WorldWideScience

Sample records for adjoint flux

  1. Self-adjointness of the fast flux in a pressurized water reactor

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1985-01-01

    Most computer codes for the analysis of systems transients rely on a simplified representation of the active core, typically employing either a one-dimensional or a point kinetics model. The collapsing of neutronics data from multidimensional steady-state calculations normally employs flux/flux-adjoint weighting. The multidimensional calculations, however, usually are performed only for the forward problem, not the adjoint. The collapsing methodologies employed in generating the neutronics input for transient codes typically construct adjoint fluxes from the assumption that the fast flux is self-adjoint. Until now, no further verification of this assumption has been undertaken for thermal reactors. As part of the verification effort for EPRI's reactor analysis support package, the validity of this assumption now has been investigated for a modern pressurized water reactor (PWR). The PDQ-7 code was employed to perform two-group fine-mesh forward and adjoint calculations for a two-dimensional representation of Zion Unit 2 at beginning of life, based on the standard PWR ARMP model. It has been verified that the fast flux is very nearly self-adjoint in a PWR. However, a significant error can arise during the subsequent construction of the thermal adjoint flux unless allowance is made for the difference between the forward and adjoint thermal buckling terms. When such a difference is included, the thermal adjoint flux can be estimated very accurately

  2. Formulation of coarse mesh finite difference to calculate mathematical adjoint flux

    International Nuclear Information System (INIS)

    Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)

  3. Variation estimation of the averaged cross sections in the direct and adjoint fluxes

    International Nuclear Information System (INIS)

    Cardoso, Carlos Eduardo Santos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    1995-01-01

    There are several applications of the perturbation theory to specifics problems of reactor physics, such as nonuniform fuel burnup, nonuniform poison accumulation and evaluations of Doppler effects on reactivity. The neutron fluxes obtained from the solutions of direct and adjoint diffusion equations, are used in these applications. In the adjoint diffusion equation has been used the group constants averaged in the energy-dependent direct neutron flux, that it is not theoretically consistent. In this paper it is presented a method to calculate the energy-dependent adjoint neutron flux, to obtain the average group-constant that will be used in the adjoint diffusion equation. The method is based on the solution of the adjoint neutron balance equations, that were derived for a two regions cell. (author). 5 refs, 2 figs, 1 tab

  4. Exploring the use of a deterministic adjoint flux calculation in criticality Monte Carlo simulations

    International Nuclear Information System (INIS)

    Jinaphanh, A.; Miss, J.; Richet, Y.; Martin, N.; Hebert, A.

    2011-01-01

    The paper presents a preliminary study on the use of a deterministic adjoint flux calculation to improve source convergence issues by reducing the number of iterations needed to reach the converged distribution in criticality Monte Carlo calculations. Slow source convergence in Monte Carlo eigenvalue calculations may lead to underestimate the effective multiplication factor or reaction rates. The convergence speed depends on the initial distribution and the dominance ratio. We propose using an adjoint flux estimation to modify the transition kernel according to the Importance Sampling technique. This adjoint flux is also used as the initial guess of the first generation distribution for the Monte Carlo simulation. Calculated Variance of a local estimator of current is being checked. (author)

  5. On the use of flux-adjoint condensed nuclear data for 1-group AGR kinetics

    International Nuclear Information System (INIS)

    Hutt, P.K.

    1979-03-01

    Following previous work on the differences between one and two neutron group AGR kinetics the possible advantages of flux-adjoint condensed lattice data over the simple flux condensation procedure are investigated. Analytic arguments are given for expecting flux-adjoint condensation to give a better representation of rod worth slopes and flux shape changes associated with partially rodded cores. These areas have previously been found to yield most of the one to two neutron group differences. The validity of these arguments is demonstrated comparing various calculations. (U.K.)

  6. An Analysis on the Calculation Efficiency of the Responses Caused by the Biased Adjoint Fluxes in Hybrid Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Khuat, Quang Huy; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho

    2015-01-01

    This technique is known as Consistent Adjoint Driven Importance Sampling (CADIS) method and it is implemented in SCALE code system. In the CADIS method, adjoint transport equation has to be solved to determine deterministic importance functions. Using the CADIS method, a problem was noted that the biased adjoint flux estimated by deterministic methods can affect the calculation efficiency and error. The biases of adjoint function are caused by the methodology, calculation strategy, tolerance of result calculated by the deterministic method and inaccurate multi-group cross section libraries. In this paper, a study to analyze the influence of the biased adjoint functions into Monte Carlo computational efficiency is pursued. In this study, a method to estimate the calculation efficiency was proposed for applying the biased adjoint fluxes in the CADIS approach. For a benchmark problem, the responses and FOMs using SCALE code system were evaluated as applying the adjoint fluxes. The results show that the biased adjoint fluxes significantly affects the calculation efficiencies

  7. Self-Adjoint Angular Flux Equation for Coupled Electron-Photon Transport

    International Nuclear Information System (INIS)

    Liscum-Powell, J.L.; Lorence, L.J. Jr.; Morel, J.E.; Prinja, A.K.

    1999-01-01

    Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere and, like the even- and odd- parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here we apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross-sections from the CEPXS code and S n discretization

  8. Self-adjoint angular flux equation for coupled electron-photon transport

    International Nuclear Information System (INIS)

    Liscum-Powell, J.L.; Prinja, A.K.; Morel, J.E.; Lorence, L.J. Jr.

    1999-01-01

    Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self-adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere, and, like the even- and odd-parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here, the authors apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross sections from the CEPXS code and S n discretization

  9. Approximation for the adjoint neutron spectrum

    International Nuclear Information System (INIS)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    The proposal of this work is the determination of an analytical approximation which is capable to reproduce the adjoint neutron flux for the energy range of the narrow resonances (NR). In a previous work we developed a method for the calculation of the adjoint spectrum which was calculated from the adjoint neutron balance equations, that were obtained by the collision probabilities method, this method involved a considerable quantity of numerical calculation. In the analytical method some approximations were done, like the multiplication of the escape probability in the fuel by the adjoint flux in the moderator, and after these approximations, taking into account the case of the narrow resonances, were substituted in the adjoint neutron balance equation for the fuel, resulting in an analytical approximation for the adjoint flux. The results obtained in this work were compared to the results generated with the reference method, which demonstrated a good and precise results for the adjoint neutron flux for the narrow resonances. (author)

  10. Multigroup adjoint transport solution using the method of cyclic characteristics

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.; Marleau, G.

    2005-01-01

    The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2-dimensional geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 17*17 PWR and Watanabe-Maynard benchmark problems. Comparisons of adjoint flux and k eff results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. It appears that the pseudo-adjoint flux by CP method is equivalent to the adjoint flux by MOCC method and that the MOCC method requires lower computing time than the CP method for a single adjoint flux calculation

  11. Multigroup adjoint transport solution using the method of cyclic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M.; Marleau, G. [Ecole Polytechnique de Montreal, Institut de Genie Nucleaire, Montreal, Quebec (Canada)

    2005-07-01

    The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2-dimensional geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 17*17 PWR and Watanabe-Maynard benchmark problems. Comparisons of adjoint flux and k{sub eff} results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. It appears that the pseudo-adjoint flux by CP method is equivalent to the adjoint flux by MOCC method and that the MOCC method requires lower computing time than the CP method for a single adjoint flux calculation.

  12. Variation estimation of the averaged cross sections in the direct and adjoint fluxes; Estimativa das variacoes das secoes de choque mediadas nos fluxos direto e adjunto

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Carlos Eduardo Santos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1995-12-31

    There are several applications of the perturbation theory to specifics problems of reactor physics, such as nonuniform fuel burnup, nonuniform poison accumulation and evaluations of Doppler effects on reactivity. The neutron fluxes obtained from the solutions of direct and adjoint diffusion equations, are used in these applications. In the adjoint diffusion equation has been used the group constants averaged in the energy-dependent direct neutron flux, that it is not theoretically consistent. In this paper it is presented a method to calculate the energy-dependent adjoint neutron flux, to obtain the average group-constant that will be used in the adjoint diffusion equation. The method is based on the solution of the adjoint neutron balance equations, that were derived for a two regions cell. (author). 5 refs, 2 figs, 1 tab.

  13. Formulation of coarse mesh finite difference to calculate mathematical adjoint flux; Formulacao de diferencas finitas de malha grossa para calculo do fluxo adjunto matematico

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)

  14. Adjoint P1 equations solution for neutron slowing down

    International Nuclear Information System (INIS)

    Cardoso, Carlos Eduardo Santos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. The direct and adjoint neutron fluxes resulting from the solution of P 1 equations were used to three different weighting processes, to obtain the macrogroup macroscopic cross sections. It was found out noticeable differences among them. (author)

  15. Solving the multigroup adjoint transport equations using the method of cyclic characteristics

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.; Marleau, G.

    2005-01-01

    The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2D geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 37 pin CANDU cell and on the Watanabe-Maynard benchmark problem. Comparisons of adjoint flux and k eff results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. (author)

  16. Solving the multigroup adjoint transport equations using the method of cyclic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M.; Marleau, G. [Ecole Polytechnique de Montreal, Inst. de genie nucleaire, Montreal, Quebec (Canada)]. E-mail: monchai.assawar@polymtl.ca

    2005-07-01

    The adjoint transport solution algorithm based on the method of cyclic characteristics (MOCC) is developed for the heterogeneous 2D geometries. The adjoint characteristics equation associated with a cyclic tracking line is formulated, then a closed form for adjoint angular flux can be determined. The acceleration techniques are implemented using the group-reduction and group-splitting techniques. To demonstrate the efficacy of the algorithm, the calculations are performed on the 37 pin CANDU cell and on the Watanabe-Maynard benchmark problem. Comparisons of adjoint flux and k{sub eff} results obtained by MOCC and collision probability (CP) methods are performed. The mathematical relationship between pseudo-adjoint flux obtained by CP method and adjoint flux by MOCC method is presented. (author)

  17. System of adjoint P1 equations for neutron moderation

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  18. Continuous-energy adjoint flux and perturbation calculation using the iterated fission probability method in Monte-Carlo code TRIPOLI-4 and underlying applications

    International Nuclear Information System (INIS)

    Truchet, G.; Leconte, P.; Peneliau, Y.; Santamarina, A.

    2013-01-01

    The first goal of this paper is to present an exact method able to precisely evaluate very small reactivity effects with a Monte Carlo code (<10 pcm). it has been decided to implement the exact perturbation theory in TRIPOLI-4 and, consequently, to calculate a continuous-energy adjoint flux. The Iterated Fission Probability (IFP) method was chosen because it has shown great results in some other Monte Carlo codes. The IFP method uses a forward calculation to compute the adjoint flux, and consequently, it does not rely on complex code modifications but on the physical definition of the adjoint flux as a phase-space neutron importance. In the first part of this paper, the IFP method implemented in TRIPOLI-4 is described. To illustrate the efficiency of the method, several adjoint fluxes are calculated and compared with their equivalent obtained by the deterministic code APOLLO-2. The new implementation can calculate angular adjoint flux. In the second part, a procedure to carry out an exact perturbation calculation is described. A single cell benchmark has been used to test the accuracy of the method, compared with the 'direct' estimation of the perturbation. Once again the method based on the IFP shows good agreement for a calculation time far more inferior to the 'direct' method. The main advantage of the method is that the relative accuracy of the reactivity variation does not depend on the magnitude of the variation itself, which allows us to calculate very small reactivity perturbations with high precision. It offers the possibility to split reactivity contributions on both isotopes and reactions. Other applications of this perturbation method are presented and tested like the calculation of exact kinetic parameters (βeff, Λeff) or sensitivity parameters

  19. Approximation for the adjoint neutron spectrum; Aproximacao para o espectro adjunto de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The proposal of this work is the determination of an analytical approximation which is capable to reproduce the adjoint neutron flux for the energy range of the narrow resonances (NR). In a previous work we developed a method for the calculation of the adjoint spectrum which was calculated from the adjoint neutron balance equations, that were obtained by the collision probabilities method, this method involved a considerable quantity of numerical calculation. In the analytical method some approximations were done, like the multiplication of the escape probability in the fuel by the adjoint flux in the moderator, and after these approximations, taking into account the case of the narrow resonances, were substituted in the adjoint neutron balance equation for the fuel, resulting in an analytical approximation for the adjoint flux. The results obtained in this work were compared to the results generated with the reference method, which demonstrated a good and precise results for the adjoint neutron flux for the narrow resonances. (author)

  20. Adjoint current-based approaches to prostate brachytherapy optimization

    International Nuclear Information System (INIS)

    Roberts, J. A.; Henderson, D. L.

    2009-01-01

    This paper builds on previous work done at the Univ. of Wisconsin - Madison to employ the adjoint concept of nuclear reactor physics in the so-called greedy heuristic of brachytherapy optimization. Whereas that previous work focused on the adjoint flux, i.e. the importance, this work has included use of the adjoint current to increase the amount of information available in optimizing. Two current-based approaches were developed for 2-D problems, and each was compared to the most recent form of the flux-based methodology. The first method aimed to take a treatment plan from the flux-based greedy heuristic and adjust via application of the current-displacement, or a vector displacement based on a combination of tissue (adjoint) and seed (forward) currents acting as forces on a seed. This method showed promise in improving key urethral and rectal dosimetric quantities. The second method uses the normed current-displacement as the greedy criterion such that seeds are placed in regions of least force. This method, coupled with the dose-update scheme, generated treatment plans with better target irradiation and sparing of the urethra and normal tissues than the flux-based approach. Tables of these parameters are given for both approaches. In summary, these preliminary results indicate adjoint current methods are useful in optimization and further work in 3-D should be performed. (authors)

  1. Spatial discretizations for self-adjoint forms of the radiative transfer equations

    International Nuclear Information System (INIS)

    Morel, Jim E.; Adams, B. Todd; Noh, Taewan; McGhee, John M.; Evans, Thomas M.; Urbatsch, Todd J.

    2006-01-01

    There are three commonly recognized second-order self-adjoint forms of the neutron transport equation: the even-parity equations, the odd-parity equations, and the self-adjoint angular flux equations. Because all of these equations contain second-order spatial derivatives and are self-adjoint for the mono-energetic case, standard continuous finite-element discretization techniques have proved quite effective when applied to the spatial variables. We first derive analogs of these equations for the case of time-dependent radiative transfer. The primary unknowns for these equations are functions of the angular intensity rather than the angular flux, hence the analog of the self-adjoint angular flux equation is referred to as the self-adjoint angular intensity equation. Then we describe a general, arbitrary-order, continuous spatial finite-element approach that is applied to each of the three equations in conjunction with backward-Euler differencing in time. We refer to it as the 'standard' technique. We also introduce an alternative spatial discretization scheme for the self-adjoint angular intensity equation that requires far fewer unknowns than the standard method, but appears to give comparable accuracy. Computational results are given that demonstrate the validity of both of these discretization schemes

  2. On the non-uniqueness of the nodal mathematical adjoint

    International Nuclear Information System (INIS)

    Müller, Erwin

    2014-01-01

    Highlights: • We evaluate three CMFD schemes for computing the nodal mathematical adjoint. • The nodal mathematical adjoint is not unique and can be non-positive (nonphysical). • Adjoint and forward eigenmodes are compatible if produced by the same CMFD method. • In nodal applications the excited eigenmodes are purely mathematical entities. - Abstract: Computation of the neutron adjoint flux within the framework of modern nodal diffusion methods is often facilitated by reducing the nodal equation system for the forward flux into a simpler coarse-mesh finite-difference form and then transposing the resultant matrix equations. The solution to the transposed problem is known as the nodal mathematical adjoint. Since the coarse-mesh finite-difference reduction of a given nodal formulation can be obtained in a number of ways, different nodal mathematical adjoint solutions can be computed. This non-uniqueness of the nodal mathematical adjoint challenges the credibility of the reduction strategy and demands a verdict as to its suitability in practical applications. This is the matter under consideration in this paper. A selected number of coarse-mesh finite-difference reduction schemes are described and compared. Numerical calculations are utilised to illustrate the differences in the adjoint solutions as well as to appraise the impact on such common applications as the computation of core point kinetics parameters. Recommendations are made for the proper application of the coarse-mesh finite-difference reduction approach to the nodal mathematical adjoint problem

  3. Estimation of Adjoint-Weighted Kinetics Parameters in Monte Carlo Wieland Calculations

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Shim, Hyung Jin

    2013-01-01

    The effective delayed neutron fraction, β eff , and the prompt neutron generation time, Λ, in the point kinetics equation are weighted by the adjoint flux to improve the accuracy of the reactivity estimate. Recently the Monte Carlo (MC) kinetics parameter estimation methods by using the self-consistent adjoint flux calculated in the MC forward simulations have been developed and successfully applied for the research reactor analyses. However these adjoint estimation methods based on the cycle-by-cycle genealogical table require a huge memory size to store the pedigree hierarchy. In this paper, we present a new adjoint estimation in which the pedigree of a single history is utilized by applying the MC Wielandt method. The effectiveness of the new method is demonstrated in the kinetics parameter estimations for infinite homogeneous two-group problems and the Godiva critical facility

  4. Adjoint P1 equations solution for neutron slowing down; Solucao das equacoes P1 adjuntas para moderacao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Carlos Eduardo Santos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. The direct and adjoint neutron fluxes resulting from the solution of P{sub 1} equations were used to three different weighting processes, to obtain the macrogroup macroscopic cross sections. It was found out noticeable differences among them. (author)

  5. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in SN formulation

    International Nuclear Information System (INIS)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C.

    2017-01-01

    Presented here is the application of the adjoint technique for solving source{detector discrete ordinates (S N ) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF † ) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non{zero prescribed boundary conditions for the forward S N transport problems. The SGF † method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF † equations, we use the partial adjoint one{node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  6. Estimation of ex-core detector responses by adjoint Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2006-07-01

    Ex-core detector responses can be efficiently calculated by combining an adjoint Monte Carlo calculation with the converged source distribution of a forward Monte Carlo calculation. As the fission source distribution from a Monte Carlo calculation is given only as a collection of discrete space positions, the coupling requires a point flux estimator for each collision in the adjoint calculation. To avoid the infinite variance problems of the point flux estimator, a next-event finite-variance point flux estimator has been applied, witch is an energy dependent form for heterogeneous media of a finite-variance estimator known from the literature. To test the effects of this combined adjoint-forward calculation a simple geometry of a homogeneous core with a reflector was adopted with a small detector in the reflector. To demonstrate the potential of the method the continuous-energy adjoint Monte Carlo technique with anisotropic scattering was implemented with energy dependent absorption and fission cross sections and constant scattering cross section. A gain in efficiency over a completely forward calculation of the detector response was obtained, which is strongly dependent on the specific system and especially the size and position of the ex-core detector and the energy range considered. Further improvements are possible. The method works without problems for small detectors, even for a point detector and a small or even zero energy range. (authors)

  7. System of adjoint P1 equations for neutron moderation; Sistema de equacoes P1 adjuntas para a moderacao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  8. Metabolic Flux Analysis in Isotope Labeling Experiments Using the Adjoint Approach.

    Science.gov (United States)

    Mottelet, Stephane; Gaullier, Gil; Sadaka, Georges

    2017-01-01

    Comprehension of metabolic pathways is considerably enhanced by metabolic flux analysis (MFA-ILE) in isotope labeling experiments. The balance equations are given by hundreds of algebraic (stationary MFA) or ordinary differential equations (nonstationary MFA), and reducing the number of operations is therefore a crucial part of reducing the computation cost. The main bottleneck for deterministic algorithms is the computation of derivatives, particularly for nonstationary MFA. In this article, we explain how the overall identification process may be speeded up by using the adjoint approach to compute the gradient of the residual sum of squares. The proposed approach shows significant improvements in terms of complexity and computation time when it is compared with the usual (direct) approach. Numerical results are obtained for the central metabolic pathways of Escherichia coli and are validated against reference software in the stationary case. The methods and algorithms described in this paper are included in the sysmetab software package distributed under an Open Source license at http://forge.scilab.org/index.php/p/sysmetab/.

  9. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in S{sub N} formulation

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-graduacao em Modelagem Computacional; Garcia, Carlos R., E-mail: cgh@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    Presented here is the application of the adjoint technique for solving source-detector discrete ordinates (S{sub N}) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF{sup †}) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non-zero prescribed boundary conditions for the forward S{sub N} transport problems. The SGF{sup †} method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF{sup †} equations, we use the partial adjoint one-node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  10. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

    International Nuclear Information System (INIS)

    Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

    2008-01-01

    Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

  11. Implementation of Generalized Adjoint Equation Solver for DeCART

    International Nuclear Information System (INIS)

    Han, Tae Young; Cho, Jin Young; Lee, Hyun Chul; Noh, Jae Man

    2013-01-01

    In this paper, the generalized adjoint solver based on the generalized perturbation theory is implemented on DeCART and the verification calculations were carried out. As the results, the adjoint flux for the general response coincides with the reference solution and it is expected that the solver could produce the parameters for the sensitivity and uncertainty analysis. Recently, MUSAD (Modules of Uncertainty and Sensitivity Analysis for DeCART) was developed for the uncertainty analysis of PMR200 core and the fundamental adjoint solver was implemented into DeCART. However, the application of the code was limited to the uncertainty to the multiplication factor, k eff , because it was based on the classical perturbation theory. For the uncertainty analysis to the general response as like the power density, it is necessary to develop the analysis module based on the generalized perturbation theory and it needs the generalized adjoint solutions from DeCART. In this paper, the generalized adjoint solver is implemented on DeCART and the calculation results are compared with the results by TSUNAMI of SCALE 6.1

  12. Adjoint Monte-Carlo method with fictitious scattering in deep penetration and long-distance detector calculations

    International Nuclear Information System (INIS)

    Andreucci, N.

    1985-04-01

    Deep penetration transport problems in complex systems joint to heterogeneous source (Q) sampling give rise to some difficulties in evaluating leakage and fluxes on a detector point. To overcome these difficulties we have solved both the adjoint Boltzmann flux (phi*) equation and following scalar-dual equation: ∫Qphi* dP - ∫Q*phi dP = ∫phiphi* Ω . n dΣ dΩ dE dt + ∫ [phiphi*]sub(0)sup(T)/v dr dΩ dE D = (phase space). With a suitable choice for the domain D, for Q* and for the boundary conditions, an adjoint flux calculation allows us to obtain simultaneously the Q-source contribution and the detection (or leakage) spectrum. Compared to direct methods with importance sampling, the adjoint methods give very low-cost and faithful results

  13. Development and validation of continuous energy adjoint-weighted calculations

    International Nuclear Information System (INIS)

    Truchet, Guillaume

    2015-01-01

    A key issue in nowadays Reactor Physics is to propagate input data uncertainties (e.g. nuclear data, manufacturing tolerances, etc.) to nuclear codes final results (e.g. k(eff), reaction rate, etc.). In order to propagate uncertainties, one typically assumes small variations around a reference and evaluates at first sensitivity profiles. Problem is that nuclear Monte Carlo codes are not - or were not until very recently - able to straightforwardly process such sensitivity profiles, even thought they are considered as reference codes. First goal of this PhD thesis is to implement a method to calculate k(eff)-sensitivity profiles to nuclear data or any perturbations in TRIPOLI-4, the CEA Monte Carlo neutrons transport code. To achieve such a goal, a method has first been developed to calculate the adjoint flux using the Iterated Fission Probability (IFP) principle that states that the adjoint flux at a given phase space point is proportional to the neutron importance in a just critical core after several power iterations. Thanks to our developments, it has been made possible, for the fist time, to calculate the continuous adjoint flux for an actual and complete reactor core configuration. From that new feature, we have elaborated a new method able to forwardly apply the exact perturbation theory in Monte Carlo codes. Exact perturbation theory does not rely on small variations which makes possible to calculate very complex experiments. Finally and after a deep analysis of the IFP method, this PhD thesis also reproduces and improves an already used method to calculate adjoint weighted kinetic parameters as well as reference migrations areas. (author) [fr

  14. Recent advances in the spectral green's function method for monoenergetic slab-geometry fixed-source adjoint transport problems in S{sub N} formulation

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Jesus P.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: jperez@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-Graduacao em Modelagem Computacional; Hernandez, Carlos R.G., E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2015-07-01

    The spectral Green's function (SGF) method is a numerical method that is free of spatial truncation errors for slab-geometry fixed-source discrete ordinates (S{sub N}) adjoint problems. The method is based on the standard spatially discretized adjoint S{sub N} balance equations and a nonstandard adjoint auxiliary equation expressing the node-average adjoint angular flux, in each discretization node, as a weighted combination of the node-edge outgoing adjoint fluxes. The auxiliary equation contains parameters which act as Green's functions for the cell-average adjoint angular flux. These parameters are determined by means of a spectral analysis which yields the local general solution of the S{sub N} equations within each node of the discretization grid. In this work a number of advances in the SGF adjoint method are presented: the method is extended to adjoint S{sub N} problems considering linearly anisotropic scattering and non-zero prescribed boundary conditions for the forward source-detector problem. Numerical results to typical model problems are considered to illustrate the efficiency and accuracy of the o offered method. (author)

  15. A response matrix method for slab-geometry discrete ordinates adjoint calculations in energy-dependent source-detector problems

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Ralph S.; Moura, Carlos A., E-mail: ralph@ime.uerj.br, E-mail: demoura@ime.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Departamento de Engenharia Mecanica; Barros, Ricardo C., E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Departamento de Modelagem Computacional

    2017-07-01

    Presented here is an application of the Response Matrix (RM) method for adjoint discrete ordinates (S{sub N}) problems in slab geometry applied to energy-dependent source-detector problems. The adjoint RM method is free from spatial truncation errors, as it generates numerical results for the adjoint angular fluxes in multilayer slabs that agree with the numerical values obtained from the analytical solution of the energy multigroup adjoint SN equations. Numerical results are given for two typical source-detector problems to illustrate the accuracy and the efficiency of the offered RM computer code. (author)

  16. Radiation source reconstruction with known geometry and materials using the adjoint

    International Nuclear Information System (INIS)

    Hykes, Joshua M.; Azmy, Yousry Y.

    2011-01-01

    We present a method to estimate an unknown isotropic source distribution, in space and energy, using detector measurements when the geometry and material composition are known. The estimated source distribution minimizes the difference between the measured and computed responses of detectors located at a selected number of points within the domain. In typical methods, a forward flux calculation is performed for each source guess in an iterative process. In contrast, we use the adjoint flux to compute the responses. Potential applications of the proposed method include determining the distribution of radio-contaminants following a nuclear event, monitoring the flow of radioactive fluids in pipes to determine hold-up locations, and retroactive reconstruction of radiation fields using workers' detectors' readings. After presenting the method, we describe a numerical test problem to demonstrate the preliminary viability of the method. As expected, using the adjoint flux reduces the number of transport solves to be proportional to the number of detector measurements, in contrast to methods using the forward flux that require a typically larger number proportional to the number of spatial mesh cells. (author)

  17. Introduction to Adjoint Models

    Science.gov (United States)

    Errico, Ronald M.

    2015-01-01

    In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.

  18. Memory-efficient calculations of adjoint-weighted tallies by the Monte Carlo Wielandt method

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Shim, Hyung Jin

    2016-01-01

    Highlights: • The MC Wielandt method is applied to reduce memory for the adjoint estimation. • The adjoint-weighted kinetics parameters are estimated in the MC Wielandt calculations. • The MC S/U analyses are conducted in the MC Wielandt calculations. - Abstract: The current Monte Carlo (MC) adjoint-weighted tally techniques based on the iterated fission probability (IFP) concept require a memory amount which is proportional to the numbers of the adjoint-weighted tallies and histories per cycle to store history-wise tally estimates during the convergence of the adjoint flux. Especially the conventional MC adjoint-weighted perturbation (AWP) calculations for the nuclear data sensitivity and uncertainty (S/U) analysis suffer from the huge memory consumption to realize the IFP concept. In order to reduce the memory requirement drastically, we present a new adjoint estimation method in which the memory usage is irrelevant to the numbers of histories per cycle by applying the IFP concept for the MC Wielandt calculations. The new algorithms for the adjoint-weighted kinetics parameter estimation and the AWP calculations in the MC Wielandt method are implemented in a Seoul National University MC code, McCARD and its validity is demonstrated in critical facility problems. From the comparison of the nuclear data S/U analyses, it is demonstrated that the memory amounts to store the sensitivity estimates in the proposed method become negligibly small.

  19. Weak self-adjoint differential equations

    International Nuclear Information System (INIS)

    Gandarias, M L

    2011-01-01

    The concepts of self-adjoint and quasi self-adjoint equations were introduced by Ibragimov (2006 J. Math. Anal. Appl. 318 742-57; 2007 Arch. ALGA 4 55-60). In Ibragimov (2007 J. Math. Anal. Appl. 333 311-28), a general theorem on conservation laws was proved. In this paper, we generalize the concept of self-adjoint and quasi self-adjoint equations by introducing the definition of weak self-adjoint equations. We find a class of weak self-adjoint quasi-linear parabolic equations. The property of a differential equation to be weak self-adjoint is important for constructing conservation laws associated with symmetries of the differential equation. (fast track communication)

  20. Least-Squares PN Formulation of the Transport Equation Using Self-Adjoint-Angular-Flux Consistent Boundary Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laboure, Vincent M.; Wang, Yaqi; DeHart, Mark D.

    2016-05-01

    In this paper, we study the Least-Squares (LS) PN form of the transport equation compatible with voids [1] in the context of Continuous Finite Element Methods (CFEM).We first deriveweakly imposed boundary conditions which make the LS weak formulation equivalent to the Self-Adjoint Angular Flux (SAAF) variational formulation with a void treatment [2], in the particular case of constant cross-sections and a uniform mesh. We then implement this method in Rattlesnake with the Multiphysics Object Oriented Simulation Environment (MOOSE) framework [3] using a spherical harmonics (PN) expansion to discretize in angle. We test our implementation using the Method of Manufactured Solutions (MMS) and find the expected convergence behavior both in angle and space. Lastly, we investigate the impact of the global non-conservation of LS by comparing the method with SAAF on a heterogeneous test problem.

  1. Least-Squares PN Formulation of the Transport Equation Using Self-Adjoint-Angular-Flux Consistent Boundary Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Vincent M. Laboure; Yaqi Wang; Mark D. DeHart

    2016-05-01

    In this paper, we study the Least-Squares (LS) PN form of the transport equation compatible with voids in the context of Continuous Finite Element Methods (CFEM).We first deriveweakly imposed boundary conditions which make the LS weak formulation equivalent to the Self-Adjoint Angular Flux (SAAF) variational formulation with a void treatment, in the particular case of constant cross-sections and a uniform mesh. We then implement this method in Rattlesnake with the Multiphysics Object Oriented Simulation Environment (MOOSE) framework using a spherical harmonics (PN) expansion to discretize in angle. We test our implementation using the Method of Manufactured Solutions (MMS) and find the expected convergence behavior both in angle and space. Lastly, we investigate the impact of the global non-conservation of LS by comparing the method with SAAF on a heterogeneous test problem.

  2. Sensitivity Analysis for Steady State Groundwater Flow Using Adjoint Operators

    Science.gov (United States)

    Sykes, J. F.; Wilson, J. L.; Andrews, R. W.

    1985-03-01

    Adjoint sensitivity theory is currently being considered as a potential method for calculating the sensitivity of nuclear waste repository performance measures to the parameters of the system. For groundwater flow systems, performance measures of interest include piezometric heads in the vicinity of a waste site, velocities or travel time in aquifers, and mass discharge to biosphere points. The parameters include recharge-discharge rates, prescribed boundary heads or fluxes, formation thicknesses, and hydraulic conductivities. The derivative of a performance measure with respect to the system parameters is usually taken as a measure of sensitivity. To calculate sensitivities, adjoint sensitivity equations are formulated from the equations describing the primary problem. The solution of the primary problem and the adjoint sensitivity problem enables the determination of all of the required derivatives and hence related sensitivity coefficients. In this study, adjoint sensitivity theory is developed for equations of two-dimensional steady state flow in a confined aquifer. Both the primary flow equation and the adjoint sensitivity equation are solved using the Galerkin finite element method. The developed computer code is used to investigate the regional flow parameters of the Leadville Formation of the Paradox Basin in Utah. The results illustrate the sensitivity of calculated local heads to the boundary conditions. Alternatively, local velocity related performance measures are more sensitive to hydraulic conductivities.

  3. Adjoint entropy vs topological entropy

    OpenAIRE

    Giordano Bruno, Anna

    2012-01-01

    Recently the adjoint algebraic entropy of endomorphisms of abelian groups was introduced and studied. We generalize the notion of adjoint entropy to continuous endomorphisms of topological abelian groups. Indeed, the adjoint algebraic entropy is defined using the family of all finite-index subgroups, while we take only the subfamily of all open finite-index subgroups to define the topological adjoint entropy. This allows us to compare the (topological) adjoint entropy with the known topologic...

  4. The adjoint variational nodal method

    International Nuclear Information System (INIS)

    Laurin-Kovitz, K.; Lewis, E.E.

    1993-01-01

    The widespread use of nodal methods for reactor core calculations in both diffusion and transport approximations has created a demand for the corresponding adjoint solutions as a prerequisite for performing perturbation calculations. With some computational methods, however, the solution of the adjoint problem presents a difficulty; the physical adjoint obtained by discretizing the adjoint equation is not the same as the mathematical adjoint obtained by taking the transpose of the coefficient matrix, which results from the discretization of the forward equation. This difficulty arises, in particular, when interface current nodal methods based on quasi-one-dimensional solution of the diffusion or transport equation are employed. The mathematical adjoint is needed to perform perturbation calculations. The utilization of existing nodal computational algorithms, however, requires the physical adjoint. As a result, similarity transforms or related techniques must be utilized to relate physical and mathematical adjoints. Thus far, such techniques have been developed only for diffusion theory

  5. Effect of lattice-level adjoint-weighting on the kinetics parameters of CANDU reactors

    International Nuclear Information System (INIS)

    Nichita, Eleodor

    2009-01-01

    Space-time kinetics calculations for CANDU reactors are routinely performed using the Improved Quasistatic (IQS) method. The IQS method calculates kinetics parameters such as the effective delayed-neutron fraction and generation time using adjoint weighting. In the current implementation of IQS, the direct flux, as well as the adjoint, is calculated using a two-group cell-homogenized reactor model which is inadequate for capturing the effect of the softer energy spectrum of the delayed neutrons. Additionally, there may also be fine spatial effects that are lost because the intra-cell adjoint shape is ignored. The purpose of this work is to compare the kinetics parameters calculated using the two-group cell-homogenized model with those calculated using lattice-level fine-group heterogeneous adjoint weighting and to assess whether the differences are large enough to justify further work on incorporating lattice-level adjoint weighting into the IQS method. A second goal is to evaluate whether the use of a fine-group cell-homogenized lattice-level adjoint, such as is the current practice for Light Water Reactors (LWRs), is sufficient to capture the lattice effects in question. It is found that, for CANDU lattices, the generation time is almost unaffected by the type of adjoint used to calculate it, but that the effective delayed-neutron fraction is affected by the type of adjoint used. The effective delayed-neutron fraction calculated using the two-group cell-homogenized adjoint is 5.2% higher than the 'best' effective delayed-neutron fraction value obtained using the detailed lattice-level fine-group heterogeneous adjoint. The effective delayed-neutron fraction calculated using the fine-group cell-homogenized adjoint is only 1.7% higher than the 'best' effective delayed-neutron fraction value but is still not equal to it. This situation is different from that encountered in LWRs where weighting by a fine-group cell-homogenized adjoint is sufficient to calculate the

  6. Adjoint-Based Climate Model Tuning: Application to the Planet Simulator

    Science.gov (United States)

    Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef

    2018-01-01

    The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.

  7. Fully automatic adjoints: a robust and efficient mechanism for generating adjoint ocean models

    Science.gov (United States)

    Ham, D. A.; Farrell, P. E.; Funke, S. W.; Rognes, M. E.

    2012-04-01

    The problem of generating and maintaining adjoint models is sufficiently difficult that typically only the most advanced and well-resourced community ocean models achieve it. There are two current technologies which each suffer from their own limitations. Algorithmic differentiation, also called automatic differentiation, is employed by models such as the MITGCM [2] and the Alfred Wegener Institute model FESOM [3]. This technique is very difficult to apply to existing code, and requires a major initial investment to prepare the code for automatic adjoint generation. AD tools may also have difficulty with code employing modern software constructs such as derived data types. An alternative is to formulate the adjoint differential equation and to discretise this separately. This approach, known as the continuous adjoint and employed in ROMS [4], has the disadvantage that two different model code bases must be maintained and manually kept synchronised as the model develops. The discretisation of the continuous adjoint is not automatically consistent with that of the forward model, producing an additional source of error. The alternative presented here is to formulate the flow model in the high level language UFL (Unified Form Language) and to automatically generate the model using the software of the FEniCS project. In this approach it is the high level code specification which is differentiated, a task very similar to the formulation of the continuous adjoint [5]. However since the forward and adjoint models are generated automatically, the difficulty of maintaining them vanishes and the software engineering process is therefore robust. The scheduling and execution of the adjoint model, including the application of an appropriate checkpointing strategy is managed by libadjoint [1]. In contrast to the conventional algorithmic differentiation description of a model as a series of primitive mathematical operations, libadjoint employs a new abstraction of the simulation

  8. New Monte Carlo approach to the adjoint Boltzmann equation

    International Nuclear Information System (INIS)

    De Matteis, A.; Simonini, R.

    1978-01-01

    A class of stochastic models for the Monte Carlo integration of the adjoint neutron transport equation is described. Some current general methods are brought within this class, thus preparing the ground for subsequent comparisons. Monte Carlo integration of the adjoint Boltzmann equation can be seen as a simulation of the transport of mathematical particles with reaction kernels not normalized to unity. This last feature is a source of difficulty: It can influence the variance of the result negatively and also often leads to preparation of special ''libraries'' consisting of tables of normalization factors as functions of energy, presently used by several methods. These are the two main points that are discussed and that are taken into account to devise a nonmultigroup method of solution for a certain class of problems. Reactions considered in detail are radiative capture, elastic scattering, discrete levels and continuum inelastic scattering, for which the need for tables has been almost completely eliminated. The basic policy pursued to avoid a source of statistical fluctuations is to try to make the statistical weight of the traveling particle dependent only on its starting and current energies, at least in simple cases. The effectiveness of the sampling schemes proposed is supported by numerical comparison with other more general adjoint Monte Carlo methods. Computation of neutron flux at a point by means of an adjoint formulation is the problem taken as a test for numerical experiments. Very good results have been obtained in the difficult case of resonant cross sections

  9. Variational variance reduction for particle transport eigenvalue calculations using Monte Carlo adjoint simulation

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2003-01-01

    The Variational Variance Reduction (VVR) method is an effective technique for increasing the efficiency of Monte Carlo simulations [Ann. Nucl. Energy 28 (2001) 457; Nucl. Sci. Eng., in press]. This method uses a variational functional, which employs first-order estimates of forward and adjoint fluxes, to yield a second-order estimate of a desired system characteristic - which, in this paper, is the criticality eigenvalue k. If Monte Carlo estimates of the forward and adjoint fluxes are used, each having global 'first-order' errors of O(1/√N), where N is the number of histories used in the Monte Carlo simulation, then the statistical error in the VVR estimation of k will in principle be O(1/N). In this paper, we develop this theoretical possibility and demonstrate with numerical examples that implementations of the VVR method for criticality problems can approximate O(1/N) convergence for significantly large values of N

  10. BPS Center Vortices in Nonrelativistic SU(N) Gauge Models with Adjoint Higgs Fields

    International Nuclear Information System (INIS)

    Oxman, L. E.

    2015-01-01

    We propose a class of SU(N) Yang-Mills models, with adjoint Higgs fields, that accept BPS center vortex equations. The lack of a local magnetic flux that could serve as an energy bound is circumvented by including a new term in the energy functional. This term tends to align, in the Lie algebra, the magnetic field and one of the adjoint Higgs fields. Finally, a reduced set of equations for the center vortex profile functions is obtained (for N=2,3). In particular, Z(3) BPS vortices come in three colours and three anticolours, obtained from an ansatz based on the defining representation and its conjugate.

  11. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Nievaart, V. A.; Legrady, D.; Moss, R. L.; Kloosterman, J. L.; Hagen, T. H. J. J. van der; Dam, H. van

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e., the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g., dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point

  12. Iteration of adjoint equations

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1994-01-01

    Adjoint functions are the basis of variational methods and now widely used for perturbation theory and its extension to higher order theory as used, for example, in modelling fuel burnup and optimization. In such models, the adjoint equation is to be solved in a critical system with an adjoint source distribution that is not zero but has special properties related to ratios of interest in critical systems. Consequently the methods of solving equations by iteration and accumulation are reviewed to show how conventional methods may be utilized in these circumstances with adequate accuracy. (author). 3 refs., 6 figs., 3 tabs

  13. Technical Note: Adjoint formulation of the TOMCAT atmospheric transport scheme in the Eulerian backtracking framework (RETRO-TOM)

    Science.gov (United States)

    Haines, P. E.; Esler, J. G.; Carver, G. D.

    2014-06-01

    A new methodology for the formulation of an adjoint to the transport component of the chemistry transport model TOMCAT is described and implemented in a new model, RETRO-TOM. The Eulerian backtracking method is used, allowing the forward advection scheme (Prather's second-order moments) to be efficiently exploited in the backward adjoint calculations. Prather's scheme is shown to be time symmetric, suggesting the possibility of high accuracy. To attain this accuracy, however, it is necessary to make a careful treatment of the "density inconsistency" problem inherent to offline transport models. The results are verified using a series of test experiments. These demonstrate the high accuracy of RETRO-TOM when compared with direct forward sensitivity calculations, at least for problems in which flux limiters in the advection scheme are not required. RETRO-TOM therefore combines the flexibility and stability of a "finite difference of adjoint" formulation with the accuracy of an "adjoint of finite difference" formulation.

  14. Adjoint electron Monte Carlo calculations

    International Nuclear Information System (INIS)

    Jordan, T.M.

    1986-01-01

    Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment

  15. A reduced adjoint approach to variational data assimilation

    KAUST Repository

    Altaf, Muhammad

    2013-02-01

    The adjoint method has been used very often for variational data assimilation. The computational cost to run the adjoint model often exceeds several original model runs and the method needs significant programming efforts to implement the adjoint model code. The work proposed here is variational data assimilation based on proper orthogonal decomposition (POD) which avoids the implementation of the adjoint of the tangent linear approximation of the original nonlinear model. An ensemble of the forward model simulations is used to determine the approximation of the covariance matrix and only the dominant eigenvectors of this matrix are used to define a model subspace. The adjoint of the tangent linear model is replaced by the reduced adjoint based on this reduced space. Thus the adjoint model is run in reduced space with negligible computational cost. Once the gradient is obtained in reduced space it is projected back in full space and the minimization process is carried in full space. In the paper the reduced adjoint approach to variational data assimilation is introduced. The characteristics and performance of the method are illustrated with a number of data assimilation experiments in a ground water subsurface contaminant model. © 2012 Elsevier B.V.

  16. A reduced adjoint approach to variational data assimilation

    KAUST Repository

    Altaf, Muhammad; El Gharamti, Mohamad; Heemink, Arnold W.; Hoteit, Ibrahim

    2013-01-01

    The adjoint method has been used very often for variational data assimilation. The computational cost to run the adjoint model often exceeds several original model runs and the method needs significant programming efforts to implement the adjoint model code. The work proposed here is variational data assimilation based on proper orthogonal decomposition (POD) which avoids the implementation of the adjoint of the tangent linear approximation of the original nonlinear model. An ensemble of the forward model simulations is used to determine the approximation of the covariance matrix and only the dominant eigenvectors of this matrix are used to define a model subspace. The adjoint of the tangent linear model is replaced by the reduced adjoint based on this reduced space. Thus the adjoint model is run in reduced space with negligible computational cost. Once the gradient is obtained in reduced space it is projected back in full space and the minimization process is carried in full space. In the paper the reduced adjoint approach to variational data assimilation is introduced. The characteristics and performance of the method are illustrated with a number of data assimilation experiments in a ground water subsurface contaminant model. © 2012 Elsevier B.V.

  17. Application of the adjoint function methodology for neutron fluence determination

    International Nuclear Information System (INIS)

    Haghighat, A.; Nanayakkara, B.; Livingston, J.; Mahgerefteh, M.; Luoma, J.

    1991-01-01

    In previous studies, the neutron fluence at a reactor pressure vessel has been estimated based on consolidation of transport theory calculations and experimental data obtained from in-vessel capsules and/or cavity dosimeters. Normally, a forward neutron transport calculation is performed for each fuel cycle and the neutron fluxes are integrated over the reactor operating time to estimate the neutron fluence. Such calculations are performed for a geometrical model which is composed of one-eighth (0 to 45 deg) of the reactor core and its surroundings; i.e., core barrel, thermal shield, downcomer, reactor vessel, cavity region, concrete wall, and instrumentation well. Because the model is large, transport theory calculations generally require a significant amount of computer memory and time; hence, more efficient methodologies such as the adjoint transport approach have been proposed. These studies, however, do not address the necessary sensitivity studies needed for adjoint function calculations. The adjoint methodology has been employed to estimate the activity of a cavity dosimeter and that of an in-vessel capsule. A sensitivity study has been performed on the mesh distribution used in and around the cavity dosimeter and the in-vessel capsule. Further, since a major portion of the detector response is due to the neutrons originated in the peripheral fuel assemblies, a study on the use of a smaller calculational model has been performed

  18. Deterministic calculation of the effective delayed neutron fraction without using the adjoint neutron flux - 299

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Aliberti, G.; Zhong, Z.; Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C.; Serafimovich, I.

    2010-01-01

    In 1997, Bretscher calculated the effective delayed neutron fraction by the k-ratio method. The Bretscher's approach is based on calculating the multiplication factor of a nuclear reactor core with and without the contribution of delayed neutrons. The multiplication factor set by the delayed neutrons (the delayed multiplication factor) is obtained as the difference between the total and the prompt multiplication factors. Bretscher evaluated the effective delayed neutron fraction as the ratio between the delayed and total multiplication factors (therefore the method is often referred to as k-ratio method). In the present work, the k-ratio method is applied by deterministic nuclear codes. The ENDF/B nuclear data library of the fuel isotopes ( 238 U and 238 U) have been processed by the NJOY code with and without the delayed neutron data to prepare multigroup WIMSD nuclear data libraries for the DRAGON code. The DRAGON code has been used for preparing the PARTISN macroscopic cross sections. This calculation methodology has been applied to the YALINA-Thermal assembly of Belarus. The assembly has been modeled and analyzed using PARTISN code with 69 energy groups and 60 different material zones. The deterministic and Monte Carlo results for the effective delayed neutron fraction obtained by the k-ratio method agree very well. The results also agree with the values obtained by using the adjoint flux. (authors)

  19. Development of CO2 inversion system based on the adjoint of the global coupled transport model

    Science.gov (United States)

    Belikov, Dmitry; Maksyutov, Shamil; Chevallier, Frederic; Kaminski, Thomas; Ganshin, Alexander; Blessing, Simon

    2014-05-01

    We present the development of an inverse modeling system employing an adjoint of the global coupled transport model consisting of the National Institute for Environmental Studies (NIES) Eulerian transport model (TM) and the Lagrangian plume diffusion model (LPDM) FLEXPART. NIES TM is a three-dimensional atmospheric transport model, which solves the continuity equation for a number of atmospheric tracers on a grid spanning the entire globe. Spatial discretization is based on a reduced latitude-longitude grid and a hybrid sigma-isentropic coordinate in the vertical. NIES TM uses a horizontal resolution of 2.5°×2.5°. However, to resolve synoptic-scale tracer distributions and to have the ability to optimize fluxes at resolutions of 0.5° and higher we coupled NIES TM with the Lagrangian model FLEXPART. The Lagrangian component of the forward and adjoint models uses precalculated responses of the observed concentration to the surface fluxes and 3-D concentrations field simulated with the FLEXPART model. NIES TM and FLEXPART are driven by JRA-25/JCDAS reanalysis dataset. Construction of the adjoint of the Lagrangian part is less complicated, as LPDMs calculate the sensitivity of measurements to the surrounding emissions field by tracking a large number of "particles" backwards in time. Developing of the adjoint to Eulerian part was performed with automatic differentiation tool the Transformation of Algorithms in Fortran (TAF) software (http://www.FastOpt.com). This method leads to the discrete adjoint of NIES TM. The main advantage of the discrete adjoint is that the resulting gradients of the numerical cost function are exact, even for nonlinear algorithms. The overall advantages of our method are that: 1. No code modification of Lagrangian model is required, making it applicable to combination of global NIES TM and any Lagrangian model; 2. Once run, the Lagrangian output can be applied to any chemically neutral gas; 3. High-resolution results can be obtained over

  20. The dynamic adjoint as a Green’s function

    International Nuclear Information System (INIS)

    Pázsit, I.; Dykin, V.

    2015-01-01

    Highlight: • The relationship between the direct Green’s function and the dynamic adjoint function is discussed in two-group theory. • It is shown that the elements of the direct Greens’ function matrix are identical to those of the transpose of the adjoint Green’s function matrix, with an interchange of arguments. • It is also remarked how the dynamic adjoint function of van Dam can be given in terms of the direct Green’s function matrix. - Abstract: The concept of the dynamic adjoint was introduced by Hugo van Dam for calculating the in-core neutron noise in boiling water reactors in the mid-70’s. This successful approach found numerous applications for calculating the neutron noise in both PWRs and BWRs since then. Although the advantages and disadvantages of using the direct (forward) or the adjoint (backward) approach for the calculation of the neutron noise were analysed in a number of publications, the direct relationship between the forward Green’s function and the dynamic adjoint has not been discussed. On the other hand, in particle transport theory the relationship between the direct and adjoint Green’s function has been discussed in detail, in which Mike Williams has had many seminal contributions. In this note we analyse the relationship between the direct Green’s function and the dynamic adjoint in the spirit of Mike’s work in neutron transport and radiation damage theory. The paper is closed with some personal remarks and reminiscences.

  1. ADGEN: ADjoint GENerator for computer models

    Energy Technology Data Exchange (ETDEWEB)

    Worley, B.A.; Pin, F.G.; Horwedel, J.E.; Oblow, E.M.

    1989-05-01

    This paper presents the development of a FORTRAN compiler and an associated supporting software library called ADGEN. ADGEN reads FORTRAN models as input and produces and enhanced version of the input model. The enhanced version reproduces the original model calculations but also has the capability to calculate derivatives of model results of interest with respect to any and all of the model data and input parameters. The method for calculating the derivatives and sensitivities is the adjoint method. Partial derivatives are calculated analytically using computer calculus and saved as elements of an adjoint matrix on direct assess storage. The total derivatives are calculated by solving an appropriate adjoint equation. ADGEN is applied to a major computer model of interest to the Low-Level Waste Community, the PRESTO-II model. PRESTO-II sample problem results reveal that ADGEN correctly calculates derivatives of response of interest with respect to 300 parameters. The execution time to create the adjoint matrix is a factor of 45 times the execution time of the reference sample problem. Once this matrix is determined, the derivatives with respect to 3000 parameters are calculated in a factor of 6.8 that of the reference model for each response of interest. For a single 3000 for determining these derivatives by parameter perturbations. The automation of the implementation of the adjoint technique for calculating derivatives and sensitivities eliminates the costly and manpower-intensive task of direct hand-implementation by reprogramming and thus makes the powerful adjoint technique more amenable for use in sensitivity analysis of existing models. 20 refs., 1 fig., 5 tabs.

