-induced mechanical hyperalgesia in mice. Administration of a transient receptor potential vanilloid 1 (TRPV1) antagonist inhibited the 5-HT-induced mechanical hyperalgesia. 5-HT injection enhanced 5-HT- and capsaicin-evoked calcium signals specifically in isolectin B4 (IB4)-negative neurons; signals were inhibited by a 5-HT2B/2C antagonist and PKCε blocker. Thus, 5-HT2B mediates 5-HT-induced mechanical hyperalgesia by regulating TRPV1 function. PMID:26635025

  19. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  20. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters

    Stine C. Klinger


    Full Text Available Transport between the endoplasmatic reticulum, the Golgi-network, the endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, describing traffic that goes forward or backward, respectively. Traffic going from the plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN constitutes the major retrograde transport routes. Several transmembrane proteins undergo retrograde transport as part of a recycling mechanism that contributes to reutilization and maintenance of a steady-state protein localization. In addition, some receptors are hijacked by exotoxins and used for entry and intracellular transport. The physiological relevance of retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor protein determines the distribution between organelles, and hence the possibility of cleavage by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer’s disease. During embryonic development, retrograde transport of Wntless to the TGN is essential for the following release of Wnt from the plasma membrane. Furthermore, overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects of the retrograde trafficking of mammalian transmembrane receptors and transporters, with focus on the retromer-mediated transport between endosomes and the TGN.

  1. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters.

    Klinger, Stine C; Siupka, Piotr; Nielsen, Morten S


    Transport between the endoplasmatic reticulum, the Golgi-network, the endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, describing traffic that goes forward or backward, respectively. Traffic going from the plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN) constitutes the major retrograde transport routes. Several transmembrane proteins undergo retrograde transport as part of a recycling mechanism that contributes to reutilization and maintenance of a steady-state protein localization. In addition, some receptors are hijacked by exotoxins and used for entry and intracellular transport. The physiological relevance of retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor protein determines the distribution between organelles, and hence the possibility of cleavage by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer's disease. During embryonic development, retrograde transport of Wntless to the TGN is essential for the following release of Wnt from the plasma membrane. Furthermore, overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects of the retrograde trafficking of mammalian transmembrane receptors and transporters, with focus on the retromer-mediated transport between endosomes and the TGN. PMID:26154780

  2. Expression and role of adrenomedullin and its receptor in patients with chronic obstructive pulmonary disease

    徐平; 戴爱国; 周厚德; 沈宏伟; 刘丽华; 宋卫东


    Objective To investigate the expression and role of adrenomedullin (ADM) and adrenomedullin receptor (ADMR) in patients with chronic obstructive pulmonary disease (COPD).Methods Small pulmonary artery remodeling was observed using morphometric analysis. Theexpression of ADM and ADMR mRNA in lung tissue was calculated by in situ hybridization in 9 COPD cases. Cardiac catheterization was performed in 22 COPD cases to monitor changes of hemodynamic parameters and patients were divided into two groups based on mean pulmonary artery pressure (mPAP). The cases without pulmonary hypertension (PH) were placed in Group A (n=12) and those with PH were placed in Group B (n=10). The levels of pulmonary arterial plasma ADM were measured by radioimmunoassay. Blood gas analysis was also conducted.Results The ratio of vascular wall thickness to external diameter (MT%) and the ratio osed in the pulmonary artery walls of control subjects . The expression levels were 01). Statistically positive relationships were visible between ADM and ADMR, and the plasma ADM level of Group B was significantly higher than that of Groupon to mPAP and pulmonary vascular resistance (PVR), while being negatively correlated to levels of PaO2.Conclusion ADM may play an extremely protective role as a local autocrine/paracrine factor in COPD.

  3. Hindbrain Leptin Stimulation Induces Anorexia and Hyperthermia Mediated by Hindbrain Melanocortin Receptors

    Skibicka, Karolina P; Grill, Harvey J.


    Of the central nervous system receptors that could mediate the energy balance effects of leptin, those of the hypothalamic arcuate nucleus receive the greatest attention. Melanocortin receptors (MC-Rs) contribute to the feeding and energetic effects of hypothalamically delivered leptin. Energy balance effects of leptin are also mediated by extrahypothalamic neurons including the hindbrain nucleus tractus solitarius. Hindbrain leptin receptors play a role in leptin's anorectic effects, but the...

  4. N-Cadherin and Integrins: Two Receptor Systems That Mediate Neuronal Process Outgrowth on Astrocyte Surfaces

    Tomaselli, Kevin J.; Neugebauer, Karla M; Bixby, John L.; Lilien, Jack; Reichardt, Louis F.


    Receptor-mediated interactions between neurons and astroglia are likely to play a crucial role in the growth and guidance of CNS axons. Using antibodies to neuronal cell surface proteins, we identified two receptor systems mediating neurite outgrowth on cultured astrocytes. N-cadherin, a Ca2+-dependent cell adhesion molecule, functions prominently in the outgrowth of neurites on astrocytes by E8 and E14 chick ciliary ganglion (CC) neurons. β1-class integrin ECM receptor heterodimers function ...

  5. AMPA receptor desensitization is the determinant of AMPA receptor mediated excitotoxicity in purified retinal ganglion cells.

    Park, Yong H; Mueller, Brett H; McGrady, Nolan R; Ma, Hai-Ying; Yorio, Thomas


    The ionotropic glutamate receptors (iGLuR) have been hypothesized to play a role in neuronal pathogenesis by mediating excitotoxic death. Previous studies on iGluR in the retina have focused on two broad classes of receptors: NMDA and non-NMDA receptors including the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) and kainate receptor. In this study, we examined the role of receptor desensitization on the specific excitotoxic effects of AMPAR activation on primary retinal ganglion cells (RGCs). Purified rat RGCs were isolated from postnatal day 4-7 Sprague-Dawley rats. Calcium imaging was used to identify the functionality of the AMPARs and selectivity of the s-AMPA agonist. Phosphorylated CREB and ERK1/2 expression were performed following s-AMPA treatment. s-AMPA excitotoxicity was determined by JC-1 mitochondrial membrane depolarization assay, caspase 3/7 luciferase activity assay, immunoblot analysis for α-fodrin, and Live (calcein AM)/Dead (ethidium homodimer-1) assay. RGC cultures of 98% purity, lacking Iba1 and GFAP expression were used for the present studies. Isolated prenatal RGCs expressed calcium permeable AMPAR and s-AMPA (100 μM) treatment of cultured RGCs significantly increased phosphorylation of CREB but not that of ERK1/2. A prolonged (6 h) AMPAR activation in purified RGCs using s-AMPA (100 μM) did not depolarize the RGC mitochondrial membrane potential. In addition, treatment of cultured RGCs with s-AMPA, both in the presence and absence of trophic factors (BDNF and CNTF), did not increase caspase 3/7 activities or the cleavage of α-fodrin (neuronal apoptosis marker), as compared to untreated controls. Lastly, a significant increase in cell survival of RGCs was observed after s-AMPA treatment as compared to control untreated RGCs. However, preventing the desensitization of AMPAR with the treatment with either kainic acid (100 μM) or the combination of s-AMPA and cyclothiazide (50 μM) significantly reduced cell

  6. Fc receptor-mediated, antibody-dependent enhancement of bacteriophage lambda-mediated gene transfer in mammalian cells

    Sapinoro, Ramil; Volcy, Ketna; Shanaka, W.W.; Rodrigo, I.; Schlesinger, Jacob J.; Dewhurst, Stephen


    Lambda phage vectors mediate gene transfer in cultured mammalian cells and in live mice, and in vivo phage-mediated gene expression is increased when mice are pre-immunized with bacteriophage lambda. We now show that, like eukaryotic viruses, bacteriophage vectors are subject to Fc receptor-mediated, antibody-dependent enhancement of infection in mammalian cells. Antibody-dependent enhancement of phage gene transfer required FcγRI, but not its associated γ chain, and was not supported by othe...

  7. Neonatal Fc receptor promotes immune complex-mediated glomerular disease.

    Olaru, Florina; Luo, Wentian; Suleiman, Hani; St John, Patricia L; Ge, Linna; Mezo, Adam R; Shaw, Andrey S; Abrahamson, Dale R; Miner, Jeffrey H; Borza, Dorin-Bogdan


    The neonatal Fc receptor (FcRn) is a major regulator of IgG and albumin homeostasis systemically and in the kidneys. We investigated the role of FcRn in the development of immune complex-mediated glomerular disease in mice. C57Bl/6 mice immunized with the noncollagenous domain of the α3 chain of type IV collagen (α3NC1) developed albuminuria associated with granular capillary loop deposition of exogenous antigen, mouse IgG, C3 and C5b-9, and podocyte injury. High-resolution imaging showed abundant IgG deposition in the expanded glomerular basement membrane, especially in regions corresponding to subepithelial electron dense deposits. FcRn-null and -humanized mice immunized with α3NC1 developed no albuminuria and had lower levels of serum IgG anti-α3NC1 antibodies and reduced glomerular deposition of IgG, antigen, and complement. Our results show that FcRn promotes the formation of subepithelial immune complexes and subsequent glomerular pathology leading to proteinuria, potentially by maintaining higher serum levels of pathogenic IgG antibodies. Therefore, reducing pathogenic IgG levels by pharmacologic inhibition of FcRn may provide a novel approach for the treatment of immune complex-mediated glomerular diseases. As proof of concept, we showed that a peptide inhibiting the interaction between human FcRn and human IgG accelerated the degradation of human IgG anti-α3NC1 autoantibodies injected into FCRN-humanized mice as effectively as genetic ablation of FcRn, thus preventing the glomerular deposition of immune complexes containing human IgG. PMID:24357670

  8. Inhibition by the tetramine disulphide, benextramine, of cardiac chronotropic histamine H2-receptor-mediated effects.

    Belleau, B.; Benfey, B. G.; Benfey, T. J.; Melchiorre, C.


    1 Benextramine (N,N1-bis[o-methoxybenzylamino)-n-hexyl]cystamine), which irreversibly blocks alpha-adrenoceptors and does not inhibit the H1-receptor-mediated contractile effect of histamine on guinea-pig isolated ileum, also did not inhibit the H1-receptor-mediated inotropic effect of histamine on guinea-pig isolated atrium. 2 Benextramine irreversibly inhibited the H2-receptor-mediated chronotropic effect of histamine on guinea-pig isolated atrium. 3 Since its combination with the competiti...

  9. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik


    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  10. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects

    Christian eWaeber


    Full Text Available Receptors for sphingosine-1-phosphate (S1P have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444, used extensively as specific S1P2 and S1P3 receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P2 receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca2+ concentration via P2 receptor or α1A-adrenoceptor stimulation and α1A-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P3-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P1/3 receptor antagonist, VPC23019, does not inhibit S1P3-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  11. Trypanosoma cruzi: antigen-receptor mediated endocytosis of antibody

    Judith Abelha


    Full Text Available Trypanomastigote forms of Trypanosoma cruzi were derived from tissue culture and incubated with immune and non-immune human sera. All immune sera showed high titers of specific humoral antibodies of the IgM or the IgG type. Agglutination and swelling of parasites were observed after incubation at 37ºC, but many trypomastigotes remained free-swimming in the sera for two to three days. The quantitiy of immune serum capable of lysing a maximum of 10 x 10 [raised to the power of 6] sensitized red cells was not capable of lysing 4 x 10 [raised to the power of 3] tripomastigotes. Typically, the parasites underwent cyclical changes with the formation of clumps of amastigotes and the appearance of epimastigote forms. Multiplication of the parasites was observed in immune sera. Further, the infectivity of the parasites to susceptible mice was not lost. All sera used produced similar general effects on the growth of the parasite. The antibody bound to T. cruzi appeard to enter cells by antigen-receptor mediated endocytosis. The ferritin-conjugated antibody was internalized and delivered to phagolysosomes where they might be completely degraded to amino-acids. This seemed to be a coupled process by which the immunoglobulin is first bound to specific parasite surface receptor and then rapidly endocytosed by the cell.Formas tripomastigotas de Trypanosoma cruzi derivadas de cultura de tecido foram encubadas com soros humanos imunes e não-imunes.Todos os soros humanos usados tinham títulos elevados de anticorpos das classes IgM ou IgG. Aglutinação e entumescimento dos parasitos eram observados apos encubação a 37ºC mas muitos tripomastigotas permaneceram circulando livremente nos soros por dois a três dias. A quantidade de soro imune capaz de lisar um máximo de 10 x 10 [elevado a 6] hemácias sensibilizadas não foi capaz de lisar 4 x 10 [elevado a 3] tripomastigotas. Tipicamente, os parasitos apresentavam alterações cíclicas com formação de

  12. Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy

    Pedrozo, Zully; Torrealba, Natalia; Fernández, Carolina; Gatica, Damian; Toro, Barbra; Quiroga, Clara; Rodriguez, Andrea E.; Sanchez, Gina; Gillette, Thomas G.; Hill, Joseph A.; Donoso, Paulina; Lavandero, Sergio


    Time for primary review: 15 days Aims Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins bearing the sequence KFERQ. These proteins are targeted by chaperones and delivered to lysosomes where they are translocated into the lysosomal lumen and degraded via the lysosome-associated membrane protein type 2A (LAMP-2A). Mutations in LAMP2 that inhibit autophagy result in Danon disease characterized by hypertrophic cardiomyopathy. The ryanodine receptor type 2 (RyR2) plays a key role in cardiomyocyte excitation–contraction and its dysfunction can lead to cardiac failure. Whether RyR2 is degraded by CMA is unknown. Methods and results To induce CMA, cultured neonatal rat cardiomyocytes were treated with geldanamycin (GA) to promote protein degradation through this pathway. GA increased LAMP-2A levels together with its redistribution and colocalization with Hsc70 in the perinuclear region, changes indicative of CMA activation. The inhibition of lysosomes but not proteasomes prevented the loss of RyR2. The recovery of RyR2 content after incubation with GA by siRNA targeting LAMP-2A suggests that RyR2 is degraded via CMA. In silico analysis also revealed that the RyR2 sequence harbours six KFERQ motifs which are required for the recognition Hsc70 and its degradation via CMA. Our data suggest that presenilins are involved in RyR2 degradation by CMA. Conclusion These findings are consistent with a model in which oxidative damage of the RyR2 targets it for turnover by presenilins and CMA, which could lead to removal of damaged or leaky RyR2 channels. PMID:23404999

  13. Inhibition of pattern recognition receptor-mediated inflammation by bioactive phytochemicals

    Emerging evidence reveals that pattern-recognition receptors (PRRs), Toll-like receptors (TLRs) and Nucleotide-binding oligomerization domain proteins (NODs) mediate both infection-induced and sterile inflammation by recognizing pathogen-associated molecular patterns (PAMPs) and endogenous molecules...

  14. Upregulation of endothelin ETB receptor-mediated vasoconstriction in rat coronary artery after organ culture

    Eskesen, Karen; Edvinsson, Lars


    The aim of this study was to examine if endothelin ET(B) receptor-mediated contraction occurred in isolated segments of rat coronary arteries during organ culture. Presence of contractile endothelin ET(B) receptors was studied by measuring the change in isometric tension in rings of left anterior...


    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  16. Glutamate mediates the function of melanocortin receptor 4 on sim1 neurons in body weight regulation

    The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing ...

  17. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor

    Lamia, Katja A.; Papp, Stephanie J.; Yu, Ruth T.; Barish, Grant D.; Uhlenhaut, N. Henriette; Jonker, Johan W.; Downes, Michael; Evans, Ronald M.


    Mammalian metabolism is highly circadian and major hormonal circuits involving nuclear hormone receptors display interlinked diurnal cycling(1,2). However, mechanisms that logically explain the coordination of nuclear hormone receptors and the clock are poorly understood. Here we show that two circa

  18. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription.

    Halachmi, S; Marden, E; Martin, G; MacKay, H; Abbondanza, C; Brown, M


    The estrogen receptor is a transcription factor which, when bound to estradiol, binds DNA and regulates expression of estrogen-responsive genes. A 160-kilodalton estrogen receptor-associated protein, ERAP160, was identified that exhibits estradiol-dependent binding to the receptor. Mutational analysis of the receptor shows that its ability to activate transcription parallels its ability to bind ERAP160. Antiestrogens are unable to promote ERAP160 binding and can block the estrogen-dependent interaction of the receptor and ERAP160 in a dose-dependent manner. This evidence suggests that ERAP160 may mediate estradiol-dependent transcriptional activation by the estrogen receptor. Furthermore, the ability of antiestrogens to block estrogen receptor-ERAP160 complex formation could account for their therapeutic effects in breast cancer. PMID:8197458

  19. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Xu, Yuan, E-mail:; Cardell, Lars-Olaf


    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  20. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B2 receptor agonist) and des-Arg9-bradykinin- (selective B1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE2. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg9-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B2 receptors, but not those on B1. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma. - Highlights:

  1. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    M. A. Prado


    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  2. Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors

    Cancer metastasis, the process of cancer cell migration from a primary to distal location, typically leads to a poor patient prognosis. Hematogenous metastasis is initiated by intravasation of circulating tumor cells (CTCs) into the bloodstream, which are then believed to adhere to the luminal surface of the endothelium and extravasate into distal locations. Apoptotic agents such as tumor necrosis factor apoptosis-inducing ligand (TRAIL), whether in soluble ligand form or expressed on the surface of natural killer cells, have shown promise in treating CTCs to reduce the probability of metastasis. The role of hemodynamic shear forces in altering the cancer cell response to apoptotic agents has not been previously investigated. Here, we report that human colon cancer COLO 205 and prostate cancer PC-3 cells exposed to a uniform fluid shear stress in a cone-and-plate viscometer become sensitized to TRAIL-induced apoptosis. Shear-induced sensitization directly correlates with the application of fluid shear stress, and TRAIL-induced apoptosis increases in a fluid shear stress force- and time-dependent manner. In contrast, TRAIL-induced necrosis is not affected by the application fluid shear stress. Interestingly, fluid shear stress does not sensitize cancer cells to apoptosis when treated with doxorubicin, which also induces apoptosis in cancer cells. Caspase inhibition experiments reveal that shear stress-induced sensitization to TRAIL occurs via caspase-dependent apoptosis. These results suggest that physiological fluid shear forces can modulate receptor-mediated apoptosis of cancer cells in the presence of apoptotic agents. (paper)

  3. The bradykinin BK2 receptor mediates angiotensin II receptor type 2 stimulated rat duodenal mucosal alkaline secretion

    Helander Herbert F


    Full Text Available Abstract Background This study investigates bradykinin and nitric oxide as potential mediators of AT2-receptor-stimulated duodenal mucosal alkaline secretion. Duodenal mucosal alkaline secretion was measured in methohexital- and α-chloralose-anaesthetised rats by means of in situ pH-stat titration. Immunohistochemistry and Western blot were used to identify the BK2 receptors. Results The AT2 receptor agonist CGP42112A (0.1 μg kg-1 min-1 administered intravenously increased the duodenal mucosal alkaline secretion by ~50 %. This increase was sensitive to the selective BK2 receptor blocker HOE140 (100 ng/kg iv, but not to luminal administration of the NOS blocker L-NAME (0.3 mM. Mean arterial pressure did not differ between groups during the procedures. Immunohistochemistry showed a distinct staining of the crypt epithelium and a moderate staining of basal cytoplasm in villus enterocytes. Conclusion The results suggest that the AT2-receptor-stimulated alkaline secretion is mediated via BK2 receptors located in the duodenal cryptal mucosal epithelium.

  4. Polypeptide hormone receptor phosphorylation: is there a role in receptor-mediated endocytosis of human growth hormone

    To determine whether receptor phosphorylation is a critical step in the internalization of polypeptide hormones and their receptors, the authors have studied a model system wherein insulin stimulates phosphorylation of its receptor and is also internalized. Using insulin as a positive control, they found that it stimulated a partially purified plasma membrane preparation of IM-9 lymphocytes to autophosphorylate its receptor and to catalyze the phosphorylation of a tyrosine-containing substrate. The human GH (hGH) receptor of the IM-9 lymphocytes, when coupled to [125I]iodo-hGH, migrated as a 140,000-dalton protein on polyacrylamide gel electrophoresis. This protein, in contrast to the insulin receptor, was not phosphorylated by the addition of hGH, nor did hGH stimulate this preparation to phosphorylate the tyrosine-containing substrate poly-(GluNa,Tyr)4:1, casein, or histone f2b under a variety of conditions. The authors conclude that receptor phosphorylation is not a critical intermediate in the receptor-mediated endocytosis of hGH and probably other polypeptide hormones and growth factors

  5. Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction

    y Schnitzler, Michael Mederos; Storch, Ursula; Meibers, Simone; Nurwakagari, Pascal; Breit, Andreas; Essin, Kirill; Gollasch, Maik; Gudermann, Thomas


    Despite the central physiological function of the myogenic response, the underlying signalling pathways and the identity of mechanosensors in vascular smooth muscle (VSM) are still elusive. In contrast to present thinking, we show that membrane stretch does not primarily gate mechanosensitive transient receptor potential (TRP) ion channels, but leads to agonist-independent activation of Gq/11-coupled receptors, which subsequently signal to TRPC channels in a G protein- and phospholipase C-dependent manner. Mechanically activated receptors adopt an active conformation, allowing for productive G protein coupling and recruitment of β-arrestin. Agonist-independent receptor activation by mechanical stimuli is blocked by specific antagonists and inverse agonists. Increasing the AT1 angiotensin II receptor density in mechanically unresponsive rat aortic A7r5 cells resulted in mechanosensitivity. Myogenic tone of cerebral and renal arteries is profoundly diminished by the inverse angiotensin II AT1 receptor agonist losartan independently of angiotensin II (AII) secretion. This inhibitory effect is enhanced in blood vessels of mice deficient in the regulator of G-protein signalling-2. These findings suggest that Gq/11-coupled receptors function as sensors of membrane stretch in VSM cells. PMID:18987636

  6. G Protein-Coupled Receptors: Extranuclear Mediators for the Non-Genomic Actions of Steroids

    Chen Wang


    Full Text Available Steroids hormones possess two distinct actions, a delayed genomic effect and a rapid non-genomic effect. Rapid steroid-triggered signaling is mediated by specific receptors localized most often to the plasma membrane. The nature of these receptors is of great interest and accumulated data suggest that G protein-coupled receptors (GPCRs are appealing candidates. Increasing evidence regarding the interaction between steroids and specific membrane proteins, as well as the involvement of G protein and corresponding downstream signaling, have led to identification of physiologically relevant GPCRs as steroid extranuclear receptors. Examples include G protein-coupled receptor 30 (GPR30 for estrogen, membrane progestin receptor for progesterone, G protein-coupled receptor family C group 6 member A (GPRC6A and zinc transporter member 9 (ZIP9 for androgen, and trace amine associated receptor 1 (TAAR1 for thyroid hormone. These receptor-mediated biological effects have been extended to reproductive development, cardiovascular function, neuroendocrinology and cancer pathophysiology. However, although great progress have been achieved, there are still important questions that need to be answered, including the identities of GPCRs responsible for the remaining steroids (e.g., glucocorticoid, the structural basis of steroids and GPCRs’ interaction and the integration of extranuclear and nuclear signaling to the final physiological function. Here, we reviewed the several significant developments in this field and highlighted a hypothesis that attempts to explain the general interaction between steroids and GPCRs.

  7. Hypothyroidism Affects D2 Receptor-mediated Breathing without altering D2 Receptor Expression

    Schlenker, Evelyn H; Rio, Rodrigo Del; Schultz, Harold D.


    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age- matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a periphera...

  8. In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties.

    Perez Diaz, Noelia; Zloh, Mire; Patel, Pryank; Mackenzie, Louise S


    Prostacyclin (PGI2) is a key mediator involved in cardiovascular homeostasis, acting predominantly on two receptor types; cell surface IP receptor and cytosolic peroxisome proliferator activated receptor (PPAR) β/δ. Having a very short half-life, direct methods to determine its long term effects on cells is difficult, and little is known of its interactions with nuclear receptors. Here we used computational chemistry methods to investigate the potential for PGI2, beraprost (IP receptor agonist), and GW0742 (PPARβ/δ agonist), to bind to nuclear receptors, confirmed with pharmacological methods. In silico screening predicted that PGI2, beraprost, and GW0742 have the potential to bind to different nuclear receptors, in particular thyroid hormone β receptor (TRβ) and thyroid hormone α receptor (TRα). Docking analysis predicts a binding profile to residues thought to have allosteric control on the TR ligand binding site. Luciferase reporter assays confirmed that beraprost and GW0742 display TRβ and TRα antagonistic properties; beraprost IC50 6.3×10(-5)mol/L and GW0742 IC50 4.9×10(-6)mol/L. Changes to triiodothyronine (T3) induced vasodilation of rat mesenteric arteries measured on the wire myograph were measured in the presence of the TR antagonist MLS000389544 (10(-5)mol/L), beraprost (10(-5)mol/L) and GW0742 (10(-5)mol/L); all significantly inhibited T3 induced vasodilation compared to controls. We have shown that both beraprost and GW0742 exhibit TRβ and TRα antagonist behaviour, and suggests that PGI2 has the ability to affect the long term function of cells through binding to and inactivating thyroid hormone receptors. PMID:26686607

  9. Pharmacology and toxicology of fibrates as hypolipidemic drugs mediated by nuclear receptor peroxisome proliferator—activated receptor



    PPAR(peroxisome proliferator-activated receptor) is a family of nuclear receptor.In recent years,it has been focused for the discovery and development of new drugs which are mediated by PPARs.Fibrate hypolipidemic drugs are the specific and potent ligands to PPAR alpha and have been widely used for the treatment of hyperlipidemia.But these drugs induce hepatocarcinogenesis in rodent animals after the long-term administration.However,there are species differences on these phenomena which are not seen in mammals ioncluding human.To clarify the mechanism of carcinogenesis by these drugs in important for the evaluation of safety of these drugs in human.

  10. Nuclear Receptor Cofactors in PPARγ-Mediated Adipogenesis and Adipocyte Energy Metabolism

    Emily Powell


    Full Text Available Transcriptional cofactors are integral to the proper function and regulation of nuclear receptors. Members of the peroxisome proliferator-activated receptor (PPAR family of nuclear receptors are involved in the regulation of lipid and carbohydrate metabolism. They modulate gene transcription in response to a wide variety of ligands, a process that is mediated by transcriptional coactivators and corepressors. The mechanisms by which these cofactors mediate transcriptional regulation of nuclear receptor function are still being elucidated. The rapidly increasing array of cofactors has brought into focus the need for a clear understanding of how these cofactors interact in ligand- and cell-specific manners. This review highlights the differential effects of the assorted cofactors regulating the transcriptional action of PPARγ and summarizes the recent advances in understanding the physiological functions of corepressors and coactivators.

  11. Receptor targeting of hemoglobin mediated by the haptoglobins

    Nielsen, Marianne Jensby; Moestrup, Søren Kragh


    Haptoglobin, the haptoglobin-hemoglobin receptor CD163, and the heme oxygenase-1 are proteins with a well-established function in the clearance and metabolism of "free" hemoglobin released during intravascular hemolysis. This scavenging system counteracts the potentially harmful oxidative and NO......-density lipoprotein (HDL) particles playing a crucial role in the innate immunity against certain trypanosome parasites. Recent studies have elucidated this fairly sophisticated immune defense mechanism that takes advantage of a trypanosomal haptoglobin-hemoglobin receptor evolved to supply the parasite with heme...

  12. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  13. Characterization of the 5-HT4 receptor mediating tachycardia in piglet isolated right atrium.

    Medhurst, A. D.; Kaumann, A J


    1. In order to explore whether 5-HT4 receptor subtypes exist, we have characterized further the 5-HT4 receptor that mediates tachycardia in the piglet isolated right atrium. All experiments were carried out in the presence of propranolol (400 nM) and cocaine (6 microM). We used tryptamine derivatives, substituted benzamides and benzimidazolone derivatives as pharmacological tools. 2. Tachycardia responses to 5-hydroxytryptamine (5-HT) were mimicked by other tryptamine derivatives with the fol...

  14. Techniques to Study Specific Cell-Surface Receptor-Mediated Cellular Vitamin A Uptake



    STRA6 is a multitransmembrane domain protein that was recently identified as the cell-surface receptor for plasma retinol binding protein (RBP), the vitamin A carrier protein in the blood. STRA6 binds to RBP with high affinity and mediates cellular uptake of vitamin A from RBP. It is not homologous to any known receptors, transporters, and channels, and it represents a new class of membrane transport protein. Consistent with the diverse physiological functions of vitamin A, STRA6 is widely ex...

  15. Human immunodeficiency virus infection of T cells and monocytes proceeds via receptor-mediated endocytosis


    The rates of internalization and uncoating of 32P-labelled human immunodeficiency virus (HIV) in the human T lymphoid cell line CEM are consonant with a receptor-mediated endocytosis mechanism of entry. This interpretation was affirmed by electron microscopic observation of virions within endosomes. Virus binding and infectivity were inhibited to the same extent by pretreatment with OKT4A antibody, therefore, the CD4 receptor-dependent pathway of internalization appears to be the infectious r...

