WorldWideScience

Sample records for adjacent continental margin

  1. The speciation of marine particulate iron adjacent to active and passive continental margins

    Lam, Phoebe J.; Ohnemus, Daniel C.; Marcus, Matthew A.

    2012-03-01

    We use synchrotron-based chemical-species mapping techniques to compare the speciation of suspended (1-51 μm) marine particulate iron collected in two open ocean environments adjacent to active and passive continental margins. Chemical-species mapping provides speciation information for heterogeneous environmental samples, and is especially good for detecting spectroscopically distinct trace minerals and species that could not be detectable by other methods. The average oxidation state of marine particulate iron determined by chemical-species mapping is comparable to that determined by standard bulk X-ray Absorption Near Edge Structure spectroscopy. Using chemical-species mapping, we find that up to 43% of particulate Fe in the Northwest Pacific at the depth of the adjacent active continental margin is in the Fe(II) state, with the balance Fe(III). In contrast, particulate iron in the eastern tropical North Atlantic, which receives the highest dust deposition on Earth and is adjacent to a passive margin, is dominated by weathered and oxidized Fe compounds, with Fe(III) contributing 90% of total iron. The balance is composed primarily of Fe(II)-containing species, but we detected individual pyrite particles in some samples within an oxygen minimum zone in the upper thermocline. Several lines of evidence point to the adjacent Mauritanian continental shelf as the source of pyrite to the water column. The speciation of suspended marine particulate iron reflects the mineralogy of iron from the adjacent continental margins. Since the solubility of particulate iron has been shown to be a function of its speciation, this may have implications for the bioavailability of particulate iron adjacent to passive compared to active continental margins.

  2. The geodynamic province of transitional crust adjacent to magma-poor continental margins

    Sibuet, J.; Tucholke, B. E.

    2011-12-01

    Two types of 'transitional crust' have been documented along magma-poor rifted margins. One consists of apparently sub-continental mantle that has been exhumed and serpentinized in a regime of brittle deformation during late stages of rifting. A second is highly thinned continental crust, which in some cases is known to have been supported near sea level until very late in the rift history and thus is interpreted to reflect depth-dependent extension. In both cases it is typically assumed that formation of oceanic crust occurs shortly after the breakup of brittle continental crust and thus that the transitional crust has relatively limited width. We here examine two representative cases of transitional crust, one in the Newfoundland-Iberia rift (exhumed mantle) and one off the Angola-Gabon margin (highly thinned continental crust). Considering the geological and geophysical evidence, we propose that depth-dependent extension (riftward flow of weak lower/middle continental crust and/or upper mantle) may be a common phenomenon on magma-poor margins and that this can result in a much broader zone of transitional crust than has hitherto been assumed. Transitional crust in this extended zone may consist of sub-continental mantle, lower to middle continental crust, or some combination thereof, depending on the strength profile of the pre-rift continental lithosphere. Transitional crust ceases to be emplaced (i.e., final 'breakup' occurs) only when emplacement of heat and melt from the rising asthenosphere becomes dominant over lateral flow of the weak lower lithosphere. This model implies a two-stage breakup: first the rupture of the brittle upper crust and second, the eventual emplacement of oceanic crust. Well-defined magnetic anomalies can form in transitional crust consisting of highly serpentinized, exhumed mantle, and they therefore are not diagnostic of oceanic crust. Where present in transitional crust, these anomalies can be helpful in interpreting the rifting

  3. Crustal structure and development of the SW Barents Sea and the adjacent continental margin

    Breivik, Asbjoern Johan

    1998-12-31

    Because of its expected petroleum potential, the western Barents Sea has been extensively mapped and investigated. The present thesis deals with many aspects of the geological development of this area. The emphasis is on Late Paleozoic structuring, Late Mesozoic basin formation, and early Tertiary margin formation including geodynamical response to the late Cenozoic sedimentation. The thesis begins with a review of the literature on the Late Palaeozoic structural development of the south-western Barents Sea, Svalbard and eastern Greenland. A structural map is developed for the Upper Carboniferous rift system in the southwestern Barents Sea that shows the interference of the northeasterly and the northerly structural grain. A discussion of the Ottar Basin uses a combination of seismic interpretation and gravity modelling to investigate this important structural element of the Upper Palaeozoic rift system. Previous work on Late Mesozoic basin formation in the southwestern Barents Sea is extended by incorporating new seismic reflection data and gravity modelling. Finally, the focus is shifted from the Barents Sea shelf to the continental-ocean transition and the oceanic basin. Gridded free-air gravity data from the ERS-1 enables the construction of a Bouguer gravity map of unprecedented resolution. The relationship between isostacy and gravity was resolved by modelling the thermal structure across the margin. Admittance analysis of the relationship between bathymetry and free-air gravity indicates an elastic thickness of the oceanic Lithosphere of 15-20 km, which is compatible with the depth to the 450{sup o}C isotherm obtained from thermal modelling. It is concluded that the southwestern Barents Sea margin does not deviate in any significant respects from passive rifted margins, except for a very straight and narrow continent-ocean transition zone. 332 refs., 55 figs., 7 tabs.

  4. The Alegre Lineament and its role over the tectonic evolution of the Campos Basin and adjacent continental margin, Southeastern Brazil

    Calegari, Salomão Silva; Neves, Mirna Aparecida; Guadagnin, Felipe; França, George Sand; Vincentelli, Maria Gabriela Castillo

    2016-08-01

    The structural framework and tectonic evolution of the sedimentary basins along the eastern margin of the South American continent are closely associated with the tectonic framework and crustal heterogeneities inherited from the Precambrian basement. However, the role of NW-SE and NNW-SSE structures observed at the outcropping basement in Southeastern Brazil and its impact over the development of those basins have not been closely investigated. In the continental region adjacent to the Campos Basin, we described a geological feature with NNW-SSE orientation, named in this paper as the Alegre Fracture Zone (AFZ), which is observed in the onshore basement and can be projected to the offshore basin. The main goal of this work was to study this structural lineament and its influence on the tectonic evolution of the central portion of the Campos Basin and adjacent mainland. The onshore area was investigated through remote sensing data joint with field observations, and the offshore area was studied through the interpretation of 2-D seismic data calibrated by geophysical well logs. We concluded that the AFZ occurs in both onshore and offshore as a brittle deformation zone formed by multiple sets of fractures that originated in the Cambrian and were reactivated mainly as normal faults during the rift phase and in the Cenozoic. In the Campos Basin, the AFZ delimitates the western side of the Corvina-Parati Low, composing a complex fault system with the NE-SW faults and the NW-SE transfer faults.

  5. Organic matter in sediments in the mangrove areas and adjacent continental margins of Brazil .1. Amino acids and hexosamines

    Jennerjahn, Tc; Ittekkot, V.

    1997-01-01

    The nature of sedimentary organic matter from mangroves and the continental margin of eastern Brazil (8 degrees-24 degrees S) has been investigated in order to obtain information on sources and diagenetic processes. The organic matter content of mangrove sediments is three to four times higher than the maximum content of continental margin sediments. Downslope distribution of organic carbon, nitrogen, amino acids and hexosamines shows an enrichment in water depths between 800 m and 1000 m. Th...

  6. Continental margins: linking ecosystems

    Kelly-Gerreyn, Boris; Rabalais, Nancy; Middelburg, Jack; Roy, Sylvie; Liu, Kon-Kee; Thomas, Helmut; Zhang, Jing

    2008-01-01

    Impacts of Global, Local and Human Forcings on Biogeochemical Cycles and Ecosystems, IMBER/LOICZ Continental Margins Open Science Conference; Shanghai, China, 17–21 September 2007; More than 100 scientists from 25 countries came together to address global, regional, local, and human pressures interactively affecting continental margin biogeochemical cycles, marine food webs, and society. Continental margins cover only 12% of the global ocean area yet account for more than 30% of global oceani...

  7. Subduction-driven recycling of continental margin lithosphere.

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones

  8. Contributions to knowledge of the continental margin of Uruguay. Uruguayan continental margin: Physiographic and seismic analysis

    This work is about the kind of continental margins such as a )Atlantic type passive margins which can be hard or soft b) An active or Pacific margins that because of the very frequent earthquakes develop a morphology dominated by tectonic processes. The Uruguayan continental margin belongs to a soft Atlantic margin

  9. Dynamics of the continental margins

    1990-11-01

    On 18--20 June 1990, over 70 oceanographers conducting research in the ocean margins of North America attended a workshop in Virginia Beach, Virginia. The purpose of the workshop was to provide the Department of Energy with recommendations for future research on the exchange of energy-related materials between the coastal and interior ocean and the relationship between the ocean margins and global change. The workshop was designed to optimize the interaction of scientists from specific research disciplines (biology, chemistry, physics and geology) as they developed hypotheses, research questions and topics and implementation plans. The participants were given few restraints on the research they proposed other than realistic time and monetary limits. The interdisciplinary structure of the meeting promoted lively discussion and creative research plans. The meeting was divided into four working groups based on lateral, vertical, air/sea and sediment/water processes. Working papers were prepared and distributed before the meeting. During the meeting the groups revised the papers and added recommendations that appear in this report, which was reviewed by an Executive Committee.

  10. Systematic mapping of the Spanish continental margin

    Acosta, Juan; Muñoz, Araceli; Uchupi, Elazar

    2012-07-01

    For economic, environmental, recreational, military, and political reasons it is critical for coastal states to have up-to-date information on their marine margins. Spain began to acquire such data 17 years ago. From 1995 to the present, the Spanish Oceanographic Institute (IEO), a research organization of the state, has carried out a systematic geological and geophysical study of the Spanish margins. Among these projects are (1) the hydrographic and oceanographic study of the Spanish Exclusive Economic Zone (EEZ) that was implemented by the Navy Hydrographic Institute (IHM); (2) the Espace Project, a study of the Spanish continental shelf; and (3) the Capesme Project, which created fisheries maps of the Mediterranean Sea. The latter two projects were carried out in collaboration with the Secretariat General of the Sea (SGM).

  11. Geological features and geophysical signatures of continental margins of India

    Krishna, K.S.

    margins of India, with which some of the main geological features of continental margins have been modified. This article provides a brief review on theory of plate tectonics for understanding the process of intra- continental breakup..., thereby the results are discussed for classification of the margins. The Theory of Plate Tectonics The theory of continental drift, which paves the way for discovery of plate tectonics, was put forward by Alfred Lother Wegener as early as in 1912...

  12. Recent acoustic studies of western Canadian continental margin

    Bornhold, B.D.; Brandon, M.T.; Clowes, R.M.; Currie, R.G.; Davis, E.E.; Hussong, D.M.; Hyndman, R.D.; Riddihough, R.P.; Rogers, G.C.; Yorath, C.J.

    1986-07-01

    A regional survey of the western Canadian continental margin from the central Queen Charlotte Island, 52/sup 0/40'N, to the Strait of Juan de Fuca, 47/sup 0/40'N, has been completed with the acoustic imaging system SeaMARC II. These data, combined with single-channel and multichannel seismic reflection data, reveal many new insights concerning the deep structure of the subduction margin off Vancouver Island. Clearly evident in the imagery are the deformation of sediments at the base of the slope, the surface expression of seismically active faults, the mass wasting of sediment frequently observed at the base of the slope, and the erosional canyons and sediment transport channels on the slope and adjacent abyssal plain. The variability in the surficial and deep structures along the length of the margin is great and corresponds well with the postulated variations in the local ocean/continent motion vectors: motion along the southern Queen Charlotte Islands margin is primarily transform (about 55 mm/year) with a small component of convergence (about 10 mm/year); motion south of the triple junction at the Wilson Knolls is convergent but at a very slow rate (about 10 mm/year); and motion along the central and southern Vancouver Island margin is nearly orthogonal to the coast and more rapid (about 40 mm/year).