  2. ADGEN: ADjoint GENerator for computer models

    International Nuclear Information System (INIS)

    Worley, B.A.; Pin, F.G.; Horwedel, J.E.; Oblow, E.M.

    1989-05-01

    This paper presents the development of a FORTRAN compiler and an associated supporting software library called ADGEN. ADGEN reads FORTRAN models as input and produces and enhanced version of the input model. The enhanced version reproduces the original model calculations but also has the capability to calculate derivatives of model results of interest with respect to any and all of the model data and input parameters. The method for calculating the derivatives and sensitivities is the adjoint method. Partial derivatives are calculated analytically using computer calculus and saved as elements of an adjoint matrix on direct assess storage. The total derivatives are calculated by solving an appropriate adjoint equation. ADGEN is applied to a major computer model of interest to the Low-Level Waste Community, the PRESTO-II model. PRESTO-II sample problem results reveal that ADGEN correctly calculates derivatives of response of interest with respect to 300 parameters. The execution time to create the adjoint matrix is a factor of 45 times the execution time of the reference sample problem. Once this matrix is determined, the derivatives with respect to 3000 parameters are calculated in a factor of 6.8 that of the reference model for each response of interest. For a single 3000 for determining these derivatives by parameter perturbations. The automation of the implementation of the adjoint technique for calculating derivatives and sensitivities eliminates the costly and manpower-intensive task of direct hand-implementation by reprogramming and thus makes the powerful adjoint technique more amenable for use in sensitivity analysis of existing models. 20 refs., 1 fig., 5 tabs

  3. Adjoint eigenfunctions of temporally recurrent single-spiral solutions in a simple model of atrial fibrillation.

    Science.gov (United States)

    Marcotte, Christopher D; Grigoriev, Roman O

    2016-09-01

    This paper introduces a numerical method for computing the spectrum of adjoint (left) eigenfunctions of spiral wave solutions to reaction-diffusion systems in arbitrary geometries. The method is illustrated by computing over a hundred eigenfunctions associated with an unstable time-periodic single-spiral solution of the Karma model on a square domain. We show that all leading adjoint eigenfunctions are exponentially localized in the vicinity of the spiral tip, although the marginal modes (response functions) demonstrate the strongest localization. We also discuss the implications of the localization for the dynamics and control of unstable spiral waves. In particular, the interaction with no-flux boundaries leads to a drift of spiral waves which can be understood with the help of the response functions.

  4. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    Science.gov (United States)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research

  5. Double adjoint method for determining the contribution of composition to reactivity at different times

    International Nuclear Information System (INIS)

    Christie, S.A.; Lathouwers, D.; Kloosterman, J.L.

    2013-01-01

    Highlights: ► The double adjoint method is described. ► System reloading is determined so the multiplication factor behaviour is repeated. ► Both fast and thermal systems behave as desired. ► Allowance must be made for indirect effects in thermal systems. ► An alternative definition of breeding ratio is derived. -- Abstract: The double adjoint method uses the adjoint reactivity and transmutation problems to describe how the system composition is related to the system reactivity at different points in time. Values of the contribution to the reactivity are determined using the adjoint reactivity problem, and these are then used as the source function for the adjoint transmutation problem. The method is applied to the problem of determining the contribution of the beginning of cycle composition to the end of cycle reactivity. It is tested in both fast and thermal systems by comparing the behaviour of the multiplication factor at the end of cycle in calculations with perturbed initial compositions to that predicted by the double adjoint method. The results from the fast system are good, while those from the thermal system are less favourable. This is believed to be due to the method neglecting the coupling between the composition and the flux, which plays a more significant role in thermal systems than fast ones. The importance of correcting for the effects of the fuel compound is also established. The values found are used in calculations to determine the appropriate fuel reloading of the systems tested, with the aim of duplicating the behaviour of the multiplication factor of the original system. Again the fast system gives good results, while the thermal system is less accurate. The double adjoint method is also used for a definition of breeding ratio, and some of the features of this definition are illustrated by examining the effects of different feed materials and reprocessing schemes. The method is shown to be a useful tool for the comparison of the

  6. Adjoint spectrum calculation in fuel heterogeneous cells

    International Nuclear Information System (INIS)

    Suster, Luis Carlos

    1998-01-01

    In most codes for cells calculation, the multigroup cross sections are generated taking into consideration the conservation of the reaction rates in the forward spectrum. However, for certain uses of the perturbation theory it's necessary to use the average of the parameters for energy macrogroups over the forward and the adjoint spectra. In this thesis the adjoint spectrum was calculated from the adjoint neutron balance equations, that were obtained for a heterogeneous unit cell. The collision probabilities method was used to obtain these equations. In order optimize the computational run-time, the Gaussian quadrature method was used in the calculation of the neutron balance equations, forward and adjoint. This method of integration was also used for the Doppler broadening functions calculation, necessary for obtaining the energy dependent cross sections. In order to calculate the reaction rates and the average cross sections, using both the forward and the adjoint neutron spectra, the most important resonances of the U 238 were considered. The results obtained with the method show significant differences for the different cross sections weighting schemes. (author)

  7. Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations

    Science.gov (United States)

    Nielsen, Eric J.

    2016-01-01

    An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.

  8. Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems

    KAUST Repository

    Garg, Vikram V

    2014-09-27

    Background Models based on the Helmholtz `slip\\' approximation are often used for the simulation of electroosmotic flows. The objectives of this paper are to construct adjoint-consistent formulations of such models, and to develop adjoint-based numerical tools for adaptive mesh refinement and parameter sensitivity analysis. Methods We show that the direct formulation of the `slip\\' model is adjoint inconsistent, and leads to an ill-posed adjoint problem. We propose a modified formulation of the coupled `slip\\' model, which is shown to be well-posed, and therefore automatically adjoint-consistent. Results Numerical examples are presented to illustrate the computation and use of the adjoint solution in two-dimensional microfluidics problems. Conclusions An adjoint-consistent formulation for Helmholtz `slip\\' models of electroosmotic flows has been proposed. This formulation provides adjoint solutions that can be reliably used for mesh refinement and sensitivity analysis.

  9. The Laplace transformation of adjoint transport equations

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1985-01-01

    A clarification is given of the difference between the equation adjoint to the Laplace-transformed time-dependent transport equation and the Laplace-transformed time-dependent adjoint transport equation. Proper procedures are derived to obtain the Laplace transform of the instantaneous detector response. (author)

  10. Double-Difference Global Adjoint Tomography

    Science.gov (United States)

    Orsvuran, R.; Bozdag, E.; Lei, W.; Tromp, J.

    2017-12-01

    The adjoint method allows us to incorporate full waveform simulations in inverse problems. Misfit functions play an important role in extracting the relevant information from seismic waveforms. In this study, our goal is to apply the Double-Difference (DD) methodology proposed by Yuan et al. (2016) to global adjoint tomography. Dense seismic networks, such as USArray, lead to higher-resolution seismic images underneath continents. However, the imbalanced distribution of stations and sources poses challenges in global ray coverage. We adapt double-difference multitaper measurements to global adjoint tomography. We normalize each DD measurement by its number of pairs, and if a measurement has no pair, as may frequently happen for data recorded at oceanic stations, classical multitaper measurements are used. As a result, the differential measurements and pair-wise weighting strategy help balance uneven global kernel coverage. Our initial experiments with minor- and major-arc surface waves show promising results, revealing more pronounced structure near dense networks while reducing the prominence of paths towards cluster of stations. We have started using this new measurement in global adjoint inversions, addressing azimuthal anisotropy in upper mantle. Meanwhile, we are working on combining the double-difference approach with instantaneous phase measurements to emphasize contributions of scattered waves in global inversions and extending it to body waves. We will present our results and discuss challenges and future directions in the context of global tomographic inversions.

  11. Continuous energy adjoint Monte Carlo for coupled neutron-photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    2001-07-01

    Although the theory for adjoint Monte Carlo calculations with continuous energy treatment for neutrons as well as for photons is known, coupled neutron-photon transport problems present fundamental difficulties because of the discrete energies of the photons produced by neutron reactions. This problem was solved by forcing the energy of the adjoint photon to the required discrete value by an adjoint Compton scattering reaction or an adjoint pair production reaction. A mathematical derivation shows the exact procedures to follow for the generation of an adjoint neutron and its statistical weight. A numerical example demonstrates that correct detector responses are obtained compared to a standard forward Monte Carlo calculation. (orig.)

  12. The adjoint space in heat transport theory

    International Nuclear Information System (INIS)

    Dam, H. van; Hoogenboom, J.E.

    1980-01-01

    The mathematical concept of adjoint operators is applied to the heat transport equation and an adjoint equation is defined with a detector function as source term. The physical meaning of the solutions for the latter equation is outlined together with an application in the field of perturbation analysis. (author)

  13. The discrete adjoint method for parameter identification in multibody system dynamics.

    Science.gov (United States)

    Lauß, Thomas; Oberpeilsteiner, Stefan; Steiner, Wolfgang; Nachbagauer, Karin

    2018-01-01

    The adjoint method is an elegant approach for the computation of the gradient of a cost function to identify a set of parameters. An additional set of differential equations has to be solved to compute the adjoint variables, which are further used for the gradient computation. However, the accuracy of the numerical solution of the adjoint differential equation has a great impact on the gradient. Hence, an alternative approach is the discrete adjoint method , where the adjoint differential equations are replaced by algebraic equations. Therefore, a finite difference scheme is constructed for the adjoint system directly from the numerical time integration method. The method provides the exact gradient of the discretized cost function subjected to the discretized equations of motion.

  14. Discrete adjoint of fractional step Navier-Stokes solver in generalized coordinates

    Science.gov (United States)

    Wang, Mengze; Mons, Vincent; Zaki, Tamer

    2017-11-01

    Optimization and control in transitional and turbulent flows require evaluation of gradients of the flow state with respect to the problem parameters. Using adjoint approaches, these high-dimensional gradients can be evaluated with a similar computational cost as the forward Navier-Stokes simulations. The adjoint algorithm can be obtained by discretizing the continuous adjoint Navier-Stokes equations or by deriving the adjoint to the discretized Navier-Stokes equations directly. The latter algorithm is necessary when the forward-adjoint relations must be satisfied to machine precision. In this work, our forward model is the fractional step solution to the Navier-Stokes equations in generalized coordinates, proposed by Rosenfeld, Kwak & Vinokur. We derive the corresponding discrete adjoint equations. We also demonstrate the accuracy of the combined forward-adjoint model, and its application to unsteady wall-bounded flows. This work has been partially funded by the Office of Naval Research (Grant N00014-16-1-2542).

  15. Four-Dimensional Data Assimilation Using the Adjoint Method

    Science.gov (United States)

    Bao, Jian-Wen

    The calculus of variations is used to confirm that variational four-dimensional data assimilation (FDDA) using the adjoint method can be implemented when the numerical model equations have a finite number of first-order discontinuous points. These points represent the on/off switches associated with physical processes, for which the Jacobian matrix of the model equation does not exist. Numerical evidence suggests that, in some situations when the adjoint method is used for FDDA, the temperature field retrieved using horizontal wind data is numerically not unique. A physical interpretation of this type of non-uniqueness of the retrieval is proposed in terms of energetics. The adjoint equations of a numerical model can also be used for model-parameter estimation. A general computational procedure is developed to determine the size and distribution of any internal model parameter. The procedure is then applied to a one-dimensional shallow -fluid model in the context of analysis-nudging FDDA: the weighting coefficients used by the Newtonian nudging technique are determined. The sensitivity of these nudging coefficients to the optimal objectives and constraints is investigated. Experiments of FDDA using the adjoint method are conducted using the dry version of the hydrostatic Penn State/NCAR mesoscale model (MM4) and its adjoint. The minimization procedure converges and the initialization experiment is successful. Temperature-retrieval experiments involving an assimilation of the horizontal wind are also carried out using the adjoint of MM4.

  16. Global Seismic Imaging Based on Adjoint Tomography

    Science.gov (United States)

    Bozdag, E.; Lefebvre, M.; Lei, W.; Peter, D. B.; Smith, J. A.; Zhu, H.; Komatitsch, D.; Tromp, J.

    2013-12-01

    Our aim is to perform adjoint tomography at the scale of globe to image the entire planet. We have started elastic inversions with a global data set of 253 CMT earthquakes with moment magnitudes in the range 5.8 ≤ Mw ≤ 7 and used GSN stations as well as some local networks such as USArray, European stations, etc. Using an iterative pre-conditioned conjugate gradient scheme, we initially set the aim to obtain a global crustal and mantle model with confined transverse isotropy in the upper mantle. Global adjoint tomography has so far remained a challenge mainly due to computational limitations. Recent improvements in our 3D solvers (e.g., a GPU version) and access to high-performance computational centers (e.g., ORNL's Cray XK7 "Titan" system) now enable us to perform iterations with higher-resolution (T > 9 s) and longer-duration (200 min) simulations to accommodate high-frequency body waves and major-arc surface waves, respectively, which help improve data coverage. The remaining challenge is the heavy I/O traffic caused by the numerous files generated during the forward/adjoint simulations and the pre- and post-processing stages of our workflow. We improve the global adjoint tomography workflow by adopting the ADIOS file format for our seismic data as well as models, kernels, etc., to improve efficiency on high-performance clusters. Our ultimate aim is to use data from all available networks and earthquakes within the magnitude range of our interest (5.5 ≤ Mw ≤ 7) which requires a solid framework to manage big data in our global adjoint tomography workflow. We discuss the current status and future of global adjoint tomography based on our initial results as well as practical issues such as handling big data in inversions and on high-performance computing systems.

  17. The adjoint string at finite temperature

    International Nuclear Information System (INIS)

    Damgaard, P.H.

    1986-10-01

    Expectations for the behavior of the adjoint string at finite temperature are presented. In the Migdal-Kadanoff approximation a real-space renormalization group study of the effective Polyakov like action predicts a deconfinement-like crossover for adjoint sources at a temperature slightly below the deconfinement temperature of fundamental sources. This prediction is compared with a Monte Carlo simulation of SU(2) lattice gauge theory on an 8 3 x2 lattice. (orig.)

  18. Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 2

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Using the simplifying hypotheses of the integrodifferential Boltzmann equations of neutron transport, given in JEN 334 report, several integral equations, and theirs adjoint ones, are obtained. Relations between the different normal and adjoint eigenfunctions are established and, in particular, proceeding from the integrodifferential Boltzmann equation it's found out the relation between the solutions of the adjoint equation of its integral one, and the solutions of the integral equation of its adjoint one (author)

  19. Development of one-energy group, two-dimensional, frequency dependent detector adjoint function based on the nodal method

    International Nuclear Information System (INIS)

    Khericha, Soli T.

    2000-01-01

    One-energy group, two-dimensional computer code was developed to calculate the response of a detector to a vibrating absorber in a reactor core. A concept of local/global components, based on the frequency dependent detector adjoint function, and a nodalization technique were utilized. The frequency dependent detector adjoint functions presented by complex equations were expanded into real and imaginary parts. In the nodalization technique, the flux is expanded into polynomials about the center point of each node. The phase angle and the magnitude of the one-energy group detector adjoint function were calculated for a detector located in the center of a 200x200 cm reactor using a two-dimensional nodalization technique, the computer code EXTERMINATOR, and the analytical solution. The purpose of this research was to investigate the applicability of a polynomial nodal model technique to the calculations of the real and the imaginary parts of the detector adjoint function for one-energy group two-dimensional polynomial nodal model technique. From the results as discussed earlier, it is concluded that the nodal model technique can be used to calculate the detector adjoint function and the phase angle. Using the computer code developed for nodal model technique, the magnitude of one energy group frequency dependent detector adjoint function and the phase angle were calculated for the detector located in the center of a 200x200 cm homogenous reactor. The real part of the detector adjoint function was compared with the results obtained from the EXTERMINATOR computer code as well as the analytical solution based on a double sine series expansion using the classical Green's Function solution. The values were found to be less than 1% greater at 20 cm away from the source region and about 3% greater closer to the source compared to the values obtained from the analytical solution and the EXTERMINATOR code. The currents at the node interface matched within 1% of the average

  20. A new approach for developing adjoint models

    Science.gov (United States)

    Farrell, P. E.; Funke, S. W.

    2011-12-01

    Many data assimilation algorithms rely on the availability of gradients of misfit functionals, which can be efficiently computed with adjoint models. However, the development of an adjoint model for a complex geophysical code is generally very difficult. Algorithmic differentiation (AD, also called automatic differentiation) offers one strategy for simplifying this task: it takes the abstraction that a model is a sequence of primitive instructions, each of which may be differentiated in turn. While extremely successful, this low-level abstraction runs into time-consuming difficulties when applied to the whole codebase of a model, such as differentiating through linear solves, model I/O, calls to external libraries, language features that are unsupported by the AD tool, and the use of multiple programming languages. While these difficulties can be overcome, it requires a large amount of technical expertise and an intimate familiarity with both the AD tool and the model. An alternative to applying the AD tool to the whole codebase is to assemble the discrete adjoint equations and use these to compute the necessary gradients. With this approach, the AD tool must be applied to the nonlinear assembly operators, which are typically small, self-contained units of the codebase. The disadvantage of this approach is that the assembly of the discrete adjoint equations is still very difficult to perform correctly, especially for complex multiphysics models that perform temporal integration; as it stands, this approach is as difficult and time-consuming as applying AD to the whole model. In this work, we have developed a library which greatly simplifies and automates the alternate approach of assembling the discrete adjoint equations. We propose a complementary, higher-level abstraction to that of AD: that a model is a sequence of linear solves. The developer annotates model source code with library calls that build a 'tape' of the operators involved and their dependencies, and

  1. Sensitivity analysis of predictive models with an automated adjoint generator

    International Nuclear Information System (INIS)

    Pin, F.G.; Oblow, E.M.

    1987-01-01

    The adjoint method is a well established sensitivity analysis methodology that is particularly efficient in large-scale modeling problems. The coefficients of sensitivity of a given response with respect to every parameter involved in the modeling code can be calculated from the solution of a single adjoint run of the code. Sensitivity coefficients provide a quantitative measure of the importance of the model data in calculating the final results. The major drawback of the adjoint method is the requirement for calculations of very large numbers of partial derivatives to set up the adjoint equations of the model. ADGEN is a software system that has been designed to eliminate this drawback and automatically implement the adjoint formulation in computer codes. The ADGEN system will be described and its use for improving performance assessments and predictive simulations will be discussed. 8 refs., 1 fig

  2. Self-adjoint extensions and spectral analysis in the Calogero problem

    International Nuclear Information System (INIS)

    Gitman, D M; Tyutin, I V; Voronov, B L

    2010-01-01

    In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential αx -2 . Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some 'paradoxes' inherent in the 'naive' quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.

  3. Self-adjoint extensions and spectral analysis in the Calogero problem

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V; Voronov, B L [Lebedev Physical Institute, Moscow (Russian Federation)], E-mail: gitman@dfn.if.usp.br, E-mail: tyutin@lpi.ru, E-mail: voronov@lpi.ru

    2010-04-09

    In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential {alpha}x{sup -2}. Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some 'paradoxes' inherent in the 'naive' quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.

  4. Probability density adjoint for sensitivity analysis of the Mean of Chaos

    Energy Technology Data Exchange (ETDEWEB)

    Blonigan, Patrick J., E-mail: blonigan@mit.edu; Wang, Qiqi, E-mail: qiqi@mit.edu

    2014-08-01

    Sensitivity analysis, especially adjoint based sensitivity analysis, is a powerful tool for engineering design which allows for the efficient computation of sensitivities with respect to many parameters. However, these methods break down when used to compute sensitivities of long-time averaged quantities in chaotic dynamical systems. This paper presents a new method for sensitivity analysis of ergodic chaotic dynamical systems, the density adjoint method. The method involves solving the governing equations for the system's invariant measure and its adjoint on the system's attractor manifold rather than in phase-space. This new approach is derived for and demonstrated on one-dimensional chaotic maps and the three-dimensional Lorenz system. It is found that the density adjoint computes very finely detailed adjoint distributions and accurate sensitivities, but suffers from large computational costs.

  5. Phenomenology of spinless adjoints in two universal extra dimensions

    International Nuclear Information System (INIS)

    Ghosh, Kirtiman; Datta, Anindya

    2008-01-01

    We discuss the phenomenology of (1,1)-mode adjoint scalars in the framework of two Universal Extra Dimensions. The Kaluza-Klein (KK) towers of these adjoint scalars arise in the 4-dimensional effective theory from the 6th component of the gauge fields after compactification. Adjoint scalars can have KK-number conserving as well as KK-number violating interactions. We calculate the KK-number violating operators involving these scalars and two Standard Model fields. Decay widths of these scalars into different channels have been estimated. We have also briefly discussed pair-production and single production of such scalars at the Large Hadron Collider

  6. Self-consistent adjoint analysis for topology optimization of electromagnetic waves

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G.

    2018-05-01

    In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.

  7. Almost commuting self-adjoint matrices: The real and self-dual cases

    Science.gov (United States)

    Loring, Terry A.; Sørensen, Adam P. W.

    2016-08-01

    We show that a pair of almost commuting self-adjoint, symmetric matrices is close to a pair of commuting self-adjoint, symmetric matrices (in a uniform way). Moreover, we prove that the same holds with self-dual in place of symmetric and also for paths of self-adjoint matrices. Since a symmetric, self-adjoint matrix is real, we get a real version of Huaxin Lin’s famous theorem on almost commuting matrices. Similarly, the self-dual case gives a version for matrices over the quaternions. To prove these results, we develop a theory of semiprojectivity for real C*-algebras and also examine various definitions of low-rank for real C*-algebras.

  8. Practical adjoint Monte Carlo technique for fixed-source and eigenfunction neutron transport problems

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1981-01-01

    An adjoint Monte Carlo technique is described for the solution of neutron transport problems. The optimum biasing function for a zero-variance collision estimator is derived. The optimum treatment of an analog of a non-velocity thermal group has also been derived. The method is extended to multiplying systems, especially for eigenfunction problems to enable the estimate of averages over the unknown fundamental neutron flux distribution. A versatile computer code, FOCUS, has been written, based on the described theory. Numerical examples are given for a shielding problem and a critical assembly, illustrating the performance of the FOCUS code. 19 refs

  9. The Hausdorff measure of chaotic sets of adjoint shift maps

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huoyun [Department of Mathematics of Guangzhou University, Guangzhou 510006 (China)]. E-mail: wanghuoyun@sina.com; Song Wangan [Department of Computer, Huaibei Coal Industry Teacher College, Huaibei 235000 (China)

    2006-11-15

    In this paper, the size of chaotic sets of adjoint shift maps is estimated by Hausdorff measure. We prove that for any adjoint shift map there exists a finitely chaotic set with full Hausdorff measure.

  10. Solution of the mathematical adjoint equations for an interface current nodal formulation

    International Nuclear Information System (INIS)

    Yang, W.S.; Taiwo, T.A.; Khalil, H.

    1994-01-01

    Two techniques for solving the mathematical adjoint equations of an interface current nodal method are described. These techniques are the ''similarity transformation'' procedure and a direct solution scheme. A theoretical basis is provided for the similarity transformation procedure originally proposed by Lawrence. It is shown that the matrices associated with the mathematical and physical adjoint equations are similar to each other for the flat transverse leakage approximation but not for the quadratic leakage approximation. It is also shown that a good approximate solution of the mathematical adjoint for the quadratic transverse leakage approximation is obtained by applying the similarity transformation for the flat transverse leakage approximation to the physical adjoint solution. The direct solution scheme, which was developed as an alternative to the similarity transformation procedure, yields the correct mathematical adjoint solution for both flat and quadratic transverse leakage approximations. In this scheme, adjoint nodal equations are cast in a form very similar to that of the forward equations by employing a linear transformation of the adjoint partial currents. This enables the use of the forward solution algorithm with only minor modifications for solving the mathematical adjoint equations. By using the direct solution scheme as a reference method, it is shown that while the results computed with the similarity transformation procedure are approximate, they are sufficiently accurate for calculations of global and local reactivity changes resulting from coolant voiding in a liquid-metal reactor

  11. Thermal boundary condition effects on forced convection heat transfer. Application of a numerical solution of an adjoint problem; Kyosei tairyu netsudentatsu mondai ni okeru netsuteki kyokai joken no eikyo. Zuihan mondai no suchi kai wo mochiita kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Momose, K.; Saso, K.; Kimoto, H. [Osaka University, Osaka (Japan). Faculty of Engineering Science

    1997-11-25

    We propose a numerical solution for the adjoint operator of a forced convection heat transfer problem to evaluate mean heat transfer characteristics under arbitrary thermal conditions. Using the numerical solutions of the adjoint problems under Dirichlet and Neumann conditions, both of which can be computed using a conventional CFD code, the influence function of the local surface temperature on the total heat transfer and that of the local surface heat flux on the mean surface temperature are obtained. As a result, the total heat fluxes for arbitrary surface temperature distributions and the mean surface temperatures for arbitrary surface heat flux distributions can be calculated using these influence functions. The influence functions for a circular cylinder and for an in-line square rod array are presented. 14 refs., 9 figs., 1 tab.

  12. Adjoint-Based Uncertainty Quantification with MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Seifried, Jeffrey E. [Univ. of California, Berkeley, CA (United States)

    2011-09-01

    This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence in the simulation is acquired.

  13. A practical discrete-adjoint method for high-fidelity compressible turbulence simulations

    International Nuclear Information System (INIS)

    Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.

    2015-01-01

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that

  14. FOCUS: a non-multigroup adjoint Monte Carlo code with improved variance reduction

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1974-01-01

    A description is given of the selection mechanism in the adjoint Monte Carlo code FOCUS in which the energy is treated as a continuous variable. The method of Kalos who introduced the idea of adjoint cross sections is followed to derive a sampling scheme for the adjoint equation solved in FOCUS which is in most aspects analogous to the normal Monte Carlo game. The disadvantages of the use of these adjoint cross sections are removed to some extent by introduction of a new definition for the adjoint cross sections resulting in appreciable variance reduction. At the cost of introducing a weight factor slightly different from unity, the direction and energy are selected in a simple way without the need of two-dimensional probability tables. Finally the handling of geometry and cross section in FOCUS is briefly discussed. 6 references. (U.S.)

  15. Unsteady adjoint for large eddy simulation of a coupled turbine stator-rotor system

    Science.gov (United States)

    Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory

    2016-11-01

    Unsteady fluid flow simulations like large eddy simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the coupled system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a coupled turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This coupled system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.

  16. Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems

    KAUST Repository

    Garg, Vikram V; Prudhomme, Serge; van der Zee, Kris G; Carey, Graham F

    2014-01-01

    Models based on the Helmholtz `slip' approximation are often used for the simulation of electroosmotic flows. The objectives of this paper are to construct adjoint-consistent formulations of such models, and to develop adjoint

  17. Self-adjointness of the Gaffney Laplacian on Vector Bundles

    International Nuclear Information System (INIS)

    Bandara, Lashi; Milatovic, Ognjen

    2015-01-01

    We study the Gaffney Laplacian on a vector bundle equipped with a compatible metric and connection over a Riemannian manifold that is possibly geodesically incomplete. Under the hypothesis that the Cauchy boundary is polar, we demonstrate the self-adjointness of this Laplacian. Furthermore, we show that negligible boundary is a necessary and sufficient condition for the self-adjointness of this operator

  18. Self-adjointness of the Gaffney Laplacian on Vector Bundles

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, Lashi, E-mail: lashi.bandara@chalmers.se [Chalmers University of Technology and University of Gothenburg, Mathematical Sciences (Sweden); Milatovic, Ognjen, E-mail: omilatov@unf.edu [University of North Florida, Department of Mathematics and Statistics (United States)

    2015-12-15

    We study the Gaffney Laplacian on a vector bundle equipped with a compatible metric and connection over a Riemannian manifold that is possibly geodesically incomplete. Under the hypothesis that the Cauchy boundary is polar, we demonstrate the self-adjointness of this Laplacian. Furthermore, we show that negligible boundary is a necessary and sufficient condition for the self-adjointness of this operator.

  19. Self-Adjointness Criterion for Operators in Fock Spaces

    International Nuclear Information System (INIS)

    Falconi, Marco

    2015-01-01

    In this paper we provide a criterion of essential self-adjointness for operators in the tensor product of a separable Hilbert space and a Fock space. The class of operators we consider may contain a self-adjoint part, a part that preserves the number of Fock space particles and a non-diagonal part that is at most quadratic with respect to the creation and annihilation operators. The hypotheses of the criterion are satisfied in several interesting applications

  20. Deterministic sensitivity analysis of two-phase flow systems: forward and adjoint methods. Final report

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1984-07-01

    This report presents a self-contained mathematical formalism for deterministic sensitivity analysis of two-phase flow systems, a detailed application to sensitivity analysis of the homogeneous equilibrium model of two-phase flow, and a representative application to sensitivity analysis of a model (simulating pump-trip-type accidents in BWRs) where a transition between single phase and two phase occurs. The rigor and generality of this sensitivity analysis formalism stem from the use of Gateaux (G-) differentials. This report highlights the major aspects of deterministic (forward and adjoint) sensitivity analysis, including derivation of the forward sensitivity equations, derivation of sensitivity expressions in terms of adjoint functions, explicit construction of the adjoint system satisfied by these adjoint functions, determination of the characteristics of this adjoint system, and demonstration that these characteristics are the same as those of the original quasilinear two-phase flow equations. This proves that whenever the original two-phase flow problem is solvable, the adjoint system is also solvable and, in principle, the same numerical methods can be used to solve both the original and adjoint equations

  1. An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000

    KAUST Repository

    Hoteit, Ibrahim

    2010-03-02

    An eddy-permitting adjoint-based assimilation system has been implemented to estimate the state of the tropical Pacific Ocean. The system uses the Massachusetts Institute of Technology\\'s general circulation model and its adjoint. The adjoint method is used to adjust the model to observations by controlling the initial temperature and salinity; temperature, salinity, and horizontal velocities at the open boundaries; and surface fluxes of momentum, heat, and freshwater. The model is constrained with most of the available data sets in the tropical Pacific, including Tropical Atmosphere and Ocean, ARGO, expendable bathythermograph, and satellite SST and sea surface height data, and climatologies. Results of hindcast experiments in 2000 suggest that the iterated adjoint-based descent is able to significantly improve the model consistency with the multivariate data sets, providing a dynamically consistent realization of the tropical Pacific circulation that generally matches the observations to within specified errors. The estimated model state is evaluated both by comparisons with observations and by checking the controls, the momentum balances, and the representation of small-scale features that were not well sampled by the observations used in the assimilation. As part of these checks, the estimated controls are smoothed and applied in independent model runs to check that small changes in the controls do not greatly change the model hindcast. This is a simple ensemble-based uncertainty analysis. In addition, the original and smoothed controls are applied to a version of the model with doubled horizontal resolution resulting in a broadly similar “downscaled” hindcast, showing that the adjustments are not tuned to a single configuration (meaning resolution, topography, and parameter settings). The time-evolving model state and the adjusted controls should be useful for analysis or to supply the forcing, initial, and boundary conditions for runs of other models.

  2. Adjoint sensitivity analysis of plasmonic structures using the FDTD method.

    Science.gov (United States)

    Zhang, Yu; Ahmed, Osman S; Bakr, Mohamed H

    2014-05-15

    We present an adjoint variable method for estimating the sensitivities of arbitrary responses with respect to the parameters of dispersive discontinuities in nanoplasmonic devices. Our theory is formulated in terms of the electric field components at the vicinity of perturbed discontinuities. The adjoint sensitivities are computed using at most one extra finite-difference time-domain (FDTD) simulation regardless of the number of parameters. Our approach is illustrated through the sensitivity analysis of an add-drop coupler consisting of a square ring resonator between two parallel waveguides. The computed adjoint sensitivities of the scattering parameters are compared with those obtained using the accurate but computationally expensive central finite difference approach.

  3. Improving the Fit of a Land-Surface Model to Data Using its Adjoint

    Science.gov (United States)

    Raoult, N.; Jupp, T. E.; Cox, P. M.; Luke, C.

    2015-12-01

    Land-surface models (LSMs) are of growing importance in the world of climate prediction. They are crucial components of larger Earth system models that are aimed at understanding the effects of land surface processes on the global carbon cycle. The Joint UK Land Environment Simulator (JULES) is the land-surface model used by the UK Met Office. It has been automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or 'adjoint', of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. adJULES presents an opportunity to confront JULES with many different observations, and make improvements to the model parameterisation. In the newest version of adJULES, multiple sites can be used in the calibration, to giving a generic set of parameters that can be generalised over plant functional types. We present an introduction to the adJULES system and its applications to data from a variety of flux tower sites. We show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.

  4. Ambient noise adjoint tomography for a linear array in North China

    Science.gov (United States)

    Zhang, C.; Yao, H.; Liu, Q.; Yuan, Y. O.; Zhang, P.; Feng, J.; Fang, L.

    2017-12-01

    Ambient noise tomography based on dispersion data and ray theory has been widely utilized for imaging crustal structures. In order to improve the inversion accuracy, ambient noise tomography based on the 3D adjoint approach or full waveform inversion has been developed recently, however, the computational cost is tremendous. In this study we present 2D ambient noise adjoint tomography for a linear array in north China with significant computational efficiency compared to 3D ambient noise adjoint tomography. During the preprocessing, we first convert the observed data in 3D media, i.e., surface-wave empirical Green's functions (EGFs) from ambient noise cross-correlation, to the reconstructed EGFs in 2D media using a 3D/2D transformation scheme. Different from the conventional steps of measuring phase dispersion, the 2D adjoint tomography refines 2D shear wave speeds along the profile directly from the reconstructed Rayleigh wave EGFs in the period band 6-35s. With the 2D initial model extracted from the 3D model from traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime misfits between the reconstructed EGFs and synthetic Green function (SGFs) in 2D media generated by the spectral-element method (SEM), with a preconditioned conjugate gradient method. The multitaper traveltime difference measurement is applied in four period bands during the inversion: 20-35s, 15-30s, 10-20s and 6-15s. The recovered model shows more detailed crustal structures with pronounced low velocity anomaly in the mid-lower crust beneath the junction of Taihang Mountains and Yin-Yan Mountains compared with the initial model. This low velocity structure may imply the possible intense crust-mantle interactions, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of the region. To our knowledge, it's first time that ambient noise adjoint tomography is implemented in 2D media

  5. Feynman's Operational Calculi: Spectral Theory for Noncommuting Self-adjoint Operators

    International Nuclear Information System (INIS)

    Jefferies, Brian; Johnson, Gerald W.; Nielsen, Lance

    2007-01-01

    The spectral theorem for commuting self-adjoint operators along with the associated functional (or operational) calculus is among the most useful and beautiful results of analysis. It is well known that forming a functional calculus for noncommuting self-adjoint operators is far more problematic. The central result of this paper establishes a rich functional calculus for any finite number of noncommuting (i.e. not necessarily commuting) bounded, self-adjoint operators A 1 ,..., A n and associated continuous Borel probability measures μ 1 , ?, μ n on [0,1]. Fix A 1 ,..., A n . Then each choice of an n-tuple (μ 1 ,...,μ n ) of measures determines one of Feynman's operational calculi acting on a certain Banach algebra of analytic functions even when A 1 , ..., A n are just bounded linear operators on a Banach space. The Hilbert space setting along with self-adjointness allows us to extend the operational calculi well beyond the analytic functions. Using results and ideas drawn largely from the proof of our main theorem, we also establish a family of Trotter product type formulas suitable for Feynman's operational calculi

  6. Toward regional-scale adjoint tomography in the deep earth

    Science.gov (United States)

    Masson, Y.; Romanowicz, B. A.

    2013-12-01

    Thanks to the development of efficient numerical computation methods, such as the Spectral Element Method (SEM) and to the increasing power of computer clusters, it is now possible to obtain regional-scale images of the Earth's interior using adjoint-tomography (e.g. Tape, C., et al., 2009). As for now, these tomographic models are limited to the upper layers of the earth, i.e., they provide us with high-resolution images of the crust and the upper part of the mantle. Given the gigantic amount of calculation it represents, obtaing similar models at the global scale (i.e. images of the entire Earth) seems out of reach at the moment. Furthermore, it's likely that the first generation of such global adjoint tomographic models will have a resolution significantly smaller than the current regional models. In order to image regions of interests in the deep Earth, such as plumes, slabs or large low shear velocity provinces (LLSVPs), while keeping the computation tractable, we are developing new tools that will allow us to perform regional-scale adjoint-tomography at arbitrary depths. In a recent study (Masson et al., 2013), we showed that a numerical equivalent of the time reversal mirrors used in experimental acoustics permits to confine the wave propagation computations (i.e. using SEM simulations) inside the region to be imaged. With this ability to limit wave propagation modeling inside a region of interest, obtaining the adjoint sensitivity kernels needed for tomographic imaging is only two steps further. First, the local wavefield modeling needs to be coupled with field extrapolation techniques in order to obtain synthetic seismograms at the surface of the earth. These seismograms will account for the 3D structure inside the region of interest in a quasi-exact manner. We will present preliminary results where the field-extrapolation is performed using Green's function computed in a 1D Earth model thanks to the Direct Solution Method (DSM). Once synthetic seismograms

  7. Spectral monodromy of non-self-adjoint operators

    International Nuclear Information System (INIS)

    Phan, Quang Sang

    2014-01-01

    In the present paper, we build a combinatorial invariant, called the “spectral monodromy” from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc [“Quantum monodromy in integrable systems,” Commun. Math. Phys. 203(2), 465–479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat [“On global action-angle coordinates,” Commun. Pure Appl. Math. 33(6), 687–706 (1980)

  8. Spectral monodromy of non-self-adjoint operators

    Science.gov (United States)

    Phan, Quang Sang

    2014-01-01

    In the present paper, we build a combinatorial invariant, called the "spectral monodromy" from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc ["Quantum monodromy in integrable systems," Commun. Math. Phys. 203(2), 465-479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat ["On global action-angle coordinates," Commun. Pure Appl. Math. 33(6), 687-706 (1980)].

  9. Spectral monodromy of non-self-adjoint operators

    Energy Technology Data Exchange (ETDEWEB)

    Phan, Quang Sang, E-mail: quang.phan@uj.edu.pl [Université de Rennes 1, Institut de Recherche Mathématique de Rennes (UMR 6625), Campus de Beaulieu, 35042 Rennes (France)

    2014-01-15

    In the present paper, we build a combinatorial invariant, called the “spectral monodromy” from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc [“Quantum monodromy in integrable systems,” Commun. Math. Phys. 203(2), 465–479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat [“On global action-angle coordinates,” Commun. Pure Appl. Math. 33(6), 687–706 (1980)].

  10. Construction of adjoint operators for coupled equations depending on different variables

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1986-01-01

    A procedure is described for the construction of the adjoint operator matrix in case of coupled equations defining quantities that depend on different sets of variables. This case is not properly treated in the literature. From this procedure a simple rule can be deduced for the construction of such adjoint operator matrices

  11. A generalized adjoint framework for sensitivity and global error estimation in time-dependent nuclear reactor simulations

    International Nuclear Information System (INIS)

    Stripling, H.F.; Anitescu, M.; Adams, M.L.

    2013-01-01

    Highlights: ► We develop an abstract framework for computing the adjoint to the neutron/nuclide burnup equations posed as a system of differential algebraic equations. ► We validate use of the adjoint for computing both sensitivity to uncertain inputs and for estimating global time discretization error. ► Flexibility of the framework is leveraged to add heat transfer physics and compute its adjoint without a reformulation of the adjoint system. ► Such flexibility is crucial for high performance computing applications. -- Abstract: We develop a general framework for computing the adjoint variable to nuclear engineering problems governed by a set of differential–algebraic equations (DAEs). The nuclear engineering community has a rich history of developing and applying adjoints for sensitivity calculations; many such formulations, however, are specific to a certain set of equations, variables, or solution techniques. Any change or addition to the physics model would require a reformulation of the adjoint problem and substantial difficulties in its software implementation. In this work we propose an abstract framework that allows for the modification and expansion of the governing equations, leverages the existing theory of adjoint formulation for DAEs, and results in adjoint equations that can be used to efficiently compute sensitivities for parametric uncertainty quantification. Moreover, as we justify theoretically and demonstrate numerically, the same framework can be used to estimate global time discretization error. We first motivate the framework and show that the coupled Bateman and transport equations, which govern the time-dependent neutronic behavior of a nuclear reactor, may be formulated as a DAE system with a power constraint. We then use a variational approach to develop the parameter-dependent adjoint framework and apply existing theory to give formulations for sensitivity and global time discretization error estimates using the adjoint

  12. An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000

    KAUST Repository

    Hoteit, Ibrahim; Cornuelle, B.; Heimbach, P.

    2010-01-01

    An eddy-permitting adjoint-based assimilation system has been implemented to estimate the state of the tropical Pacific Ocean. The system uses the Massachusetts Institute of Technology's general circulation model and its adjoint. The adjoint method

  13. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  14. Use of adjoint methods in the probabilistic finite element approach to fracture mechanics

    Science.gov (United States)

    Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted

    1988-01-01

    The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.

  15. Fast parallel algorithms for the x-ray transform and its adjoint.

    Science.gov (United States)

    Gao, Hao

    2012-11-01

    Iterative reconstruction methods often offer better imaging quality and allow for reconstructions with lower imaging dose than classical methods in computed tomography. However, the computational speed is a major concern for these iterative methods, for which the x-ray transform and its adjoint are two most time-consuming components. The speed issue becomes even notable for the 3D imaging such as cone beam scans or helical scans, since the x-ray transform and its adjoint are frequently computed as there is usually not enough computer memory to save the corresponding system matrix. The purpose of this paper is to optimize the algorithm for computing the x-ray transform and its adjoint, and their parallel computation. The fast and highly parallelizable algorithms for the x-ray transform and its adjoint are proposed for the infinitely narrow beam in both 2D and 3D. The extension of these fast algorithms to the finite-size beam is proposed in 2D and discussed in 3D. The CPU and GPU codes are available at https://sites.google.com/site/fastxraytransform. The proposed algorithm is faster than Siddon's algorithm for computing the x-ray transform. In particular, the improvement for the parallel computation can be an order of magnitude. The authors have proposed fast and highly parallelizable algorithms for the x-ray transform and its adjoint, which are extendable for the finite-size beam. The proposed algorithms are suitable for parallel computing in the sense that the computational cost per parallel thread is O(1).

  16. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    Energy Technology Data Exchange (ETDEWEB)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment.

  17. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    International Nuclear Information System (INIS)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment

  18. Lecture 1. Monte Carlo basics. Lecture 2. Adjoint Monte Carlo. Lecture 3. Coupled Forward-Adjoint calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft University of Technology, Interfaculty Reactor Institute, Delft (Netherlands)

    2000-07-01

    The Monte Carlo method is a statistical method to solve mathematical and physical problems using random numbers. The principle of the methods will be demonstrated for a simple mathematical problem and for neutron transport. Various types of estimators will be discussed, as well as generally applied variance reduction methods like splitting, Russian roulette and importance biasing. The theoretical formulation for solving eigenvalue problems for multiplying systems will be shown. Some reflections will be given about the applicability of the Monte Carlo method, its limitations and its future prospects for reactor physics calculations. Adjoint Monte Carlo is a Monte Carlo game to solve the adjoint neutron (or photon) transport equation. The adjoint transport equation can be interpreted in terms of simulating histories of artificial particles, which show properties of neutrons that move backwards in history. These particles will start their history at the detector from which the response must be estimated and give a contribution to the estimated quantity when they hit or pass through the neutron source. Application to multigroup transport formulation will be demonstrated Possible implementation for the continuous energy case will be outlined. The inherent advantages and disadvantages of the method will be discussed. The Midway Monte Carlo method will be presented for calculating a detector response due to a (neutron or photon) source. A derivation will be given of the basic formula for the Midway Monte Carlo method The black absorber technique, allowing for a cutoff of particle histories when reaching the midway surface in one of the calculations will be derived. An extension of the theory to coupled neutron-photon problems is given. The method will be demonstrated for an oil well logging problem, comprising a neutron source in a borehole and photon detectors to register the photons generated by inelastic neutron scattering. (author)

  19. Lecture 1. Monte Carlo basics. Lecture 2. Adjoint Monte Carlo. Lecture 3. Coupled Forward-Adjoint calculations

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    2000-01-01

    The Monte Carlo method is a statistical method to solve mathematical and physical problems using random numbers. The principle of the methods will be demonstrated for a simple mathematical problem and for neutron transport. Various types of estimators will be discussed, as well as generally applied variance reduction methods like splitting, Russian roulette and importance biasing. The theoretical formulation for solving eigenvalue problems for multiplying systems will be shown. Some reflections will be given about the applicability of the Monte Carlo method, its limitations and its future prospects for reactor physics calculations. Adjoint Monte Carlo is a Monte Carlo game to solve the adjoint neutron (or photon) transport equation. The adjoint transport equation can be interpreted in terms of simulating histories of artificial particles, which show properties of neutrons that move backwards in history. These particles will start their history at the detector from which the response must be estimated and give a contribution to the estimated quantity when they hit or pass through the neutron source. Application to multigroup transport formulation will be demonstrated Possible implementation for the continuous energy case will be outlined. The inherent advantages and disadvantages of the method will be discussed. The Midway Monte Carlo method will be presented for calculating a detector response due to a (neutron or photon) source. A derivation will be given of the basic formula for the Midway Monte Carlo method The black absorber technique, allowing for a cutoff of particle histories when reaching the midway surface in one of the calculations will be derived. An extension of the theory to coupled neutron-photon problems is given. The method will be demonstrated for an oil well logging problem, comprising a neutron source in a borehole and photon detectors to register the photons generated by inelastic neutron scattering. (author)

  20. A demonstration of adjoint methods for multi-dimensional remote sensing of the atmosphere and surface

    International Nuclear Information System (INIS)

    Martin, William G.K.; Hasekamp, Otto P.

    2018-01-01

    Highlights: • We demonstrate adjoint methods for atmospheric remote sensing in a two-dimensional setting. • Searchlight functions are used to handle the singularity of measurement response functions. • Adjoint methods require two radiative transfer calculations to evaluate the measurement misfit function and its derivatives with respect to all unknown parameters. • Synthetic retrieval studies show the scalability of adjoint methods to problems with thousands of measurements and unknown parameters. • Adjoint methods and the searchlight function technique are generalizable to 3D remote sensing. - Abstract: In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals of clouds and aerosols. In this paper we will demonstrate the use of adjoint methods for retrieving two-dimensional (2D) fields of cloud extinction. The demonstration uses a new 2D radiative transfer solver (FSDOM). This radiation code was augmented with adjoint methods to allow efficient derivative calculations needed to retrieve cloud and surface properties from multi-angle reflectance measurements. The code was then used in three synthetic retrieval studies. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward radiative transfer equation to compute the residual misfit with measurements, and second we solve the adjoint radiative transfer equation to compute the gradient of the misfit function with respect to all unknowns. The synthetic retrieval studies verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. We can retrieve the vertically-integrated optical depth of moderately thick clouds as a function of the horizontal coordinate. It is also

  1. Self-adjoint extensions and spectral analysis in the generalized Kratzer problem

    International Nuclear Information System (INIS)

    Baldiotti, M C; Gitman, D M; Tyutin, I V; Voronov, B L

    2011-01-01

    We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x)=g 1 x -1 +g 2 x -2 , x is an element of R + = [0, ∞). For g 2 >0 and g 1 K (x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schroedinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein's method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.

  2. Perturbation of self-adjoint operators by Dirac distributions

    International Nuclear Information System (INIS)

    Zorbas, J.

    1980-01-01

    The existence of a family of self-adjoint Hamiltonians H/sub theta/, theta element of [0, 2π), corresponding to the formal expression H 0 +νdelta (x) is shown for a general class of self-adjoint operators H 0 . Expressions for the Green's function and wavefunction corresponding to H/sub theta/ are obtained in terms of the Green's function and wavefunction corresponding to H 0 . Similar results are shown for the perturbation of H 0 by a finite sum of Dirac distributions. A prescription is given for obtaining H/sub theta/ as the strong resolvent limit of a family of momentum cutoff Hamiltonians H/sup N/. The relationship between the scattering theories corresponding to H/sup N/ and H/sub theta/ is examined

  3. Characterization and uniqueness of distinguished self-adjoint extensions of dirac operators

    International Nuclear Information System (INIS)

    Klaus, M.; Wuest, R.; Princeton Univ., NJ

    1979-01-01

    Distinguished self-adjoint extensions of Dirac operators are characterized by Nenciu and constructed by means of cut-off potentials by Wuest. In this paper it is shown that the existence and a more explicit characterization of Nenciu's self-adjoint extensions can be obtained as a consequence from results of the cut-off method, that these extensions are the same as the extensions constructed with cut-off potentials and that they are unique in some sense. (orig.) [de

  4. Analysis and development of adjoint-based h-adaptive direct discontinuous Galerkin method for the compressible Navier-Stokes equations

    Science.gov (United States)

    Cheng, Jian; Yue, Huiqiang; Yu, Shengjiao; Liu, Tiegang

    2018-06-01

    In this paper, an adjoint-based high-order h-adaptive direct discontinuous Galerkin method is developed and analyzed for the two dimensional steady state compressible Navier-Stokes equations. Particular emphasis is devoted to the analysis of the adjoint consistency for three different direct discontinuous Galerkin discretizations: including the original direct discontinuous Galerkin method (DDG), the direct discontinuous Galerkin method with interface correction (DDG(IC)) and the symmetric direct discontinuous Galerkin method (SDDG). Theoretical analysis shows the extra interface correction term adopted in the DDG(IC) method and the SDDG method plays a key role in preserving the adjoint consistency. To be specific, for the model problem considered in this work, we prove that the original DDG method is not adjoint consistent, while the DDG(IC) method and the SDDG method can be adjoint consistent with appropriate treatment of boundary conditions and correct modifications towards the underlying output functionals. The performance of those three DDG methods is carefully investigated and evaluated through typical test cases. Based on the theoretical analysis, an adjoint-based h-adaptive DDG(IC) method is further developed and evaluated, numerical experiment shows its potential in the applications of adjoint-based adaptation for simulating compressible flows.

  5. Dual of QCD with One Adjoint Fermion

    DEFF Research Database (Denmark)

    Mojaza, Matin; Nardecchia, Marco; Pica, Claudio

    2011-01-01

    We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound...

  6. Self-adjoint extensions and spectral analysis in the generalized Kratzer problem

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M C; Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V; Voronov, B L, E-mail: baldiott@fma.if.usp.br, E-mail: gitman@dfn.if.usp.br, E-mail: tyutin@lpi.ru, E-mail: voronov@lpi.ru [Lebedev Physical Institute, Moscow (Russian Federation)

    2011-06-01

    We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x)=g{sub 1}x{sup -1}+g{sub 2}x{sup -2}, x is an element of R{sub +} = [0, {infinity}). For g{sub 2}>0 and g{sub 1}<0, the potential is known as the Kratzer potential V{sub K}(x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schroedinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein's method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.