  16. Impaired dopamine D1 receptor-mediated vasorelaxation of mesenteric arteries in obese Zucker rats

    Fu, Jinjuan; Han, Yu; Wang, Hongyong; Wang, Zhen; Liu, Yukai; Chen, Xingjian; Cai, Yue; Guan, Weiwei; Yang, Di; Asico, Laureano D.; ZHOU, Lin; Jose, Pedro A; Zeng, Chunyu


    Background Obesity plays an important role in the pathogenesis of hypertension. Renal dopamine D1-like receptor-mediated diuresis and natriuresis are impaired in the obese Zucker rat, an obesity-related hypertensive rat model. The role of arterial D1 receptors in the hypertension of obese Zucker rats is not clear. Methods Plasma glucose and insulin concentrations and blood pressure were measured. The vasodilatory response of isolated mesenteric arteries was evaluated using a small vessel myog...

  17. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Anne-Christine Field

    Full Text Available Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  18. Role of Scavenger Receptors in Glia-Mediated Neuroinflammatory Response Associated with Alzheimer’s Disease

    Francisca Cornejo; Rommy von Bernhardi


    It is widely accepted that cells serving immune functions in the brain, namely, microglia and astrocytes, are important mediators of pathological phenomena observed in Alzheimer's disease. However, it is unknown how these cells initiate the response that results in cognitive impairment and neuronal degeneration. Here, we review the participation of the immune response mediated by glial cells in Alzheimer's disease and the role played by scavenger receptors in the development of this pathology...

  19. MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction

    Kocerha, Jannet; Faghihi, Mohammad Ali; Lopez-Toledano, Miguel A;


    significantly modulated behavioral responses associated with disrupted NMDA receptor transmission. Furthermore, pretreatment with the antipsychotic drugs haloperidol and clozapine prevented dizocilpine-induced effects on miR-219. Taken together, these data support an integral role for miR-219 in the expression......N-methyl-D-aspartate (NMDA) glutamate receptors are regulators of fast neurotransmission and synaptic plasticity in the brain. Disruption of NMDA-mediated glutamate signaling has been linked to behavioral deficits displayed in psychiatric disorders such as schizophrenia. Recently, noncoding RNA...... of behavioral aberrations associated with NMDA receptor hypofunction....

  20. Complement-mediated solubilization of immune complexes and their interaction with complement C3 receptors

    Petersen, Ivan; Baatrup, Gunnar; Jepsen, H H;


    membrane attack complex do not participate in the reaction. Besides affecting the size and solubility of circulating IC the interaction with C factors influences the reactivities of the complexes towards fluid phase reactants and mediates the reversible binding of IC to cellular C3 receptors. Our knowledge...... of the cellular localization, expression and structure of the C3 receptors, especially the C3b (CR1) receptor, has been considerably extended in the last few years, whereas our understanding of the physiological role of these receptors is still fragmentary. However, it is becoming increasingly...... evident that impaired solubilization of IC in patients with compromised C function may permit the complexes to deviate from their normal pattern of interaction with C3 receptors probably influencing both the organ distribution and clearance of IC and thereby also their phlogistic potentials....

  1. Purinergic Receptors: Key Mediators of HIV-1 Infection and Inflammation

    Swartz, Talia H.; Dubyak, George R.; Chen, Benjamin K.


    Human immunodeficiency virus type 1 (HIV-1) causes a chronic infection that afflicts more than 30 million individuals worldwide. While the infection can be suppressed with potent antiretroviral therapies, individuals infected with HIV-1 have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV-1 pathogenesis to this inflammation has yet to be identified. Purinergic receptors are ...

  2. Outline of therapeutic interventions with muscarinic receptor-mediated transmission

    Jakubík, Jan; Šantrůčková, Eva; Randáková, Alena; Janíčková, Helena; Zimčík, Pavel; Rudajev, Vladimír; Michal, Pavel; El-Fakahany, E. E.; Doležal, Vladimír


    Roč. 63, Suppl.1 (2014), S177-S189. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/09/0681; GA ČR(CZ) GAP304/12/0259; GA MŠk(CZ) 7E10060 Institutional support: RVO:67985823 Keywords : cholinergic transmission * muscarinic receptors * therapy * Alzheimer 's disease, * schizophrenia Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  3. Neuroprotection Mediated by P2Y13 Nucleotide Receptors in Neurons

    Raquel Pérez-Sen


    Full Text Available ADP-specific P2Y13 receptor constitutes one of the most recently identified nucleotide receptor and the understanding of their physiological role is currently under investigation. Cerebellar astrocytes and granule neurons provide excellent models to study P2Y13 expression and function since the first identification of ADP-evoked calcium responses not attributable to the related P2Y1 receptor was performed in these cell populations. In this regard, all responses induced by ADP analogues in astrocytes resulted to be Gi-coupled activities mediated by P2Y13 instead of P2Y1 receptors. Similarly, both glycogen synthase kinase-3 (GSK3 and ERK1/2 signaling triggered by 2MeSADP in cerebellar granule neurons were also dependent on Gi-coupled receptors, and mediated by PI3K activity. In granule neurons, P2Y13 receptor was specifically coupled to the main neuronal survival PI3K/Akt-cascade targeting GSK3 phosphorylation. GSK3 inhibition led to nuclear translocation of transcriptional targets, including β-catenin and Nrf2. The activation of the Nrf2/heme oxygenase-1 (HO-1 axis was responsible for the prosurvival effect against oxidative stress. In addition, P2Y13-mediated ERK1/2 signaling in granule neurons also triggered activation of transcription factors, such as CREB, which underlined the antiapoptotic action against glutamate-induced excitotoxicity. Finally, a novel signaling mechanism has been recently described for a P2Y13 receptor in granule neurons that involved the expression of a dual protein phosphatase, DUSP2. This activity contributed to regulate MAPK activation after genotoxic stress. In conclusion, P2Y13 receptors harbored in cerebellar astrocytes and granule neurons exhibit specific signaling properties that link them to specialized functions at the level of neuroprotection and trophic activity in both cerebellar cell populations.

  4. Melanocortin receptor-mediated effects on obesity are distributed over specific hypothalamic regions

    M.W.A. de Backer; S.E. la Fleur; M.A.D. Brans; A.J. van Rozen; M.C.M. Luijendijk; M. Merkestein; K.M. Garner; E.M. van der Zwaal; R.A.H. Adan


    Objective:Reduction of melanocortin signaling in the brain results in obesity. However, where in the brain reduced melanocortin signaling mediates this effect is poorly understood.Design:We determined the effects of long-term inhibition of melanocortin receptor activity in specific brain regions of

  5. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego;


    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...

  6. Downregulation of adenosine and P2X receptor-mediated cardiovascular responses in heart failure rats

    Zhao, Xin; Sun, X Y; Erlinge, D;


    degradation product adenosine, experiments were performed in a rat model of ischaemic CHF. In this model, ischaemia was induced in rats by ligation of the left coronary artery. Our results demonstrate that there is a selective downregulation of P2X receptor-mediated pressor effects, while the hypotensive...

  7. Alpha-2 adrenergic receptor-mediated inhibition of thermogenesis

    Madden, Christopher J.; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F.


    Alpha2-adrenergic receptor (α2-AR) agonists have been use as anti-hypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist, clonidine (1.2 nmol), into the ros...

  8. Mediators, Receptors, and Signalling Pathways in the Anti-Inflammatory and Antihyperalgesic Effects of Acupuncture

    John L. McDonald


    Full Text Available Acupuncture has been used for millennia to treat allergic diseases including both intermittent rhinitis and persistent rhinitis. Besides the research on the efficacy and safety of acupuncture treatment for allergic rhinitis, research has also investigated how acupuncture might modulate immune function to exert anti-inflammatory effects. A proposed model has previously hypothesized that acupuncture might downregulate proinflammatory neuropeptides, proinflammatory cytokines, and neurotrophins, modulating transient receptor potential vallinoid (TRPV1, a G-protein coupled receptor which plays a central role in allergic rhinitis. Recent research has been largely supportive of this model. New advances in research include the discovery of a novel cholinergic anti-inflammatory pathway activated by acupuncture. A chemokine-mediated proliferation of opioid-containing macrophages in inflamed tissues, in response to acupuncture, has also been demonstrated for the first time. Further research on the complex cross talk between receptors during inflammation is also helping to elucidate the mediators and signalling pathways activated by acupuncture.

  9. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren;


    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  10. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio.

    Shelly Abad Cruz

    Full Text Available Cortisol is the major endogenous glucocorticoid (GC both in human and fish, mediated by corticosteroid receptors. Due to the absence of aldosterone production in teleost fish, cortisol is also traditionally accepted to function as mineralocorticoid (MC; but whether it acts through the glucocorticoid receptor (GR or the mineralocorticoid receptor (MR remains a subject of debate. Here, we used loss-of-function and rescue assays to determine whether cortisol affects zebrafish epidermal ionocyte development and function via the GR and/or the MR. GR knockdown morphants displayed a significant decrease in the major ionocytes, namely Na(+-K(+-ATPase-rich cells (NaRCs and H(+-ATPase-rich cells (HRCs, as well as other cells, including epidermal stem cells (ESCs, keratinocytes, and mucus cells; conversely, cell numbers were unaffected in MR knockdown morphants. In agreement, GR morphants, but not MR morphants, exhibited decreased NaRC-mediated Ca(2+ uptake and HRC-mediated H(+ secretion. Rescue via GR capped mRNA injection or exogenous cortisol incubation normalized the number of epidermal ionocytes in GR morphants. We also provide evidence for GR localization in epidermal cells. At the transcript level, GR mRNA is ubiquitously expressed in gill sections and present in both NaRCs and HRCs, supporting the knockdown and functional assay results in embryo. Altogether, we have provided solid molecular evidence that GR is indeed present on ionocytes, where it mediates the effects of cortisol on ionocyte development and function. Hence, cortisol-GR axis performs the roles of both GC and MC in zebrafish skin and gills.

  11. Receptor-mediated effects of a PGH2 analogue (U 46619) on human platelets

    The specific effects of U 46619 (9,11-dideoxy,9α-11α-methanoepoxy-prostaglandin F2α), thromboxane A2-prostaglandin H2 (TxA2/PGH2) analogue, on human platelet shape change, myosin light-chain phosphorylation, serotonin release, fibrinogen receptor exposure, and platelet aggregation were measured and compared with binding of [3H]U 46619 to platelets. Shape change and myosin light-chain phosphorylation were found to be saturable and dose dependent. These two effects were competitively inhibited by specific antagonists of TxA2/PGH2 receptors indicating that they are receptor mediated. Binding of [3H]U 46619 showed two components. The authors proposed that a second component represents a second, low-affinity site. Mean EC50 values for U 46619-induced serotonin release platelet aggregation, and fibrinogen receptor exposure were 0.54 ± 0.13, 1.31 ± 0.34, and 0.53 ± 0.21 μM, respectively. Therefore, the platelet release reaction was not directly correlated with occupancy of high-affinity receptors but could be related to the second binding component of U 46619. Fibrinogen receptor exposure and platelet aggregation caused by U 46619 appeared to be events mediated by the release of adenosine diphosphate from platelet-dense granules

  12. DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage in Stroke

    Tu, Weihong; Xu, Xin; Peng, Lisheng; Zhong, Xiaofen; Zhang, Wenfeng; Soundarapandian, Mangala M.; Balel, Cherine; Wang, Manqi; Jia, Nali; Zhang, Wen; Lew, Frank; Chan, Sic Lung; Chen, Yanfang; Lu, Youming


    SUMMARY N-methyl-D-aspartate (NMDA) receptors constitute a major subtype of glutamate receptors at extra-synaptic sites that link multiple intracellular catabolic processes responsible for irreversible neuronal death. Here, we report that cerebral ischemia recruits death-associated protein kinase 1 (DAPK1) into the NMDA receptor NR2B protein complex in the cortex of adult mice. DAPK1 directly binds with the NMDA receptor NR2B C-terminal tail consisting of amino acid 1292–1304 (NR2BCT). A constitutively active DAPK1 phosphorylates NR2B subunit at Ser-1303 and in turn enhances the NR1/NR2B receptor channel conductance. Genetic deletion of DAPK1 or administration of NR2BCT that uncouples an activated DAPK1 from an NMDA receptor NR2B subunit in vivo in mice blocks injurious Ca2+ influx through NMDA receptor channels at extrasynaptic sites and protects neurons against cerebral ischemic insults. Thus, DAPK1 physically and functionally interacts with the NMDA receptor NR2B subunit at extra-synaptic sites and this interaction acts as a central mediator for stroke damage. PMID:20141836

  13. Receptor-Mediated Transcytosis of Leptin through Human Intestinal Cells In Vitro

    Émile Levy


    Full Text Available Gastric Leptin is absorbed by duodenal enterocytes and released on the basolateral side towards the bloodstream. We investigated in vitro some of the mechanisms of this transport. Caco-2/15 cells internalize leptin from the apical medium and release it through transcytosis in the basal medium in a time- temperature-dependent and saturable fashion. Leptin receptors are revealed on the apical brush-border membrane of the Caco-2 cells. RNA-mediated silencing of the receptor led to decreases in the uptake and basolateral release. Leptin in the basal medium was found bound to the soluble form of its receptor. An inhibitor of clathrin-dependent endocytosis (chlorpromazine decreased leptin uptake. Confocal immunocytochemistry and the use of brefeldin A and okadaic acid revealed the passage of leptin through the Golgi apparatus. We propose that leptin transcytosis by intestinal cells depends on its receptor, on clathrin-coated vesicles and transits through the Golgi apparatus.

  14. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons.

    Oswald, Manfred J; Schulz, Jan M; Kelsch, Wolfgang; Oorschot, Dorothy E; Reynolds, John N J


    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg(2+)-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg(2+)-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission. PMID:25914618

  15. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes.

    Siti H Sheikh Abdul Kadir

    Full Text Available BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC, which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM. Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart. METHODS AND RESULTS: Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M(2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M(2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters. CONCLUSION: We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M(2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.

  16. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor.

    Calandra, B; Portier, M; Kernéis, A; Delpech, M; Carillon, C; Le Fur, G; Ferrara, P; Shire, D


    It has long been established that the cannabinoid CB1 receptor transduces signals through a pertussis toxin-sensitive Gi/Go inhibitory pathway. Although there have been reports that the cannabinoid CB1 receptor can also mediate an increase in cyclic AMP levels, in most cases the presence of an adenylyl cyclase costimulant or the use of very high amounts of agonist was necessary. Here, we present evidence for dual coupling of the cannabinoid CB receptor to the classical pathway and to a pertussis toxin-insensitive adenylyl cyclase stimulatory pathway initiated with low quantities of agonist in the absence of any costimulant. Treatment of Chinese hamster ovary (CHO) cells expressing the cannabinoid CB1 receptor with the cannabinoid CP 55,940, {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hyd roxypropyl) cyclohexan-1-ol} resulted in cyclic AMP accumulation in a dose-response manner, an accumulation blocked by the cannabinoid CB1 receptor-specific antagonist SR 141716A, {N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride}. In CHO cells coexpressing the cannabinoid CB1 receptor and a cyclic AMP response element (CRE)-luciferase reporter gene system, CP 55,940 induced luciferase expression by a pathway blocked by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89). Under the same conditions the peripheral cannabinoid CB2 receptor proved to be incapable of inducing cAMP accumulation or luciferase activity. This incapacity allowed us to study the luciferase activation mediated by CB /CB2 chimeric constructs, from which we determined that the first and second internal loop regions of the cannabinoid CB1 receptor were involved in transducing the pathway leading to luciferase gene expression. PMID:10422789

  17. ASXL1 Represses Retinoic Acid Receptor-mediated Transcription through Associating with HP1 and LSD1*

    Lee, Sang-Wang; Cho, Yang-Sook; Na, Jung-Min; Park, Ui-Hyun; Kang, Myengmo; Kim, Eun-Joo; Um, Soo-Jong


    We previously suggested that ASXL1 (additional sex comb-like 1) functions as either a coactivator or corepressor for the retinoid receptors retinoic acid receptor (RAR) and retinoid X receptor in a cell type-specific manner. Here, we provide clues toward the mechanism underlying ASXL1-mediated repression. Transfection assays in HEK293 or H1299 cells indicated that ASXL1 alone possessing autonomous transcriptional repression activity significantly represses RAR- or retinoid X receptor-dependen...

  18. P2X receptor-mediated ATP purinergic signaling in health and disease

    Jiang LH


    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  19. Receptor interconversion model of hormone action. 3. Estrogen receptor mediated repression of reporter gene activity in A431 cells.

    Nag, A; Park, I; Krust, A; Smith, R G


    The chicken estrogen receptor exists in three interconvertible forms, two of which bind estradiol with high affinity and one which lacks the capacity to bind estradiol. Interconversion is regulated by reactions involving ATP/Mg2+. By cotransfecting into A431 cells estrogen receptor cDNA in an expression vector together with the pA2 (-821/-87) tk-CAT vitellogenin construct, we demonstrate that constitutive expression of chloramphenicol acetyltransferase (CAT) activity can be regulated either by selection of ligand or by modifying phosphorylation reactions in the recipient cells. In the presence of estrogen receptors, constitutive expression of CAT activity is inhibited in three situations: (i) in the absence of an estrogenic ligand; (ii) in the presence of an anti-estrogen; and (iii) in the presence of an estrogenic ligand together with 12-O-tetradecanoylphorbol 13-acetate (TPA). Estrogen receptor mediated repression of constitutive CAT activity is not observed with the pA2 (-331/-87) tk-CAT construct, indicating that DNA sequences required for repression are located between -821 and -331 base pairs upstream of the transcription initiation site. PMID:2346742

  20. Only high-affinity receptors for interleukin 2 mediate internalization of ligand

    Interleukin 2 (IL-2) receptors are expressed on activated T cells and in select T-cell leukemias. Recently, it has been demonstrated that at least two classes of receptor for IL-2 exist with markedly different affinities for ligand. All known biological actions of IL-2 have been correlated with occupancy of high-affinity sites; the function of the low-affinity sites remains unknown. Receptor-mediated endocytosis is the primary means of internalization of cell-surface receptors and their ligands. The internalization of IL-2 bound to high- and low-affinity receptor sites was studied in a human T-cell lymphotrophic virus type 1 (HTLV-1)-infected human T-cell leukemia cell line and in a cloned murine cytotoxic T-cell line (CTLL). Internalization of IL-2 occurred only when bound to high-affinity sites. In addition, an anti-receptor antibody (anti-Tac), which binds equally well to high- and low-affinity sites, demonstrated no detectable internalization. The implications of these findings as they relate to IL-2 receptor structure and function are discussed

  1. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Jian-xin SHEN; Jerrel L YAKEL


    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  2. Brain stem adenosine receptors modulate centrally mediated hypotensive responses in conscious rats: A review

    Noha N. Nassar


    Full Text Available Adenosine is implicated in the modulation of cardiovascular responses either at the peripheral or at central level in experimental animals. However, there are no dedicated reviews on the involvement of adenosine in mediating the hypotensive response of centrally administered clonidine in general and specifically in aortically barodenervated rats (ABD. The conscious ABD rat model exhibits surgically induced baroreflex dysfunction and exaggerated hypotensive response, compared with conscious sham-operated (SO rats. The current review focuses on, the role of adenosine receptors in blood pressure (BP regulation and their possible crosstalk with other receptors e.g. imidazoline (I1 and alpha (α2A adrenergic receptor (AR. The former receptor is a molecular target for clonidine, whose hypotensive effect is enhanced approx. 3-fold in conscious ABD rats. We also discussed how the balance between the brain stem adenosine A1 and A2A receptors is regulated by baroreceptors and how such balance influences the centrally mediated hypotensive responses. The use of the ABD rat model yielded insight into the downstream signaling cascades following clonidine-evoked hypotension in a surgical model of baroreflex dysfunction.

  3. [Molecular physiology of receptor mediated endocytosis and its role in overcoming multidrug resistance].

    Severin, E S; Posypanova, G A


    Receptor-mediated endocytosis plays important role in the selective uptake of proteins at the plasma membrane of eukaryotic cells. Endocytosis regulates many processes of cell signalling by controlling the number of functional receptors on the cell surface. The article reviews the mechanism of clathrin-dependent endocytosis and the possibility of using this phenomenon for the targeted delivery of drugs. Use of certain proteins as targeting component of drug delivery systems can significantly improve the selectivity of this drug, as well as to overcome the multidrug resistance of cells resulting from the activity of the ABC-transporters. PMID:21874867

  4. Receptor-Mediated Drug Delivery to Macrophages in Chemotherapy of Leishmaniasis

    Mukhopadhyay, Amitabha; Chaudhuri, Gautam; Arora, Sunil K.; Sehgal, Shobha; Basu, Sandip K.


    Methotrexate coupled to maleylated bovine serum albumin was taken up efficiently through the ``scavenger'' receptors present on macrophages and led to selective killing of intracellular Leishmania mexicana amazonensis amastigotes in cultured hamster peritoneal macrophages. The drug conjugate was nearly 100 times as effective as free methotrexate in eliminating the intracellular parasites. Furthermore, in a model of experimental cutaneous leishmaniasis in hamsters, the drug conjugate brought about more than 90% reduction in the size of footpad lesions within 11 days. In contrast, the free drug at a similar concentration did not significantly affect lesion size. These studies demonstrate the potential of receptor-mediated drug delivery in the therapy of macrophage-associated diseases.

  5. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro

    Wigmore, Mark A; Lacey, Michael G


    Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (, evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain.The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01–30 μM) by up to 60% with an EC50 of 0.82 μM. The depression induced by L-AP4 (3 μM) wa...

  6. Characterization of putative 5-HT7 receptors mediating tachycardia in the cat

    Villalón, Carlos; Heiligers, Jan; Centurion, David; De Vries, Peter; Saxena, Pramod Ranjan


    It has been suggested that the tachycardic response to 5-hydroxytryptamine (5-HT) in the spinal-transected cat is mediated by ‘5-HT1-like' receptors since this effect, being mimicked by 5-carboxamidotryptamine (5-CT), is not modified by ketanserin or MDL 72222, but it is blocked by methiothepin, methysergide or mesulergine. The present study was set out to reanalyse this suggestion in terms of the IUPHAR 5-HT receptor classification schemes proposed in 1994 and 1996.Intravenous (i.v.) bolus i...

  7. Protein kinase C regulates tonic GABAA receptor-mediated inhibition in the hippocampus and thalamus

    Bright, Damian P; Smart, Trevor G


    Tonic inhibition mediated by extrasynaptic GABAA receptors (GABAARs) is an important regulator of neuronal excitability. Phosphorylation by protein kinase C (PKC) provides a key mode of regulation for synaptic GABAARs underlying phasic inhibition; however, less attention has been focused on the plasticity of tonic inhibition and whether this can also be modulated by receptor phosphorylation. To address this issue, we used whole-cell patch clamp recording in acute murine brain slices at both room and physiological temperatures to examine the effects of PKC-mediated phosphorylation on tonic inhibition. Recordings from dentate gyrus granule cells in the hippocampus and dorsal lateral geniculate relay neurons in the thalamus demonstrated that PKC activation caused downregulation of tonic GABAAR-mediated inhibition. Conversely, inhibition of PKC resulted in an increase in tonic GABAAR activity. These findings were corroborated by experiments on human embryonic kidney 293 cells expressing recombinant α4β2δ GABAARs, which represent a key extrasynaptic GABAAR isoform in the hippocampus and thalamus. Using bath application of low GABA concentrations to mimic activation by ambient neurotransmitter, we demonstrated a similar inhibition of receptor function following PKC activation at physiological temperature. Live cell imaging revealed that this was correlated with a loss of cell surface GABAARs. The inhibitory effects of PKC activation on α4β2δ GABAAR activity appeared to be mediated by direct phosphorylation at a previously identified site on the β2 subunit, serine 410. These results indicate that PKC-mediated phosphorylation can be an important physiological regulator of tonic GABAAR-mediated inhibition. PMID:24102973

  8. Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions

    Autoradiographic studies localize [3H]bradykinin receptor binding sites to the substantia gelatinosa, dorsal root, and a subset of small cells in both the dorsal root and trigeminal ganglia of the guinea pig. [3H]Bradykinin labeling is also observed over myocardinal/coronary visceral afferent fibers. The localization of [3H]bradykinin receptors to nociceptive pathways supports a role for bradykinin in pain mediation. Several bradkykinin antagonists block bradykinin-induced acute vascular pain in the rat. The bradykinin antagonists also relieve bradykinin- and urate-induced hyperalgesia in the rat paw. These results indicate that bradykinin is a physiologic mediator of pain and that bradykinin antagonists have analgesic activity in both acute and chronic pain models

  9. Modeling of cell adhesion and deformation mediated by receptor-ligand interactions.

    Golestaneh, Amirreza F; Nadler, Ben


    The current work is devoted to studying adhesion and deformation of biological cells mediated by receptors and ligands in order to enhance the existing models. Due to the sufficient in-plane continuity and fluidity of the phospholipid molecules, an isotropic continuum fluid membrane is proposed for modeling the cell membrane. The developed constitutive model accounts for the influence of the presence of receptors on the deformation and adhesion of the cell membrane through the introduction of spontaneous area dilation. Motivated by physics, a nonlinear receptor-ligand binding force is introduced based on charge-induced dipole interaction. Diffusion of the receptors on the membrane is governed by the receptor-ligand interaction via Fick's Law and receptor-ligand interaction. The developed model is then applied to study the deformation and adhesion of a biological cell. The proposed model is used to study the role of the material, binding, spontaneous area dilation and environmental properties on the deformation and adhesion of the cell. PMID:26093646

  10. Gastrin-Releasing Peptide Receptor Mediates Activation of the Epidermal Growth Factor Receptor in Lung Cancer Cells

    Sufi Mary Thomas


    Full Text Available Gastrin-releasing peptide receptor (GRPR and the epidermal growth factor receptor (EGFR are expressed in several cancers including non-small cell lung carcinoma (NSCLC. Here we demonstrate the activation of EGFR by the GRPR ligand, gastrin-releasing peptide (GRP, in NSCLC cells. GRP induced rapid activation of p44/42 MAPK in lung cancer cells through EGFR. GRP-mediated activation of MAPK in NSCLC cells was abrogated by pretreatment with the anti-EGFR-neutralizing antibody, C225. Pretreatment of NSCLC cells with neutralizing antibodies to the EGFR ligands, TGF-α or HB-EGF, also decreased GRP-mediated MAPK activation. On matrix metalloproteinase (MMP inhibition, GRP failed to activate MAPK in NSCLC cells. EGF and GRP both stimulated NSCLC proliferation, and inhibition of either EGFR or GRPR resulted in cell death. Combining a GRPR antagonist with the EGFR tyrosine kinase inhibitor, gefitinib, resulted in additive cytotoxic effects. Additive effects were seen at gefitinib concentrations from 1 to 18μM, encompassing the ID50 values of both gefitinib-sensitive and gefitinib-resistant NSCLC cell lines. Because a major effect of GRPR appears to be promoting the release of EGFR ligand, this study suggests that a greater inhibition of cell proliferation may occur by abrogating EGFR ligand release in consort with inhibition of EGFR.

  11. IL-1 Receptors Mediate Persistent, but Not Acute, Airway Hyperreactivity to Ozone in Guinea Pigs

    Verhein, Kirsten C.; Jacoby, David B.; Allison D Fryer


    Ozone exposure in the lab and environment causes airway hyperreactivity lasting at least 3 days in humans and animals. In guinea pigs 1 day after ozone exposure, airway hyperreactivity is mediated by eosinophils that block neuronal M2 muscarinic receptor function, thus increasing acetylcholine release from airway parasympathetic nerves. However, mechanisms of ozone-induced airway hyperreactivity change over time, so that depleting eosinophils 3 days after ozone makes airway hyperreactivity wo...

  12. Dopamine receptor-mediated regulation of neuronal “clock” gene expression

    Imbesi, Marta; Yildiz, Sevim; Arslan, Ahmet Dirim; Sharma, Rajiv; Manev, Hari; Uz, Tolga


    Using transgenic mice model (i.e., “clock” knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulate the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in...