  13. Contributions to knowledge of the continental margin of Uruguay. Description of background samples in the continental margin of Uruguay

    This study provide data concerning of the background sediments of the continental margin of Uruguay. There were carried out different works with witnesses in order to extract various sediment samples from the continental shelf

  14. Seamounts along the Iberian continental margins

    Seamounts are first-order morphological elements on continental margins and in oceanic domains, which have been extensively researched over recent decades in all branches of oceanography. These features favour the development of several geological processes, and their study gives us a better understanding of their geological and morphological domains. The seamounts around Iberia are numerous and provide excellent examples of the geo diversity of these morphological elements. Here we present a compilation of 15 seamounts around the Iberian Peninsula. These seamounts have different origins related to the geodynamic evolution (volcanism, extensional or compressive tectonics, and diapirism) of the domains where they are located. The current configuration of their relief has been influenced by Neogene-Quaternary tectonics. Their positioning controls the current morpho-sedimentary processes in the basins and on the margins, and high- lights the fact that downslope processes on seamount flanks (mass flows, turbidite flows, and landslides) and processes parallel to seamounts (contouritic currents) correspond to the major geological features they are associated with them. Biogenic structures commonly develop on the tops of seamounts where occasionally isolated shelves form that have carbonate-dominated sedimentation. (Author)

  15. Understanding continental margin biodiversity: a new imperative.

    Levin, Lisa A; Sibuet, Myriam

    2012-01-01

    Until recently, the deep continental margins (200-4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know. PMID:22457970

  16. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

    K K Ajay; A K Chaubey; K S Krishna; D Gopala Rao; D Sar

    2010-12-01

    Multi-channel seismic reflection profiles across the southwest continental margin of India (SWCMI) show presence of westerly dipping seismic reflectors beneath sedimentary strata along the western flank of the Laccadive Ridge –northernmost part of the Chagos –Laccadive Ridge system. Velocity structure, seismic character, 2D gravity model and geographic locations of the dipping reflectors suggest that these reflectors are volcanic in origin, which are interpreted as Seaward Dipping Reflectors (SDRs). The SDRs; 15 to 27 km wide overlain by ∼1 km thick sediment; are observed at three locations and characterized by stack of laterally continuous, divergent and off-lapping reflectors. Occurrence of SDRs along western flank of the Laccadive Ridge adjacent to oceanic crust of the Arabian Basin and 2D crustal model deduced from free-air gravity anomaly suggest that they are genetically related to incipient volcanism during separation of Madagascar from India. We suggest that (i)SWCMI is a volcanic passive margin developed during India –Madagascar breakup in the Late Cretaceous, and (ii)continent –ocean transition lies at western margin of the Laccadive Ridge, west of feather edge of the SDRs. Occurrence of SDRs on western flank of the Laccadive Ridge and inferred zone of transition from continent to ocean further suggest continental nature of crust of the Laccadive Ridge.

  17. Southern African continental margin: Dynamic processes of a transform margin

    N. Parsiegla; Jacek Stankiewicz; Gohl, K.; Trond Ryberg; G. Uenzelmann-Neben;  

    2009-01-01

    Dynamic processes at sheared margins associated with the formation of sedimentary basins and marginal ridges are poorly understood. The southern African margin provides an excellent opportunity to investigate the deep crustal structure of a transform margin and to characterize processes acting at these margins by studying the Agulhas-Falkland Fracture Zone, the Outeniqua Basin, and the Diaz Marginal Ridge. To do this, we present the results of the combined seismic land-sea experiments of the ...

  18. U.S. East Coast Continental Margin (CONMAR) Sediment Data

    National Oceanic and Atmospheric Administration, Department of Commerce — The USGS/WHOI Continental Margin (CONMAR) Data set was compiled by the U.S. Geological Survey and the Woods Hole Oceanographic Institution as a joint program of...

  19. Lithologic Descriptions from the Continental Margin Program (HATHLITH71 shapefile)

    U.S. Geological Survey, Department of the Interior — This data set contains lithologic information on bottom sediments from the Continental Margin Program. The program was a joint collaboration between the U.S....

  20. Continental margin sedimentation: from sediment transport to sequence stratigraphy

    Nittrouer, Charles A., (Edited By); Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P.M.; Wiberg, Patricia L.

    2007-01-01

    This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins. - Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes - Explores timescales ranging from particle transport at one extreme, to deep burial at the other - Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy - Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation - Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

  1. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2015-01-01

    The oceans' continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins, (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services. These include primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  2. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2014-01-01

    The ocean’s continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services including primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  3. Shallow gas in the Iberian continental margin

    The shallow gas reservoirs in marine sediments from the Iberian margin or their escapes can be detected by using direct methods: (1) the measurement of high concentrations of methane or other hydrocarbons in the water column or sediment cores, (2) the identification of chemosynthetic communities and/or authigenic car- bonates in the seafloor, and (3) identification (using underwater videos) of pockmarks or carbonate mounds and mud volcanoes associated with the fluid escapes; or by indirect technical characterization of anomalies in acoustic records such as: (1) the presence of acoustic plumes in echo-sounders records, (2) the identification of acoustic blanking and/or acoustic turbidity in the high resolution seismic records, (3) the interpretation of reflectivity and (4) morphologies of pockmarks or seamounts in sidescan sonar and multibeam echo sounder records. This article is a compilation of acoustic-seismic, sedimentologic and morphologic evidence associated to the presence of shallow gas (accumulations or escapes) that appear in the Iberian margin and hat have been published in various papers. The description is divided into geographical sectors, beginning in the north-eastern end of the Mediterranean margin and ending at the easternmost area of the Cantabrian margin, following a clockwise direction around the Iberian Peninsula. (Author)

  4. Holocene subsurface temperature variability in the eastern Antarctic continental margin

    Kim, J. H.; X. Crosta; Willmott, V.; Renssen, H.; J. Bonnin; Helmke, P.; Schouten, S.; Sinninghe Damsté, J.S.

    2012-01-01

    We reconstructed subsurface (similar to 45-200 m water depth) temperature variability in the eastern Antarctic continental margin during the late Holocene, using an archaeal lipid-based temperature proxy (TEX86 L). Our results reveal that subsurface temperature changes were probably positively coupled to the variability of warmer, nutrient-rich Modified Circumpolar Deep Water (MCDW, deep water of the Antarctic circumpolar current) intrusion onto the continental shelf. The TEX86 L record, in c...

  5. Contributions to knowledge of the continental margin of Uruguay. Uruguayan continental margin: morphology, geology and identification of the base of the slope

    This work is about the morphology, geology and the identification of the base of the slope in the The Uruguayan continental margin which corresponds to the the type of divergent, volcanic and segmented margins. Morphologically is constituted by a clearly defined continental shelf, as well as a continental slope that presents configuration changes from north to south and passes directly to the abyssal plain

  6. The Late Paleozoic Southern Margin of the Siberian paleocontinent: transformation from an active continental margin to intracontinental rifting

    Kozlovsky, A. M.; Yarmolyuk, V. V.; Sal'Nikova, E. B.

    2009-04-01

    The large volcanoplutonic belt was formed on the southern margin of Siberian paleocontinent in the Early Carboniferous-Early Permian. Now it's stretched through whole Mongolia and the adjacent region of China. In the belt structure there are defined the successive rock complexes: the older one represented by differentiated basalt-andesite-rhyodacite series and younger bimodal complex of basalt-comendite-trachyrhyolite composition. The granodiorite-plagiogranite and diorite-monzonite-granodiorite plutonic massifs are associated with the former, while peralkaline granite massifs are characteristic of the latter. Geochronological results and geological relations between rocks of the bimodal and differentiated complexes showed first that rocks of the differentiated complex originated 350 to 330 Ma ago at the initial stage of forming of the marginal continental belt, linked with development active continental margin. This is evident from geochronological dates obtained for the Adzh-Bogd and Edrengiyn-Nuruu massifs and for volcanic associations of the complex. The dates are consistent with paleontological data. The bimodal association was formed later, 320 to 290 Ma ago. The time span separating formation of two igneous complexes ranges from several to 20-30 m.y. in different areas of the marginal belt. The bimodal magmatism was interrelated with rifting responsible for development of the Gobi-Tien Shan rift zone in the belt axial part and the Main Mongolian lineament along the belt northern boundary. Loci of bimodal rift magmatism likely migrated with time: the respective magmatic activity first initiated on the west of the rift system and then advanced gradually eastward with development of rift structures. Normal granitoids untypical but occurring nevertheless among the products of rift magmatism in addition to peralkaline massifs are assumed to have been formed, when the basic magmatism associated with rifting stimulated crustal anatexis and generation of crustal

  7. Preface: Biogeochemistry–ecosystem interaction on changing continental margins in the Anthropocene

    Liu, K-K.; Emeis, K.-C.; Levin, L.A.; Naqvi, S.W.A.; Roman, M.

    and hypercapnia in upwelling systems • Interactions between natural and social sciences for better steward- ship of continental margins. It has long been acknowledged (e.g., Doney, 2010; Liu et al., 2010) that marine ecosystems on continental margins, including... and possibly manage margin ecosystems in a changing world. Effective governance of social–ecological systems on continental margins is key to reducing the pervasive over- exploitation, depletion and destruction of marine resources and http://dx.doi.org/10...

  8. Sedimentary basins and continental margin processes - from modern hyper-extended margins to deformed ancient analogues : An introduction

    Gibson, George M.; Roure, Francois; Manatschal, Gianreto

    2015-01-01

    Continental margins and their fossilized analogues are important repositories of natural resources. With better processing techniques and increased availability of high-resolution seismic and potential field data, imaging of present-day continental margins and their embedded sedimentary basins, in w

  9. On the relationship between sequential faulting, margin asymmetry and highly thinned continental crust

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan

    2014-05-01

    The architecture of magma-poor continental margins is remarkably variable. The width of highly thinned continental crust (with a thickness Angola, to over 300 km in the Antarctic Enderby Basin. The respective conjugate margin, however, is restricted to few tens of kilometres resulting in large scale crustal asymmetry. Growing evidence from rifted continental margins in the North and South Atlantic, as well as from the East Australia/Lord Howe Rise margin pair supports the idea that rifts with a very wide margin and a narrow conjugate are rather the rule than the exception. In this study, we use numerical thermo-mechanical models to investigate the dynamics of rifting. Our simulations apply an elasto-visco-plastic rheology formulation that relies on laboratory-derived flow laws for crustal and mantle rock. The models are constrained by geophysical and geological observations like limited melt generation, cold initial geotherms, and mafic lower crustal rheology. We show that small-scale lateral rift migration simultaneously explains the observed margin asymmetry and the presence of highly thinned continental crust. Rift migration results from two fundamental processes: (1) Strain hardening in the rift centre due to cooling of upwelling mantle material; (2) Formation of a low viscosity exhumation channel adjacent to the rift centre that is generated by heat transfer from the upwelling mantle and enhanced by viscous strain softening. Rift migration takes place in a steady-state manner and is accomplished by oceanward-younging sequential faults within the upper crust and balanced through lower crustal flow. We demonstrate that the rate of extension has paramount control on margin width. Since higher velocities lead to elevated heat flow within the rift and hence to hot and weak lower crust, a larger low-viscosity exhumation channel is generated that facilitates rift migration leading to wider margins. The South Atlantic is an ideal test bed for the hypothesis of

  10. Linking margin morphology to sedimentary processes along the US East Coast passive continental margin

    Brothers, D. S.; ten Brink, U. S.; Andrews, B.; Twichell, D.