  7. Adjoint Based A Posteriori Analysis of Multiscale Mortar Discretizations with Multinumerics

    KAUST Repository

    Tavener, Simon

    2013-01-01

    In this paper we derive a posteriori error estimates for linear functionals of the solution to an elliptic problem discretized using a multiscale nonoverlapping domain decomposition method. The error estimates are based on the solution of an appropriately defined adjoint problem. We present a general framework that allows us to consider both primal and mixed formulations of the forward and adjoint problems within each subdomain. The primal subdomains are discretized using either an interior penalty discontinuous Galerkin method or a continuous Galerkin method with weakly imposed Dirichlet conditions. The mixed subdomains are discretized using Raviart- Thomas mixed finite elements. The a posteriori error estimate also accounts for the errors due to adjoint-inconsistent subdomain discretizations. The coupling between the subdomain discretizations is achieved via a mortar space. We show that the numerical discretization error can be broken down into subdomain and mortar components which may be used to drive adaptive refinement.Copyright © by SIAM.

  8. Methodology of Continuous-Energy Adjoint Monte Carlo for Neutron, Photon, and Coupled Neutron-Photon Transport

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard

    2003-01-01

    Adjoint Monte Carlo may be a useful alternative to regular Monte Carlo calculations in cases where a small detector inhibits an efficient Monte Carlo calculation as only very few particle histories will cross the detector. However, in general purpose Monte Carlo codes, normally only the multigroup form of adjoint Monte Carlo is implemented. In this article the general methodology for continuous-energy adjoint Monte Carlo neutron transport is reviewed and extended for photon and coupled neutron-photon transport. In the latter cases the discrete photons generated by annihilation or by neutron capture or inelastic scattering prevent a direct application of the general methodology. Two successive reaction events must be combined in the selection process to accommodate the adjoint analog of a reaction resulting in a photon with a discrete energy. Numerical examples illustrate the application of the theory for some simplified problems

  9. Application of adjoint sensitivity theory to performance assessment of hydrogeologic concerns

    International Nuclear Information System (INIS)

    Metcalfe, D.E.; Harper, W.V.

    1986-01-01

    Sensitivity and uncertainty analyses are important components of performance assessment activities for potential high-level radioactive waste repositories. The application of the adjoint sensitivity technique is demonstrated for the Leadville Limestone in the Paradox Basin, Utah. The adjoint technique is used sequentially to first assist in the calibration of the regional conceptual ground-water flow model to measured potentiometric data. Second, it is used to evaluate the sensitivities of the calculated pressures used to define local scale boundary conditions to regional parameters and boundary conditions

  10. Convergence problems associated with the iteration of adjoint equations in nuclear reactor theory

    International Nuclear Information System (INIS)

    Ngcobo, E.

    2003-01-01

    Convergence problems associated with the iteration of adjoint equations based on two-group neutron diffusion theory approximations in slab geometry are considered. For this purpose first-order variational techniques are adopted to minimise numerical errors involved. The importance of deriving the adjoint source from a breeding ratio is illustrated. The results obtained are consistent with the expected improvement in accuracy

  11. Adjoint shape optimization for fluid-structure interaction of ducted flows

    Science.gov (United States)

    Heners, J. P.; Radtke, L.; Hinze, M.; Düster, A.

    2018-03-01

    Based on the coupled problem of time-dependent fluid-structure interaction, equations for an appropriate adjoint problem are derived by the consequent use of the formal Lagrange calculus. Solutions of both primal and adjoint equations are computed in a partitioned fashion and enable the formulation of a surface sensitivity. This sensitivity is used in the context of a steepest descent algorithm for the computation of the required gradient of an appropriate cost functional. The efficiency of the developed optimization approach is demonstrated by minimization of the pressure drop in a simple two-dimensional channel flow and in a three-dimensional ducted flow surrounded by a thin-walled structure.

  12. Advances in Global Adjoint Tomography -- Massive Data Assimilation

    Science.gov (United States)

    Ruan, Y.; Lei, W.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Krischer, L.; Tromp, J.

    2015-12-01

    Azimuthal anisotropy and anelasticity are key to understanding a myriad of processes in Earth's interior. Resolving these properties requires accurate simulations of seismic wave propagation in complex 3-D Earth models and an iterative inversion strategy. In the wake of successes in regional studies(e.g., Chen et al., 2007; Tape et al., 2009, 2010; Fichtner et al., 2009, 2010; Chen et al.,2010; Zhu et al., 2012, 2013; Chen et al., 2015), we are employing adjoint tomography based on a spectral-element method (Komatitsch & Tromp 1999, 2002) on a global scale using the supercomputer ''Titan'' at Oak Ridge National Laboratory. After 15 iterations, we have obtained a high-resolution transversely isotropic Earth model (M15) using traveltime data from 253 earthquakes. To obtain higher resolution images of the emerging new features and to prepare the inversion for azimuthal anisotropy and anelasticity, we expanded the original dataset with approximately 4,220 additional global earthquakes (Mw5.5-7.0) --occurring between 1995 and 2014-- and downloaded 300-minute-long time series for all available data archived at the IRIS Data Management Center, ORFEUS, and F-net. Ocean Bottom Seismograph data from the last decade are also included to maximize data coverage. In order to handle the huge dataset and solve the I/O bottleneck in global adjoint tomography, we implemented a python-based parallel data processing workflow based on the newly developed Adaptable Seismic Data Format (ASDF). With the help of the data selection tool MUSTANG developed by IRIS, we cleaned our dataset and assembled event-based ASDF files for parallel processing. We have started Centroid Moment Tensors (CMT) inversions for all 4,220 earthquakes with the latest model M15, and selected high-quality data for measurement. We will statistically investigate each channel using synthetic seismograms calculated in M15 for updated CMTs and identify problematic channels. In addition to data screening, we also modified

  13. Oscillator representations for self-adjoint Calogero Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V; Voronov, B L, E-mail: gitman@dfn.if.usp.br, E-mail: tyutin@lpi.ru, E-mail: voronov@lpi.ru [Lebedev Physical Institute, Moscow (Russian Federation)

    2011-10-21

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = {alpha}x{sup -2}. We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d{sub x}{sup 2}+{alpha}x{sup -2} for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat{sup +} a-hat and A-hat = a-hat a-hat{sup +} are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat{sup +}. An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  14. Oscillator representations for self-adjoint Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Gitman, D M; Tyutin, I V; Voronov, B L

    2011-01-01

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = αx -2 . We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d x 2 +αx -2 for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat + a-hat and A-hat = a-hat a-hat + are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat + . An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  15. Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico

    KAUST Repository

    Gopalakrishnan, Ganesh; Cornuelle, Bruce D.; Hoteit, Ibrahim

    2013-01-01

    Adjoint model sensitivity analyses were applied for the loop current (LC) and its eddy shedding in the Gulf of Mexico (GoM) using the MIT general circulation model (MITgcm). The circulation in the GoM is mainly driven by the energetic LC and subsequent LC eddy separation. In order to understand which ocean regions and features control the evolution of the LC, including anticyclonic warm-core eddy shedding in the GoM, forward and adjoint sensitivities with respect to previous model state and atmospheric forcing were computed using the MITgcm and its adjoint. Since the validity of the adjoint model sensitivities depends on the capability of the forward model to simulate the real LC system and the eddy shedding processes, a 5 year (2004–2008) forward model simulation was performed for the GoM using realistic atmospheric forcing, initial, and boundary conditions. This forward model simulation was compared to satellite measurements of sea-surface height (SSH) and sea-surface temperature (SST), and observed transport variability. Despite realistic mean state, standard deviations, and LC eddy shedding period, the simulated LC extension shows less variability and more regularity than the observations. However, the model is suitable for studying the LC system and can be utilized for examining the ocean influences leading to a simple, and hopefully generic LC eddy separation in the GoM. The adjoint sensitivities of the LC show influences from the Yucatan Channel (YC) flow and Loop Current Frontal Eddy (LCFE) on both LC extension and eddy separation, as suggested by earlier work. Some of the processes that control LC extension after eddy separation differ from those controlling eddy shedding, but include YC through-flow. The sensitivity remains stable for more than 30 days and moves generally upstream, entering the Caribbean Sea. The sensitivities of the LC for SST generally remain closer to the surface and move at speeds consistent with advection by the high-speed core of

  16. Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico

    KAUST Repository

    Gopalakrishnan, Ganesh

    2013-07-01

    Adjoint model sensitivity analyses were applied for the loop current (LC) and its eddy shedding in the Gulf of Mexico (GoM) using the MIT general circulation model (MITgcm). The circulation in the GoM is mainly driven by the energetic LC and subsequent LC eddy separation. In order to understand which ocean regions and features control the evolution of the LC, including anticyclonic warm-core eddy shedding in the GoM, forward and adjoint sensitivities with respect to previous model state and atmospheric forcing were computed using the MITgcm and its adjoint. Since the validity of the adjoint model sensitivities depends on the capability of the forward model to simulate the real LC system and the eddy shedding processes, a 5 year (2004–2008) forward model simulation was performed for the GoM using realistic atmospheric forcing, initial, and boundary conditions. This forward model simulation was compared to satellite measurements of sea-surface height (SSH) and sea-surface temperature (SST), and observed transport variability. Despite realistic mean state, standard deviations, and LC eddy shedding period, the simulated LC extension shows less variability and more regularity than the observations. However, the model is suitable for studying the LC system and can be utilized for examining the ocean influences leading to a simple, and hopefully generic LC eddy separation in the GoM. The adjoint sensitivities of the LC show influences from the Yucatan Channel (YC) flow and Loop Current Frontal Eddy (LCFE) on both LC extension and eddy separation, as suggested by earlier work. Some of the processes that control LC extension after eddy separation differ from those controlling eddy shedding, but include YC through-flow. The sensitivity remains stable for more than 30 days and moves generally upstream, entering the Caribbean Sea. The sensitivities of the LC for SST generally remain closer to the surface and move at speeds consistent with advection by the high-speed core of

  17. Classical gluon and graviton radiation from the bi-adjoint scalar double copy

    Science.gov (United States)

    Goldberger, Walter D.; Prabhu, Siddharth G.; Thompson, Jedidiah O.

    2017-09-01

    We find double-copy relations between classical radiating solutions in Yang-Mills theory coupled to dynamical color charges and their counterparts in a cubic bi-adjoint scalar field theory which interacts linearly with particles carrying bi-adjoint charge. The particular color-to-kinematics replacements we employ are motivated by the Bern-Carrasco-Johansson double-copy correspondence for on-shell amplitudes in gauge and gravity theories. They are identical to those recently used to establish relations between classical radiating solutions in gauge theory and in dilaton gravity. Our explicit bi-adjoint solutions are constructed to second order in a perturbative expansion, and map under the double copy onto gauge theory solutions which involve at most cubic gluon self-interactions. If the correspondence is found to persist to higher orders in perturbation theory, our results suggest the possibility of calculating gravitational radiation from colliding compact objects, directly from a scalar field with vastly simpler (purely cubic) Feynman vertices.

  18. An exact and consistent adjoint method for high-fidelity discretization of the compressible flow equations

    Science.gov (United States)

    Subramanian, Ramanathan Vishnampet Ganapathi

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme

  19. Self-adjoint oscillator operator from a modified factorization

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Marco A. [Departamento de Fisica, DCI Campus Leon, Universidad de Guanajuato, Apdo. Postal E143, 37150 Leon, Gto. (Mexico); Rosu, H.C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi, S.L.P. (Mexico); Gutierrez, M. Ranferi [Departamento de Fisica, DCI Campus Leon, Universidad de Guanajuato, Apdo. Postal E143, 37150 Leon, Gto. (Mexico)

    2011-05-30

    By using an alternative factorization, we obtain a self-adjoint oscillator operator of the form L{sub δ}=d/(dx) (p{sub δ}(x)d/(dx) )-((x{sup 2})/(p{sub δ}(x)) +p{sub δ}(x)-1), where p{sub δ}(x)=1+δe{sup -x{sup 2}}, with δ element of (-1,∞) an arbitrary real factorization parameter. At positive values of δ, this operator interpolates between the quantum harmonic oscillator Hamiltonian for δ=0 and a scaled Hermite operator at high values of δ. For the negative values of δ, the eigenfunctions look like deformed quantum mechanical Hermite functions. Possible applications are mentioned. -- Highlights: → We present a generalization of the Mielnik factorization. → We study the case of linear relationship between the factorization coefficients. → We introduce a new one-parameter self-adjoint oscillator operator. → We show its properties depending on the values of the parameter.

  20. Non-self-adjoint hamiltonians defined by Riesz bases

    Energy Technology Data Exchange (ETDEWEB)

    Bagarello, F., E-mail: fabio.bagarello@unipa.it [Dipartimento di Energia, Ingegneria dell' Informazione e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, I-90128 Palermo, Italy and INFN, Università di Torino, Torino (Italy); Inoue, A., E-mail: a-inoue@fukuoka-u.ac.jp [Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180 (Japan); Trapani, C., E-mail: camillo.trapani@unipa.it [Dipartimento di Matematica e Informatica, Università di Palermo, I-90123 Palermo (Italy)

    2014-03-15

    We discuss some features of non-self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that the eigenvectors form a Riesz basis of Hilbert space. Among other things, we give conditions under which these Hamiltonians can be factorized in terms of generalized lowering and raising operators.

  1. Aerodynamic Optimization Based on Continuous Adjoint Method for a Flexible Wing

    Directory of Open Access Journals (Sweden)

    Zhaoke Xu

    2016-01-01

    Full Text Available Aerodynamic optimization based on continuous adjoint method for a flexible wing is developed using FORTRAN 90 in the present work. Aerostructural analysis is performed on the basis of high-fidelity models with Euler equations on the aerodynamic side and a linear quadrilateral shell element model on the structure side. This shell element can deal with both thin and thick shell problems with intersections, so this shell element is suitable for the wing structural model which consists of two spars, 20 ribs, and skin. The continuous adjoint formulations based on Euler equations and unstructured mesh are derived and used in the work. Sequential quadratic programming method is adopted to search for the optimal solution using the gradients from continuous adjoint method. The flow charts of rigid and flexible optimization are presented and compared. The objective is to minimize drag coefficient meanwhile maintaining lift coefficient for a rigid and flexible wing. A comparison between the results from aerostructural analysis of rigid optimization and flexible optimization is shown here to demonstrate that it is necessary to include the effect of aeroelasticity in the optimization design of a wing.

  2. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    Science.gov (United States)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  3. Nefness of adjoint bundles for ample vector bundles

    Directory of Open Access Journals (Sweden)

    Hidetoshi Maeda

    1995-11-01

    Full Text Available Let E be an ample vector bundle of rank >1 on a smooth complex projective variety X of dimension n. This paper gives a classification of pairs (X,E whose adjoint bundles K_X+det E are not nef in the case when  r=n-2.

  4. Adjoint-based Sensitivity of Jet Noise to Near-nozzle Forcing

    Science.gov (United States)

    Chung, Seung Whan; Vishnampet, Ramanathan; Bodony, Daniel; Freund, Jonathan

    2017-11-01

    Past efforts have used optimal control theory, based on the numerical solution of the adjoint flow equations, to perturb turbulent jets in order to reduce their radiated sound. These efforts have been successful in that sound is reduced, with concomitant changes to the large-scale turbulence structures in the flow. However, they have also been inconclusive, in that the ultimate level of reduction seemed to depend upon the accuracy of the adjoint-based gradient rather than a physical limitation of the flow. The chaotic dynamics of the turbulence can degrade the smoothness of cost functional in the control-parameter space, which is necessary for gradient-based optimization. We introduce a route to overcoming this challenge, in part by leveraging the regularity and accuracy with a dual-consistent, discrete-exact adjoint formulation. We confirm its properties and use it to study the sensitivity and controllability of the acoustic radiation from a simulation of a M = 1.3 turbulent jet, whose statistics matches data. The smoothness of the cost functional over time is quantified by a minimum optimization step size beyond which the gradient cannot have a certain degree of accuracy. Based on this, we achieve a moderate level of sound reduction in the first few optimization steps. This material is based [in part] upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  5. Running coupling from gluon and ghost propagators in the Landau gauge: Yang-Mills theories with adjoint fermions

    Science.gov (United States)

    Bergner, Georg; Piemonte, Stefano

    2018-04-01

    Non-Abelian gauge theories with fermions transforming in the adjoint representation of the gauge group (AdjQCD) are a fundamental ingredient of many models that describe the physics beyond the Standard Model. Two relevant examples are N =1 supersymmetric Yang-Mills (SYM) theory and minimal walking technicolor, which are gauge theories coupled to one adjoint Majorana and two adjoint Dirac fermions, respectively. While confinement is a property of N =1 SYM, minimal walking technicolor is expected to be infrared conformal. We study the propagators of ghost and gluon fields in the Landau gauge to compute the running coupling in the MiniMom scheme. We analyze several different ensembles of lattice Monte Carlo simulations for the SU(2) adjoint QCD with Nf=1 /2 ,1 ,3 /2 , and 2 Dirac fermions. We show how the running of the coupling changes as the number of interacting fermions is increased towards the conformal window.

  6. Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization

    Science.gov (United States)

    Green, Lawrence; Carle, Alan; Fagan, Mike

    1999-01-01

    Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop

  7. Coolant void reactivity adjustments in advanced CANDU lattices using adjoint sensitivity technique

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.; Marleau, G.

    2008-01-01

    Coolant void reactivity (CVR) is an important factor in reactor accident analysis. Here we study the adjustments of CVR at beginning of burnup cycle (BOC) and k eff at end of burnup cycle (EOC) for a 2D Advanced CANDU Reactor (ACR) lattice using the optimization and adjoint sensitivity techniques. The sensitivity coefficients are evaluated using the perturbation theory based on the integral neutron transport equations. The neutron and flux importance transport solutions are obtained by the method of cyclic characteristics (MOCC). Three sets of parameters for CVR-BOC and k eff -EOC adjustments are studied: (1) Dysprosium density in the central pin with Uranium enrichment in the outer fuel rings, (2) Dysprosium density and Uranium enrichment both in the central pin, and (3) the same parameters as in the first case but the objective is to obtain a negative checkerboard CVR-BOC (CBCVR-BOC). To approximate the EOC sensitivity coefficient, we perform constant-power burnup/depletion calculations using a slightly perturbed nuclear library and the unperturbed neutron fluxes to estimate the variation of nuclide densities at EOC. Our aim is to achieve a desired negative CVR-BOC of -2 mk and k eff -EOC of 0.900 for the first two cases, and a CBCVR-BOC of -2 mk and k eff -EOC of 0.900 for the last case. Sensitivity analyses of CVR and eigenvalue are also included in our study

  8. Coolant void reactivity adjustments in advanced CANDU lattices using adjoint sensitivity technique

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M. [Institut de Genie Nucleaire, Ecole Polytechnique de Montreal, P.O. Box 6079, stn. Centre-ville, Montreal, H3C3A7 (Canada)], E-mail: monchaia@gmail.com; Marleau, G. [Institut de Genie Nucleaire, Ecole Polytechnique de Montreal, P.O. Box 6079, stn. Centre-ville, Montreal, H3C3A7 (Canada)], E-mail: guy.marleau@polymtl.ca

    2008-03-15

    Coolant void reactivity (CVR) is an important factor in reactor accident analysis. Here we study the adjustments of CVR at beginning of burnup cycle (BOC) and k{sub eff} at end of burnup cycle (EOC) for a 2D Advanced CANDU Reactor (ACR) lattice using the optimization and adjoint sensitivity techniques. The sensitivity coefficients are evaluated using the perturbation theory based on the integral neutron transport equations. The neutron and flux importance transport solutions are obtained by the method of cyclic characteristics (MOCC). Three sets of parameters for CVR-BOC and k{sub eff}-EOC adjustments are studied: (1) Dysprosium density in the central pin with Uranium enrichment in the outer fuel rings, (2) Dysprosium density and Uranium enrichment both in the central pin, and (3) the same parameters as in the first case but the objective is to obtain a negative checkerboard CVR-BOC (CBCVR-BOC). To approximate the EOC sensitivity coefficient, we perform constant-power burnup/depletion calculations using a slightly perturbed nuclear library and the unperturbed neutron fluxes to estimate the variation of nuclide densities at EOC. Our aim is to achieve a desired negative CVR-BOC of -2 mk and k{sub eff}-EOC of 0.900 for the first two cases, and a CBCVR-BOC of -2 mk and k{sub eff}-EOC of 0.900 for the last case. Sensitivity analyses of CVR and eigenvalue are also included in our study.

  9. Passive control of thermoacoustic oscillations with adjoint methods

    Science.gov (United States)

    Aguilar, Jose; Juniper, Matthew

    2017-11-01

    Strict pollutant regulations are driving gas turbine manufacturers to develop devices that operate under lean premixed conditions, which produce less NOx but encourage thermoacoustic oscillations. These are a form of unstable combustion that arise due to the coupling between the acoustic field and the fluctuating heat release in a combustion chamber. In such devices, in which safety is paramount, thermoacoustic oscillations must be eliminated passively, rather than through feedback control. The ideal way to eliminate thermoacoustic oscillations is by subtly changing the shape of the device. To achieve this, one must calculate the sensitivity of each unstable thermoacoustic mode to every geometric parameter. This is prohibitively expensive with standard methods, but is relatively cheap with adjoint methods. In this study we first present low-order network models as a tool to model and study the thermoacoustic behaviour of combustion chambers. Then we compute the continuous adjoint equations and the sensitivities to relevant parameters. With this, we run an optimization routine that modifies the parameters in order to stabilize all the resonant modes of a laboratory combustor rig.

  10. A demonstration of adjoint methods for multi-dimensional remote sensing of the atmosphere and surface

    Science.gov (United States)

    Martin, William G. K.; Hasekamp, Otto P.

    2018-01-01

    In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals of clouds and aerosols. In this paper we will demonstrate the use of adjoint methods for retrieving two-dimensional (2D) fields of cloud extinction. The demonstration uses a new 2D radiative transfer solver (FSDOM). This radiation code was augmented with adjoint methods to allow efficient derivative calculations needed to retrieve cloud and surface properties from multi-angle reflectance measurements. The code was then used in three synthetic retrieval studies. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward radiative transfer equation to compute the residual misfit with measurements, and second we solve the adjoint radiative transfer equation to compute the gradient of the misfit function with respect to all unknowns. The synthetic retrieval studies verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. We can retrieve the vertically-integrated optical depth of moderately thick clouds as a function of the horizontal coordinate. It is also possible to retrieve the vertical profile of clouds that are separated by clear regions. The vertical profile retrievals improve for smaller cloud fractions. This leads to the conclusion that cloud edges actually increase the amount of information that is available for retrieving the vertical profile of clouds. However, to exploit this information one must retrieve the horizontally heterogeneous cloud properties with a 2D (or 3D) model. This prototype shows that adjoint methods can efficiently compute the gradient of the misfit function. This work paves the way for the application of similar methods to 3D remote

  11. Mass anomalous dimension of Adjoint QCD at large N from twisted volume reduction

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori

    2015-01-01

    In this work we consider the $SU(N)$ gauge theory with two Dirac fermions in the adjoint representation, in the limit of large $N$. In this limit the infinite-volume physics of this model can be studied by means of the corresponding twisted reduced model defined on a single site lattice. Making use of this strategy we study the reduced model for various values of $N$ up to 289. By analyzing the eigenvalue distribution of the adjoint Dirac operator we test the conformality of the theory and extract the corresponding mass anomalous dimension.

  12. Mass anomalous dimension of adjoint QCD at large N from twisted volume reduction

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Margarita García [Instituto de Física Teórica UAM-CSIC, Nicolás Cabrera 13-15, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); González-Arroyo, Antonio [Instituto de Física Teórica UAM-CSIC, Nicolás Cabrera 13-15, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); Departamento de Física Teórica, C-XI, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); Keegan, Liam [PH-TH, CERN,CH-1211 Geneva 23 (Switzerland); Okawa, Masanori [Graduate School of Science, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Core of Research for the Energetic Universe, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2015-08-07

    In this work we consider the SU(N) gauge theory with two Dirac fermions in the adjoint representation, in the limit of large N. In this limit the infinite-volume physics of this model can be studied by means of the corresponding twisted reduced model defined on a single site lattice. Making use of this strategy we study the reduced model for various values of N up to 289. By analyzing the eigenvalue distribution of the adjoint Dirac operator we test the conformality of the theory and extract the corresponding mass anomalous dimension.

  13. An Adjoint-Based Approach to Study a Flexible Flapping Wing in Pitching-Rolling Motion

    Science.gov (United States)

    Jia, Kun; Wei, Mingjun; Xu, Min; Li, Chengyu; Dong, Haibo

    2017-11-01

    Flapping-wing aerodynamics, with advantages in agility, efficiency, and hovering capability, has been the choice of many flyers in nature. However, the study of bio-inspired flapping-wing propulsion is often hindered by the problem's large control space with different wing kinematics and deformation. The adjoint-based approach reduces largely the computational cost to a feasible level by solving an inverse problem. Facing the complication from moving boundaries, non-cylindrical calculus provides an easy extension of traditional adjoint-based approach to handle the optimization involving moving boundaries. The improved adjoint method with non-cylindrical calculus for boundary treatment is first applied on a rigid pitching-rolling plate, then extended to a flexible one with active deformation to further increase its propulsion efficiency. The comparison of flow dynamics with the initial and optimal kinematics and deformation provides a unique opportunity to understand the flapping-wing mechanism. Supported by AFOSR and ARL.

  14. Comparison of the Adjoint and Adjoint-Free 4dVar Assimilation of the Hydrographic and Velocity Observations in the Adriatic Sea

    Science.gov (United States)

    2015-11-10

    approach is the ab- sence of the necessity to develop and maintain tangent linear and adjoint codes and its flexibility in adaptation to various...uadratic term in the right hand side of (B.10) is negligible. In the re- orted experiments we kept it in place since the value of ε was close o 0.01 and

  15. Optimization of a neutron detector design using adjoint transport simulation

    International Nuclear Information System (INIS)

    Yi, C.; Manalo, K.; Huang, M.; Chin, M.; Edgar, C.; Applegate, S.; Sjoden, G.

    2012-01-01

    A synthetic aperture approach has been developed and investigated for Special Nuclear Materials (SNM) detection in vehicles passing a checkpoint at highway speeds. SNM is postulated to be stored in a moving vehicle and detector assemblies are placed on the road-side or in chambers embedded below the road surface. Neutron and gamma spectral awareness is important for the detector assembly design besides high efficiencies, so that different SNMs can be detected and identified with various possible shielding settings. The detector assembly design is composed of a CsI gamma-ray detector block and five neutron detector blocks, with peak efficiencies targeting different energy ranges determined by adjoint simulations. In this study, formulations are derived using adjoint transport simulations to estimate detector efficiencies. The formulations is applied to investigate several neutron detector designs for Block IV, which has its peak efficiency in the thermal range, and Block V, designed to maximize the total neutron counts over the entire energy spectrum. Other Blocks detect different neutron energies. All five neutron detector blocks and the gamma-ray block are assembled in both MCNP and deterministic simulation models, with detector responses calculated to validate the fully assembled design using a 30-group library. The simulation results show that the 30-group library, collapsed from an 80-group library using an adjoint-weighting approach with the YGROUP code, significantly reduced the computational cost while maintaining accuracy. (authors)

  16. Neural Network Training by Integration of Adjoint Systems of Equations Forward in Time

    Science.gov (United States)

    Toomarian, Nikzad (Inventor); Barhen, Jacob (Inventor)

    1999-01-01

    A method and apparatus for supervised neural learning of time dependent trajectories exploits the concepts of adjoint operators to enable computation of the gradient of an objective functional with respect to the various parameters of the network architecture in a highly efficient manner. Specifically. it combines the advantage of dramatic reductions in computational complexity inherent in adjoint methods with the ability to solve two adjoint systems of equations together forward in time. Not only is a large amount of computation and storage saved. but the handling of real-time applications becomes also possible. The invention has been applied it to two examples of representative complexity which have recently been analyzed in the open literature and demonstrated that a circular trajectory can be learned in approximately 200 iterations compared to the 12000 reported in the literature. A figure eight trajectory was achieved in under 500 iterations compared to 20000 previously required. Tbc trajectories computed using our new method are much closer to the target trajectories than was reported in previous studies.

  17. Four-fermi anomalous dimension with adjoint fermions

    CERN Document Server

    Del Debbio, Luigi; Ruano, Carlos Pena

    2014-01-01

    The four-fermi interaction can play an important role in models of strong dynamical EW sym- metry breaking if the anomalous dimensions of the four-fermi operators become large in the IR. We discuss a number of issues that are relevant for the nonperturbative computation of the four- fermi anomalous dimensions for the SU(2) gauge theory with two flavors of Dirac fermions in the adjoint representation, using a Schrödinger functional formalism.

  18. Adjoint string breaking in the pseudoparticle approach

    International Nuclear Information System (INIS)

    Szasz, Christian; Wagner, Marc

    2008-01-01

    We apply the pseudoparticle approach to SU(2) Yang-Mills theory and perform a detailed study of the potential between two static charges for various representations. Whereas for charges in the fundamental representation we find a linearly rising confining potential, we clearly observe string breaking, when considering charges in the adjoint representation. We also demonstrate Casimir scaling and compute gluelump masses for different spin and parity. Numerical results are in qualitative agreement with lattice results.

  19. Numerical study of dense adjoint 2-color matter

    International Nuclear Information System (INIS)

    Hands, S.; Scorzato, L.; Oevers, M.

    2000-11-01

    We study the global symmetries of SU(2) gauge theory with N flavors of staggered fermions in the presence of a chemical potential. We motivate the special interest of the case N=1 (staggered) with fermions in the adjoint representation of the gauge group. We present results from numerical simulations with both hybrid Monte Carlo and the two-step multi-bosonic algorithm. (orig.)

  20. Elementary operators on self-adjoint operators

    Science.gov (United States)

    Molnar, Lajos; Semrl, Peter

    2007-03-01

    Let H be a Hilbert space and let and be standard *-operator algebras on H. Denote by and the set of all self-adjoint operators in and , respectively. Assume that and are surjective maps such that M(AM*(B)A)=M(A)BM(A) and M*(BM(A)B)=M*(B)AM*(B) for every pair , . Then there exist an invertible bounded linear or conjugate-linear operator and a constant c[set membership, variant]{-1,1} such that M(A)=cTAT*, , and M*(B)=cT*BT, .

  1. Development of a Matlab/Simulink tool to facilitate system analysis and simulation via the adjoint and covariance methods

    NARCIS (Netherlands)

    Bucco, D.; Weiss, M.

    2007-01-01

    The COVariance and ADjoint Analysis Tool (COVAD) is a specially designed software tool, written for the Matlab/Simulink environment, which allows the user the capability to carry out system analysis and simulation using the adjoint, covariance or Monte Carlo methods. This paper describes phase one

  2. Adjoint sensitivity analysis of high frequency structures with Matlab

    CERN Document Server

    Bakr, Mohamed; Demir, Veysel

    2017-01-01

    This book covers the theory of adjoint sensitivity analysis and uses the popular FDTD (finite-difference time-domain) method to show how wideband sensitivities can be efficiently estimated for different types of materials and structures. It includes a variety of MATLAB® examples to help readers absorb the content more easily.

  3. Assimilating Remote Ammonia Observations with a Refined Aerosol Thermodynamics Adjoint"

    Science.gov (United States)

    Ammonia emissions parameters in North America can be refined in order to improve the evaluation of modeled concentrations against observations. Here, we seek to do so by developing and applying the GEOS-Chem adjoint nested over North America to conductassimilation of observations...

  4. An alternative factorization of the quantum harmonic oscillator and two-parameter family of self-adjoint operators

    International Nuclear Information System (INIS)

    Arcos-Olalla, Rafael; Reyes, Marco A.; Rosu, Haret C.

    2012-01-01

    We introduce an alternative factorization of the Hamiltonian of the quantum harmonic oscillator which leads to a two-parameter self-adjoint operator from which the standard harmonic oscillator, the one-parameter oscillators introduced by Mielnik, and the Hermite operator are obtained in certain limits of the parameters. In addition, a single Bernoulli-type parameter factorization, which is different from the one introduced by M.A. Reyes, H.C. Rosu, and M.R. Gutiérrez [Phys. Lett. A 375 (2011) 2145], is briefly discussed in the final part of this work. -- Highlights: ► Factorizations with operators which are not mutually adjoint are presented. ► New two-parameter and one-parameter self-adjoint oscillator operators are introduced. ► Their eigenfunctions are two- and one-parameter deformed Hermite functions.

  5. An alternative factorization of the quantum harmonic oscillator and two-parameter family of self-adjoint operators

    Energy Technology Data Exchange (ETDEWEB)

    Arcos-Olalla, Rafael, E-mail: olalla@fisica.ugto.mx [Departamento de Física, DCI Campus León, Universidad de Guanajuato, Apdo. Postal E143, 37150 León, Gto. (Mexico); Reyes, Marco A., E-mail: marco@fisica.ugto.mx [Departamento de Física, DCI Campus León, Universidad de Guanajuato, Apdo. Postal E143, 37150 León, Gto. (Mexico); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosí, S.L.P. (Mexico)

    2012-10-01

    We introduce an alternative factorization of the Hamiltonian of the quantum harmonic oscillator which leads to a two-parameter self-adjoint operator from which the standard harmonic oscillator, the one-parameter oscillators introduced by Mielnik, and the Hermite operator are obtained in certain limits of the parameters. In addition, a single Bernoulli-type parameter factorization, which is different from the one introduced by M.A. Reyes, H.C. Rosu, and M.R. Gutiérrez [Phys. Lett. A 375 (2011) 2145], is briefly discussed in the final part of this work. -- Highlights: ► Factorizations with operators which are not mutually adjoint are presented. ► New two-parameter and one-parameter self-adjoint oscillator operators are introduced. ► Their eigenfunctions are two- and one-parameter deformed Hermite functions.

  6. GPU-accelerated adjoint algorithmic differentiation

    Science.gov (United States)

    Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe

    2016-03-01

    Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the ;tape;. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.

  7. Adjoint optimization of natural convection problems: differentially heated cavity

    Science.gov (United States)

    Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.

    2017-12-01

    Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here for

  8. Adjoint sensitivity theory for steady-state ground-water flow

    International Nuclear Information System (INIS)

    1983-11-01

    In this study, adjoint sensitivity theory is developed for equations of two-dimensional steady-state flow in a confined aquifer. Both the primary flow equation and the adjoint sensitivity equation are solved using the Galerkin finite element method. The developed computer code is used to investigate the regional flow parameters of the Leadville Formation of the Paradox Basin in Utah and the Wolcamp carbonate/sandstone aquifer of the Palo Duro Basin in the Texas Panhandle. Two performance measures are evaluated, local heads and velocity in the vicinity of potential high-level nuclear waste repositories. The results illustrate the sensitivity of calculated local heads to the boundary conditions. Local velocity-related performance measures are more sensitive to hydraulic conductivities. The uncertainty in the performance measure is a function of the parameter sensitivity, parameter variance and the correlation between parameters. Given a parameter covariance matrix, the uncertainty of the performance measure can be calculated. Although no results are presented here, the implications of uncertainty calculations for the two studies are discussed. 18 references, 25 figures

  9. Verification of a hybrid adjoint methodology in Titan for single photon emission computed tomography - 316

    International Nuclear Information System (INIS)

    Royston, K.; Haghighat, A.; Yi, C.

    2010-01-01

    The hybrid deterministic transport code TITAN is being applied to a Single Photon Emission Computed Tomography (SPECT) simulation of a myocardial perfusion study. The TITAN code's hybrid methodology allows the use of a discrete ordinates solver in the phantom region and a characteristics method solver in the collimator region. Currently we seek to validate the adjoint methodology in TITAN for this application using a SPECT model that has been created in the MCNP5 Monte Carlo code. The TITAN methodology was examined based on the response of a single voxel detector placed in front of the heart with and without collimation. For the case without collimation, the TITAN response for single voxel-sized detector had a -9.96% difference relative to the MCNP5 response. To simulate collimation, the adjoint source was specified in directions located within the collimator acceptance angle. For a single collimator hole with a diameter matching the voxel dimension, a difference of -0.22% was observed. Comparisons to groupings of smaller collimator holes of two different sizes resulted in relative differences of 0.60% and 0.12%. The number of adjoint source directions within an acceptance angle was increased and showed no significant change in accuracy. Our results indicate that the hybrid adjoint methodology of TITAN yields accurate solutions greater than a factor of two faster than MCNP5. (authors)

  10. State estimates and forecasts of the loop current in the Gulf of Mexico using the MITgcm and its adjoint

    KAUST Repository

    Gopalakrishnan, Ganesh

    2013-07-01

    An ocean state estimate has been developed for the Gulf of Mexico (GoM) using the MIT general circulation model and its adjoint. The estimate has been tested by forecasting loop current (LC) evolution and eddy shedding in the GoM. The adjoint (or four-dimensional variational) method was used to match the model evolution to observations by adjusting model temperature and salinity initial conditions, open boundary conditions, and atmospheric forcing fields. The model was fit to satellite-derived along-track sea surface height, separated into temporal mean and anomalies, and gridded sea surface temperature for 2 month periods. The optimized state at the end of the assimilation period was used to initialize the forecast for 2 months. Forecasts explore practical LC predictability and provide a cross-validation test of the state estimate by comparing it to independent future observations. The model forecast was tested for several LC eddy separation events, including Eddy Franklin in May 2010 during the deepwater horizon oil spill disaster in the GoM. The forecast used monthly climatological open boundary conditions, atmospheric forcing, and run-off fluxes. The model performance was evaluated by computing model-observation root-mean-square difference (rmsd) during both the hindcast and forecast periods. The rmsd metrics for the forecast generally outperformed persistence (keeping the initial state fixed) and reference (forecast initialized using assimilated Hybrid Coordinate Ocean Model 1/12° global analysis) model simulations during LC eddy separation events for a period of 1̃2 months.

  11. State estimates and forecasts of the loop current in the Gulf of Mexico using the MITgcm and its adjoint

    KAUST Repository

    Gopalakrishnan, Ganesh; Cornuelle, Bruce D.; Hoteit, Ibrahim; Rudnick, Daniel L.; Owens, W. Brechner

    2013-01-01

    An ocean state estimate has been developed for the Gulf of Mexico (GoM) using the MIT general circulation model and its adjoint. The estimate has been tested by forecasting loop current (LC) evolution and eddy shedding in the GoM. The adjoint (or four-dimensional variational) method was used to match the model evolution to observations by adjusting model temperature and salinity initial conditions, open boundary conditions, and atmospheric forcing fields. The model was fit to satellite-derived along-track sea surface height, separated into temporal mean and anomalies, and gridded sea surface temperature for 2 month periods. The optimized state at the end of the assimilation period was used to initialize the forecast for 2 months. Forecasts explore practical LC predictability and provide a cross-validation test of the state estimate by comparing it to independent future observations. The model forecast was tested for several LC eddy separation events, including Eddy Franklin in May 2010 during the deepwater horizon oil spill disaster in the GoM. The forecast used monthly climatological open boundary conditions, atmospheric forcing, and run-off fluxes. The model performance was evaluated by computing model-observation root-mean-square difference (rmsd) during both the hindcast and forecast periods. The rmsd metrics for the forecast generally outperformed persistence (keeping the initial state fixed) and reference (forecast initialized using assimilated Hybrid Coordinate Ocean Model 1/12° global analysis) model simulations during LC eddy separation events for a period of 1̃2 months.

  12. Adjoint-based sensitivity analysis of low-order thermoacoustic networks using a wave-based approach

    Science.gov (United States)

    Aguilar, José G.; Magri, Luca; Juniper, Matthew P.

    2017-07-01

    Strict pollutant emission regulations are pushing gas turbine manufacturers to develop devices that operate in lean conditions, with the downside that combustion instabilities are more likely to occur. Methods to predict and control unstable modes inside combustion chambers have been developed in the last decades but, in some cases, they are computationally expensive. Sensitivity analysis aided by adjoint methods provides valuable sensitivity information at a low computational cost. This paper introduces adjoint methods and their application in wave-based low order network models, which are used as industrial tools, to predict and control thermoacoustic oscillations. Two thermoacoustic models of interest are analyzed. First, in the zero Mach number limit, a nonlinear eigenvalue problem is derived, and continuous and discrete adjoint methods are used to obtain the sensitivities of the system to small modifications. Sensitivities to base-state modification and feedback devices are presented. Second, a more general case with non-zero Mach number, a moving flame front and choked outlet, is presented. The influence of the entropy waves on the computed sensitivities is shown.

  13. An adjoint-based framework for maximizing mixing in binary fluids

    Science.gov (United States)

    Eggl, Maximilian; Schmid, Peter

    2017-11-01

    Mixing in the inertial, but laminar parameter regime is a common application in a wide range of industries. Enhancing the efficiency of mixing processes thus has a fundamental effect on product quality, material homogeneity and, last but not least, production costs. In this project, we address mixing efficiency in the above mentioned regime (Reynolds number Re = 1000 , Peclet number Pe = 1000) by developing and demonstrating an algorithm based on nonlinear adjoint looping that minimizes the variance of a passive scalar field which models our binary Newtonian fluids. The numerical method is based on the FLUSI code (Engels et al. 2016), a Fourier pseudo-spectral code, which we modified and augmented by scalar transport and adjoint equations. Mixing is accomplished by moving stirrers which are numerically modeled using a penalization approach. In our two-dimensional simulations we consider rotating circular and elliptic stirrers and extract optimal mixing strategies from the iterative scheme. The case of optimizing shape and rotational speed of the stirrers will be demonstrated.

  14. Solar wind reconstruction from magnetosheath data using an adjoint approach

    International Nuclear Information System (INIS)

    Nabert, C.; Othmer, C.

    2015-01-01

    We present a new method to reconstruct solar wind conditions from spacecraft data taken during magnetosheath passages, which can be used to support, e.g., magnetospheric models. The unknown parameters of the solar wind are used as boundary conditions of an MHD (magnetohydrodynamics) magnetosheath model. The boundary conditions are varied until the spacecraft data matches the model predictions. The matching process is performed using a gradient-based minimization of the misfit between data and model. To achieve this time-consuming procedure, we introduce the adjoint of the magnetosheath model, which allows efficient calculation of the gradients. An automatic differentiation tool is used to generate the adjoint source code of the model. The reconstruction method is applied to THEMIS (Time History of Events and Macroscale Interactions during Substorms) data to calculate the solar wind conditions during spacecraft magnetosheath transitions. The results are compared to actual solar wind data. This allows validation of our reconstruction method and indicates the limitations of the MHD magnetosheath model used.

  15. Solar wind reconstruction from magnetosheath data using an adjoint approach

    Energy Technology Data Exchange (ETDEWEB)

    Nabert, C.; Othmer, C. [Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Glassmeier, K.H. [Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Max Planck Institute for Solar System Research, Goettingen (Germany)

    2015-07-01

    We present a new method to reconstruct solar wind conditions from spacecraft data taken during magnetosheath passages, which can be used to support, e.g., magnetospheric models. The unknown parameters of the solar wind are used as boundary conditions of an MHD (magnetohydrodynamics) magnetosheath model. The boundary conditions are varied until the spacecraft data matches the model predictions. The matching process is performed using a gradient-based minimization of the misfit between data and model. To achieve this time-consuming procedure, we introduce the adjoint of the magnetosheath model, which allows efficient calculation of the gradients. An automatic differentiation tool is used to generate the adjoint source code of the model. The reconstruction method is applied to THEMIS (Time History of Events and Macroscale Interactions during Substorms) data to calculate the solar wind conditions during spacecraft magnetosheath transitions. The results are compared to actual solar wind data. This allows validation of our reconstruction method and indicates the limitations of the MHD magnetosheath model used.

  16. Comparing Mass Balance and Adjoint-Based 4D-VAR Methods for Inverse Modeling of Nitrogen Dioxide Columns for Nitrogen Oxide Emissions

    Science.gov (United States)

    Cooper, M.; Martin, R.; Henze, D. K.

    2016-12-01

    Nitrogen oxide (NOx ≡ NO + NO2) emission inventories can be improved through top-down constraints provided by inverse modeling of observed nitrogen dioxide (NO2) columns. Here we compare two methods of inverse modeling for emissions of NOx from synthetic NO2 columns generated from known emissions using the GEOS-Chem chemical transport model and its adjoint. We treat the adjoint-based 4D-VAR approach for estimating top-down emissions as a benchmark against which to evaluate variations on the mass balance method. We find that the standard mass balance algorithm can be improved by using an iterative process and using finite difference to calculate the local sensitivity of a change in NO2 columns to a change in emissions, resulting in a factor of two reduction in inversion error. In a simplified case study to recover local emission perturbations, horizontal smearing effects due to NOx transport were better resolved by the adjoint-based approach than by mass balance. For more complex emission changes that reflect real world scenarios, the iterative finite difference mass balance and adjoint methods produce similar top-down inventories when inverting hourly synthetic observations, both reducing the a priori error by factors of 3-4. Inversions of data sets that simulate satellite observations from low Earth and geostationary orbits also indicate that both the mass balance and adjoint inversions produce similar results, reducing a priori error by a factor of 3. As the iterative finite difference mass balance method provides similar accuracy as the adjoint-based 4D-VAR method, it offers the ability to efficiently estimate top-down emissions using models that do not have an adjoint.

  17. ADGEN: An automated adjoint code generator for large-scale sensitivity analysis

    International Nuclear Information System (INIS)

    Pin, F.G.; Oblow, E.M.; Horwedel, J.E.; Lucius, J.L.

    1987-01-01

    This paper describes a new automated system, named ADGEN, which makes use of the strengths of computer calculus to automate the costly and time-consuming calculation of derivatives in FORTRAN computer codes, and automatically generate adjoint solutions of computer codes

  18. Multiscale Capability in Rattlesnake using Contiguous Discontinuous Discretization of Self-Adjoint Angular Flux Equation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Weixiong [Texas A & M Univ., College Station, TX (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, Mark D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    In this report, we present a new upwinding scheme for the multiscale capability in Rattlesnake, the MOOSE based radiation transport application. Comparing with the initial implementation of multiscale utilizing Lagrange multipliers to impose strong continuity of angular flux on interface of in-between subdomains, this scheme does not require the particular domain partitioning. This upwinding scheme introduces discontinuity of angular flux and resembles the classic upwinding technique developed for solving first order transport equation using discontinuous finite element method (DFEM) on the subdomain interfaces. Because this scheme restores the causality of radiation streaming on the interfaces, significant accuracy improvement can be observed with moderate increase of the degrees of freedom comparing with the continuous method over the entire solution domain. Hybrid SN-PN is implemented and tested with this upwinding scheme. Numerical results show that the angular smoothing required by Lagrange multiplier method is not necessary for the upwinding scheme.

  19. Adjoint-Based a Posteriori Error Estimation for Coupled Time-Dependent Systems

    KAUST Repository

    Asner, Liya; Tavener, Simon; Kay, David

    2012-01-01

    We consider time-dependent parabolic problem s coupled across a common interface which we formulate using a Lagrange multiplier construction and solve by applying a monolithic solution technique. We derive an adjoint-based a posteriori error representation for a quantity of interest given by a linear functional of the solution. We establish the accuracy of our error representation formula through numerical experimentation and investigate the effect of error in the adjoint solution. Crucially, the error representation affords a distinction between temporal and spatial errors and can be used as a basis for a blockwise time-space refinement strategy. Numerical tests illustrate the efficacy of the refinement strategy by capturing the distinctive behavior of a localized traveling wave solution. The saddle point systems considered here are equivalent to those arising in the mortar finite element technique for parabolic problems. © 2012 Society for Industrial and Applied Mathematics.

  20. Factorization of the 3d superconformal index with an adjoint matter

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chiung [Department of Physics, POSTECH,Pohang 790-784 (Korea, Republic of); Park, Jaemo [Department of Physics, POSTECH,Pohang 790-784 (Korea, Republic of); Postech Center for Theoretical Physics (PCTP), POSTECH,Pohang 790-784 (Korea, Republic of)

    2015-11-05

    We work out the factorization of the 3d superconformal index for N=2U(N{sub c}) gauge theory with one adjoint chiral multiplet as well as N{sub f} fundamental, N{sub a} anti-fundamental chiral multiplets. Using the factorization, one can prove the Seiberg-like duality for N=4U(N{sub c}) theory with N{sub f} hypermultiplets at the index level. We explicitly show that monopole operators violating unitarity bound in a bad theory are mapped to free hypermultiplets in the dual side. For N=2U(N{sub c}) theory with one adjoint matter X, N{sub f} fundamental, N{sub a} anti-fundamental chiral multiplets with superpotential W=trX{sup n+1}, we work out Seiberg-like duality for this theory. The index computation provides combinatorial identities for a dual pair, which we carry out intensive numerical checks.

  1. Adjoint-based Mesh Optimization Method: The Development and Application for Nuclear Fuel Analysis

    International Nuclear Information System (INIS)

    Son, Seongmin; Lee, Jeong Ik

    2016-01-01

    In this research, methods for optimizing mesh distribution is proposed. The proposed method uses adjoint base optimization method (adjoint method). The optimized result will be obtained by applying this meshing technique to the existing code input deck and will be compared to the results produced from the uniform meshing method. Numerical solutions are calculated form an in-house 1D Finite Difference Method code while neglecting the axial conduction. The fuel radial node optimization was first performed to match the Fuel Centerline Temperature (FCT) the best. This was followed by optimizing the axial node which the Peak Cladding Temperature (PCT) is matched the best. After obtaining the optimized radial and axial nodes, the nodalization is implemented into the system analysis code and transient analyses were performed to observe the optimum nodalization performance. The developed adjoint-based mesh optimization method in the study is applied to MARS-KS, which is a nuclear system analysis code. Results show that the newly established method yields better results than that of the uniform meshing method from the numerical point of view. It is again stressed that the optimized mesh for the steady state can also give better numerical results even during a transient analysis

  2. Self-adjoint Hamiltonians with a mass jump: General matching conditions

    International Nuclear Information System (INIS)

    Gadella, M.; Kuru, S.; Negro, J.

    2007-01-01

    The simplest position-dependent mass Hamiltonian in one dimension, where the mass has the form of a step function with a jump discontinuity at one point, is considered. The most general matching conditions at the jumping point for the solutions of the Schroedinger equation that provide a self-adjoint Hamiltonian are characterized

  3. An investigation of the adjoint method for external beam radiation therapy treatment planning using Monte Carlo transport

    International Nuclear Information System (INIS)

    Kowalok, M.; Mackie, T.R.