  13. Antitumor effects of radioiodinated antisense oligonucleotide mediated by VIP receptor

    Purpose: we had constructed a targeting delivery system based on intestinal peptide (VIP) for antisense oligonucleotide (ASON) transfer into VIP receptor-positive cells in previous study. The aims of present studies are to observe the antitumor effect of VIP-131I-ASON in HT29 human colon adenocarcinoma xenografts. Methods: A 15-met phosphorothioate ASON, which was complementary to the translation start region of the C-myc oncogene mRNA, was labeled with 131I and the labelled compound was linked to the VIP bound covalently 'to a polylysine chain so as to deliver oligonucleotide into tumor cells. Distribution experiments for evaluating the radiolabeled antisense complexe uptake in tumor tissue were performed in BALB/c nude mice bearing with HT29 tumor xenografts. Nude mice beating HT29 tumor xenografts were adminstered VIP-131I-ASON (3.7,7.4 MBq) or 131I-ASON (3.7 MBq), 131I labeled control sense and nosense DNA (3.7 MBq), or saline. Antitumor effects were assessed using endpoints of tumor growth delay. C-myc-encoded protein expression of tumor was measured by immunocytohistochemical staining. Results: Distribution experiment performed with athymic mice bearing human colon tumor xenografts revealed maximal accumulation of conjugated ASON in the tumor tissue 2 h after administration and significantly higher than that in nude mice injected unconjngated ASON [(5.89±1.03)%ID/g and(1.56±0.31)%ID/g, respectively; t=7.7954 P<0.001]. The radioratio of tumor to muscle was peaked 4h after administration. VIP-131I-ASON exhibited strong antitumor effects against HT29 xenografts, decreasing their growth rate 7-fold compare with that in saline-treated mice(tumor growth delay, 25.4±0.89 day). The antitumor effects of unconjugated 131I-ASON were much less profound than VIP-131I-ASON (tumor growth delay, 3.2±1.3 and 25.4±0.89 day, respectively; q=51.4126 P<0.01). Sense, nosense control ON with VIP carder caused no therapeutic effect. There was no progressive weight loss or

  14. Glucocorticoid receptor mediated the propofol self-administration by dopamine D1 receptor in nucleus accumbens.

    Wu, Binbin; Liang, Yuyuan; Dong, Zhanglei; Chen, Zhichuan; Zhang, Gaolong; Lin, Wenxuan; Wang, Sicong; Wang, Benfu; Ge, Ren-Shan; Lian, Qingquan


    Propofol, a widely used anesthetic, can cause addictive behaviors in both human and experimental animals. In the present study, we examined the involvement of glucocorticoid receptor (GR) signaling in the molecular process by which propofol may cause addiction. The propofol self-administration model was established by a fixed ratio 1 (FR1) schedule of reinforced dosing over successive 14days in rats. On day 15, the rats were treated with dexamethasone, a GR agonist (10-100μg/kg), or RU486, a GR antagonist (10-100μg/kg) at 1h prior to the last training. The animal behaviors were recorded automatically by the computer. The expression of dopamine D1 receptor in the nucleus accumbens (NAc) was examined by Western blot and the concentrations of plasma corticosterone were measured by enzyme-linked immunosorbent assay (ELISA). To further examine the specificity of GR in the process, mineralocorticoid receptor (MR) antagonist, spironolactone, and dexamethasone plus MR agonist, aldosterone, were also tested. Administration of dexamethasone (100μg/kg) or RU486 (⩾10mg/kg) significantly attenuated the rate of propofol maintained active nose-poke responses and infusions, which were accompanied by reductions in both plasma corticosterone level and the expression of D1 receptor in the NAc. Neither spironolactone alone nor dexamethasone combined with aldosterone affected the propofol-maintaining self-administrative behavior, indicating GR, but not MR, modulates the propofol reward in rats. In addition, neither the food-maintaining sucrose responses under FR1 schedule nor the locomotor activity was affected by any doses of dexamethasone or RU486 tested. These findings provide evidence that GR signaling may play an important role in propofol reward. PMID:27126557

  15. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    Junker, L.H.; Davis, R.A. (Univ. of Colorado Health Sciences Center, Denver (USA))


    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of (14C)cholesterol from (2-14C)acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of (14C)cholesterol from (2-14C)acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.

  16. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis

  17. TRAIL receptor mediates inflammatory cytokine release in an NF-κB-dependent manner

    Wanhu Tang; Weimin Wang; Yaxi Zhang; Shilian Liu; Yanxin Liu; Dexian Zheng


    In the present article, we report that DR4 or DR5 overexpression dramatically activates the release of the inflam-matory cytokines IL-8, TNF-α, CCL20, MIP-2 and MIP-1β in an NF-κB-dependent manner in 293T, MDA-MB-231 and HCT-116 cells. We showed that death receptor-mediated signals were extracellular domain-independent, where-as the effect of overexpression of the DR4 intracellular domain was much less potent. The TRADD-TRAF2-NIK-IKKα/β signaling cascade, which plays an essential role in TNF-induced NF-κB activation, was found to be involved in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated signal transduction. The FADD-caspase signaling pathway, which has been reported to be mostly related to apoptosis, was identified as be-ing essential for DR4 or DR5 overexpression-mediated NF-κB activation and cytokine secretion and crosstalks with the TRADD-TRAF2-NIK-IKKα/β signaling cascade. Furthermore, a DR5 agonistic antibody (AD5-10) triggered the inflammatory cytokine release. These data, together with previous reports, provide strong evidence that TRAIL and TRAIL receptors play an important role in inflammation.

  18. Cloning and expression profile of ionotropic receptors in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae).

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Zheng, Yao; Shan, Shuang; Li, Rui-Jun; Zhang, Yong-Jun; Guo, Yu-Yuan


    Ionotropic receptors (IRs) mainly detect the acids and amines having great importance in many insect species, representing an ancient olfactory receptor family in insects. In the present work, we performed RNAseq of Microplitis mediator antennae and identified seventeen IRs. Full-length MmedIRs were cloned and sequenced. Phylogenetic analysis of the Hymenoptera IRs revealed that ten MmedIR genes encoded "antennal IRs" and seven encoded "divergent IRs". Among the IR25a orthologous groups, two genes, MmedIR25a.1 and MmedIR25a.2, were found in M. mediator. Gene structure analysis of MmedIR25a revealed a tandem duplication of IR25a in M. mediator. The tissue distribution and development specific expression of the MmedIR genes suggested that these genes showed a broad expression profile. Quantitative gene expression analysis showed that most of the genes are highly enriched in adult antennae, indicating the candidate chemosensory function of this family in parasitic wasps. Using immunocytochemistry, we confirmed that one co-receptor, MmedIR8a, was expressed in the olfactory sensory neurons. Our data will supply fundamental information for functional analysis of the IRs in parasitoid wasp chemoreception. PMID:27208597

  19. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.


    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  20. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor γ-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses

  1. Insulinotropic action of bombesin-like peptides mediated by gastrin-releasing peptide receptors in steers.

    Zhao, H Q; Yao, G; Yannaing, S; ThanThan, S; Kuwayama, H


    The present study characterizes the receptor that mediates the insulinotropic action of bombesin-like peptides (BLP) in ruminants. Eight Holstein steers were randomly and intravenously injected with synthetic bovine gastrin-releasing peptide (GRP; 0.9 nmol/kg BW), neuromedin B (NMB; 0.9 nmol/kg BW), or neuromedin C (NMC; 0.9 nmol/kg BW), each alone or combined with the antagonist of GRP receptors N-acetyl-GRP-OCHCH (N-GRP-EE; 22.5 nmol/kg BW) or the antagonist of GH secretagogue receptor type 1a (GHS-R1a) [D-Lys]-GHRP-6 (21.5 nmol/kg BW). Blood samples were collected at -10, 0 (just before injection), 5, 10, 15, 20, 30, 45, 60, 75, and 90 min relative to injection time. Levels of injected peptides, insulin, and glucose in plasma were analyzed. Results showed that the peak of insulin levels was seen at 5 min after injection of NMC or GRP. Plasma glucose was observed in 2 phases; a significant rise followed a remarkable fall after NMC or GRP administration compared with injection of the vehicle ( 0.05). These results indicated that the insulinotropic action of BLP is mediated by GRP receptors but not through a ghrelin/GHS-R1a pathway and that BLP may be involved in the regulation of glucose homeostasis in ruminants. PMID:26812312

  2. The Role of PPAR Receptors and Leukotriene B4 Receptors in Mediating the Effects of LY293111 in Pancreatic Cancer

    Thomas E. Adrian


    Full Text Available Pancreatic cancer is a devastating disease in which current therapies are inadequate. Separate lines of research have identified the 5-lipoxygenase/leukotriene B4 receptor pathway and the PPAR pathway as potential targets for prevention or treatment of this disease. LY293111 was originally designed as a potent leukotriene B4 receptor antagonist for treatment of inflammatory conditions. LY293111 was also known to have inhibitory effects on 5-lipoxygenase, which is upstream of the production of leukotrienes. LY293111 was shown to have potent anticancer effects in pancreatic cancer and several other solid malignancies, where it caused cell cycle arrest and marked apoptosis. Subsequently, it came to light that LY293111 exhibited PPAR agonist activity in addition to its effects on the 5-lipoxygenase pathway. This raises the question of which of the two targets is of greatest importance with regard to the anticancer effects of this agent. The evidence to date is not conclusive, but suggests that the effects of LY293111 may be mediated by both LTB4 receptors and PPAR.

  3. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.


    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  4. Antidepressant-like Effects of Buprenorphine are Mediated by Kappa Opioid Receptors.

    Falcon, Edgardo; Browne, Caroline A; Leon, Rosa M; Fleites, Vanessa C; Sweeney, Rachel; Kirby, Lynn G; Lucki, Irwin


    Previous studies have identified potential antidepressant effects of buprenorphine (BPN), a drug with high affinity for mu opioid receptor (MORs) and kappa opioid receptors (KORs) and some affinity at delta opioid receptor (DOR) and opioid receptor-like 1 (ORL-1) receptors. Therefore, these studies examined which opioid receptors were involved in BPN's effects on animal behavior tests sensitive to antidepressant drugs. The acute effects of BPN were tested in the forced swim test (FST) using mice with genetic deletion of individual opioid receptors or after pharmacological blockade of receptors. For evaluating the effects of BPN on chronic stress, separate groups of mice were exposed to unpredictable chronic mild stress (UCMS) for 3 weeks and treated with BPN for at least 7 days before behavioral assessment and subsequent measurement of Oprk1, Oprm1, and Pdyn mRNA expression in multiple brain regions. BPN did not reduce immobility in mice with KOR deletion or after pretreatment with norbinaltorphimine, even though desipramine remained effective. In contrast, BPN reduced immobility in MOR and DOR knockout mice and in mice pretreated with the ORL-1 antagonist JTC-801. UCMS reduced sucrose preference, decreased time in the light side of the light/dark box, increased immobility in the FST and induced region-specific alterations in Oprk1, Oprm1, and PDYN mRNA expression in the frontal cortex and striatum. All of these changes were normalized following BPN treatment. The KOR was identified as a key player mediating the effects of BPN in tests sensitive to antidepressant drugs in mice. These studies support further development of BPN as a novel antidepressant. PMID:26979295

  5. Vascular endothelin ET(B) receptor-mediated contraction requires phosphorylation of ERK1/2 proteins

    Luo, Guogang; Jamali, Roya; Cao, Yong-Xiao;


    In cardiovascular diseases, endothelin type B (ET(B)) receptors in arterial smooth muscle cells are upregulated. The present study revealed that organ culture of rat mesenteric artery segments enhanced endothelin ET(B) receptor-mediated contraction paralleled with increase in the receptor mRNA and...... protein expressions. The endothelin ET(B) receptor-mediated contraction was associated with increase in phosphorylation of extracellular regulation kinase 1 and 2 (ERK1/2) proteins and elevated levels of intracellular calcium. The elevation curve of intracellular calcium consisted of two phases: one rapid...... and one sustained. Inhibition of ERK1/2 phosphorylation by SB386023 or blockage of calcium channels by nifedipine significantly reduced the endothelin ET(B) receptor-mediated contraction (P<0.05) and decreased the sustained phase of intracellular calcium level, but not the rapid phase. Thus...

  6. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils

    Nariman A B Balenga; Maria Waldhoer; Elma Aflaki; Julia Kargl; Wolfgang Platzer; Ralf Schr(o)der; Stefanie Bl(a)ttermann; Evi Kostenis; Andrew J Brown; Akos Heinemann


    The directional migration of neutrophils towards inflammatory mediators,such as chemokines and cannabinoids,occurs via the activation of seven transmembrane G protein coupled receptors (7TM/GPCRs) and is a highly organized process.A crucial role for controlling neutrophil migration has been ascribed to the cannabinoid CB2 receptor (CB2R),but additional modulatory sites distinct from CB2R have recently been suggested to impact CB2R-mediated effector functions in neutrophils.Here,we provide evidence that the recently de-orphanized 7TM/GPCR GPR55potently modulates CB2R-mediated responses.We show that GPR55 is expressed in human blood neutrophils and its activation augments the migratory response towards the CB2R agonist 2-arachidonoylglycerol (2-AG),while inhibiting neutrophil degranulation and reactive oxygen species (ROS) production.Using HEK293 and HL60 cell lines,along with primary neutrophils,we show that GPR55 and CB2R interfere with each other's signaling pathways at the level of small GTPases,such as Rac2 and Cdc42.This ultimately leads to cellular polarization and efficient migration as well as abrogation of degranulation and ROS formation in neutrophils.Therefore,GPR55 limits the tissueinjuring inflammatory responses mediated by CB2R,while it synergizes with CB2R in recruiting neutrophils to sites of inflammation.

  7. Effects of CYP7B1-mediated catalysis on estrogen receptor activation.

    Pettersson, Hanna; Lundqvist, Johan; Norlin, Maria


    Most of the many biological effects of estrogens are mediated via the estrogen receptors ERalpha and beta. The current study examines the role of CYP7B1-mediated catalysis for activation of ER. Several reports suggest that CYP7B1 may be important for hormonal action but previously published studies are contradictory concerning the manner in which CYP7B1 affects ERbeta-mediated response. In the current study, we examined effects of several CYP7B1-related steroids on ER activation, using an estrogen response element (ERE) reporter system. Our studies showed significant stimulation of ER by 5-androstene-3beta,17beta-diol (Aene-diol) and 5alpha-androstane-3beta,17beta-diol (3beta-Adiol). In contrast, the CYP7B1-formed metabolites from these steroids did not activate the receptor, indicating that CYP7B1-mediated metabolism abolishes the ER-stimulating effect of these compounds. The mRNA level of HEM45, a gene known to be stimulated by estrogens, was strongly up-regulated by Aene-diol but not by its CYP7B1-formed metabolite, further supporting this concept. We did not observe stimulation by dehydroepiandrosterone (DHEA) or 7alpha-hydroxy-DHEA, previously suggested to affect ERbeta-mediated response. As part of these studies we examined metabolism of Aene-diol in pig liver which is high in CYP7B1 content. These experiments indicate that CYP7B1-mediated metabolism of Aene-diol is of a similar rate as the metabolism of the well-known CYP7B1 substrates DHEA and 3beta-Adiol. CYP7B1-mediated metabolism of 3beta-Adiol has been proposed to influence ERbeta-mediated growth suppression. Our results indicate that Aene-diol also might be important for ER-related pathways. Our data indicate that low concentrations of Aene-diol can trigger ER-mediated response equally well for both ERalpha and beta and that CYP7B1-mediated conversion of Aene-diol into a 7alpha-hydroxymetabolite will result in loss of action. PMID:20553962

  8. Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons

    Fernández de Sevilla, D.; Núñez Molina, Ángel; Borde, M.; Malinow, R.; Buño, Washinton


    Cholinergic-glutamatergic interactions influence forms of synaptic plasticity that are thought to mediate memory and learning. We tested in vitro the induction of long-lasting synaptic enhancement at Schaffer collaterals by acetylcholine (ACh) at the apical dendrite of CA1 pyramidal neurons and in vivo by stimulation of cholinergic afferents. In vitro ACh induced a Ca2+ wave and synaptic enhancement mediated by insertion of AMPA receptors in spines. Activation of muscarinic ACh receptors (mAC...

  9. Amyloid β-protein differentially affects NMDA receptor- and GABAA receptor-mediated currents in rat hippocampal CA1 neurons

    Junfang Zhang; Lei Hou; Xiuping Gao; Fen Guo; Wei Jing; Jinshun Qi; Jiantian Qiao


    Although the aggregated amyloid β-protein (Aβ) in senile plaques is one of the key neuropathological features of Alzheimer's disease (AD), soluble forms of Aβ also interfere with synaptic plasticity at the early stage of AD. The suppressive action of acute application of Aβ on hippocampal long-term potentiation (LTP) has been reported widely, whereas the mechanism underlying the effects of Aβ is still mostly unknown. The present study, using the whole-cell patch clamp technique, investigated the effects of Aβ fragments (Aβ25-35 and Aβ31-35) on the LTP induction-related postsynaptic ligand-gated channel currents in isolated hippocampal CA1 neurons. The results showed a rapid but opposite action of both peptides on excitatory and inhibitory receptor currents. Glutamate application-induced currents were suppressed by A β25-35 in a dose-dependent manner, and further N-methyl-I>aspartate (NMDA) receptor-mediated currents were selec-tively inhibited. In contrast, pretreatment with Aβ fragments potentiated γ-aminobutyric acid (GABA)-induced whole-cell currents. As a control, Aβ35-31 the reversed sequence of Aβ35-31 showed no effect on the currents induced by glutamate, NMDA or GABA. These results may partly explain the impaired effects of Aβ on hippocampal LTP, and suggest that the functional down-regulation of N M DA receptors and up-regulation of GABAA receptors may play an important role in remodeling the hippocampal synaptic plasticity in early AD.

  10. GR-127935-sensitive mechanism mediating hypotension in anesthetized rats: are 5-HT5B receptors involved?

    Sánchez-Maldonado, Carolina; López-Sánchez, Pedro; Anguiano-Robledo, Liliana; Leopoldo, Marcello; Lacivita, Enza; Terrón, José A


    The 5-HT1B/1D receptor antagonist, GR-127935, inhibits hypotensive responses produced by the 5-HT1A, 5-HT1B/1D and 5-HT7 receptor agonist, and 5-HT5A/5B receptor ligand, 5-carboxamidotryptamine (5-CT), in rats. This work further characterized the above mechanism using more selective 5-HT1B and 5-HT1D receptor antagonists. Also, expression of 5-HT5A and 5-HT5B receptor mRNAs in blood vessels was searched by reverse transcription polymerase chain reaction. Decreases in diastolic blood pressure induced by 5-CT (0.001-10 μg/kg, intravenously) were analyzed in anesthetized rats that had received intravenous vehicle (1 mL/kg), SB-224289 (5-HT1B antagonist; 0.3 and 1.0 mg/kg), BRL15572 (5-HT1D antagonist; 0.3 and 1.0 mg/kg), SB-224289 + BRL15572 (0.3 mg/kg, each), or SB-224289 + BRL15572 (0.3 mg/kg, each) + GR-127935 (1 mg/kg). Because only the latter treatment inhibited 5-CT-induced hypotension, suggestive of a mechanism unrelated to 5-HT1B/1D receptors, the effects of antagonists/ligands at 5-HT5A (SB-699551, 1 mg/kg), 5-HT6 (SB-399885, 1 mg/kg), and 5-HT1B/1D/5A/5B/7 receptors (ergotamine, 0.1 mg/kg) on 5-CT-induced hypotension were tested. Interestingly, only ergotamine blocked 5-CT-induced responses; this effect closely paralleled that of SB-224289 + BRL-15572 + GR-127935. Neither did ergotamine nor GR-127935 inhibit hypotensive responses induced by the 5-HT7 receptor agonist, LP-44. Faint but clear bands corresponding to 5-HT5A and 5-HT5B receptor mRNAs in aorta and mesenteric arteries were detected. Results suggest that the GR-127935-sensitive mechanism mediating hypotension in rats is unrelated to 5-HT1B, 5-HT1D, 5-HT5A, 5-HT6, and 5-HT7 receptors. This mechanism, however, resembles putative 5-HT5B receptors. PMID:25502305

  11. α4 nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior.

    Inden, Masatoshi; Takata, Kazuyuki; Yanagisawa, Daijiro; Ashihara, Eishi; Tooyama, Ikuo; Shimohama, Shun; Kitamura, Yoshihisa


    Galantamine, an acetylcholine esterase (AChE) inhibitor used to treat dementia symptoms, also acts as an allosteric potentiating ligand (APL) at nicotinic acetylcholine receptors (nAChRs). This study was designed to evaluate the allosteric effect of galantamine on nAChR regulation of nigrostrial dopaminergic neuronal function in the hemiparkinsonian rat model established by unilateral nigral 6-hydroxydopamine (6-OHDA) injection. Methamphetamine, a dopamine releaser, induced ipsilateral rotation, whereas dopamine agonists apomorphine (a non-selective dopamine receptor agonist), SKF38393 (a selective dopamine D1 receptor agonist), and quinpirole (a selective dopamine D2 receptor agonist) induced contralateral rotation. When 6-OHDA-injected rats were co-treated with nomifensine, a dopamine transporter inhibitor, a more pronounced and a remarkable effect of nicotine and galantamine was observed. Under these conditions, the combination of nomifensine with nicotine or galantamine induced the ipsilateral rotation similar to the methamphetamine-induced rotational behavior, indicating that nicotine and galantamine also induce dopamine release from striatal terminals. Both nicotine- and galantamine-induced rotations were significantly blocked by flupenthixol (an antagonist of both D1 and D2 dopamine receptors) and mecamylamine (an antagonist of nAChRs), suggesting that galantamine modulation of nAChRs on striatal dopaminergic terminals regulates dopamine receptor-mediated movement. Immunohistochemical staining showed that α4 nAChRs were highly expressed on striatal dopaminergic terminals, while no α7 nAChRs were detected. Pretreatment with the α4 nAChR antagonist dihydroxy-β-erythroidine significantly inhibited nicotine- and galantamine-induced rotational behaviors, whereas pretreatment with the α7 nAChR antagonist methyllycaconitine was ineffective. Moreover, the α4 nAChR agonist ABT-418 induced ipsilateral rotation, while the α7 nAChR agonist PNU282987 had no


    We have previously reported the inhibition of Fc receptor-mediated degranulation in avian heterophils by the syk tyrosine kinase inhibitor piceatannol. The present studies investigated whether attachment of complement opsonized bacteria to complement receptors also involve the syk tyrosine kinase p...

  13. Modification of ionotropic glutamate receptor-mediated processes in the rat hippocampus following repeated, brief seizures.

    Borbély, S; Dobó, E; Czégé, D; Molnár, E; Bakos, M; Szucs, B; Vincze, A; Világi, I; Mihály, A


    The seizure-induced molecular and functional alterations of glutamatergic transmission in the hippocampus have been investigated. Daily repeated epileptic seizures were induced for 12 days by intraperitoneal administration of 4-aminopyridine (4-AP; 4.5 mg/kg) in adult Wistar rats. The seizure symptoms were evaluated on the Racine's scale. One day after the last injection, the brains were removed for in vitro electrophysiological experiments and immunohistochemical analysis. The glutamate receptor subunits NR1, NR2A, NR2B, GluR1, GluR1(flop), GluR2, and KA-2 were studied using the histoblotting method. The semi-quantitative analysis of subunit immunoreactivities in hippocampal layers was performed with densitometry. In the hippocampus, increase of GluR1, GluR1(flop) and NR2B immunostaining was observed in most of the areas and layers. The significant decrease of GluR2 staining intensity was observed in the CA1 and dentate gyrus. Calcium permeability of hippocampal neurons was tested by a cobalt uptake assay in hippocampal slices. The uptake of cobalt increased in the CA1 area and dentate gyrus, but not in the CA3 region following 4-AP treatment. Effects of AMPA and NMDA (N-methyl-d-aspartate) glutamate receptor antagonists (1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466) and D-APV respectively) were measured in hippocampal slices using extracellular recording. Analysis of the population spikes revealed the reduced effectiveness of the AMPA receptor antagonist GYKI 52466, while the effect of the NMDA receptor antagonist d-(2R)-amino-5-phosphonovaleric acid was similar to controls. The results demonstrated that repeated convulsions induced structural and functional changes in AMPA receptor-mediated transmission, while NMDA and kainate receptor systems displayed only alterations in receptor subunit composition. PMID:19154779

  14. Increased desensitization of dopamine D₂ receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors.

    Al-Hasani, R; Foster, J D; Metaxas, A; Ledent, C; Hourani, S M O; Kitchen, I; Chen, Y


    G-protein coupled receptors interact to provide additional regulatory mechanisms for neurotransmitter signaling. Adenosine A(2A) receptors are expressed at a high density in striatal neurons, where they closely interact with dopamine D₂ receptors and modulate effects of dopamine and responses to psychostimulants. A(2A) receptors are expressed at much lower densities in other forebrain neurons but play a more prominent yet opposing role to striatal receptors in response to psychostimulants in mice. It is, therefore, possible that A(2A) receptors expressed at low levels elsewhere in the brain may also regulate neurotransmitter systems and modulate neuronal functions. Dopamine D₂ receptors play an important role in autoinhibition of neuronal firing in dopamine neurons of the ventral tegmental area (VTA) and dopamine release in other brain areas. Here, we examined the effect of A(2A) receptor deletion on D₂ receptor-mediated inhibition of neuronal firing in dopamine neurons in the VTA. Spontaneous activity of dopamine neurons was recorded in midbrain slices, and concentration-dependent effects of the dopamine D₂ receptor agonist, quinpirole, was compared between wild-type and A(2A) knockout mice. The potency of quinpirole applied in single concentrations and the expression of D₂ receptors were not altered in the VTA of the knockout mice. However, quinpirole applied in stepwise escalating concentrations caused significantly reduced maximal inhibition in A(2A) knockout mice, indicating an enhanced agonist-induced desensitization of D₂ receptors in the absence of A(2A) receptors. The A(2A) receptor agonist, CGS21680, did not exert any effect on dopamine neuron firing or response to quinpirole, revealing a novel non-pharmacological interaction between adenosine A(2A) receptors and dopaminergic neurotransmission in midbrain dopamine neurons. Altered D₂ receptor desensitization may result in changes in dopamine neuron firing rate and pattern and dopamine

  15. Characterization of GABA/sub A/ receptor-mediated 36chloride uptake in rat brain synaptoneurosomes

    γ-Aminobutyric acid (GABA) receptor-mediated 36chloride (36Cl-) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated 36Cl- uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated 36Cl- uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated 36Cl- uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br->Cl-≥NO3->I-≥SCN->>C3H5OO-≥ClO4->F-, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl- channel. 43 references, 4 figures, 3 tables

  16. Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels.

    Inoue, Koichi; Branigan, Deborah; Xiong, Zhi-Gang


    Transient receptor potential melastatin 7 (TRPM7) channels are novel Ca(2+)-permeable non-selective cation channels ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in cellular Mg(2+) homeostasis, diseases caused by abnormal magnesium absorption, and in Ca(2+)-mediated neuronal injury under ischemic conditions. Here we show strong evidence suggesting that TRPM7 channels also play an important role in cellular Zn(2+) homeostasis and in Zn(2+)-mediated neuronal injury. Using a combination of fluorescent Zn(2+) imaging, small interfering RNA, pharmacological analysis, and cell injury assays, we show that activation of TRPM7 channels augmented Zn(2+)-induced injury of cultured mouse cortical neurons. The Zn(2+)-mediated neurotoxicity was inhibited by nonspecific TRPM7 blockers Gd(3+) or 2-aminoethoxydiphenyl borate, and by knockdown of TRPM7 channels with small interfering RNA. In addition, Zn(2+)-mediated neuronal injury under oxygen-glucose deprivation conditions was also diminished by silencing TRPM7. Furthermore, we show that overexpression of TRPM7 channels in HEK293 cells increased intracellular Zn(2+) accumulation and Zn(2+)-induced cell injury, while silencing TRPM7 by small interfering RNA attenuated the Zn(2+)-mediated cell toxicity. Thus, TRPM7 channels may represent a novel target for neurological disorders where Zn(2+) toxicity plays an important role. PMID:20048154

  17. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.


    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent (/sup 3/H)acetylcholine release from rabbit retina labeled in vitro with (/sup 3/H)choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of (/sup 3/H)acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of (/sup 3/H)acetylcholine with the following order of potency: apomorphine less than or equal to SKF(R)82526 < SKF 85174 < SKF(R)38393 less than or equal to pergolide less than or equal to dopamine (EC50 = 4.5 microM) < SKF(S)82526 less than or equal to SKF(S)38393. Dopamine receptor antagonists inhibited the dopamine-evoked release of (/sup 3/H)acetylcholine: SCH 23390 (IC50 = 1 nM) < (+)-butaclamol less than or equal to cis-flupenthixol < fluphenazine < perphenazine < trans-flupenthixol < R-sulpiride. The potencies of dopamine receptor agonists and antagonists at the dopamine receptor mediating (/sup 3/H)acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by (/sup 3/H)SCH 23390, or as determined by adenylate cyclase activity. (/sup 3/H)SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of (/sup 3/H)SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate (/sup 3/H)acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at (/sup 3/H)SCH 23390 binding sites (r = 0.755, P < .05, n = 8).

  18. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1.

    Li, Li; Fang, Celia J; Ryan, James C; Niemi, Eréne C; Lebrón, José A; Björkman, Pamela J; Arase, Hisashi; Torti, Frank M; Torti, Suzy V; Nakamura, Mary C; Seaman, William E


    Ferritin is a spherical molecule composed of 24 subunits of two types, ferritin H chain (FHC) and ferritin L chain (FLC). Ferritin stores iron within cells, but it also circulates and binds specifically and saturably to a variety of cell types. For most cell types, this binding can be mediated by ferritin composed only of FHC (HFt) but not by ferritin composed only of FLC (LFt), indicating that binding of ferritin to cells is mediated by FHC but not FLC. By using expression cloning, we identified human transferrin receptor-1 (TfR1) as an important receptor for HFt with little or no binding to LFt. In vitro, HFt can be precipitated by soluble TfR1, showing that this interaction is not dependent on other proteins. Binding of HFt to TfR1 is partially inhibited by diferric transferrin, but it is hindered little, if at all, by HFE. After binding of HFt to TfR1 on the cell surface, HFt enters both endosomes and lysosomes. TfR1 accounts for most, if not all, of the binding of HFt to mitogen-activated T and B cells, circulating reticulocytes, and all cell lines that we have studied. The demonstration that TfR1 can bind HFt as well as Tf raises the possibility that this dual receptor function may coordinate the processing and use of iron by these iron-binding molecules. PMID:20133674

  19. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    Dooley, Ruth


    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  20. Regulation of ENaC-Mediated Sodium Reabsorption by Peroxisome Proliferator-Activated Receptors

    Tengis S. Pavlov


    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of a steroid hormone receptor superfamily that responds to changes in lipid and glucose homeostasis. Peroxisomal proliferator-activated receptor subtype γ (PPARγ has received much attention as the target for antidiabetic drugs, as well as its role in responding to endogenous compounds such as prostaglandin J2. However, thiazolidinediones (TZDs, the synthetic agonists of the PPARγ are tightly associated with fluid retention and edema, as potentially serious side effects. The epithelial sodium channel (ENaC represents the rate limiting step for sodium absorption in the renal collecting duct. Consequently, ENaC is a central effector impacting systemic blood volume and pressure. The role of PPARγ agonists on ENaC activity remains controversial. While PPARγ agonists were shown to stimulate ENaC-mediated renal salt absorption, probably via Serum- and Glucocorticoid-Regulated Kinase 1 (SGK1, other studies reported that PPARγ agonist-induced fluid retention is independent of ENaC activity. The current paper provides new insights into the control and function of ENaC and ENaC-mediated sodium transport as well as several other epithelial channels/transporters by PPARs and particularly PPARγ. The potential contribution of arachidonic acid (AA metabolites in PPAR-dependent mechanisms is also discussed.