    2010-12-01

    The morphology of the US East Coast continental slope and rise has a surprising amount of along-margin variation. Multibeam bathymetry datasets that cover the slope and rise from Cape Hatteras to Georges Bank provide a unique opportunity to analyze both first-order and higher-order morphologies, including submarine canyons, landslides, slumps and sedimentary bedforms. Using the morphological characterization coupled with seismic and core data, we hope to better understand how ancient and modern sedimentary processes control the shape of the margin. As a first step, the margin bathymetry was subdivided into 20 shelf-perpendicular regions from which several statistical parameters were analyzed. Within each region, the slope gradient was computed separately for down-slope and across-slope aspect directions. Distribution curves in each region for down- and across-slope gradients and seafloor roughness as functions of depth were grouped according to their statistical similarities. Four basic groups emerge and each approximately corresponds to known regions of Quaternary glacial, fluvial, current-controlled and gravity-driven sedimentary transport. In the second part of the study, published lithologic and chronostratigraphic frameworks of this margin were used to examine the relationship between seafloor morphology and the underlying geology. Along the upper continental rise, thick Quaternary deposits appear to have a strong influence on the short- and long-wavelength variation in rise topography, revealing a complex interplay between down-slope and along-slope sediment transport. Despite the close correlation between continental slope morphology and Quaternary environmental conditions, initial results suggest that the underlying, older, stratigraphy also plays a primary role. Along the continental slope, Quaternary processes appear to control the relief of slope-confined canyons and other short-wavelength (Tertiary and older material.

  11. Are buried river channels sources of geoclutter on the New Jersey Continental Margin?

    Osler, John C.

    2003-10-01

    Geological features on a continental shelf may be responsible for anomalous acoustic scatter that are identified as (false) targets, or GeoClutter, on active sonar systems. Features on the New Jersey Continental Margin include a drainage system that formed when sea-level was much lower, ran across the shelf, and incised channels approximately 10 meters deep into the surrounding seabed. These channels have since been filled with sediments that are not apparent on bathymetric maps. The potential for these channels to create GeoClutter depends in part on the contrast in geoacoustic properties between the sediments filling the channels and the adjacent flanks. To study this matter, an experiment was conducted to measure the reflection loss from 1 to 10 kHz of channel fill and flank sediments in an area where GeoClutter has been observed and where there is supporting geophysical data. The measurements were made using the WARBLE technique [C. W. Holland and J. C. Osler, J. Acoust. Soc. Am. 107, 1263-1279 (2000)], adapted for use in rapid environmental assessment using modified sonobuoys. Results from the experiment will be presented and the role of buried channels acting as sources of GeoClutter on the New Jersey Continental Margin will be discussed.

  12. The continental margin off Oregon from seismic investigations

    Gerdom, M.; Trehu, A. M.; Flueh, E. R.; Klaeschen, D.

    2000-12-01

    In April and May 1996, a geophysical study of the Cascadia continental margin off Oregon and Washington was carried out aboard the German RV Sonne as a cooperative experiment between GEOMAR, the USGS and COAS. Offshore central Oregon, which is the subject of this study, the experiment involved the collection of wide-angle refraction and reflection data along three profiles across the continental margin using ocean-bottom seismometers (OBS) and hydrophones (OBH) as well as land recorders. Two-dimensional modelling of the travel times provides a detailed velocity structure beneath these profiles. The subducting oceanic crust of the Juan de Fuca plate can be traced from the trench to its position some 10 km landward of the coastline. At the coastline, the Moho has a depth of 30 km. The dip of the plate changes from 1.5° westward of the trench to about 6.5° below the accretionary complex and to about 16° further eastward below the coast. The backstop forming western edge of the Siletz terrane, an oceanic plateau that was accreted to North America about 50 Ma ago, is well defined by the observations. It is located about 60 km to the east of the deformation front and has a seaward dip of 40°. At its seaward edge, the base of the Siletz terrane seems to be in contact with the subducting oceanic crust implying that sediments are unlikely to be subducted to greater depths. The upper oceanic crust is thinner to the east of this contact than to the west. At depths greater than 18 km, the top of the oceanic crust is the origin of pre-critical reflections observable in several land recordings and in the data of one ocean bottom instrument. These reflections are most likely caused by fluids that are released from the oceanic crust by metamorphic facies transition.

  13. Bottom current processes along the Iberian continental margin

    The products of bottom current circulation around the Iberian continental margin are characterised by large erosional and depositional features formed under a variety of geological and oceanographic contexts. The Iberian margins are influenced by several water masses that mainly interact along the upper and middle con- tinental slopes, as well as along the lower slope with the abyssal plains being influenced to a lesser extent. The main depositional features occur along the Ceuta Contourite Depositional System (CDS) within the SW Alboran Sea, in the Gulf of Cadiz (the most studied so far), the western margins of the Portugal/Galician mar- gin, the Ortegal Spur and the Le Danois Bank or Cachucho. Moreover, erosional contourite features have also been recently indentified, most notably terraces, abraded surfaces, channels, furrows and moats. The majority of these features are formed under the influence of the Mediterranean water masses, especially by the interaction of the Mediterranean Outflow Water (MOW) with the seafloor. The MOW is characterized as relatively warm (13 degree centigrade) and with a high salinity (∼36.5), giving it a high density relative to the surrounding water masses, hence constituting an important contribution to the global thermohaline circulation, making it one of the most studied water masses surrounding Iberia. The development of both depositional and ero- sional contourite features does not only depend on the bottom-current velocity but also on several other important controlling factors, including: 1) local margin morphology affected by recent tectonic activity; 2) multiple sources of sediment supply; 3) water-mass interphases interacting with the seafloor; and 4) glacioeustatic changes, especially during the Quaternary, when the increasing influence of the bottom cur- rent has been observed during the cold stages. The main objective of this special volume contribution is to provide a review and description of the regional along

  14. The Role of the Submarine Channel Pernambuco in the Brazilian Continental Margin East

    The Brazilian Continental Margin, which coastline measures more than 8,500km gives to Brazil continental dimensions. This huge region is conditioned by the action of process such as, sedimentals, tectonics, geomorphological and climatical, as example, which direct or in conjunction with other ones, since of continental break up between South America and Africa are going on and may be responsible for the current morphology of the margin. In accordance with this point of view, the Oriental part of the Brazilian Continental Margin, presents characteristics of a passive margin and fisiographically ''starved'', in which the continental break occur no more than 100km from de coastline and the sedimentary coverage is mainly carbonatic. The continental slope does not present great extension if compared with other parts of the Brazilian Margin and sharp gradient. The remark presence of the continental plateaus (Rio Grande Plateau and Pernambuco Plateau), which link with the continental rise and additionally the Paraiba, Pernambuco e Bahia seamounts, are the majors features in the morphology of the region between the slope and the continental rise. This paper will concentrate its focus on Bahia Seamount, with emphasis in the mainly erosive feature which cut transversally the seamounts, named Pernambuco Submarine Channel. It will be employed bathymetric multibeam and seismic data carried out by the Brazilian Continental Shelf Project (LEPLAC) in the current year and pieces of information from bibliographic researches in order to present a discussion by the hole of the Pernambuco Submarine Channel in the Occidental region of the Brazilian Continental Margin

  15. Particle flux across the mid-European continental margin

    Antia, A N; Peinert, R

    1999-01-01

    Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49 degrees N within the Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid- slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off- slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of partic...

  16. Geometries of hyperextended continental crust in northeastern continental brazilian margin: insights from potential field and seismic interpretation

    Magalhães, José; Barbosa, José; Ribeiro, Vanessa; Oliveira, Jefferson; Filho, Osvaldo; Buarque, Bruno

    2016-04-01

    The study region encompasses a set of three basins located at Northeast Brazilian continental margin: Pernambuco (south sector), Paraíba and Natal platform (north sector). These basins were formed during the last stage of separation between South America and African plates during Cretaceous. The continental breakup in these regions occurred probably during the Middle-Upper Albian (~102 m.y). The adjacent basement rocks belong to Borborema Province (BP), which was formed due a complex superposition between Pre-Cambrian orogenic cycles. The structural framework of BP is dominated by large shear zones that divided this province in three main tectonic domains: South, Central and North. The Pernambuco Basin is located in the South Domain and the Paraíba and Natal platform basins are related to the Central Domain. The tectonic and magmatic evolution of the Pernambuco Basin was influenced by oblique rifting (~ 35° to rift axis) and a thermal anomaly probably caused by the Santa Helena hotspot. The north sector represents a continental shelf characterized by basement high with a narrow platform and an abrupt shelf break on transition to the abyssal plain. The continental platform break of this sector was parallel to the rift axis. In this way, we present a regional structural interpretation of these sectors of Brazilian rifted margin based on interpretation and 2D forward modeling of potential field and 2D seismic data. The magnetic maps (Reduction to magnetic pole and Analytic signal) revealed the influence of an alternating pattern of large narrow magnetic and non-magnetic lineaments, oriented NE-SW, E-W and NW-SE. In the Pernambuco Basin these lineaments (NE-SW and E-W) are related to shear zones in the hyperextended basement which is interpreted as a continuation of the granitic-gneissic and metasedimentary rocks of the South Domain of BP. The Paraíba and Natal platform basins show a slight change in the orientation of structures trending E-W (shear zones in

  17. Rare-earth elements and uranium in phosphatic nodules from the continental margins of India

    Nath, B.N.; Rao, B.R.; Rao, K.M.; Rao, Ch.M.

    and rare-earth elements (REEs) by inductively coupled plasma-mass spectrometry (ICP-MS). Total REE contents are very low (8-21 ppm) in western continental margin nodules and only slightly in eastern continental margin nodules (maximum is 42 ppm). REE...

  18. Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins

    Green, Paul F.

    2013-12-01

    that peneplains grade towards base level, and that in the absence of other options (e.g. widespread resistant lithologies, the most likely base level is sea level. This is particularly so at continental margins due to their proximity to the adjacent ocean. Studies in which EPCMs are interpreted as related to rifting or break-up commonly favour histories involving continuous denudation of margins following rifting, and interpretation of thermochronology data in terms of monotonic cooling histories. However, in several regions, including southern Africa, south-east Australia and eastern Brazil, geological constraints demonstrate that such scenarios are inappropriate, and an episodic development involving post-breakup subsidence and burial followed later by uplift and denudation is more realistic. Such development is also indicated by the presence in sedimentary basins adjacent to many EPCMs of major erosional unconformities within the post-breakup sedimentary section which correlate with onshore denudation episodes. The nature of the processes responsible is not yet understood, but it seems likely that plate-scale forces are required in order to explain the regional extent of the effects involved. New geodynamic models are required to explain the episodic development of EPCMs, accommodating post-breakup subsidence and burial as well as subsequent uplift and denudation, long after break-up which created the characteristic, modern-day EPCM landscapes.