    2001-01-01

    A relatively new technique for achieving the right dose to the right tissue, is intensity modulated radiation therapy (IMRT). In this technique, a megavoltage x-ray beam is rotated around a patient, and the intensity and shape of the beam is modulated as a function of source position and patient anatomy. The relationship between beam-let intensity and patient dose can be expressed under a matrix form where the matrix D ij represents the dose delivered to voxel i by beam-let j per unit fluence. The D ij influence matrix is the key element that enables this approach. In this regard, sensitivity theory lends itself in a natural way to the process of computing beam weights for treatment planning. The solution of the adjoint form of the Boltzmann equation is an adjoint function that describes the importance of particles throughout the system in contributing to the detector response. In this case, adjoint methods can provide the sensitivity of the dose at a single point in the patient with respect to all points in the source field. The purpose of this study is to investigate the feasibility of using the adjoint method and Monte Carlo transport for radiation therapy treatment planning

  4. Self-adjointness and spectral properties of Dirac operators with magnetic links

    DEFF Research Database (Denmark)

    Portmann, Fabian; Sok, Jérémy; Solovej, Jan Philip

    2018-01-01

    We define Dirac operators on $\\mathbb{S}^3$ (and $\\mathbb{R}^3$) with magnetic fields supported on smooth, oriented links and prove self-adjointness of certain (natural) extensions. We then analyze their spectral properties and show, among other things, that these operators have discrete spectrum...

  5. Adjoint optimization scheme for lower hybrid current rampup and profile control in Tokamak

    International Nuclear Information System (INIS)

    Litaudon, X.; Moreau, D.; Bizarro, J.P.; Hoang, G.T.; Kupfer, K.; Peysson, Y.; Shkarofsky, I.P.; Bonoli, P.

    1992-12-01

    The purpose of this work is to take into account and study the effect of the electric field profiles on the Lower Hybrid (LH) current drive efficiency during transient phases such as rampup. As a complement to the full ray-tracing / Fokker Planck studies, and for the purpose of optimization studies, we developed a simplified 1-D model based on the adjoint Karney-Fisch numerical results. This approach allows us to estimate the LH power deposition profile which would be required for ramping the current with prescribed rate, total current density profile (q-profile) and surface loop voltage. For rampup optimization studies, we can therefore scan the whole parameter space and eliminate a posteriori those scenarios which correspond to unrealistic deposition profiles. We thus obtain the time evolution of the LH power, minor radius of the plasma, volt-second consumption and total energy dissipated. Optimization can thus be performed with respect to any of those criteria. This scheme is illustrated by some numerical simulations performed with TORE-SUPRA and NET/ITER parameters. We conclude with a derivation of a simple and general scaling law for the flux consumption during the rampup phase

  6. Application of variational principles and adjoint integrating factors for constructing numerical GFD models

    Science.gov (United States)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2015-04-01

    The proposed method is considered on an example of hydrothermodynamics and atmospheric chemistry models [1,2]. In the development of the existing methods for constructing numerical schemes possessing the properties of total approximation for operators of multiscale process models, we have developed a new variational technique, which uses the concept of adjoint integrating factors. The technique is as follows. First, a basic functional of the variational principle (the integral identity that unites the model equations, initial and boundary conditions) is transformed using Lagrange's identity and the second Green's formula. As a result, the action of the operators of main problem in the space of state functions is transferred to the adjoint operators defined in the space of sufficiently smooth adjoint functions. By the choice of adjoint functions the order of the derivatives becomes lower by one than those in the original equations. We obtain a set of new balance relationships that take into account the sources and boundary conditions. Next, we introduce the decomposition of the model domain into a set of finite volumes. For multi-dimensional non-stationary problems, this technique is applied in the framework of the variational principle and schemes of decomposition and splitting on the set of physical processes for each coordinate directions successively at each time step. For each direction within the finite volume, the analytical solutions of one-dimensional homogeneous adjoint equations are constructed. In this case, the solutions of adjoint equations serve as integrating factors. The results are the hybrid discrete-analytical schemes. They have the properties of stability, approximation and unconditional monotony for convection-diffusion operators. These schemes are discrete in time and analytic in the spatial variables. They are exact in case of piecewise-constant coefficients within the finite volume and along the coordinate lines of the grid area in each

  7. Sensitivity kernels for viscoelastic loading based on adjoint methods

    Science.gov (United States)

    Al-Attar, David; Tromp, Jeroen

    2014-01-01

    Observations of glacial isostatic adjustment (GIA) allow for inferences to be made about mantle viscosity, ice sheet history and other related parameters. Typically, this inverse problem can be formulated as minimizing the misfit between the given observations and a corresponding set of synthetic data. When the number of parameters is large, solution of such optimization problems can be computationally challenging. A practical, albeit non-ideal, solution is to use gradient-based optimization. Although the gradient of the misfit required in such methods could be calculated approximately using finite differences, the necessary computation time grows linearly with the number of model parameters, and so this is often infeasible. A far better approach is to apply the `adjoint method', which allows the exact gradient to be calculated from a single solution of the forward problem, along with one solution of the associated adjoint problem. As a first step towards applying the adjoint method to the GIA inverse problem, we consider its application to a simpler viscoelastic loading problem in which gravitationally self-consistent ocean loading is neglected. The earth model considered is non-rotating, self-gravitating, compressible, hydrostatically pre-stressed, laterally heterogeneous and possesses a Maxwell solid rheology. We determine adjoint equations and Fréchet kernels for this problem based on a Lagrange multiplier method. Given an objective functional J defined in terms of the surface deformation fields, we show that its first-order perturbation can be written δ J = int _{MS}K_{η }δ ln η dV +int _{t0}^{t1}int _{partial M}K_{dot{σ }} δ dot{σ } dS dt, where δ ln η = δη/η denotes relative viscosity variations in solid regions MS, dV is the volume element, δ dot{σ } is the perturbation to the time derivative of the surface load which is defined on the earth model's surface ∂M and for times [t0, t1] and dS is the surface element on ∂M. The `viscosity

  8. First-arrival traveltime tomography for anisotropic media using the adjoint-state method

    KAUST Repository

    Waheed, Umair bin

    2016-05-27

    Traveltime tomography using transmission data has been widely used for static corrections and for obtaining near-surface models for seismic depth imaging. More recently, it is also being used to build initial models for full-waveform inversion. The classic traveltime tomography approach based on ray tracing has difficulties in handling large data sets arising from current seismic acquisition surveys. Some of these difficulties can be addressed using the adjoint-state method, due to its low memory requirement and numerical efficiency. By coupling the gradient computation to nonlinear optimization, it avoids the need for explicit computation of the Fréchet derivative matrix. Furthermore, its cost is equivalent to twice the solution of the forward-modeling problem, irrespective of the size of the input data. The presence of anisotropy in the subsurface has been well established during the past few decades. The improved seismic images obtained by incorporating anisotropy into the seismic processing workflow justify the effort. However, previous literature on the adjoint-state method has only addressed the isotropic approximation of the subsurface. We have extended the adjoint-state technique for first-arrival traveltime tomography to vertical transversely isotropic (VTI) media. Because δ is weakly resolvable from surface seismic alone, we have developed the mathematical framework and procedure to invert for vNMO and η. Our numerical tests on the VTI SEAM model demonstrate the ability of the algorithm to invert for near-surface model parameters and reveal the accuracy achievable by the algorithm.

  9. First-arrival traveltime tomography for anisotropic media using the adjoint-state method

    KAUST Repository

    Waheed, Umair bin; Flagg, Garret; Yarman, Can Evren

    2016-01-01

    Traveltime tomography using transmission data has been widely used for static corrections and for obtaining near-surface models for seismic depth imaging. More recently, it is also being used to build initial models for full-waveform inversion. The classic traveltime tomography approach based on ray tracing has difficulties in handling large data sets arising from current seismic acquisition surveys. Some of these difficulties can be addressed using the adjoint-state method, due to its low memory requirement and numerical efficiency. By coupling the gradient computation to nonlinear optimization, it avoids the need for explicit computation of the Fréchet derivative matrix. Furthermore, its cost is equivalent to twice the solution of the forward-modeling problem, irrespective of the size of the input data. The presence of anisotropy in the subsurface has been well established during the past few decades. The improved seismic images obtained by incorporating anisotropy into the seismic processing workflow justify the effort. However, previous literature on the adjoint-state method has only addressed the isotropic approximation of the subsurface. We have extended the adjoint-state technique for first-arrival traveltime tomography to vertical transversely isotropic (VTI) media. Because δ is weakly resolvable from surface seismic alone, we have developed the mathematical framework and procedure to invert for vNMO and η. Our numerical tests on the VTI SEAM model demonstrate the ability of the algorithm to invert for near-surface model parameters and reveal the accuracy achievable by the algorithm.

  10. Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces

    Science.gov (United States)

    Mantile, Andrea; Posilicano, Andrea; Sini, Mourad

    2016-07-01

    The theory of self-adjoint extensions of symmetric operators is used to construct self-adjoint realizations of a second-order elliptic differential operator on Rn with linear boundary conditions on (a relatively open part of) a compact hypersurface. Our approach allows to obtain Kreĭn-like resolvent formulae where the reference operator coincides with the ;free; operator with domain H2 (Rn); this provides an useful tool for the scattering problem from a hypersurface. Concrete examples of this construction are developed in connection with the standard boundary conditions, Dirichlet, Neumann, Robin, δ and δ‧-type, assigned either on a (n - 1) dimensional compact boundary Γ = ∂ Ω or on a relatively open part Σ ⊂ Γ. Schatten-von Neumann estimates for the difference of the powers of resolvents of the free and the perturbed operators are also proven; these give existence and completeness of the wave operators of the associated scattering systems.

  11. Multigroup and coupled forward-adjoint Monte Carlo calculation efficiencies for secondary neutron doses from proton beams

    International Nuclear Information System (INIS)

    Kelsey IV, Charles T.; Prinja, Anil K.

    2011-01-01

    We evaluate the Monte Carlo calculation efficiency for multigroup transport relative to continuous energy transport using the MCNPX code system to evaluate secondary neutron doses from a proton beam. We consider both fully forward simulation and application of a midway forward adjoint coupling method to the problem. Previously we developed tools for building coupled multigroup proton/neutron cross section libraries and showed consistent results for continuous energy and multigroup proton/neutron transport calculations. We observed that forward multigroup transport could be more efficient than continuous energy. Here we quantify solution efficiency differences for a secondary radiation dose problem characteristic of proton beam therapy problems. We begin by comparing figures of merit for forward multigroup and continuous energy MCNPX transport and find that multigroup is 30 times more efficient. Next we evaluate efficiency gains for coupling out-of-beam adjoint solutions with forward in-beam solutions. We use a variation of a midway forward-adjoint coupling method developed by others for neutral particle transport. Our implementation makes use of the surface source feature in MCNPX and we use spherical harmonic expansions for coupling in angle rather than solid angle binning. The adjoint out-of-beam transport for organs of concern in a phantom or patient can be coupled with numerous forward, continuous energy or multigroup, in-beam perturbations of a therapy beam line configuration. Out-of-beam dose solutions are provided without repeating out-of-beam transport. (author)

  12. An Adjoint-Based Adaptive Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon

    2013-10-01

    A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR) approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF ensemble is regularly enhanced with new members generated after back projection of the EnKF analysis residuals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem, constraining the new member with model dynamics and the previous observations. This should provide more information for the estimation of the new member and reduce dependence of the AEnKF on the assumed stationary background covariance matrix. This is done by integrating the analysis residuals backward in time with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices of the assimilation system inputs and parameters.

  13. An Adjoint-Based Adaptive Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon; Hoteit, Ibrahim; Cornuelle, Bruce D.; Luo, Xiaodong; Subramanian, Aneesh C.

    2013-01-01

    A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR) approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF ensemble is regularly enhanced with new members generated after back projection of the EnKF analysis residuals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem, constraining the new member with model dynamics and the previous observations. This should provide more information for the estimation of the new member and reduce dependence of the AEnKF on the assumed stationary background covariance matrix. This is done by integrating the analysis residuals backward in time with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices of the assimilation system inputs and parameters.

  14. q-structure algebra of Uq(g-circumflex) from its adjoint action

    International Nuclear Information System (INIS)

    El Hassouni, A.; Hassouni, Y.; Zakkari, M.

    1994-08-01

    We prove that the adjoint action of the quantum affine Lie algebra U q (g-circumflex), where g is a simple finite dimensional Lie algebra, reproduces the q-commutation relationship of U q (g-circumflex) if and only if g is of type A n , n ≥ 1. (author). 4 refs

  15. Linear Array Ambient Noise Adjoint Tomography Reveals Intense Crust-Mantle Interactions in North China Craton

    Science.gov (United States)

    Zhang, Chao; Yao, Huajian; Liu, Qinya; Zhang, Ping; Yuan, Yanhua O.; Feng, Jikun; Fang, Lihua

    2018-01-01

    We present a 2-D ambient noise adjoint tomography technique for a linear array with a significant reduction in computational cost and show its application to an array in North China. We first convert the observed data for 3-D media, i.e., surface-wave empirical Green's functions (EGFs) to the reconstructed EGFs (REGFs) for 2-D media using a 3-D/2-D transformation scheme. Different from the conventional steps of measuring phase dispersion, this technology refines 2-D shear wave speeds along the profile directly from REGFs. With an initial model based on traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime delays between the REGFs and synthetic Green functions calculated by the spectral-element method. The multitaper traveltime difference measurement is applied in four-period bands: 20-35 s, 15-30 s, 10-20 s, and 6-15 s. The recovered model shows detailed crustal structures including pronounced low-velocity anomalies in the lower crust and a gradual crust-mantle transition zone beneath the northern Trans-North China Orogen, which suggest the possible intense thermo-chemical interactions between mantle-derived upwelling melts and the lower crust, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of this region. To our knowledge, it is the first time that ambient noise adjoint tomography is implemented for a 2-D medium. Compared with the intensive computational cost and storage requirement of 3-D adjoint tomography, this method offers a computationally efficient and inexpensive alternative to imaging fine-scale crustal structures beneath linear arrays.

  16. Treatment planning for prostate brachytherapy using region of interest adjoint functions and a greedy heuristic

    International Nuclear Information System (INIS)

    Yoo, Sua; Kowalok, Michael E; Thomadsen, Bruce R; Henderson, Douglass L

    2003-01-01

    We have developed an efficient treatment-planning algorithm for prostate implants that is based on region of interest (ROI) adjoint functions and a greedy heuristic. For this work, we define the adjoint function for an ROI as the sensitivity of the average dose in the ROI to a unit-strength brachytherapy source at any seed position. The greedy heuristic uses a ratio of target and critical structure adjoint functions to rank seed positions according to their ability to irradiate the target ROI while sparing critical structure ROIs. This ratio is computed once for each seed position prior to the optimization process. Optimization is performed by a greedy heuristic that selects seed positions according to their ratio values. With this method, clinically acceptable treatment plans are obtained in less than 2 s. For comparison, a branch-and-bound method to solve a mixed integer-programming model took more than 50 min to arrive at a feasible solution. Both methods achieved good treatment plans, but the speedup provided by the greedy heuristic was a factor of approximately 1500. This attribute makes this algorithm suitable for intra-operative real-time treatment planning

  17. Numerical study of dense adjoint matter in two color QCD

    International Nuclear Information System (INIS)

    Hands, S.; Morrison, S.; Scorzato, L.; Oevers, M.

    2000-06-01

    We identify the global symmetries of SU(2) lattice gauge theory with N flavors of staggered fermion in the presence of a quark chemical potential μ, for fermions in both fundamental and adjoint representations, and anticipate likely patterns of symmetry breaking at both low and high densities. Results from numerical simulations of the model with N=1 adjoint flavor on a 4 3 x 8 lattice are presented, using both hybrid Monte Carlo and two-step multi-boson algorithms. It is shown that the sign of the fermion determinant starts to fluctuate once the model enters a phase with non-zero baryon charge density. HMC simulations are not ergodic in this regime, but TSMB simulations retain ergodicity even in the dense phase, and in addition appear to show superior decorrelation. The HMC results for the equation of state and the pion mass show good quantitative agreement with the predictions of chiral perturbation theory, which should hold only for N≥2. The TSMB results incorporating the sign of the determinant support a delayed onset transition, consistent with the pattern of symmetry breaking expected for N=1. (orig.)

  18. Forward and adjoint sensitivity computation of chaotic dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiqi, E-mail: qiqi@mit.edu [Department of Aeronautics and Astronautics, MIT, 77 Mass Ave., Cambridge, MA 02139 (United States)

    2013-02-15

    This paper describes a forward algorithm and an adjoint algorithm for computing sensitivity derivatives in chaotic dynamical systems, such as the Lorenz attractor. The algorithms compute the derivative of long time averaged “statistical” quantities to infinitesimal perturbations of the system parameters. The algorithms are demonstrated on the Lorenz attractor. We show that sensitivity derivatives of statistical quantities can be accurately estimated using a single, short trajectory (over a time interval of 20) on the Lorenz attractor.

  19. Infrared conformality and bulk critical points: SU(2) with heavy adjoint quarks

    CERN Document Server

    Lucini, Biagio; Rago, Antonio; Rinaldi, Enrico

    2013-01-01

    The lattice phase structure of a gauge theory can be a serious obstruction to Monte Carlo studies of its continuum behaviour. This issue is particularly delicate when numerical studies are performed to determine whether a theory is in a (near-)conformal phase. In this work we investigate the heavy mass limit of the SU(2) gauge theory with Nf=2 adjoint fermions and its lattice phase diagram, showing the presence of a critical point ending a line of first order bulk phase transition. The relevant gauge observables and the low-lying spectrum are monitored in the vicinity of the critical point with very good control over different systematic effects. The scaling properties of masses and susceptibilities open the possibility that the effective theory at criticality is a scalar theory in the universality class of the four-dimensional Gaussian model. This behaviour is clearly different from what is observed for SU(2) gauge theory with two dynamical adjoint fermions, whose (near-)conformal numerical signature is henc...

  20. Identification of the Parameters of the Instantaneous Point Pollution Source in the Azov Sea Based on the Adjoint Method

    Directory of Open Access Journals (Sweden)

    V.S. Kochergin

    2017-02-01

    Full Text Available The passive admixture transport model in the Azov Sea is considered. The problem of cartelistic impulse local source identification at the sea surface based on adjoint method is solving by integration of independent series of adjoint tasks. Simultaneous solution of this problem at the parallel mode is realized by the aforementioned approach. The efficiency of the algorithm optimal value power of source search agreed with the data measurements is shown in the test example. The measurement data assimilation algorithm in the passive admixture transfer model is implemented applying variational methods of filtration for optimal estimate retrieval. The retrieval is carried out by means of the method of adjoint equations and solving of linear systems. On the basis of the variational filtration method of data assimilation, the optimal estimate retrieval algorithm for pollution source power identification is constructed. In application of the algorithm, the integration of the main, linked and adjoint problems is implemented. Integration problems are solved using TVD approximations. For the application of the procedure, the Azov current fields and turbulent diffusion coefficients are obtained using the sigma coordinate ocean model (POM under the eastern wind stress conditions being dominant at the observed time period. Furthermore, the results can be used to perform numerical data assimilation on loads of suspended matter.

  1. Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters

    Directory of Open Access Journals (Sweden)

    V. A. Karydis

    2012-10-01

    Full Text Available We present the development of the adjoint of a comprehensive cloud droplet formation parameterization for use in aerosol-cloud-climate interaction studies. The adjoint efficiently and accurately calculates the sensitivity of cloud droplet number concentration (CDNC to all parameterization inputs (e.g., updraft velocity, water uptake coefficient, aerosol number and hygroscopicity with a single execution. The adjoint is then integrated within three dimensional (3-D aerosol modeling frameworks to quantify the sensitivity of CDNC formation globally to each parameter. Sensitivities are computed for year-long executions of the NASA Global Modeling Initiative (GMI Chemical Transport Model (CTM, using wind fields computed with the Goddard Institute for Space Studies (GISS Global Circulation Model (GCM II', and the GEOS-Chem CTM, driven by meteorological input from the Goddard Earth Observing System (GEOS of the NASA Global Modeling and Assimilation Office (GMAO. We find that over polluted (pristine areas, CDNC is more sensitive to updraft velocity and uptake coefficient (aerosol number and hygroscopicity. Over the oceans of the Northern Hemisphere, addition of anthropogenic or biomass burning aerosol is predicted to increase CDNC in contrast to coarse-mode sea salt which tends to decrease CDNC. Over the Southern Oceans, CDNC is most sensitive to sea salt, which is the main aerosol component of the region. Globally, CDNC is predicted to be less sensitive to changes in the hygroscopicity of the aerosols than in their concentration with the exception of dust where CDNC is very sensitive to particle hydrophilicity over arid areas. Regionally, the sensitivities differ considerably between the two frameworks and quantitatively reveal why the models differ considerably in their indirect forcing estimates.

  2. Global Linear Representations of Nonlinear Systems and the Adjoint Map

    OpenAIRE

    Banks, S.P.

    1988-01-01

    In this paper we shall study the global linearization of nonlinear systems on a manifold by two methods. The first consists of an expansion of the vector field in the space of square integrable vector fields. In the second method we use the adjoint representation of the Lie algebra vector fields to obtain an infinite-dimensional matrix representation of the system. A connection between the two approaches will be developed.

  3. Absence of singular continuous spectrum for certain self-adjoint operators

    International Nuclear Information System (INIS)

    Mourre, E.

    1979-01-01

    An adequate condition is given for a self-adjoint operator to show in the vinicity of a point E of its spectrum the following properties: its point spectrum is of finite size; its singular continuous spectrum is empty. In the way of new applications the absence of singular continuous spectrum is demonstrated in the following two cases: perturbations of pseudo-differential operators; Schroedinger operators of a three-body system [fr

  4. Bounded solutions of self-adjoint second order linear difference equations with periodic coeffients

    Directory of Open Access Journals (Sweden)

    Encinas A.M.

    2018-02-01

    Full Text Available In this work we obtain easy characterizations for the boundedness of the solutions of the discrete, self–adjoint, second order and linear unidimensional equations with periodic coefficients, including the analysis of the so-called discrete Mathieu equations as particular cases.

  5. Adjoint de programme régional (h/f) | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'adjoint de programme doit établir les priorités parmi les multiples ... sur un système de contrôle, en établissant l'ordre prioritaire afin de respecter les ... Au besoin, aider les agents de gestion de programme à entretenir et à mettre à jour les ...

  6. Time reversal imaging, Inverse problems and Adjoint Tomography}

    Science.gov (United States)

    Montagner, J.; Larmat, C. S.; Capdeville, Y.; Kawakatsu, H.; Fink, M.

    2010-12-01

    With the increasing power of computers and numerical techniques (such as spectral element methods), it is possible to address a new class of seismological problems. The propagation of seismic waves in heterogeneous media is simulated more and more accurately and new applications developed, in particular time reversal methods and adjoint tomography in the three-dimensional Earth. Since the pioneering work of J. Claerbout, theorized by A. Tarantola, many similarities were found between time-reversal methods, cross-correlations techniques, inverse problems and adjoint tomography. By using normal mode theory, we generalize the scalar approach of Draeger and Fink (1999) and Lobkis and Weaver (2001) to the 3D- elastic Earth, for theoretically understanding time-reversal method on global scale. It is shown how to relate time-reversal methods on one hand, with auto-correlations of seismograms for source imaging and on the other hand, with cross-correlations between receivers for structural imaging and retrieving Green function. Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and to seismic waves in seismology for earthquake imaging. In the case of source imaging, time reversal techniques make it possible an automatic location in time and space as well as the retrieval of focal mechanism of earthquakes or unknown environmental sources . We present here some applications at the global scale of these techniques on synthetic tests and on real data, such as Sumatra-Andaman (Dec. 2004), Haiti (Jan. 2010), as well as glacial earthquakes and seismic hum.

  7. Objective-function Hybridization in Adjoint Seismic Tomography

    Science.gov (United States)

    Yuan, Y. O.; Bozdag, E.; Simons, F.; Gao, F.

    2016-12-01

    In the realm of seismic tomography, we are at the threshold of a new era of huge seismic datasets. However, how to assimilate as much information as possible from every seismogram is still a challenge. Cross-correlation measurements are generally tailored to some window selection algorithms, such as FLEXWIN (Maggie et al. 2008), to balance amplitude differences between seismic phases. However, these measurements naturally favor maximum picks in selected windows. It is also difficult to select all usable portions of seismograms in an optimum way that lots of information is generally lost, particularly the scattered waves. Instantaneous phase type of misfits extract information from every wiggle without cutting seismograms into small pieces, however, dealing with cycle skips at short periods can be challenging. For this purpose, we introduce a flexible hybrid approach for adjoint seismic tomography, to combine various objective functions. We initially focus on phase measurements and propose using instantaneous phase to take into account relatively small-magnitude scattered waves at long periods while using cross-correlation measurements on FLEXWIN windows to select distinct body-wave arrivals without complicating measurements due to non-linearities at short periods. To better deal with cycle skips and reliably measure instantaneous phases we design a new misfit function that incorporates instantaneous phase information implicitly instead of measuring it explicitly, through using normalized analytic signals. We present in our synthetic experiments how instantaneous phase, cross-correlation and their hybridization affect tomographic results. The combination of two different phase measurements in a hybrid approach constitutes progress towards using "anything and everything" in a data set, addressing data quality and measurement challenges simultaneously. We further extend hybridisation of misfit functions for amplitude measurements such as cross-correlation amplitude

  8. Adjusted neutron spectra of STEK cores for reactivity calculations

    International Nuclear Information System (INIS)

    Dekker, J.W.M.; Dragt, J.B.; Janssen, A.J.; Heijboer, R.J.; Klippel, H.Th.

    1978-02-01

    Neutron flux and adjoint flux spectra form a pre-requisite in the analysis of reactivity worth data measured in the STEK facility. First, a survey of all available information about these spectra is given. Next a special application of a general adjustment method is described. This method has been used to obtain adjusted STEK group flux and adjoint flux spectra, starting from calculated spectra. These theoretical spectra were adjusted to reactivity worths of natural boron (nat. B) and 235 U as well as a number of fission reaction rates. As a by-product in this adjustment calculation adjusted fission group cross sections of 235 U were obtained. The results, viz. group fluxes and adjoint fluxes and adjusted fission cross sections of 235 U are given. They have been used for the interpretation of fission product reactivity worth measurements made in STEK

  9. On the Incompleteness of Ibragimov’s Conservation Law Theorem and Its Equivalence to a Standard Formula Using Symmetries and Adjoint-Symmetries

    Directory of Open Access Journals (Sweden)

    Stephen C. Anco

    2017-02-01

    Full Text Available A conservation law theorem stated by N. Ibragimov along with its subsequent extensions are shown to be a special case of a standard formula that uses a pair consisting of a symmetry and an adjoint-symmetry to produce a conservation law through a well-known Fréchet derivative identity. Furthermore, the connection of this formula (and of Ibragimov’s theorem to the standard action of symmetries on conservation laws is explained, which accounts for a number of major drawbacks that have appeared in recent work using the formula to generate conservation laws. In particular, the formula can generate trivial conservation laws and does not always yield all non-trivial conservation laws unless the symmetry action on the set of these conservation laws is transitive. It is emphasized that all local conservation laws for any given system of differential equations can be found instead by a general method using adjoint-symmetries. This general method is a kind of adjoint version of the standard Lie method to find all local symmetries and is completely algorithmic. The relationship between this method, Noether’s theorem and the symmetry/adjoint-symmetry formula is discussed.

  10. COSANI-2, Gamma Doses from SABINE Calculation, Activity from ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Dupont, C.

    1975-01-01

    1 - Nature of physical problem solved: Retrieval of SABINE and/or ANISN results. Calculates in case of SABINE results the individual contributions of capture gamma rays in each region to the total gamma dose and to the total gamma heating may calculate in case of ANISN new activity rates starting from ANISN flux saved on tape and activity cross sections taken on an ANISN binary library tape. The program can draw on a BENSON plotter any of the following quantities: - group flux; - activity rates; - dose rates; - neutron spectra for SABINE; - neutron or gamma direct or adjoint spectra for ANISN; - gamma heating and dose rate for SABINE including individual contributions from each region. Several ANISN and/or SABINE cases can be drawn on the same graph for comparison purposes. 2 - Restrictions on the complexity of the problem: Maximum number of: - tapes containing ANISN and/or SABINE results: 5; - curves per graph: 3; - regions: 40; - points per curve: 500; - energy groups: 200

  11. Adjoint assimilation of altimetric, surface drifter, and hydrographic data in a quasi-geostrophic model of the Azores Current

    Science.gov (United States)

    Morrow, Rosemary; de Mey, Pierre

    1995-12-01

    The flow characteristics in the region of the Azores Current are investigated by assimilating TOPEX/POSEIDON and ERS 1 altimeter data into the multilevel Harvard quasigeostrophic (QG) model with open boundaries (Miller et al., 1983) using an adjoint variational scheme (Moore, 1991). The study site lies in the path of the Azores Current, where a branch retroflects to the south in the vicinity of the Madeira Rise. The region was the site of an intensive field program in 1993, SEMAPHORE. We had two main aims in this adjoint assimilation project. The first was to see whether the adjoint method could be applied locally to optimize an initial guess field, derived from the continous assimilation of altimetry data using optimal interpolation (OI). The second aim was to assimilate a variety of different data sets and evaluate their importance in constraining our QG model. The adjoint assimilation of surface data was effective in optimizing the initial conditions from OI. After 20 iterations the cost function was generally reduced by 50-80%, depending on the chosen data constraints. The primary adjustment process was via the barotropic mode. Altimetry proved to be a good constraint on the variable flow field, in particular, for constraining the barotropic field. The excellent data quality of the TOPEX/POSEIDON (T/P) altimeter data provided smooth and reliable forcing; but for our mesoscale study in a region of long decorrelation times O(30 days), the spatial coverage from the combined T/P and ERS 1 data sets was more important for constraining the solution and providing stable flow at all levels. Surface drifters provided an excellent constraint on both the barotropic and baroclinic model fields. More importantly, the drifters provided a reliable measure of the mean field. Hydrographic data were also applied as a constraint; in general, hydrography provided a weak but effective constraint on the vertical Rossby modes in the model. Finally, forecasts run over a 2-month period

  12. Application of sensitivity analysis to a simplified coupled neutronic thermal-hydraulics transient in a fast reactor using Adjoint techniques

    International Nuclear Information System (INIS)

    Gilli, L.; Lathouwers, D.; Kloosterman, J.L.; Van der Hagen, T.H.J.J.

    2011-01-01

    In this paper a method to perform sensitivity analysis for a simplified multi-physics problem is presented. The method is based on the Adjoint Sensitivity Analysis Procedure which is used to apply first order perturbation theory to linear and nonlinear problems using adjoint techniques. The multi-physics problem considered includes a neutronic, a thermo-kinetics, and a thermal-hydraulics part and it is used to model the time dependent behavior of a sodium cooled fast reactor. The adjoint procedure is applied to calculate the sensitivity coefficients with respect to the kinetic parameters of the problem for two reference transients using two different model responses, the results obtained are then compared with the values given by a direct sampling of the forward nonlinear problem. Our first results show that, thanks to modern numerical techniques, the procedure is relatively easy to implement and provides good estimation for most perturbations, making the method appealing for more detailed problems. (author)

  13. Geostatistical and adjoint sensitivity techniques applied to a conceptual model of ground-water flow in the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Metcalfe, D.E.; Campbell, J.E.; RamaRao, B.S.; Harper, W.V.; Battelle Project Management Div., Columbus, OH)

    1985-01-01

    Sensitivity and uncertainty analysis are important components of performance assessment activities for potential high-level radioactive waste repositories. The application of geostatistical and adjoint sensitivity techniques to aid in the calibration of an existing conceptual model of ground-water flow is demonstrated for the Leadville Limestone in Paradox Basin, Utah. The geostatistical method called kriging is used to statistically analyze the measured potentiometric data for the Leadville. This analysis consists of identifying anomalous data and data trends and characterizing the correlation structure between data points. Adjoint sensitivity analysis is then performed to aid in the calibration of a conceptual model of ground-water flow to the Leadville measured potentiometric data. Sensitivity derivatives of the fit between the modeled Leadville potentiometric surface and the measured potentiometric data to model parameters and boundary conditions are calculated by the adjoint method. These sensitivity derivatives are used to determine which model parameter and boundary condition values should be modified to most efficiently improve the fit of modeled to measured potentiometric conditions

  14. Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach

    Directory of Open Access Journals (Sweden)

    C. Nabert

    2017-05-01

    Full Text Available The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms magnetosheath data to estimate Earth's dipole moment.

  15. An introduction to the self-adjointness and spectral analysis of Schroedinger operators

    International Nuclear Information System (INIS)

    Simon, B.

    1977-01-01

    The author first explains the basic results about self adjointness, from a point of view which emphasizes the connection with solvability of the Schroedinger equation. He then describes four methods that define self ajoint Hamiltonians, for most Schroedinger operators and discusses types of spectra, closing by considering the essential spectrum in the two body case. (P.D.)

  16. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    Science.gov (United States)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2018-06-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  17. Determination of the self-adjoint matrix Schrödinger operators without the bound state data

    Science.gov (United States)

    Xu, Xiao-Chuan; Yang, Chuan-Fu

    2018-06-01

    (i) For the matrix Schrödinger operator on the half line, it is shown that the scattering data, which consists of the scattering matrix and the bound state data, uniquely determines the potential and the boundary condition. It is also shown that only the scattering matrix uniquely determines the self-adjoint potential and the boundary condition if either the potential exponentially decreases fast enough or the potential is known a priori on (), where a is an any fixed positive number. (ii) For the matrix Schrödinger operator on the full line, it is shown that the left (or right) reflection coefficient uniquely determine the self-adjoint potential if either the potential exponentially decreases fast enough or the potential is known a priori on (or ()), where b is an any fixed number.

  18. Adjoint-Based Design of Rotors Using the Navier-Stokes Equations in a Noninertial Reference Frame

    Science.gov (United States)

    Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.

    2010-01-01

    Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated by using comparisons with a complex-variable technique, and a number of single- and multipoint optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.

  19. On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Nakshatrala, Praveen B.; Tortorelli, Daniel A.

    2014-01-01

    Gradient-based topology optimization typically involves thousands or millions of design variables. This makes efficient sensitivity analysis essential and for this the adjoint variable method (AVM) is indispensable. For transient problems it has been observed that the traditional AVM, based on a ...

  20. Application of perturbation theory to lattice calculations based on method of cyclic characteristics

    Science.gov (United States)

    Assawaroongruengchot, Monchai

    Perturbation theory is a technique used for the estimation of changes in performance functionals, such as linear reaction rate ratio and eigenvalue affected by small variations in reactor core compositions. Here the algorithm of perturbation theory is developed for the multigroup integral neutron transport problems in 2D fuel assemblies with isotropic scattering. The integral transport equation is used in the perturbative formulation because it represents the interconnecting neutronic systems of the lattice assemblies via the tracking lines. When the integral neutron transport equation is used in the formulation, one needs to solve the resulting integral transport equations for the flux importance and generalized flux importance functions. The relationship between the generalized flux importance and generalized source importance functions is defined in order to transform the generalized flux importance transport equations into the integro-differential equations for the generalized adjoints. Next we develop the adjoint and generalized adjoint transport solution algorithms based on the method of cyclic characteristics (MOCC) in DRAGON code. In the MOCC method, the adjoint characteristics equations associated with a cyclic tracking line are formulated in such a way that a closed form for the adjoint angular function can be obtained. The MOCC method then requires only one cycle of scanning over the cyclic tracking lines in each spatial iteration. We also show that the source importance function by CP method is mathematically equivalent to the adjoint function by MOCC method. In order to speed up the MOCC solution algorithm, a group-reduction and group-splitting techniques based on the structure of the adjoint scattering matrix are implemented. A combined forward flux/adjoint function iteration scheme, based on the group-splitting technique and the common use of a large number of variables storing tracking-line data and exponential values, is proposed to reduce the

  1. Application of perturbation theory to lattice calculations based on method of cyclic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M

    2007-07-01

    Perturbation theory is a technique used for the estimation of changes in performance functionals, such as linear reaction rate ratio and eigenvalue affected by small variations in reactor core compositions. Here the algorithm of perturbation theory is developed for the multigroup integral neutron transport problems in 2D fuel assemblies with isotropic scattering. The integral transport equation is used in the perturbative formulation because it represents the interconnecting neutronic systems of the lattice assemblies via the tracking lines. When the integral neutron transport equation is used in the formulation, one needs to solve the resulting integral transport equations for the flux importance and generalized flux importance functions. The relationship between the generalized flux importance and generalized source importance functions is defined in order to transform the generalized flux importance transport equations into the integro-differential equations for the generalized adjoints. Next we develop the adjoint and generalized adjoint transport solution algorithms based on the method of cyclic characteristics (MOCC) in DRAGON code. In the MOCC method, the adjoint characteristics equations associated with a cyclic tracking line are formulated in such a way that a closed form for the adjoint angular function can be obtained. The MOCC method then requires only one cycle of scanning over the cyclic tracking lines in each spatial iteration. We also show that the source importance function by CP method is mathematically equivalent to the adjoint function by MOCC method. In order to speed up the MOCC solution algorithm, a group-reduction and group-splitting techniques based on the structure of the adjoint scattering matrix are implemented. A combined forward flux/adjoint function iteration scheme, based on the group-splitting technique and the common use of a large number of variables storing tracking-line data and exponential values, is proposed to reduce the

  2. Application of perturbation theory to lattice calculations based on method of cyclic characteristics

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.

    2007-01-01

    Perturbation theory is a technique used for the estimation of changes in performance functionals, such as linear reaction rate ratio and eigenvalue affected by small variations in reactor core compositions. Here the algorithm of perturbation theory is developed for the multigroup integral neutron transport problems in 2D fuel assemblies with isotropic scattering. The integral transport equation is used in the perturbative formulation because it represents the interconnecting neutronic systems of the lattice assemblies via the tracking lines. When the integral neutron transport equation is used in the formulation, one needs to solve the resulting integral transport equations for the flux importance and generalized flux importance functions. The relationship between the generalized flux importance and generalized source importance functions is defined in order to transform the generalized flux importance transport equations into the integro-differential equations for the generalized adjoints. Next we develop the adjoint and generalized adjoint transport solution algorithms based on the method of cyclic characteristics (MOCC) in DRAGON code. In the MOCC method, the adjoint characteristics equations associated with a cyclic tracking line are formulated in such a way that a closed form for the adjoint angular function can be obtained. The MOCC method then requires only one cycle of scanning over the cyclic tracking lines in each spatial iteration. We also show that the source importance function by CP method is mathematically equivalent to the adjoint function by MOCC method. In order to speed up the MOCC solution algorithm, a group-reduction and group-splitting techniques based on the structure of the adjoint scattering matrix are implemented. A combined forward flux/adjoint function iteration scheme, based on the group-splitting technique and the common use of a large number of variables storing tracking-line data and exponential values, is proposed to reduce the

  3. Global adjoint tomography: first-generation model

    KAUST Repository

    Bozdağ, Ebru

    2016-09-23

    We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3-D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Fréchet derivatives were calculated in 3-D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named \\'Titan\\', a computer with 18 688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematically reduced differences between observed and simulated three-component seismograms. Our starting model combined 3-D mantle model S362ANI with 3-D crustal model Crust2.0. We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used \\'crustal corrections\\'. We used data from 253 earthquakes in the magnitude range 5.8 ≤ M ≤ 7.0. We started inversions by combining ~30 s body-wave data with ~60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined ~17 s body waves with ~45 s surface waves. We started using 180 min long seismograms after the 12th iteration and assimilated minor- and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching the

  4. Eguchi-Kawai reduction with one flavor of adjoint Moebius fermion

    OpenAIRE

    Cunningham, William; Giedt, Joel

    2013-01-01

    We study the single site lattice gauge theory of SU(N) coupled to one Dirac flavor of fermion in the adjoint representation. We utilize M\\"obius fermions for this study, and accelerate the calculation with graphics processing units (GPUs). Our Monte Carlo simulations indicate that for sufficiently large inverse 't Hooft coupling b = 1/g^2 N, and for N \\leq 10 the distribution of traced Polyakov loops has "fingers" that extend from the origin. However, in the massless case the distribution of ...

  5. Spectral analysis of non-self-adjoint Jacobi operator associated with Jacobian elliptic functions

    Czech Academy of Sciences Publication Activity Database

    Siegl, Petr; Štampach, F.

    2017-01-01

    Roč. 11, č. 4 (2017), s. 901-928 ISSN 1846-3886 Grant - others:GA ČR(CZ) GA13-11058S Institutional support: RVO:61389005 Keywords : Non-self-adjoint Jacobi operator * Weyl m-function * Jacobian elliptic functions Subject RIV: BE - Theoretical Physics OBOR OECD: Pure mathematics Impact factor: 0.440, year: 2016

  6. An approach to computing discrete adjoints for MPI-parallelized models applied to Ice Sheet System Model 4.11

    Directory of Open Access Journals (Sweden)

    E. Larour

    2016-11-01

    Full Text Available Within the framework of sea-level rise projections, there is a strong need for hindcast validation of the evolution of polar ice sheets in a way that tightly matches observational records (from radar, gravity, and altimetry observations mainly. However, the computational requirements for making hindcast reconstructions possible are severe and rely mainly on the evaluation of the adjoint state of transient ice-flow models. Here, we look at the computation of adjoints in the context of the NASA/JPL/UCI Ice Sheet System Model (ISSM, written in C++ and designed for parallel execution with MPI. We present the adaptations required in the way the software is designed and written, but also generic adaptations in the tools facilitating the adjoint computations. We concentrate on the use of operator overloading coupled with the AdjoinableMPI library to achieve the adjoint computation of the ISSM. We present a comprehensive approach to (1 carry out type changing through the ISSM, hence facilitating operator overloading, (2 bind to external solvers such as MUMPS and GSL-LU, and (3 handle MPI-based parallelism to scale the capability. We demonstrate the success of the approach by computing sensitivities of hindcast metrics such as the misfit to observed records of surface altimetry on the northeastern Greenland Ice Stream, or the misfit to observed records of surface velocities on Upernavik Glacier, central West Greenland. We also provide metrics for the scalability of the approach, and the expected performance. This approach has the potential to enable a new generation of hindcast-validated projections that make full use of the wealth of datasets currently being collected, or already collected, in Greenland and Antarctica.

  7. A generalized perturbation program for CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yang, Won Sik [Chosun University, Kwangju (Korea, Republic of)

    1999-12-31

    A generalized perturbation program has been developed for the purpose of estimating zonal power variation of a CANDU reactor upon refueling operation. The forward and adjoint calculation modules of RFSP code were used to construct the generalized perturbation program. The numerical algorithm for the generalized adjoint flux calculation was verified by comparing the zone power estimates upon refueling with those of forward calculation. It was, however, noticed that the truncation error from the iteration process of the generalized adjoint flux is not negligible. 2 refs., 1 figs., 1 tab. (Author)

  8. A generalized perturbation program for CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yang, Won Sik [Chosun University, Kwangju (Korea, Republic of)

    1998-12-31

    A generalized perturbation program has been developed for the purpose of estimating zonal power variation of a CANDU reactor upon refueling operation. The forward and adjoint calculation modules of RFSP code were used to construct the generalized perturbation program. The numerical algorithm for the generalized adjoint flux calculation was verified by comparing the zone power estimates upon refueling with those of forward calculation. It was, however, noticed that the truncation error from the iteration process of the generalized adjoint flux is not negligible. 2 refs., 1 figs., 1 tab. (Author)

  9. Green's matrix for a second-order self-adjoint matrix differential operator

    International Nuclear Information System (INIS)

    Sisman, Tahsin Cagri; Tekin, Bayram

    2010-01-01

    A systematic construction of the Green's matrix for a second-order self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first-order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.

  10. Visualising Earth's Mantle based on Global Adjoint Tomography

    Science.gov (United States)

    Bozdag, E.; Pugmire, D.; Lefebvre, M. P.; Hill, J.; Komatitsch, D.; Peter, D. B.; Podhorszki, N.; Tromp, J.

    2017-12-01

    Recent advances in 3D wave propagation solvers and high-performance computing have enabled regional and global full-waveform inversions. Interpretation of tomographic models is often done on visually. Robust and efficient visualization tools are necessary to thoroughly investigate large model files, particularly at the global scale. In collaboration with Oak Ridge National Laboratory (ORNL), we have developed effective visualization tools and used for visualization of our first-generation global model, GLAD-M15 (Bozdag et al. 2016). VisIt (https://wci.llnl.gov/simulation/computer-codes/visit/) is used for initial exploration of the models and for extraction of seismological features. The broad capability of VisIt, and its demonstrated scalability proved valuable for experimenting with different visualization techniques, and in the creation of timely results. Utilizing VisIt's plugin-architecture, a data reader plugin was developed, which reads the ADIOS (https://www.olcf.ornl.gov/center-projects/adios/) format of our model files. Blender (https://www.blender.org) is used for the setup of lighting, materials, camera paths and rendering of geometry. Python scripting was used to control the orchestration of different geometries, as well as camera animation for 3D movies. While we continue producing 3D contour plots and movies for various seismic parameters to better visualize plume- and slab-like features as well as anisotropy throughout the mantle, our aim is to make visualization an integral part of our global adjoint tomography workflow to routinely produce various 2D cross-sections to facilitate examination of our models after each iteration. This will ultimately form the basis for use of pattern recognition techniques in our investigations. Simulations for global adjoint tomography are performed on ORNL's Titan system and visualization is done in parallel on ORNL's post-processing cluster Rhea.

  11. Adjoint Parameter Sensitivity Analysis for the Hydrodynamic Lattice Boltzmann Method with Applications to Design Optimization

    DEFF Research Database (Denmark)

    Pingen, Georg; Evgrafov, Anton; Maute, Kurt

    2009-01-01

    We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion...

  12. Manipulating Rayleigh-Taylor Growth Using Adjoints

    Science.gov (United States)

    Kord, Ali; Capecelatro, Jesse

    2017-11-01

    It has been observed that initial interfacial perturbations affect the growth of Rayleigh-Taylor (RT) instabilities. However, it remains to be seen to what extent the perturbations alter the RT growth rate. Direct numerical simulations (DNS) provide a powerful means for studying the effects of initial conditions (IC) on the growth rate. However, a brute-force approach for identifying optimal initial perturbations is not practical via DNS. In addition, identifying sensitivity of the RT growth to the large number of parameters used in defining the IC is computationally expensive. A discrete adjoint is formulated to measure sensitivities of multi-mode RT growth to ICs in a high-order finite difference framework. The sensitivity is used as a search direction for adjusting the initial perturbations to both maximize and suppress the RT growth rate during its non-linear regime. The modes that contribute the greatest sensitivity are identified, and optimized perturbation energy spectrum are reported. PhD Student, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.

  13. The Adjoint Method for the Inverse Problem of Option Pricing

    Directory of Open Access Journals (Sweden)

    Shou-Lei Wang

    2014-01-01

    Full Text Available The estimation of implied volatility is a typical PDE inverse problem. In this paper, we propose the TV-L1 model for identifying the implied volatility. The optimal volatility function is found by minimizing the cost functional measuring the discrepancy. The gradient is computed via the adjoint method which provides us with an exact value of the gradient needed for the minimization procedure. We use the limited memory quasi-Newton algorithm (L-BFGS to find the optimal and numerical examples shows the effectiveness of the presented method.

  14. LTSN solution of the adjoint neutron transport equation with arbitrary source for high order of quadrature in a homogeneous slab

    International Nuclear Information System (INIS)

    Goncalves, Glenio A.; Orengo, Gilberto; Vilhena, Marco Tullio M.B. de; Graca, Claudio O.

    2002-01-01

    In this work we present the LTS N solution of the adjoint transport equation for an arbitrary source, testing the aptness of this analytical solution for high order of quadrature in transport problems and comparing some preliminary results with the ANISN computations in a homogeneneous slab geometry. In order to do that we apply the new formulation for the LTS N method based on the invariance projection property, becoming possible to handle problems with arbitrary sources and demanding high order of quadrature or deep penetration. This new approach for the LTS N method is important both for direct and adjoint transport calculations and its development was inspired by the necessity of using generalized adjoint sources for important calculations. Although the mathematical convergence has been proved for an arbitrary source, when the quadrature order or deep penetration is required the LTS N method presents computational overflow even for simple sources (sin, cos, exp, polynomial). With the new formulation we eliminate this drawback and in this work we report the numerical simulations testing the new approach

  15. Application of adjoint sensitivity analysis to nuclear reactor fuel rod performance

    International Nuclear Information System (INIS)

    Wilderman, S.J.; Was, G.S.

    1984-01-01

    Adjoint sensitivity analysis in nuclear fuel behavior modeling is extended to operate on the entire power history for both Zircaloy and stainless steel cladding via the computer codes FCODE-ALPHA/SS and SCODE/SS. The sensitivities of key variables to input parameters are found to be highly non-intuitive and strongly dependent on the fuel-clad gap status and the history of the fuel during the cycle. The sensitivities of five key variables, clad circumferential stress and strain, fission gas release, fuel centerline temperature and fuel-clad gap, to eleven input parameters are studied. The most important input parameters (yielding significances between 1 and 100) are fabricated clad inner and outer radii and fuel radius. The least important significances (less than 0.01) are the time since reactor start-up and fuel-burnup densification rate. Intermediate to these are fabricated fuel porosity, linear heat generation rate, the power history scale factor, clad outer temperature, fill gas pressure and coolant pressure. Stainless steel and Zircaloy have similar sensitivities at start-up but these diverges a burnup proceeds due to the effect of the higher creep rate of Zircaloy which causes the system to be more responsive to changes in input parameters. The value of adjoint sensitivity analysis lies in its capability of uncovering dependencies of fuel variables on input parameters that cannot be determined by a sequential thought process. (orig.)

  16. Diagonalization of a self-adjoint operator acting on a Hilbert module

    Directory of Open Access Journals (Sweden)

    Parfeny P. Saworotnow

    1985-01-01

    Full Text Available For each bounded self-adjoint operator T on a Hilbert module H over an H*-algebra A there exists a locally compact space m and a certain A-valued measure μ such that H is isomorphic to L2(μ⊗A and T corresponds to a multiplication with a continuous function. There is a similar result for a commuting family of normal operators. A consequence for this result is a representation theorem for generalized stationary processes.

  17. Efficient Adjoint Computation of Hybrid Systems of Differential Algebraic Equations with Applications in Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Shrirang [Argonne National Lab. (ANL), Argonne, IL (United States); Anitescu, Mihai [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Hong [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    Sensitivity analysis is an important tool to describe power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this work, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating trajectory sensitivities of larger systems and is consistent, within machine precision, with the function whose sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as DC exciters, by deriving and implementing the adjoint jump conditions that arise from state and time-dependent discontinuities. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach.

  18. An adjoint sensitivity-based data assimilation method and its comparison with existing variational methods

    Directory of Open Access Journals (Sweden)

    Yonghan Choi

    2014-01-01

    Full Text Available An adjoint sensitivity-based data assimilation (ASDA method is proposed and applied to a heavy rainfall case over the Korean Peninsula. The heavy rainfall case, which occurred on 26 July 2006, caused torrential rainfall over the central part of the Korean Peninsula. The mesoscale convective system (MCS related to the heavy rainfall was classified as training line/adjoining stratiform (TL/AS-type for the earlier period, and back building (BB-type for the later period. In the ASDA method, an adjoint model is run backwards with forecast-error gradient as input, and the adjoint sensitivity of the forecast error to the initial condition is scaled by an optimal scaling factor. The optimal scaling factor is determined by minimising the observational cost function of the four-dimensional variational (4D-Var method, and the scaled sensitivity is added to the original first guess. Finally, the observations at the analysis time are assimilated using a 3D-Var method with the improved first guess. The simulated rainfall distribution is shifted northeastward compared to the observations when no radar data are assimilated or when radar data are assimilated using the 3D-Var method. The rainfall forecasts are improved when radar data are assimilated using the 4D-Var or ASDA method. Simulated atmospheric fields such as horizontal winds, temperature, and water vapour mixing ratio are also improved via the 4D-Var or ASDA method. Due to the improvement in the analysis, subsequent forecasts appropriately simulate the observed features of the TL/AS- and BB-type MCSs and the corresponding heavy rainfall. The computational cost associated with the ASDA method is significantly lower than that of the 4D-Var method.