  1. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    Dooley, Ruth


    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  2. Multi-scale Simulation of Receptor-Ligand-Mediated Adhesion of Two (PMN) Leukocytes

    Gupta, Vijay; Konstantopoulos, Kostas; Eggleton, Charles


    Leukocytes are recruited from the bloodstream to the site of inflammation through interactions between cell surface receptors and complementary ligands expressed on the surface of the endothelium. PMNs rolling on activated endothelium can mediate secondary capture of PMNs flowing in the free stream through homotypic interactions. This interaction is mediated by L-selectin binding to PSGL-1 between the free-stream and adherent PMNs. Both L-selectin and PSGL-1 molecules are concentrated on the tips of PMN microvilli. It has been demonstrated that steady application of a threshold level of shear rate is necessary to support PMN homotypic aggregation in bulk suspension. A reduction of shear rate below a threshold value diminishes the probability of cell adhesion. Cell aggregation is a complex phenomenon involving the interplay of bond kinetics and hydrodynamics. We simulate PSGL-1--L-selectin-mediated homotypic leukocyte adhesion-dissociation under an externally applied force field using the Immersed Boundary Method. We investigate the influence of membrane elasticity and kinetic parameters on contact area, bond dynamics, average number of bonds formed and their respective life time. A Hookean spring model is used to characterize receptor-ligand bonds and their stochastic nature is simulated using the Monte Carlo technique.

  3. Killing of intracellular Mycobacterium tuberculosis by receptor-mediated drug delivery

    Majumdar, S.; Basu, S.K. (Institute of Microbial Technology, Chandigarh (India))


    p-Aminosalicylic acid (PAS) conjugated to maleylated bovine serum albumin (MBSA) was taken up efficiently through high-affinity MBSA-binding sites on macrophages. Binding of the radiolabeled conjugate to cultured mouse peritoneal macrophages at 4 degrees C was competed for by MBSA but not by PAS. At 37 degrees C, the radiolabeled conjugate was rapidly degraded by the macrophages, leading to release of acid-soluble degradation products in the medium. The drug conjugate was nearly 100 times as effective as free PAS in killing the intracellular mycobacteria in mouse peritoneal macrophages infected in culture with Mycobacterium tuberculosis. The killing of intracellular mycobacteria mediated by the drug conjugate was effectively prevented by simultaneous addition of excess MBSA (100 micrograms/ml) or chloroquine (3 microM) to the medium, whereas these agents did not affect the microbicidal action of free PAS. These results suggest that (i) uptake of the PAS-MBSA conjugate was mediated by cell surface receptors on macrophages which recognize MBSA and (ii) lysosomal hydrolysis of the internalized conjugate resulted in intracellular release of a pharmacologically active form of the drug, which led to selective killing of the M. tuberculosis harbored by mouse macrophages infected in culture. This receptor-mediated modality of delivering drugs to macrophages could contribute to greater therapeutic efficacy and minimization of toxic side effects in the management of tuberculosis and other intracellular mycobacterial infections.

  4. Killing of intracellular Mycobacterium tuberculosis by receptor-mediated drug delivery

    p-Aminosalicylic acid (PAS) conjugated to maleylated bovine serum albumin (MBSA) was taken up efficiently through high-affinity MBSA-binding sites on macrophages. Binding of the radiolabeled conjugate to cultured mouse peritoneal macrophages at 4 degrees C was competed for by MBSA but not by PAS. At 37 degrees C, the radiolabeled conjugate was rapidly degraded by the macrophages, leading to release of acid-soluble degradation products in the medium. The drug conjugate was nearly 100 times as effective as free PAS in killing the intracellular mycobacteria in mouse peritoneal macrophages infected in culture with Mycobacterium tuberculosis. The killing of intracellular mycobacteria mediated by the drug conjugate was effectively prevented by simultaneous addition of excess MBSA (100 micrograms/ml) or chloroquine (3 microM) to the medium, whereas these agents did not affect the microbicidal action of free PAS. These results suggest that (i) uptake of the PAS-MBSA conjugate was mediated by cell surface receptors on macrophages which recognize MBSA and (ii) lysosomal hydrolysis of the internalized conjugate resulted in intracellular release of a pharmacologically active form of the drug, which led to selective killing of the M. tuberculosis harbored by mouse macrophages infected in culture. This receptor-mediated modality of delivering drugs to macrophages could contribute to greater therapeutic efficacy and minimization of toxic side effects in the management of tuberculosis and other intracellular mycobacterial infections

  5. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro.

    Wigmore, M A; Lacey, M G


    1. Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (, evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain. 2. The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01-30 microM) by up to 60% with an EC50 of 0.82 microM. The depression induced by L-AP4 (3 microM) was reversed by the group III preferring mGlu receptor antagonist, alpha-methyl-4-phosphonophenylglycine (MPPG; 250 microM). 3. The group I and II mGlu agonist, 1S,3R-aminocyclopentanedicarboxylic acid (ACPD; 3-30 microM) also depressed the e.p.s.p. in a concentration-dependent manner. The effect of ACPD (10 microM) was reversed by (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; 1 mM; 4 cells). This effect of ACPD was also partially antagonized (by 50.3+/-15.7%, 4 cells) by MPPG (250 microM). 4. The selective agonist at group I mGlu receptors, dihydroxyphenylglycine (DHPG; 100 microM), decreased e.p.s.p. amplitude by 27.1+/-8.2% (7 cells), as did the group II mGlu receptor-selective agonist (1S,1R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 microM) by 26.7+/-4.3% (5 cells). 5. DHPG (10-100 microM) caused a depolarization of the recorded cell, as did ACPD (3-30 microM), whereas no such postsynaptic effect of either L-AP4 or DCG-IV was observed. 6. These results provide evidence for the presence of presynaptic inhibitory metabotropic glutamate autoreceptors from the mGlu receptor groups II and III on descending glutamatergic inputs to midbrain dopamine neurones. Group I mGlu receptors mediate a postsynaptic depolarization, and can also depress glutamatergic transmission, but may not necessarily be localized presynaptically. These sites represent novel drug targets for treatment of schizophrenia and movement disorders of basal ganglia origin. PMID

  6. Estrogen and Estrogen Receptor-α-Mediated Transrepression of Bile Salt Export Pump.

    Chen, Yuan; Vasilenko, Alex; Song, Xiulong; Valanejad, Leila; Verma, Ruchi; You, Sangmin; Yan, Bingfang; Shiffka, Stephanie; Hargreaves, Leeza; Nadolny, Christina; Deng, Ruitang


    Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy is the most prevalent disorder with elevated serum bile acid levels. We have previously shown that estrogen 17β-estradiol (E2) transrepresses bile salt export pump (BSEP) through an interaction between estrogen receptor (ER)-α and farnesoid X receptor (FXR) and transrepression of BSEP by E2/ERα is an etiological contributing factor to intrahepatic cholestasis of pregnancy. Currently the mechanistic insights into such transrepression are not fully understood. In this study, the dynamics of coregulator recruitment to BSEP promoter after FXR activation and E2 treatment were established with quantitative chromatin immunoprecipitation assays. Coactivator peroxisome proliferator-activated receptor-γ coactivator-1 was predominantly recruited to the BSEP promoter upon FXR activation, and its recruitment was decreased by E2 treatment. Meanwhile, recruitment of nuclear receptor corepressor was markedly increased upon E2 treatment. Functional evaluation of ERα and ERβ chimeras revealed that domains AC of ERα are the determinants for ERα-specific transrepression on BSEP. Further studies with various truncated ERα proteins identified the domains in ERα responsible for ligand-dependent and ligand-independent transrepression. Truncated ERα-AD exhibited potent ligand-independent transrepressive activity, whereas ERα-CF was fully capable of transrepressing BSEP ligand dependently in vitro in Huh 7 cells and in vivo in mice. Both ERα-AD and ERα-CF proteins were associated with FXR in the coimmunoprecipitation assays. In conclusion, E2 repressed BSEP expression through diminishing peroxisome proliferator-activated receptor-γ coactivator-1 recruitment with a concurrent increase in nuclear receptor corepressor recruitment to the BSEP promoter. Domains AD and CF in ERα mediated ligand-independent and ligand-dependent transrepression on BSEP, respectively, through interacting with FXR. PMID:25675114

  7. The effect of vanadate on receptor-mediated endocytosis of asialoorosomucoid in rat liver parenchymal cells

    Vanadate is a phosphate analogue that inhibits enzymes involved in phosphate release and transfer reactions. Since such reactions may play important roles in endocytosis, we studied the effects of vanadate on various steps in receptor-mediated endocytosis of asialoorosomucoid labeled with 125I-tyramine-cellobiose (125I-TC-AOM). The labeled degradation products formed from 125I-TC-AOM are trapped in the lysosomes and may therefore serve as lysosomal markers in subcellular fractionation studies. Vanadate reduced the amount of active surface asialoglycoprotein receptors approximately 70%, but had no effect on the rate of internalization and retroendocytosis of ligand. The amount of surface asialoglycoprotein receptors can be reduced by lowering the incubation temperature gradually from 37 to 15 degrees C; vanadate affected only the temperature--sensitive receptors. Vanadate inhibited degradation of 125I-TC-AOM 70-80%. Degradation was much more sensitive to vanadate than binding; half-maximal effects were seen at approximately 1 mM vanadate for binding and approximately 0.1 mM vanadate for degradation. By subcellular fractionation in sucrose and Nycodenz gradients, it was shown that vanadate completely prevented the transfer of 125I-TC-AOM from endosomes to lysosomes. Therefore, the inhibition of degradation by vanadate was indirect; in the presence of vanadate, ligand did not gain access to the lysosomes. The limited degradation in the presence of vanadate took place in a prelysosomal compartment. Vanadate did not affect cell viability and ATP content

  8. Expression of the lysophospholipid receptor family and investigation of lysophospholipid-mediated responses in human macrophages.

    Duong, Chinh Quoc; Bared, Salim Maa; Abu-Khader, Ahmad; Buechler, Christa; Schmitz, Anna; Schmitz, Gerd


    Some of the biological effects of lipoproteins have been attributed to their association with lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC). These lysophospholipids mediate multiple biological responses via several G protein-coupled receptors (GPR). The expression of these receptors, however, has not been systematically investigated in primary human monocytes and macrophages as major cells involved in atherosclerosis. The mRNAs for all 15 receptors described so far were detected in monocytes, macrophages, foam cells and high density lipoprotein (HDL(3))-treated cells using real time RT-PCR. Immunoblots revealed that S1P(1), S1P(2), S1P(4), LPA(1), LPA(2) and GPR65 are expressed in monocytes and macrophages, while S1P(5) and LPA(3) have not been detected. S1P(3) was induced during differentiation but down-regulated by lipid-loading and HDL(3), whereas LPA(1) was down-regulated in differentiated macrophages. The influence of S1P on macrophages was investigated and the induction of CD32 indicates an enhanced phagocytic activity. Altogether, these data give insights into the expression and regulation of lysophospholipid receptors in primary human monocytes, macrophages and foam cells. PMID:15158762

  9. Evidence that 5-hydroxytryptamine/sub 3/ receptors mediate cytotoxic drug and radiation-evoked emesis

    Miner, W.D.; Sanger, G.J.; Turner, D.H.


    The involvement of 5-hydroxytryptamine (5-HT) 5-HT/sub 3/ receptors in the mechanisms of severe emesis evoked by cytotoxic drugs or by total body irradiation have been studied in ferrets. Anti-emetic compounds tested were domperidone (a dopamine antagonist), metoclopramide (a gastric motility stimulant and dopamine antagonist at conventional doses, a 5-HT/sub 3/ receptor antagonist at higher doses) and BRL 24924 (a potent gastric motility stimulant and a 5-HT/sub 3/ receptor antagonist). Domperidone or metoclopramide prevented apomorphine-evoked emesis, whereas BRL 24924 did not. Similar doses of domperidone did not prevent emesis evoked by cis-platin or by total body irradiation, whereas metoclopramide or BRL 24924 greatly reduced or prevented these types of emesis. Metoclopramide and BRL 24924 also prevented emesis evoked by a combination of doxorubicin and cyclophosphamide. These results are discussed in terms of a fundamental role for 5-HT/sub 3/ receptors in the mechanisms mediating severely emetogenic cancer treatment therapies.

  10. Inhibition of Acetylcholinesterase Modulates NMDA Receptor Antagonist Mediated Alterations in the Developing Brain

    Ivo Bendix


    Full Text Available Exposure to N-methyl-d-aspartate (NMDA receptor antagonists has been demonstrated to induce neurodegeneration in newborn rats. However, in clinical practice the use of NMDA receptor antagonists as anesthetics and sedatives cannot always be avoided. The present study investigated the effect of the indirect cholinergic agonist physostigmine on neurotrophin expression and the extracellular matrix during NMDA receptor antagonist induced injury to the immature rat brain. The aim was to investigate matrix metalloproteinase (MMP-2 activity, as well as expression of tissue inhibitor of metalloproteinase (TIMP-2 and brain-derived neurotrophic factor (BDNF after co-administration of the non-competitive NMDA receptor antagonist MK801 (dizocilpine and the acetylcholinesterase (AChE inhibitor physostigmine. The AChE inhibitor physostigmine ameliorated the MK801-induced reduction of BDNF mRNA and protein levels, reduced MK801-triggered MMP-2 activity and prevented decreased TIMP-2 mRNA expression. Our results indicate that AChE inhibition may prevent newborn rats from MK801-mediated brain damage by enhancing neurotrophin-associated signaling pathways and by modulating the extracellular matrix.

  11. Trafficking of α1B-adrenergic receptor mediated by inverse agonist in living cells

    MingXU; Ying-huaGUAN; NingXU; Zhang-yiLIANG; Shu-yiWang; YaoSONG; Chi-deHAN; Xin-shengZHAO; You-yiZHANG


    AIM The project is aimed at understanding the action of inverse agonist at single molecule level and capturing the real time picture of molecular behavior of α1B-adrenergic receptor (AR) mediated by inverse agonist in living cells by single molecule detection (SMD). METHODS The location and distribution of α1B-AR was detected by laser confocal and whole cell 3H-prazosin binding assay. Dynamic imaging of BODIPY-FL-labeled prazosin (Praz), specific antagonist of (1-AR, was observed in α1B-AR stably expressed human embryonic kidney 293 (HEK293) living cells. The detection of real-time dynamic behaviors of AR was achieved by using fluorescence-labeled AR and its ligand combined with SMD techniques. RESULTS α1B-AR was predominantly distributed on the cell surface and 8.2% of the total receptors were located in cytosol.

  12. Augmentation of glycine receptor alpha3 currents suggests a mechanism for glucose-mediated analgesia.

    Breitinger, Ulrike; Breitinger, Hans-Georg


    The inhibitory glycine receptor (GlyR) mediates rapid synaptic inhibition in the mammalian central nervous system. Recently, glucose was identified as a positive modulator of α1 GlyRs. Here, recombinant human α3GlyRs with and without glucose treatment were studied using patch clamp methods. Similar to α1GlyRs, receptor variants α3L and α3K were potentiated by sugar. Glucose treatment reduced EC50 values of GlyR α3L and α3K by a factor of 4.5 and 3.3, respectively, without affecting maximum currents or desensitization. The high-activity mutant α3L(P185L) was not further potentiated by glucose. Potentiation of glycinergic signalling may underlie some of the analgetic effects of glucose. PMID:26656729

  13. Signalling mechanism for somatostatin receptor 5-mediated suppression of AMPA responses in rat retinal ganglion cells.

    Deng, Qin-Qin; Sheng, Wen-Long; Zhang, Gong; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei


    Somatostatin (SRIF) is involved in a variety of physiological functions via the activation of five subtypes of specific receptors (sst1-5). Here, we investigated the effects of SRIF on AMPA receptor (AMPAR)-mediated currents (AMPA currents) in isolated rat retinal ganglion cells (GCs) using patch-clamp techniques. Immunofluorescence double labelling demonstrated the expression of sst5 in rat GCs. Consistent to this, whole cell AMPA currents of GCs were dose-dependently suppressed by SRIF, and the effect was reversed by the sst5 antagonist BIM-23056. Intracellular dialysis of GDP-β-S or pre-incubation with the Gi/o inhibitor pertussis toxin (PTX) abolished the SRIF effect. The SRIF effect was mimicked by the administration of either 8-Br-cAMP or forskolin, but was eliminated by the protein kinase A (PKA) antagonists H-89/KT5720/Rp-cAMP. Moreover, SRIF increased intracellular Ca(2+) levels and did not suppress the AMPA currents when GCs were infused with an intracellular Ca(2+)-free solution or in the presence of ryanodine receptor modulators caffeine/ryanodine. Furthermore, the SRIF effect was eliminated when the activity of calmodulin (CaM), calcineurin and protein phosphatase 1 (PP1) was blocked with W-7, FK-506 and okadaic acid, respectively. SRIF persisted to suppress the AMPA currents when cGMP-protein kinase G (PKG) and phosphatidylinositol (PI)-/phosphatidylcholine (PC)-phospholipase C (PLC) signalling pathways were blocked. In rat flat-mount retinas, SRIF suppressed AMPAR-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) in GCs. We conclude that a distinct Gi/o/cAMP-PKA/ryanodine/Ca(2+)/CaM/calcineurin/PP1 signalling pathway comes into play due to the activation of sst5 to mediate the SRIF effect on GCs. PMID:26969240

  14. Oxidative stress augments toll-like receptor 8 mediated neutrophilic responses in healthy subjects

    Matsunaga Kazuto


    Full Text Available Abstract Background Excessive oxidative stress has been reported to be generated in inflamed tissues and contribute to the pathogenesis of inflammatory lung diseases, exacerbations of which induced by viral infections are associated with toll-like receptor (TLR activation. Among these receptors, TLR8 has been reported as a key receptor that recognizes single-strand RNA virus. However, it remains unknown whether TLR8 signaling is potentiated by oxidative stress. The aim of this study is to examine whether oxidative stress modulates TLR8 signaling in vitro. Methods Human peripheral blood neutrophils were obtained from healthy non-smokers and stimulated with TLR 7/8 agonist imidazoquinoline resiquimod (R848 in the presence or absence of hydrogen peroxide (H2O2. Neutrophilic responses including cytokine release, superoxide production and chemotaxis were examined, and the signal transduction was also analyzed. Results Activation of TLR8, but not TLR7, augmented IL-8 release. The R848-augmented IL-8 release was significantly potentiated by pretreatment with H2O2 (p L-cysteine reversed this potentiation. The combination of H2O2 and R848 significantly potentiated NF-kB phosphorylation and IkBα degradation. The H2O2-potentiated IL-8 release was suppressed by MG-132, a proteosome inhibitor, and by dexamethasone. The expressions of TLR8, myeloid differentiation primary response gene 88 (MyD88, and tumor necrosis factor receptor-associated factor 6 (TRAF6 were not affected by H2O2. Conclusion TLR8-mediated neutrophilic responses were markedly potentiated by oxidative stress, and the potentiation was mediated by enhanced NF-kB activation. These results suggest that oxidative stress might potentiate the neutrophilic inflammation during viral infection.

  15. The CB1 receptor as an important mediator of hedonic reward processing.

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam


    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex-the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing. PMID:24718372

  16. α4-Containing GABAA Receptors in the Nucleus Accumbens Mediate Moderate Intake of Alcohol

    Rewal, Mridula; Jurd, Rachel; Gill, T. Michael; He, Dao-Yao; Ron, Dorit; Janak, Patricia H.


    Alcohol has subjective and behavioral effects at the pharmacological levels typically reached during the consumption of one or two alcoholic drinks. Here we provide evidence that an α4-subunit-containing gamma-amino-butyric acid A (GABAA) receptor contributes to the consumption of low-to-moderate levels of alcohol. Using viral-mediated RNA-interference (RNAi), we found that reduced expression of the α4 subunit in the nucleus accumbens (NAc) shell of rats decreased their free consumption of an...

  17. The Melanocortin 3 Receptor: A Novel Mediator of Exercise-Induced Inflammation Reduction in Postmenopausal Women?

    Henagan, Tara M.; Phillips, Melody D.; Cheek, Dennis J.; K. Michelle Kirk; Barbee, James J.; Stewart, Laura K.


    The purpose of this study was to determine whether resistance exercise training-induced reductions in inflammation are mediated via melanocortin 3 receptor expression in obese (BMI 3 2 . 7 ± 3 . 7 ) women ( 6 5 . 6 ± 2 . 8  yrs) randomized to either a control ( = 1 1 ) or resistance training group ( = 1 2 ). The resistance trained group performed resistance training 3 days/week for 12 weeks. Resting blood samples were collected before and after the training intervention in both resistance...

  18. Neuronal nicotinic acetylcholine receptors serve as sensitive targets that mediate β-amyloid neurotoxicity

    Qiang LIU; Jie WU


    Alzheimer's disease (AD) is the most common form of brain dementia characterized by the accumulation of β-amyloid peptides (Aβ) and loss of forebrain cholinergic neurons. Aβ accumulation and aggregation are thought to contribute to cholinergic neuronal degeneration, in turn causing learning and memory deficits, but the specific targets that mediate Aβ neurotoxicity remain elusive. Recently, accumlating lines of evidence have demonstrated that Aβ directly modulates the function of neuronal nicotinic acetylcholine receptors (nAChRs), which leads to the new hypothesis that neuronal nAChRs may serve as important targets that mediate Aβ neurotoxicity. In this review, we summarize current studies performed in our laboratory and in others to address the question of how Aβ modulates neuronal nAChRs, especially nAChR subunit function.

  19. Characterization of the 5-hydroxytryptamine receptors mediating contraction in the pig isolated intravesical ureter

    Hernández, Medardo; Barahona, María Victoria; Simonsen, Ulf; Recio, Paz; Rivera, Luis; Martínez, Ana Cristina; García-Sacristán, Albino; Orensanz, Luis M; Prieto, Dolores


    This study was designed to investigate the effect of 5-hydroxytryptamine (5-HT) and to characterize the 5-HT receptors involved in 5-HT responses in the pig intravesical ureter. 5-HT (0.01–10 μM) concentration-dependently increased the tone of intravesical ureteral strips, whereas the increases in phasic contractions were concentration-independent. The 5-HT2 receptor agonist α-methyl 5-HT, mimicked the effect on tone whereas weak or no response was obtained with 5-CT, 8-OH-DPAT, m-chlorophenylbiguanide and RS 67333, 5-HT1, 5-HT1A, 5-HT3 and 5-HT4 receptor agonists, respectively. 5-HT did not induce relaxation of U46619-contracted ureteral preparations. Pargyline (100 μM), a monoaminooxidase A/B activity inhibitor, produced leftward displacements of the concentration-response curves for 5-HT. 5-HT-induced tone was reduced by the 5-HT2 and 5-HT2A receptor antagonists ritanserine (0.1 μM) and spiperone (0.2 μM), respectively. However, 5-HT contraction was not antagonized by cyanopindolol (2 μM), SDZ–SER 082 (1 μM), Y-25130 (1 μM) and GR 113808 (0.1 μM), which are respectively, 5-HT1A/1B, 5-HT2B/2C, 5-HT3, and 5-HT4 selective receptor antagonists. Removal of the urothelium did not modify 5-HT-induced contractions. Blockade of neuronal voltage-activated sodium channels, α-adrenergic receptors and adrenergic neurotransmission with tetrodotoxin (1 μM), phentolamine (0.3 μM) and guanethidine (10 μM), respectively, reduced the contractions to 5-HT. However, physostigmine (1 μM), atropine (0.1 μM) and suramin (30 μM), inhibitors of cholinesterase activity, muscarinic- and purinergic P2-receptors, respectively, failed to modify the contractions to 5-HT. These results suggest that 5-HT increases the tone of the pig intravesical ureter through 5-HT2A receptors located at the smooth muscle. Part of the 5-HT contraction is indirectly mediated via noradrenaline release from sympathetic nerves. PMID:12522083

  20. Selective effects of ligands on vitamin D3 receptor- and retinoid X receptor-mediated gene activation in vivo.

    Lemon, B D; Freedman, L P


    Steroid/nuclear hormone receptors are ligand-regulated transcription f factors that play key roles in cell regulation, differentiation, and oncogenesis. Many nuclear receptors, including the human 1,25-dihydroxyvitamin D3 receptor (VDR), bind cooperatively to DNA either as homodimers or as heterodimers with the 9-cis retinoic acid (RA) receptor (retinoid X-receptor [RXR]). We have previously reported that the ligands for VDR and RXR can differentially modulate the affinity of the receptors' i...

  1. EGF-Receptor-Mediated Mammary Epithelial Cell Migration is Driven by Sustained ERK Signaling from Autocrine Stimulation

    Joslin, Elizabeth J.; Opresko, Lee; Wells, Alan; Wiley, H. S.; Lauffenburger, Douglas A.


    Aberrant expression of epidermal growth factor (EGF) receptor family ligands, as well as the receptors themselves, has been implicated in various types of cancers. EGF family ligands are synthesized as membrane-anchored proteins requiring proteolytic release to form the mature soluble factor. Despite the pathophysiological importance of autocrine systems, how the rate of protease-mediated ligand release quantitatively influences receptor-mediated signaling and consequent cell behavior is poorly understood. Therefore, we explored the relationship between autocrine EGF release rates and receptor-mediated ERK activation and migration in human mammary epithelial cells. A quantitative spectrum of EGF release rates was achieved using a set of chimeric transmembrane EGF ligand precursors modulated by the addition of the metalloprotease inhibitor batimastat. We found that ERK activation increased with increasing ligand release rates despite concomitant EGF receptor downregulation. Cell migration speed depended linearly on the steady-state phospho-ERK level obtained from either autocrine or exogenous ligand, but was much greater at any given phospho-ERK level for autocrine compared to exogenous stimulation. In contrast, cell proliferation rates were relatively constant across the various treatment conditions. Thus, in these cells, ERK-mediated migration stimulated by EGF receptor signaling is most sensitively regulated by autocrine ligand control mechanisms.

  2. Monoolein-based nanocarriers for enhanced folate receptor-mediated RNA delivery to cancer cells.

    Lopes, Ivo; C N Oliveira, Ana; P Sárria, Marisa; P Neves Silva, João; Gonçalves, Odete; Gomes, Andreia C; Real Oliveira, Maria Elisabete C D


    We report the development and characterization of a novel nanometric system for specific delivery of therapeutic siRNA for cancer treatment. This vector is based on a binary mixture of the cationic surfactant dioctadecyldimethylammonium chloride (DODAC) and the helper lipid monoolein (MO). These liposomes were previously validated by our research group as promising non-viral vectors for nucleic acid delivery. In this work, the DODAC:MO vesicles were for the first time functionalized with polyethylene glycol and PEG-folate conjugates to achieve both maximal stability in biological fluids and increase selectivity toward folate receptor α expressing cells. The produced DODAC:MO:PEG liposomes were highly effective in RNA complexation (close to 100%), and the resulting lipoplexes also demonstrated high stability in conditions simulating their administration by intravenous injection (physiological pH, high NaCl, heparin and fetal bovine serum concentrations). In addition, cell uptake of the PEG-folate-coated lipoplexes was significantly greater in folate receptor α positive breast cancer cells (39% for 25 µg/mL of lipid and 31% for 40 µg/mL) when compared with folate receptor α negative cells (31% for 25 µg/mL of lipid and 23% for 40 µg/mL) and to systems without PEG-folate (≈13% to 16% for all tested conditions), supporting their selectivity towards the receptor. Overall, the results support these systems as appealing vectors for selective delivery of siRNA to cancer cells by folate receptor α-mediated internalization, aiming at future therapeutic applications of interest. PMID:26340109

  3. NGF-induced mechanical sensitization of the masseter muscle is mediated through peripheral NMDA receptors.

    Wong, H; Kang, I; Dong, X-D; Christidis, N; Ernberg, M; Svensson, P; Cairns, B E


    Intramuscular injection of nerve growth factor (NGF) in healthy humans mimics some of the symptoms of myofascial temporomandibular disorders (M-TMD). We hypothesized that NGF induces a prolonged myofascial mechanical sensitization by increasing peripheral N-methyl-d-aspartate (NMDA) receptor expression, leading to an enhanced response of muscle nociceptors to endogenous glutamate. Behavioral experiments with an injection of NGF (25 μg/ml, 10 μl) into the masseter muscle reduced the mechanical withdrawal threshold for 1 day in male rats and 5 days in female rats. These results mirror the sex-related differences found in NGF-induced mechanical sensitization in humans. Intramuscular injection with the competitive NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV, 0.020 g/ml, 10 μl) reversed the mechanical sensitization in male but not in female rats. NGF increased the number of NMDA receptor subtype 2B (NR2B)-expressing rat trigeminal masseter ganglion neurons in both sexes, which peaked at 3 days post injection. There was an association between the levels of NR2B expression and NGF-induced mechanical sensitization. The average soma size of NR2B-expressing neurons increased significantly. Increased expression of neuropeptides (CGRP and SP) was observed in NR2B-expressing masseter ganglion neurons in female but not in male rats. In healthy men and women, comparable basal expression levels of NR2B and SP were found in peripheral fibers from masseter muscle microbiopsies. This study suggests that NGF-induced sensitization of masseter nociceptors is mediated, in part, by enhanced peripheral NMDA receptor expression. Measurement of peripheral NMDA receptor expression may be useful as a biomarker for M-TMD pain. PMID:24704516

  4. Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons

    Hu Jian-Li


    Full Text Available Abstract Background Interactions between dopamine and glutamate in the prefrontal cortex are essential for cognitive functions such as working memory. Modulation of N-methyl-D-aspartic acid (NMDA receptor functions by dopamine D1 receptor is believed to play a critical role in these functions. The aim of the work reported here is to explore the signaling pathway underlying D1 receptor-mediated trafficking of NMDA receptors in cultured rat prefrontal cortical neurons. Results Activation of D1 receptor by selective agonist SKF-81297 significantly increased the expression of NR2B subunits. This effect was completely blocked by small interfering RNA knockdown of Fyn, but not Src. Under control conditions, neither Fyn nor Src knockdown exhibited significant effect on basal NR2B expression. D1 stimulation significantly enhanced NR2B insertion into plasma membrane in cultured PFC neurons, a process obstructed by Fyn, but not Src, knockdown. Conclusions Dopamine D1 receptor-mediated increase of NMDA receptors is thus Fyn kinase dependent. Targeting this signaling pathway may be useful in treating drug addiction and schizophrenia.