  19. The Effect of Temperature Dependent Rheology on a Kinematic Model of Continental Breakup and Rifted Continental Margin Formation

    Tymms, V. J.; Kusznir, N. J.

    2004-12-01

    The effect of temperature dependent rheology has been examined for a model of continental lithosphere thinning by an upwelling divergent flow field within continental lithosphere and asthenosphere leading to continental breakup and rifted continental margin formation. The model uses a coupled FE fluid flow and thermal solution and is kinematically driven using a half divergence rate Vx and upwelling velocity Vz. Viscosity structure is modified by the evolving temperature field of the model through the temperature dependent Newtonian rheology. Continental lithosphere and asthenosphere material are advected by the fluid-flow field in order to predict crustal and mantle lithosphere thinning leading to rifted continental margin formation. The results of the temperature dependent rheology model are compared with those of a simple isoviscous model. The temperature dependent rheology model predicts continental lithosphere thinning and depth dependent stretching, similar to that predicted by the uniform viscosity model. However compared with the uniform viscosity model the temperature dependent rheology predicts greater amounts of thinning of the continental crust and lithospheric mantle than the isoviscous solutions. An important parameter within the kinematic model of continental lithosphere breakup and rifted continental margin development is the velocity ratio Vz/Vx. For non-volcanic margins, Vz/Vx is thought to be around unity. Applying a velocity ratio Vz/Vx of unity gives a diffuse ocean-continent transition and exhumation of continental lithospheric mantle. For volcanic margins, Vz/Vx is of order 10, falling to unity with a half-life of order 10 Ma, leading to a more sharply defined ocean-continent transition. While Vx during continental breakup may be estimated, Vz can only be inferred. FE fluid flow solutions, in which Vz is not imposed and without an initial buoyancy driven flow component, predict a velocity ratio Vz/Vx of around unity for both temperature

  20. Atmospheric controlled freshwater release at the Laptev Sea continental margin

    Dorothea Bauch

    2011-01-01

    Full Text Available Considerable interannual differences were observed in river water and sea-ice meltwater inventory values derived from δ18O and salinity data in the Eurasian Basin along the continental margin of the Laptev Sea in the summers of 1993 and 1995, and in the summers of 2005 and 2006 during Nansen and Amundsen Basins Observational system (NABOS expeditions. The annually different pattern in river and sea-ice meltwater inventories remain closely linked for all of the years studied, which indicates that source regions and transport mechanisms for both river water and sea-ice formation are largely similar over the relatively shallow Laptev Sea Shelf. A simple Ekman trajectory model for surface Lagrangian particles based solely on wind forcing can explain the main features observed between years with significantly different wind patterns and vorticities, and can also explain differences in river water distributions observed for years with a generally similar offshore wind setting. An index based on this simplified trajectory model is rather similar to the vorticity index, but reflects the hydrology on the shelf better for distinctive years. This index is not correlated with the Arctic Oscillation, but rather with a local mode of oscillation, which controls the outflow and distribution of the Eurasian Basin major freshwater source on an annual timescale.

  1. Extension on rifted continental margins: Observations vs. models.

    Skogseid, Jakob

    2014-05-01

    Mapping the signature of extensional deformation on rifted margins is often hampered by thick sedimentary or volcanic successions, or because salt tectonics makes sub-salt seismic imaging challenging. Over the past 20 years the literature is witnessing that lack of mapable faults have resulted in a variety of numerical models based on the assumption that the upper crust takes little or no extensional thinning, while the observed reduction of crustal thickness is taken up in the middle and lower crust, as well as in the mantle. In this presentation two case studies are used to highlight the difference that 3D seismic data may have on our understanding. The small patches of 3D resolution data allow us to get a glance of the 'real' signature of extensional faulting, which by analogy can be extrapolate from one margin segment to the next. In the South Atlantic salt tectonics represents a major problem for sub-salt imaging. The conjugate margins of Brazil and Angola are, however, characterized by pronounced crustal thinning as documented by crustal scale 2D reflection and refraction data. Off Angola the 3D 'reality' demonstrates that upper crustal extension by faulting is comparable to the full crustal, as well as lithospheric thinning as derived from refraction data and basin subsidence analysis. The mapped faults are listric low angle faults that seem to detach at mid crustal levels. 2D seismic has in the past been interpreted to indicate that almost no extensional faulting can be mapped towards the base of the so-called 'sag basin'. The whole concept of the 'sag basin', often ascribed to as crustal thinning without upper crustal deformation, is in fact related to this 'lack of observation', and furthermore, have caused the making of different types of dynamic models attempting to account for this. In the NE Atlantic significant Paleocene extensional faulting is locally seen adjacent to the 50 to more than 200 km wide volcanic cover on each side of the breakup axis

  2. Nature of the crust in the Laxmi Basin (14°-20°N), western continental margin of India

    Krishna, K.S.; Rao, D.G.; Sar, D.

    stretched continental crust, in which magmatic bodies have been emplaced, whereas Panikkar Ridge remains less altered stretched continental crust. The crust of the Laxmi Basin is mostly thinner than crust under Laxmi Ridge and continental margin. In addition...

  3. Marginal tissue response adjacent to Astra Dental Implants supporting overdentures in the mandible

    Gotfredsen, K; Holm, B; Sewerin, I;

    1993-01-01

    The aim of this study was to evaluate the marginal tissue response adjacent to implant supported overdentures. Twenty edentulous patients had 2 Astra Dental Implants placed in the canine region of the lower jaw. New overdentures were retained by individual ball attachments in 11 patients and by a...

  4. Hydrogen sulfide hydrates and saline fluids in the continental margin of South Australia

    Swart, P. K.; Wortmann, U. G.; Mitterer, R. M.; Malone, M. J.; Smart, P. L.; Feary, D. A.; Hine, A. C.

    2000-11-01

    During the drilling of the southern Australian continental margin (Leg 182 of the Ocean Drilling Program), fluids with unusually high salinities (to 106‰) were encountered in Miocene to Pleistocene sediments. At three sites (1127, 1129, and 1131), high contents of H2S (to 15%), CH4 (50%), and CO2 (70%) were also encountered. These levels of H2S are the highest yet reported during the history of either the Deep Sea Drilling Project or the Ocean Drilling Program. The high concentrations of H2S and CH4 are associated with anomalous Na+/Cl- ratios in the pore waters. Although hydrates were not recovered, and despite the shallow water depth of these sites (200 400 m) and relative warm bottom water temperatures (11 14 °C), we believe that these sites possess disseminated H2S-dominated hydrates. This contention is supported by calculations using the measured gas concentrations and temperatures of the cores, and depths of recovery. High concentrations of H2S necessary for the formation of hydrates under these conditions were provided by the abundant SO42- caused by the high salinities of the pore fluids, and the high concentrations of organic material. One hypothesis for the origin of these fluids is that they were formed on the adjacent continental shelf during previous lowstands of sea level and were forced into the sediments under the influence of hydrostatic head.

  5. Influence of the Iceland mantle plume on North Atlantic continental margins

    White, R. S.; Isimm Team

    2003-04-01

    Early Tertiary breakup of the North Atlantic was accompanied by widespread magmatism. The histories of the Iceland mantle plume, of rifting and of magmatism are intimately related. The magmatism provides a challenge both to imaging structure, and to modelling the subsidence and development of the continental margins. We report new work which integrates state-of-the-art seismic imaging and new acquisition on the Atlantic volcanic margins with new techniques for modelling their evolution. We discuss the distribution of igneous rocks along the North Atlantic margins and discuss the temporal and spatial variations in the Iceland mantle plume in the early Tertiary, which have largely controlled this pattern of magmatism. Igneous rocks are added to the crust on rifted margins as extrusive lavas, as sills intruded into the sub-surface and as lower crustal intrusions or underplate. Each provide different, but tractable problems to seismic imaging. We show that many of these difficulties can be surmounted by using very long offsets (long streamers or two-ship methods) with a broad-band, low-frequency source, and by using fixed ocean bottom receivers. We report results from surveys on the North Atlantic continental margins using these methods. Imaging results are shown from the recent FLARE project and from the iSIMM project, which recorded new seismic data recorded in summer 2002. The iSIMM project acquired two seismic surveys, using 85 4-component ocean bottom seismometers with long streamers for wide-angle data, and vertical arrays for far-field source signature recording. One survey crosses the Faroes Shelf and adjacent continental margin, and a second the Hatton-Rockall Basin, Hatton Bank and adjacent oceanic crust. The Faroes wide-angle profiles were overshot by WesternGeco's Topaz using three single-sensor, Q-Marine streamers, 12km plus two 4km. We designed deep-towed, broad-band low-frequency sources tuned to enhance the bubble pulses, with peak frequencies at 8

  6. Aeolian deposition of Arabia and Somalia sediments on the southwestern continental margin of India

    Chauhan, O.S.

    Kaolinite, smectite, illite and chlorite as major clay minerals and palygorskite and gibbsite in minor quantities have been recorded from the slope of southwestern continental margin of India. Contribution of kaolinite, smectite and gibbsite is from...

  7. Basement configuration of Visakhapatnam - Paradip continental margin from inversion of magnetic anomalies

    Rao, M.M.M.; Rao, S.J.; Venkateswarlu, K.; Murthy, K.S.R.; Murthy, I.V.R.; Subrahmanyam, A.S.

    Inversion of magnetic data was carried out on 40 profiles collected across the continental margin of Visakhapatnam, Andhra Pradesh, India at a spacing of about 10 km and magnetic basement map for this region is prepared. The map reveals complex...

  8. Marine geophysical studies along a transect across the continental margin off Bombay coast, west of India

    Rao, D.G.; Ramana, M.V.; Bhattacharya, G.C.; SubbaRaju, L.V.; KameshRaju, K.A; Ramprasad, T.

    Study of underway geophysical data along a transect of 415 km across the continental margin off Bombay, (Maharashtra, India), between 800 and 3600 m water depths reveals seven seismic sequences consisting of parallel and continuous wavy reflections...

  9. Scenario of gas-charged sediments and gas hydrates in the western continental margin of India

    Karisiddaiah, S.M.; SubbaRaju, L.V.

    Echosounding, high-resolution shallow seismic data were collected along track lines spaced at 20 km interval across the western continental margin of India. A detailed analysis of the underway data revealed the occurrence of methane-bearing gas...

  10. Quaternary phosphorites from the continental margin off Chennai, southeast India: Analogs of ancient phosphate stromatolites

    Rao, V.P.; Rao, K.M.; Raju, D.S.N.

    Pleistocene phosphorites occur on the continental margin off Chennai abundantly in the depth range of 186-293 m. They are associated with outer-shelf glauconites and carbonate skeletals including large shells of molluscs and rhodoliths...

  11. Holocene sea level fluctuations on western Indian continental margin: An update

    Hashimi, N.H.; Nigam, R.; Nair, R.R.; Rajagopalan, G.

    A new Holocene curve is generated for the western Indian continental margin. While constructing this curve careful selection of the dates were made by giving due considerations to the genetic characteristics of the dated material. This new curve...

  12. Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin

    Mario Lebrato; Juan-Carlos Molinero; Cartes, Joan E.; Domingo Lloris; Frédéric Mélin; Laia Beni-Casadella

    2013-01-01

    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depos...

  13. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    Archer, D

    2014-01-01

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, a...