  19. [Purifying process of gynostemma pentaphyllum saponins based on "adjoint marker" online control technology and identification of their compositions by UPLC-QTOF-MS].

    Science.gov (United States)

    Fan, Dong-Dong; Kuang, Yan-Hui; Dong, Li-Hua; Ye, Xiao; Chen, Liang-Mian; Zhang, Dong; Ma, Zhen-Shan; Wang, Jin-Yu; Zhu, Jing-Jing; Wang, Zhi-Min; Wang, De-Qin; Li, Chu-Yuan

    2017-04-01

    To optimize the purification process of gynostemma pentaphyllum saponins (GPS) based on "adjoint marker" online control technology with GPS as the testing index. UPLC-QTOF-MS technology was used for qualitative analysis. "Adjoint marker" online control results showed that the end point of load sample was that the UV absorbance of effluent liquid was equal to half of that of load sample solution, and the absorbance was basically stable when the end point was stable. In UPLC-QTOF-MS qualitative analysis, 16 saponins were identified from GPS, including 13 known gynostemma saponins and 3 new saponins. This optimized method was proved to be simple, scientific, reasonable, easy for online determination, real-time record, and can be better applied to the mass production and automation of production. The results of qualitative analysis indicated that the "adjoint marker" online control technology can well retain main efficacy components of medicinal materials, and provide analysis tools for the process control and quality traceability. Copyright© by the Chinese Pharmaceutical Association.

  20. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    Science.gov (United States)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  1. Adjoint-based model predictive control of wind farms : Beyond the quasi steady-state power maximization

    NARCIS (Netherlands)

    Vali, M.; Petrović, Vlaho; Boersma, S.; van Wingerden, J.W.; Kuhn, Martin; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    In this paper, we extend our closed-loop optimal control framework for wind farms to minimize wake-induced power losses. We develop an adjoint-based model predictive controller which employs a medium-fidelity 2D dynamic wind farm model. The wind turbine axial induction factors are considered here

  2. Adjoint Inversion for Extended Earthquake Source Kinematics From Very Dense Strong Motion Data

    Science.gov (United States)

    Ampuero, J. P.; Somala, S.; Lapusta, N.

    2010-12-01

    Addressing key open questions about earthquake dynamics requires a radical improvement of the robustness and resolution of seismic observations of large earthquakes. Proposals for a new generation of earthquake observation systems include the deployment of “community seismic networks” of low-cost accelerometers in urban areas and the extraction of strong ground motions from high-rate optical images of the Earth's surface recorded by a large space telescope in geostationary orbit. Both systems could deliver strong motion data with a spatial density orders of magnitude higher than current seismic networks. In particular, a “space seismometer” could sample the seismic wave field at a spatio-temporal resolution of 100 m, 1 Hz over areas several 100 km wide with an amplitude resolution of few cm/s in ground velocity. The amount of data to process would be immensely larger than what current extended source inversion algorithms can handle, which hampers the quantitative assessment of the cost-benefit trade-offs that can guide the practical design of the proposed earthquake observation systems. We report here on the development of a scalable source imaging technique based on iterative adjoint inversion and its application to the proof-of-concept of a space seismometer. We generated synthetic ground motions for M7 earthquake rupture scenarios based on dynamic rupture simulations on a vertical strike-slip fault embedded in an elastic half-space. A range of scenarios include increasing levels of complexity and interesting features such as supershear rupture speed. The resulting ground shaking is then processed accordingly to what would be captured by an optical satellite. Based on the resulting data, we perform source inversion by an adjoint/time-reversal method. The gradient of a cost function quantifying the waveform misfit between data and synthetics is efficiently obtained by applying the time-reversed ground velocity residuals as surface force sources, back

  3. Convergence acceleration in the Monte-Carlo particle transport code TRIPOLI-4 in criticality

    International Nuclear Information System (INIS)

    Dehaye, Benjamin

    2014-01-01

    Fields such as criticality studies need to compute some values of interest in neutron physics. Two kind of codes may be used: deterministic ones and stochastic ones. The stochastic codes do not require approximation and are thus more exact. However, they may require a lot of time to converge with a sufficient precision.The work carried out during this thesis aims to build an efficient acceleration strategy in the TRIPOLI-4. We wish to implement the zero variance game. To do so, the method requires to compute the adjoint flux. The originality of this work is to directly compute the adjoint flux directly from a Monte-Carlo simulation without using external codes thanks to the fission matrix method. This adjoint flux is then used as an importance map to bias the simulation. (author) [fr

  4. The Adjoint Monte Carlo - a viable option for efficient radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, M [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    In cancer therapy using collimated beams of photons, the radiation oncologist must determine a set of beams that delivers the required dose to each point in the tumor and minimizes the risk of damage to the healthy tissue and vital organs. Currently, the oncologist determines these beams iteratively, by using a sequence of dose calculations using approximate numerical methods. In this paper, a more accurate and potentially faster approach, based on the Adjoint Monte Carlo method, is presented (authors).

  5. Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML

    DEFF Research Database (Denmark)

    Xie, Zhinan; Komatitsch, Dimitri; Martin, Roland

    2014-01-01

    with perfectly matched absorbing layers we introduce a computationally efficient boundary storage strategy by saving information along the interface between the CFS-UPML and the main domain only, thus avoiding the need to solve a backward wave propagation problem inside the CFS-UPML, which is known to be highly......In recent years, the application of time-domain adjoint methods to improve large, complex underground tomographic models at the regional scale has led to new challenges for the numerical simulation of forward or adjoint elastic wave propagation problems. An important challenge is to design...... convolution formulation of the complex-frequency-shifted unsplit-field perfectly matched layer (CFS-UPML) derived in previous work more flexible by providing a new treatment to analytically remove singular parameters in the formulation. We also extend this new formulation to 3-D. Furthermore, we derive...

  6. Generalized perturbation theory based on the method of cyclic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M.; Marleau, G. [Institut de Genie Nucleaire, Departement de Genie Physique, Ecole Polytechnique de Montreal, 2900 Boul. Edouard-Montpetit, Montreal, Que. H3T 1J4 (Canada)

    2006-07-01

    A GPT algorithm for estimation of eigenvalues and reaction-rate ratios is developed for the neutron transport problems in 2D fuel assemblies with isotropic scattering. In our study the GPT formulation is based on the integral transport equations. The mathematical relationship between the generalized flux importance and generalized source importance functions is applied to transform the generalized flux importance transport equations into the integro-differential forms. The resulting adjoint and generalized adjoint transport equations are then solved using the method of cyclic characteristics (MOCC). Because of the presence of negative adjoint sources, a biasing/decontamination scheme is applied to make the generalized adjoint functions positive in such a way that it can be used for the multigroup re-balance technique. To demonstrate the efficiency of the algorithms, perturbative calculations are performed on a 17 x 17 PWR lattice. (authors)

  7. Generalized perturbation theory based on the method of cyclic characteristics

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.; Marleau, G.

    2006-01-01

    A GPT algorithm for estimation of eigenvalues and reaction-rate ratios is developed for the neutron transport problems in 2D fuel assemblies with isotropic scattering. In our study the GPT formulation is based on the integral transport equations. The mathematical relationship between the generalized flux importance and generalized source importance functions is applied to transform the generalized flux importance transport equations into the integro-differential forms. The resulting adjoint and generalized adjoint transport equations are then solved using the method of cyclic characteristics (MOCC). Because of the presence of negative adjoint sources, a biasing/decontamination scheme is applied to make the generalized adjoint functions positive in such a way that it can be used for the multigroup re-balance technique. To demonstrate the efficiency of the algorithms, perturbative calculations are performed on a 17 x 17 PWR lattice. (authors)

  8. Application of the adjoint optimisation of shock control bump for ONERA-M6 wing

    Science.gov (United States)

    Nejati, A.; Mazaheri, K.

    2017-11-01

    This article is devoted to the numerical investigation of the shock wave/boundary layer interaction (SWBLI) as the main factor influencing the aerodynamic performance of transonic bumped airfoils and wings. The numerical analysis is conducted for the ONERA-M6 wing through a shock control bump (SCB) shape optimisation process using the adjoint optimisation method. SWBLI is analyzed for both clean and bumped airfoils and wings, and it is shown how the modified wave structure originating from upstream of the SCB reduces the wave drag, by improving the boundary layer velocity profile downstream of the shock wave. The numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm are used to find the optimum location and shape of the SCB for the ONERA-M6 airfoil and wing. Two different geometrical models are introduced for the 3D SCB, one with linear variations, and another with periodic variations. Both configurations result in drag reduction and improvement in the aerodynamic efficiency, but the periodic model is more effective. Although the three-dimensional flow structure involves much more complexities, the overall results are shown to be similar to the two-dimensional case.

  9. Adjoint method provides phase response functions for delay-induced oscillations.

    Science.gov (United States)

    Kotani, Kiyoshi; Yamaguchi, Ikuhiro; Ogawa, Yutaro; Jimbo, Yasuhiko; Nakao, Hiroya; Ermentrout, G Bard

    2012-07-27

    Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.

  10. Adjoint sensitivity analysis of the thermomechanical behavior of repositories

    International Nuclear Information System (INIS)

    Wilson, J.L.; Thompson, B.M.

    1984-01-01

    The adjoint sensitivity method is applied to thermomechanical models for the first time. The method provides an efficient and inexpensive answer to the question: how sensitive are thermomechanical predictions to assumed parameters. The answer is exact, in the sense that it yields exact derivatives of response measures to parameters, and approximate, in the sense that projections of the response fo other parameter assumptions are only first order correct. The method is applied to linear finite element models of thermomechanical behavior. Extensions to more complicated models are straight-forward but often laborious. An illustration of the method with a two-dimensional repository corridor model reveals that the chosen stress response measure was most sensitive to Poisson's ratio for the rock matrix

  11. Development and application of the automated Monte Carlo biasing procedure in SAS4

    International Nuclear Information System (INIS)

    Tang, J.S.; Broadhead, B.L.

    1995-01-01

    An automated approach for biasing Monte Carlo shielding calculations is described. In particular, adjoint fluxes from a one-dimensional discrete-ordinates calculation are used to generate biasing parameters for a three-dimensional Monte Carlo calculation. The automated procedure consisting of cross-section processing, adjoint flux determination, biasing parameter generation, and the initiation of a MORSE-SGC/S Monte Carlo calculation has been implemented in the SAS4 module of the SCALE computer code system. (author)

  12. Analyticity spaces of self-adjoint operators subjected to perturbations with applications to Hankel invariant distribution spaces

    NARCIS (Netherlands)

    Eijndhoven, van S.J.L.; Graaf, de J.

    1986-01-01

    A new theory of generalized functions has been developed by one of the authors (de Graaf). In this theory the analyticity domain of each positive self-adjoint unbounded operator $\\mathcal{A}$ in a Hilbert space $X$ is regarded as a test space denoted by $\\mathcal{S}_{x,\\mathcal{A}} $. In the first

  13. Finite-fault source inversion using adjoint methods in 3D heterogeneous media

    Science.gov (United States)

    Somala, Surendra Nadh; Ampuero, Jean-Paul; Lapusta, Nadia

    2018-04-01

    Accounting for lateral heterogeneities in the 3D velocity structure of the crust is known to improve earthquake source inversion, compared to results based on 1D velocity models which are routinely assumed to derive finite-fault slip models. The conventional approach to include known 3D heterogeneity in source inversion involves pre-computing 3D Green's functions, which requires a number of 3D wave propagation simulations proportional to the number of stations or to the number of fault cells. The computational cost of such an approach is prohibitive for the dense datasets that could be provided by future earthquake observation systems. Here, we propose an adjoint-based optimization technique to invert for the spatio-temporal evolution of slip velocity. The approach does not require pre-computed Green's functions. The adjoint method provides the gradient of the cost function, which is used to improve the model iteratively employing an iterative gradient-based minimization method. The adjoint approach is shown to be computationally more efficient than the conventional approach based on pre-computed Green's functions in a broad range of situations. We consider data up to 1 Hz from a Haskell source scenario (a steady pulse-like rupture) on a vertical strike-slip fault embedded in an elastic 3D heterogeneous velocity model. The velocity model comprises a uniform background and a 3D stochastic perturbation with the von Karman correlation function. Source inversions based on the 3D velocity model are performed for two different station configurations, a dense and a sparse network with 1 km and 20 km station spacing, respectively. These reference inversions show that our inversion scheme adequately retrieves the rise time when the velocity model is exactly known, and illustrates how dense coverage improves the inference of peak slip velocities. We investigate the effects of uncertainties in the velocity model by performing source inversions based on an incorrect

  14. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

    KAUST Repository

    Festa, Adriano; Gomes, Diogo A.; Machado Velho, Roberto

    2017-01-01

    Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

  15. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

    KAUST Repository

    Festa, Adriano

    2017-03-22

    Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

  16. Gradient flow coupling in the SU(2) gauge theory with two adjoint fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno

    2016-01-01

    We study SU(2) gauge theory with two fermion flavors in the adjoint representation. Using a clover improved HEX smeared action and the gradient flow running coupling allows us to simulate with larger lattice size than before. We find an infrared fixed point after a continuum extrapolation in the ...... in the range 4.3g∗24.8. We also measure the mass anomalous dimension and find the value 0.25γ∗0.28 at the fixed point....

  17. RIFIFI: Analytical calculation method of the critical condition and flux in a varied regions reactor by two-group theory and one dimension developed for the Mercury-Ferranti computer; Rififi: methode de calcul analytique de la condition critique et des flux d'une pile a regions variees en theorie a deux groupes et a une dimension programmee pour le calculateur electronique Mercury (Ferranti)

    Energy Technology Data Exchange (ETDEWEB)

    Amouyal, A; Bacher, P; Lago, B; Mengin, F L; Parker, E [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The calculation method presented in this report has been developed for the Mercury-Ferranti computer of the C.E.N.S. This calculation method allows to resolve the diffusion equations and continuity equations of flux and flow with two groups of neutrons and one dimension in spherical, cylindrical and linear geometry. In the cylindrical and linear configurations, we can take the height and extrapolated radius into account. The critical condition can be realised by varying linearly one or more parameters: k{sub {infinity}}, medium frontier, height or extrapolated radius. The calculation method enables also to calculate the flux, adjoint flux and various integrals. In the first part, it explains what is needed to know before using the method: data presentation, method possibilities, results presentation with some information about restrictions, accuracy and calculation time. The complete formulation of the calculation method is given in the second part. (M.P.)

  18. On the discrete spectrum of non-self-adjoint Schroedinger differential equation with an operator coefficient

    International Nuclear Information System (INIS)

    Bayramoglu, Mehmet; Tasci, Fatih; Zeynalov, Djafar

    2004-01-01

    We study the discrete part of spectrum of a singular non-self-adjoint second-order differential equation on a semiaxis with an operator coefficient. Its boundedness is proved. The result is applied to the Schroedinger boundary value problem -Δu+q(x)u=λ 2 u, u vertical bar ∂D =0, with a complex potential q(x) in an angular domain

  19. Full Waveform Adjoint Seismic Tomography of the Antarctic Plate

    Science.gov (United States)

    Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.

    2017-12-01

    Recent studies investigating the response and influence of the solid Earth on the evolution of the cryosphere demonstrate the need to account for 3D rheological structure to better predict ice sheet dynamics, stability, and future sea level impact, as well as to improve glacial isostatic adjustment models and more accurately measure ice mass loss. Critical rheological properties like mantle viscosity and lithospheric thickness may be estimated from shear wave velocity models that, for Antarctica, would ideally possess regional-scale resolution extending down to at least the base of the transition zone (i.e. 670 km depth). However, current global- and continental-scale seismic velocity models are unable to obtain both the resolution and spatial coverage necessary, do not take advantage of the full set of available Antarctic data, and, in most instance, employ traditional seismic imaging techniques that utilize limited seismogram information. We utilize 3-component earthquake waveforms from almost 300 Antarctic broadband seismic stations and 26 southern mid-latitude stations from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) between 2001-2003 and 2007-2016 to conduct a full-waveform adjoint inversion for Antarctica and surrounding regions of the Antarctic plate. Necessary forward and adjoint wavefield simulations are performed utilizing SPECFEM3D_GLOBE with the aid of the Texas Advanced Computing Center. We utilize phase observations from seismogram segments containing P, S, Rayleigh, and Love waves, including reflections and overtones, which are autonomously identified using FLEXWIN. The FLEXWIN analysis is carried out over a short (15-50 s) and long (initially 50-150 s) period band that target body waves, or body and surface waves, respectively. As our model is iteratively refined, the short-period corner of the long period band is gradually reduced to 25 s as the model converges over 20 linearized inversion iterations. We will briefly present this new high

  20. Big Data Challenges in Global Seismic 'Adjoint Tomography' (Invited)

    Science.gov (United States)

    Tromp, J.; Bozdag, E.; Krischer, L.; Lefebvre, M.; Lei, W.; Smith, J.

    2013-12-01

    The challenge of imaging Earth's interior on a global scale is closely linked to the challenge of handling large data sets. The related iterative workflow involves five distinct phases, namely, 1) data gathering and culling, 2) synthetic seismogram calculations, 3) pre-processing (time-series analysis and time-window selection), 4) data assimilation and adjoint calculations, 5) post-processing (pre-conditioning, regularization, model update). In order to implement this workflow on modern high-performance computing systems, a new seismic data format is being developed. The Adaptable Seismic Data Format (ASDF) is designed to replace currently used data formats with a more flexible format that allows for fast parallel I/O. The metadata is divided into abstract categories, such as "source" and "receiver", along with provenance information for complete reproducibility. The structure of ASDF is designed keeping in mind three distinct applications: earthquake seismology, seismic interferometry, and exploration seismology. Existing time-series analysis tool kits, such as SAC and ObsPy, can be easily interfaced with ASDF so that seismologists can use robust, previously developed software packages. ASDF accommodates an automated, efficient workflow for global adjoint tomography. Manually managing the large number of simulations associated with the workflow can rapidly become a burden, especially with increasing numbers of earthquakes and stations. Therefore, it is of importance to investigate the possibility of automating the entire workflow. Scientific Workflow Management Software (SWfMS) allows users to execute workflows almost routinely. SWfMS provides additional advantages. In particular, it is possible to group independent simulations in a single job to fit the available computational resources. They also give a basic level of fault resilience as the workflow can be resumed at the correct state preceding a failure. Some of the best candidates for our particular workflow

  1. A midway forward-adjoint coupling method for neutron and photon Monte Carlo transport

    International Nuclear Information System (INIS)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E.

    1999-01-01

    The midway Monte Carlo method for calculating detector responses combines a forward and an adjoint Monte Carlo calculation. In both calculations, particle scores are registered at a surface to be chosen by the user somewhere between the source and detector domains. The theory of the midway response determination is developed within the framework of transport theory for external sources and for criticality theory. The theory is also developed for photons, which are generated at inelastic scattering or capture of neutrons. In either the forward or the adjoint calculation a so-called black absorber technique can be applied; i.e., particles need not be followed after passing the midway surface. The midway Monte Carlo method is implemented in the general-purpose MCNP Monte Carlo code. The midway Monte Carlo method is demonstrated to be very efficient in problems with deep penetration, small source and detector domains, and complicated streaming paths. All the problems considered pose difficult variance reduction challenges. Calculations were performed using existing variance reduction methods of normal MCNP runs and using the midway method. The performed comparative analyses show that the midway method appears to be much more efficient than the standard techniques in an overwhelming majority of cases and can be recommended for use in many difficult variance reduction problems of neutral particle transport

  2. Determination of the potential for fundamental- and adjoint-representation sources in SU(2) in three dimensions

    International Nuclear Information System (INIS)

    Mawhinney, R.D.

    1990-01-01

    Pure SU(2) lattice gauge theory in three dimensions is studied by Monte Carlo simulation with a determination of the potential between fundamental- and adjoint-representation sources as a major goal. A 32 3 lattice is used and Wilson loops up to 16 by 16 are measured using a modification to the standard multihit variance reduction which improves the statistics by at least a factor of 3 at β=6.0. The integrated autocorrelation times measured for the loops show a peak for loops of size β by β. The fundamental- and adjoint-representation potentials are seen to have the same functional form to very high accuracy and their numerical values are in the ratio of their Casimir operators. The string tension is extracted and scaling is seen to within a few percent over a range of couplings which correspond to a factor of 2 change in the glueball mass. Correlated errors have been taken into account in the extraction of the potentials from the Wilson-loop values

  3. Fugitive emission source characterization using a gradient-based optimization scheme and scalar transport adjoint

    Science.gov (United States)

    Brereton, Carol A.; Joynes, Ian M.; Campbell, Lucy J.; Johnson, Matthew R.

    2018-05-01

    Fugitive emissions are important sources of greenhouse gases and lost product in the energy sector that can be difficult to detect, but are often easily mitigated once they are known, located, and quantified. In this paper, a scalar transport adjoint-based optimization method is presented to locate and quantify unknown emission sources from downstream measurements. This emission characterization approach correctly predicted locations to within 5 m and magnitudes to within 13% of experimental release data from Project Prairie Grass. The method was further demonstrated on simulated simultaneous releases in a complex 3-D geometry based on an Alberta gas plant. Reconstructions were performed using both the complex 3-D transient wind field used to generate the simulated release data and using a sequential series of steady-state RANS wind simulations (SSWS) representing 30 s intervals of physical time. Both the detailed transient and the simplified wind field series could be used to correctly locate major sources and predict their emission rates within 10%, while predicting total emission rates from all sources within 24%. This SSWS case would be much easier to implement in a real-world application, and gives rise to the possibility of developing pre-computed databases of both wind and scalar transport adjoints to reduce computational time.

  4. A greedy heuristic using adjoint functions for the optimization of seed and needle configurations in prostate seed implant

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Sua [Department of Radiation Oncology, Duke University Medical Center, Box 3295, Durham, NC 27710 (United States); Kowalok, Michael E [Department of Radiation Oncology, Virginia Commonwealth University Health System, 401 College St., PO Box 980058, Richmond, VA 23298-0058 (United States); Thomadsen, Bruce R [Department of Medical Physics, University of Wisconsin-Madison, 1530 MSC, 1300 University Ave., Madison, WI 53706 (United States); Henderson, Douglass L [Department of Engineering Physics, University of Wisconsin-Madison, 153 Engineering Research Bldg., 1500 Engineering Dr., Madison, WI 53706 (United States)

    2007-02-07

    We continue our work on the development of an efficient treatment-planning algorithm for prostate seed implants by incorporation of an automated seed and needle configuration routine. The treatment-planning algorithm is based on region of interest (ROI) adjoint functions and a greedy heuristic. As defined in this work, the adjoint function of an ROI is the sensitivity of the average dose in the ROI to a unit-strength brachytherapy source at any seed position. The greedy heuristic uses a ratio of target and critical structure adjoint functions to rank seed positions according to their ability to irradiate the target ROI while sparing critical structure ROIs. Because seed positions are ranked in advance and because the greedy heuristic does not modify previously selected seed positions, the greedy heuristic constructs a complete seed configuration quickly. Isodose surface constraints determine the search space and the needle constraint limits the number of needles. This study additionally includes a methodology that scans possible combinations of these constraint values automatically. This automated selection scheme saves the user the effort of manually searching constraint values. With this method, clinically acceptable treatment plans are obtained in less than 2 min. For comparison, the branch-and-bound method used to solve a mixed integer-programming model took close to 2.5 h to arrive at a feasible solution. Both methods achieved good treatment plans, but the speedup provided by the greedy heuristic was a factor of approximately 100. This attribute makes this algorithm suitable for intra-operative real-time treatment planning.

  5. A greedy heuristic using adjoint functions for the optimization of seed and needle configurations in prostate seed implant

    International Nuclear Information System (INIS)

    Yoo, Sua; Kowalok, Michael E; Thomadsen, Bruce R; Henderson, Douglass L

    2007-01-01

    We continue our work on the development of an efficient treatment-planning algorithm for prostate seed implants by incorporation of an automated seed and needle configuration routine. The treatment-planning algorithm is based on region of interest (ROI) adjoint functions and a greedy heuristic. As defined in this work, the adjoint function of an ROI is the sensitivity of the average dose in the ROI to a unit-strength brachytherapy source at any seed position. The greedy heuristic uses a ratio of target and critical structure adjoint functions to rank seed positions according to their ability to irradiate the target ROI while sparing critical structure ROIs. Because seed positions are ranked in advance and because the greedy heuristic does not modify previously selected seed positions, the greedy heuristic constructs a complete seed configuration quickly. Isodose surface constraints determine the search space and the needle constraint limits the number of needles. This study additionally includes a methodology that scans possible combinations of these constraint values automatically. This automated selection scheme saves the user the effort of manually searching constraint values. With this method, clinically acceptable treatment plans are obtained in less than 2 min. For comparison, the branch-and-bound method used to solve a mixed integer-programming model took close to 2.5 h to arrive at a feasible solution. Both methods achieved good treatment plans, but the speedup provided by the greedy heuristic was a factor of approximately 100. This attribute makes this algorithm suitable for intra-operative real-time treatment planning

  6. A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction Part II : analysis of convergence

    NARCIS (Netherlands)

    Bourne, D.P.; Elman, H.; Osborn, J.E.

    2009-01-01

    This paper is the second part of a two-part paper treating a non-self-adjoint quadratic eigenvalue problem for the linear stability of solutions to the Taylor-Couette problem for flow of a viscous liquid in a deformable cylinder, with the cylinder modelled as a membrane. The first part formulated

  7. GENP-2, Program System for Integral Reactor Perturbation

    International Nuclear Information System (INIS)

    Boioli, A.; Cecchini, G.P.

    1975-01-01

    1 - Description of problem or function: GENP-2 is a system of programs that use 'generalized perturbation theory' to calculate the perturbations of reactor integral characteristics which can be expressed by means of ratios between linear or bilinear functionals of the real and/or adjoint fluxes (e.g. reaction rate ratios), due to cross section perturbations. 2 - Method of solution: GENP-2 consists of the following codes: DDV, SORCI, CIAP-PMN and GLOBP-2D. DDV calculates the real or adjoint fluxes and power distribution using multigroup diffusion theory in 2-dimensions. SORCI uses the fluxes from DDV to calculate the real and/or adjoint general perturbation sources. CIAP-PMN reads the sources from SORCI and uses them in the real or adjoint generalised importance calculations (2 dimensions, multi- group diffusion). GLOBP-2D uses the importance calculated by CIAP-PMN, and the fluxes calculated by DDV, in generalised perturbation expressions to calculate the perturbation in the quantity of interest. 3 - Restrictions on the complexity of the problem: DDV although variably dimensioned has the following restrictions: - max. number of mesh points 6400; - max. number of mesh points in 1-dimension 81; - max. number of regions 6400; - max. number of energy groups 100; - if power distribution calculated, product of number of groups and number of regions 2500. The other programs have the same restrictions if applicable

  8. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    Science.gov (United States)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  9. Spectral multipliers on spaces of distributions associated with non-negative self-adjoint operators

    DEFF Research Database (Denmark)

    Georgiadis, Athanasios; Nielsen, Morten

    2018-01-01

    and Triebel–Lizorkin spaces with full range of indices is established too. As an application, we obtain equivalent norm characterizations for the spaces mentioned above. Non-classical spaces as well as Lebesgue, Hardy, (generalized) Sobolev and Lipschitz spaces are also covered by our approach.......We consider spaces of homogeneous type associated with a non-negative self-adjoint operator whose heat kernel satisfies certain upper Gaussian bounds. Spectral multipliers are introduced and studied on distributions associated with this operator. The boundedness of spectral multipliers on Besov...

  10. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  11. Integrable lattices and their sublattices: From the discrete Moutard (discrete Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme

    International Nuclear Information System (INIS)

    Doliwa, A.; Grinevich, P.; Nieszporski, M.; Santini, P. M.

    2007-01-01

    We present the sublattice approach, a procedure to generate, from a given integrable lattice, a sublattice which inherits its integrability features. We consider, as illustrative example of this approach, the discrete Moutard 4-point equation and its sublattice, the self-adjoint 5-point scheme on the star of the square lattice, which are relevant in the theory of the integrable discrete geometries and in the theory of discrete holomorphic and harmonic functions (in this last context, the discrete Moutard equation is called discrete Cauchy-Riemann equation). Therefore an integrable, at one energy, discretization of elliptic two-dimensional operators is considered. We use the sublattice point of view to derive, from the Darboux transformations and superposition formulas of the discrete Moutard equation, the Darboux transformations and superposition formulas of the self-adjoint 5-point scheme. We also construct, from algebro-geometric solutions of the discrete Moutard equation, algebro-geometric solutions of the self-adjoint 5-point scheme. In particular, we show that the corresponding restrictions on the finite-gap data are of the same type as those for the fixed energy problem for the two-dimensional Schroedinger operator. We finally use these solutions to construct explicit examples of discrete holomorphic and harmonic functions, as well as examples of quadrilateral surfaces in R 3

  12. Asynchronous Two-Level Checkpointing Scheme for Large-Scale Adjoints in the Spectral-Element Solver Nek5000

    Energy Technology Data Exchange (ETDEWEB)

    Schanen, Michel; Marin, Oana; Zhang, Hong; Anitescu, Mihai

    2016-01-01

    Adjoints are an important computational tool for large-scale sensitivity evaluation, uncertainty quantification, and derivative-based optimization. An essential component of their performance is the storage/recomputation balance in which efficient checkpointing methods play a key role. We introduce a novel asynchronous two-level adjoint checkpointing scheme for multistep numerical time discretizations targeted at large-scale numerical simulations. The checkpointing scheme combines bandwidth-limited disk checkpointing and binomial memory checkpointing. Based on assumptions about the target petascale systems, which we later demonstrate to be realistic on the IBM Blue Gene/Q system Mira, we create a model of the expected performance of our checkpointing approach and validate it using the highly scalable Navier-Stokes spectralelement solver Nek5000 on small to moderate subsystems of the Mira supercomputer. In turn, this allows us to predict optimal algorithmic choices when using all of Mira. We also demonstrate that two-level checkpointing is significantly superior to single-level checkpointing when adjoining a large number of time integration steps. To our knowledge, this is the first time two-level checkpointing had been designed, implemented, tuned, and demonstrated on fluid dynamics codes at large scale of 50k+ cores.

  13. Flux breaking of E6 in the generalised Hosotani model

    International Nuclear Information System (INIS)

    McLachlan, A.

    1989-01-01

    To break gauge symmetries in the Hosotani model, it is necessary to include periodic (Dirac) fermions and/or antiperiodic scalars which transform as single-valued faithful representations of the adjoint group. With this in mind, an E 6 Yang-Mills theory minimally coupled to periodic adjoint and antiperiodic fundamental fermions is examined. On breaking, even though the full rank six residual group depends on the numbers of spacetime dimensions and fermion families, the fundamental fermions surviving compactification only transform non-trivially under the omnipresent [SU(3)] 2 or SU(6) subgroup factors. (orig.)

  14. Data and Workflow Management Challenges in Global Adjoint Tomography

    Science.gov (United States)

    Lei, W.; Ruan, Y.; Smith, J. A.; Modrak, R. T.; Orsvuran, R.; Krischer, L.; Chen, Y.; Balasubramanian, V.; Hill, J.; Turilli, M.; Bozdag, E.; Lefebvre, M. P.; Jha, S.; Tromp, J.

    2017-12-01

    It is crucial to take the complete physics of wave propagation into account in seismic tomography to further improve the resolution of tomographic images. The adjoint method is an efficient way of incorporating 3D wave simulations in seismic tomography. However, global adjoint tomography is computationally expensive, requiring thousands of wavefield simulations and massive data processing. Through our collaboration with the Oak Ridge National Laboratory (ORNL) computing group and an allocation on Titan, ORNL's GPU-accelerated supercomputer, we are now performing our global inversions by assimilating waveform data from over 1,000 earthquakes. The first challenge we encountered is dealing with the sheer amount of seismic data. Data processing based on conventional data formats and processing tools (such as SAC), which are not designed for parallel systems, becomes our major bottleneck. To facilitate the data processing procedures, we designed the Adaptive Seismic Data Format (ASDF) and developed a set of Python-based processing tools to replace legacy FORTRAN-based software. These tools greatly enhance reproducibility and accountability while taking full advantage of highly parallel system and showing superior scaling on modern computational platforms. The second challenge is that the data processing workflow contains more than 10 sub-procedures, making it delicate to handle and prone to human mistakes. To reduce human intervention as much as possible, we are developing a framework specifically designed for seismic inversion based on the state-of-the art workflow management research, specifically the Ensemble Toolkit (EnTK), in collaboration with the RADICAL team from Rutgers University. Using the initial developments of the EnTK, we are able to utilize the full computing power of the data processing cluster RHEA at ORNL while keeping human interaction to a minimum and greatly reducing the data processing time. Thanks to all the improvements, we are now able to

  15. Tracking a Severe Pollution Event in Beijing in December 2016 with the GRAPES-CUACE Adjoint Model

    Science.gov (United States)

    Wang, Chao; An, Xingqin; Zhai, Shixian; Sun, Zhaobin

    2018-02-01

    We traced the adjoint sensitivity of a severe pollution event in December 2016 in Beijing using the adjoint model of the GRAPES-CUACE (Global/Regional Assimilation and Prediction System coupled with the China Meteorological Administration Unified Atmospheric Chemistry Environmental Forecasting System). The key emission sources and periods affecting this severe pollution event are analyzed. For comaprison, we define 2000 Beijing Time 3 December 2016 as the objective time when PM2.5 reached the maximum concentration in Beijing. It is found that the local hourly sensitivity coefficient amounts to a peak of 9.31 μg m-3 just 1 h before the objective time, suggesting that PM2.5 concentration responds rapidly to local emissions. The accumulated sensitivity coefficient in Beijing is large during the 20-h period prior to the objective time, showing that local emissions are the most important in this period. The accumulated contribution rates of emissions from Beijing, Tianjin, Hebei, and Shanxi are 34.2%, 3.0%, 49.4%, and 13.4%, respectively, in the 72-h period before the objective time. The evolution of hourly sensitivity coefficient shows that the main contribution from the Tianjin source occurs 1-26 h before the objective time and its peak hourly contribution is 0.59 μg m-3 at 4 h before the objective time. The main contributions of the Hebei and Shanxi emission sources occur 1-54 and 14-53 h, respectively, before the objective time and their hourly sensitivity coefficients both show periodic fluctuations. The Hebei source shows three sensitivity coefficient peaks of 3.45, 4.27, and 0.71 μg m-3 at 4, 16, and 38 h before the objective time, respectively. The sensitivity coefficient of the Shanxi source peaks twice, with values of 1.41 and 0.64 μg m-3 at 24 and 45 h before the objective time, respectively. Overall, the adjoint model is effective in tracking the crucial sources and key periods of emissions for the severe pollution event.

  16. One-loop adjoint masses for non-supersymmetric intersecting branes

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, P. [Technische Univ., Vienna (Austria). 1. Inst. fuer Theoretische Physik; Antoniadis, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Benakli, K. [CNRS, UPMC Univ. Paris (France). Lab. de Physique Theorique et Haute Energies; Goodsell, M.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vichi, A. [Institute de Theorie des Phenomenes Physiques, EPFL, Lausanne (Switzerland)

    2011-05-15

    We consider breaking of supersymmetry in intersecting D-brane configurations by slight deviation of the angles from their supersymmetric values. We compute the masses generated by radiative corrections for the adjoint scalars on the brane world-volumes. In the open string channel, the string two-point function receives contributions only from the infrared and the ultraviolet limits. The latter is due to tree-level closed string uncanceled NS-NS tadpoles, which we explicitly reproduce from the effective Born-Infeld action. On the other hand, the infrared region reproduces the one-loop mediation of supersymmetry breaking in the effective gauge theory, via messengers and their Kaluza-Klein excitations. In the toroidal set-up considered here, it receives contributions only from N {approx} 4 and N {approx} 2 supersymmetric configurations, and thus always leads at leading order to a tachyonic direction, in agreement with effective field theory expectations. (orig.)

  17. Non-Abelian flux tubes in N=1 SQCD: Supersizing world-sheet supersymmetry

    International Nuclear Information System (INIS)

    Shifman, M.; Yung, A.

    2005-01-01

    We consider non-Abelian 1/2 Bogomol'nyi-Prasad-Sommerfield (BPS) flux tubes (strings) in a deformed N=2 supersymmetric gauge theory, with mass terms μ 1,2 of the adjoint fields breaking N=2 down to N=1. The main feature of the non-Abelian strings is the occurrence of orientational moduli associated with the possibility of rotations of their color fluxes inside a global SU(N) group. The bulk four-dimensional theory has four supercharges; half-criticality of the non-Abelian strings would imply then N=1 supersymmetry on the world sheet, i.e. two supercharges. In fact, superalgebra of the reduced moduli space has four supercharges. Internal dynamics of the orientational moduli are described by a two-dimensional CP(N-1) model on the string world sheet. We focus mainly on the SU(2) case, i.e. CP(1) world-sheet theory. We show that non-Abelian BPS strings exist for all values of μ 1,2 . The low-energy theory of moduli is indeed CP(1), with four supercharges, in a wide region of breaking parameters μ 1,2 . Only in the limit of very large μ 1,2 , above some critical value does the N=2 world-sheet supersymmetry break down to N=1. We observe 'supersymmetry emergence' for the flux-tube junction (confined monopole): The kink-monopole is half-critical considered from the standpoint of the world-sheet CP(1) model (i.e. two supercharges conserved), while in the bulk N=1 theory there is no monopole central charge at all

  18. Four-loop vacuum energy density of the SU(Nc) + adjoint Higgs theory

    International Nuclear Information System (INIS)

    Kajantie, K.; Rummukainen, K.; Schroder, Y.; Laine, M.

    2003-01-01

    We compute the dimensionally regularised four-loop vacuum energy density of the SU(N c ) gauge + adjoint Higgs theory, in the disordered phase. 'Scalarisation', or reduction to a small set of master integrals of the type appearing in scalar field theories, is carried out in d dimensions, employing general partial integration identities through an algorithm developed by Laporta, while the remaining scalar integrals are evaluated in d=3-2ε dimensions, by expanding in ε 6 ln(1/g)), O(g 6 ) to the pressure, while the general methods are applicable also to studies of critical phenomena in QED-like statistical physics systems. (author)

  19. Application of Adjoint Method and Spectral-Element Method to Tomographic Inversion of Regional Seismological Structure Beneath Japanese Islands

    Science.gov (United States)

    Tsuboi, S.; Miyoshi, T.; Obayashi, M.; Tono, Y.; Ando, K.

    2014-12-01

    Recent progress in large scale computing by using waveform modeling technique and high performance computing facility has demonstrated possibilities to perform full-waveform inversion of three dimensional (3D) seismological structure inside the Earth. We apply the adjoint method (Liu and Tromp, 2006) to obtain 3D structure beneath Japanese Islands. First we implemented Spectral-Element Method to K-computer in Kobe, Japan. We have optimized SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002) by using OpenMP so that the code fits hybrid architecture of K-computer. Now we could use 82,134 nodes of K-computer (657,072 cores) to compute synthetic waveform with about 1 sec accuracy for realistic 3D Earth model and its performance was 1.2 PFLOPS. We use this optimized SPECFEM3D_GLOBE code and take one chunk around Japanese Islands from global mesh and compute synthetic seismograms with accuracy of about 10 second. We use GAP-P2 mantle tomography model (Obayashi et al., 2009) as an initial 3D model and use as many broadband seismic stations available in this region as possible to perform inversion. We then use the time windows for body waves and surface waves to compute adjoint sources and calculate adjoint kernels for seismic structure. We have performed several iteration and obtained improved 3D structure beneath Japanese Islands. The result demonstrates that waveform misfits between observed and theoretical seismograms improves as the iteration proceeds. We now prepare to use much shorter period in our synthetic waveform computation and try to obtain seismic structure for basin scale model, such as Kanto basin, where there are dense seismic network and high seismic activity. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We used F-net seismograms of the National Research Institute for Earth Science and Disaster Prevention.

  20. Adjoint Methods for Adjusting Three-Dimensional Atmosphere and Surface Properties to Fit Multi-Angle Multi-Pixel Polarimetric Measurements

    Science.gov (United States)

    Martin, William G.; Cairns, Brian; Bal, Guillaume

    2014-01-01

    This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.

  1. Running coupling in SU(2) gauge theory with two adjoint fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari

    2016-01-01

    We study SU(2) gauge theory with two Dirac fermions in the adjoint representation of the gauge group on the lattice. Using clover improved Wilson fermion action with hypercubic truncated stout smearing we perform simulations at larger coupling than before. We measure the evolution of the coupling...... with the existence of a fixed point in the interval 2.2g∗23. We also measure the anomalous dimension and find that its value at the fixed point is γ∗≃0.2±0.03....... constant using the step scaling method with the Schrödinger functional and study the remaining discretization effects. At weak coupling we observe significant discretization effects, which make it difficult to obtain a fully controlled continuum limit. Nevertheless, the data remains consistent...

  2. Adjoint Sensitivity Analysis of Radiative Transfer Equation: Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Scattering Atmospheres in Thermal IR

    Science.gov (United States)

    Ustinov, E.

    1999-01-01

    Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.

  3. Spectral Solutions of Self-adjoint Elliptic Problems with Immersed Interfaces

    International Nuclear Information System (INIS)

    Auchmuty, G.; Klouček, P.

    2011-01-01

    This paper describes a spectral representation of solutions of self-adjoint elliptic problems with immersed interfaces. The interface is assumed to be a simple non-self-intersecting closed curve that obeys some weak regularity conditions. The problem is decomposed into two problems, one with zero interface data and the other with zero exterior boundary data. The problem with zero interface data is solved by standard spectral methods. The problem with non-zero interface data is solved by introducing an interface space H Γ (Ω) and constructing an orthonormal basis of this space. This basis is constructed using a special class of orthogonal eigenfunctions analogously to the methods used for standard trace spaces by Auchmuty (SIAM J. Math. Anal. 38, 894–915, 2006). Analytical and numerical approximations of these eigenfunctions are described and some simulations are presented.

  4. Objective function choice for control of a thermocapillary flow using an adjoint-based control strategy

    International Nuclear Information System (INIS)

    Muldoon, Frank H.; Kuhlmann, Hendrik C.

    2015-01-01

    Highlights: • Suppression of oscillations in a thermocapillary flow is addressed by optimization. • The gradient of the objective function is obtained by solving the adjoint equations. • The issue of choosing an objective function is investigated. - Abstract: The problem of suppressing flow oscillations in a thermocapillary flow is addressed using a gradient-based control strategy. The physical problem addressed is the “open boat” process of crystal growth, the flow in which is driven by thermocapillary and buoyancy effects. The problem is modeled by the two-dimensional unsteady incompressible Navier–Stokes and energy equations under the Boussinesq approximation. The goal of the control is to suppress flow oscillations which arise when the driving forces are such that the flow becomes unsteady. The control is a spatially and temporally varying temperature gradient boundary condition at the free surface. The control which minimizes the flow oscillations is found using a conjugate gradient method, where the gradient of the objective function with respect to the control variables is obtained from solving a set of adjoint equations. The issue of choosing an objective function that can be both optimized in a computationally efficient manner and optimization of which provides control that damps the flow oscillations is investigated. Almost complete suppression of the flow oscillations is obtained for certain choices of the objective function.

  5. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    NARCIS (Netherlands)

    Nievaart, V.A.; Legrady, D.; Moss, R.L.; Kloosterman, J.L.; Van der Hagen, T.H.; Van Dam, H.

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo

  6. Importance weighting of local flux measurements to improve reactivity predictions in nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Dulla, Sandra; Hoh, Siew Sin; Nervo, Marta; Ravetto, Piero [Politecnico di Torino, Dipt. Energia (Italy)

    2015-07-15

    The reactivity monitoring is a key aspect for the safe operation of nuclear reactors, especially for subcritical source-driven systems. Various methods are available for both, off-line and on-line reactivity determination from direct measurements carried out on the reactor. Usually the methods are based on the inverse point kinetic model applied to signals from neutron detectors and results may be severely affected by space and spectral effects. Such effects need to be compensated and correction procedures have to be applied. In this work, a new approach is proposed, by using the full information from different local measurements to generate a global signal through a proper weighting of the signals provided by single neutron detectors. A weighting techique based on the use of the adjoint flux proves to be efficient in improving the prediction capability of inverse techniques. The idea is applied to the recently developed algorithm, named MAρTA, that can be used in both off-line and online modes.

  7. An inverse problem strategy based on forward model evaluations: Gradient-based optimization without adjoint solves

    Energy Technology Data Exchange (ETDEWEB)

    Aguilo Valentin, Miguel Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-01

    This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.

  8. Development of inverse-planning system for neutron capture therapy

    International Nuclear Information System (INIS)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Maruo, Takeshi

    2006-01-01

    To lead proper irradiation condition effectively, Japan Atomic Energy Agency (JAEA) is developing an inverse-planning system for neutron capture therapy (NCT-IPS) based on the JAEA computational dosimetry system (JCDS) for BNCT. The leading methodology of an optimum condition in the NCT-IPS has been applied spatial channel theory with adjoint flux solution of Botzman transport. By analyzing the results obtained from the adjoint flux calculations according to the theory, optimum incident point of the beam against the patient can be found, and neutron spectrum of the beam which can generate ideal distribution of neutron flux around tumor region can be determined. The conceptual design of the NCT-IPS was investigated, and prototype of NCT-IPS with JCDS is being developed. (author)

  9. Sources and processes contributing to nitrogen deposition: an adjoint model analysis applied to biodiversity hotspots worldwide.

    Science.gov (United States)

    Paulot, Fabien; Jacob, Daniel J; Henze, Daven K

    2013-04-02

    Anthropogenic enrichment of reactive nitrogen (Nr) deposition is an ecological concern. We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to identify the sources and processes that control Nr deposition to an ensemble of biodiversity hotspots worldwide and two U.S. national parks (Cuyahoga and Rocky Mountain). We find that anthropogenic sources dominate deposition at all continental sites and are mainly regional (less than 1000 km) in origin. In Hawaii, Nr supply is controlled by oceanic emissions of ammonia (50%) and anthropogenic sources (50%), with important contributions from Asia and North America. Nr deposition is also sensitive in complicated ways to emissions of SO2, which affect Nr gas-aerosol partitioning, and of volatile organic compounds (VOCs), which affect oxidant concentrations and produce organic nitrate reservoirs. For example, VOC emissions generally inhibit deposition of locally emitted NOx but significantly increase Nr deposition downwind. However, in polluted boreal regions, anthropogenic VOC emissions can promote Nr deposition in winter. Uncertainties in chemical rate constants for OH + NO2 and NO2 hydrolysis also complicate the determination of source-receptor relationships for polluted sites in winter. Application of our adjoint sensitivities to the representative concentration pathways (RCPs) scenarios for 2010-2050 indicates that future decreases in Nr deposition due to NOx emission controls will be offset by concurrent increases in ammonia emissions from agriculture.

  10. Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography

    Science.gov (United States)

    Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.

    2015-12-01

    We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.

  11. Open and closed string worldsheets from free large N gauge theories with adjoint and fundamental matter

    International Nuclear Information System (INIS)

    Yaakov, Itamar

    2006-01-01

    We extend Gopakumar's prescription for constructing closed string worldsheets from free field theory diagrams with adjoint matter to open and closed string worldsheets arising from free field theories with fundamental matter. We describe the extension of the gluing mechanism and the electrical circuit analogy to fundamental matter. We discuss the generalization of the existence and uniqueness theorem of Strebel differentials to open Riemann surfaces. Two examples are computed of correlators containing fundamental matter, and the resulting worldsheet OPE's are computed. Generic properties of Gopakumar's construction are discussed

  12. Fully automatic time-window selection using machine learning for global adjoint tomography

    Science.gov (United States)

    Chen, Y.; Hill, J.; Lei, W.; Lefebvre, M. P.; Bozdag, E.; Komatitsch, D.; Tromp, J.

    2017-12-01

    Selecting time windows from seismograms such that the synthetic measurements (from simulations) and measured observations are sufficiently close is indispensable in a global adjoint tomography framework. The increasing amount of seismic data collected everyday around the world demands "intelligent" algorithms for seismic window selection. While the traditional FLEXWIN algorithm can be "automatic" to some extent, it still requires both human input and human knowledge or experience, and thus is not deemed to be fully automatic. The goal of intelligent window selection is to automatically select windows based on a learnt engine that is built upon a huge number of existing windows generated through the adjoint tomography project. We have formulated the automatic window selection problem as a classification problem. All possible misfit calculation windows are classified as either usable or unusable. Given a large number of windows with a known selection mode (select or not select), we train a neural network to predict the selection mode of an arbitrary input window. Currently, the five features we extract from the windows are its cross-correlation value, cross-correlation time lag, amplitude ratio between observed and synthetic data, window length, and minimum STA/LTA value. More features can be included in the future. We use these features to characterize each window for training a multilayer perceptron neural network (MPNN). Training the MPNN is equivalent to solve a non-linear optimization problem. We use backward propagation to derive the gradient of the loss function with respect to the weighting matrices and bias vectors and use the mini-batch stochastic gradient method to iteratively optimize the MPNN. Numerical tests show that with a careful selection of the training data and a sufficient amount of training data, we are able to train a robust neural network that is capable of detecting the waveforms in an arbitrary earthquake data with negligible detection error

  13. Application of the variational method for calculation of neutron spectra and group constants - Master thesis

    International Nuclear Information System (INIS)

    Milosevic, M.