  5. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis.

    Egan, Charlotte E; Sodhi, Chhinder P; Good, Misty; Lin, Joyce; Jia, Hongpeng; Yamaguchi, Yukihiro; Lu, Peng; Ma, Congrong; Branca, Maria F; Weyandt, Samantha; Fulton, William B; Niño, Diego F; Prindle, Thomas; Ozolek, John A; Hackam, David J


    The nature and role of the intestinal leukocytes in necrotizing enterocolitis (NEC), a severe disease affecting premature infants, remain unknown. We now show that the intestine in mouse and human NEC is rich in lymphocytes that are required for NEC development, as recombination activating gene 1–deficient (Rag1–/–) mice were protected from NEC and transfer of intestinal lymphocytes from NEC mice into naive mice induced intestinal inflammation. The intestinal expression of the lipopolysaccharide receptor TLR4, which is higher in the premature compared with full-term human and mouse intestine, is required for lymphocyte influx through TLR4-mediated upregulation of CCR9/CCL25 signaling. TLR4 also mediates a STAT3-dependent polarization toward increased proinflammatory CD3+CD4+IL-17+ and reduced tolerogenic Foxp3+ Treg lymphocytes (Tregs). Th17 lymphocytes were required for NEC development, as inhibition of STAT3 or IL-17 receptor signaling attenuated NEC in mice, while IL-17 release impaired enterocyte tight junctions, increased enterocyte apoptosis, and reduced enterocyte proliferation, leading to NEC. Importantly, TLR4-dependent Th17 polarization could be reversed by the enteral administration of retinoic acid, which induced Tregs and decreased NEC severity. These findings identify an important role for proinflammatory lymphocytes in NEC development via intestinal epithelial TLR4 that could be reversed through dietary modification. PMID:26690704

  6. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M


    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. PMID:26724516

  7. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria

    E.V. Seliverstova


    Full Text Available The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endosomes, and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intracellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals.

  8. Inflammatory and neuropathic cold allodynia are selectively mediated by the neurotrophic factor receptor GFRα3.

    Lippoldt, Erika K; Ongun, Serra; Kusaka, Geoffrey K; McKemy, David D


    Tissue injury prompts the release of a number of proalgesic molecules that induce acute and chronic pain by sensitizing pain-sensing neurons (nociceptors) to heat and mechanical stimuli. In contrast, many proalgesics have no effect on cold sensitivity or can inhibit cold-sensitive neurons and diminish cooling-mediated pain relief (analgesia). Nonetheless, cold pain (allodynia) is prevalent in many inflammatory and neuropathic pain settings, with little known of the mechanisms promoting pain vs. those dampening analgesia. Here, we show that cold allodynia induced by inflammation, nerve injury, and chemotherapeutics is abolished in mice lacking the neurotrophic factor receptor glial cell line-derived neurotrophic factor family of receptors-α3 (GFRα3). Furthermore, established cold allodynia is blocked in animals treated with neutralizing antibodies against the GFRα3 ligand, artemin. In contrast, heat and mechanical pain are unchanged, and results show that, in striking contrast to the redundant mechanisms sensitizing other modalities after an insult, cold allodynia is mediated exclusively by a single molecular pathway, suggesting that artemin-GFRα3 signaling can be targeted to selectively treat cold pain. PMID:27051069

  9. RelB, a new partner of aryl hydrocarbon receptor-mediated transcription

    Vogel, Christoph F. A.; Sciullo, Eric; Li, Wen; Wong, Pat; Lazennec, Gwendal; Matsumura, Fumio


    The NF-κB transcription factor family has a crucial role in rapid responses to stress and pathogens. We show that the NF-κB subunit RelB is functionally associated with the aryl hydrocarbon receptor (AhR) and mediates transcription of chemokines such as Interleukin-8 (IL-8) via activation of AhR and protein kinase A (PKA). RelB physically interacts with AhR and binds to an unrecognized RelB/AhR responsive element (RelBAhRE) of the IL-8 promoter linking two signaling pathways to activate gene transcription. We found a time-dependent recruitment of AhR to the RelBAhRE site of IL-8 mediated by the AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and via activation of PKA. Furthermore, NF-κB-binding sites that are preferentially recognized by RelB/p52 are a target for RelB/AhR complexes without addition of any stimuli implicating the endogenous function of the AhR. RelB/AhR complexes are also found to bind on Xenobiotic Responsive Elements (XRE), and RelB drastically increases the TCDD-induced XRE reporter activity. The interaction of RelB with AhR signaling, and AhR with NF-κB RelB signaling pathways represent a new mechanism of cross talk between the two nuclear receptor paradigms. PMID:17823304

  10. Receptor subtype involved in α1-adrenergic receptor-mediated Ca2+ sig-naling in cardiomyocytes

    Da-li LUO; Jian GAO; Lin-lin FAN; Yu TANG; You-yi ZHANG; Qi-de HAN


    Aim: The enhancement of intracellular Ca2+ signaling in response to α1-adrener-gic receptor (α1-AR) stimulation is an essential signal transduction event in the regulation of cardiac functions, such as cardiac growth, cardiac contraction, and cardiac adaptation to various situations. The present study was intended to determine the role(s) of the α1-AR subtype(s) in mediating this response. Methods: We evaluated the effects of subtype-specific agonists and antagonists of the α1- AR on the intracellular Ca2+ signaling of neonatal rat ventricular myocytes using a confocal microscope. Results: After being cultured for 48 h, the myocytes exhibited spontaneous local Ca2+ release, sparks, and global Ca2+ transients. The activation of the α1-AR with phenylephrine, a selective agonist of the α1-AR, dose-dependently increased the frequency of Ca2+ transients with an EC50 value of 2.3 μmol/L. Blocking the α1A-AR subtype with 5-methyhirapidil (5-Mu) inhi-bited the stimulatory effect of phenylephrine with an IC50 value of 6.7 nmol/L. In contrast, blockade of the α1B-AR and α1D-AR subtypes with chloroethylclonidine and BMY 7378, respectively, did not affect the phenylephrine effect. Similarly, the local Ca2+ spark numbers were also increased by the activation of theα1-AR, and this effect could be abolished selectively by 5-Mu. More importantly, A61603, a novel selective α1A-AR agonist, mimicked the effects of phenylephrine, but with more potency (EC50 value =6.9 nmol/L) in the potentiation of Ca2+ transients, and blockade of the α1A-AR by 5-Mu caused abolishment of its effects. Conclusion: These results indicate that α1-adrenergic stimulation of intracellular Ca2+ activity is mediated selectively by the α1A-AR.

  11. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer

    Becker, Marc A.; Ibrahim, Yasir H.; Oh, Annabell S.; Fagan, Dedra H.; Byron, Sara A.; Sarver, Aaron L.; Lee, Adrian V.; Shaw, Leslie M.; Fan, Cheng; Perou, Charles M.; Yee, Douglas


    Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer. PMID:26991655

  12. Probing multivalency in ligand–receptor-mediated adhesion of soft, biomimetic interfaces

    Stephan Schmidt


    Full Text Available Many biological functions at cell level are mediated by the glycocalyx, a dense carbohydrate-presenting layer. In this layer specific interactions between carbohydrate ligands and protein receptors are formed to control cell–cell recognition, cell adhesion and related processes. The aim of this work is to shed light on the principles of complex formation between surface anchored carbohydrates and receptor surfaces by measuring the specific adhesion between surface bound mannose on a concanavalin A (ConA layer via poly(ethylene glycol-(PEG-based soft colloidal probes (SCPs. Special emphasis is on the dependence of multivalent presentation and density of carbohydrate units on specific adhesion. Consequently, we first present a synthetic strategy that allows for controlled density variation of functional groups on the PEG scaffold using unsaturated carboxylic acids (crotonic acid, acrylic acid, methacrylic acid as grafting units for mannose conjugation. We showed by a range of analytic techniques (ATR–FTIR, Raman microscopy, zeta potential and titration that this synthetic strategy allows for straightforward variation in grafting density and grafting length enabling the controlled presentation of mannose units on the PEG network. Finally we determined the specific adhesion of PEG-network-conjugated mannose units on ConA surfaces as a function of density and grafting type. Remarkably, the results indicated the absence of a molecular-level enhancement of mannose/ConA interaction due to chelate- or subsite-binding. The results seem to support the fact that weak carbohydrate interactions at mechanically flexible interfaces hardly undergo multivalent binding but are simply mediated by the high number of ligand–receptor interactions.

  13. The Melanocortin 3 Receptor: A Novel Mediator of Exercise-Induced Inflammation Reduction in Postmenopausal Women?

    Tara M. Henagan


    Full Text Available The purpose of this study was to determine whether resistance exercise training-induced reductions in inflammation are mediated via melanocortin 3 receptor expression in obese (BMI 32.7±3.7 women (65.6±2.8 yrs randomized to either a control (=11 or resistance training group (=12. The resistance trained group performed resistance training 3 days/week for 12 weeks. Resting blood samples were collected before and after the training intervention in both resistance trained and control groups. Resistance training upregulated melanocortin 3 receptor mRNA by 16-fold (=.035 and decreased monocyte count, without changing leukocyte number, body composition, or body weight. Resistance trained individuals exhibited increased sensitivity to inflammatory stimuli, whereas control individuals exhibited no change. While there was no change in whole blood tumor necrosis factor alpha mRNA between the groups, whole blood interleukin 10 mRNA was higher in the resistance trained group following the intervention period. In summary, it appears that resistance training may modulate melanocortin 3 receptor expression, providing a possible mechanism for the anti-inflammatory effects of exercise training.

  14. Muscarinic receptor subtypes mediating the mucosal response to neural stimulation of guinea pig ileum

    Muscarinic receptors involved in the secretory response evoked by electrical stimulation of submucosal neutrons were investigated in muscle-stripped flat sheets of guinea pig ileum set up in flux chambers. Neural stimulation produced a biphasic increase in short-circuit current due to active chloride secretion. Atropine and 4-diphenylacetoxy-N-methylpiperadine methiodide (4-DAMP) (10-7 M) were more potent inhibitors of the cholinergic phase of the response than was pirenzepine. Dose-dependent increases in base-line short-circuit current were evoked by carbachol and bethanechol; 4-hydroxy-2-butynyl trimethylammonium chloride (McN A343) produced a much smaller effect. Tetrodotoxin abolished the effects of McN A343 but did not alter the responses of carbachol and bethanechol. McN A343 significantly reduced the cholinergic phase of the neurally evoked response and caused a rightward shift of the carbachol dose-response curve. All muscarinic compounds inhibited [3H]quinuclidinyl benzilate binding to membranes from muscosal scrapings, with a rank order of potency of 4-DAMP > pirenzepine > McN A343 > carbachol > bethanechol. These results suggest that acetylcholine released from submucosal neurons mediates chloride secretion by interacting with muscarinic cholinergic receptors that display a high binding affinity for 4-DAMP. Activation of neural muscarinic receptors makes a relatively small contribution to the overall secretory response

  15. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro [Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603 (Japan); Imagawa, Masayoshi, E-mail: [Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603 (Japan)


    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  16. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  17. The Relaxin Receptor (RXFP1) Utilizes Hydrophobic Moieties on a Signaling Surface of Its N-terminal Low Density Lipoprotein Class A Module to Mediate Receptor Activation*

    Kong, Roy C. K.; Petrie, Emma J.; Mohanty, Biswaranjan; Ling, Jason; Lee, Jeremy C. Y.; Gooley, Paul R.; Bathgate, Ross A. D.


    The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true “ligand” of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation. PMID:23926099

  18. The relaxin receptor (RXFP1) utilizes hydrophobic moieties on a signaling surface of its N-terminal low density lipoprotein class A module to mediate receptor activation.

    Kong, Roy C K; Petrie, Emma J; Mohanty, Biswaranjan; Ling, Jason; Lee, Jeremy C Y; Gooley, Paul R; Bathgate, Ross A D


    The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true "ligand" of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation. PMID:23926099

  19. Positive inotropic responses mediated by endothelin ET(A) and ET(B) receptors in human myocardial trabeculae

    Saetrum Opgaard, O; Möller, S; de Vries, R;


    The aim of the present study was to determine possible inotropic effects mediated by endothelin ET(A) and ET(B) receptors in human myocardial trabeculae from the right atrium and the left ventricle. Isolated trabeculae from human hearts were paced at 1.0 Hz in tissue baths, and changes in isometric......) receptor antagonist BQ 788 (1 microM) almost completely blocked this effect. These results suggest that both ET(A) and ET(B) receptors mediate positive inotropic responses at both the atrial and ventricular level in the human heart.......139317 (1 microM) decreased significantly (P < 0.005) the potency of ET- I in both atrial and ventricular trabeculae, without any significant changes in Emax (maximum effect obtained with an agonist). The ET(B) receptor agonist IRL 1620 had a positive inotropic effect only in some trabeculae, and the ET(B...

  20. The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation.

    Cowden, Jeffery M; Zhang, Mai; Dunford, Paul J; Thurmond, Robin L


    The role of histamine H(4) receptor (H(4)R) was investigated in a T-helper type 2 (Th2)-cell-mediated mouse skin inflammation model that mimics several of the features of atopic dermatitis. Treatment with two specific H(4)R antagonists before challenge with FITC led to a significant reduction in ear edema, inflammation, mast cell, and eosinophil infiltration. This was accompanied by a reduction in the levels of several cytokines and chemokines in the ear tissue. Upon ex vivo antigen stimulation of lymph nodes, H(4)R antagonism reduced lymphocyte proliferation and IL-4, IL-5, and IL-17 levels. One explanation for this finding is that lymph nodes from animals dosed with the H(4)R antagonist, JNJ 7777120, contained a lower number of FITC-positive dendritic cells. The effect of H(4)R antagonism on dendritic cell migration in vivo may be an indirect result of the reduction in tissue cytokines and chemokines or a direct effect on chemotaxis. In addition to anti-inflammatory effects, JNJ 7777120 also significantly inhibited the pruritus shown in the model. Therefore, the dual effects of H(4)R antagonists on pruritus and Th2-cell-mediated inflammation point to their therapeutic potential for the treatment of Th2-mediated skin disorders, including atopic dermatitis. PMID:19907432

  1. Vacuolar Sorting Receptor-Mediated Trafficking of Soluble Vacuolar Proteins in Plant Cells

    Hyangju Kang


    Full Text Available Vacuoles are one of the most prominent organelles in plant cells, and they play various important roles, such as degradation of waste materials, storage of ions and metabolites, and maintaining turgor. During the past two decades, numerous advances have been made in understanding how proteins are specifically delivered to the vacuole. One of the most crucial steps in this process is specific sorting of soluble vacuolar proteins. Vacuolar sorting receptors (VSRs, which are type I membrane proteins, are involved in the sorting and packaging of soluble vacuolar proteins into transport vesicles with the help of various accessory proteins. To date, large amounts of data have led to the development of two different models describing VSR-mediated vacuolar trafficking that are radically different in multiple ways, particularly regarding the location of cargo binding to, and release from, the VSR and the types of carriers utilized. In this review, we summarize current literature aimed at elucidating VSR-mediated vacuolar trafficking and compare the two models with respect to the sorting signals of vacuolar proteins, as well as the molecular machinery involved in VSR-mediated vacuolar trafficking and its action mechanisms.

  2. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila.

    Liu, Bo; Zheng, Yonggang; Yin, Feng; Yu, Jianzhong; Silverman, Neal; Pan, Duojia


    The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings. PMID:26824654

  3. The arginine vasopressin V1b receptor gene and prosociality: Mediation role of emotional empathy.

    Wu, Nan; Shang, Siyuan; Su, Yanjie


    The vasopressin V1b receptor (AVPR1B) gene has been shown to be closely associated with bipolar disorder and depression. However, whether it relates to positive social outcomes, such as empathy and prosocial behavior, remains unknown. This study explored the possible role of the AVPR1B gene rs28373064 in empathy and prosociality. A total of 256 men, who were genetically unrelated, non-clinical ethnic Han Chinese college students, participated in the study. Prosociality was tested by measuring the prosocial tendencies of cognitive and emotional empathy using the Interpersonal Reactivity Index (IRI). The single nucleotide polymorphism (SNP), rs28373064, was genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The results suggest that the AVPR1B gene rs28373064 is linked to emotional empathy and prosociality. The mediation analysis indicated that the effect of the AVPR1B gene on prosociality might be mediated by emotional empathy. This study demonstrated the link between the AVPR1B gene and prosociality and provided evidence that emotional empathy might mediate the relation between the AVPR1B gene and prosociality. PMID:26354157

  4. Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes

    Sun, Hongfan


    Yingna He, Linhua Zhang, Cunxian SongKey Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, ChinaAbstract: A sterically stabilized, mitoxantrone-loaded liposome, tailored to target luteinizing hormone-releasing hormone (LHRH) receptor overexpressing cells, was developed to promote the efficiency of intracellular delivery of mitoxantrone through receptor-mediated endocytosis. Liposome...

  5. Cleavage of colicin Ia by the Escherichia coli K-12 outer membrane is not mediated by the colicin Ia receptor.

    Bowles, L K; Konisky, J


    Colicin Ia can be cleaved by isolated outer membranes prepared from sensitive and resistant (lacking the colicin Ia receptor) strains of Escherichia coli. Both active and heat-denatured colicin Ia are extensively fragmented. Such proteolysis does not occur when colicin Ia is added to whole sensitive or resistant cells. These results demonstrate that cleavage of colicin Ia is not mediated by its outer membrane receptor.

  6. Elucidation of lipid metabolism pathways mediated by AMPK and nuclear receptors PPARδ and LXRα in human macrophages

    Kemmerer, Marina


    Disturbances in lipid metabolism are responsible for many chronic disorders, such as type 2 diabetes and atherosclerosis. Regulation of lipid metabolism occurs by activated transcription factors peroxisome proliferator-activated receptor δ (PPARδ) and liver X receptor α (LXRα) mediating transcription of different target genes involved in regulation of fatty acid uptake and oxidation or cellular cholesterol homeostasis. This is especially relevant for the macrophages, since pathways regulated ...

  7. Receptor-mediated endocytosis of low density lipoproteins in aortic endothelial cells

    Lipoprotein binding and metabolism in actively-dividing (subconfluent) and quiescent (postconfluent) bovine aortic endothelial cells (ECs) were qualitatively investigated by fluorescence microscopy using dioctadecylindocarbocyanine-labelled lipoproteins and by indirect immunofluorescence microscopy. LDL and acetylated-LDL (AcLDL) were seen bound to the surfaces of subconfluent ECs (at 4 degrees C or at 37 degrees C), as a random distribution of punctate foci. ECs therefore closely resembled fibroblasts in the distribution of LDL receptors on their surfaces. No binding of LDL was seen on postconfluent EC surfaces by either direct or indirect fluorescence microscopy. The patterns of AcLDL binding on postconfluent ECs resembled those on subconfluent ECs. Intracellular LDL and AcLDL occurred as perinuclear accumulations of large fluorescent disc-shaped profiles in subconfluent ECs. These accumulations were shown to arise from surface-bound material by pulse-chase experiments. Intracellular LDL was absent in the majority of postconfluent ECs, while AcLDL accumulation was massive. 'Wounding' of cultures allowed simultaneous assessment of lipoprotein metabolism in quiescent and actively-dividing areas of the same culture. It is concluded that postconfluent quiescent bovine aortic ECs in vitro metabolise virtually no LDL via the LDL-receptor pathway due to a vanishingly low number of LDL receptors. This contrasts with the ability of postconfluent cells to metabolise relatively large amounts of AcLDL via a receptor-mediated mechanism. The significance of these conclusions is discussed with respect to the interaction of plasma lipoproteins with the endothelium in vivo. 301 refs

  8. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    Gérard Jean-Louis


    Full Text Available Abstract Background Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. Methods We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz. After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyltheophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation between the groups by a variance analysis and post hoc test. Results Desflurane 6% (84 ± 6% of baseline enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P N-mercaptopropionylglycine (54 ± 3% of baseline, 8-(p-Sulfophenyltheophylline (62 ± 9% of baseline, HOE140 (58 ± 6% of baseline abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline and bradykinin (83 ± 4% of baseline induced postconditioning (P vs control, N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively. Conclusions In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin

  9. Independent of 5-HT1A receptors, neurons in the paraventricular hypothalamus mediate ACTH responses from MDMA

    Zaretsky, Dmitry V.; Zaretskaia, Maria V.; DiMicco, Joseph A.; Durant, Pamela J.; Ross, Christian T.; Rusyniak, Daniel E


    Acute and chronic complications from the substituted amphetamine 3,4-methylenedioxymethamphetamine (MDMA) are linked to activation of the hypothalamic-pituitary-adrenal (HPA) axis. How MDMA activates the HPA axis is not known. HPA responses to stress are known to be mediated through the paraventricular (PVH) hypothalamus and to involve serotonin-1a (5-HT1A) receptors. We sought to determine if the PVH and 5-HT1A receptors were also involved in mediating HPA responses to MDMA. Rats were pretre...

  10. Chronic Restraint Stress Promotes Immune Suppression through Toll-like Receptor 4-Mediated Phosphoinositide 3-kinase Signaling

    Zhang, Yi; Zhang, Ying; Miao, JunYing; Hanley, Gregory; Stuart, Charles; Sun, Xiuli; Chen, Tingting; Yin, Deling


    Stress, either psychological or physical, can have a dramatic impact on the immune system. Toll-like receptors (TLRs) play a pivotal role in the induction of innate and adaptive immune response. We have reported that stress modulates the immune response in a TLR4-dependent manner. However, the mechanisms underlying TLR4-mediated signaling in stress modulation of immune system have not been identified. Here, we demonstrate an essential role for the TLR4-mediated phosphoinositide 3-kinase (PI3K...

  11. Endothelin potentiates TRPV1 via ETA receptor-mediated activation of protein kinase C

    Furkert Jens


    Full Text Available Abstract Background Endothelin-1 (ET-1 both stimulates nociceptors and sensitizes them to noxious stimuli, an effect probably mediated by the ETA receptor (ETAR expressed in sensory neurons. The cellular mechanisms of this ET-1-mediated effect are only poorly understood. TRPV1, the heat-, pH- and capsaicin-sensitive cation channel already known to be modulated by a number of cellular mediators released in response to noxious stimuli and during inflammation, is a potential target for the action of ET-1. Results We studied the effects of ET-1 on TRPV1 in sensory neurons from the dorsal root ganglion (DRG and in HEK293 cells coexpressing TRPV1 and the ETAR. Specific 125I-ET-1 binding sites (817 ± 92 fmol/mg were detected in membrane preparations of DRG with an ETAR/ETBR ratio of 60:40. In an immunofluorescence analysis, coexpression of TRPV1 and the ETAR was found in a subpopulation of primary sensory neurons. ET-1 strongly potentiated capsaicin-induced TRPV1 currents in some neurons, and in HEK293 cells co-expressing TRPV1 and the ETAR. Weaker potentiation was observed in HEK293 cells coexpressing TRPV1 and the ETBR. ETAR activation also increased responses to low pH and heat. In HEK293 cells, strong potentiation of TRPV1 like that induced by ET-1 via the ETAR could be induced by PKC activation, but not with activators of the adenylyl cyclase or the PKA pathway. Furthermore, inhibition of PKC with bisindolylmaleimide X (BIM X or mutation of the PKC phosphorylation site S800 completely prevented ETAR-mediated potentiation. Conclusion We conclude that ET-1 potentiates TRPV1 by a PKC-dependent mechanism and that this could play a major role in the algogenic and hyperalgesic effects of ET-1 described in previous studies.

  12. Riluzole mediates anti-tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1.

    Speyer, Cecilia L; Nassar, Mahdy A; Hachem, Ali H; Bukhsh, Miriam A; Jafry, Waris S; Khansa, Rafa M; Gorski, David H


    Riluzole, the only drug approved by the FDA for treating amyotrophic lateral sclerosis, inhibits melanoma proliferation through its inhibitory effect on glutamatergic signaling. We demonstrated that riluzole also inhibits the growth of triple-negative breast cancer (TNBC) and described a role for metabotropic glutamate receptor-1 (GRM1) in regulating TNBC cell growth and progression. However, the role of GRM1 in mediating riluzole's effects in breast cancer has not been fully elucidated. In this study, we seek to determine how much of riluzole's action in breast cancer is mediated through GRM1. We investigated anti-tumor properties of riluzole in TNBC and ER+ cells using cell growth, invasion, and soft-agar assays and compared riluzole activity with GRM1 levels. Using Lentiviral vectors expressing GRM1 or shGRM1, these studies were repeated in cells expressing high or low GRM1 levels where the gene was either silenced or overexpressed. Riluzole inhibited proliferation, invasion, and colony formation in both TNBC and ER+ cells. There was a trend between GRM1 expression in TNBC cells and their response to riluzole in both cell proliferation and invasion assays. However, silencing and overexpression studies had no effect on cell sensitivity to riluzole. Our results clearly suggest a GRM1-independent mechanism through which riluzole mediates its effects on breast cancer cells. Understanding the mechanism by which riluzole mediates breast cancer progression will be useful in identifying new therapeutic targets for treating TNBC and in facilitating stratification of patients in clinical trials using riluzole in conjunction with conventional therapy. PMID:27146584

  13. Presynaptic CRF1 Receptors Mediate the Ethanol Enhancement of GABAergic Transmission in the Mouse Central Amygdala

    Zhiguo Nie


    Full Text Available Corticotropin-releasing factor (CRF is a 41-amino-acid neuropeptide involved in stress responses initiated from several brain areas, including the amygdala formation. Research shows a strong relationship between stress, brain CRF, and excessive alcohol consumption. Behavioral studies suggest that the central amygdala (CeA is significantly involved in alcohol reward and dependence. We recently reported that the ethanol augmentation of GABAergic synaptic transmission in rat CeA involves CRF1 receptors, because both CRF and ethanol significantly enhanced the amplitude of evoked GABAergic inhibitory postsynaptic currents (IPSCs in CeA neurons from wild-type (WT and CRF2 knockout (KO mice, but not in neurons of CRF1 KO mice. The present study extends these findings using selective CRF receptor ligands, gene KO models, and miniature IPSC (mIPSC analysis to assess further a presynaptic role for the CRF receptors in mediating ethanol effects in the CeA. In whole-cell patch recordings of pharmacologically isolated GABAAergic IPSCs from slices of mouse CeA, both CRF and ethanol augmented evoked IPSCs in a concentration-dependent manner, with low EC50s. A CRF1 (but not CRF2 KO construct and the CRF1-selective nonpeptide antagonist NIH-3 (LWH-63 blocked the augmenting effect of both CRF and ethanol on evoked IPSCs. Furthermore, the new selective CRF1 agonist stressin1, but not the CRF2 agonist urocortin 3, also increased evoked IPSC amplitudes. Both CRF and ethanol decreased paired-pulse facilitation (PPF of evoked IPSCs and significantly enhanced the frequency, but not the amplitude, of spontaneous miniature GABAergic mIPSCs in CeA neurons of WT mice, suggesting a presynaptic site of action. The PPF effect of ethanol was abolished in CeA neurons of CRF1 KO mice. The CRF1 antagonist NIH-3 blocked the CRF- and ethanol-induced enhancement of mIPSC frequency in CeA neurons. These data indicate that presynaptic CRF1 receptors play a critical role in permitting

  14. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of β-glucuronidase

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human β-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3% of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of β-glucuronidase. At pH 7.5, the rate of endocytosis was only 14% the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized β-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized β-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor

  15. Src, a Molecular Switch Governing Gain Control of Synaptic Transmission Mediated by N-methyl-D-Aspartate Receptors

    Yu, Xian-Min; Salter, Michael W.


    The N-methyl-D-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.