  14. Geoacoustic models of the Donghae-to-Gangneung region in the Korean continental margin of the East Sea

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung

    2016-04-01

    Geoacoustic model is to provide a model of the real seafloor with measured, extrapolated, and predicted values of geoacoustic environmental parameters. It controls acoustic propagation in underwater acoustics. In the Korean continental margin of the East Sea, this study reconstructed geoacoustic models using geoacoustic and marine geologic data of the Donghae-to-Gangneung region (37.4° to 37.8° in latitude). The models were based on the data of the high-resolution subbottom and air-gun seismic profiles with sediment cores. The Donghae region comprised measured P-wave velocities and attenuations of the cores, whereas the Gangneung region comprised regression values using measured values of the adjacent areas. Geoacoustic data of the cores were extrapolated down to a depth of the geoacoustic models. For actual modeling, the P-wave speed of the models was compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of this region probably contribute for geoacoustic and underwater acoustic modelling reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: geoacoustic model, environmental parameter, East Sea, continental margin Acknowledgements: This research was supported by the research grants from the Agency of Defense Development (UD140003DD and UE140033DD).

  15. The influence of tectonic and volcanic processes on the morphology of the Iberian continental margins

    The Iberian continental margins are mainly passive margins. Nevertheless, the northern sector of the margin was active during some stages of its geological evolution. The southern sector is considered as a transformed margin, which defines the boundary between the Iberian and African plates. This margin was also an active margin in the past. The different types, origins and intensities of the endogenic processes that have affected he Iberian continental margins have led to the development of various tectonic and volcanic morphologies. The North Atlantic rifting allowed the development of large marginal platforms in the Cantabrian and Galician margins the North-Atlantic Ocean spreading. The reactivation of Variscan faults during the Mesozoic and Cenozoic controlled the strike of some of the largest canyons in the Iberian margins. The Gulf of Cadiz margin is characterized by the development of morphologies related to salt tectonic, fluid seepage, thrust fronts and strike-slip fault lineaments hundreds of kilometres long. The Alboran basin and the Betic margin show morphologies connected with the Miocene rift phase, which generated volcanic edifices and various structural reliefs, and with the subsequent compressive phase, when folds and strike-slip, reverse faults, diapirs and mud volcanoes were developed. Finally, the Catalan-Valencian margin and the Balearic promontory are characterized by the presence of horst and graben structures related to the development of the Valencia trough during the Paleogene. The morphological features of endogenic origin have largely controlled the location and extent of the sedimentary processes and morphological products along the Iberian margins. (Author)

  16. Sediment resuspension on the middle continental shelf adjacent to Sydney, Australia - evidence using 210Pb

    Full text: A regional survey of surficial sediments on the central NSW continental margin has established anthropogenic contributions of trace metals from the urban centres of Sydney, Newcastle and Wollongong. The anthropogenic contributions are discernible in the sediment fine fraction (210Pb and trace metals to determine long-term sedimentation rates and zones of sediment mixing due to resuspension. Muddy middle shelf sediments display a shallow surficial mixing zone, increasing in depth in sandy sediment. Sandy middle shelf sediments have therefore a greater resuspension potential during frequent storm events and are unlikely to act as long-term contaminant sinks

  17. Seismic structure and tectonics of the continental margins of India

    Krishna, K.S.; Chaubey, A.K.; Rao, D.G.; Reddy, P.R.

    continental masses. In this process the oceans have been created and closed. Extensional and compressional tectonic processes were in operation in assembling, breaking and reassembling various continental and oceanic segments of the earth. These processes... of oceanic lithosphere is very efficient. Indeed, the oldest ocean floor that currently resides at the earth`s surface was created in Jurassic times, some 200 million years ago. In 2 contrast, the oldest parts of continents, the Archean shields, are almost...

  18. Gravity anomalies over a segment of Pratap ridge and adjoining shelf margin basin, western continental margin of India

    Subrahmanyam, V.; Rao, D.G.; Ramprasad, T.; KameshRaju, K.A.; Rao, M.G.

    Bathymetric and gravity data totalling 2000 line km on the continental margin off Goa and Mulki, west of India have been studied. The free-air gravity anomalies vary between -60 to 25 mgals with prominent NNW-SSE trends in the outer shelf region...

  19. Modelling of sea floor spreading initiation and rifted continental margin formation

    Tymms, V. J.; Isimm Team

    2003-04-01

    Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. i

  20. Flow of material under compression in weak lower continental crust can cause post-rift uplift of passive continental margins

    Chalmers, James

    2014-05-01

    There are mountain ranges up to more than 2 km high along many passive continental margins (e.g. Norway, eastern Australia, eastern Brazil, SE and SW Africa, east and west Greenland etc.), dubbed Elevated Passive Continental Margins (EPCMs). EPCMs contain several features in common and observations indicate that uplift of these margins took place after continental break-up. There are many explanations for their formation but none that satisfy all the observations. Lack of a geodynamical mechanism has meant that there has been difficulty in getting the community to accept the observational evidence. Formation of a passive continental margin must take place under conditions of tension. After rifting ceases, however, the margin can come under compression from forces originating elsewhere on or below its plate, e.g. orogeny elsewhere in the plate or sub-lithospheric drag. The World Stress Map (www.world-stress-mp.org) shows that, where data exists, all EPCMs are currently under compression. Under sufficient compression, crust and/or lithosphere can fold, and Cloetingh & Burov (2010) showed that many continental areas may have folded in this way. The wavelengths of folding observed by Cloetingh & Burov (2010) imply that the lower crust is likely to be of intermediate composition; granitic lower crust would fold with a shorter wavelength and basic lower crust would mean that the whole lithosphere would have to fold as a unit resulting in a much longer wavelength. Continental crust more than 20 km thick would be separated from the mantle by a weak layer. However, crust less thick than that would contain no weak layers would become effectively annealed to the underlying strong mantle. Under sufficient horizontal compression stress, material can flow in the lower weak layer towards a continental margin from the continental side. The annealed extended crust and mantle under the rift means, however, that flow cannot continue towards the ocean. Mid- and lower crustal material

  1. Preface - 'Biogeochemistry-ecosystem interaction on changing continental margins in the Anthropocene'

    Liu, K.-K.; Emeis, Kay-Christian; Levin, Lisa A.; Naqvi, Wajih; Roman, Michael

    2015-01-01

    This special issue is a product of Workshop 1 of IMBIZO III held in Goa, India in January 2013 (Bundy et al., 2013). This IMBIZO (a Zulu word for gathering) has been organized by IMBER (Integrated Marine Biogeochemistry and Ecosystem Research) biannually since 2008. It employs a format of three concurrent but interacting workshops designed to synthesize information on topical research areas in marine science. Workshop 1 addressed the issue, "Biogeochemistry-ecosystem interaction in changing continental margins," which belongs to the purview of the Continental Margins Working Group (CMWG), co-sponsored by IMBER and LOICZ (Land-Ocean Interaction in the Coastal Zone). As a way to explore the emerging issues that concern the CMWG, the workshop had attracted 25 talks and 18 posters that explored the following topics: Human impacts on continental margins

  2. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins

    Laruelle, G. G.

    2013-05-29

    Past characterizations of the land-ocean continuum were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCATs: COastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LMEs: large marine ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles by harmonizing previous segmentations and typologies in order to retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATs). Geographic and hydrologic parameters such as the surface area, volume and freshwater residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. The segmentation is also used to re-evaluate the global estuarine CO2 flux at the air-water interface combining global and regional average emission rates derived from local studies. © 2013 Author(s).

  3. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins

    G. G. Laruelle

    2012-10-01

    Full Text Available The complex coastline of the Earth is over 400 000 km long and about 40% of the world's population lives within 100 km of the sea. Past characterizations of the global coastline were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCAT: Coastal Segmentation and related CATchments or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LME: Large Marine Ecosystems. Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles which retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation and 149 sub-units (COSCATS. Geographic and hydrologic parameters such as the surface area, volume and fresh water residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. These results can be used for regional analyses and combined with various typologies for upscaling and biogeochemical budgets. In addition, the three levels segmentation can be used for application in Earth System analysis.

  4. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins

    Laruelle, G. G.

    2012-10-04

    Past characterizations of the land–ocean continuum were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCATs: COastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LMEs: large marine ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles by harmonizing previous segmentations and typologies in order to retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATs). Geographic and hydrologic parameters such as the surface area, volume and freshwater residence time are calculated for each coastal unit as well as different hypsometric pro- files. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. The segmentation is also used to re-evaluate the global estuarine CO2 flux at the air–water interface combining global and regional average emission rates derived from local studies.

  5. Geochemical conditions in continental margin sediments: implications for distribution and cycling of phosphorus

    Küster-Heins, Kathrin

    2009-01-01

    This thesis investigated the sedimentary phosphorus cycle in different upper continental slope and shelf surface sediments. In this thesis a combined multi-parameter and geochemical approach has been used to improve the speciation of the phosphorus reservoir in selected continental margin surface sediments. In particular the determination of pore water constituents has the potential to examine sediment redox processes associated to organic matter degradation and their impact on phosphorus spe...

  6. The Agulhas-Karoo Geoscience Transect: Structures and processes along the southern African continental margin

    N. Parsiegla; Gohl, K.; G. Uenzelmann-Neben; Jacek Stankiewicz

    2008-01-01

    The southern African continental transform margin is of great interest for the understanding of processes related to continental breakup, transform fault formation and vertical plate motion. Open questions include the cause and consequences for the high topography of southern Africa, neotectonic activity along the Agulhas-Falkland Fracture Zone and the formation of the Outeniqua Basin. As a component of the project “Inkaby yeAfrica”, the 900 km long Agulhas-Karoo Geoscience Transect was carri...

  7. Magma Genesis in Kabanjahe Region Continental Margin Arc of Sumatra

    Bhakti H. Harahap

    2014-01-01

    DOI: 10.17014/ijog.v6i2.120Volcanic rocks in Kabanjahe region, Karo Regency, North Sumatra Province, are products of old Toba Caldera, Sibayak Volcano, and Sipiso-piso Volcano. Rhyolitic tuff is the main lithology distributed over a large area in this region. Others are basaltic, basaltic andesitic, andesitic, dacitic, and rhyolitic lavas. Data show that the rock was originated from magma of a continental origin formed at a subduction zone environment. Petrogenetic modelling suggests that the...

  8. Regional gravity and magnetic studies over the continental margin of the Central West Coast of India

    SubbaRaju, L.V.; KameshRaju, K.A.; Subrahmanyam, V.; Rao, D

    ) 10:31-36 Geo-Marine Letters © 1990 Springer-Verlag New York Inc y Regional Gravity and Magnetic Studies over the Continental Margin of the Central West Coast of India L. V. Subba Raju, K. A. Kamesh Raju, V. Subrahmanyam, and D. Gopala Rao National... Institute of Oceanography, Dona Paula, Goa 403 004, India Abstract Gravity studies over the continental margin of the central west coast of India show a sediment thickness of 2-3 km on the shelf associated with deeper hoest and graben structures, of 6 km...

  9. Constraining Lithosphere Deformation Modes during Continental Breakup for the Iberia-Newfoundland Conjugate Margins

    Jeanniot, L.; Kusznir, N. J.; Mohn, G.; Manatschal, G.