    1979-01-01

    One-dimensional variational method for cylindrical configuration was applied for calculating group constants, together with effects of elastic slowing down, anisotropic elastic scattering, inelastic scattering, heterogeneous resonance absorption with the aim to include the presence of a number of different isotopes and effects of neutron leakage from the reactor core. Neutron flux shape P 3 and adjoint function are proposed in order to enable calculation of smaller size reactors and inclusion of heterogeneity effects by cell calculations. Microscopic multigroup constants were prepared based on the UKNDL data library. Analytical-numerical approach was applied for solving the equations of the P 3 approximation to obtain neutron flux moments and adjoint functions

  14. Full Seismic Waveform Tomography of the Japan region using Adjoint Methods

    Science.gov (United States)

    Steptoe, Hamish; Fichtner, Andreas; Rickers, Florian; Trampert, Jeannot

    2013-04-01

    We present a full-waveform tomographic model of the Japan region based on spectral-element wave propagation, adjoint techniques and seismic data from dense station networks. This model is intended to further our understanding of both the complex regional tectonics and the finite rupture processes of large earthquakes. The shallow Earth structure of the Japan region has been the subject of considerable tomographic investigation. The islands of Japan exist in an area of significant plate complexity: subduction related to the Pacific and Philippine Sea plates is responsible for the majority of seismicity and volcanism of Japan, whilst smaller micro-plates in the region, including the Okhotsk, and Okinawa and Amur, part of the larger North America and Eurasia plates respectively, contribute significant local intricacy. In response to the need to monitor and understand the motion of these plates and their associated faults, numerous seismograph networks have been established, including the 768 station high-sensitivity Hi-net network, 84 station broadband F-net and the strong-motion seismograph networks K-net and KiK-net in Japan. We also include the 55 station BATS network of Taiwan. We use this exceptional coverage to construct a high-resolution model of the Japan region from the full-waveform inversion of over 15,000 individual component seismograms from 53 events that occurred between 1997 and 2012. We model these data using spectral-element simulations of seismic wave propagation at a regional scale over an area from 120°-150°E and 20°-50°N to a depth of around 500 km. We quantify differences between observed and synthetic waveforms using time-frequency misfits allowing us to separate both phase and amplitude measurements whilst exploiting the complete waveform at periods of 15-60 seconds. Fréchet kernels for these misfits are calculated via the adjoint method and subsequently used in an iterative non-linear conjugate-gradient optimization. Finally, we employ

  15. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  16. Validation of a new midway forward-adjoint coupling option in MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-09-01

    The new midway Monte Carlo is based on the coupling of scores from a forward and an adjoint Monte Carlo calculation on a surface in between the source and the detector. The method is implemented in MCNP. The utilization of the method is fairly straight-forward and does not require any substantial expertise. The midway Monte Carlo method was tested against the gamma-ray skyshine MCNP benchmark problem. This problem involves deep penetration and streaming along complicated paths. The midway method supplied results, which agree with the results of the reference calculation within the limits of the estimated statistical uncertainties. The efficiency of the easy-to-implement midway calculation is higher than the efficiency of the reference calculation which is already optimized by use of an importance function. The midway method proves to be efficient in problems with complicated streaming paths towards small detectors. (author)

  17. Validation of a new midway forward-adjoint coupling option in MCNP

    International Nuclear Information System (INIS)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E.

    1996-01-01

    The new midway Monte Carlo is based on the coupling of scores from a forward and an adjoint Monte Carlo calculation on a surface in between the source and the detector. The method is implemented in MCNP. The utilization of the method is fairly straight-forward and does not require any substantial expertise. The midway Monte Carlo method was tested against the gamma-ray skyshine MCNP benchmark problem. This problem involves deep penetration and streaming along complicated paths. The midway method supplied results, which agree with the results of the reference calculation within the limits of the estimated statistical uncertainties. The efficiency of the easy-to-implement midway calculation is higher than the efficiency of the reference calculation which is already optimized by use of an importance function. The midway method proves to be efficient in problems with complicated streaming paths towards small detectors. (author)

  18. Inversion of CO and NOx emissions using the adjoint of the IMAGES model

    Directory of Open Access Journals (Sweden)

    J.-F. Müller

    2005-01-01

    Full Text Available We use ground-based observations of CO mixing ratios and vertical column abundances together with tropospheric NO2 columns from the GOME satellite instrument as constraints for improving the global annual emission estimates of CO and NOx for the year 1997. The agreement between concentrations calculated by the global 3-dimensional CTM IMAGES and the observations is optimized using the adjoint modelling technique, which allows to invert for CO and NOx fluxes simultaneously, taking their chemical interactions into account. Our analysis quantifies a total of 39 flux parameters, comprising anthropogenic and biomass burning sources over large continental regions, soil and lightning emissions of NOx, biogenic emissions of CO and non-methane hydrocarbons, as well as the deposition velocities of both CO and NOx. Comparison between observed, prior and optimized CO mixing ratios at NOAA/CMDL sites shows that the inversion performs well at the northern mid- and high latitudes, and that it is less efficient in the Southern Hemisphere, as expected due to the scarsity of measurements over this part of the globe. The inversion, moreover, brings the model much closer to the measured NO2 columns over all regions. Sensitivity tests show that anthropogenic sources exhibit weak sensitivity to changes of the a priori errors associated to the bottom-up inventory, whereas biomass burning sources are subject to a strong variability. Our best estimate for the 1997 global top-down CO source amounts to 2760 Tg CO. Anthropogenic emissions increase by 28%, in agreement with previous inverse modelling studies, suggesting that the present bottom-up inventories underestimate the anthropogenic CO emissions in the Northern Hemisphere. The magnitude of the optimized NOx global source decreases by 14% with respect to the prior, and amounts to 42.1 Tg N, out of which 22.8 Tg N are due to anthropogenic sources. The NOx emissions increase over Tropical regions, whereas they decrease

  19. Adjoint-based global variance reduction approach for reactor analysis problems

    International Nuclear Information System (INIS)

    Zhang, Qiong; Abdel-Khalik, Hany S.

    2011-01-01

    A new variant of a hybrid Monte Carlo-Deterministic approach for simulating particle transport problems is presented and compared to the SCALE FW-CADIS approach. The new approach, denoted by the Subspace approach, optimizes the selection of the weight windows for reactor analysis problems where detailed properties of all fuel assemblies are required everywhere in the reactor core. Like the FW-CADIS approach, the Subspace approach utilizes importance maps obtained from deterministic adjoint models to derive automatic weight-window biasing. In contrast to FW-CADIS, the Subspace approach identifies the correlations between weight window maps to minimize the computational time required for global variance reduction, i.e., when the solution is required everywhere in the phase space. The correlations are employed to reduce the number of maps required to achieve the same level of variance reduction that would be obtained with single-response maps. Numerical experiments, serving as proof of principle, are presented to compare the Subspace and FW-CADIS approaches in terms of the global reduction in standard deviation. (author)

  20. Adjoint tomography of the crust and upper mantle structure beneath the Kanto region using broadband seismograms

    KAUST Repository

    Miyoshi, Takayuki; Obayashi, Masayuki; Peter, Daniel; Tono, Yoko; Tsuboi, Seiji

    2017-01-01

    A three-dimensional seismic wave speed model in the Kanto region of Japan was developed using adjoint tomography for application in the effective reproduction of observed waveforms. Starting with a model based on previous travel time tomographic results, we inverted the waveforms obtained at seismic broadband stations from 140 local earthquakes in the Kanto region to obtain the P- and S-wave speeds Vp and Vs. Additionally, all centroid times of the source solutions were determined before the structural inversion. The synthetic displacements were calculated using the spectral-element method (SEM) in which the Kanto region was parameterized using 16 million grid points. The model parameters Vp and Vs were updated iteratively by Newton’s method using the misfit and Hessian kernels until the misfit between the observed and synthetic waveforms was minimized. Computations of the forward and adjoint simulations were conducted on the K computer in Japan. The optimized SEM code required a total of 6720 simulations using approximately 62,000 node hours to obtain the final model after 16 iterations. The proposed model reveals several anomalous areas with extremely low-Vs values in comparison with those of the initial model. These anomalies were found to correspond to geological features, earthquake sources, and volcanic regions with good data coverage and resolution. The synthetic waveforms obtained using the newly proposed model for the selected earthquakes showed better fit than the initial model to the observed waveforms in different period ranges within 5–30 s. This result indicates that the model can accurately predict actual waveforms.

  1. Adjoint tomography of the crust and upper mantle structure beneath the Kanto region using broadband seismograms

    KAUST Repository

    Miyoshi, Takayuki

    2017-10-04

    A three-dimensional seismic wave speed model in the Kanto region of Japan was developed using adjoint tomography for application in the effective reproduction of observed waveforms. Starting with a model based on previous travel time tomographic results, we inverted the waveforms obtained at seismic broadband stations from 140 local earthquakes in the Kanto region to obtain the P- and S-wave speeds Vp and Vs. Additionally, all centroid times of the source solutions were determined before the structural inversion. The synthetic displacements were calculated using the spectral-element method (SEM) in which the Kanto region was parameterized using 16 million grid points. The model parameters Vp and Vs were updated iteratively by Newton’s method using the misfit and Hessian kernels until the misfit between the observed and synthetic waveforms was minimized. Computations of the forward and adjoint simulations were conducted on the K computer in Japan. The optimized SEM code required a total of 6720 simulations using approximately 62,000 node hours to obtain the final model after 16 iterations. The proposed model reveals several anomalous areas with extremely low-Vs values in comparison with those of the initial model. These anomalies were found to correspond to geological features, earthquake sources, and volcanic regions with good data coverage and resolution. The synthetic waveforms obtained using the newly proposed model for the selected earthquakes showed better fit than the initial model to the observed waveforms in different period ranges within 5–30 s. This result indicates that the model can accurately predict actual waveforms.

  2. Prediction of the neutrons subcritical multiplication using the diffusion hybrid equation with external neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Costa da Silva, Adilson; Carvalho da Silva, Fernando [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-914, Rio de Janeiro (Brazil); Senra Martinez, Aquilino, E-mail: aquilino@lmp.ufrj.br [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-914, Rio de Janeiro (Brazil)

    2011-07-15

    Highlights: > We proposed a new neutron diffusion hybrid equation with external neutron source. > A coarse mesh finite difference method for the adjoint flux and reactivity calculation was developed. > 1/M curve to predict the criticality condition is used. - Abstract: We used the neutron diffusion hybrid equation, in cartesian geometry with external neutron sources to predict the subcritical multiplication of neutrons in a pressurized water reactor, using a 1/M curve to predict the criticality condition. A Coarse Mesh Finite Difference Method was developed for the adjoint flux calculation and to obtain the reactivity values of the reactor. The results obtained were compared with benchmark values in order to validate the methodology presented in this paper.

  3. Prediction of the neutrons subcritical multiplication using the diffusion hybrid equation with external neutron sources

    International Nuclear Information System (INIS)

    Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino

    2011-01-01

    Highlights: → We proposed a new neutron diffusion hybrid equation with external neutron source. → A coarse mesh finite difference method for the adjoint flux and reactivity calculation was developed. → 1/M curve to predict the criticality condition is used. - Abstract: We used the neutron diffusion hybrid equation, in cartesian geometry with external neutron sources to predict the subcritical multiplication of neutrons in a pressurized water reactor, using a 1/M curve to predict the criticality condition. A Coarse Mesh Finite Difference Method was developed for the adjoint flux calculation and to obtain the reactivity values of the reactor. The results obtained were compared with benchmark values in order to validate the methodology presented in this paper.

  4. Application of the variational method for calculation of neutron spectra and group constants - Master thesis; Primena varijacione metode na odredjivanje spektra neutrona i grupnih konstanti - Magistarski rad

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1979-07-01

    One-dimensional variational method for cylindrical configuration was applied for calculating group constants, together with effects of elastic slowing down, anisotropic elastic scattering, inelastic scattering, heterogeneous resonance absorption with the aim to include the presence of a number of different isotopes and effects of neutron leakage from the reactor core. Neutron flux shape P{sub 3} and adjoint function are proposed in order to enable calculation of smaller size reactors and inclusion of heterogeneity effects by cell calculations. Microscopic multigroup constants were prepared based on the UKNDL data library. Analytical-numerical approach was applied for solving the equations of the P{sub 3} approximation to obtain neutron flux moments and adjoint functions.

  5. Detection of critical PM2.5 emission sources and their contributions to a heavy haze episode in Beijing, China, using an adjoint model

    Science.gov (United States)

    Zhai, Shixian; An, Xingqin; Zhao, Tianliang; Sun, Zhaobin; Wang, Wei; Hou, Qing; Guo, Zengyuan; Wang, Chao

    2018-05-01

    Air pollution sources and their regional transport are important issues for air quality control. The Global-Regional Assimilation and Prediction System coupled with the China Meteorological Administration Unified Atmospheric Chemistry Environment (GRAPES-CUACE) aerosol adjoint model was applied to detect the sensitive primary emission sources of a haze episode in Beijing occurring between 19 and 21 November 2012. The high PM2.5 concentration peaks occurring at 05:00 and 23:00 LT (GMT+8) over Beijing on 21 November 2012 were set as the cost functions for the aerosol adjoint model. The critical emission regions of the first PM2.5 concentration peak were tracked to the west and south of Beijing, with 2 to 3 days of cumulative transport of air pollutants to Beijing. The critical emission regions of the second peak were mainly located to the south of Beijing, where southeasterly moist air transport led to the hygroscopic growth of particles and pollutant convergence in front of the Taihang Mountains during the daytime on 21 November. The temporal variations in the sensitivity coefficients for the two PM2.5 concentration peaks revealed that the response time of the onset of Beijing haze pollution from the local primary emissions is approximately 1-2 h and that from the surrounding primary emissions it is approximately 7-12 h. The upstream Hebei province has the largest impact on the two PM2.5 concentration peaks, and the contribution of emissions from Hebei province to the first PM2.5 concentration peak (43.6 %) is greater than that to the second PM2.5 concentration peak (41.5 %). The second most influential province for the 05:00 LT PM2.5 concentration peak is Beijing (31.2 %), followed by Shanxi (9.8 %), Tianjin (9.8 %), and Shandong (5.7 %). The second most influential province for the 23:00 LT PM2.5 concentration peak is Beijing (35.7 %), followed by Shanxi (8.1 %), Shandong (8.0 %), and Tianjin (6.7 %). The adjoint model results were compared with the forward

  6. Adjoint-state inversion of electric resistivity tomography data of seawater intrusion at the Argentona coastal aquifer (Spain)

    Science.gov (United States)

    Fernández-López, Sheila; Carrera, Jesús; Ledo, Juanjo; Queralt, Pilar; Luquot, Linda; Martínez, Laura; Bellmunt, Fabián

    2016-04-01

    Seawater intrusion in aquifers is a complex phenomenon that can be characterized with the help of electric resistivity tomography (ERT) because of the low resistivity of seawater, which underlies the freshwater floating on top. The problem is complex because of the need for joint inversion of electrical and hydraulic (density dependent flow) data. Here we present an adjoint-state algorithm to treat electrical data. This method is a common technique to obtain derivatives of an objective function, depending on potentials with respect to model parameters. The main advantages of it are its simplicity in stationary problems and the reduction of computational cost respect others methodologies. The relationship between the concentration of chlorides and the resistivity values of the field is well known. Also, these resistivities are related to the values of potentials measured using ERT. Taking this into account, it will be possible to define the different resistivities zones from the field data of potential distribution using the basis of inverse problem. In this case, the studied zone is situated in Argentona (Baix Maresme, Catalonia), where the values of chlorides obtained in some wells of the zone are too high. The adjoint-state method will be used to invert the measured data using a new finite element code in C ++ language developed in an open-source framework called Kratos. Finally, the information obtained numerically with our code will be checked with the information obtained with other codes.

  7. An adjoint-based scheme for eigenvalue error improvement

    International Nuclear Information System (INIS)

    Merton, S.R.; Smedley-Stevenson, R.P.; Pain, C.C.; El-Sheikh, A.H.; Buchan, A.G.

    2011-01-01

    A scheme for improving the accuracy and reducing the error in eigenvalue calculations is presented. Using a rst order Taylor series expansion of both the eigenvalue solution and the residual of the governing equation, an approximation to the error in the eigenvalue is derived. This is done using a convolution of the equation residual and adjoint solution, which is calculated in-line with the primal solution. A defect correction on the solution is then performed in which the approximation to the error is used to apply a correction to the eigenvalue. The method is shown to dramatically improve convergence of the eigenvalue. The equation for the eigenvalue is shown to simplify when certain normalizations are applied to the eigenvector. Two such normalizations are considered; the rst of these is a fission-source type of normalisation and the second is an eigenvector normalisation. Results are demonstrated on a number of demanding elliptic problems using continuous Galerkin weighted nite elements. Moreover, the correction scheme may also be applied to hyperbolic problems and arbitrary discretization. This is not limited to spatial corrections and may be used throughout the phase space of the discrete equation. The applied correction not only improves fidelity of the calculation, it allows assessment of the reliability of numerical schemes to be made and could be used to guide mesh adaption algorithms or to automate mesh generation schemes. (author)

  8. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  9. Four-loop vacuum energy density of the SU($N_c$) + adjoint Higgs theory

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Schröder, Y

    2003-01-01

    We compute the dimensionally regularised four-loop vacuum energy density of the SU(N_c) gauge + adjoint Higgs theory, in the disordered phase. ``Scalarisation'', or reduction to a small set of master integrals of the type appearing in scalar field theories, is carried out in d dimensions, employing general partial integration identities through an algorithm developed by Laporta, while the remaining scalar integrals are evaluated in d = 3 - 2\\epsilon dimensions, by expanding in \\epsilon << 1 and evaluating a number of coefficients. The results have implications for the thermodynamics of finite temperature QCD, allowing to determine perturbative contributions of orders O(g^6 ln(1/g)), O(g^6) to the pressure, while the general methods are applicable also to studies of critical phenomena in QED-like statistical physics systems.

  10. Multi-objective Optimization Strategies Using Adjoint Method and Game Theory in Aerodynamics

    Science.gov (United States)

    Tang, Zhili

    2006-08-01

    There are currently three different game strategies originated in economics: (1) Cooperative games (Pareto front), (2) Competitive games (Nash game) and (3) Hierarchical games (Stackelberg game). Each game achieves different equilibria with different performance, and their players play different roles in the games. Here, we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multi-criteria aerodynamic optimization problems. The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments. We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method. The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front. Non-dominated Pareto front solutions are obtained, however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  11. Multi-objective optimization strategies using adjoint method and game theory in aerodynamics

    Institute of Scientific and Technical Information of China (English)

    Zhili Tang

    2006-01-01

    There are currently three different game strategies originated in economics:(1) Cooperative games (Pareto front),(2)Competitive games (Nash game) and (3)Hierarchical games (Stackelberg game).Each game achieves different equilibria with different performance,and their players play different roles in the games.Here,we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multicriteria aerodynamic optimization problems.The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments.We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method.The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front.Non-dominated Pareto front solutions are obtained,however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  12. Propagators in magnetic string background and the problem of self-adjoint extensions

    International Nuclear Information System (INIS)

    Kaiser, H.J.

    1993-01-01

    Ghost and gluon propagators of a non-Abelian gauge theory in the background of a magnetic string are calculated. A simple technique to derive the ghost propagator is presented which makes use of the fact that the presence of a magnetic string of strength β shifts the differential operators ∂/∂φ to ∂/∂φ - iβ. In the case of a gluon propagator in the magnetic string background a difficulty arises from the presence of the magnetic field strength term involving a δ function. Here the ambiguities of a self-adjoint extension of the differential operator must be met. A proper treatment demands the specification of a limiting process starting from a string of finite thickness and well-defined structure and leading to the δ function string. Without this additional structure information about the background string the gauge field propagator is undetermined. (orig.)

  13. SHREDI a removal diffusion shielding code for x-y and r-z geometries

    International Nuclear Information System (INIS)

    Daneri, A.; Toselli, G.

    1974-01-01

    The SHREDI, a removal diffusion neutron shielding code written in FORTRAN for IBM 370/165, is presented. The code computes neutron fluxes or adjoint fluxes and activations in bidimensional sections of the shield. It is also possible to consider shielding points with the same coordinate (y or z) (monodimensional problems)

  14. Surface spectra of Weyl semimetals through self-adjoint extensions

    Science.gov (United States)

    Seradjeh, Babak; Vennettilli, Michael

    2018-02-01

    We apply the method of self-adjoint extensions of Hermitian operators to the low-energy, continuum Hamiltonians of Weyl semimetals in bounded geometries and derive the spectrum of the surface states on the boundary. This allows for the full characterization of boundary conditions and the surface spectra on surfaces both normal to the Weyl node separation as well as parallel to it. We show that the boundary conditions for quadratic bulk dispersions are, in general, specified by a U (2 ) matrix relating the wave function and its derivatives normal to the surface. We give a general procedure to obtain the surface spectra from these boundary conditions and derive them in specific cases of bulk dispersion. We consider the role of global symmetries in the boundary conditions and their effect on the surface spectrum. We point out several interesting features of the surface spectra for different choices of boundary conditions, such as a Mexican-hat shaped dispersion on the surface normal to Weyl node separation. We find that the existence of bound states, Fermi arcs, and the shape of their dispersion, depend on the choice of boundary conditions. This illustrates the importance of the physics at and near the boundaries in the general statement of bulk-boundary correspondence.

  15. Resolvent convergence in norm for Dirac operator with Aharonov-Bohm field

    International Nuclear Information System (INIS)

    Tamura, Hideo

    2003-01-01

    We consider the Hamiltonian for relativistic particles moving in the Aharonov-Bohm magnetic field in two dimensions. The field has δ-like singularity at the origin, and the Hamiltonian is not necessarily essentially self-adjoint. The self-adjoint realization requires one parameter family of boundary conditions at the origin. We approximate the point-like field by smooth ones and study the problem of norm resolvent convergence to see which boundary condition is physically reasonable among admissible boundary conditions. We also study the effect of perturbations by scalar potentials. Roughly speaking, the obtained result is that the limit self-adjoint realization is different even for small perturbation of scalar potentials according to the values of magnetic fluxes. It changes at half-integer fluxes. The method is based on the resolvent analysis at low energy on magnetic Schroedinger operators with resonance at zero energy and the resonance plays an important role from a mathematical point of view. However it has been neglected in earlier physical works. The emphasis here is placed on this natural aspect

  16. Influence of the external neutron sources in the criticality prediction using 1/M curve

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Valmir [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-972 Rio de Janeiro (Brazil); Carvalho da Silva, Fernando [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-972 Rio de Janeiro (Brazil); Martinez, Aquilino Senra [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-972 Rio de Janeiro (Brazil)]. E-mail: aquilino@lmp.ufrj.br

    2005-11-15

    The influence of external neutron sources in the process to obtain the criticality condition is estimated. To reach this objective, the three-dimensional neutron diffusion equation in two groups of energy is solved, for a subcritical PWR reactor core with external neutron sources. The results are compared with the solution of the corresponding problem without external neutron sources, that is an eigenvalue problem. The method developed for this purposes it makes use of both the nodal method (for calculation of the neutron flux) and the finite differences method (for calculation of the adjoint flux). A coarse mesh finite difference method was developed for the adjoint flux calculation, which uses the output of the nodal expansion method. The results regarding the influence of the external neutron source presence for attaining criticality have shown that far from criticality it is necessary to calculate the reactivity values of the system.

  17. Influence of the external neutron sources in the criticality prediction using 1/M curve

    International Nuclear Information System (INIS)

    Pereira, Valmir; Carvalho da Silva, Fernando; Martinez, Aquilino Senra

    2005-01-01

    The influence of external neutron sources in the process to obtain the criticality condition is estimated. To reach this objective, the three-dimensional neutron diffusion equation in two groups of energy is solved, for a subcritical PWR reactor core with external neutron sources. The results are compared with the solution of the corresponding problem without external neutron sources, that is an eigenvalue problem. The method developed for this purposes it makes use of both the nodal method (for calculation of the neutron flux) and the finite differences method (for calculation of the adjoint flux). A coarse mesh finite difference method was developed for the adjoint flux calculation, which uses the output of the nodal expansion method. The results regarding the influence of the external neutron source presence for attaining criticality have shown that far from criticality it is necessary to calculate the reactivity values of the system

  18. Optical properties reconstruction using the adjoint method based on the radiative transfer equation

    Science.gov (United States)

    Addoum, Ahmad; Farges, Olivier; Asllanaj, Fatmir

    2018-01-01

    An efficient algorithm is proposed to reconstruct the spatial distribution of optical properties in heterogeneous media like biological tissues. The light transport through such media is accurately described by the radiative transfer equation in the frequency-domain. The adjoint method is used to efficiently compute the objective function gradient with respect to optical parameters. Numerical tests show that the algorithm is accurate and robust to retrieve simultaneously the absorption μa and scattering μs coefficients for lowly and highly absorbing medium. Moreover, the simultaneous reconstruction of μs and the anisotropy factor g of the Henyey-Greenstein phase function is achieved with a reasonable accuracy. The main novelty in this work is the reconstruction of g which might open the possibility to image this parameter in tissues as an additional contrast agent in optical tomography.

  19. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  20. A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System

    Energy Technology Data Exchange (ETDEWEB)

    C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler

    1998-10-01

    The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.

  1. The adjoint sensitivity method, a contribution to the code uncertainty evaluation

    International Nuclear Information System (INIS)

    Ounsy, A.; Crecy, F. de; Brun, B.

    1993-01-01

    The application of the ASM (Adjoint Sensitivity Method) to thermohydraulic codes, is examined. The advantage of the method is to be very few CPU time consuming in comparison with usual approach requiring one complete code run per sensitivity determination. The mathematical aspects of the problem are first described, and the applicability of the method of the functional-type response of a thermalhydraulic model is demonstrated. On a simple example of non linear hyperbolic equation (Burgers equation) the problem has been analyzed. It is shown that the formalism used in the literature treating this subject is not appropriate. A new mathematical formalism circumventing the problem is proposed. For the discretized form of the problem, two methods are possible: the Continuous ASM and the Discrete ASM. The equivalence of both methods is demonstrated; nevertheless only the DASM constitutes a practical solution for thermalhydraulic codes. The application of the DASM to the thermalhydraulic safety code CATHARE is then presented for two examples. They demonstrate that ASM constitutes an efficient tool for the analysis of code sensitivity. (authors) 7 figs., 5 tabs., 8 refs

  2. The adjoint sensitivity method. A contribution to the code uncertainty evaluation

    International Nuclear Information System (INIS)

    Ounsy, A.; Brun, B.

    1993-01-01

    The application of the ASM (Adjoint Sensitivity Method) to thermohydraulic codes, is examined. The advantage of the method is to be very few CPU time consuming in comparison with usual approach requiring one complete code run per sensitivity determination. The mathematical aspects of the problem are first described, and the applicability of the method of the functional-type response of a thermalhydraulic model is demonstrated. On a simple example of non linear hyperbolic equation (Burgers equation) the problem has been analyzed. It is shown that the formalism used in the literature treating this subject is not appropriate. A new mathematical formalism circumventing the problem is proposed. For the discretized form of the problem, two methods are possible: the Continuous ASM and the Discrete ASM. The equivalence of both methods is demonstrated; nevertheless only the DASM constitutes a practical solution for thermalhydraulic codes. The application of the DASM to the thermalhydraulic safety code CATHARE is then presented for two examples. They demonstrate that ASM constitutes an efficient tool for the analysis of code sensitivity. (authors) 7 figs., 5 tabs., 8 refs

  3. The adjoint sensitivity method. A contribution to the code uncertainty evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ounsy, A; Brun, B

    1994-12-31

    The application of the ASM (Adjoint Sensitivity Method) to thermohydraulic codes, is examined. The advantage of the method is to be very few CPU time consuming in comparison with usual approach requiring one complete code run per sensitivity determination. The mathematical aspects of the problem are first described, and the applicability of the method of the functional-type response of a thermalhydraulic model is demonstrated. On a simple example of non linear hyperbolic equation (Burgers equation) the problem has been analyzed. It is shown that the formalism used in the literature treating this subject is not appropriate. A new mathematical formalism circumventing the problem is proposed. For the discretized form of the problem, two methods are possible: the Continuous ASM and the Discrete ASM. The equivalence of both methods is demonstrated; nevertheless only the DASM constitutes a practical solution for thermalhydraulic codes. The application of the DASM to the thermalhydraulic safety code CATHARE is then presented for two examples. They demonstrate that ASM constitutes an efficient tool for the analysis of code sensitivity. (authors) 7 figs., 5 tabs., 8 refs.

  4. The adjoint sensitivity method, a contribution to the code uncertainty evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ounsy, A; Crecy, F de; Brun, B

    1994-12-31

    The application of the ASM (Adjoint Sensitivity Method) to thermohydraulic codes, is examined. The advantage of the method is to be very few CPU time consuming in comparison with usual approach requiring one complete code run per sensitivity determination. The mathematical aspects of the problem are first described, and the applicability of the method of the functional-type response of a thermalhydraulic model is demonstrated. On a simple example of non linear hyperbolic equation (Burgers equation) the problem has been analyzed. It is shown that the formalism used in the literature treating this subject is not appropriate. A new mathematical formalism circumventing the problem is proposed. For the discretized form of the problem, two methods are possible: the Continuous ASM and the Discrete ASM. The equivalence of both methods is demonstrated; nevertheless only the DASM constitutes a practical solution for thermalhydraulic codes. The application of the DASM to the thermalhydraulic safety code CATHARE is then presented for two examples. They demonstrate that ASM constitutes an efficient tool for the analysis of code sensitivity. (authors) 7 figs., 5 tabs., 8 refs.

  5. On the Similarity of Sturm-Liouville Operators with Non-Hermitian Boundary Conditions to Self-Adjoint and Normal Operators

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David; Siegl, Petr; Železný, Jakub

    2014-01-01

    Roč. 8, č. 1 (2014), s. 255-281 ISSN 1661-8254 R&D Projects: GA MŠk LC06002; GA MŠk LC527; GA ČR GAP203/11/0701 Grant - others:GA ČR(CZ) GD202/08/H072 Institutional support: RVO:61389005 Keywords : Sturm-Liouville operators * non-symmetric Robin boundary conditions * similarity to normal or self-adjoint operators * discrete spectral operator * complex symmetric operator * PT-symmetry * metric operator * C operator * Hilbert- Schmidt operators Subject RIV: BE - Theoretical Physics Impact factor: 0.545, year: 2014

  6. Tracking sensitive source areas of different weather pollution types using GRAPES-CUACE adjoint model

    Science.gov (United States)

    Wang, Chao; An, Xingqin; Zhai, Shixian; Hou, Qing; Sun, Zhaobin

    2018-02-01

    In this study, the sustained pollution processes were selected during which daily PM2.5 concentration exceeded 75 μg/m3 for three days continuously based on the hourly data of Beijing observation sites from July 2012 to December 2015. Using the China Meteorological Administration (CMA) MICAPS meteorological processing system, synoptic situation during PM2.5 pollution processes was classified into five weather types: low pressure and weak high pressure alternating control, weak high pressure, low pressure control, high rear, and uniform pressure field. Then, we chose the representative pollution cases corresponding to each type, adopted the GRAPES-CUACE adjoint model tracking the sensitive source areas of the five types, and analyzed the critical discharge periods of Beijing and neighboring provinces as well as their contribution to the PM2.5 peak concentration in Beijing. The results showed that the local source plays the main theme in the 30 h before the objective time, and prior to 72 h before the objective time contribution of local sources for the five pollution types are 37.5%, 25.0%, 39.4%, 31.2%, and 42.4%, respectively; the Hebei source contributes constantly in the 57 h ahead of the objective time with the contribution proportion ranging from 37% to 64%; the contribution period and rate of Tianjin and Shanxi sources are shorter and smaller. Based on the adjoint sensitivity analysis, we further discussed the effect of emission reduction control measures in different types, finding that the effect of local source reduction in the first 20 h of the objective time is better, and if the local source is reduced 50% within 72 h before the objective time, the decline rates of PM2.5 in the five types are 11.6%, 9.4%, 13.8%, 9.9% and 15.2% respectively. And the reduction effect of the neighboring sources is better within the 3-57 h before the objective time.

  7. Advanced Variance Reduction Strategies for Optimizing Mesh Tallies in MAVRIC

    International Nuclear Information System (INIS)

    Peplow, Douglas E.; Blakeman, Edward D; Wagner, John C

    2007-01-01

    More often than in the past, Monte Carlo methods are being used to compute fluxes or doses over large areas using mesh tallies (a set of region tallies defined on a mesh that overlays the geometry). For problems that demand that the uncertainty in each mesh cell be less than some set maximum, computation time is controlled by the cell with the largest uncertainty. This issue becomes quite troublesome in deep-penetration problems, and advanced variance reduction techniques are required to obtain reasonable uncertainties over large areas. The CADIS (Consistent Adjoint Driven Importance Sampling) methodology has been shown to very efficiently optimize the calculation of a response (flux or dose) for a single point or a small region using weight windows and a biased source based on the adjoint of that response. This has been incorporated into codes such as ADVANTG (based on MCNP) and the new sequence MAVRIC, which will be available in the next release of SCALE. In an effort to compute lower uncertainties everywhere in the problem, Larsen's group has also developed several methods to help distribute particles more evenly, based on forward estimates of flux. This paper focuses on the use of a forward estimate to weight the placement of the source in the adjoint calculation used by CADIS, which we refer to as a forward-weighted CADIS (FW-CADIS)

  8. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - I: Theory

    International Nuclear Information System (INIS)

    Cacuci, D. G.; Cacuci, D. G.; Ionescu-Bujor, M.

    2008-01-01

    The development of the adjoint sensitivity analysis procedure (ASAP) for generic dynamic reliability models based on Markov chains is presented, together with applications of this procedure to the analysis of several systems of increasing complexity. The general theory is presented in Part I of this work and is accompanied by a paradigm application to the dynamic reliability analysis of a simple binary component, namely a pump functioning on an 'up/down' cycle until it fails irreparably. This paradigm example admits a closed form analytical solution, which permits a clear illustration of the main characteristics of the ASAP for Markov chains. In particular, it is shown that the ASAP for Markov chains presents outstanding computational advantages over other procedures currently in use for sensitivity and uncertainty analysis of the dynamic reliability of large-scale systems. This conclusion is further underscored by the large-scale applications presented in Part II. (authors)

  9. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - I: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D. G. [Commiss Energy Atom, Direct Energy Nucl, Saclay, (France); Cacuci, D. G. [Univ Karlsruhe, Inst Nucl Technol and Reactor Safety, D-76021 Karlsruhe, (Germany); Ionescu-Bujor, M. [Forschungszentrum Karlsruhe, Fus Program, D-76021 Karlsruhe, (Germany)

    2008-07-01

    The development of the adjoint sensitivity analysis procedure (ASAP) for generic dynamic reliability models based on Markov chains is presented, together with applications of this procedure to the analysis of several systems of increasing complexity. The general theory is presented in Part I of this work and is accompanied by a paradigm application to the dynamic reliability analysis of a simple binary component, namely a pump functioning on an 'up/down' cycle until it fails irreparably. This paradigm example admits a closed form analytical solution, which permits a clear illustration of the main characteristics of the ASAP for Markov chains. In particular, it is shown that the ASAP for Markov chains presents outstanding computational advantages over other procedures currently in use for sensitivity and uncertainty analysis of the dynamic reliability of large-scale systems. This conclusion is further underscored by the large-scale applications presented in Part II. (authors)

  10. Calculational model based on influence function method for power distribution and control rod worth in fast reactors

    International Nuclear Information System (INIS)

    Sanda, T.; Azekura, K.

    1983-01-01

    A model for calculating the power distribution and the control rod worth in fast reactors has been developed. This model is based on the influence function method. The characteristics of the model are as follows: Influence functions for any changes in the control rod insertion ratio are expressed by using an influence function for an appropriate control rod insertion in order to reduce the computer memory size required for the method. A control rod worth is calculated on the basis of a one-group approximation in which cross sections are generated by bilinear (flux-adjoint) weighting, not the usual flux weighting, in order to reduce the collapse error. An effective neutron multiplication factor is calculated by adjoint weighting in order to reduce the effect of the error in the one-group flux distribution. The results obtained in numerical examinations of a prototype fast reactor indicate that this method is suitable for on-line core performance evaluation because of a short computing time and a small memory size

  11. Flipped and unflipped SU(5) as type IIA flux vacua

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chingming [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Li Tianjun [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States) and Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: tjli@physics.rutgers.edu; Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)

    2006-09-04

    On type IIA orientifolds with flux compactifications in supersymmetric AdS vacua, we for the first time construct SU(5) models with three anti-symmetric 10 representations and without symmetric 15 representations. We show that all the pairs of the anti-fundamental 5-bar and fundamental 5 representations can obtain GUT/string-scale vector-like masses after the additional gauge symmetry breaking via supersymmetry preserving Higgs mechanism. Then we have exact three 5-bar , and no other chiral exotic particles that are charged under SU(5) due to the non-Abelian anomaly free condition. Moreover, we can break the SU(5) gauge symmetry down to the SM gauge symmetry via D6-brane splitting, and solve the doublet-triplet splitting problem. Assuming that the extra one (or several) pair(s) of Higgs doublets and adjoint particles obtain GUT/string-scale masses via high-dimensional operators, we only have the MSSM in the observable sector below the GUT scale. Then the observed low energy gauge couplings can be generated via RGE running if we choose the suitable grand unified gauge coupling by adjusting the string scale. Furthermore, we construct the first flipped SU(5) model with exact three 10, and the first flipped SU(5) model in which all the Yukawa couplings are allowed by the global U(1) symmetries.

  12. Nonperturbative volume reduction of large-N QCD with adjoint fermions

    International Nuclear Information System (INIS)

    Bringoltz, Barak; Sharpe, Stephen R.

    2009-01-01

    We use nonperturbative lattice techniques to study the volume-reduced 'Eguchi-Kawai' version of four-dimensional large-N QCD with a single adjoint Dirac fermion. We explore the phase diagram of this single-site theory in the space of quark mass and gauge coupling using Wilson fermions for a number of colors in the range 8≤N≤15. Our evidence suggests that these values of N are large enough to determine the nature of the phase diagram for N→∞. We identify the region in the parameter space where the (Z N ) 4 center symmetry is intact. According to previous theoretical work using the orbifolding paradigm, and assuming that translation invariance is not spontaneously broken in the infinite-volume theory, in this region volume reduction holds: the single-site and infinite-volume theories become equivalent when N→∞. We find strong evidence that this region includes both light and heavy quarks (with masses that are at the cutoff scale), and our results are consistent with this region extending toward the continuum limit. We also compare the action density and the eigenvalue density of the overlap Dirac operator in the fundamental representation with those obtained in large-N pure-gauge theory.

  13. Adjoint based optimal control of partially miscible two-phase flow in porous media with applications to CO2 sequestration in underground reservoirs

    KAUST Repository

    Simon, Moritz

    2014-11-14

    © 2014, Springer Science+Business Media New York. With the target of optimizing CO2 sequestration in underground reservoirs, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. Our objective is to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, while time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system, formulate the optimal control problem and derive the continuous adjoint equations. For the discretization we apply a variant of the so-called BOX method, a locally conservative control-volume FE method that we further stabilize by a periodic averaging feature to reduce oscillations. The timestep-wise Lagrange function of the control problem is implemented as a variational form in Sundance, a toolbox for rapid development of parallel FE simulations, which is part of the HPC software Trilinos. We discuss the BOX method and our implementation in Sundance. The MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT, using limited-memory BFGS updates for approximating second derivatives. Finally, we present and discuss different types of optimal control results.

  14. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  15. Adjoint sensitivity analysis of the RELAPS/MOD3.2 two-fluid thermal-hydraulic code system

    International Nuclear Information System (INIS)

    Ionescu-Bujor, M.

    2000-10-01

    This work presents the implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) for the non-equilibrium, non-homogeneous two-fluid model, including boron concentration and non-condensable gases, of the RELAP5/MOD3.2 code. The end-product of this implementation is the Adjoint Sensitivity Model (ASM-REL/TF), which is derived for both the differential and discretized equations underlying the two-fluid model with non-condensable(s). The consistency requirements between these two representations are also highlighted. The validation of the ASM-REL/TF has been carried out by using sample problems involving: (i) liquid-phase only, (ii) gas-phase only, and (iii) two-phase mixture (of water and steam). Thus the 'Two-Loops with Pumps' sample problem supplied with RELAP5/MOD3.2 has been used to verify the accuracy and stability of the numerical solution of the ASM-REL/TF when only the liquid-phase is present. Furthermore, the 'Edwards Pipe' sample problem, also supplied with RELAP5/MOD3.2, has been used to verify the accuracy and stability of the numerical solution of the ASM-REL/TF when both (i.e., liquid and gas) phases are present. In addition, the accuracy and stability of the numerical solution of the ASM-REL/TF have been verified when only the gas-phase is present by using modified 'Two-Loops with Pumps' and the 'Edwards Pipe' sample problems in which the liquid and two-phase fluids, respectively, were replaced by pure steam. The results obtained for these sample problems depict typical sensitivities of junction velocities and volume-averaged pressures to perturbations in initial conditions, and indicate that the numerical solution of the ASM-REL/TF is as robust, stable, and accurate as the original RELAP5/MOD3.2 calculations. In addition, the solution of the ASM-REL/TF has been used to calculate sample sensitivities of volume-averaged pressures to variations in the pump head. (orig.) [de

  16. The adjoint sensitivity method, a contribution to the code uncertainty evaluation

    International Nuclear Information System (INIS)

    Ounsy, A.; Brun, B.; De Crecy, F.

    1994-01-01

    This paper deals with the application of the adjoint sensitivity method (ASM) to thermal hydraulic codes. The advantage of the method is to use small central processing unit time in comparison with the usual approach requiring one complete code run per sensitivity determination. In the first part the mathematical aspects of the problem are treated, and the applicability of the method of the functional-type response of a thermal hydraulic model is demonstrated. On a simple example of non-linear hyperbolic equation (Burgers equation) the problem has been analysed. It is shown that the formalism used in the literature treating this subject is not appropriate. A new mathematical formalism circumventing the problem is proposed. For the discretized form of the problem, two methods are possible: the continuous ASM and the discrete ASM. The equivalence of both methods is demonstrated; nevertheless only the discrete ASM constitutes a practical solution for thermal hydraulic codes. The application of the discrete ASM to the thermal hydraulic safety code CATHARE is then presented for two examples. They demonstrate that the discrete ASM constitutes an efficient tool for the analysis of code sensitivity. ((orig.))

  17. Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion

    KAUST Repository

    Komatitsch, Dimitri; Xie, Zhinan; Bozdağ, Ebru; de Andrade, Elliott Sales; Peter, Daniel; Liu, Qinya; Tromp, Jeroen

    2016-01-01

    We introduce a technique to compute exact anelastic sensitivity kernels in the time domain using parsimonious disk storage. The method is based on a reordering of the time loop of time-domain forward/adjoint wave propagation solvers combined with the use of a memory buffer. It avoids instabilities that occur when time-reversing dissipative wave propagation simulations. The total number of required time steps is unchanged compared to usual acoustic or elastic approaches. The cost is reduced by a factor of 4/3 compared to the case in which anelasticity is partially accounted for by accommodating the effects of physical dispersion. We validate our technique by performing a test in which we compare the Kα sensitivity kernel to the exact kernel obtained by saving the entire forward calculation. This benchmark confirms that our approach is also exact. We illustrate the importance of including full attenuation in the calculation of sensitivity kernels by showing significant differences with physical-dispersion-only kernels.

  18. Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion

    KAUST Repository

    Komatitsch, Dimitri

    2016-06-13

    We introduce a technique to compute exact anelastic sensitivity kernels in the time domain using parsimonious disk storage. The method is based on a reordering of the time loop of time-domain forward/adjoint wave propagation solvers combined with the use of a memory buffer. It avoids instabilities that occur when time-reversing dissipative wave propagation simulations. The total number of required time steps is unchanged compared to usual acoustic or elastic approaches. The cost is reduced by a factor of 4/3 compared to the case in which anelasticity is partially accounted for by accommodating the effects of physical dispersion. We validate our technique by performing a test in which we compare the Kα sensitivity kernel to the exact kernel obtained by saving the entire forward calculation. This benchmark confirms that our approach is also exact. We illustrate the importance of including full attenuation in the calculation of sensitivity kernels by showing significant differences with physical-dispersion-only kernels.

  19. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  20. Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion

    Science.gov (United States)

    Komatitsch, Dimitri; Xie, Zhinan; Bozdaǧ, Ebru; Sales de Andrade, Elliott; Peter, Daniel; Liu, Qinya; Tromp, Jeroen

    2016-09-01

    We introduce a technique to compute exact anelastic sensitivity kernels in the time domain using parsimonious disk storage. The method is based on a reordering of the time loop of time-domain forward/adjoint wave propagation solvers combined with the use of a memory buffer. It avoids instabilities that occur when time-reversing dissipative wave propagation simulations. The total number of required time steps is unchanged compared to usual acoustic or elastic approaches. The cost is reduced by a factor of 4/3 compared to the case in which anelasticity is partially accounted for by accommodating the effects of physical dispersion. We validate our technique by performing a test in which we compare the Kα sensitivity kernel to the exact kernel obtained by saving the entire forward calculation. This benchmark confirms that our approach is also exact. We illustrate the importance of including full attenuation in the calculation of sensitivity kernels by showing significant differences with physical-dispersion-only kernels.

  1. Error estimation for goal-oriented spatial adaptivity for the SN equations on triangular meshes

    International Nuclear Information System (INIS)

    Lathouwers, D.

    2011-01-01

    In this paper we investigate different error estimation procedures for use within a goal oriented adaptive algorithm for the S N equations on unstructured meshes. The method is based on a dual-weighted residual approach where an appropriate adjoint problem is formulated and solved in order to obtain the importance of residual errors in the forward problem on the specific goal of interest. The forward residuals and the adjoint function are combined to obtain both economical finite element meshes tailored to the solution of the target functional as well as providing error estimates. Various approximations made to make the calculation of the adjoint angular flux more economically attractive are evaluated by comparing the performance of the resulting adaptive algorithm and the quality of the error estimators when applied to two shielding-type test problems. (author)

  2. Toward the Development of a Coupled COAMPS-ROMS Ensemble Kalman Filter and Adjoint with a focus on the Indian Ocean and the Intraseasonal Oscillation

    Science.gov (United States)

    2015-09-30

    1 Approved for public release; distribution is unlimited. Toward the Development of a Coupled COAMPS-ROMS Ensemble Kalman Filter and Adjoint...system at NCAR. (2) Compare the performance of the Ensemble Kalman Filter (EnKF) using the Data Assimilation Research Testbed (DART) and 4...undercurrent is clearly visible. Figure 2 shows the horizontal temperature structure and circulation at a depth of 50 m within the surface mixed layer

  3. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    International Nuclear Information System (INIS)

    Finn, John M.

    2015-01-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  4. Trotter-Kato product formula and fractional powers of self-adjoint generators

    CERN Document Server

    Ichinose, I; Zagrebnov, Z

    2002-01-01

    Let $A$ and $B$ be non-negative self-adjoint operators in a Hilbert space such that their densely defined form sum $H = A \\stackrel{\\cdot}{+} B$ obeys $\\dom(H^\\ga) \\subseteq \\dom(A^\\ga) \\cap \\dom(B^\\ga)$ for some $\\ga \\in (1/2,1)$. It is proved that if, in addition, $A$ and $B$ satisfy $\\dom(A^{1/2}) \\subseteq \\dom(B^{1/2})$, then the symmetric and non-symmetric Trotter-Kato product formula converges in the operator norm: % % \\bed \\ba{c} \\left\\|\\left(e^{-tB/2n}e^{-tA/n}e^{-tB/2n}\\right)^n - e^{-tH}\\right\\| = O(n^{-(2\\ga-1)}), \\\\[2mm] \\left\\|\\left(e^{-tA/n}e^{-tB/n}\\right)^n - e^{-tH}\\right\\| = O(n^{-(2\\ga-1)}) \\ea \\eed % % uniformly in $t \\in [0,T]$, $0 < T < \\infty$, as $n \\to \\infty$, both with the same optimal error bound. The same is valid if one replaces the exponential function in the product by functions of the Kato class, that is, by real-valued Borel measurable functions $f(\\cdot)$ defined on the non-negative real axis obeying $0 \\le f(x) \\le 1$, $f(0) = 1$ and $f'(+0) = -1$, with some addition...

  5. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    Science.gov (United States)

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.

  6. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    International Nuclear Information System (INIS)

    Jakeman, J.D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation

  7. Calculational model based on influence function method for power distribution and control rod worth in fast reactors

    International Nuclear Information System (INIS)

    Toshio, S.; Kazuo, A.

    1983-01-01

    A model for calculating the power distribution and the control rod worth in fast reactors has been developed. This model is based on the influence function method. The characteristics of the model are as follows: 1. Influence functions for any changes in the control rod insertion ratio are expressed by using an influence function for an appropriate control rod insertion in order to reduce the computer memory size required for the method. 2. A control rod worth is calculated on the basis of a one-group approximation in which cross sections are generated by bilinear (flux-adjoint) weighting, not the usual flux weighting, in order to reduce the collapse error. 3. An effective neutron multiplication factor is calculated by adjoint weighting in order to reduce the effect of the error in the one-group flux distribution. The results obtained in numerical examinations of a prototype fast reactor indicate that this method is suitable for on-line core performance evaluation because of a short computing time and a small memory size

  8. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3)

    Science.gov (United States)

    We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to optimizeammonia (NH3European Union, and China by inversion of 2005–2008 network data for NH+4 wet deposition fluxes. Optimized emissions are derive...

  9. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    International Nuclear Information System (INIS)

    Shadid, J.N.; Smith, T.M.; Cyr, E.C.; Wildey, T.M.; Pawlowski, R.P.

    2016-01-01

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  10. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N., E-mail: jnshadi@sandia.gov [Sandia National Laboratories, Computational Mathematics Department (United States); Department of Mathematics and Statistics, University of New Mexico (United States); Smith, T.M. [Sandia National Laboratories, Multiphysics Applications Department (United States); Cyr, E.C. [Sandia National Laboratories, Computational Mathematics Department (United States); Wildey, T.M. [Sandia National Laboratories, Optimization and UQ Department (United States); Pawlowski, R.P. [Sandia National Laboratories, Multiphysics Applications Department (United States)

    2016-09-15

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  11. The adjoint method for general EEG and MEG sensor-based lead field equations

    International Nuclear Information System (INIS)

    Vallaghe, Sylvain; Papadopoulo, Theodore; Clerc, Maureen

    2009-01-01

    Most of the methods for the inverse source problem in electroencephalography (EEG) and magnetoencephalography (MEG) use a lead field as an input. The lead field is the function which relates any source in the brain to its measurements at the sensors. For complex geometries, there is no analytical formula of the lead field. The common approach is to numerically compute the value of the lead field for a finite number of point sources (dipoles). There are several drawbacks: the model of the source space is fixed (a set of dipoles), and the computation can be expensive for as much as 10 000 dipoles. The common idea to bypass these problems is to compute the lead field from a sensor point of view. In this paper, we use the adjoint method to derive general EEG and MEG sensor-based lead field equations. Within a simple framework, we provide a complete review of the explicit lead field equations, and we are able to extend these equations to non-pointlike sensors.

  12. Uncertainty analysis of infinite homogeneous lead and sodium cooled fast reactors at beginning of life

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, R., E-mail: risto.vanhanen@aalto.fi

    2015-03-15

    The objective of the present work is to estimate breeding ratio, radiation damage rate and minor actinide transmutation rate of infinite homogeneous lead and sodium cooled fast reactors. Uncertainty analysis is performed taking into account uncertainty in nuclear data and composition of the reactors. We use the recently released ENDF/B-VII.1 nuclear data library and restrict the work to the beginning of reactor life. We work under multigroup approximation. The Bondarenko method is used to acquire effective cross sections for the homogeneous reactor. Modeling error and numerical error are estimated. The adjoint sensitivity analysis is performed to calculate generalized adjoint fluxes for the responses. The generalized adjoint fluxes are used to calculate first order sensitivities of the responses to model parameters. The acquired sensitivities are used to propagate uncertainties in the input data to find out uncertainties in the responses. We show that the uncertainty in model parameters is the dominant source of uncertainty, followed by modeling error, input data precision and numerical error. The uncertainty due to composition of the reactor is low. We identify main sources of uncertainty and note that the low-fidelity evaluation of {sup 16}O is problematic due to lack of correlation between total and elastic reactions.