  16. Enzyme induction and histopathology elucidate aryl hydrocarbon receptor-mediated versus non-aryl hydrocarbon receptor-mediated effects of Aroclor 1268 in American mink (Neovison vison).

    Folland, William R; Newsted, John L; Fitzgerald, Scott D; Fuchsman, Phyllis C; Bradley, Patrick W; Kern, John; Kannan, Kurunthachalam; Zwiernik, Matthew J


    Polychlorinated biphenyl (PCB) concentrations reported in preferred prey and blubber of bottlenose dolphins from the Turtle-Brunswick River estuary (Georgia, USA) suggest the potential for adverse effects. However, PCBs in Turtle-Brunswick River estuary dolphins are primarily derived from Aroclor 1268, and predicting toxic effects of Aroclor 1268 is uncertain because of the mixture's unique composition and associated physiochemical characteristics. These differences suggest that toxicity benchmarks for other PCB mixtures may not be relevant to dolphins exposed to Aroclor 1268. American mink (Neovison vison) were used as a surrogate model for cetaceans to characterize mechanisms of action associated with Aroclor 1268 exposure. Mink share similarities in phylogeny and life history with cetaceans and are characteristically sensitive to PCBs, making them an attractive surrogate species for marine mammals in ecotoxicity studies. Adult female mink and a subsequent F1 generation were exposed to Aroclor 1268 through diet, and effects on enzyme induction, histopathology, thyroid hormone regulation, hematology, organ weights, and body condition index were compared to a negative control and a 3,3',4,4',5-pentachlorobiphenyl (PCB 126)-positive control. Aroclor 1268 dietary exposure concentrations ranged from 1.8 µg/g wet weight to 29 µg/g wet weight. Anemia, hypothyroidism, and hepatomegaly were observed in mink exposed to Aroclor 1268 beyond various dietary thresholds. Cytochrome P450 induction and squamous epithelial proliferation jaw lesions were low in Aroclor 1268 treatments relative to the positive control. Differences in enzyme induction and the development of squamous epithelial proliferation jaw lesions between Aroclor 1268 treatments and the positive control, coupled with effects observed in Aroclor 1268 treatments not observed in the positive control, indicate that mechanisms additional to the aryl hydrocarbon receptor-mediated pathway are associated with

  17. Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons

    Huang Li-Yen


    Full Text Available Abstract Prostaglandin E2 (PGE2 is a well-known inflammatory mediator that enhances the excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are abundantly expressed in dorsal root ganglia (DRG neurons and participate in the transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors has not been well delineated. We studied the actions of PGE2 on ATP-activated currents in dissociated DRG neurons under voltage-clamp conditions. PGE2 had no effects on P2X2/3 receptor-mediated responses, but significantly potentiated fast-inactivating ATP currents mediated by homomeric P2X3 receptors. PGE2 exerted its action by activating EP3 receptors. To study the mechanism underlying the action of PGE2, we found that the adenylyl cyclase activator, forskolin and the membrane-permeable cAMP analogue, 8-Br-cAMP increased ATP currents, mimicking the effect of PGE2. In addition, forskolin occluded the enhancement produced by PGE2. The protein kinase A (PKA inhibitors, H89 and PKA-I blocked the PGE2 effect. In contrast, the PKC inhibitor, bisindolymaleimide (Bis did not change the potentiating action of PGE2. We further showed that PGE2 enhanced α,β-meATP-induced allodynia and hyperalgesia and the enhancement was blocked by H89. These observations suggest that PGE2 binds to EP3 receptors, resulting in the activation of cAMP/PKA signaling pathway and leading to an enhancement of P2X3 homomeric receptor-mediated ATP responses in DRG neurons.

  18. Astrocytes protect neurons against methylmercury via ATP/P2Y(1 receptor-mediated pathways in astrocytes.

    Yusuke Noguchi

    Full Text Available Methylmercury (MeHg is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i inhibited by a P2Y1 receptor antagonist, MRS2179, (ii abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii mimicked by exogenously applied ATP. In addition, (iv MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.

  19. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination.

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin


    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches. PMID:27040771

  20. Multi-organ Site Metastatic Reactivation Mediated by Non-canonical Discoidin Domain Receptor 1 Signaling.

    Gao, Hua; Chakraborty, Goutam; Zhang, Zhanguo; Akalay, Intissar; Gadiya, Mayur; Gao, Yaquan; Sinha, Surajit; Hu, Jian; Jiang, Cizhong; Akram, Muzaffar; Brogi, Edi; Leitinger, Birgit; Giancotti, Filippo G


    Genetic screening identifies the atypical tetraspanin TM4SF1 as a strong mediator of metastatic reactivation of breast cancer. Intriguingly, TM4SF1 couples the collagen receptor tyrosine kinase DDR1 to the cortical adaptor syntenin 2 and, hence, to PKCα. The latter kinase phosphorylates and activates JAK2, leading to the activation of STAT3. This non-canonical mechanism of signaling induces the expression of SOX2 and NANOG; sustains the manifestation of cancer stem cell traits; and drives metastatic reactivation in the lung, bone, and brain. Bioinformatic analyses and pathological studies corroborate the clinical relevance of these findings. We conclude that non-canonical DDR1 signaling enables breast cancer cells to exploit the ubiquitous interstitial matrix component collagen I to undergo metastatic reactivation in multiple target organs. PMID:27368100

  1. Asialoglycoprotein receptor and liposome synergistically mediate the gene transfer into primary rat hepatocytes

    李崇辉; 温守明; 翟海峰; 孙曼霁


    Gene transfer into primary rat hepatocytes was performed by employing cationic liposome as DNA carrier and the specific ligand of hepatic asialoglycoprotein receptor (ASGPR), asialofetuin, as liver-targeting ligand. The resuits showed that asialofetuin, when added to the gene transfer complexes, could significantly increase the hepatocyte transfeetion efficiency, and alleviate the cellular toxicity of Lipofectin. Several synthetic ligands of ASGPR (galactosyl albumin) could also increase the transfection efficiency of hepatocyte like asialofetuin. It was proved that ASGPR and cationic liposome could synergistically mediate the gene transfer into primary rat hepatoeytes. This novel gene delivery system provided a safer, more simple and efficient gene transfer method for primary hepatocytes, and showed prospecting application in hepatic gene therapy.

  2. Allosteric interactions between the oxytocin receptor and the β2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization.

    Wrzal, Paulina K; Devost, Dominic; Pétrin, Darlaine; Goupil, Eugénie; Iorio-Morin, Christian; Laporte, Stéphane A; Zingg, Hans H; Hébert, Terence E


    The oxytocin receptor (OTR) and the β(2)-adrenergic receptor (β(2)AR) are key regulators of uterine contraction. These two receptors are targets of tocolytic agents used to inhibit pre-term labor. Our recent study on the nature of OTR- and β(2)AR-mediated ERK1/2 activation in human hTERT-C3 myometrial cells suggested the presence of an OTR/β(2)AR hetero-oligomeric complex (see companion article). The goal of this study was to investigate potential allosteric interactions between OTR and β(2)AR and establish the nature of the interactions between these receptors in myometrial cells. We found that OTR-mediated ERK1/2 activation was attenuated significantly when cells were pretreated with the β(2)AR agonist isoproterenol or two antagonists, propranolol or timolol. In contrast, pretreatment of cells with a third β(2)AR antagonist, atenolol resulted in an increase in OTR-mediated ERK1/2 activation. Similarly, β(2)AR-mediated ERK1/2 activation was strongly attenuated by pretreatment with the OTR antagonists, atosiban and OTA. Physical interactions between OTR and β(2)AR were demonstrated using co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and protein-fragment complementation (PCA) assays in HEK 293 cells, the latter experiments indicating the interactions between the two receptors were direct. Our analyses suggest physical interactions between OTR and β(2)AR in the context of a new heterodimer pair lie at the heart of the allosteric effects. PMID:21963428

  3. Inhibition of platelet aggregation by vanilloid-like agents is not mediated by transient receptor potential vanilloid-1 channels or cannabinoid receptors.

    Almaghrabi, Safa; Geraghty, Dominic; Ahuja, Kiran; Adams, Murray


    Vanilloid-like agents, including capsaicin, N-arachidonoyl-dopamine and N-oleoyldopamine inhibit platelet aggregation, however little is known about the precise mechanism(s) of action. The authors have previously shown that blocking of the capsaicin receptor, transient receptor potential vanilloid-1 (TRPV1), does not interfere with capsaicin action during adenosine diphosphate (ADP)-induced aggregation. This research is extended to investigate the effect of these vanilloid-like-agents on platelet count, and to test whether the effect of these agents is mediated through TRPV1 and/or cannabinoid (CB1 and CB2) receptors in the presence of other agonists, including collagen and arachidonic acid. Incubation of platelets with each of the individual vanilloids, or with receptor antagonists of TRPV1 (SB452533), CB1 (AM251) and CB2 (AM630), for up to 2 h did not significantly affect the platelet count. Similarly, the effect of individual vanilloids on the inhibition of platelet aggregation was not significantly different in the presence of receptor agonists compared to control, irrespective of the agonist used, suggesting that the inhibitory effect of vanilloids on platelet aggregation is independent of TRPV1, CB1 and CB2 receptors. Further research on the antiplatelet activity of vanilloids should focus on mechanisms other than those associated with vanilloid receptors. PMID:26991025

  4. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction.

    Keefer, Sara E; Cole, Sindy; Petrovich, Gorica D


    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  5. High dose of spinal morphine produce a nonopiate receptor-mediated hyperesthesia: clinical and theoretic implications.

    Yaksh, T L; Harty, G J; Onofrio, B M


    In rats with chronically implanted intrathecal catheters, high concentrations of morphine (3 microliters of 50 mg/ml: 150 micrograms) yielded a reliable and striking syndrome of pain behavior that involved intermittent bouts of biting and scratching at the dermatomes innervated by levels of the spinal cord proximal to the catheter tip. In addition, during intervals between bouts of agitation, the animals displayed a clear, marked hyperesthesia where an otherwise innocuous stimuli (brush stroke) evoked significant signs of discomfort and consequent aggressive behavior. These effects were exaggerated rather than reversed by high doses of naltrexone. The effect, perfectly mimicked by a considerably lower dose of morphine-3-glucuronide (15 micrograms) or the glycine antagonist strychnine (30 micrograms), was not produced by equimolar concentrations of sodium sulfate, glucuronide, methadone, or sufentanil. In halothane-anesthetized cats, light brushing of the hindpaw and tail or low-intensity stimulation of the sciatic nerves resulted in prominent elevations in blood pressure and pupil diameter following the intrathecal administration of high concentrations (50 mg/ml; 0.1 ml) of morphine sulfate. This effect, exaggerated by naloxone, was produced by a lower concentration of intrathecal morphine-3-glucuronide (5 mg/ml; 0.1 ml) but not by intrathecal saline. These results suggest the possibility that the effects of high doses of morphine may be characterized by a nonopiate receptor-mediated effect that alters the coding of sensory information in the spinal cord. The authors speculate that high concentrations of spinal opiates, as may be employed in tolerant terminal-cancer patients, could exert an action that physiologically antagonizes the analgesic effects otherwise mediated by the action of morphine on the spinal opiate receptor.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2938524

  6. Ventral hippocampal kappa opioid receptors mediate the renewal of fear following extinction in the rat.

    Cole, Sindy; Richardson, Rick; McNally, Gavan P


    The hippocampus is part of a neural network which regulates the renewal of fear following extinction. Both the ventral (VH) and dorsal (DH) hippocampus have been shown to be necessary for renewal, however the critical receptors and neurotransmitters mediating these contributions are poorly understood. One candidate mechanism is the kappa opioid receptor (KOR) system, which has been implicated in fear learning and anxiety. Here we examined the effect of the KOR antagonist norbinaltorphamine hydrochloride (norBNI), infused into either the VH or DH, on the renewal of extinguished fear. We found that an infusion of norBNI into the VH significantly reduced the relapse of fear on test compared to that seen in saline controls (Experiment 1), while similar infusions of norBNI into the DH had no effect on renewal (Experiment 2). These findings show that hippocampal KORs are involved in fear renewal and also identify a dissociation in the contribution of VH and DH KORs to the expression of renewed fear. PMID:23675405

  7. Sucrose-induced analgesia in mice: Role of nitric oxide and opioid receptor-mediated system

    Abtin Shahlaee


    Full Text Available Background: The mechanism of action of sweet substance-induced analgesia is thought to involve activation of the endogenous opioid system. The nitric oxide (NO pathway has a pivotal role in pain modulation of analgesic compounds such as opioids. Objectives: We investigated the role of NO and the opioid receptor-mediated system in the analgesic effect of sucrose ingestion in mice. Materials and Methods: We evaluated the effect of intraperitoneal administration of 10 mg/kg of NO synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME and 20 mg/kg of opioid receptor antagonist, naltrexone on the tail flick response in sucrose ingesting mice. Results: Sucrose ingestion for 12 days induced a statistically significant increase in the latency of tail flick response which was unmodified by L-NAME, but partially inhibited by naltrexone administration. Conclusions: Sucrose-induced nociception may be explained by facilitating the release of endogenous opioid peptides. Contrary to some previously studied pain models, the NO/cyclic guanosine monophosphate (cGMP pathway had no role in thermal hyperalgesia in our study. We recommend further studies on the involvement of NO in other animals and pain models.

  8. Transient Receptor Potential Melastatin-3 (TRPM3) Mediates Nociceptive-Like Responses in Hydra vulgaris.

    Malafoglia, Valentina; Traversetti, Lorenzo; Del Grosso, Floriano; Scalici, Massimiliano; Lauro, Filomena; Russo, Valeria; Persichini, Tiziana; Salvemini, Daniela; Mollace, Vincenzo; Fini, Massimo; Raffaeli, William; Muscoli, Carolina; Colasanti, Marco


    The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom. PMID:26974325

  9. P2X7 receptor-mediated analgesia in cancer-induced bone pain

    Falk, Sarah; D. Schwab, Samantha; Frøsig-Jørgensen, Majbrit;


    Pain is a common and debilitating complication for cancer patients significantly compromising their quality of life. Cancer-induced bone pain involves a complex interplay of molecular events, including mechanisms observed in inflammatory and neuropathic pain states, but also changes unique for...... cancer-induced bone pain. The P2X7 receptor (P2X7R) is involved in a variety of cellular functions and has been linked to both inflammatory and neuropathic pain. Here we study the analgesic potential of P2X7 receptor antagonism in a rat model of cancer-induced bone pain. In cancer-bearing animals, the P2....... The results suggest that the P2X7R is involved in the mechanisms of cancer-induced bone pain, and that P2X7R antagonism might be a useful analgesic target. No effect was observed in sham or naïve animals, indicating that the P2X7R-mediated effect is state-dependent, and might therefore be an...

  10. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    George E. Barreto


    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  11. Dependence of plasmin-mediated degradation of platelet adhesive receptors on temperature and Ca2+

    The effects of activation of plasminogen by streptokinase and tissue-type-plasminogen activator on platelet activation and the membrane glycoproteins (GPs) that mediate platelet adhesion and aggregation are not yet fully defined. To clarify effects on platelets during activation of plasminogen in vitro, we used monoclonal antibodies (MoAbs), flow cytometry, and platelets surface-labeled with 125I to characterize changes in receptors for fibrinogen (GPIIb-IIIa), von Willebrand factor (GPIb), and collagen (GPIa-IIa). Activation of plasminogen in plasma with pharmacologic concentrations of plasminogen activators did not degrade GPIIb-IIIa or GPIb, and caused only a modest decrease in GPIa. In washed platelets GPIIb-IIIa was extensively degraded by plasmin at 37 degrees C in the absence of exogenous Ca2+, conditions that destabilize the IIb-IIIa complex. Degradation of GPIb in washed platelets displayed a similar although less-marked dependence on temperature and the absence of Ca2+. The binding of activation-specific MoAbs did not increase during activation of plasminogen in plasma. We conclude that during pharmacologic fibrinolysis, reported inhibition of platelet function in plasma is not due to degradation of platelet-adhesive receptors. In addition, platelet activation observed during thrombolytic therapy does not appear to be a direct consequence of plasminogen activation

  12. Alpha-latrotoxin modulates the secretory machinery via receptor-mediated activation of protein kinase C.

    Liu, Jie; Wan, Qunfang; Lin, Xianguang; Zhu, Hongliang; Volynski, Kirill; Ushkaryov, Yuri; Xu, Tao


    The hypothesis whether alpha-latrotoxin (LTX) could directly regulate the secretory machinery was tested in pancreatic beta cells using combined techniques of membrane capacitance (Cm) measurement and Ca2+ uncaging. Employing ramp increase in [Ca2+]i to stimulate exocytosis, we found that LTX lowers the Ca2+ threshold required for exocytosis without affecting the size of the readily releasable pool (RRP). The burst component of exocytosis in response to step-like [Ca2+]i increase generated by flash photolysis of caged Ca2+ was also speeded up by LTX treatment. LTX increased the maximum rate of exocytosis compared with control responses with similar postflash [Ca2+]i and shifted the Ca2+ dependence of the exocytotic machinery toward lower Ca2+ concentrations. LTXN4C, a LTX mutant which cannot form membrane pores or penetrate through the plasma membrane but has similar affinity for the receptors as the wild-type LTX, mimicked the effect of LTX. Moreover, the effects of both LTX and LTXN4C) were independent of intracellular or extracellular Ca2+ but required extracellular Mg2+. Our data propose that LTX, by binding to the membrane receptors, sensitizes the fusion machinery to Ca2+ and, hence, may permit release at low [Ca2+]i level. This sensitization is mediated by activation of protein kinase C. PMID:16101679

  13. Insulin receptor substrate-1/2 mediates IL-4-induced migration of human airway epithelial cells

    White, Steven R.; Martin, Linda D.; Abe, Mark K.; Marroquin, Bertha A.; Stern, Randi; Fu, Xiaoying


    Migration of airway epithelial cells (AEC) is an integral component of airway mucosal repair after injury. The inflammatory cytokine IL-4, abundant in chronic inflammatory airways diseases such as asthma, stimulates overproduction of mucins and secretion of chemokines from AEC; these actions enhance persistent airway inflammation. The effect of IL-4 on AEC migration and repair after injury, however, is not known. We examined migration in primary human AEC differentiated in air-liquid interface culture for 3 wk. Wounds were created by mechanical abrasion and followed to closure using digital microscopy. Concurrent treatment with IL-4 up to 10 ng/ml accelerated migration significantly in fully differentiated AEC. As expected, IL-4 treatment induced phosphorylation of the IL-4 receptor-associated protein STAT (signal transducer and activator of transcription)6, a transcription factor known to mediate several IL-4-induced AEC responses. Expressing a dominant negative STAT6 cDNA delivered by lentivirus infection, however, failed to block IL-4-stimulated migration. In contrast, decreasing expression of either insulin receptor substrate (IRS)-1 or IRS-2 using a silencing hairpin RNA blocked IL-4-stimulated AEC migration completely. These data demonstrate that IL-4 can accelerate migration of differentiated AEC after injury. This reparative response does not require STAT6 activation, but rather requires IRS-1 and/or IRS-2. PMID:19447894

  14. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat.

    Bayliss, D A; Millhorn, D E; Gallman, E A; Cidlowski, J A


    We have examined the effect on respiration of the steroid hormone progesterone, administered either intravenously or directly into the medulla oblongata in anesthetized and paralyzed male and female cats. The carotid sinus and vagus nerves were cut, and end-tidal PCO2 and temperature were kept constant with servo-controllers. Phrenic nerve activity was used to quantitate central respiratory activity. Repeated doses of progesterone (from 0.1 to 2.0 micrograms/kg, cumulative) caused a sustained (greater than 45 min) facilitation of phrenic nerve activity in female and male cats; however, the response was much more variable in females. Progesterone injected into the region of nucleus tractus solitarii, a respiratory-related area in the medulla oblongata, also caused a prolonged stimulation of respiration. Progesterone administration at high concentration by both routes also caused a substantial hypotension. Identical i.v. doses of other classes of steroid hormones (17 beta-estradiol, testosterone, and cortisol) did not elicit the same respiratory effect. Pretreatment with RU 486, a progesterone-receptor antagonist, blocked the facilitatory effect of progesterone. We conclude that progesterone acts centrally through a steroid receptor-mediated mechanism to facilitate respiration. PMID:3478727

  15. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    Hitoshi Miyakawa

    Full Text Available Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH, which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms

  16. Dioxin mediates downregulation of the reduced folate carrier transport activity via the arylhydrocarbon receptor signalling pathway

    Dioxins such as 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) are common environmental contaminants known to regulate several genes via activation of the transcription factor aryl hydrocarbon receptor (AhR) associated with the development of numerous adverse biological effects. However, comparatively little is known about the molecular mechanisms by which dioxins display their toxic effects in vertebrates. The 5' untranslated region of the hepatocellular Reduced folate carrier (Rfc1; Slc19a1) exhibits AhR binding sites termed dioxin responsive elements (DRE) that have as yet only been found in the promoter region of prototypical TCDD target genes. Rfc1 mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) plays an essential role in physiological folate homeostasis and MTX cancer chemotherapy. In order to determine whether this carrier represents a target gene of dioxins we have investigated the influence of TCDD on functional Rfc1 activity in rat liver. Pre-treatment of rats with TCDD significantly diminished hepatocellular Rfc1 uptake activity in a time- and dose-dependent manner. In further mechanistic studies we demonstrated that this reduction was due to TCDD-dependent activation of the AhR signalling pathway. We additionally showed that binding of the activated receptor to DRE motifs in the Rfc1 promoter resulted in downregulation of Rfc1 gene expression and reduced carrier protein levels. As downregulation of pivotal Rfc1 activity results in functional folate deficiency associated with an elevated risk of cardiovascular diseases or carcinogenesis, our results indicate that deregulation of this essential transport pathway represents a novel regulatory mechanism how dioxins display their toxic effects through the Ah receptor.

  17. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells

    Cadmium (Cd) is a nonessential metal that is dispersed throughout the environment. It is an endocrine-disrupting element which mimics estrogen, binds to estrogen receptor alpha (ERα), and promotes cell proliferation in breast cancer cells. We have previously published that Cd promotes activation of the extracellular regulated kinases, erk-1 and -2 in both ER-positive and ER-negative human breast cancer cells, suggesting that this estrogen-like effect of Cd is not associated with the ER. Here, we have investigated whether the newly appreciated transmembrane estrogen receptor, G-protein coupled receptor 30 (GPR30), may be involved in Cd-induced cell proliferation. Towards this end, we compared the effects of Cd in ER-negative human SKBR3 breast cancer cells in which endogenous GPR30 signaling was selectively inhibited using a GPR30 interfering mutant. We found that Cd concentrations from 50 to 500 nM induced a proliferative response in control vector-transfected SKBR3 cells but not in SKBR3 cells stably expressing interfering mutant. Similarly, intracellular cAMP levels increased about 2.4-fold in the vector transfectants but not in cells in which GPR30 was inactivated within 2.5 min after treatment with 500 nM Cd. Furthermore, Cd treatment rapidly activated (within 2.5 min) raf-1, mitogen-activated protein kinase kinase, mek-1, extracellular signal regulated kinases, erk-1/2, ribosomal S6 kinase, rsk, and E-26 like protein kinase, elk, about 4-fold in vector transfectants. In contrast, the activation of these signaling molecules in SKBR3 cells expressing the GPR30 mutant was only about 1.4-fold. These results demonstrate that Cd-induced breast cancer cell proliferation occurs through GPR30-mediated activation in a manner that is similar to that achieved by estrogen in these cells.

  18. Icariin Stimulates Differentiation and Suppresses Adipocytic Transdifferentiation of Primary Osteoblasts Through Estrogen Receptor-Mediated Pathway.

    Zhang, Dawei; Fong, Chichun; Jia, Zhenbin; Cui, Liao; Yao, Xinsheng; Yang, Mengsu


    Icariin, the main constituent of Herba Epimedii, appears to be a promising alternative to classic drugs used to treat osteoporosis. However, the detailed molecular mechanisms of its action and the role of icariin in the cross-talk between osteoblasts and adipocytes remain unclear. The present study was designed to investigate the gene expression profile of primary osteoblasts in the presence of icariin, and the effects of icariin on the differentiation and adipogenic transdifferentiation of osteoblasts. Cellular and molecular markers expressed during osteoblastic differentiation were assessed by cytochemical analysis, real-time quantitative PCR, Western blotting, and cDNA microarray analysis. Results indicated that icariin up-regulated the expression of runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (Bmp2), and collagen type 1 (Col1) genes, and down-regulated the expression of the peroxisome proliferator-activated receptor γ (Pparg) and CCAAT/enhancer-binding protein β (Cebpb) genes. These effects were blocked by ICI 182,780, suggesting that icariin may be acting via the estrogen receptor (ER). Results also demonstrated that the ratio of osteoprotegerin (Opg)/receptor activator of nuclear factor kappa B ligand (Rankl) expression was up-regulated following treatment with icariin. In total, osteoblastic gene expression profile analysis suggested that 33 genes were affected by icariin; these could be sub-divided into nine functional categories. It appears that icariin could stimulate the differentiation and mineralization of osteoblasts, regulate the differentiation of osteoclasts, and inhibit the adipogenic transdifferentiation of osteoblasts, therefore increasing the number of osteoblasts undergoing differentiation to mature osteoblasts, via an ER-mediated pathway. In summary, icariin may exhibit beneficial effects on bone health, especially for patients with osteoporosis and obesity. PMID:27061090

  19. Cutaneous nociceptors lack sensitisation, but reveal μ-opioid receptor-mediated reduction in excitability to mechanical stimulation in neuropathy

    Schmidt Yvonne; Labuz Dominika; Heppenstall Paul A; Machelska Halina


    Abstract Background Peripheral nerve injuries often trigger a hypersensitivity to tactile stimulation. Behavioural studies demonstrated efficient and side effect-free analgesia mediated by opioid receptors on peripheral sensory neurons. However, mechanistic approaches addressing such opioid properties in painful neuropathies are lacking. Here we investigated whether opioids can directly inhibit primary afferent neuron transmission of mechanical stimuli in neuropathy. We analysed the mechanica...

  20. The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation

    Klika, Václav; Baker, R. E.; Headon, D.; Gaffney, E. A.


    Roč. 74, č. 4 (2012), s. 935-957. ISSN 0092-8240 Institutional research plan: CEZ:AV0Z20760514 Keywords : reaction-diffusion * receptor-mediated patterning * turing models Subject RIV: BO - Biophysics Impact factor: 2.023, year: 2012

  1. Up-regulation of bradykinin receptors in rat bronchi via I kappa B kinase-mediated inflammatory signaling pathway

    Lei, Ying; Zhang, Yaping; Cao, Yongxiao; Edvinsson, Lars; Xu, Cang-Bao

    IkappaB kinase (IKK)-mediated intracellular signaling mechanisms may be involved in airway hyperresponsiveness through up-regulation of bradykinin receptors. This study was designed to examine if organ culture of rat bronchial segments induces airway hyperresponsiveness to bradykinin and if inhib...

  2. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea.

    De Jonghe, Bart C; Holland, Ruby A; Olivos, Diana R; Rupprecht, Laura E; Kanoski, Scott E; Hayes, Matthew R


    While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (24 h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48 h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments. PMID:26522737

  3. Damnacanthal inhibits IgE receptor-mediated activation of mast cells.

    Garcia-Vilas, Javier A; Medina, Miguel A; Melo, Fabio R; Pejler, Gunnar; Garcia-Faroldi, Gianni


    Damnacanthal, an anthraquinone obtained from the noni fruit (Morinda citrifolia L.), has been described to possess anti-cancer and anti-inflammatory properties. Since mast cells are key players in various inflammatory conditions as well as in cancer, we considered the possibility that the biological actions of damnacanthal, at least partly, could be due to effects on mast cells. Many of the biological activities of mast cells are mediated by IgE receptor cross-linking, which results in degranulation with release of preformed granule mediators, as well as de novo synthesis and release of additional compounds. Here we show that damnacanthal has profound inhibitory activity on mast cell activation through this pathway. The release of the granule compounds beta-hexosaminidase and tryptase release was completely abrogated by damnacanthal at doses that were non-toxic to mast cells. In addition, damnacanthal inhibited activation-dependent pro-inflammatory gene induction, as well as cytokine/chemokine release in response to mast cell stimulation. The mechanism underlying damnacanthal inhibition was linked to impaired phosphorylation of Syk and Akt. Furthermore, damnacanthal inhibited mast cell activation in response to calcium ionophore A23187. Altogether, the data presented here demonstrate that damnacanthal inhibits mast cell activation induced by different stimuli and open a new window for the use of this compound as a mast cell stabilizer. PMID:25656801

  4. Toward elucidation of dioxin-mediated chloracne and Ah receptor functions.

    Bock, Karl Walter


    Target cells and molecular targets responsible for dioxin-mediated chloracne, the hallmark of dioxin toxicity, are reviewed. The dioxin TCDD accumulates in sebum, and thereby persistently activates the Ah receptor (AhR), expressed in bipotential stem/progenitor cells of the sebaceous gland. AhR operates in cooperation with other transcription factors including c-Myc, Blimp1 and ß-Catenin/TCF: c-Myc stimulates exit of stem cells from quiescence to proliferating sebocyte progenitors; Blimp1 is a major c-Myc repressor, and ß-Catenin/TCF represses sebaceous gland differentiation and stimulates differentiation to interfollicular epidermis. TCDD has been demonstrated to induce Blimp1 expression in the sebocyte stem/progenitor cell line SZ95, leading to sebocyte apoptosis and proliferation of interfollicular epidermis cells. These findings explain observations in TCDD-poisoned individuals, and identify target cells and molecular targets of dioxin-mediated chloracne. They clearly demonstrate that the AhR operates in a cell context-dependent manner, and provide hints to homeostatic functions of AhR in stem/progenitor cells. PMID:26801687

  5. The nuclear receptor Nr4a1 mediates anti-inflammatory effects of apoptotic cells.

    Ipseiz, Natacha; Uderhardt, Stefan; Scholtysek, Carina; Steffen, Martin; Schabbauer, Gernot; Bozec, Aline; Schett, Georg; Krönke, Gerhard


    Uptake of apoptotic cells (ACs) by macrophages ensures the nonimmunogenic clearance of dying cells, as well as the maintenance of self-tolerance to AC-derived autoantigens. Upon ingestion, ACs exert an inhibitory influence on the inflammatory signaling within the phagocyte. However, the molecular signals that mediate these immune-modulatory properties of ACs are incompletely understood. In this article, we show that the phagocytosis of apoptotic thymocytes was enhanced in tissue-resident macrophages where this process resulted in the inhibition of NF-κB signaling and repression of inflammatory cytokines, such as IL-12. In parallel, ACs induced a robust expression of a panel of immediate early genes, which included the Nr4a subfamily of nuclear receptors. Notably, deletion of Nr4a1 interfered with the anti-inflammatory effects of ACs in macrophages and restored both NF-κB signaling and IL-12 expression. Accordingly, Nr4a1 mediated the anti-inflammatory properties of ACs in vivo and was required for maintenance of self-tolerance in the murine model of pristane-induced lupus. Thus, our data point toward a key role for Nr4a1 as regulator of the immune response to ACs and of the maintenance of tolerance to "dying self." PMID:24740500

  6. Emodin isolated from Polygoni Multiflori Ramulus inhibits melanogenesis through the liver X receptor-mediated pathway.