    2014-12-01

    How the lithosphere and asthenosphere deforms during continental rifting leading to breakup and sea-floor spreading initiation is poorly understood. Observations at present-day and fossil analogue rifted margins show a complex OCT architecture which cannot be explained by a single simplistic lithosphere deformation modes. This OCT complexity includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. We use a coupled kinematic-dynamic model of lithosphere and asthenosphere deformation to determine the sequence of lithosphere deformation modes leading to continental breakup for Iberia-Newfoundland conjugate margin profiles. We quantitatively calibrate the models using observed present-day water loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FE-Margin), and used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (Braun et al. 2000) is also kinematically included. Melt generation by decompressional melting is predicted using the methodology of Katz et al., 2003. The extension magnitudes used in the lithosphere deformation models are taken from Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  10. Evidence of a dense water vein along the Libyan continental margin

    G. P. Gasparini

    2008-02-01

    Full Text Available For the first time it was possible to investigate a still poorly known region of the eastern Mediterranean Sea, the Libyan continental margin. An oceanographic cruise, performed during summer 2006, revealed an important and novel feature: a dense vein flowing along the continental slope. The paper describes the vein evolution with some insights on its dynamic and furnishes an estimate of its transport, which results to be comparable with the Adriatic Deep Water production rate. The cascading into a steep canyon which incises the continental shelf suggests that the vein may play an important role in ventilating the deep layers of the Ionian Sea.

  11. Comparative biogeochemistry–ecosystem–human interactions on dynamic continental margins..

    Levin, L.A.; Liu, K-K.; Emeis, K.-C.; Breitburg, D.L.; Cloern, J.; Deutsch, C.; Giani, M.; Goffart, A.; Hofmann, E.E.; Lachkar, Z.; Limburg, K.; Liu, Su-Mei; Montes, E.; Naqvi, S.W.A.; Ragueneau, O.; Rabouille, C.; Sarkar, S.K.; Swaney, D.P.; Wassman, P.; Wishner, K.F.

    of Marine Systems 141 (2015) 3–17dynamic coupled margin systems has linkages between human and natural system response and human social str plored. The interactive effects of rem activities, from atmospheric processes, out to sea are becoming more appare our... key services in the form of physical protection from waves, storms, and floods, chemical buffering, food provisioning, nursery support, nutrient cycling, habitat fostering biodiversity, carbon sequestration, recreation, and aesthetic value. Fine- ly...

  12. Organic geochemistry of continental margin and deep ocean sediments

    Whelan, J.K.; Hunt, J.M.; Eglinton, T.; Dickinson, P.; Johnson, C.; Buxton, L.; Tarafa, M.E.

    1990-08-01

    The objective of this research continues to be the understanding of the complex processes of fossil fuel formation and migration. DOE funded research to date has focused on case histories'' of down-hole well profiles of light hydrocarbons, pyrograms, pyrolysis-GC and -GCMS parameters, and biomarker data from wells in the Louisiana and Texas Gulf Coasts the Alaskan North Slope. In the case of the Alaskan North Slope, geological data and one-dimensional maturation modeling have been integrated in order to better constrain possible source rocks, timing, and migration routes for oil and gas generation and expulsion processes.This period, biomarker analyses and organic petrographic analyses were completed for the Ikpikpuk well. In the case of the Gulf Coast, we have obtained a one-dimensional maturation model of the Cost B-1 well in E. Cameron field of the Louisiana Gulf Coast. The completed E. Cameron data set adds to the enigma of the Gulf Coast oils found on the continental shelf of Louisiana. If significant quantities of the oil are coming from relatively organic lean Tertiary rocks, then non-conventional'' expulsion and migration mechanisms, such as gas dissolved in oil must be invoked to explain the Gulf Coast oils reservoired on the Louisiana continental shelf. We are designing and starting to assemble a hydrous pyrolysis apparatus to follow, the laboratory, rates of generation and expulsion of sediment gases. Initiation of some new research to examine {delta}{sup 13}C of individual compounds from pyrolysis is also described. We are beginning to examine both the laboratory and field data from the Gulf Coast in the context of a Global Basin Research Network (GBRN). The purpose is to better understand subsurface fluid flow processes over geologic time in sedimentary basins and their relation to resource accumulation (i.e., petroleum and metal ores). 58 refs.

  13. Establishing the Temporal Resolution of High-Latitude Paleoclimatic and Paleomagnetic Signals in Bioturbated Gulf of Alaska Continental Margin Sediments

    Rosen, G. P.; Jaeger, J. M.; Stoner, J. S.; Channell, J. E.

    2005-12-01

    Under the right depositional conditions, continental margin strata may preserve valuable records of climatic, tectonic and geochemical changes in the adjacent landscapes. Whereas anoxic basins containing laminated strata are a preferred depositional environment for paleoclimate records, they are geographically limited, thus diminishing their usefulness at examining global landscape changes. Bioturbated margin strata are far more ubiquitous, but under slow sediment accumulation, proxies of decadal-scale climate changes, which may have a large impact on landscape modification, may not be preserved. Additionally, paleosecular variations (PSV) and relative paleointensity of natural remanent magnetization (NRM) in sediments are increasingly being used as global chronometers, but little field data exists from continental margins to examine the use of these tools in rapidly bioturbated strata common to this setting. When utilizing marine sedimentary proxies and strata to interpret paleoclimatic and paleomagnetic signals, respectively, it is necessary to consider the temporal resolution and fidelity of those signals and the conditions under which they are emplaced and preserved. Specifically, to what degree is bioturbation degrading or time-integrating the signal? The degree of degradation is proposed to vary with the transit time (TT) through the biologically mixed surface layer (TT= layer thickness/sediment accumulation rate) and the intensity of bioturbation in this layer, as represented by the biodiffusivity coefficient, Db, which has been shown to be highly variable (10~100 cm2/yr) on continental margins. Theoretically, weakly mixed strata undergoing rapid accumulation provide the best signal preservation. To quantify preservation potential, samples were collected along the Gulf of Alaska (GoA) margin aboard the R/V Maurice Ewing in 2004 (EW0408). Coring locations included fjord, shelf and fan sites and spanned a range of depositional environments from glacimarine to

  14. Gravity anomalies and crustal structure of the western continental margin off Goa and Mulki, India

    Subrahmanyam, V.; Rao, D.G.; Ramprasad, T.; KameshRaju, K.A.; Rao, M.G.

    Bathymetric and gravity data totalling 2000 line kilometres on the continental margin off Goa and Mulki, India, have been studied and prominent NNW-SSE and ENE-WSW trending free-air gravity anomalies varying between -60 + 25 mGal have been...

  15. The upwelling record in the sediments of the westen continental margin of India

    Naidu, P.D.; PrakashBabu, C.; Rao, Ch.M.

    . S. N. MURrHY (1987) Distribution of phosphorous and phosphatisation along the western continental margin of India. Geological Society of India, 30,423-428. SHETYE S. R., S. S. C. SHENOI, M. K. ANTONY and K. KUMAR (1985) Monthly-mean wind stress...

  16. Holocene and deglacial paleoenvironmental history of the Peru-Chile current system and adjacent continental Chile

    Lamy, F.; Hebbeln, D.; Kim, J.; Mohtadi, M.; Ruehlemann, C.

    2002-12-01

    A combined analysis of terrigenous and biogenic compounds in marine sediments from the Chilean continental slope allows detailed reconstructions of both the paleoclimatic and paleoceanographic history of this region during the last glacial and Holocene. Based on sediment cores recovered during two cruises with the German R/V Sonne, we found evidence for changes both in continental rainfall, most likely induced by latitudinal shifts of the Southern Westerlies, and marine productivity as well as sea surface temperature (SST) changes within the Peru-Chile Current system on time scales ranging from Milankovitch to centennial-scale. On Milankovitch time-scales, we found strong evidence for precession-controlled shifts of the Southern Westerlies implying e.g. more humid conditions during the LGM in the Chilean Norte Chico and a trend towards more arid climates during the deglaciation culminating in the early Holocene. These shifts are paralleled by paleoceanographic changes indicating generally higher productivity during the LGM mainly caused by increased advection of nutrients from the south through an enhanced Peru-Chile current. SSTs off central Chile were about 3.5 C lower than present during the LGM. On shorter time-scales, extremely high resolution sediment cores from the southern Chilean margin provide evidence of significant short-term Holocene climate changes with bands of variability centred at ca. 900 and 1500 years, periodicities also well known from Northern Hemisphere records. Our data point to strong interhemispheric connections of climate change both on multi-centennial to millennial and Milankovitch time-scales with a major role of the tropics for the interhemispheric transfer of climate signals involving changes within the Hadley circulation and/or probably long-term modifications of the El Ni¤o-Southern Oscillation system. The recently drilled ODP Sites 1233 (ca. 41S) and 1234/1235 (ca. 36S) at the southern Chilean margin have the potential to extent

  17. Predicting Rifted Continental Margin Subsidence History From Satellite Gravity Derived Crustal Thinning: Application to North Atlantic Margins

    Hurst, N. W.; Kusznir, N. J.; Roberts, A. M.; White, R. S.

    2004-05-01

    3D spectral inversion of satellite derived gravity anomaly data (Smith and Sandwell 1997) and bathymetry data (Gebco 2003) has been used to determine oceanic and continental margin crustal thickness for the North Atlantic between 50 and 70 degrees N. The inverse technique incorporates a correction for the large negative thermal gravity anomaly present in the oceanic and stretched continental lithosphere. This correction can be determined using ocean isochron data for oceanic lithosphere, and margin rift age and beta stretching estimates derived iteratively from crustal basement thickness determined from the gravity inversion for the stretched continental lithosphere. A correction for the gravity anomaly contribution from sediments may be determined using thickness estimates derived from seismic reflection MCS data. Density depth variation within sediments is predicted assuming compaction. Crustal thicknesses determined using a thermal gravity correction derived from ocean isochron data give crustal thicknesses that are consistent with seismic observations. The resulting basement thickness determined from gravity inversion for the thinned continental margin lithosphere may be used to produce estimates of crustal thinning and stretching. Flexural backstripping and reverse post-breakup thermal subsidence modelling may be used to restore present 2D (or 3D) stratigraphic cross sections to earlier post-breakup times. Thermal subsidence arises from the cooling of stretched continental lithosphere and the recently formed oceanic lithosphere, and may be predicted from beta stretching factor (McKenzie 1978) and rift age. Beta stretching factors derived from gravity anomaly inversion have been used to predict reverse thermal subsidence for N Atlantic rifted margins. The resulting palaeo-bathymetric restorations show emergence of the Hatton Bank and NE Faroes rifted margins in early post-breakup times. The predicted palaeo-bathymetries are consistent with palaeo

  18. The continental margin is a key source of iron to the HNLC North Pacific Ocean

    Lam, P.J.; Bishop, J.K.B

    2008-01-15

    Here we show that labile particulate iron and manganese concentrations in the upper 500m of the Western Subarctic Pacific, an iron-limited High Nutrient Low Chlorophyll (HNLC) region, have prominent subsurface maxima between 100-200 m, reaching 3 nM and 600 pM, respectively. The subsurface concentration maxima in particulate Fe are characterized by a more reduced oxidation state, suggesting a source from primary volcagenic minerals such as from the Kuril/Kamchatka margin. The systematics of these profiles suggest a consistently strong lateral advection of labile Mn and Fe from redox-mobilized labile sources at the continental shelf supplemented by a more variable source of Fe from the upper continental slope. This subsurface supply of iron from the continental margin is shallow enough to be accessible to the surface through winter upwelling and vertical mixing, and is likely a key source of bioavailable Fe to the HNLC North Pacific.