  13. Uncertainty analysis of infinite homogeneous lead and sodium cooled fast reactors at beginning of life

    International Nuclear Information System (INIS)

    Vanhanen, R.

    2015-01-01

    The objective of the present work is to estimate breeding ratio, radiation damage rate and minor actinide transmutation rate of infinite homogeneous lead and sodium cooled fast reactors. Uncertainty analysis is performed taking into account uncertainty in nuclear data and composition of the reactors. We use the recently released ENDF/B-VII.1 nuclear data library and restrict the work to the beginning of reactor life. We work under multigroup approximation. The Bondarenko method is used to acquire effective cross sections for the homogeneous reactor. Modeling error and numerical error are estimated. The adjoint sensitivity analysis is performed to calculate generalized adjoint fluxes for the responses. The generalized adjoint fluxes are used to calculate first order sensitivities of the responses to model parameters. The acquired sensitivities are used to propagate uncertainties in the input data to find out uncertainties in the responses. We show that the uncertainty in model parameters is the dominant source of uncertainty, followed by modeling error, input data precision and numerical error. The uncertainty due to composition of the reactor is low. We identify main sources of uncertainty and note that the low-fidelity evaluation of 16 O is problematic due to lack of correlation between total and elastic reactions

  14. Perturbation studies on KAHTER

    Energy Technology Data Exchange (ETDEWEB)

    Rueckert, M.; Jonas, H.; Neef, R. D.

    1974-10-15

    The paper describes experimental and analytical results by both transport theory and diffusion theory calculations of perturbation tests in the KAHTER pebble bed critical experiment. The fission-weighted adjoint flux is measured from in-core detector responses by introducing a Cf-source into the core. Adjoint-weighted reactivities are calculated and compared to reactivity measurements for the introduction of a fuel and graphite pebble onto the top of the critical pile, the central rod worth, and the effect of replacing B4C with varying amounts of HfC in the central rod. In addition, analytical studies were made of the sensitivity of criticality to the fuel to graphite pebble ratio as measured in tests and of the effect of the upper void cavity as simulated in tests by placing cadmium layer across the top of the pebble pile to force a zero flux boundary condition.

  15. Revisit boundary conditions for the self-adjoint angular flux formulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick N. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    We revisit the boundary conditions for SAAF. We derived the equivalent parity variational form ready for coding up. The more rigorous approach of evaluating odd parity should be solving the odd parity equation coupled with the even parity. We proposed a symmetric reflecting boundary condition although neither positive definiteness nor even-odd decoupling is achieved. A simple numerical test verifies the validity of these boundary conditions.

  16. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    Science.gov (United States)

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  17. Imaging disturbance zones ahead of a tunnel by elastic full-waveform inversion: Adjoint gradient based inversion vs. parameter space reduction using a level-set method

    Directory of Open Access Journals (Sweden)

    Andre Lamert

    2018-03-01

    Full Text Available We present and compare two flexible and effective methodologies to predict disturbance zones ahead of underground tunnels by using elastic full-waveform inversion. One methodology uses a linearized, iterative approach based on misfit gradients computed with the adjoint method while the other uses iterative, gradient-free unscented Kalman filtering in conjunction with a level-set representation. Whereas the former does not involve a priori assumptions on the distribution of elastic properties ahead of the tunnel, the latter introduces a massive reduction in the number of explicit model parameters to be inverted for by focusing on the geometric form of potential disturbances and their average elastic properties. Both imaging methodologies are validated through successful reconstructions of simple disturbances. As an application, we consider an elastic multiple disturbance scenario. By using identical synthetic time-domain seismograms as test data, we obtain satisfactory, albeit different, reconstruction results from the two inversion methodologies. The computational costs of both approaches are of the same order of magnitude, with the gradient-based approach showing a slight advantage. The model parameter space reduction approach compensates for this by additionally providing a posteriori estimates of model parameter uncertainty. Keywords: Tunnel seismics, Full waveform inversion, Seismic waves, Level-set method, Adjoint method, Kalman filter

  18. Comparative Study of Three Data Assimilation Methods for Ice Sheet Model Initialisation

    Science.gov (United States)

    Mosbeux, Cyrille; Gillet-Chaulet, Fabien; Gagliardini, Olivier

    2015-04-01

    The current global warming has direct consequences on ice-sheet mass loss contributing to sea level rise. This loss is generally driven by an acceleration of some coastal outlet glaciers and reproducing these mechanisms is one of the major issues in ice-sheet and ice flow modelling. The construction of an initial state, as close as possible to current observations, is required as a prerequisite before producing any reliable projection of the evolution of ice-sheets. For this step, inverse methods are often used to infer badly known or unknown parameters. For instance, the adjoint inverse method has been implemented and applied with success by different authors in different ice flow models in order to infer the basal drag [ Schafer et al., 2012; Gillet-chauletet al., 2012; Morlighem et al., 2010]. Others data fields, such as ice surface and bedrock topography, are easily measurable with more or less uncertainty but only locally along tracks and interpolated on finer model grid. All these approximations lead to errors on the data elevation model and give rise to an ill-posed problem inducing non-physical anomalies in flux divergence [Seroussi et al, 2011]. A solution to dissipate these divergences of flux is to conduct a surface relaxation step at the expense of the accuracy of the modelled surface [Gillet-Chaulet et al., 2012]. Other solutions, based on the inversion of ice thickness and basal drag were proposed [Perego et al., 2014; Pralong & Gudmundsson, 2011]. In this study, we create a twin experiment to compare three different assimilation algorithms based on inverse methods and nudging to constrain the bedrock friction and the bedrock elevation: (i) cyclic inversion of friction parameter and bedrock topography using adjoint method, (ii) cycles coupling inversion of friction parameter using adjoint method and nudging of bedrock topography, (iii) one step inversion of both parameters with adjoint method. The three methods show a clear improvement in parameters

  19. FluxVisualizer, a Software to Visualize Fluxes through Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Tim Daniel Rose

    2018-04-01

    Full Text Available FluxVisualizer (Version 1.0, 2017, freely available at https://fluxvisualizer.ibgc.cnrs.fr is a software to visualize fluxes values on a scalable vector graphic (SVG representation of a metabolic network by colouring or increasing the width of reaction arrows of the SVG file. FluxVisualizer does not aim to draw metabolic networks but to use a customer’s SVG file allowing him to exploit his representation standards with a minimum of constraints. FluxVisualizer is especially suitable for small to medium size metabolic networks, where a visual representation of the fluxes makes sense. The flux distribution can either be an elementary flux mode (EFM, a flux balance analysis (FBA result or any other flux distribution. It allows the automatic visualization of a series of pathways of the same network as is needed for a set of EFMs. The software is coded in python3 and provides a graphical user interface (GUI and an application programming interface (API. All functionalities of the program can be used from the API and the GUI and allows advanced users to add their own functionalities. The software is able to work with various formats of flux distributions (Metatool, CellNetAnalyzer, COPASI and FAME export files as well as with Excel files. This simple software can save a lot of time when evaluating fluxes simulations on a metabolic network.

  20. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    Science.gov (United States)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  1. Accurately bi-orthogonal direct and adjoint lambda modes via two-sided Eigen-solvers

    International Nuclear Information System (INIS)

    Roman, J.E.; Vidal, V.; Verdu, G.

    2005-01-01

    This work is concerned with the accurate computation of the dominant l-modes (Lambda mode) of the reactor core in order to approximate the solution of the neutron diffusion equation in different situations such as the transient modal analysis. In a previous work, the problem was already addressed by implementing a parallel program based on SLEPc (Scalable Library for Eigenvalue Problem Computations), a public domain software for the solution of eigenvalue problems. Now, the proposed solution is extended by incorporating also the computation of the adjoint l-modes in such a way that the bi-orthogonality condition is enforced very accurately. This feature is very desirable in some types of analyses, and in the proposed scheme it is achieved by making use of two-sided eigenvalue solving software. Current implementations of some of these software, while still susceptible of improvement, show that they can be competitive in terms of response time and accuracy with respect to other types of eigenvalue solving software. The code developed by the authors has parallel capabilities in order to be able to analyze reactors with a great level of detail in a short time. (authors)

  2. Accurately bi-orthogonal direct and adjoint lambda modes via two-sided Eigen-solvers

    Energy Technology Data Exchange (ETDEWEB)

    Roman, J.E.; Vidal, V. [Valencia Univ. Politecnica, D. Sistemas Informaticos y Computacion (Spain); Verdu, G. [Valencia Univ. Politecnica, D. Ingenieria Quimica y Nuclear (Spain)

    2005-07-01

    This work is concerned with the accurate computation of the dominant l-modes (Lambda mode) of the reactor core in order to approximate the solution of the neutron diffusion equation in different situations such as the transient modal analysis. In a previous work, the problem was already addressed by implementing a parallel program based on SLEPc (Scalable Library for Eigenvalue Problem Computations), a public domain software for the solution of eigenvalue problems. Now, the proposed solution is extended by incorporating also the computation of the adjoint l-modes in such a way that the bi-orthogonality condition is enforced very accurately. This feature is very desirable in some types of analyses, and in the proposed scheme it is achieved by making use of two-sided eigenvalue solving software. Current implementations of some of these software, while still susceptible of improvement, show that they can be competitive in terms of response time and accuracy with respect to other types of eigenvalue solving software. The code developed by the authors has parallel capabilities in order to be able to analyze reactors with a great level of detail in a short time. (authors)

  3. Paracantor: A two group, two region reactor code

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Stuart

    1956-07-01

    Paracantor I a two energy group, two region, time independent reactor code, which obtains a closed solution for a critical reactor assembly. The code deals with cylindrical reactors of finite length and with a radial reflector of finite thickness. It is programmed for the 1.B.M: Magnetic Drum Data-Processing Machine, Type 650. The limited memory space available does not permit a flux solution to be included in the basic Paracantor code. A supplementary code, Paracantor 11, has been programmed which computes fluxes, .including adjoint fluxes, from the .output of Paracamtor I.

  4. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  5. Development and application of the automated Monte Carlo biasing procedure in SAS4

    International Nuclear Information System (INIS)

    Tang, J.S.; Broadhead, B.L.

    1993-01-01

    An automated approach for biasing Monte Carlo shielding calculations is described. In particular, adjoint fluxes from a one-dimensional discrete-ordinates calculation are used to generate biasing parameters for a three-dimensional Monte Carlo calculation. The automated procedure consisting of cross-section processing, adjoint flux determination, biasing parameter generation, and the initiation of a MORSE-SGC/S Monte Carlo calculation has been implemented in the SAS4 module of the SCALE computer code system. The automated procedure has been used extensively in the investigation of both computational and experimental benchmarks for the NEACRP working group on shielding assessment of transportation packages. The results of these studies indicate that with the automated biasing procedure, Monte Carlo shielding calculations of spent fuel casks can be easily performed with minimum effort and that accurate results can be obtained at reasonable computing cost. The systematic biasing approach described in this paper can also be applied to other similar shielding problems

  6. Monte Carlo shielding analyses using an automated biasing procedure

    International Nuclear Information System (INIS)

    Tang, J.S.; Hoffman, T.J.

    1988-01-01

    A systematic and automated approach for biasing Monte Carlo shielding calculations is described. In particular, adjoint fluxes from a one-dimensional discrete ordinates calculation are used to generate biasing parameters for a Monte Carlo calculation. The entire procedure of adjoint calculation, biasing parameters generation, and Monte Carlo calculation has been automated. The automated biasing procedure has been applied to several realistic deep-penetration shipping cask problems. The results obtained for neutron and gamma-ray transport indicate that with the automated biasing procedure Monte Carlo shielding calculations of spent-fuel casks can be easily performed with minimum effort and that accurate results can be obtained at reasonable computing cost

  7. The coupling of the neutron transport application RATTLESNAKE to the nuclear fuels performance application BISON under the MOOSE framework

    Energy Technology Data Exchange (ETDEWEB)

    Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier; Wang, Yaqi; Spencer, Benjamin W.; Novascone, Stephen R.; Hales, Jason D.; Martineau, Richard C.

    2014-10-01

    The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimeter scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.

  8. Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws

    International Nuclear Information System (INIS)

    Ibragimov, N Kh; Avdonina, E D

    2013-01-01

    The method of nonlinear self-adjointness, which was recently developed by the first author, gives a generalization of Noether's theorem. This new method significantly extends approaches to constructing conservation laws associated with symmetries, since it does not require the existence of a Lagrangian. In particular, it can be applied to any linear equations and any nonlinear equations that possess at least one local conservation law. The present paper provides a brief survey of results on conservation laws which have been obtained by this method and published mostly in recent preprints of the authors, along with a method for constructing exact solutions of systems of partial differential equations with the use of conservation laws. In most cases the solutions obtained by the method of conservation laws cannot be found as invariant or partially invariant solutions. Bibliography: 23 titles

  9. Assessing the Tangent Linear Behaviour of Common Tracer Transport Schemes and Their Use in a Linearised Atmospheric General Circulation Model

    Science.gov (United States)

    Holdaway, Daniel; Kent, James

    2015-01-01

    The linearity of a selection of common advection schemes is tested and examined with a view to their use in the tangent linear and adjoint versions of an atmospheric general circulation model. The schemes are tested within a simple offline one-dimensional periodic domain as well as using a simplified and complete configuration of the linearised version of NASA's Goddard Earth Observing System version 5 (GEOS-5). All schemes which prevent the development of negative values and preserve the shape of the solution are confirmed to have nonlinear behaviour. The piecewise parabolic method (PPM) with certain flux limiters, including that used by default in GEOS-5, is found to support linear growth near the shocks. This property can cause the rapid development of unrealistically large perturbations within the tangent linear and adjoint models. It is shown that these schemes with flux limiters should not be used within the linearised version of a transport scheme. The results from tests using GEOS-5 show that the current default scheme (a version of PPM) is not suitable for the tangent linear and adjoint model, and that using a linear third-order scheme for the linearised model produces better behaviour. Using the third-order scheme for the linearised model improves the correlations between the linear and non-linear perturbation trajectories for cloud liquid water and cloud liquid ice in GEOS-5.

  10. Design of a flux buffer based on the flux shuttle

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper discusses the design considerations for a flux buffer based on the flux-shuttle concept. Particular attention is given to the issues of flux popping, stability of operation and saturation levels for a large input. Modulation techniques used in order to minimize 1/f noise, in addition to offsets are also analyzed. Advantages over conventional approaches using a SQUID for a flux buffer are discussed. Results of computer simulations are presented

  11. Magnetic-flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  12. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Nielsen Lars K

    2009-05-01

    Full Text Available Abstract Background The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i tracer cultivation on 13C substrates, (ii 13C labelling analysis by mass spectrometry and (iii mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis. Results We have developed OpenFLUX as a user friendly, yet flexible software application for small and large scale 13C metabolic flux analysis. The application is based on the new Elementary Metabolite Unit (EMU framework, significantly enhancing computation speed for flux calculation. From simple notation of metabolic reaction networks defined in a spreadsheet, the OpenFLUX parser automatically generates MATLAB-readable metabolite and isotopomer balances, thus strongly facilitating model creation. The model can be used to perform experimental design, parameter estimation and sensitivity analysis either using the built-in gradient-based search or Monte Carlo algorithms or in user-defined algorithms. Exemplified for a microbial flux study with 71 reactions, 8 free flux parameters and mass isotopomer distribution of 10 metabolites, OpenFLUX allowed to automatically compile the EMU-based model from an Excel file containing metabolic reactions and carbon transfer mechanisms, showing it's user-friendliness. It reliably reproduced the published data and optimum flux distributions for the network under study were found quickly ( Conclusion We have developed a fast, accurate application to perform steady-state 13C metabolic flux analysis. OpenFLUX will strongly facilitate and

  13. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle

    Science.gov (United States)

    Albert, Julian; Hader, Kilian; Engel, Volker

    2017-12-01

    It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.

  14. Detector placement optimization for cargo containers using deterministic adjoint transport examination for SNM detection

    International Nuclear Information System (INIS)

    McLaughlin, Trevor D.; Sjoden, Glenn E.; Manalo, Kevin L.

    2011-01-01

    With growing concerns over port security and the potential for illicit trafficking of SNM through portable cargo shipping containers, efforts are ongoing to reduce the threat via container monitoring. This paper focuses on answering an important question of how many detectors are necessary for adequate coverage of a cargo container considering the detection of neutrons and gamma rays. Deterministic adjoint transport calculations are performed with compressed helium- 3 polyethylene moderated neutron detectors and sodium activated cesium-iodide gamma-ray scintillation detectors on partial and full container models. Results indicate that the detector capability is dependent on source strength and potential shielding. Using a surrogate weapons grade plutonium leakage source, it was determined that for a 20 foot ISO container, five neutron detectors and three gamma detectors are necessary for adequate coverage. While a large CsI(Na) gamma detector has the potential to monitor the entire height of the container for SNM, the He-3 neutron detector is limited to roughly 1.25 m in depth. Detector blind spots are unavoidable inside the container volume unless additional measures are taken for adequate coverage. (author)

  15. Adjoint-based optimization of mechanical performance in polycrystalline materials and structures through texture control

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Grace [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bishop, Joseph E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities of interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.

  16. Greenland Regional and Ice Sheet-wide Geometry Sensitivity to Boundary and Initial conditions

    Science.gov (United States)

    Logan, L. C.; Narayanan, S. H. K.; Greve, R.; Heimbach, P.

    2017-12-01

    Ice sheet and glacier model outputs require inputs from uncertainly known initial and boundary conditions, and other parameters. Conservation and constitutive equations formalize the relationship between model inputs and outputs, and the sensitivity of model-derived quantities of interest (e.g., ice sheet volume above floatation) to model variables can be obtained via the adjoint model of an ice sheet. We show how one particular ice sheet model, SICOPOLIS (SImulation COde for POLythermal Ice Sheets), depends on these inputs through comprehensive adjoint-based sensitivity analyses. SICOPOLIS discretizes the shallow-ice and shallow-shelf approximations for ice flow, and is well-suited for paleo-studies of Greenland and Antarctica, among other computational domains. The adjoint model of SICOPOLIS was developed via algorithmic differentiation, facilitated by the source transformation tool OpenAD (developed at Argonne National Lab). While model sensitivity to various inputs can be computed by costly methods involving input perturbation simulations, the time-dependent adjoint model of SICOPOLIS delivers model sensitivities to initial and boundary conditions throughout time at lower cost. Here, we explore both the sensitivities of the Greenland Ice Sheet's entire and regional volumes to: initial ice thickness, precipitation, basal sliding, and geothermal flux over the Holocene epoch. Sensitivity studies such as described here are now accessible to the modeling community, based on the latest version of SICOPOLIS that has been adapted for OpenAD to generate correct and efficient adjoint code.

  17. Development of the WRF-CO2 4D-Var assimilation system v1.0

    Science.gov (United States)

    Zheng, Tao; French, Nancy H. F.; Baxter, Martin

    2018-05-01

    Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.

  18. Development of the WRF-CO2 4D-Var assimilation system v1.0

    Directory of Open Access Journals (Sweden)

    T. Zheng

    2018-05-01

    Full Text Available Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF modeling system, including the system coupled to chemistry (WRF-Chem, with tangent linear and adjoint codes (WRFPLUS, and with data assimilation (WRFDA, all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden–Fletcher–Goldfarb–Shanno (BFGS minimization algorithm (L-BFGS-B and the second uses the Lanczos conjugate gradient (CG in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km  ×  48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.

  19. ``Use of perturbative methods to break down the variation of reactivity between two systems``; ``Decomposition par methodes perturbatives de la variation de reactivite de deux systemes``

    Energy Technology Data Exchange (ETDEWEB)

    Perruchot-Triboulet, S.; Sanchez, R.

    1997-12-01

    The modification of the isotopic composition, the temperature or even accounting for across section uncertainties in one part of a nuclear reactor core, affects the value of the effective multiplication factor. A new tool allows the analysis of the reactivity effect generated by the modification of the system. With the help of the direct and adjoint fluxes, a detailed balance of reactivity, between the compared systems, is done for each isotopic cross section. After the presentation of the direct and adjoint transport equations in the context of the multigroup code transport APOLLO2, this note describes the method, based on perturbation theory, for the analysis of the reactivity variation. An example application is also given. (author).

  20. ''Use of perturbative methods to break down the variation of reactivity between two systems''

    International Nuclear Information System (INIS)

    Perruchot-Triboulet, S.; Sanchez, R.

    1997-01-01

    The modification of the isotopic composition, the temperature or even accounting for across section uncertainties in one part of a nuclear reactor core, affects the value of the effective multiplication factor. A new tool allows the analysis of the reactivity effect generated by the modification of the system. With the help of the direct and adjoint fluxes, a detailed balance of reactivity, between the compared systems, is done for each isotopic cross section. After the presentation of the direct and adjoint transport equations in the context of the multigroup code transport APOLLO2, this note describes the method, based on perturbation theory, for the analysis of the reactivity variation. An example application is also given. (author)

  1. GRASP [GRound-Water Adjunct Sensitivity Program]: A computer code to perform post-SWENT [simulator for water, energy, and nuclide transport] adjoint sensitivity analysis of steady-state ground-water flow: Technical report

    International Nuclear Information System (INIS)

    Wilson, J.L.; RamaRao, B.S.; McNeish, J.A.

    1986-11-01

    GRASP (GRound-Water Adjunct Senstivity Program) computes measures of the behavior of a ground-water system and the system's performance for waste isolation, and estimates the sensitivities of these measures to system parameters. The computed measures are referred to as ''performance measures'' and include weighted squared deviations of computed and observed pressures or heads, local Darcy velocity components and magnitudes, boundary fluxes, and travel distance and time along travel paths. The sensitivities are computed by the adjoint method and are exact derivatives of the performance measures with respect to the parameters for the modeled system, taken about the assumed parameter values. GRASP presumes steady-state, saturated grondwater flow, and post-processes the results of a multidimensional (1-D, 2-D, 3-D) finite-difference flow code. This document describes the mathematical basis for the model, the algorithms and solution techniques used, and the computer code design. The implementation of GRASP is verified with simple one- and two-dimensional flow problems, for which analytical expressions of performance measures and sensitivities are derived. The linkage between GRASP and multidimensional finite-difference flow codes is described. This document also contains a detailed user's manual. The use of GRASP to evaluate nuclear waste disposal issues has been emphasized throughout the report. The performance measures and their sensitivities can be employed to assist in directing data collection programs, expedite model calibration, and objectively determine the sensitivity of projected system performance to parameters

  2. SAMPO: a code system giving different orders of approximation for sensitivity and perturbation analysis

    International Nuclear Information System (INIS)

    Estiot, J.C.; Salvatores, M.; Palmiotti, G.

    1981-01-01

    We present the characteristics of SAMPO, a one dimension transport theory code system, which is used for the following types of calculation: sensitivity analysis for functional linear or bi-linear on the direct or adjoint flux and their ratios; classic perturbation analysis. First order calculations, as well higher order, can be presented

  3. Flux flow and flux creep in thick films of YBCO. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Rickets, J.; Vinen, W.F.; Abell, J.S.; Shields, T.C. (Superconductivity Research Group, Univ. of Birmingham (United Kingdom))

    1991-12-01

    The results are described of new experiments designed to study flux creep and flux flow along a single flux percolation path in thick films of YBCO. The flux flow regime is studied by a four-point resistive technique using pulsed currents, and the flux creep regime by observing the rate at which flux enters a superconducting loop in parallel with the resistance that is associated with the flux percolation path. (orig.).

  4. Construction of the seismic wave-speed model by adjoint tomography beneath the Japanese metropolitan area

    Science.gov (United States)

    Miyoshi, Takayuki

    2017-04-01

    The Japanese metropolitan area has high risks of earthquakes and volcanoes associated with convergent tectonic plates. It is important to clarify detail three-dimensional structure for understanding tectonics and predicting strong motion. Classical tomographic studies based on ray theory have revealed seismotectonics and volcanic tectonics in the region, however it is unknown whether their models reproduce observed seismograms. In the present study, we construct new seismic wave-speed model by using waveform inversion. Adjoint tomography and the spectral element method (SEM) were used in the inversion (e.g. Tape et al. 2009; Peter et al. 2011). We used broadband seismograms obtained at NIED F-net stations for 140 earthquakes occurred beneath the Kanto district. We selected four frequency bands between 5 and 30 sec and used from the seismograms of longer period bands for the inversion. Tomographic iteration was conducted until obtaining the minimized misfit between data and synthetics. Our SEM model has 16 million grid points that covers the metropolitan area of the Kanto district. The model parameters were the Vp and Vs of the grid points, and density and attenuation were updated to new values depending on new Vs in each iteration. The initial model was assumed the tomographic model (Matsubara and Obara 2011) based on ray theory. The source parameters were basically used from F-net catalog, while the centroid times were inferred from comparison between data and synthetics. We simulated the forward and adjoint wavefields of each event and obtained Vp and Vs misfit kernels from their interaction. Large computation was conducted on K computer, RIKEN. We obtained final model (m16) after 16 iterations in the present study. For the waveform improvement, it is clearly shown that m16 is better than the initial model, and the seismograms especially improved in the frequency bands of longer than 8 sec and changed better for seismograms of the events occurred at deeper than a

  5. Forward-weighted CADIS method for variance reduction of Monte Carlo calculations of distributions and multiple localized quantities

    International Nuclear Information System (INIS)

    Wagner, J. C.; Blakeman, E. D.; Peplow, D. E.

    2009-01-01

    This paper presents a new hybrid (Monte Carlo/deterministic) method for increasing the efficiency of Monte Carlo calculations of distributions, such as flux or dose rate distributions (e.g., mesh tallies), as well as responses at multiple localized detectors and spectra. This method, referred to as Forward-Weighted CADIS (FW-CADIS), is a variation on the Consistent Adjoint Driven Importance Sampling (CADIS) method, which has been used for some time to very effectively improve the efficiency of Monte Carlo calculations of localized quantities, e.g., flux, dose, or reaction rate at a specific location. The basis of this method is the development of an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. Implementation of this method utilizes the results from a forward deterministic calculation to develop a forward-weighted source for a deterministic adjoint calculation. The resulting adjoint function is then used to generate consistent space- and energy-dependent source biasing parameters and weight windows that are used in a forward Monte Carlo calculation to obtain approximately uniform statistical uncertainties in the desired tally regions. The FW-CADIS method has been implemented in the ADVANTG/MCNP framework and has been fully automated within the MAVRIC sequence of SCALE 6. Results of the application of the method to enabling the calculation of dose rates throughout an entire full-scale pressurized-water reactor facility are presented and discussed. (authors)

  6. SCALE Sensitivity Calculations Using Contributon Theory

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Perfetti, Chris; Williams, Mark L.; Petrie, Lester M. Jr.

    2010-01-01

    The SCALE TSUNAMI-3D sensitivity and uncertainty analysis sequence computes the sensitivity of k-eff to each constituent multigroup cross section using adjoint techniques with the KENO Monte Carlo codes. A new technique to simultaneously obtain the product of the forward and adjoint angular flux moments within a single Monte Carlo calculation has been developed and implemented in the SCALE TSUNAMI-3D analysis sequence. A new concept in Monte Carlo theory has been developed for this work, an eigenvalue contributon estimator, which is an extension of previously developed fixed-source contributon estimators. A contributon is a particle for which the forward solution is accumulated, and its importance to the response, which is equivalent to the adjoint solution, is simultaneously accumulated. Thus, the contributon is a particle coupled with its contribution to the response, in this case k-eff. As implemented in SCALE, the contributon provides the importance of a particle exiting at any energy or direction for each location, energy and direction at which the forward flux solution is sampled. Although currently implemented for eigenvalue calculations in multigroup mode in KENO, this technique is directly applicable to continuous-energy calculations for many other responses such as fixed-source sensitivity analysis and quantification of reactor kinetics parameters. This paper provides the physical bases of eigenvalue contributon theory, provides details of implementation into TSUNAMI-3D, and provides results of sample calculations.

  7. TP1 - A computer program for the calculation of reactivity and kinetic parameters by one-dimensional neutron transport perturbation theory

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1979-03-01

    TP1, a FORTRAN-IV program based on transport theory, has been developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for one-dimensional geometry. Direct and adjoint angular dependent neutron fluxes are read from an interface file prepared by using the one-dimensional Ssub(n)-code DTK which provides options for slab, cylindrical and spherical geometry. Multigroup cross sections which are equivalent to those of the DTK-calculations are supplied in the SIGM-block which is also read from an interface file. This block which is usually produced by the code GRUCAL should contain the necessary delayed neutron data, which can be added to the original SIGMN-block by using the code SIGMUT. Two perturbation options are included in TP1: a) the usual first oder perturbation theory can be applied to determine probe reactivities, b) assuming that there are available direct fluxes for the unperturbed reactor system and adjoint fluxes for the perturbed system, the exact reactivity effect induced by the perturbation can be determined by an exact perturbation calculation. According to the input specifications, the output lists the reactivity contributions for each neutron reaction process in the desired detailed spatial and energy group resolution. (orig./RW) [de

  8. Discrete SLn-connections and self-adjoint difference operators on 2-dimensional manifolds

    International Nuclear Information System (INIS)

    Grinevich, P G; Novikov, S P

    2013-01-01

    The programme of discretization of famous completely integrable systems and associated linear operators was launched in the 1990s. In particular, the properties of second-order difference operators on triangulated manifolds and equilateral triangular lattices have been studied by Novikov and Dynnikov since 1996. This study included Laplace transformations, new discretizations of complex analysis, and new discretizations of GL n -connections on triangulated n-dimensional manifolds. A general theory of discrete GL n -connections 'of rank one' has been developed (see the Introduction for definitions). The problem of distinguishing the subclass of SL n -connections (and unimodular SL n ± -connections, which satisfy detA = ±1) has not been solved. In the present paper it is shown that these connections play an important role (which is similar to the role of magnetic fields in the continuous case) in the theory of self-adjoint Schrödinger difference operators on equilateral triangular lattices in ℝ 2 . In Appendix 1 a complete characterization is given of unimodular SL n ± -connections of rank 1 for all n > 1, thus correcting a mistake (it was wrongly claimed that they reduce to a canonical connection for n > 2). With the help of a communication from Korepanov, a complete clarification is provided of how the classical theory of electrical circuits and star-triangle transformations is connected with the discrete Laplace transformations on triangular lattices. Bibliography: 29 titles

  9. Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators.

    Science.gov (United States)

    Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo

    2013-01-01

    To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.

  10. Exact Boundary Controllability of Electromagnetic Fields in a General Region

    International Nuclear Information System (INIS)

    Eller, M. M.; Masters, J. E.

    2002-01-01

    We prove exact controllability for Maxwell's system with variable coefficients in a bounded domain by a current flux in the boundary. The proof relies on a duality argument which reduces the proof of exact controllability to the proof of continuous observability for the homogeneous adjoint system. There is no geometric restriction imposed on the domain

  11. Fast Flux Watch: A mechanism for online detection of fast flux networks

    Directory of Open Access Journals (Sweden)

    Basheer N. Al-Duwairi

    2014-07-01

    Full Text Available Fast flux networks represent a special type of botnets that are used to provide highly available web services to a backend server, which usually hosts malicious content. Detection of fast flux networks continues to be a challenging issue because of the similar behavior between these networks and other legitimate infrastructures, such as CDNs and server farms. This paper proposes Fast Flux Watch (FF-Watch, a mechanism for online detection of fast flux agents. FF-Watch is envisioned to exist as a software agent at leaf routers that connect stub networks to the Internet. The core mechanism of FF-Watch is based on the inherent feature of fast flux networks: flux agents within stub networks take the role of relaying client requests to point-of-sale websites of spam campaigns. The main idea of FF-Watch is to correlate incoming TCP connection requests to flux agents within a stub network with outgoing TCP connection requests from the same agents to the point-of-sale website. Theoretical and traffic trace driven analysis shows that the proposed mechanism can be utilized to efficiently detect fast flux agents within a stub network.

  12. Flux flow and flux dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Bennett, L.H.; Turchinskaya, M.; Swartzendruber, L.J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D.L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed

  13. Determination of PWR core water level using ex-core detectors signals

    International Nuclear Information System (INIS)

    Bernal, Alvaro; Abarca, Agustin; Miro, Rafael; Verdu, Gumersindo

    2013-01-01

    The core water level provides relevant neutronic and thermalhydraulic information of the reactor such as power, k eff and cooling ability; in fact, core water level monitoring could be used to predict LOCA and cooling reduction which may deal with core damage. Although different detection equipment is used to monitor several parameters such as the power, core water level monitoring is not an evident task. However, ex-core detectors can measure the fast neutrons leaking the core and several studies demonstrate the existence of a relationship between fast neutron leakage and core water level due to the shielding effect of the water. In addition, new ex-core detectors are being developed, such as silicon carbide semiconductor radiation detectors, monitoring the neutron flux with higher accuracy and in higher temperatures conditions. Therefore, a methodology to determine this relationship has been developed based on a Monte Carlo calculation using MCNP code and applying variance reduction with adjoint functions based on the adjoint flux obtained with the discrete ordinates code TORT. (author)

  14. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  15. Adjoint sensitivity analysis applied on a model of irradiation assisted degradation of metals in aqueous systems

    International Nuclear Information System (INIS)

    Simonson, S.A.; Ballinger, R.G.; Christensen, R.A.

    1990-01-01

    Irradiation of an aqueous environment results, in general, in a steady state concentration of oxidizing chemical species in solution. Although the effect may be beneficial to the metal in contact with the solution in some cases, say by producing a more protective film, it is generally believed to be detrimental. The ability to predict the concentrations of the oxidizing species and from this begin to analyze the detrimental behavior on the metals requires computer codes that model the chemical reactions, production rates, and diffusion characteristics of the species being produced by irradiation. The large number of parameters and the complexity of the interactions involved in the predictions of irradiation effects on metals degradation requires a more sophisticated approach to determining the sensitivities of the final results. Monte Carlo techniques are too computationally intensive for practical use in determining sensitivities. The paper presents an approach, adjoint sensitivity analysis, that is more practical, i.e., three computer runs versus thousands, and also a more accurate measure of the sensitivities of the model

  16. TRANSHEX, 2-D Thermal Neutron Flux Distribution from Epithermal Flux in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Patrakka, E.

    1994-01-01

    1 - Description of program or function: TRANSHEX is a multigroup integral transport program that determines the thermal scalar flux distribution arising from a known epithermal flux in two- dimensional hexagonal geometry. 2 - Method of solution: The program solves the isotropic collision probability equations for a region-averaged scalar flux by an iterative method. Either a successive over-relaxation or an inner-outer iteration technique is applied. Flat flux collision probabilities between trigonal space regions with white boundary condition are utilized. The effect of epithermal flux is taken into consideration as a slowing-down source that is calculated for a given spatial distribution and 1/E energy dependence of the epithermal flux

  17. BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at N=4 SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V.S. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Budker Nuclear Physics Institute, Novosibirsk (Russian Federation); Novosibirskij Gosudarstvennyj Univ., Novosibirsk (Russian Federation); Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); St. Petersburg State Univ., Gatchina (Russian Federation)

    2011-12-15

    We calculate the eigenvalues of the next-to-leading kernel for the BFKL equation in the adjoint representation of the gauge group SU(N{sub c}) in the N=4 supersymmetric Yang-Mills model. These eigenvalues are used to obtain the high energy behavior of the remainder function for the 6-point scattering amplitude with the maximal helicity violation in the kinematical regions containing the Mandelstam cut contribution. The leading and next-to-leading singularities of the corresponding collinear anomalous dimension are calculated in all orders of perturbation theory. We compare our result with the known collinear limit and with the recently suggested ansatz for the remainder function in three loops and obtain the full agreement providing that the numerical parameters in this anzatz are chosen in an appropriate way.

  18. An inverse method for non linear ablative thermics with experimentation of automatic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Alestra, S [Simulation Information Technology and Systems Engineering, EADS IW Toulouse (France); Collinet, J [Re-entry Systems and Technologies, EADS ASTRIUM ST, Les Mureaux (France); Dubois, F [Professor of Applied Mathematics, Conservatoire National des Arts et Metiers Paris (France)], E-mail: stephane.alestra@eads.net, E-mail: jean.collinet@astrium.eads.net, E-mail: fdubois@cnam.fr

    2008-11-01

    Thermal Protection System is a key element for atmospheric re-entry missions of aerospace vehicles. The high level of heat fluxes encountered in such missions has a direct effect on mass balance of the heat shield. Consequently, the identification of heat fluxes is of great industrial interest but is in flight only available by indirect methods based on temperature measurements. This paper is concerned with inverse analyses of highly evolutive heat fluxes. An inverse problem is used to estimate transient surface heat fluxes (convection coefficient), for degradable thermal material (ablation and pyrolysis), by using time domain temperature measurements on thermal protection. The inverse problem is formulated as a minimization problem involving an objective functional, through an optimization loop. An optimal control formulation (Lagrangian, adjoint and gradient steepest descent method combined with quasi-Newton method computations) is then developed and applied, using Monopyro, a transient one-dimensional thermal model with one moving boundary (ablative surface) that has been developed since many years by ASTRIUM-ST. To compute numerically the adjoint and gradient quantities, for the inverse problem in heat convection coefficient, we have used both an analytical manual differentiation and an Automatic Differentiation (AD) engine tool, Tapenade, developed at INRIA Sophia-Antipolis by the TROPICS team. Several validation test cases, using synthetic temperature measurements are carried out, by applying the results of the inverse method with minimization algorithm. Accurate results of identification on high fluxes test cases, and good agreement for temperatures restitutions, are obtained, without and with ablation and pyrolysis, using bad fluxes initial guesses. First encouraging results with an automatic differentiation procedure are also presented in this paper.

  19. An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts

    Science.gov (United States)

    Yan, Kun; Cheng, Gengdong

    2018-03-01

    For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.

  20. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  1. Application of Wielandt method in continuous-energy nuclear data sensitivity analysis with RMC code

    International Nuclear Information System (INIS)

    Qiu Yishu; Wang Kan; She Ding

    2015-01-01

    The Iterated Fission Probability (IFP) method, an accurate method to estimate adjoint-weighted quantities in the continuous-energy Monte Carlo criticality calculations, has been widely used for calculating kinetic parameters and nuclear data sensitivity coefficients. By using a strategy of waiting, however, this method faces the challenge of high memory usage to store the tallies of original contributions which size is proportional to the number of particle histories in each cycle. Recently, the Wielandt method, applied by Monte Carlo code McCARD to calculate kinetic parameters, estimates adjoint fluxes in a single particle history and thus can save memory usage. In this work, the Wielandt method has been applied in Rector Monte Carlo code RMC for nuclear data sensitivity analysis. The methodology and algorithm of applying Wielandt method in estimation of adjoint-based sensitivity coefficients are discussed. Verification is performed by comparing the sensitivity coefficients calculated by Wielandt method with analytical solutions, those computed by IFP method which is also implemented in RMC code for sensitivity analysis, and those from the multi-group TSUNAMI-3D module in SCALE code package. (author)

  2. Transmutation approximations for the application of hybrid Monte Carlo/deterministic neutron transport to shutdown dose rate analysis

    International Nuclear Information System (INIS)

    Biondo, Elliott D.; Wilson, Paul P. H.

    2017-01-01

    In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation of an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 _± 5 • _1_0_"_4 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.

  3. Application of finite element method in the solution of transport equation

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Vieira, W.J.

    1985-01-01

    It is presented the application of finite element method in the solution of second order transport equation (self-adjoint) for the even parity flux. The angular component is treated by expansion in Legendre polinomials uncoupled of the spatial component, which is approached by an expansion in base functions, interpolated in each spatial element. (M.C.K.) [pt

  4. Flux pinning and flux flow studies in superconductors using flux flow noise techniques. Progress report, April 1, 1976--December 17, 1976

    International Nuclear Information System (INIS)

    Joiner, W.C.H.

    1976-12-01

    Measurements of flux flow noise power spectra have been combined with critical current measurements and measurements of current-voltage characteristics to study flux flow and local pinning interactions effective during flux flow. A model of flux flow noise generation in the presence of local pinning interactions is developed and applied to situations where pinning is dominated by: (1) grain boundaries, (2) normal metal precipitates in a superconducting matrix, (3) gross deformation producing a critical current peak effect, and (4) surface grooves imposed on a sample surface. In the case of pinning caused by normal metal precipitates in a superconducting matrix, unusual training and hysterisis effects are observed in the flux flow characteristics. The greater sensitivity of noise spectra, as compared with bulk critical current measurements, in obtaining a detailed picture of flux flow is emphasized

  5. Flux cutting in superconductors

    International Nuclear Information System (INIS)

    Campbell, A M

    2011-01-01

    This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)

  6. Calculation code of heterogeneity effects for analysis of small sample reactivity worth

    International Nuclear Information System (INIS)

    Okajima, Shigeaki; Mukaiyama, Takehiko; Maeda, Akio.

    1988-03-01

    The discrepancy between experimental and calculated central reactivity worths has been one of the most significant interests for the analysis of fast reactor critical experiment. Two effects have been pointed out so as to be taken into account in the calculation as the possible cause of the discrepancy; one is the local heterogeneity effect which is associated with the measurement geometry, the other is the heterogeneity effect on the distribution of the intracell adjoint flux. In order to evaluate these effects in the analysis of FCA actinide sample reactivity worth the calculation code based on the collision probability method was developed. The code can handle the sample size effect which is one of the local heterogeneity effects and also the intracell adjoint heterogeneity effect. (author)

  7. Perturbation theory and importance functions in integral transport formulations

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Perturbation theory expressions for the static reactivity derived from the flux, collision density, birth-rate density, and fission-neutron density formulations of integral transport theory, and from the integro-differential formulation, are intercompared. The physical meaning and relation of the adjoint functions corresponding to each of the five formulations are established. It is found that the first-order approximation of the perturbation expressions depends on the transport theory formulation and on the adjoint function used. The approximations of the integro-differential formulation corresponding to different first-order approximations of the integral transport theory formulations are identified. It is found that the accuracy of all first-order approximations of the integral transport formulations examined is superior to the accuracy of first-order integro-differential perturbation theory

  8. Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?

    Science.gov (United States)

    Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.

    2012-05-01

    Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.

  9. Convergence of a semi-discretization scheme for the Hamilton-Jacobi equation: A new approach with the adjoint method

    KAUST Repository

    Cagnetti, Filippo; Gomes, Diogo A.; Tran, Hung Vinh

    2013-01-01

    We consider a numerical scheme for the one dimensional time dependent Hamilton-Jacobi equation in the periodic setting. This scheme consists in a semi-discretization using monotone approximations of the Hamiltonian in the spacial variable. From classical viscosity solution theory, these schemes are known to converge. In this paper we present a new approach to the study of the rate of convergence of the approximations based on the nonlinear adjoint method recently introduced by L.C. Evans. We estimate the rate of convergence for convex Hamiltonians and recover the O(h) convergence rate in terms of the L∞ norm and O(h) in terms of the L1 norm, where h is the size of the spacial grid. We discuss also possible generalizations to higher dimensional problems and present several other additional estimates. The special case of quadratic Hamiltonians is considered in detail in the end of the paper. © 2013 IMACS.

  10. Convergence of a semi-discretization scheme for the Hamilton-Jacobi equation: A new approach with the adjoint method

    KAUST Repository

    Cagnetti, Filippo

    2013-11-01

    We consider a numerical scheme for the one dimensional time dependent Hamilton-Jacobi equation in the periodic setting. This scheme consists in a semi-discretization using monotone approximations of the Hamiltonian in the spacial variable. From classical viscosity solution theory, these schemes are known to converge. In this paper we present a new approach to the study of the rate of convergence of the approximations based on the nonlinear adjoint method recently introduced by L.C. Evans. We estimate the rate of convergence for convex Hamiltonians and recover the O(h) convergence rate in terms of the L∞ norm and O(h) in terms of the L1 norm, where h is the size of the spacial grid. We discuss also possible generalizations to higher dimensional problems and present several other additional estimates. The special case of quadratic Hamiltonians is considered in detail in the end of the paper. © 2013 IMACS.

  11. Fractional flux excitations and flux creep in a superconducting film

    International Nuclear Information System (INIS)

    Lyuksyutov, I.F.

    1995-01-01

    We consider the transport properties of a modulated superconducting film in a magnetic field parallel to the film. Modulation can be either intrinsic, due to the layered structure of the high-T c superconductors, or artificial, e.g. due to thickness modulation. This system has an infinite set ( >) of pinned phases. In the pinned phase the excitation of flux loops with a fractional number of flux quanta by the applied current j results in flux creep with a generated voltage V ∝ exp[-jo/j[. (orig.)

  12. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  13. A flux footprint analysis to understand ecosystem fluxes in an intensively managed landscape

    Science.gov (United States)

    Hernandez Rodriguez, L. C.; Goodwell, A. E.; Kumar, P.

    2017-12-01

    Flux tower studies in agricultural sites have mainly been done at plot scale, where the footprint of the instruments is small such that the data reveals the behaviour of the nearby crop on which the study is focused. In the Midwestern United States, the agricultural ecosystem and its associated drainage, evapotranspiration, and nutrient dynamics are dominant influences on interactions between the soil, land, and atmosphere. In this study, we address large-scale ecohydrologic fluxes and states in an intensively managed landscape based on data from a 25m high eddy covariance flux tower. We show the calculated upwind distance and flux footprint for a flux tower located in Central Illinois as part of the Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). In addition, we calculate the daily energy balance during the summer of 2016 from the flux tower measurements and compare with the modelled energy balance from a representative corn crop located in the flux tower footprint using the Multi-Layer Canopy model, MLCan. The changes in flux footprint over the course of hours, days, and the growing season have significant implications for the measured fluxes of carbon and energy at the flux tower. We use MLCan to simulate these fluxes under land covers of corn and soybeans. Our results demonstrate how the instrument heights impact the footprint of the captured eddy covariance fluxes, and we explore the implication for hydrological analysis. The convective turbulent atmosphere during the daytime shows a wide footprint of more than 10 km2, which reaches 3km length for the 90% contribution, where buoyancy is the dominant mechanism driving turbulence. In contrast, the stable atmosphere during the night-time shows a narrower footprint that goes beyond 8km2 and grows in the direction of the prevalent wind, which exceeds 4 km in length. This study improves our understanding of agricultural ecosystem behaviour in terms of the magnitude and variability of fluxes and

  14. First space-based derivation of the global atmospheric methanol emission fluxes

    Directory of Open Access Journals (Sweden)

    T. Stavrakou

    2011-05-01

    Full Text Available This study provides improved methanol emission estimates on the global scale, in particular for the largest methanol source, the terrestrial biosphere, and for biomass burning. To this purpose, one complete year of spaceborne measurements of tropospheric methanol columns retrieved for the first time by the thermal infrared sensor IASI aboard the MetOp satellite are compared with distributions calculated by the IMAGESv2 global chemistry-transport model. Two model simulations are performed using a priori biogenic methanol emissions either from the new MEGANv2.1 emission model, which is fully described in this work and is based on net ecosystem flux measurements, or from a previous parameterization based on net primary production by Jacob et al. (2005. A significantly better model performance in terms of both amplitude and seasonality is achieved through the use of MEGANv2.1 in most world regions, with respect to IASI data, and to surface- and air-based methanol measurements, even though important discrepancies over several regions are still present. As a second step of this study, we combine the MEGANv2.1 and the IASI column abundances over continents in an inverse modelling scheme based on the adjoint of the IMAGESv2 model to generate an improved global methanol emission source. The global optimized source totals 187 Tg yr−1 with a contribution of 100 Tg yr−1 from plants, only slightly lower than the a priori MEGANv2.1 value of 105 Tg yr−1. Large decreases with respect to the MEGANv2.1 biogenic source are inferred over Amazonia (up to 55 % and Indonesia (up to 58 %, whereas more moderate reductions are recorded in the Eastern US (20–25 % and Central Africa (25–35 %. On the other hand, the biogenic source is found to strongly increase in the arid and semi-arid regions of Central Asia (up to a factor of 5 and Western US (factor of 2, probably due to a source of methanol specific to these ecosystems which

  15. Automated flux chamber for investigating gas flux at water-air interfaces.

    Science.gov (United States)

    Duc, Nguyen Thanh; Silverstein, Samuel; Lundmark, Lars; Reyier, Henrik; Crill, Patrick; Bastviken, David

    2013-01-15

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Representative measurements of GHG fluxes from aquatic ecosystems to the atmosphere are vital for quantitative understanding of relationships between biogeochemistry and climate. Fluxes occur at high temporal variability at diel or longer scales, which are not captured by traditional short-term deployments (often in the order of 30 min) of floating flux chambers. High temporal frequency measurements are necessary but also extremely labor intensive if manual flux chamber based methods are used. Therefore, we designed an inexpensive and easily mobile automated flux chamber (AFC) for extended deployments. The AFC was designed to measure in situ accumulation of gas in the chamber and also to collect gas samples in an array of sample bottles for subsequent analysis in the laboratory, providing two independent ways of CH(4) concentration measurements. We here present the AFC design and function together with data from initial laboratory tests and from a field deployment.

  16. On a residual freedom of the next-to-leading BFKL eigenvalue in color adjoint representation in planar N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, Sergey; Prygarin, Alex [Physics Department, Ariel University,Ariel 40700, territories administered by (Israel)

    2016-07-15

    We discuss a residual freedom of the next-to-leading BFKL eigenvalue that originates from ambiguity in redistributing the next-to-leading (NLO) corrections between the adjoint BFKL eigenvalue and eigenfunctions in planar N=4 super-Yang-Mills (SYM) Theory. In terms of the remainder function of the Bern-Dixon-Smirnov (BDS) amplitude this freedom is translated to reshuffling correction between the eigenvalue and the impact factors in the multi-Regge kinematics (MRK) in the next-to-leading logarithm approximation (NLA). We show that the modified NLO BFKL eigenvalue suggested by the authors in ref. http://arxiv.org/abs/1510.00589 can be introduced in the MRK expression for the remainder function by shifting the anomalous dimension in the impact factor in such a way that the two and three loop remainder function is left unchanged to the NLA accuracy.

  17. Physics of magnetic flux ropes

    Science.gov (United States)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  18. Atmospheric weighting functions and surface partial derivatives for remote sensing of scattering planetary atmospheres in thermal spectral region: general adjoint approach

    International Nuclear Information System (INIS)

    Ustinov, Eugene A.