    Kim, Mi Ok; Park, Yong Seek; Nho, Youn Hwa; Yun, Seok Kyun; Kim, Youngsoo; Jung, Eunsun; Paik, Jean Kyung; Kim, Minhee; Cho, Il-Hoon; Lee, Jongsung


    Melanogenesis is a physiological process that results in the synthesis of melanin pigments, which play a crucial protective role against skin photocarcinogenesis. We investigated the effects of a Polygoni Multiflori Ramulus extract on melanogenesis and isolated emodin from Polygoni Multiflori as an active compound. In addition, the possible mechanisms of action were examined. We found that emodin inhibited both melanin content and tyrosinase activity concentration and time dependently. Tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 mRNA levels decreased following emodin treatment. However, while the mRNA levels of microphthalmia-associated transcription factor (MITF) were not affected by emodin, emodin reduced MITF protein levels. Furthermore, expression of the liver X-receptor (LXR) α gene, but not the LXR β gene was upregulated by emodin. Moreover, emodin regulated melanogenesis by promoting degradation of the MITF protein by upregulating the LXR α gene. The emodin effects on MITF was found to be mediated by phosphorylation of p42/44 MAPK. Taken together, these findings indicate that the inhibition of melanogenesis by emodin occurs through reduced MITF protein expression, which is mediated by upregulation of the LXR α gene and suggest that emodin may be useful as a hyperpigmentation inhibitor. PMID:26972667

  7. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    Michail S Lionakis

    Full Text Available Invasive candidiasis is the 4(th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo to Ccr1(high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+ and Ccr1(-/- donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  8. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier

    van Doorn Ruben


    Full Text Available Abstract Background The sphingosine 1-phosphate (S1P receptor modulator FTY720P (Gilenya® potently reduces relapse rate and lesion activity in the neuroinflammatory disorder multiple sclerosis. Although most of its efficacy has been shown to be related to immunosuppression through the induction of lymphopenia, it has been suggested that a number of its beneficial effects are related to altered endothelial and blood–brain barrier (BBB functionality. However, to date it remains unknown whether brain endothelial S1P receptors are involved in the maintenance of the function of the BBB thereby mediating immune quiescence of the brain. Here we demonstrate that the brain endothelial receptor S1P5 largely contributes to the maintenance of brain endothelial barrier function. Methods We analyzed the expression of S1P5 in human post-mortem tissues using immunohistochemistry. The function of S1P5 at the BBB was assessed in cultured human brain endothelial cells (ECs using agonists and lentivirus-mediated knockdown of S1P5. Subsequent analyses of different aspects of the brain EC barrier included the formation of a tight barrier, the expression of BBB proteins and markers of inflammation and monocyte transmigration. Results We show that activation of S1P5 on cultured human brain ECs by a selective agonist elicits enhanced barrier integrity and reduced transendothelial migration of monocytes in vitro. These results were corroborated by genetically silencing S1P5 in brain ECs. Interestingly, functional studies with these cells revealed that S1P5 strongly contributes to brain EC barrier function and underlies the expression of specific BBB endothelial characteristics such as tight junctions and permeability. In addition, S1P5 maintains the immunoquiescent state of brain ECs with low expression levels of leukocyte adhesion molecules and inflammatory chemokines and cytokines through lowering the activation of the transcription factor NFκB. Conclusion Our

  9. Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia.

    Lee, Yi-Hsuan; Lin, Chun-Hua; Hsu, Pei-Chien; Sun, Yu-Yo; Huang, Yu-Jie; Zhuo, Jiun-Horng; Wang, Chen-Yu; Gan, Yu-Ling; Hung, Chia-Chi; Kuan, Chia-Yi; Shie, Feng-Shiun


    The aryl hydrocarbon receptor (AhR) regulates peripheral immunity; but its role in microglia-mediated neuroinflammation in the brain remains unknown. Here, we demonstrate that AhR mediates both anti-inflammatory and proinflammatory effects in lipopolysaccharide (LPS)-activated microglia. Activation of AhR by its ligands, formylindolo[3,2-b]carbazole (FICZ) or 3-methylcholanthrene (3MC), attenuated LPS-induced microglial immune responses. AhR also showed proinflammatory effects, as evidenced by the findings that genetic silence of AhR ameliorated the LPS-induced microglial immune responses and LPS-activated microglia-mediated neurotoxicity. Similarly, LPS-induced expressions of tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were reduced in the cerebral cortex of AhR-deficient mice. Intriguingly, LPS upregulated and activated AhR in the absence of AhR ligands via the MEK1/2 signaling pathway, which effects were associated with a transient inhibition of cytochrome P450 1A1 (CYP1A1). Although AhR ligands synergistically enhance LPS-induced AhR activation, leading to suppression of LPS-induced microglial immune responses, they cannot do so on their own in microglia. Chromatin immunoprecipitation results further revealed that LPS-FICZ co-treatment, but not LPS alone, not only resulted in co-recruitment of both AhR and NFκB onto the κB site of TNFα gene promoter but also reduced LPS-induced AhR binding to the DRE site of iNOS gene promoter. Together, we provide evidence showing that microglial AhR, which can be activated by LPS, exerts bi-directional effects on the regulation of LPS-induced neuroinflammation, depending on the availability of external AhR ligands. These findings confer further insights into the potential link between environmental factors and the inflammatory brain disorders. PMID:25690886

  10. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Yao Linli; Kan Enci Mary; Lu Jia; Hao Aijun; Dheen S Thameem; Kaur Charanjit; Ling Eng-Ang


    Abstract Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rat...

  11. Normalizing Dopamine D2 Receptor-Mediated Responses in D2 Null Mutant Mice by Virus-Mediated Receptor Restoration: Comparing D2L and D2S

    Neve, Kim A.; Ford, Christopher P.; Buck, David C; Grandy, David K; Neve, Rachael L.; Phillips, Tamara J.


    D2 receptor null mutant (Drd2−/−) mice have altered responses to the rewarding and locomotor effects of psychostimulant drugs, which is evidence of a necessary role for D2 receptors in these behaviors. Furthermore, work with mice that constitutively express only the D2 receptor short form (D2S), as a result of genetic deletion of the long form (D2L), provides the basis for a current model in which D2L is thought to be the postsynaptic D2 receptor on medium spiny neurons in the basal forebrain...

  12. Estrogen receptormediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract

    It is generally believed that estrogen receptor-dependent and -independent pathways are involved in mediating the developmental effects of the synthetic estrogen, diethylstilbestrol (DES). However, the precise role and extent to which each pathway contributes to the resulting pathologies remains unknown. We have employed the estrogen receptor knockout (ERKO) mice, which lack either estrogen receptor-α (αERKO or estrogen receptor-β (βERKO), to gain insight into the contribution of each ER-dependent pathway in mediating the effects of neonatal DES exposure in the female and male reproductive tract tissues of the mouse. Estrogen receptor-α female mice exhibited complete resistance to the chronic effects of neonatal DES exposure that were obvious in exposed wild-type animals, including atrophy and epithelial squamous metaplasia in the uterus; proliferative lesions of the oviduct; and persistent cornification of the vaginal epithelium. DES-mediated reduction in uterine Hoxa10, Hoxa11 and Wnt7a expression that occurs wild-type females during the time of exposure was also absent in αERKO females. In the male, αERKO mice exhibited complete resistance to the chronic effects of neonatal DES exposure on the prostate, including decreased androgen receptor levels, epithelial hyperplasia, and increased basal cell proliferation. Although ERβ is highly expressed in the prostate epithelium, DES-exposed βERKO males exhibited all of the effects of neonatal DES exposure that were observed in similarly exposed wild-type males. Therefore, the lack of DES-effects on gene expression and tissue differentiation in the αERKO uterus and prostate provides unequivocal evidence of an obligatory role for ERα in mediating the detrimental actions of neonatal DES exposure in the murine reproductive tract

  13. A role of periaqueductal grey NR2B-containing NMDA receptor in mediating persistent inflammatory pain

    Yang Qi


    Full Text Available Abstract The midbrain periaqueductal grey (PAG is a structure known for its roles in pain transmission and modulation. Noxious stimuli potentiate the glutamate synaptic transmission and enhance glutamate NMDA receptor expression in the PAG. However, little is known about roles of NMDA receptor subunits in the PAG in processing the persistent inflammatory pain. The present study was undertaken to investigate NR2A- and NR2B-containing NMDA receptors in the PAG and their modulation to the peripheral painful inflammation. Noxious stimuli induced by hind-paw injection of complete Freund's adjuvant (CFA caused up-regulation of NR2B-containing NMDA receptors in the PAG, while NR2A-containing NMDA receptors were not altered. Whole-cell patch-clamp recordings revealed that NMDA receptor mediated mEPSCs were increased significantly in the PAG synapse during the chronic phases of inflammatory pain in mice. PAG local infusion of Ro 25-6981, an NR2B antagonist, notably prolonged the paw withdrawal latency to thermal radian heat stimuli bilaterally in rats. Hyperoside (Hyp, one of the flavonoids compound isolated from Rhododendron ponticum L., significantly reversed up-regulation of NR2B-containing NMDA receptors in the PAG and exhibited analgesic activities against persistent inflammatory stimuli in mice. Our findings provide strong evidence that up-regulation of NR2B-containing NMDA receptors in the PAG involves in the modulation to the peripheral persistent inflammatory pain.

  14. Activation of the sigma receptor 1 modulates AMPA receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells.

    Liu, Lei-Lei; Deng, Qin-Qin; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei


    Sigma receptor (σR), a unique receptor family, is classified into three subtypes: σR1, σR2 and σR3. It was previously shown that σR1 activation induced by 1μM SKF10047 (SKF) suppressed N-methyl-d-aspartate (NMDA) receptor-mediated responses of rat retinal ganglion cells (GCs) and the suppression was mediated by a distinct Ca(2+)-dependent phospholipase C (PLC)-protein kinase C (PKC) pathway. In the present work, using whole-cell patch-clamp techniques in rat retinal slice preparations, we further demonstrate that SKF of higher dosage (50μM) significantly suppressed AMPA receptor (AMPAR)-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) of retinal ON-type GCs (ON GCs), and the effect was reversed by the σR1 antagonist BD1047, suggesting the involvement of σR1. The SKF (50μM) effect was unlikely due to a change in glutamate release from bipolar cells, as suggested by the unaltered paired-pulse ratio (PPR) of AMPAR-mediated EPSCs of ON GCs. SKF (50μM) did not change L-EPSCs of ON GCs when the G protein inhibitor GDP-β-S or the protein kinase G (PKG) inhibitor KT5823 was intracellularly infused. Calcium imaging further revealed that SKF (50μM) did not change intracellular calcium concentration in GCs and persisted to suppress L-EPSCs when intracellular calcium was chelated by BAPTA. The SKF (50μM) effect was intact when protein kinase A (PKA) and phosphatidylinostiol (PI)-PLC signaling pathways were both blocked. We conclude that the SKF (50μM) effect is Ca(2+)-independent, PKG-dependent, but not involving PKA, PI-PLC pathways. PMID:27373906

  15. Inhibition of Toll-Like Receptor 2-Mediated Interleukin-8 Production in Cystic Fibrosis Airway Epithelial Cells via the α7-Nicotinic Acetylcholine Receptor

    Shane J. O'Neill; McElvaney, Noel G; Wells, Robert J.; Hugh Ramsay; Greene, Catherine M


    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as ...

  16. Anti-Inflammatory Effects of β2-Receptor Agonists Salbutamol and Terbutaline Are Mediated by MKP-1.

    Keränen, Tiina; Hömmö, Tuija; Hämäläinen, Mari; Moilanen, Eeva; Korhonen, Riku


    Mitogen-activated protein kinase phosphatase 1 (MKP-1) expression is induced by inflammatory factors, and it is an endogenous suppressor of inflammatory response. MKP-1 expression is increased by PDE4 inhibitor rolipram suggesting that it is regulated by cAMP-enhancing compounds. Therefore, we investigated the effect of β2-receptor agonists on MKP-1 expression and inflammatory response. We found that β2-receptor agonists salbutamol and terbutaline, as well as 8-Br-cAMP, increased MKP-1 expression. Salbutamol and terbutaline also inhibited p38 MAPK phosphorylation and TNF production in J774 mouse macrophages. Interestingly, salbutamol suppressed carrageenan-induced paw inflammation in wild-type mice, but the effect was attenuated in MKP-1(-/-) mice. In conclusion, these data show that β2-receptor agonists increase MKP-1 expression, which seems to mediate, at least partly, the observed anti-inflammatory effects of β2-receptor agonists. PMID:26849227

  17. CD14 cooperates with complement receptor 3 to mediate MyD88-independent phagocytosis of Borrelia burgdorferi

    Hawley, Kelly L.; Olson, Chris M.; Iglesias-Pedraz, Juan M.; Navasa, Nicolás; Cervantes, Jorge L.; Caimano, Melissa J.; Izadi, Hooman; Ingalls, Robin R.; Pal, Utpal; Salazar, Juan C.; Radolf, Justin D.; Anguita, Juan


    Phagocytosis of Borrelia burgdorferi, the causative agent of Lyme disease, is a poorly understood process, despite its importance during the host immune response to infection. B. burgdorferi has been shown to bind to different receptors on the surface of phagocytic cells, including the β2 integrin, complement receptor 3 (CR3). However, whether these receptors mediate the phagocytosis of the spirochete remains unknown. We now demonstrate that CR3 mediates the phagocytosis of the spirochete by murine macrophages and human monocytes. Interaction of B. burgdorferi with the integrin is not sufficient, however, to internalize the spirochete; phagocytosis requires the interaction of CR3 with the GPI-anchored protein, CD14, independently of TLR/MyD88-induced or inside-out signals. Interestingly, the absence of CR3 leads to marked increases in the production of TNF in vitro and in vivo, despite reduced spirochetal uptake. Furthermore, the absence of CR3 during infection with B. burgdorferi results in the inefficient control of bacterial burdens in the heart and increased Lyme carditis. Overall, our data identify CR3 as a MyD88-independent phagocytic receptor for B. burgdorferi that also participates in the modulation of the proinflammatory output of macrophages. These data also establish a unique mechanism of CR3-mediated phagocytosis that requires the direct cooperation of GPI-anchored proteins. PMID:22232682

  18. Engineering the melanocortin-4 receptor to control constitutive and ligand-mediated G(S signaling in vivo.

    Supriya Srinivasan

    Full Text Available The molecular and functional diversity of G protein-coupled receptors is essential to many physiological processes. However, this diversity presents a significant challenge to understanding the G protein-mediated signaling events that underlie a specific physiological response. To increase our understanding of these processes, we sought to gain control of the timing and specificity of G(s signaling in vivo. We used naturally occurring human mutations to develop two G(s-coupled engineered receptors that respond solely to a synthetic ligand (RASSLs. Our G(s-coupled RASSLs are based on the melanocortin-4 receptor, a centrally expressed receptor that plays an important role in the regulation of body weight. These RASSLs are not activated by the endogenous hormone alpha-melanocyte-stimulating hormone but respond potently to a selective synthetic ligand, tetrahydroisoquinoline. The RASSL variants reported here differ in their intrinsic basal activities, allowing the separation of the effects of basal signaling from ligand-mediated activation of the G(s pathway in vivo. These RASSLs can be used to activate G(s signaling in any tissue, but would be particularly useful for analyzing downstream events that mediate body weight regulation in mice. Our study also demonstrates the use of human genetic variation for protein engineering.

  19. The role of the ubiquitination–proteasome pathway in breast cancer: Ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer

    Lipkowitz, Stan


    Aberrant activity of growth factor receptors has been implicated in the pathogenesis of a wide variety of malignancies. The negative regulation of signaling by growth factor receptors is mediated in large part by the ubiquitination, internalization, and degradation of the activated receptor. Over the past few years, considerable insight into the mechanisms that control receptor downregulation has been gained. There are also data suggesting that mutations that lead to inhibition of downregulat...

  20. Inhibition effect of cypermethrin mediated by co-regulators SRC-1 and SMRT in interleukin-6-induced androgen receptor activation.

    Wang, Qi; Zhou, Ji-Long; Wang, Hui; Ju, Qiang; Ding, Zhen; Zhou, Xiao-Long; Ge, Xing; Shi, Qiao-Mei; Pan, Chen; Zhang, Jin-Peng; Zhang, Mei-Rong; Yu, Hong-Min; Xu, Li-Chun


    It is hypothesized that the pesticide cypermethrin may induce androgen receptor (AR) antagonism via ligand-independent mechanisms. The Real-Time Cell Analysis (RTCA) iCELLigence system was used to investigate the inhibitory effect of cypermethrin on interleukin-6 (IL-6)-induced ligand-independent LNCaP cell growth. Then, the mammalian two-hybrid assays were applied to clarify whether the mechanism of IL-6-induced AR antagonism of cypermethrin was associated with the interactions of the AR and co-activator steroid receptor co-activator-1 (SRC-1) and co-repressor silencing mediator for retinoid and thyroid hormone receptors (SMRT). Cypermethrin inhibited the LNCaP cell growth induced by IL-6. The interactions of AR-SRC-1 and AR-SMRT mediated by IL-6 were suppressed by cypermethrin. The results indicate that the IL-6-mediated AR antagonism induced by cypermethrin is related to repress the recruitment of co-regulators SRC-1 and SMRT to the AR in a ligand-independent manner. Inhibition of the interactions of AR-SRC-1 and AR-SMRT mediated by IL-6 contributes to the AR antagonism induced by cypermethrin. PMID:27239967

  1. TRIM32 promotes retinoic acid receptor α-mediated differentiation in human promyelogenous leukemic cell line HL60

    Highlights: ► TRIM32 enhanced RARα-mediated transcriptional activity even in the absence of RA. ► TRIM32 stabilized RARα in the human promyelogenous leukemic cell line HL60. ► Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. ► TRIM32 may function as a coactivator for RARα-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor α (RARα). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RARα and enhances transcriptional activity of RARα in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RARα, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RARα-mediated transcriptional activity even in the absence of RA and stabilizes RARα in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RARα-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  2. Subtypes of the 5-HT receptor mediating the behavioural responses to 5-methoxy-N,N-dimethyltryptamine in the rat.

    Tricklebank, M D; Forler, C; Middlemiss, D N; Fozard, J R


    The 5-HT receptor subtypes involved in the mediation of reciprocal forepaw treading and the flat body posture induced by the central 5-HT receptor agonist, 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), were examined in intact rats and in rats depleted of monoamines with reserpine. Forepaw treading in non-reserpinised rats was antagonised by the 5-HT2 receptor antagonist, ketanserin, only at doses in excess of those required for occupation of a large proportion of 5-HT2 receptors in brain, and at which there was significant inhibition of stereotyped sniffing induced by the dopamine receptor agonist, apomorphine. Since forepaw treading induced by 5-MeODMT was also blocked in intact rats by haloperidol, blockade of the behaviour by ketanserin may more accurately reflect antagonism at dopamine receptors than at 5-HT2 receptors. In reserpinised rats, i.e. with minimised contributions from other monoamine systems, neither forepaw treading nor the flat body posture were significantly altered by ketanserin, haloperidol or the beta 1- and beta 2-selective adrenoceptor antagonists, betaxolol and ICI 118.551, making a key role for 5-HT2 receptors, dopamine receptors and beta-adrenoceptors unlikely. In contrast, forepaw treading in both reserpinised and non-reserpinised rats was antagonised stereoselectively by pindolol and by spiperone, which interact with 5-HT1 and 5-HT1A recognition sites. The results are consistent with the hypothesis that forepaw treading induced by 5-MeODMT arises by activation of the putative 5-HT1A receptor. Antagonism of the flat body posture by pindolol could be demonstrated only in non-reserpinised rats and the mechanism of induction of this behaviour remains to be established. PMID:2935408

  3. HSV-1 infection of human corneal epithelial cells: Receptor-mediated entry and trends of re-infection

    Shah, Arpeet; Farooq, Asim V.; Tiwari, Vaibhav; Kim, Min-Jung


    Purpose The human cornea is a primary target for herpes simplex virus-1 (HSV-1) infection. The goals of the study were to determine the cellular modalities of HSV-1 entry into human corneal epithelial (HCE) cells. Specific features of the study included identifying major entry receptors, assessing pH dependency, and determining trends of re-infection. Methods A recombinant HSV-1 virus expressing beta-galactosidase was used to ascertain HSV-1 entry into HCE cells. Viral replication within cells was confirmed using a time point plaque assay. Lysosomotropic agents were used to test for pH dependency of entry. Flow cytometry and immunocytochemistry were used to determine expression of three cellular receptors - nectin-1, herpesvirus entry mediator (HVEM), and paired immunoglobulin-like 2 receptor alpha (PILR-a). The necessity of these receptors for viral entry was tested using antibody-blocking. Finally, trends of re-infection were investigated using viral entry assay and flow cytometry post-primary infection. Results Cultured HCE cells showed high susceptibility to HSV-1 entry and replication. Entry was demonstrated to be pH dependent as blocking vesicular acidification decreased entry. Entry receptors expressed on the cell membrane include nectin-1, HVEM, and PILR-α. Receptor-specific antibodies blocked entry receptors, reduced viral entry and indicated nectin-1 as the primary receptor used for entry. Cells re-infected with HSV-1 showed a decrease in entry, which was correlated to decreased levels of nectin-1 as demonstrated by flow cytometry. Conclusions HSV-1 is capable of developing an infection in HCE cells using a pH dependent entry process that involves primarily nectin-1 but also the HVEM and PILR-α receptors. Re-infected cells show decreased levels of entry, correlated with a decreased level of nectin-1 receptor expression. PMID:21139972

  4. Rapid effects of phytoestrogens on human colonic smooth muscle are mediated by oestrogen receptor beta.

    Hogan, A M


    Epidemiological studies have correlated consumption of dietary phytoestrogens with beneficial effects on colon, breast and prostate cancers. Genomic and non-genomic mechanisms are responsible for anti-carcinogenic effects but, until now, the effect on human colon was assumed to be passive and remote. No direct effect on human colonic smooth muscle has previously been described. Institutional research board approval was granted. Histologically normal colon was obtained from the proximal resection margin of colorectal carcinoma specimens. Circular smooth muscle strips were microdissected and suspended under 1g of tension in organ baths containing oxygenated Krebs solution at 37 degrees C. After an equilibration period, tissues were exposed to diarylpropionitrile (DPN) (ER beta agonist) and 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) (ER alpha agonist) or to the synthetic phytoestrogen compounds genistein (n=8), daidzein (n=8), fisetin (n=8) and quercetin (n=8) in the presence or absence of fulvestrant (oestrogen receptor antagonist). Mechanism of action was investigated by inhibition of downstream pathways. The cholinergic agonist carbachol was used to induce contractile activity. Tension was recorded isometrically. Phytoestrogens inhibit carbachol-induced colonic contractility. In keeping with a non-genomic, rapid onset direct action, the effect was within minutes, reversible and similar to previously described actions of 17 beta oestradiol. No effect was seen in the presence of fulvestrant indicating receptor modulation. While the DPN exerted inhibitory effects, PPT did not. The effect appears to be reliant on a p38\\/mitogen activated protein kinase mediated induction of nitric oxide production in colonic smooth muscle. The present data set provides the first description of a direct effect of genistein, daidzein, fisetin and quercetin on human colonic smooth muscle. The presence of ER in colonic smooth muscle has been functionally proven and the beta

  5. Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition

    Exposure to particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of ambient PM and may contribute to PM-induced pulmonary inflammation. Proinflammatory signaling is mediated by phosphorylation-dependent signaling pathways whose activation is opposed by the activity of protein tyrosine phosphatases (PTPases) which thereby function to maintain signaling quiescence. PTPases contain an invariant catalytic cysteine that is susceptible to electrophilic attack. DEP contain electrophilic oxy-organic compounds that may contribute to the oxidant effects of PM. Therefore, we hypothesized that exposure to DEP impairs PTPase activity allowing for unopposed basal kinase activity. Here we report that exposure to 30 μg/cm2 DEP for 4 h induces differential activation of signaling in primary cultures of human airway epithelial cells (HAEC), a primary target cell in PM inhalation. In-gel kinase activity assay of HAEC exposed to DEPs of low (L-DEP), intermediate (I-DEP) or high (H-DEP) organic content showed differential activation of intracellular kinases. Exposure to these DEP also induced varying levels of phosphorylation of the receptor tyrosine kinase EGFR in a manner that requires EGFR kinase activity but does not involve receptor dimerization. We demonstrate that treatment with DEP results in an impairment of total and EGFR-directed PTPase activity in HAEC with a potency that is independent of the organic content of these particles. These data show that DEP-induced EGFR phosphorylation in HAEC is the result of a loss of PTPase activities which normally function to dephosphorylate EGFR in opposition to baseline EGFR kinase activity

  6. Differential inhibitory effects of CysLT(1 receptor antagonists on P2Y(6 receptor-mediated signaling and ion transport in human bronchial epithelia.