  19. Magma Genesis in Kabanjahe Region Continental Margin Arc of Sumatra

    Bhakti H. HaraHap

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i2.120Volcanic rocks in Kabanjahe region, Karo Regency, North Sumatra Province, are products of old Toba Caldera, Sibayak Volcano, and Sipiso-piso Volcano. Rhyolitic tuff is the main lithology distributed over a large area in this region. Others are basaltic, basaltic andesitic, andesitic, dacitic, and rhyolitic lavas. Data show that the rock was originated from magma of a continental origin formed at a subduction zone environment. Petrogenetic modelling suggests that the range in composition was mainly controlled by a fractional crystallization of plagioclase, clinopyroxene, hornblende, and biotite. Harker’s variation diagram of major and trace elements show a continuous range that indicates they are cognate. The lava in this area belongs to a high-K, calc-alkaline series, with particular high Nb concentrations. The composition of these high-Nb lavas is more similar to those of intra plate basalts rather than those of calc-alkaline or arc-tholeiitic basalt. The high anomaly of Nb which is accompanied by high Th, Rb, and normative corundum suggests that the source may also be enriched in incompatible elements, a characteristic feature of alkali magmatism. The similarity of the trace element of volcanic rocks to the within-plate basalts indicates that the convecting mantle wedge above subducted slabs contains variable proportions of MORB-source and OIB-source components; fluids added were derived from the subducted slab. Hence, it is interpreted that the high Nb concentration of volcanic rocks from Kabanjahe region were generated from subduction modified OIB source components. Alternatively, a deep seated faulting conduit magma from the lower mantle resulted in the alkaline enrichment of the volcanics. This article performs a petrological aspect, especially based on geochemical analysis including major elements, trace elements, and rare earth elements. The results are plotted into a general and specific classification

  20. The deep thermal characteristic of continental margin of the northern South China Sea

    2000-01-01

    Heat flow plays an important role in the study of thermal structure and thermal evolution of continental margin of the northern South China Sea. The analysis of heat flow value shows that margin heat flow in the northern South China Sea is relatively high setting, but the percentage of crustal heat flow is lower than 35% in terrestrial heat flow. The terrestrial heat flow exhibited a current of rise from the Northern Continental Margin to the Southern Central Basin. However, the proportion of crustal heat flow in terrestrial heat flow slowly dropped down in the same direction. It is suggested that the main factor causing high heat flow setting is the moving up of hot material from asthenosphere.

  1. Trophic state of sediments from two deep continental margins off Iberia: a biomimetic approach

    Dell'Anno, A.; Pusceddu, A.; Corinaldesi, C.; Canals, M.; Heussner, S.; Thomsen, L.; Danovaro, R.

    2012-12-01

    The trophic state of benthic deep-sea ecosystems can greatly influence key ecological processes (e.g. biomass production and nutrient cycling). Thus, assessing the trophic state of the sediment at different spatial and temporal scales is crucial for a better understanding of deep-sea ecosystem functioning. Here, using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools, we assess the bioavailability of organic detritus and its nutritional value in the uppermost layer of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean) and Portuguese (NE Atlantic) continental margins, offshore east and west Iberia, respectively. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in primary productivity of surface waters reported for the two regions. Similarly, sediments of the Catalan margin were characterized by significantly higher food quantity and quality in spring, when higher primary production processes occur in surface waters, than in summer and autumn. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Differences in the benthic trophic state of canyons against open slopes were more evident in the Portuguese than in the Catalan margin. Overall our findings indicate that deep-sea sediments are characterized by relatively high amounts of bioavailable organic matter. We suggest that the interactions between biological-related processes in surface waters and particle transport and deposition dynamics can play a crucial role in shaping the quantity and distribution of bioavailable organic detritus and its nutritional value along deep continental margins.

  2. Trophic state of benthic deep-sea ecosystems from two different continental margins off Iberia

    Dell'Anno, A.; Pusceddu, A.; Corinaldesi, C.; Canals, M.; Heussner, S.; Thomsen, L.; Danovaro, R.

    2013-05-01

    The bioavailability of organic matter in benthic deep-sea ecosystems, commonly used to define their trophic state, can greatly influence key ecological processes such as biomass production and nutrient cycling. Here, we assess the trophic state of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean) and Portuguese (NE Atlantic) continental margins, offshore east and west Iberia, respectively, by using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Two out of the three sampling periods occurred a few months after dense shelf water cascading events. The benthic deep-sea ecosystems investigated in this study were characterized by high amounts of bioavailable organic matter when compared to other deep-sea sediments. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in primary productivity of surface waters reported for the two regions. Similarly, sediments of the Catalan margin were characterized by significantly higher food quantity and quality in spring, when the phytoplankton bloom occurs in surface waters, than in summer and autumn. Differences in the benthic trophic state of canyons against open slopes were more evident in the Portuguese than in the Catalan margin. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Overall, our findings suggest that the intensity of primary production processes along with the lateral transfer of organic particles, even amplified by episodic events, can have a role in controlling the quantity and distribution of bioavailable organic detritus and its nutritional value along these continental margin ecosystems.

  3. Trophic state of sediments from two deep continental margins off Iberia: a biomimetic approach

    A. Dell'Anno

    2012-12-01

    Full Text Available The trophic state of benthic deep-sea ecosystems can greatly influence key ecological processes (e.g. biomass production and nutrient cycling. Thus, assessing the trophic state of the sediment at different spatial and temporal scales is crucial for a better understanding of deep-sea ecosystem functioning. Here, using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools, we assess the bioavailability of organic detritus and its nutritional value in the uppermost layer of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean and Portuguese (NE Atlantic continental margins, offshore east and west Iberia, respectively. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in primary productivity of surface waters reported for the two regions. Similarly, sediments of the Catalan margin were characterized by significantly higher food quantity and quality in spring, when higher primary production processes occur in surface waters, than in summer and autumn. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Differences in the benthic trophic state of canyons against open slopes were more evident in the Portuguese than in the Catalan margin. Overall our findings indicate that deep-sea sediments are characterized by relatively high amounts of bioavailable organic matter. We suggest that the interactions between biological-related processes in surface waters and particle transport and deposition dynamics can play a crucial role in shaping the quantity and distribution of bioavailable organic detritus and its nutritional value along deep continental margins.

  4. Trophic state of benthic deep-sea ecosystems from two different continental margins off Iberia

    A. Dell'Anno

    2013-05-01

    Full Text Available The bioavailability of organic matter in benthic deep-sea ecosystems, commonly used to define their trophic state, can greatly influence key ecological processes such as biomass production and nutrient cycling. Here, we assess the trophic state of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean and Portuguese (NE Atlantic continental margins, offshore east and west Iberia, respectively, by using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Two out of the three sampling periods occurred a few months after dense shelf water cascading events. The benthic deep-sea ecosystems investigated in this study were characterized by high amounts of bioavailable organic matter when compared to other deep-sea sediments. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in primary productivity of surface waters reported for the two regions. Similarly, sediments of the Catalan margin were characterized by significantly higher food quantity and quality in spring, when the phytoplankton bloom occurs in surface waters, than in summer and autumn. Differences in the benthic trophic state of canyons against open slopes were more evident in the Portuguese than in the Catalan margin. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Overall, our findings suggest that the intensity of primary production processes along with the lateral transfer of organic particles, even amplified by episodic events, can have a role in controlling the quantity and distribution of bioavailable organic detritus and its nutritional value along these continental margin ecosystems.

  5. Tectonic development of regions in continental margins on both sides of the Tsinlin paleosea

    Van, Kh.; Chzhou, Ch.; Syu, Ch.

    1982-01-01

    Starting from the middle Proterozoic (1.9-2.0 billion years ago) the region of Tsinlin was boundary, separating the territory of China geographically into north and south parts. In this region, located between the continental margins of the North Chinese platform in the north and the Yangtze in the south there were marine conditions which disappeared with the completion of the Indochinese phase of folding. Stratigraphy, conditions of sedimentation, magmatism, main faults, evolution of the tectonic structure of the region are described. The boundary between the two ancient continentaly margins passes on the Fensyan-Shanyan fault which reaches Lake Tsinkhay in the west and the Nanyan basin in the east. This fault can be called the convergent zone of absorption of the Earth's crust. On both sides of this zone, batholites of Indochinese and Yanshan age are developed. They are associated apparently with the collision of opposite marginal-continental blocks. The northern continental margin which refers to the North Chinese platform can be separated (from north to south) into 3 zones: middle-upper Proterozoic (Kuanpin and Taovan groups), Caledonian (Tsinlin group) and Hercynian (Drevonsko-Carboniferous flyschoid series). The Caledonian zone is delimited to the south by faults of Shannan-Danfen which is an early Paleozoic zone of subduction (accretion zone for absorption of the Earth's crust of Shannan-Danfen). The southern continental margin from the north of the platform of the Yangtze includes 2 zones: south, Caledonian with deposits of a marginal sea and north, Hercynian-Indochinese age with miogeosynclinal deposits. The boundary between the zones is marked by several massifs of the microcontinent type which are represented by upper Proterozoic epimetamorphic, volcanogenic sedimentary series (Yunsi group); along the northern side of this boundary, local subduction zones are encountered.

  6. The Formation of Non-Volcanic Rifted Margins by the Progressive Extension of the Continental Lithosphere

    Reston, T. J.; Perez-Gussinye, M.; Gaw, V.; Phipps Morgan, J.

    2003-12-01

    Rifted margins include two main end-members: those termed "Volcanic Rifted Margins - VRMs" where magmatism is much more voluminous than predicted by passive asthenospheric upwelling (e.g. White et al., 1989), and those where magmatism is consistent or even less than the same predictions. The latter are termed "Non-Volcanic Rifted Margins - NVRMs" to emphasise the contrast with the VRMs: the name does not exclude the presence of minor amounts of magmatic activity. The NVRMs are typified by the North Biscay, south Australian, SW Greenland, and the West Iberian margins, which share a number of common characteristics: - extreme crustal thinning, increasing towards the ocean; - presence of well-defined rotated fault blocks. However at the feather edge of the continent there is an extension discrepancy: the amount that can be inferred from the geometry of these faults is far less than that indicated by the crustal thinning observed; - presence in places of a detachment fault at the base of the fault blocks; - little evidence for synrift magmatism; - the presence of a broad zone of partially serpentinised mantle (Boillot et al., 1988; Whitmarsh et al., 1996; Krawczyk et al., 1996; Pickup et al., 1996), both occurring beneath the highly thinned and faulted continental crust, and as a zone of exhumed continental mantle, now largely buried by postrift sediments. We show that such margins are the logical result of progressive extension of continental lithosphere above cool sub-lithospheric mantle. The key factors controlling the development of the margin are the rheological evolution of the crust (explaining the serpentinisation of the mantle), the occurrence of multiple phases of faulting (explaining the apparent extension discrepancy), and the temperature structure of the sub-continental mantle (explaining the lack of magmatism).

  7. Anthropogenic impacts on continental margins: New frontiers and engagement arena for global sustainability research and action

    Liu, K. K.; Glavovic, B.; Limburg, K.; Emeis, K. C.; Thomas, H.; Kremer, H.; Avril, B.; Zhang, J.; Mulholland, M. R.; Glaser, M.; Swaney, D. P.