    2005-01-01

    An approach to formulation of inversion algorithms for remote sensing in the thermal spectral region in the case of a scattering planetary atmosphere, based on the adjoint equation of radiative transfer (Ustinov (JQSRT 68 (2001) 195; JQSRT 73 (2002) 29); referred to as Papers 1 and 2, respectively, in the main text), is applied to the general case of retrievals of atmospheric and surface parameters for the scattering atmosphere with nadir viewing geometry. Analytic expressions for corresponding weighting functions for atmospheric parameters and partial derivatives for surface parameters are derived. The case of pure atmospheric absorption with a scattering underlying surface is considered and convergence to results obtained for the non-scattering atmospheres (Ustinov (JQSRT 74 (2002) 683), referred to as Paper 3 in the main text) is demonstrated

  19. Meromorphic flux compactification

    Energy Technology Data Exchange (ETDEWEB)

    Damian, Cesar [Departamento de Ingeniería Mecánica, Universidad de Guanajuato,Carretera Salamanca-Valle de Santiago Km 3.5+1.8 Comunidad de Palo Blanco,Salamanca (Mexico); Loaiza-Brito, Oscar [Departamento de Física, Universidad de Guanajuato,Loma del Bosque No. 103 Col. Lomas del Campestre C.P 37150 León, Guanajuato (Mexico)

    2017-04-26

    We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  20. Meromorphic flux compactification

    International Nuclear Information System (INIS)

    Damian, Cesar; Loaiza-Brito, Oscar

    2017-01-01

    We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  1. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    Science.gov (United States)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  2. Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine

    Science.gov (United States)

    Tsai, Hsieh-Chen; Colonius, Tim

    2017-11-01

    Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  3. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function

    International Nuclear Information System (INIS)

    Wagner, J.C.; Haghighat, A.

    1998-01-01

    Although the Monte Carlo method is considered to be the most accurate method available for solving radiation transport problems, its applicability is limited by its computational expense. Thus, biasing techniques, which require intuition, guesswork, and iterations involving manual adjustments, are employed to make reactor shielding calculations feasible. To overcome this difficulty, the authors have developed a method for using the S N adjoint function for automated variance reduction of Monte Carlo calculations through source biasing and consistent transport biasing with the weight window technique. They describe the implementation of this method into the standard production Monte Carlo code MCNP and its application to a realistic calculation, namely, the reactor cavity dosimetry calculation. The computational effectiveness of the method, as demonstrated through the increase in calculational efficiency, is demonstrated and quantified. Important issues associated with this method and its efficient use are addressed and analyzed. Additional benefits in terms of the reduction in time and effort required of the user are difficult to quantify but are possibly as important as the computational efficiency. In general, the automated variance reduction method presented is capable of increases in computational performance on the order of thousands, while at the same time significantly reducing the current requirements for user experience, time, and effort. Therefore, this method can substantially increase the applicability and reliability of Monte Carlo for large, real-world shielding applications

  4. Comparison of nonflare solar soft x ray flux with 10.7-cm radio flux

    International Nuclear Information System (INIS)

    Donnelly, R.F.

    1982-01-01

    The similarities and differences of the nonflare solar 1- to 8-A X ray flux and the daily 10.7-cm Ottawa solar radio flux are examined. The radio flux is shown to be much less sensitive than the soft X ray flux on the average to the coronal emission of active regions located near or beyond the solar chromospheric limb relative to regions near the center of the solar disk. This is caused by the solar soft X ray emission's being optically thin while much of the 10.7-cm active region emission is from optical depths of tauapprox.1. The radio flux includes a large quiet sun flux which is emitted mostly from the tenuous chromosphere-corona transition region (Tapprox.10 4 --10 6 0 K) and partly from the cooler portions of the quiet corona Tapprox.1.5 x 10 6 0 K. Conversely, the solar soft X ray flux has a very small quiet sun component

  5. Response of actinides to flux changes in high-flux systems

    International Nuclear Information System (INIS)

    Sailor, W.C.

    1993-01-01

    When discussing the transmutation of actinides in accelerator-based transmutation of waste (ATW) systems, there has been some concern about the dynamics of the actinides under high transient fluxes. For a pure neptunium feed, it has been estimated that the 238 Np/ 237 Np ratio increase due to an increasing flux may lead to an unstable, positive reactivity growth. In this analysis, a perturbation method is used to calculate the response of the entire set of actinides in a general way that allows for more species than just neptunium. The time response of the system can be calculated; i.e., a plot of fuel composition and reactivity versus time after a change in flux can be made. The effects of fission products can also be included. The procedure is extremely accurate on short time scales (∼ 1000 s) for the flux levels we contemplate. Calculational results indicate that the reactivity insertions are always smaller than previously estimated

  6. About Merging Threshold and Critical Flux Concepts into a Single One: The Boundary Flux

    Directory of Open Access Journals (Sweden)

    Marco Stoller

    2014-01-01

    Full Text Available In the last decades much effort was put in understanding fouling phenomena on membranes. One successful approach to describe fouling issues on membranes is the critical flux theory. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. However, in many cases critical fluxes were found to be very low, lower than the economic feasibility of the process. The knowledge of the critical flux value must be therefore considered as a good starting point for process design. In the last years, a new concept was introduced, the threshold flux, which defines the maximum permeate flow rate characterized by a low constant fouling rate regime. This concept, more than the critical flux, is a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. And since the concepts share many common aspects, merged into a new concept, called the boundary flux, the validation will occur by the analysis of previously collected data by the authors, during the treatment of olive vegetation wastewater by ultrafiltration and nanofiltration membranes.

  7. Aerosol Health Impact Source Attribution Studies with the CMAQ Adjoint Air Quality Model

    Science.gov (United States)

    Turner, M. D.

    Fine particulate matter (PM2.5) is an air pollutant consisting of a mixture of solid and liquid particles suspended in the atmosphere. Knowledge of the sources and distributions of PM2.5 is important for many reasons, two of which are that PM2.5 has an adverse effect on human health and also an effect on climate change. Recent studies have suggested that health benefits resulting from a unit decrease in black carbon (BC) are four to nine times larger than benefits resulting from an equivalent change in PM2.5 mass. The goal of this thesis is to quantify the role of emissions from different sectors and different locations in governing the total health impacts, risk, and maximum individual risk of exposure to BC both nationally and regionally in the US. We develop and use the CMAQ adjoint model to quantify the role of emissions from all modeled sectors, times, and locations on premature deaths attributed to exposure to BC. From a national analysis, we find that damages resulting from anthropogenic emissions of BC are strongly correlated with population and premature death. However, we find little correlation between damages and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damages resulting from BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Additionally, emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. From a regional analysis, we find that emissions from outside each of six urban areas account for 7% to 27% of the premature deaths attributed to exposure to BC within the region. Within the region encompassing New York City and Philadelphia

  8. Heat flux microsensor measurements

    Science.gov (United States)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  9. Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves

    Science.gov (United States)

    Yuan, Y. O.; Simons, F. J.; Bozdag, E.

    2014-12-01

    We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.

  10. Evolution of the magnetic helicity flux during the formation and eruption of flux ropes

    Energy Technology Data Exchange (ETDEWEB)

    Romano, P. [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Zuccarello, F. P. [Centre for Mathematical Plasma-Astrophysics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium); Guglielmino, S. L.; Zuccarello, F., E-mail: paolo.romano@oact.inaf.it [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95123 Catania (Italy)

    2014-10-20

    We describe the evolution and the magnetic helicity flux for two active regions (ARs) since their appearance on the solar disk: NOAA 11318 and NOAA 11675. Both ARs hosted the formation and destabilization of magnetic flux ropes. In the former AR, the formation of the flux rope culminated in a flare of C2.3 GOES class and a coronal mass ejection (CME) observed by Large Angle and Spectrometric Coronagraph Experiment. In the latter AR, the region hosting the flux rope was involved in several flares, but only a partial eruption with signatures of a minor plasma outflow was observed. We found a different behavior in the accumulation of the magnetic helicity flux in the corona, depending on the magnetic configuration and on the location of the flux ropes in the ARs. Our results suggest that the complexity and strength of the photospheric magnetic field is only a partial indicator of the real likelihood of an AR producing the eruption of a flux rope and a subsequent CME.

  11. Characteristics of heat flux and particle flux to the divertor in H-mode of JT-60U

    International Nuclear Information System (INIS)

    Itami, K.; Hosogane, N.; Asakura, N.; Kubo, H.; Tsuji, S.; Shimada, M.

    1995-01-01

    Heat flux and particle flux behavior in H-mode is studied in a comparative manner. It was confirmed that the multiple peak structure of heat flux during ELM activity has a role in reducing the average value of a peak heat flux at the divertor. In order to characterize heat and particle flux during ELM activity, the ELM part and the steady state part of heat flux and particle flux were determined and statistically analyzed. A large in-out asymmetry of peak ELM heat flux density was found. The asymmetry is almost unaffected by the ion grad-B drift direction. In-out asymmetry of both ELM and steady-state parts of the particle flux were found to be similar. ((orig.))

  12. 3-DB, 3-D Multigroup Diffusion, X-Y-Z, R-Theta-Z, Triangular-Z Geometry, Fast Reactor Burnup

    International Nuclear Information System (INIS)

    Hardie, R.W.; Little, W.W. Jr.; Mroz, W.

    1974-01-01

    1 - Description of problem or function: 3DB is a three-dimensional (x-y-z, r-theta-z, triangular-z) multigroup diffusion code for use in detailed fast-reactor criticality and burnup analysis. The code can be used to - (a) compute k eff and perform criticality searches on time absorption, reactor composition, and reactor dimensions by means of either a flux or an adjoint model, (b) compute material burnup using a flexible material shuffling scheme, and (c) compute flux distributions for an arbitrary extraneous source. 2 - Method of solution: Eigenvalues are computed by standard source- iteration techniques. Group re-balancing and successive over-relaxation with line inversion are used to accelerate convergence. Adjoint solutions are obtained by inverting the input data and redefining the source terms. Material burnup is by reactor zone. The burnup rate is determined by the zone and energy-averaged cross sections which are recomputed after each time-step. The isotopic chains, which can contain any number of isotopes are formed by the user. The code does not contain built- in or internal chains. 3 - Restrictions on the complexity of the problem: Since variable dimensioning is employed, no simple bounds can be stated

  13. Cross-section uncertainty study of the NET shielding blanket

    International Nuclear Information System (INIS)

    Jaeger, J.F.

    1990-11-01

    The Next European Torus (NET) is foreseen as the next step in the European development towards the controlled use of thermonuclear fusion. Detail design of the shielding blanket protecting the peripherals, more especially the super-conducting coils, is well advanced. A cross-section uncertainty, i.e. a study of the expected inaccuracy due to the nuclear cross-section data, has been done for the neutron-gamma reactions in the insulation of the coils for such a design. As an extension of previous work on the NET shielding blanket (e.g. MCNP calculations), it was deemed necessary to estimate the accuracy attainable with transport codes in view of the uncertainties in microscopic cross-sections. The code used, SENSIBL, is based on perturbation theory and uses covariance files, COVFILS-2, for the cross-section data. This necessitates forward and adjoint flux calculations with a transport code (e.g. ONEDANT, TRISM) and folding the information contained in these coupled fluxes with the accuracy estimates of the evaluators of the ENDF/B-V files. Transport, P 5 S 12 , calculations were done with the ONEDANT code, for a shielding blanket design with 714 MW plasma fusion power. Several runs were done to obtain well converged forward and adjoint fluxes (ca. 1%). The forward and adjoint integral responses agree to 2%, which is consistent with the above accuracy. The n-γ response was chosen as it is typical of the general accuracy and is available for all materials considered. The present version of SENSIBL allows direct use of the geometric files of ONEDANT (or TRISM) which simplifies the input. Covariance data is not available at present in COVFILS-2 for all of the materials considered. Only H, C, N, O, Al, Si, Fe, Ni, and Pb could be considered, the big absentee being copper. The resulting uncertainty for the neutron-gamma reactions in the insulation of the coil was found to be 17%. Simulating copper by aluminium produces a negligible increase in the uncertainty, mainly

  14. A technical basis for the flux corrected local conditions critical heat flux correlation

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2008-01-01

    The so-called 'flux-corrected' local conditions CHF correlation was developed at Ontario Hydro in the 1980's and was demonstrated to successfully correlate the Onset of Intermittent Dryout (OID) CHF data for 37-element fuel with a downstream-skewed axial heat flux distribution. However, because the heat flux correction factor appeared to be an ad-hoc, albeit a successful modifying factor in the correlation, there was reluctance to accept the correlation more generally. This paper presents a thermalhydraulic basis, derived from two-phase flow considerations, that supports the appropriateness of the heat flux correction as a local effects modifying factor. (author)

  15. From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.

    Science.gov (United States)

    Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.

    2016-12-01

    The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0

  16. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    Previous versions of RETRAN have had only a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. The principal assumption in deriving the point kinetics model is that the neutron flux may be separated into a time-dependent amplitude funtion and a time-independent shape function. Certain types of transients cannot be correctly analyzed under this assumption, since proper definitions for core average quantities such as reactivity or lifetime include the inner product of the adjoint flux with the perturbed flux. A one-dimensional neutronics model has been included in a preliminary version of RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects. This paper describes the neutronics model and discusses some of the analyses

  17. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  18. Flux compactifications and generalized geometries

    International Nuclear Information System (INIS)

    Grana, Mariana

    2006-01-01

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry

  19. Flux compactifications and generalized geometries

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2006-11-07

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.

  20. An optimal control method for fluid structure interaction systems via adjoint boundary pressure

    Science.gov (United States)

    Chirco, L.; Da Vià, R.; Manservisi, S.

    2017-11-01

    In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.

  1. Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-08-24

    In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.

  2. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    Science.gov (United States)

    Gu, Yingxin; Howard, Daniel M.; Wylie, Bruce K.; Zhang, Li

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  3. EL-2 reactor: Thermal neutron flux distribution; EL-2: Repartition du flux de neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A; Genthon, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  4. Variational Variance Reduction for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2001-01-01

    A new variational variance reduction (VVR) method for Monte Carlo criticality calculations was developed. This method employs (a) a variational functional that is more accurate than the standard direct functional, (b) a representation of the deterministically obtained adjoint flux that is especially accurate for optically thick problems with high scattering ratios, and (c) estimates of the forward flux obtained by Monte Carlo. The VVR method requires no nonanalog Monte Carlo biasing, but it may be used in conjunction with Monte Carlo biasing schemes. Some results are presented from a class of criticality calculations involving alternating arrays of fuel and moderator regions

  5. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  6. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D. G. [Commiss Energy Atom, Direct Energy Nucl, Saclay, (France); Cacuci, D. G.; Balan, I. [Univ Karlsruhe, Inst Nucl Technol and Reactor Safetly, Karlsruhe, (Germany); Ionescu-Bujor, M. [Forschungszentrum Karlsruhe, Fus Program, D-76021 Karlsruhe, (Germany)

    2008-07-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  7. An Adjoint Sensitivity Method Applied to Time Reverse Imaging of Tsunami Source for the 2009 Samoa Earthquake

    Science.gov (United States)

    Hossen, M. Jakir; Gusman, Aditya; Satake, Kenji; Cummins, Phil R.

    2018-01-01

    We have previously developed a tsunami source inversion method based on "Time Reverse Imaging" and demonstrated that it is computationally very efficient and has the ability to reproduce the tsunami source model with good accuracy using tsunami data of the 2011 Tohoku earthquake tsunami. In this paper, we implemented this approach in the 2009 Samoa earthquake tsunami triggered by a doublet earthquake consisting of both normal and thrust faulting. Our result showed that the method is quite capable of recovering the source model associated with normal and thrust faulting. We found that the inversion result is highly sensitive to some stations that must be removed from the inversion. We applied an adjoint sensitivity method to find the optimal set of stations in order to estimate a realistic source model. We found that the inversion result is improved significantly once the optimal set of stations is used. In addition, from the reconstructed source model we estimated the slip distribution of the fault from which we successfully determined the dipping orientation of the fault plane for the normal fault earthquake. Our result suggests that the fault plane dip toward the northeast.

  8. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    International Nuclear Information System (INIS)

    Cacuci, D. G.; Cacuci, D. G.; Balan, I.; Ionescu-Bujor, M.

    2008-01-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  9. The exhibition"La France au CERN" was inaugurated by Danièle Hulin, Directrice adjointe Secteur Physique, Chimie, Sciences pour l'Ingénieur (PCSI), Ministère délégué à l'Enseignement supérieur et à la recherche.

    CERN Document Server

    Patrice Loïez

    2005-01-01

    The exhibition"La France au CERN" was inaugurated by Danièle Hulin, Directrice adjointe Secteur Physique, Chimie, Sciences pour l'Ingénieur (PCSI), Ministère délégué à l'Enseignement supérieur et à la recherche.

  10. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  11. The Open Flux Problem

    Science.gov (United States)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-10-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  12. The Open Flux Problem

    Energy Technology Data Exchange (ETDEWEB)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Henney, C. J. [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States); Arge, C. N. [Science and Exploration Directorate, NASA/GSFC, Greenbelt, MD 20771 (United States); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Derosa, M. L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States); Yeates, A. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom); Owens, M. J., E-mail: linkerj@predsci.com [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)

    2017-10-10

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  13. Characterization of ion fluxes and heat fluxes for PMI relevant conditions on Proto-MPEX

    Science.gov (United States)

    Beers, Clyde; Shaw, Guinevere; Biewer, Theodore; Rapp, Juergen

    2016-10-01

    Plasma characterization, in particular, particle flux and electron and ion temperature distributions nearest to an exposed target, are critical to quantifying Plasma Surface Interaction (PSI). In the Proto-Material Plasma Exposure eXperiment (Proto-MPEX), the ion fluxes and heat fluxes are derived from double Langmuir Probes (DLP) and Thomson Scattering in front of the target assuming Bohm conditions at the sheath entrance. Power fluxes derived from ne and Te measurements are compared to heat fluxes measured with IR thermography. The comparison will allow conclusions on the sheath heat transmission coefficient to be made experimentally. Different experimental conditions (low and high density plasmas (0.5 - 6 x 1019 m-3) with different magnetic configuration are compared. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  14. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  15. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses.

    Science.gov (United States)

    Desai, Trunil S; Srivastava, Shireesh

    2018-01-01

    13 C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13 C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13 C-MFA software that works in various operating systems will enable more researchers to perform 13 C-MFA and to further modify and develop the package.

  16. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  17. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  18. The Oceanic Flux Program: A three decade time-series of particle flux in the deep Sargasso Sea

    Science.gov (United States)

    Weber, J. C.; Conte, M. H.

    2010-12-01

    The Oceanic Flux Program (OFP), 75 km SE of Bermuda, is the longest running time-series of its kind. Initiated in 1978, the OFP has produced an unsurpassed, nearly continuous record of temporal variability in deep ocean fluxes, with a >90% temporal coverage at 3200m depth. The OFP, in conjunction with the co-located Bermuda-Atlantic Time Series (BATS) and the Bermuda Testbed Mooring (BTM) time-series, has provided key observations enabling detailed assessment of how seasonal and non-seasonal variability in the deep ocean is linked with the overlying physical and biogeochemical environment. This talk will focus on the short-term flux variability that overlies the seasonal flux pattern in the Sargasso Sea, emphasizing episodic extreme flux events. Extreme flux events are responsible for much of the year-to-year variability in mean annual flux and are most often observed during early winter and late spring when surface stratification is weak or transient. In addition to biological phenomena (e.g. salp blooms), passage of productive meso-scale features such as eddies, which alter surface water mixing characteristics and surface export fluxes, may initiate some extreme flux events. Yet other productive eddies show a minimal influence on the deep flux, underscoring the importance of upper ocean ecosystem structure and midwater processes on the coupling between the surface ocean environment and deep fluxes. Using key organic and inorganic tracers, causative processes that influence deep flux generation and the strength of the coupling with the surface ocean environment can be identified.

  19. Flux-pinning-induced stresses in a hollow superconducting cylinder with flux creep and viscosity properties

    International Nuclear Information System (INIS)

    Feng, W.J.; Gao, S.W.

    2014-01-01

    Highlights: • Magnetoelastic problem for a superconducting cylinder with a hole is investigated. • The effects of both flux creep and viscous flux flow on stresses are analyzed. • For the FC case, the maximal hoop tensile stress always occurs at hole edge. • For the ZFC case, the maximal hoop stress is not certain to occur at hole edge. - Abstract: The magnetoelastic problem for a superconducting cylinder with a concentric hole placed in a magnetic field is investigated, where the flux creep and viscous flux flow have been considered. The stress distributions are derived and numerical calculated for the descending field in both the zero-field cooling (ZFC) and field cooling (FC) processes. The effects of applied magnetic field, flux creep and viscous flux flow on the maximal radial and hoop stresses are discussed in detail, and some novel phenomena are found. Among others, for the FC case, the maximal hoop tensile stress always occurs at the hole edge, whist for the ZFC case, the maximal stresses including both hoop and radial stresses either occur in the vicinity of the hole or occur at the position of flux frontier in the remagnetization process. For the descending field, in general, both the flux creep and viscosity parameters have important effects on the maximal radial and hoop stresses. All these phenomena are perhaps of vital importance for the application of superconductors

  20. Response decomposition with Monte Carlo correlated coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, T.; Hoogenboom, J.E.; Kloosterman, J.L. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    2001-07-01

    Particle histories that contribute to a detector response are categorized according to whether they are fully confined inside a source-detector enclosure or cross and recross the same enclosure. The contribution from the confined histories is expressed using a forward problem with the external boundary condition on the source-detector enclosure. The contribution from the crossing and recrossing histories is expressed as the surface integral at the same enclosure of the product of the directional cosine and the fluxes in the foregoing forward problem and the adjoint problem for the whole spatial domain. The former contribution can be calculated by a standard forward Monte Carlo. The latter contribution can be calculated by correlated coupling of forward and adjoint histories independently of the former contribution. We briefly describe the computational method and discuss its application to perturbation analysis for localized material changes. (orig.)

  1. Response decomposition with Monte Carlo correlated coupling

    International Nuclear Information System (INIS)

    Ueki, T.; Hoogenboom, J.E.; Kloosterman, J.L.

    2001-01-01

    Particle histories that contribute to a detector response are categorized according to whether they are fully confined inside a source-detector enclosure or cross and recross the same enclosure. The contribution from the confined histories is expressed using a forward problem with the external boundary condition on the source-detector enclosure. The contribution from the crossing and recrossing histories is expressed as the surface integral at the same enclosure of the product of the directional cosine and the fluxes in the foregoing forward problem and the adjoint problem for the whole spatial domain. The former contribution can be calculated by a standard forward Monte Carlo. The latter contribution can be calculated by correlated coupling of forward and adjoint histories independently of the former contribution. We briefly describe the computational method and discuss its application to perturbation analysis for localized material changes. (orig.)

  2. Dry-out heat fluxes of falling film and low-mass flux upward-flow in heated tubes

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ueda, Tatsuhiro; Matsuo, Teruyuki; Miyota, Yukio

    1998-01-01

    Dry-out heat fluxes were investigated experimentally for a film flow falling down on the inner surface of vertical heated-tubes and for a low mass flux forced-upward flow in the tubes using R 113. This work followed the study on those for a two-phase natural circulation system. For the falling film boiling, flow state observation tests were also performed, where dry-patches appearing and disappearing repeatedly were observed near the exit end of the heated section at the dry-out heat flux conditions. Relation between the dry-out heat flux and the liquid film flow rate is analyzed. The dry-out heat fluxes of the low mass flux upflow are expressed well by the correlation proposed in the previous work. The relation for the falling film boiling shows a similar trend to that for the upflow boiling, however, the dry-out heat fluxes of the falling film are much lower, approximately one third, than those of the upward flow. (author)

  3. Effects of High-Flux versus Low-Flux Membranes on Pulmonary Function Tests in Hemodialysis Patients.

    Science.gov (United States)

    Momeni, Ali; Rouhi, Hamid; Kiani, Glareh; Amiri, Masoud

    2013-01-01

    Several studies have been carried out to evaluate the effects of dialysis on pulmonary function tests (PFT). Dialysis procedure may reduce lung volumes and capacities or cause hypoxia; however, to the best of our knowledge, there is no previous study evaluating the effects of membrane type (high flux vs. low flux) on PFT in these patients. The aim of this study was the evaluation of this relationship. In this cross-sectional study, 43 hemodialysis patients without pulmonary disease were enrolled. In these patients dialysis was conducted by low-and high-flux membranes and before and after the procedure, spirometry was done and the results were evaluated by t-test and chi square test. The mean age of patients was 56.34 years. Twenty-three of them were female (53.5%). Type of membrane (high flux vs. low flux) had no effect on spirometry results of patients despite the significant decrease in the body weight during the dialysis session. High flux membrane had no advantage over low flux membrane in terms of improvement in spirometry findings; thus, we could not offer these expensive membranes for this purpose.

  4. High Torque Density Transverse Flux Machine without the Need to Use SMC Material for 3D Flux Paths

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2015-01-01

    This paper presents a new transverse flux permanent magnet machine. In a normal transverse flux machine, complicated 3-D flux paths often exist. Such 3-D flux paths would require the use of soft magnetic composites material instead of laminations for construction of the machine stator. In the new...... machine topology proposed in this paper, by advantageously utilizing the magnetic flux path provided by an additional rotor, use of laminations that allow 2-D flux paths only will be sufficient to accomplish the required 3-D flux paths. The machine also has a high torque density and is therefore...

  5. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  6. Monte Carlo surface flux tallies

    International Nuclear Information System (INIS)

    Favorite, Jeffrey A.

    2010-01-01

    Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.

  7. An introduction to the Australian and New Zealand flux tower network - OzFlux

    Science.gov (United States)

    Beringer, Jason; Hutley, Lindsay B.; McHugh, Ian; Arndt, Stefan K.; Campbell, David; Cleugh, Helen A.; Cleverly, James; Resco de Dios, Víctor; Eamus, Derek; Evans, Bradley; Ewenz, Cacilia; Grace, Peter; Griebel, Anne; Haverd, Vanessa; Hinko-Najera, Nina; Huete, Alfredo; Isaac, Peter; Kanniah, Kasturi; Leuning, Ray; Liddell, Michael J.; Macfarlane, Craig; Meyer, Wayne; Moore, Caitlin; Pendall, Elise; Phillips, Alison; Phillips, Rebecca L.; Prober, Suzanne M.; Restrepo-Coupe, Natalia; Rutledge, Susanna; Schroder, Ivan; Silberstein, Richard; Southall, Patricia; Yee, Mei Sun; Tapper, Nigel J.; van Gorsel, Eva; Vote, Camilla; Walker, Jeff; Wardlaw, Tim

    2016-10-01

    OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m-2 yr-1) and the natural raised peat bog site having a very low GPP (820 gC m-2 yr-1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.

  8. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  9. Automated Monte Carlo biasing for photon-generated electrons near surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Crawford, Martin James; Kensek, Ronald Patrick

    2009-09-01

    This report describes efforts to automate the biasing of coupled electron-photon Monte Carlo particle transport calculations. The approach was based on weight-windows biasing. Weight-window settings were determined using adjoint-flux Monte Carlo calculations. A variety of algorithms were investigated for adaptivity of the Monte Carlo tallies. Tree data structures were used to investigate spatial partitioning. Functional-expansion tallies were used to investigate higher-order spatial representations.

  10. P fluxes and exotic branes

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Davide M. [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Risoli, Stefano [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-12-21

    We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T{sup 6}/[ℤ{sub 2}×ℤ{sub 2}] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.

  11. P fluxes and exotic branes

    International Nuclear Information System (INIS)

    Lombardo, Davide M.; Riccioni, Fabio; Risoli, Stefano

    2016-01-01

    We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T 6 /[ℤ 2 ×ℤ 2 ] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.

  12. Continuous magnetic flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A method and means for altering the intensity of a magnetic field by transposing flux from one location to the location desired fro the magnetic field are examined. The device described includes a pair of communicating cavities formed in a block of superconducting material, is dimensioned to be insertable into one of the cavities and to substantially fill the cavity. Magnetic flux is first trapped in the cavities by establishing a magnetic field while the superconducting material is above the critical temperature at which it goes superconducting. Thereafter, the temperature of the material is reduced below the critical value, and then the exciting magnetic field may be removed. By varying the ratios of the areas of the two cavities, it is possible to produce a field having much greater flux density in the second, smaller cavity, into which the flux transposed.

  13. Flux shunts for undulators

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Hassenzahl, W.V.

    1993-05-01

    Undulators for high-performance applications in synchrotron-radiation sources and periodic magnetic structures for free-electron lasers have stringent requirements on the curvature of the electron's average trajectory. Undulators using the permanent magnet hybrid configuration often have fields in their central region that produce a curved trajectory caused by local, ambient magnetic fields such as those of the earth. The 4.6 m long Advanced Light Source (ALS) undulators use flux shunts to reduce this effect. These flux shunts are magnetic linkages of very high permeability material connecting the two steel beams that support the magnetic structures. The shunts reduce the scalar potential difference between the supporting beams and carry substantial flux that would normally appear in the undulator gap. Magnetic design, mechanical configuration of the flux shunts and magnetic measurements of their effect on the ALS undulators are described

  14. AmeriFlux Measurement Network: Science Team Research

    Energy Technology Data Exchange (ETDEWEB)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  15. Flux pinning and flux flow studies in superconductors using flux flow noise techniques. Progress report, April 1-December 30, 1979

    International Nuclear Information System (INIS)

    Joiner, W.C.H.

    1979-12-01

    Flux flow noise power spectra were investigated, and information obtained through such spectra is applied to describe flux flow and pinning in situations where volume pinning force data is also available. In one case, the application of noise data to PB 80 In 20 samples after recovery and after high temperature annealing is discussed. This work is consistent with a recent model for flux flow noise generation. In the second case we discuss experiments designed to change the fluxoid transit path length, which according to the model should affect both the noise amplitude and the parameter α specifying the longest subpulse times in terms of the average transit time, tau/sub c/. Transient flux flow voltages when a current is switched on after field cycling a Pb 60 In 40 sample have been discovered. Noise spectra have been measured during the transient. These observations are discussed along with a simple model which fits the data. A surprising result is that the transient decay times increase with the applied current. Other characteristics of Pb 60 In 40 after cold working are also discussed

  16. TropFlux: air-sea fluxes for the global tropical oceans-description and evaluation

    Digital Repository Service at National Institute of Oceanography (India)

    PraveenKumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J.

    This paper evaluates several timely, daily air-sea heat flux products (NCEP, NCEP2, ERA-Interim and OAFlux/ISCCP) against observations and present the newly developed TropFlux product. This new product uses bias-corrected ERA-interim and ISCCP data...

  17. Flux tubes at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cea, Paolo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cuteri, Francesca; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria & INFN-Cosenza,Ponte Bucci, cubo 31C, I-87036 Rende (Cosenza) (Italy)

    2016-06-07

    The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm ≃1.6/√σ and the temperature is increased towards and above the deconfinement temperature T{sub c}, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube “evaporation” above T{sub c} has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.

  18. Adaptive mesh refinement and adjoint methods in geophysics simulations

    Science.gov (United States)

    Burstedde, Carsten

    2013-04-01

    required by human intervention and analysis. Specifying an objective functional that quantifies the misfit between the simulation outcome and known constraints and then minimizing it through numerical optimization can serve as an automated technique for parameter identification. As suggested by the similarity in formulation, the numerical algorithm is closely related to the one used for goal-oriented error estimation. One common point is that the so-called adjoint equation needs to be solved numerically. We will outline the derivation and implementation of these methods and discuss some of their pros and cons, supported by numerical results.

  19. Methane Flux of Amazonian Peatland Ecosystems: Large Ecosystem Fluxes with Substantial Contribution from Palm (maritia Flexuosa) STEM Emissions

    Science.gov (United States)

    Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2015-12-01

    Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.

  20. MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis.

    Science.gov (United States)

    Lee, Dong-Yup; Yun, Hongsoek; Park, Sunwon; Lee, Sang Yup

    2003-11-01

    MetaFluxNet is a program package for managing information on the metabolic reaction network and for quantitatively analyzing metabolic fluxes in an interactive and customized way. It allows users to interpret and examine metabolic behavior in response to genetic and/or environmental modifications. As a result, quantitative in silico simulations of metabolic pathways can be carried out to understand the metabolic status and to design the metabolic engineering strategies. The main features of the program include a well-developed model construction environment, user-friendly interface for metabolic flux analysis (MFA), comparative MFA of strains having different genotypes under various environmental conditions, and automated pathway layout creation. http://mbel.kaist.ac.kr/ A manual for MetaFluxNet is available as PDF file.

  1. The perturbation theory in the fundamental mode. Its application to the analysis of neutronic experiments involving small amounts of materials in fast neutron multiplying media

    International Nuclear Information System (INIS)

    Remsak, Stanislav.

    1975-01-01

    The formalism of the perturbation theory at the first order, is developed in its simplest form: diffusion theory in the fundamental mode and then the more complex formalism of the transport theory in the fundamental mode. A comparison shows the effect of the angular correlation between the fine structures of the flux and its adjoint function, the difference in the treatment of neutron leakage phenomena, and the existence of new terms in the perturbation formula, entailing a reactivity representation in the diffusion theory that is not quite exact. Problems of using the formalism developed are considered: application of the multigroup formalism, transients of the flux and its adjoint function, validity of the first order approximation etc. A detailed analysis allows the formulation of a criterion specifying the validity range. Transients occuring in the reference medium are also treated. A set of numerical tests for determining a method of elimination of transient effects is presented. Some differential experiments are then discussed: sodium blowdown in enriched uranium or plutonium cores, experiments utilizing some structural materials (iron and oxygen) and plutonium sample oscillations. The Cadarache version II program was systematically used but the analysis of the experiments of plutonium sample oscillation in Ermine required the Cadarache version III program [fr

  2. Simultaneous Optimization of Tallies in Difficult Shielding Problems

    International Nuclear Information System (INIS)

    Peplow, Douglas E.; Evans, Thomas M.; Wagner, John C.

    2008-01-01

    Monte Carlo is quite useful for calculating specific quantities in complex transport problems. Many variance reduction strategies have been developed that accelerate Monte Carlo calculations for specific tallies. However, when trying to calculate multiple tallies or a mesh tally, users have had to accept different levels of relative uncertainty among the tallies or run separate calculations optimized for each individual tally. To address this limitation, an extension of the CADIS (Consistent Adjoint Driven Importance Sampling) method, which is used for difficult source/detector problems, has been developed to optimize several tallies or the cells of a mesh tally simultaneously. The basis for this method is the development of an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. This method utilizes the results of a forward discrete ordinates solution, which may be based on a quick, coarse-mesh calculation, to develop a forward-weighted source for the adjoint calculation. The importance map and the biased source computed from the adjoint flux are then used in the forward Monte Carlo calculation to obtain approximately uniform relative uncertainties for the desired tallies. This extension is called forward-weighted CADIS, or FW-CADIS

  3. Review and comparison of effective delayed neutron fraction calculation methods with Monte Carlo codes

    International Nuclear Information System (INIS)

    Bécares, V.; Pérez-Martín, S.; Vázquez-Antolín, M.; Villamarín, D.; Martín-Fuertes, F.; González-Romero, E.M.; Merino, I.

    2014-01-01

    Highlights: • Review of several Monte Carlo effective delayed neutron fraction calculation methods. • These methods have been implemented with the Monte Carlo code MCNPX. • They have been benchmarked against against some critical and subcritical systems. • Several nuclear data libraries have been used. - Abstract: The calculation of the effective delayed neutron fraction, β eff , with Monte Carlo codes is a complex task due to the requirement of properly considering the adjoint weighting of delayed neutrons. Nevertheless, several techniques have been proposed to circumvent this difficulty and obtain accurate Monte Carlo results for β eff without the need of explicitly determining the adjoint flux. In this paper, we make a review of some of these techniques; namely we have analyzed two variants of what we call the k-eigenvalue technique and other techniques based on different interpretations of the physical meaning of the adjoint weighting. To test the validity of all these techniques we have implemented them with the MCNPX code and we have benchmarked them against a range of critical and subcritical systems for which either experimental or deterministic values of β eff are available. Furthermore, several nuclear data libraries have been used in order to assess the impact of the uncertainty in nuclear data in the calculated value of β eff

  4. FOCUS, Neutron Transport System for Complex Geometry Reactor Core and Shielding Problems by Monte-Carlo

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1980-01-01

    1 - Description of problem or function: FOCUS enables the calculation of any quantity related to neutron transport in reactor or shielding problems, but was especially designed to calculate differential quantities, such as point values at one or more of the space, energy, direction and time variables of quantities like neutron flux, detector response, reaction rate, etc. or averages of such quantities over a small volume of the phase space. Different types of problems can be treated: systems with a fixed neutron source which may be a mono-directional source located out- side the system, and Eigen function problems in which the neutron source distribution is given by the (unknown) fundamental mode Eigen function distribution. Using Monte Carlo methods complex 3- dimensional geometries and detailed cross section information can be treated. Cross section data are derived from ENDF/B, with anisotropic scattering and discrete or continuous inelastic scattering taken into account. Energy is treated as a continuous variable and time dependence may also be included. 2 - Method of solution: A transformed form of the adjoint Boltzmann equation in integral representation is solved for the space, energy, direction and time variables by Monte Carlo methods. Adjoint particles are defined with properties in some respects contrary to those of neutrons. Adjoint particle histories are constructed from which estimates are obtained of the desired quantity. Adjoint cross sections are defined with which the nuclide and reaction type are selected in a collision. The energy after a collision is selected from adjoint energy distributions calculated together with the adjoint cross sections in advance of the actual Monte Carlo calculation. For multiplying systems successive generations of adjoint particles are obtained which will die out for subcritical systems with a fixed neutron source and will be kept approximately stationary for Eigen function problems. Completely arbitrary problems can

  5. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  6. CrossRef Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M  J; Bourquin, M; Bueno, E  F; Burger, J; Cadoux, F; Cai, X  D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M  J; Chang, Y  H; Chen, A  I; Chen, G  M; Chen, H  S; Cheng, L; Chou, H  Y; Choumilov, E; Choutko, V; Chung, C  H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y  M; Delgado, C; Della Torre, S; Demirköz, M  B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R  J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D  M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K  H; Habiby, M; Haino, S; Han, K  C; He, Z  H; Heil, M; Hoffman, J; Hsieh, T  H; Huang, H; Huang, Z  C; Huh, C; Incagli, M; Ionica, M; Jang, W  Y; Jinchi, H; Kang, S  C; Kanishev, K; Kim, G  N; Kim, K  S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M  S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H  T; Lee, S  C; Leluc, C; Li, H  S; Li, J  Q; Li, Q; Li, T  X; Li, W; Li, Z  H; Li, Z  Y; Lim, S; Lin, C  H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S  Q; Lu, Y  S; Luebelsmeyer, K; Luo, F; Luo, J  Z; Lv, S  S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D  C; Morescalchi, L; Mott, P; Nelson, T; Ni, J  Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X  M; Qin, X; Qu, Z  Y; Räihä, T; Rancoita, P  G; Rapin, D; Ricol, J  S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S  M; Schulz von Dratzig, A; Schwering, G; Seo, E  S; Shan, B  S; Shi, J  Y; Siedenburg, T; Son, D; Song, J  W; Sun, W  H; Tacconi, M; Tang, X  W; Tang, Z  C; Tao, L; Tescaro, D; Ting, Samuel C  C; Ting, S  M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J  P; Vitale, V; Vitillo, S; Wang, L  Q; Wang, N  H; Wang, Q  L; Wang, X; Wang, X  Q; Wang, Z  X; Wei, C  C; Weng, Z  L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R  Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y  J; Yu, Z  Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J  H; Zhang, S  D; Zhang, S  W; Zhang, Z; Zheng, Z  M; Zhu, Z  Q; Zhuang, H  L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-01-01

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×105 antiproton events and 2.42×109 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500  GV, the antiproton p¯, proton p, and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e− flux exhibits a different rigidity dependence. Below 60 GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios each reaches a maximum. From ∼60 to ∼500  GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

  7. A new disjunct eddy-covariance system for BVOC flux measurements - validation on CO2 and H2O fluxes

    Science.gov (United States)

    Baghi, R.; Durand, P.; Jambert, C.; Jarnot, C.; Delon, C.; Serça, D.; Striebig, N.; Ferlicoq, M.; Keravec, P.

    2012-12-01

    The disjunct eddy covariance (DEC) method is an interesting alternative to the conventional eddy covariance (EC) method because it allows the estimation of turbulent fluxes of species for which fast sensors are not available. We have developed and validated a new disjunct sampling system (called MEDEE). This system is built with chemically inert materials. Air samples are taken quickly and alternately in two cylindrical reservoirs, the internal pressures of which are regulated by a moving piston. The MEDEE system was designed to be operated either on the ground or aboard an aircraft. It is also compatible with most analysers since it transfers the air samples at a regulated pressure. To validate the system, DEC and EC measurements of CO2 and latent heat fluxes were performed concurrently during a field campaign. EC fluxes were first compared to simulated DEC (SDEC) fluxes and then to actual DEC fluxes. Both the simulated and actual DEC fluxes showed a good agreement with EC fluxes in terms of correlation. The determination coefficients (R2) were 0.93 and 0.91 for DEC and SDEC latent heat fluxes, respectively. For DEC and SDEC CO2 fluxes R2 was 0.69 in both cases. The conditions of low fluxes experienced during the campaign impaired the comparison of the different techniques especially for CO2 flux measurements. Linear regression analysis showed an 14% underestimation of DEC fluxes for both CO2 and latent heat compared to EC fluxes. A first field campaign, focusing on biogenic volatile organic compound (BVOC) emissions, was carried out to measure isoprene fluxes above a downy oak (Quercus Pubescens) forest in the south-east of France. The measured standard emission rate was in the lower range of reported values in earlier studies. Further analysis will be conducted through ground-based and airborne campaigns in the coming years.

  8. Metabolic-flux dependent regulation of microbial physiology.

    Science.gov (United States)

    Litsios, Athanasios; Ortega, Álvaro D; Wit, Ernst C; Heinemann, Matthias

    2018-04-01

    According to the most prevalent notion, changes in cellular physiology primarily occur in response to altered environmental conditions. Yet, recent studies have shown that changes in metabolic fluxes can also trigger phenotypic changes even when environmental conditions are unchanged. This suggests that cells have mechanisms in place to assess the magnitude of metabolic fluxes, that is, the rate of metabolic reactions, and use this information to regulate their physiology. In this review, we describe recent evidence for metabolic flux-sensing and flux-dependent regulation. Furthermore, we discuss how such sensing and regulation can be mechanistically achieved and present a set of new candidates for flux-signaling metabolites. Similar to metabolic-flux sensing, we argue that cells can also sense protein translation flux. Finally, we elaborate on the advantages that flux-based regulation can confer to cells. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Forward and adjoint spectral-element simulations of seismic wave propagation using hardware accelerators

    Science.gov (United States)

    Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri

    2015-04-01

    Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  10. Flux frequency analysis of seasonally dry ecosystem fluxes in two unique biomes of Sonora Mexico

    Science.gov (United States)

    Verduzco, V. S.; Yepez, E. A.; Robles-Morua, A.; Garatuza, J.; Rodriguez, J. C.; Watts, C.

    2013-05-01

    Complex dynamics from the interactions of ecosystems processes makes difficult to model the behavior of ecosystems fluxes of carbon and water in response to the variation of environmental and biological drivers. Although process oriented ecosystem models are critical tools for studying land-atmosphere fluxes, its validity depends on the appropriate parameterization of equations describing temporal and spatial changes of model state variables and their interactions. This constraint often leads to discrepancies between model simulations and observed data that reduce models reliability especially in arid and semiarid ecosystems. In the semiarid north western Mexico, ecosystem processes are fundamentally controlled by the seasonality of water and the intermittence of rain pulses which are conditions that require calibration of specific fitting functions to describe the response of ecosystem variables (i.e. NEE, GPP, ET, respiration) to these wetting and drying periods. The goal is to find functions that describe the magnitude of ecosystem fluxes during individual rain pulses and the seasonality of the ecosystem. Relaying on five years of eddy covariance flux data of a tropical dry forest and a subtropical shrubland we present a flux frequency analysis that describe the variation of net ecosystem exchange (NEE) of CO2 to highlight the relevance of pulse driven dynamics controlling this flux. Preliminary results of flux frequency analysis of NEE indicate that these ecosystems are strongly controlled by the frequency distribution of rain. Also, the output of fitting functions for NEE, GPP, ET and respiration using semi-empirical functions applied at specific rain pulses compared with season-long statistically generated simulations do not agree. Seasonality and the intrinsic nature of individual pulses have different effects on ecosystem flux responses. This suggests that relationships between the nature of seasonality and individual pulses can help improve the

  11. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  12. Flux Modulation in the Electrodynamic Loudspeaker

    DEFF Research Database (Denmark)

    Halvorsen, Morten; Tinggaard, Carsten; Agerkvist, Finn T.

    2015-01-01

    This paper discusses the effect of flux modulation in the electrodynamic loudspeaker with main focus on the effect on the force factor. A measurement setup to measure the AC flux modulation with static voice coil is explained and the measurements shows good consistency with FEA simulations....... Measurements of the generated AC flux modulation shows, that eddy currents are the main source to magnetic losses in form of phase lag and amplitude changes. Use of a copper cap shows a decrease in flux modulation amplitude at the expense of increased power losses. Finally, simulations show...... that there is a high dependency between the generated AC flux modulation from the voice coil and the AC force factor change....

  13. Calculation of the critical buckling of a lattice based on the integral form of the transport equation

    International Nuclear Information System (INIS)

    Benoist, P.

    1990-06-01

    The migration area, which relates the buckling to the multiplication factor, can be calculated by means of the Deniz formula. This formula involves the direct and adjoint angular fluxes. It is shown in this note that it is possible, using the integral form of the transport equation, to establish an equivalent formula in which only angle-integrated quantities appear. This formulation is more suitable for the calculation by the collision probably method [fr

  14. Crystal growth of emerald by flux method

    International Nuclear Information System (INIS)

    Inoue, Mikio; Narita, Eiichi; Okabe, Taijiro; Morishita, Toshihiko.

    1979-01-01

    Emerald crystals have been formed in two binary fluxes of Li 2 O-MoO 2 and Li 2 O-V 2 O 5 using the slow cooling method and the temperature gradient method under various conditions. In the flux of Li 2 O-MoO 3 carried out in the range of 2 -- 5 of molar ratios (MoO 3 /Li 2 O), emerald was crystallized in the temperature range from 750 to 950 0 C, and the suitable crystallization conditions were found to be the molar ratio of 3 -- 4 and the temperature about 900 0 C. In the flux of Li 2 O-V 2 O 5 carried out in the range of 1.7 -- 5 of molar ratios (V 2 O 5 /Li 2 O), emerald was crystallized in the temperature range from 900 to 1150 0 . The suitable crystals were obtained at the molar ratio of 3 and the temperature range of 1000 -- 1100 0 C. The crystallization temperature rised with an increase in the molar ratio of the both fluxes. The emeralds grown in two binary fluxes were transparent green, having the density of 2.68, the refractive index of 1.56, and the two distinct bands in the visible spectrum at 430 and 600nm. The emerald grown in Li 2 O-V 2 O 5 flux was more bluish green than that grown in Li 2 O-MoO 3 flux. The size of the spontaneously nucleated emerald grown in the former flux was larger than the latter, when crystallized by the slow cooling method. As for the solubility of beryl in the two fluxes, Li 2 O-V 2 O 5 flux was superior to Li 2 O-MoO 3 flux whose small solubility of SiO 2 caused an experimental problem to the temperature gradient method. The suitability of the two fluxes for the crystal growth of emerald by the flux method was discussed from the view point of various properties of above-mentioned two fluxes. (author)

  15. Evaluation of the accuracy of group calculations for reactor criticality perturbations

    International Nuclear Information System (INIS)

    Dulin, V.A.

    1985-09-01

    For calculations of criticality perturbations it is necessary to use group constants which take into account not only the peculiarities of the intra-group flux but also those of the behaviour of the adjoint flux. A new method is proposed for obtaining bilinear-averaged constants of this type on the basis of the resonance characteristics of the importance function and the difference between the value of neutron importance at the group boundary and the group-averaged value (the bsup(+j) factor). A number of calculations are made for the ratios of reactivity coefficients in the BFS assemblies. Values have been obtained for the difference between the results of calculation with bilinear-averaged constants and those averaged conventionally (over flux). In many cases, this difference exceeds the experimental error. (author)

  16. Effects of quartz on crystallization behavior of mold fluxes and microstructural characteristics of flux film.

    Science.gov (United States)

    Lei, Liu; Xiuli, Han; Mingduo, Li; Di, Zhang

    2018-01-01

    Mold fluxes are mainly prepared using cement clinker, quartz, wollastonite, borax, fluorite, soda ash and other mineral materials. Quartz, as one of the most common and essential materials, was chosen for this study to analyze itseffects on crystallization temperature, critical cooling rate, crystal incubation time, crystallization ratio and phases of flux film. We used the research methods of process mineralogy with the application of the single hot thermocouple technique, heat flux simulator, polarizing microscope, X-ray diffraction, etc. Results: By increasing the quartz content from 16 mass% to 24 mass%, the crystallization temperature, critical cooling rate and crystallization ratio of flux film decreased, and the crystal incubation time was extended. Meanwhile, the mineralogical structure of the flux film changed, with a large amount of wollastonite precipitation and a significant decrease in the cuspidine content until it reached zero. This showed a steady decline in the heat transfer control capacity of the flux film. The reason for the results above is that, by increasing the quartz content, the silicon-oxygen tetrahedron network structure promoted a rise in viscosity and restrained ion migration, inhibiting crystal nucleation and growth, leading to the weakening of the crystallization and a decline in the crystallization ratio.

  17. The inverse Numerical Computer Program FLUX-BOT for estimating Vertical Water Fluxes from Temperature Time-Series.

    Science.gov (United States)

    Trauth, N.; Schmidt, C.; Munz, M.

    2016-12-01

    Heat as a natural tracer to quantify water fluxes between groundwater and surface water has evolved to a standard hydrological method. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. Analytical solutions can be easily implemented but assumptions on the boundary conditions have to be made a priori, e.g. sinusoidal upper temperature boundary. Numerical models offer more flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. This also reduced the effort of data preprocessing such as the extraction of the diurnal temperature variation. We developed a software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB which is intended to calculate vertical water fluxes in saturated sediments, based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation. Besides its core inverse numerical routines, FLUX-BOT includes functions visualizing the results and functions for performing uncertainty analysis. We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance.

  18. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  19. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.

    1990-02-01

    A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)

  20. A family of integrable differential–difference equations, its bi-Hamiltonian structure and binary nonlinearization of the Lax pairs and adjoint Lax pairs

    International Nuclear Information System (INIS)

    Xu Xixiang

    2012-01-01

    Highlights: ► We deduce a family of integrable differential–difference equations. ► We present a discrete Hamiltonian operator involving two arbitrary real parameters. ► We establish the bi-Hamiltonian structure for obtained integrable family. ► Liouvolle integrability of the obtained family is demonstrated. ► Every equation in obtained family is factored through the binary nonlinearization. - Abstract: A family of integrable differential–difference equations is derived by the method of Lax pairs. A discrete Hamiltonian operator involving two arbitrary real parameters is introduced. When the parameters are suitably selected, a pair of discrete Hamiltonian operators is presented. Bi-Hamiltonian structure of obtained family is established by discrete trace identity. Then, Liouville integrability for the obtained family is proved. Ultimately, through the binary nonlinearization of the Lax pairs and adjoint Lax pairs, every differential–difference equation in obtained family is factored by an integrable symplectic map and a finite-dimensional integrable system in Liouville sense.