    Wendy Ka-hoi Lau

    Full Text Available BACKGROUND: Cysteinyl leukotriene (CysLT is one of the proinflammatory mediators released by the bronchi during inflammation. CysLTs exert their biological effects via specific G-protein-coupled receptors. CysLT(1 receptor antagonists are available for clinical use for the treatment of asthma. Recently, crosstalk between CysLT(1 and P2Y(6 receptors has been delineated. P2Y receptors are expressed in apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Previous research suggests that CysLT(1 receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. However, the detailed molecular mechanism underlying the inhibition remains unresolved. METHODOLOGY/PRINCIPAL FINDINGS: In this study, western blot analysis confirmed that both CysLT(1 and P2Y(6 receptors were expressed in the human bronchial epithelial cell line 16HBE14o-. All three CysLT(1 antagonists inhibited the uridine diphosphate (UDP-evoked I(SC, but only montelukast inhibited the UDP-evoked [Ca(2+](i increase. In the presence of forskolin or 8-bromoadenosine 3'5' cyclic monophosphate (8-Br-cAMP, the UDP-induced I(SC was potentiated but was reduced by pranlukast and zafirlukast but not montelukast. Pranlukast inhibited the UDP-evoked I(SC potentiated by an Epac activator, 8-(4-Chlorophenylthio-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2'-O-Me-cAMP, while montelukast and zafirlukast had no such effect. Pranlukast inhibited the real-time increase in cAMP changes activated by 8-CPT-2'-O-Me-cAMP as monitored by fluorescence resonance energy transfer imaging. Zafirlukast inhibited the UDP-induced I(SC potentiated by N(6-Phenyladenosine-3',5'-cyclic monophosphorothioate, Sp-isomer (Sp-6-Phe-cAMP; a PKA activator and UDP-activated PKA activity. CONCLUSIONS/SIGNIFICANCE: In summary, our data strongly suggest for the first time that in human airway epithelia, the three specific CysLT(1 receptor

  7. Silent NMDA receptor-mediated synapses are developmentally regulated in the dorsal horn of the rat spinal cord.

    Baba, H; Doubell, T P; Moore, K A; Woolf, C J


    In vitro whole cell patch-clamp recording techniques were utilized to study silent pure-N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses in lamina II (substantia gelatinosa, SG) and lamina III of the spinal dorsal horn. To clarify whether these synapses are present in the adult and contribute to neuropathic pain, transverse lumbar spinal cord slices were prepared from neonatal, naive adult and adult sciatic nerve transected rats. In neonatal rats, pure-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) were elicited in SG neurons either by focal intraspinal stimulation (n = 15 of 20 neurons) or focal stimulation of the dorsal root (n = 2 of 7 neurons). In contrast, in slices from naive adult rats, no silent pure-NMDA EPSCs were recorded in SG neurons following focal intraspinal stimulation (n = 27), and only one pure-NMDA EPSC was observed in lamina III (n = 23). Furthermore, in rats with chronic sciatic nerve transection, pure-NMDA EPSCs were elicited by focal intraspinal stimulation in only 2 of 45 SG neurons. Although a large increase in Abeta fiber evoked mixed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptor-mediated synapses was detected after sciatic nerve injury, Abeta fiber-mediated pure-NMDA EPSCs were not evoked in SG neurons by dorsal root stimulation. Pure-NMDA receptor-mediated EPSCs are therefore a transient, developmentally regulated phenomenon, and, although they may have a role in synaptic refinement in the immature dorsal horn, they are unlikely to be involved in receptive field plasticity in the adult. PMID:10669507

  8. Human neutrophil Fc receptor-mediated adhesion under flow: a hollow fibre model of intravascular arrest.

    D'Arrigo, C; Candal-Couto, J J; Greer, M; Veale, D J; Woof, J M


    Human polymorphonuclear cells (PMN) were found to adhere to a novel model of blood vessel wall-associated IgG. The internal surfaces of cellulose acetate hollow fibres, of comparable internal diameter to small blood vessels, were coated with normal serum human IgG, heat-aggregated IgG (HAIgG), laminin or fibrinogen. Under conditions of flow mimicking those in a small vessel, PMN were found to adhere markedly only to immunoglobulin-coated fibres. Arrest on HAIgG was inhibited by excess soluble IgG but not by bovine serum albumin (BSA), demonstrating that the adhesion was IgG-specific and presumably mediated by Fc gamma R on the PMN surface. Pre-adsorption of serum components onto HAIgG-coated fibres enhanced PMN arrest, due most probably to fixation of complement components by immobilized HAIgG, resulting in additional potential to entrap PMN via complement receptors such as CR3. Treatment of PMN with the regulatory neuropeptide substance P also enhanced adhesion to HAIgG-coated fibres and caused increased surface expression of Fc gamma RI, Fc gamma RII and Fc gamma RIII. A mouse cell line derived from L cells, hR4C6, stably transfected with human Fc gamma RII, was found to adhere under flow to HAIgG-coated fibres, whilst untransfected parent L cells did not. This adhesion was similarly inhibited by excess soluble IgG, confirming the capability of Fc gamma R to mediate cell arrest. The study strongly suggests that Fc gamma R may play an important role in intravascular PMN arrest and we speculate that in inflammatory diseases PMN may adhere via Fc gamma R to immobilized immunoglobulin on the vascular endothelium, with subsequent degranulation and tissue damage. PMID:7535210

  9. Toll-Like Receptor 4 Signaling Pathway Mediates Inhalant Organic Dust-Induced Bone Loss.

    Staab, Elizabeth; Thiele, Geoffrey M; Clarey, Dillon; Wyatt, Todd A; Romberger, Debra J; Wells, Adam D; Dusad, Anand; Wang, Dong; Klassen, Lynell W; Mikuls, Ted R; Duryee, Michael J; Poole, Jill A


    Agriculture workers have increased rates of airway and skeletal disease. Inhalant exposure to agricultural organic dust extract (ODE) induces bone deterioration in mice; yet, mechanisms underlying lung-bone crosstalk remain unclear. Because Toll-like receptor 2 (TLR2) and TLR4 are important in mediating the airway consequences of ODE, this study investigated their role in regulating bone responses. First, swine facility ODE stimulated wild-type (WT) bone marrow macrophages to form osteoclasts, and this finding was inhibited in TLR4 knock-out (KO), but not TLR2 KO cells. Next, using an established intranasal inhalation exposure model, WT, TLR2 KO and TLR4 KO mice were treated daily with ODE or saline for 3 weeks. ODE-induced airway neutrophil influx and cytokine/chemokine release were similarly reduced in TLR2 and TLR4 KO animals as compared to WT mice. Utilizing micro-computed tomography (CT), analysis of tibia showed loss of bone mineral density, volume and deterioration of bone micro-architecture and mechanical strength induced by ODE in WT mice were significantly reduced in TLR4 but not TLR2 KO animals. Bone marrow osteoclast precursor cell populations were analyzed by flow cytometry from exposed animals. In WT animals, exposure to inhalant ODE increased osteoclast precursor cell populations as compared to saline, an effect that was reduced in TLR4 but not TLR2 KO mice. These results show that TLR2 and TLR4 pathways mediate ODE-induced airway inflammation, but bone deterioration consequences following inhalant ODE treatment is strongly dependent upon TLR4. Thus, the TLR4 signaling pathway appears critical in regulating the lung-bone inflammatory axis to microbial component-enriched organic dust exposures. PMID:27479208

  10. The contribution of IL-6 to beta 3 adrenergic receptor mediated adipose tissue remodeling.

    Buzelle, Samyra L; MacPherson, Rebecca E K; Peppler, Willem T; Castellani, Laura; Wright, David C


    The chronic activation of beta 3 adrenergic receptors results in marked alterations in adipose tissue morphology and metabolism, including increases in mitochondrial content and the expression of enzymes involved in lipogenesis and glyceroneogenesis. Acute treatment with CL 316,243, a beta 3 adrenergic agonist, induces the expression of interleukin 6. Interestingly, IL-6 has been shown to induce mitochondrial genes in cultured adipocytes. Therefore, the purpose of this paper was to examine the role of interleukin 6 in mediating the in vivo effects of CL 316,243 in white adipose tissue. Circulating IL-6, and markers of IL-6 signaling in white adipose tissue were increased 4 h following a single injection of CL 316,243 in C57BL6/J mice. Once daily injections of CL 316,243 for 5 days increased the protein content of a number of mitochondrial proteins including CORE1, Cytochrome C, PDH, MCAD, and Citrate Synthase to a similar extent in adipose tissue from WT and IL-6(-/-) mice. Conversely, CL 316,243-induced increases in COXIV and phosphorylated AMPK were attenuated in IL-6(-/-) mice. Likewise, the slight, but significant, CL 316,243-induced increases in ATGL, PEPCK, and PPARγ, were reduced or absent in adipose tissue IL-6(-/-) mice. The attenuated response to CL 316,243 in white adipose tissue in IL-6(-/-) mice was associated with reductions in whole-body oxygen consumption and energy expenditure in the light phase. Our findings suggest that IL-6 plays a limited role in CL 316,243-mediated adipose tissue remodeling. PMID:25713332

  11. Novel time-dependent vascular actions of Δ9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma

    Cannabinoids have widespread effects on the cardiovascular system, only some of which are mediated via G-protein-coupled cell surface receptors. The active ingredient of cannabis, Δ9-tetrahydrocannabinol (THC), causes acute vasorelaxation in various arteries. Here we show for the first time that THC also causes slowly developing vasorelaxation through activation of peroxisome proliferator-activated receptors gamma (PPARγ). In vitro, THC (10 μM) caused time-dependent vasorelaxation of rat isolated arteries. Time-dependent vasorelaxation to THC was similar to that produced by the PPARγ agonist rosiglitazone and was inhibited by the PPARγ antagonist GW9662 (1 μM), but not the cannabinoid CB1 receptor antagonist AM251 (1 μM). Time-dependent vasorelaxation to THC requires an intact endothelium, nitric oxide, production of hydrogen peroxide, and de novo protein synthesis. In transactivation assays in cultured HEK293 cells, THC-activated PPARγ, transiently expressed in combination with retinoid X receptor α and a luciferase reporter gene, in a concentration-dependent manner (100 nM-10 μM). In vitro incubation with THC (1 or 10 μM, 8 days) stimulated adipocyte differentiation in cultured 3T3L1 cells, a well-accepted property of PPARγ ligands. The present results provide strong evidence that THC is a PPARγ ligand, stimulation of which causes time-dependent vasorelaxation, implying some of the pleiotropic effects of cannabis may be mediated by nuclear receptors

  12. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio).

    Ma, Zhiyuan; Yu, Yijun; Tang, Song; Liu, Hongling; Su, Guanyong; Xie, Yuwei; Giesy, John P; Hecker, Markus; Yu, Hongxia


    As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane×receptor (P×R)) pathways at 120hpf. Exposure to 0.5μM TBOEP significantly (peffects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were affected by TBOEP at the concentrations studied. Receptor-mediated responses (in vivo) and mammalian cell lines receptor binding assay (in vitro) combined with published information suggest that TBOEP can modulate receptor-mediated, endocrine process (in vivo/in vitro), particularly ER and MR. PMID:26562049

  13. The role of the ubiquitination–proteasome pathway in breast cancer: Ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer

    Aberrant activity of growth factor receptors has been implicated in the pathogenesis of a wide variety of malignancies. The negative regulation of signaling by growth factor receptors is mediated in large part by the ubiquitination, internalization, and degradation of the activated receptor. Over the past few years, considerable insight into the mechanisms that control receptor downregulation has been gained. There are also data suggesting that mutations that lead to inhibition of downregulation of growth factor receptors could play a role in the pathogenesis of cancer. Therapies directed at enhancing the degradation of growth factor receptors offer a promising approach to the treatment of malignancies

  14. GABAA and GABAB receptor-mediated effects in guinea-pig ileum.

    Giotti, A; Luzzi, S; Spagnesi, S; Zilletti, L


    1 The effects of gamma-aminobutyric acid (GABA) and related substances were examined in guinea-pig ileum longitudinal muscle.2 GABA at doses ranging from 10(-7) M to 3 x 10(-6) M elicited a relaxation while at higher doses (3 x 10(-6) M - 10(-4) M), as previously described, it caused a contraction followed by relaxation.3 GABA-induced relaxation was bicuculline-insensitive, was mimicked by (-)-baclofen but not by homotaurine and muscimol. The effect of baclofen was stereospecific. GABA- and (-)-baclofen-induced relaxations were dose-dependent and their ED(50) values were similar. A specific cross-desensitization occurred between GABA and (-)-baclofen.4 The bicuculline-insensitive relaxation induced by GABA and (-)-baclofen was prevented by tetrodotoxin and hyoscine but not by phentolamine plus propranolol, naloxone or theophylline.5 In preparations in which the muscle tone was raised by histamine or prostaglandin F(2alpha), GABA and (-)-baclofen induced relaxation to the same extent as before increasing the tone. If the tone was raised by DMPP, a greater bicuculline-insensitive relaxation occurred.6 Contraction caused by GABA was bicuculline-sensitive and was mimicked by homotaurine and muscimol. Contraction was dose-dependent and muscimol was about three times more potent than GABA or homotaurine. A specific cross-desensitization occurred between the contractile effects of GABA and those of homotaurine or muscimol.7 Bicuculline competitively antagonized the contractile effects of GABA, homotaurine and muscimol and gave closely similar pA(2) values. The slope of the Schild plot for the above drugs was near 1, confirming the competitive nature of the antagonism.8 The bicuculline-sensitive contraction induced by GABA, homotaurine and muscimol was abolished by tetrodotoxin and was non-competitively antagonized by hyoscine, while it was unaffected by hexamethonium, mepyramine and methysergide.9 It is concluded that two receptors mediate the GABA effects in guinea

  15. Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice

    Sclafani, Anthony; Glass, Damien S.; Margolskee, Robert F.; Glendinning, John I.


    Most mammals prefer the sweet taste of sugars, which is mediated by the heterodimeric T1R2+T1R3 taste receptor. Sugar appetite is also enhanced by the post-oral reinforcing actions of the nutrient in the gut. Here, we examined the contribution of gut T1R3 (either alone or as part of the T1R3+T1R3 receptor) to post-oral sugar reinforcement using a flavor-conditioning paradigm. We trained mice to associate consumption of a flavored solution (CS+) with intragastric (IG) infusions of a sweetener,...

  16. δ-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    δ-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen2,5]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory Gi/o proteins, because pre-treatment with pertussis toxin, but not over-expression of the Gq/11 scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the Gβγ scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  17. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)


    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  18. Cytotoxic-T-Lymphocyte Antigen 4 Receptor Signaling for Lymphocyte Adhesion Is Mediated by C3G and Rap1

    Kloog, Yoel; Mor, Adam


    T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed th...

  19. Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors.

    Danielson, Eric; Metallo, Jacob; Lee, Sang H


    Scaffolding proteins are involved in the incorporation, anchoring, maintenance, and removal of AMPA receptors (AMPARs) at synapses, either through a direct interaction with AMPARs or via indirect association through auxiliary subunits of transmembrane AMPAR regulatory proteins (TARPs). Synaptic scaffolding molecule (S-SCAM) is a newly characterized member of the scaffolding proteins critical for the regulation and maintenance of AMPAR levels at synapses, and directly binds to TARPs through a PDZ interaction. However, the functional significance of S-SCAM-TARP interaction in the regulation of AMPARs has not been tested. Here we show that overexpression of the C-terminal peptide of TARP-γ2 fused to EGFP abolished the S-SCAM-mediated enhancement of surface GluA2 expression. Conversely, the deletion of the PDZ-5 domain of S-SCAM that binds TARPs greatly attenuated the S-SCAM-induced increase of surface GluA2 expression. In contrast, the deletion of the guanylate kinase domain of S-SCAM did not show a significant effect on the regulation of AMPARs. Together, these results suggest that S-SCAM is regulating AMPARs through TARPs. PMID:22878254

  20. Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors.

    Sodhi, Puneet; Hartwick, Andrew T E


    Melanopsin-dependent phototransduction in intrinsically photosensitive retinal ganglion cells (ipRGCs) involves a Gq-coupled phospholipase C (PLC) signaling cascade. Acetylcholine, released in the mammalian retina by starburst amacrine cells, can also activate Gq-PLC pathways through certain muscarinic acetylcholine receptors (mAChRs). Using multielectrode array recordings of rat retinas, we demonstrate that robust spiking responses can be evoked in neonatal and adult ipRGCs after bath application of the muscarinic agonist carbachol. The stimulatory action of carbachol on ipRGCs was a direct effect, as confirmed through calcium imaging experiments on isolated ipRGCs in purified cultures. Using flickering (6 Hz) yellow light stimuli at irradiances below the threshold for melanopsin activation, spiking responses could be elicited in ipRGCs that were suppressed by mAChR antagonism. Therefore, this work identified a novel melanopsin-independent pathway for stimulating sustained spiking in ganglion cell photoreceptors. This mAChR-mediated pathway could enhance ipRGC spiking responses in conditions known to evoke retinal acetylcholine release, such as those involving flickering or moving visual stimuli. Furthermore, this work identifies a pharmacological approach for light-independent ipRGC stimulation that could be targeted by mAChR agonists. PMID:27055770

  1. The analgesic effect of clonixine is not mediated by 5-HT3 subtype receptors.

    Paeile, C; Bustamante, S E; Sierralta, F; Bustamante, D; Miranda, H F


    1. The analgesic effect of clonixinate of L-lysine (Clx) in the nociceptive C-fiber reflex in rat and in the writhing test in mice is reported. 2. Clx was administered by three routes, i.v., i.t. and i.c.v., inducing a dose-dependent antinociception. 3. The antinociceptive effect of Clx was 40-45% with respect to the control integration values in the nociceptive C-fiber reflex method. 4. The writhing test yielded ED50 values (mg/kg) of 12.0 +/- 1.3 (i.p.), 1.8 +/- 0.2 (i.t.) and 0.9 +/- 0.1 (i.c.v.) for Clx administration. 5. Ondansetron was not able to antagonize the antinociception response of Clx in the algesiometric tests used. 6. Chlorophenilbiguanide did not produce any significative change in the analgesic effect of Clx in the nociceptive C-fiber reflex method. 7. It is suggested that the mechanism of action of the central analgesia of Clx is not mediated by 5-HT3 subtype receptors. PMID:7590133

  2. Estrogen receptors alpha mediates postischemic inflammation in chronically estrogen-deprived mice.

    Cordeau, Pierre; Lalancette-Hébert, Mélanie; Weng, Yuan Cheng; Kriz, Jasna


    Estrogens are known to exert neuroprotective and immuneomodulatory effects after stroke. However, at present, little is known about the role of estrogens and its receptors in postischemic inflammation after menopause. Here, we provide important in vivo evidence of a distinct shift in microglial phenotypes in the model of postmenopause brain. Using a model-system for live imaging of microglial activation in the context of chronic estrogen- and ERα-deficiency associated with aging, we observed a marked deregulation of the TLR2 signals and/or microglial activation in ovariectomized and/or ERα knockout mice. Further analysis revealed a 5.7-fold increase in IL-6, a 4.7-fold increase in phospho-Stat3 levels suggesting an overactivation of JAK/STAT3 pathway and significantly larger infarction in ERα knockouts chronically deprived of estrogen. Taken together, our results suggest that in the experimental model of menopause and/or aging, ERα mediates innate immune responses and/or microglial activation, and ischemia-induced production of IL-6. Based on our results, we propose that the loss of functional ERα may lead to deregulation of postischemic inflammatory responses and increased vulnerability to ischemic injury in aging female brains. PMID:26973103

  3. Action control is mediated by prefrontal BDNF and glucocorticoid receptor binding.

    Gourley, Shannon L; Swanson, Andrew M; Jacobs, Andrea M; Howell, Jessica L; Mo, Michelle; Dileone, Ralph J; Koleske, Anthony J; Taylor, Jane R


    Stressor exposure biases decision-making strategies from those based on the relationship between actions and their consequences to others restricted by stimulus-response associations. Chronic stressor exposure also desensitizes glucocorticoid receptors (GR) and diminishes motivation to acquire food reinforcement, although causal relationships are largely not established. We show that a history of chronic exposure to the GR ligand corticosterone or acute posttraining GR blockade with RU38486 makes rodents less able to perform actions based on their consequences. Thus, optimal GR binding is necessary for the consolidation of new response-outcome learning. In contrast, medial prefrontal (but not striatal) BDNF can account for stress-related amotivation, in that selective medial prefrontal cortical Bdnf knockdown decreases break-point ratios in a progressive-ratio task. Knockdown also increases vulnerability to RU38486. Despite the role of BDNF in dendritic spine reorganization, deep-layer spine remodeling does not obviously parallel progressive-ratio response patterns, but treatment with the Na(+)-channel inhibitor riluzole reverses corticosteroid-induced motivational deficits and restores prefrontal BDNF expression after corticosterone. We argue that when prefrontal neurotrophin systems are compromised, and GR-mediated hypothalamic-pituitary-adrenal axis feedback is desensitized (as in the case of chronic stress hormone exposure), amotivation and inflexible maladaptive response strategies that contribute to stress-related mood disorders result. PMID:23185000

  4. Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release from Airway Epithelia via Exosomes.

    Szul, Tomasz; Bratcher, Preston E; Fraser, Kyle B; Kong, Michele; Tirouvanziam, Rabindra; Ingersoll, Sarah; Sztul, Elizabeth; Rangarajan, Sunil; Blalock, J Edwin; Xu, Xin; Gaggar, Amit


    Proteases are important regulators of pulmonary remodeling and airway inflammation. Recently, we have characterized the enzyme prolyl endopeptidase (PE), a serine peptidase, as a critical protease in the generation of the neutrophil chemoattractant tripeptide Pro-Gly-Pro (PGP) from collagen. However, PE has been characterized as a cytosolic enzyme, and the mechanism mediating PE release extracellularly remains unknown. We examined the role of exosomes derived from airway epithelia as a mechanism for PE release and the potential extracellular signals that regulate the release of these exosomes. We demonstrate a specific regulatory pathway of exosome release from airway epithelia and identify PE as novel exosome cargo. LPS stimulation of airway epithelial cells induces release of PE-containing exosomes, which is significantly attenuated by small interfering RNA depletion of Toll-like receptor 4 (TLR4). These differences were recapitulated upon intratracheal LPS administration in mice competent versus deficient for TLR4 signaling. Finally, sputum samples from subjects with cystic fibrosis colonized with Pseudomonas aeruginosa demonstrate elevated exosome content and increased PE levels. This TLR4-based mechanism highlights the first report of nonstochastic release of exosomes in the lung and couples TLR4 activation with matrikine generation. The increased quantity of these proteolytic exosomes in the airways of subjects with chronic lung disease highlights a new mechanism of injury and inflammation in the pathogenesis of pulmonary disorders. PMID:26222144

  5. Toll-like receptor-mediated immune response inhibits prion propagation.

    Kang, Sang-Gyun; Kim, Chiye; Cortez, Leonardo M; Carmen Garza, María; Yang, Jing; Wille, Holger; Sim, Valerie L; Westaway, David; McKenzie, Debbie; Aiken, Judd


    Prion diseases are progressive neurodegenerative disorders affecting humans and various mammals. The prominent neuropathological change in prion diseases is neuroinflammation characterized by activation of neuroglia surrounding prion deposition. The cause and effect of this cellular response, however, is unclear. We investigated innate immune defenses against prion infection using primary mixed neuronal and glial cultures. Conditional prion propagation occurred in glial cultures depending on their immune status. Preconditioning of the cells with the toll-like receptor (TLR) ligand, lipopolysaccharide, resulted in a reduction in prion propagation, whereas suppression of the immune responses with the synthetic glucocorticoid, dexamethasone, increased prion propagation. In response to recombinant prion fibrils, glial cells up-regulated TLRs (TLR1 and TLR2) expression and secreted cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6, granulocyte-macrophage colony-stimulating factor, and interferon-β). Preconditioning of neuronal and glial cultures with recombinant prion fibrils inhibited prion replication and altered microglial and astrocytic populations. Our results provide evidence that, in early stages of prion infection, glial cells respond to prion infection through TLR-mediated innate immunity. GLIA 2016;64:937-951. PMID:26880394

  6. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1.

    Sharma, Mehul; Merkulova, Yulia; Raithatha, Sheetal; Parkinson, Leigh G; Shen, Yue; Cooper, Dawn; Granville, David J


    Granzymes are a family of serine proteases that were once thought to function exclusively as mediators of cytotoxic lymphocyte-induced target cell death. However, non-apoptotic roles for granzymes, including granzyme K (GzK), have been proposed. As recent studies have observed elevated levels of GzK in the plasma of patients diagnosed with clinical sepsis, we hypothesized that extracellular GzK induces a proinflammatory response in endothelial cells. In the present study, extracellular GzK proteolytically activated protease-activated receptor-1 leading to increased interleukin 6 and monocyte chemotactic protein 1 production in endothelial cells. Enhanced expression of intercellular adhesion molecule 1 along with an increased capacity for adherence of THP-1 cells was also observed. Characterization of downstream pathways implicated the mitogen-activated protein kinase p38 pathway for intercellular adhesion molecule 1 expression, and both the p38 and the extracellular signal-regulated protein kinases 1 and 2 pathways in cytokine production. GzK also increased tumour necrosis factor α-induced inflammatory adhesion molecule expression. Furthermore, the physiological inhibitor of GzK, inter-α-inhibitor protein, significantly inhibited GzK activity in vitro. In summary, extracellular GzK promotes a proinflammatory response in endothelial cells. PMID:26936634

  7. Plasma extravasation mediated by lipopolysaccharide-induction of kinin B1 receptors in rat tissues

    Paulo Roberto Wille


    Full Text Available The present study was performed to: (a evaluate the effects of kinin B1 (Sar{D-Phe8}-des-Arg9-BK; 10 nmol/kg and B2 (bradykinin (BK; 10 nmol/kg receptor agonists on plasma extravasation in selected rat tissues; (b determine the contribution of a lipopolysaccharide (LPS (100 μ g/kg to the effects triggered by B1 and B2 agonists; and (c characterize the selectivity of B1 ({Leu8}desArg9-BK; 10 nmol/kg and B2 (HOE 140; 10 nmol/kg antagonists as inhibitors of this kinin-induced phenomenon. B1 and B2 agonists were shown to increase plasma extravasation in the duodenum, ileum and also in the urinary bladder of the rat. LPS pretreatment enhanced the plasma extravasation mediated only by the B1 agonist in the duodenum, ileum, trachea, main and segmentar bronchi. These effects were prevented by the B1. but not the B2 antagonist. In normal rats, the B2 antagonist inhibited the effect of B2 agonist in all the tissues analyzed. However, in LPS-treated rats, the B2 antagonist was ineffective in the urinary bladder.

  8. Receptor-independent, vacuolar ATPase-mediated cellular uptake of histamine receptor-1 ligands: Possible origin of pharmacological distortions and side effects

    The aims of this study were to investigate whether several histamine receptor agonists and antagonists are subjected to receptor-independent ion trapping into acidic organelles, and whether this sequestration influences their pharmacological or toxicological properties. Vacuolar (V)-ATPase-dependent intracellular sequestration of agonists was recognized as morphological alterations (large fluid-filled vacuoles for betahistine and 1-methylhistamine, granular uptake for fluorescent BODIPY FL histamine) prevented by the specific V-ATPase inhibitor bafilomycin A1 in rabbit vascular smooth muscle cells. Lipophilicity was the major determinant of these cellular effects (order of potency: BODIPY FL histamine > betahistine > 1-methylhistamine > histamine) that occurred at high concentrations. This ranking was dissociable from the potency order for H1 receptor-mediated contraction of the rabbit aorta, a response uninfluenced by bafilomycin. Antihistamines are inherently more lipophilic and caused vacuolization of a proportion of cells at 5-500 μM. Agonist or antagonist-induced vacuoles were of macroautophagic nature (labeled with GFP-conjugated LC3, Rab7 and CD63; detection of LC3 II). Further, the 2 most lipophilic antihistamines tested, astemizole and terfenadine, were potentiated by V-ATPase blockade in the aortic contractility assay (13- and 3.6-fold more potent, respectively, pA2 scale), suggesting that V-ATPase-mediated cation trapping sequesters these antagonists from the vicinity of H1 receptors in the therapeutic concentration range. This potentiation did not apply to less lipophilic antagonists (pyrilamine, diphenhydramine). While some agonists and all tested antagonists of the histamine H1 receptors induce the V-ATPase-dependent vacuolar and autophagic cytopathology, sequestration affects the pharmacology of only the most lipophilic antagonists, the ones prone to off-target arrhythmogenic side effects

  9. Endothelin-stimulated secretion of natriuretic peptides by rat atrial myocytes is mediated by endothelin A receptors.

    Thibault, G; Doubell, A F; Garcia, R; Larivière, R; Schiffrin, E L


    Endothelin (ET), a potent vasoconstrictor peptide, is known to enhance the secretion of atrial natriuretic factor (ANF) by the heart. In the present study, we investigated the potency of ET isopeptides to stimulate ANF and brain natriuretic peptide (BNP) secretion in primary cultures of neonatal atrial myocytes, and we characterized the receptor mediating these effects. All ET isopeptides caused a twofold increase of ANF and BNP secretion with the following order of potency: ET-1 approximately ET-2 > sarafotoxin 6b > ET-3. Secretion of the natriuretic peptides was blocked by BQ-123, an ETA-receptor antagonist, but was not affected by either IRL-1620 or [Ala1,3,11,15]ET-1, two ETB-receptor agonists. ET receptors were localized by autoradiography on the surface of atrial myocytes, indicating that contaminating cells were not responsible for 125I-ET-1 binding. Competition binding analyses were then used to assess the ET-receptor subtype on atrial myocyte membrane preparations. A high-affinity (100 pmol/L) binding site with high density (approximately 1500 fmol/mg) was found to preferentially bind the ET isopeptides in the following order: ET-1 > or = ET-2 > or = sarafotoxin 6b > ET-3. Binding was totally displaced by BQ-123 but not by IRL-1620. The ET binding site therefore had the characteristics of an ETA-like receptor. Analysis by cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that it possessed a molecular mass of approximately 50 kD. Northern blot analysis of both ETA- and ETB-receptor mRNAs allowed only the detection of the former, indicating that the ETB receptor may be expressed in very small amounts. These results demonstrate that ANF and BNP secretion by atrial myocytes is enhanced by ET via binding to an ETA-like receptor. PMID:8118954

  10. Smoking particles enhance endothelin A and endothelin B receptor-mediated contractions by enhancing translation in rat bronchi

    Vikman Petter


    Full Text Available Abstract Background Smoking is known to cause chronic inflammatory changes in the bronchi and to contribute to airway hyper-reactivity, such as in bronchial asthma. To study the effect of smoking on the endothelin system in rat airways, bronchial segments were exposed to DMSO-soluble smoking particles (DSP from cigarette smoke, to nicotine and to DMSO, respectively. Methods Isolated rat bronchial segments were cultured for 24 hours in the presence or absence of DSP, nicotine or DMSO alone. Contractile responses to sarafotoxin 6c (a selective agonist for ETB receptors and endothelin-1 (an ETA and ETB receptor agonist were studied by use of a sensitive myograph. Before ET-1 was introduced, the ETB receptors were desensitized by use of S6c. The remaining contractility observed was considered to be the result of selective activation of the ETA receptors. ETA and ETB receptor mRNA expression was analyzed using real-time quantitative PCR. The location and concentration of ETA and ETB receptors were studied by means of immunohistochemistry together with confocal microscopy after overnight incubation with selective antibodies. Results After being cultured together with DSP for 24 hours the bronchial segments showed an increased contractility mediated by ETA and ETB receptors, whereas culturing them together with nicotine did not affect their contractility. The up-regulation of their contractility was blunted by cycloheximide treatment, a translational inhibitor. No significant change in the expression of ETA and ETB receptor mRNA through exposure to DMSO or to nicotine exposure alone occurred, although immunohistochemistry revealed a clear increase in ETA and ETB receptors in the smooth muscle after incubation in the presence of DSP. Taken as a whole, this is seen as the presence of a translation mechanism. Conclusion The increased contractility of rat bronchi when exposed to DSP appears to be due to a translation mechanism.