    2014-12-01

    There is an urgent need to design and implement transformative governance strategies that safeguard Earth's life-support systems essential for long-term human well-being. From a series of meetings of the Continental Margins Working Group co-sponsored by IMBER and LOICZ of IGBP, we conclude that the greatest urgency exists at the ocean-land interface - the continental margins or the Margin - which extends from coastlands over continental shelves and slopes bordering the deep ocean. The Margin is enduring quadruple squeeze from (i) Population growth and rising demands for resources; (ii) Ecosystem degradation and loss; (iii) Rising CO2, climate change and alteration of marine biogeochemistry and ecosystems; and (iv) Rapid and irreversible changes in social-ecological systems. Some areas of the Margin that are subject to the greatest pressures (e.g. the Arctic) are also those for which knowledge of fundamental processes remains most limited. Aside from improving our basic understanding of the nature and variability of the Margin, priority issues include: (i) investment reform to prevent lethal but profitable activities; (ii) risk reduction; and (iii) jurisdiction, equity and fiscal responsibility. However, governance deficits or mismatches are particularly pronounced at the ocean-edge of the Margin and the prevailing Law of the Sea is incapable of resolving these challenges. The "gold rush" of accelerating demands for space and resources, and variability in how this domain is regulated, move the Margin to the forefront of global sustainability research and action. We outline a research strategy in 3 engagement arenas: (a) knowledge and understanding of dynamic Margin processes; (b) development, innovation and risk at the Margin; and (c) governance for sustainability on the Margin. The goals are (1) to better understand Margin social-ecological systems, including their physical and biogeochemical components; (2) to develop practical guidance for sustainable development

  8. Accretion, subduction, and underplating along the southern Alaska continental margin

    Plafker, G.; Ambos, E.L.; Fuis, G.S.; Mooney, W.D.; Nokleberg, W.J.; Campbell, D.L.

    1985-01-01

    In 1984-1985 the Trans Alaska Crustal Transect (TACT) program completed geologic, seismic refraction, gravity, and magnetic studies along a 350-km-long corridor that extends northward from the Gulf of Alaska coast near Cordova to the Denali fault at the Richardson Highway. From south to north, this segment of the transect traverses: 1) part of the Prince William terrance (PWT), composed of an accreted Paleocene and Eocene deep-sea fan complex, oceanic volcanic rocks, and pelagic sediments; 2) the Chugach terrane (CGT) composed of a) accreted Late Cretaceous flysch and oceanic basaltic rocks, b) accreted and subducted (.) Late Jurassic to Early Cretaceous sheared melange, and c) subducted Early (.) Jurassic or older blueschist/greenschist; and 3) Wrangellia-Peninsular terranes (WRT/PET) consisting primarily of late Paleozoic intraoceanic andesitic arc rocks with associated mafic and ultramafic plutonic rocks, an overlying distinctive Triassic sedimentary and volcanic sequence, and superposed intrusive and extrusive magmatic rocks of the Jurassic Talkeetna arc. At the southern margin of both the CGT and WRT/PET, shallow high-velocity zones characterized by positive gravity and magnetic anomalies reflect uplift of mafic and ultramafic basement along these thrusts. The Contact and Border Ranges fault systems appear to merge into a subhorizontal low-velocity zone of uncertain origin that underlies the CGT and southern WRT/PET at 5-9 km depth. A few kilometers beneath the shallow low-velocity zone in a 30-km-thick stack of eight northward-dipping layers of alternating high and low velocity, interpreted as subducted and underplated mantle and oceanic crust rocks. Distribution of earthquake hypocenters suggests that active subduction involves at least the lowest two and possibly the lower four layers.

  9. Shallow gas in the Iberian continental margin; Gas somero en el margen continental Iberico

    Garcia-Gil, S.; Cartelle, V.; Blas, E. de; Carlos, A. de; Diez, R.; Duran, R.; Ferrin, A.; Garcia-Moreiras, I.; Garcia-Garcia, A.; Iglesias, J.; Martinez-Carreno, N.; Munoz Sobrino, C.; Ramirez-Perez, A. M.

    2015-07-01

    The shallow gas reservoirs in marine sediments from the Iberian margin or their escapes can be detected by using direct methods: (1) the measurement of high concentrations of methane or other hydrocarbons in the water column or sediment cores, (2) the identification of chemosynthetic communities and/or authigenic car- bonates in the seafloor, and (3) identification (using underwater videos) of pockmarks or carbonate mounds and mud volcanoes associated with the fluid escapes; or by indirect technical characterization of anomalies in acoustic records such as: (1) the presence of acoustic plumes in echo-sounders records, (2) the identification of acoustic blanking and/or acoustic turbidity in the high resolution seismic records, (3) the interpretation of reflectivity and (4) morphologies of pockmarks or seamounts in sidescan sonar and multibeam echo sounder records. This article is a compilation of acoustic-seismic, sedimentologic and morphologic evidence associated to the presence of shallow gas (accumulations or escapes) that appear in the Iberian margin and hat have been published in various papers. The description is divided into geographical sectors, beginning in the north-eastern end of the Mediterranean margin and ending at the easternmost area of the Cantabrian margin, following a clockwise direction around the Iberian Peninsula. (Author)

  10. Evidence for a thick oceanic crust adjacent to the Norwegian Margin

    Mutter, John C.; Talwani, Manik; Stoffa, Paul L.

    1984-01-01

    The oceanic crust created during this first few million years of accretion in the Norwegian-Greenland Sea lies at an unusually shallow depth for its age, has a smooth upper surface, and in many places the results of multichannel seismic reflection profiling reveal that its upper layers comprise a remarkable sequence of arcuate, seaward-dipping reflectors. These have been attributed to lava flows generated during a brief period of subaerial seafloor spreading. We describe the results of inversions of digitally recorded sonobuoy measurements and two-ship expanded spread profiles collected over the oceanic crust adjacent to the Norwegian passive margin. We find that the crust of the deep Lofoten Basin is indistinguishable from normal oceanic crust in thickness and structure. Closer to the margin we observe up to a four times expansion in thickness of layers with velocities equal to those of oceanic layer 2, while the layer 3 region retains approximately the same thickness. The area over which the seaward-dipping reflectors can be observed on reflection profiles corresponds to the region of greatest expansion in "Layer 2" thickness. In the very oldest crust immediately adjacent to an escarpment that probably marks the continent-ocean boundary, we see evidence for a low velocity zone overlying an indistinct reflector that may mark the dyke-lava interface in the thick crust. Comparing the structure of the thick crust to that of eastern Iceland, we find a strong resemblance, especially in the expansion in thickness of material with layer 2 velocities. These results support the suggestion that during the earliest stages of spreading extrusive volcanism at the ridge crest was unusually voluminous, building a thick pile of lavas erupted from a subaerial spreading center.

  11. Supercritical Submarine Channel Morphodynamics from Integrated Investigation of the Western North American Continental Margin

    Covault, J. A.; Fildani, A.; Hubbard, S. M.; Hughes Clarke, J. E.; Kostic, S.; Paull, C. K.; Sylvester, Z.

    2015-12-01

    Submarine channels are conduits through which turbidity currents and related mass movements transport sediment into the deep sea, thereby playing important roles in the development of continental margins and biogeochemical cycles. To gain a better understanding of submarine channel morphodynamic evolution we explore a variety of channel systems from the western North American continental margin with varying sinuosity and levee geometry, terraces, channel cut-offs, and sediment waves in incipient channels, along thalwegs of well-developed channels, and on levees. Repeat bathymetric surveys of submarine channels in fjords of British Columbia and the Monterey canyon underscore the transience of fine-scale detail in channelized geomorphology, and multi-phase bed reworking, local deposition, and bypass of turbidity currents. Numerical modeling is combined with interpretations of channel geomorphology and strata in the Monterey and San Mateo canyon-channel systems to demonstrate that some of the sediment waves are likely to be cyclic steps. Submarine cyclic steps are long-wave, upstream-migrating bedforms in which each bedform in the series is bounded by a hydraulic jump in an overriding turbidity current, which is Froude-supercritical over the lee side of the bedform and Froude-subcritical over the stoss side. Submarine turbidity currents are susceptible to supercritical flow because of the reduced gravitational acceleration of dilute suspensions. Higher submarine slopes common to the North American continental margin also promote supercritical flow, which might not be as common across lower slopes of large passive margins such as the Amazon, Indus, and Bengal submarine fans. We posit that cyclic steps are a common morphodynamic expression in many continental margins. Continued integration of high-resolution data, such as repeat geophysical surveys, acoustic doppler current profiler measurements, and turbidite outcrops, which provide insights into the longer

  12. Ophiolites and Continental Margins of the Mesozoic Western U.S. Cordillera

    Dilek, Y.

    2001-12-01

    The Mesozoic tectonic history of the western U.S. Cordillera records evidence for multiple episodes of accretionary and collisional orogenic events and orogen-parallel strike-slip faulting. Paleozoic-Jurassic volcanic arc complexes and subduction zone assemblages extending from Mexico to Canada represent an East-Pacific magmatic arc system and an accretionary-type orogen evolved along the North American continental margin. Discontinuous exposures of Paleozoic upper mantle rocks and ophiolitic units structurally beneath this magmatic arc system are remnants of the Panthalassan oceanic lithosphere, which was consumed beneath the North American continent. Pieces of this subducted Panthalassan oceanic lithosphere that underwent high-P metamorphism are locally exposed in the Sierra Nevada foothills (e.g. Feather River Peridotite) indicating that they were subsequently (during the Jurassic) educted in an oblique convergent zone along the continental margin. This west-facing continental margin arc evolved in a broad graben system during much of the Jurassic as a result of extension in the upper plate, keeping pace with slab rollback of the east-dipping subduction zone. Lower to Middle Jurassic volcanoplutonic complexes underlain by an Upper Paleozoic-Lower Mesozoic polygenetic ophiolitic basement currently extend from Baja California-western Mexico through the Sierra-Klamath terranes to Stikinia-Intermontane Superterranes in Canada and represent an archipelago of an east-facing ensimatic arc terrane that developed west and outboard of the North American continental margin arc. The Smartville, Great Valley, and Coast Range ophiolites (S-GV-CR) in northern California are part of this ensimatic terrane and represent the island arc, arc basement, and back-arc tectonic settings, respectively. The oceanic Josephine-Rogue-Chetco-Rattlesnake-Hayfork tectonostratigraphic units in the Klamath Mountains constitute a west-facing island arc system in this ensimatic terrane as a

  13. Reproductive biology and recruitment of the deep-sea fish community from the NW Mediterranean continental margin

    Fernandez-Arcaya, U.; Rotllant, G.; Ramirez-Llodra, E.; Recasens, L.; Aguzzi, J.; Flexas, M. M.; Sanchez-Vidal, A.; López-Fernández, P.; García, J. A.; Company, J. B.

    2013-11-01

    Temporal patterns in deep-sea fish reproduction are presently unknown for the majority of deep continental margins. A series of seasonal trawling surveys between depths of 300 to 1750 m in the Blanes submarine canyon and its adjacent open slope (NW Mediterranean) were conducted. The bathymetric size distributions and reproductive cycles of the most abundant species along the NW Mediterranean margin were analyzed to assess the occurrence of (i) temporal patterns in reproduction (i.e., spawning season) along a bathymetric gradient and (ii) preferential depth strata for recruitment. The fish assemblages were grouped in relation to their bathymetric distribution: upper slope, middle slope and lower slope species. Middle-slope species (i.e., 800-1350 m) showed short (i.e., highly seasonal) reproductive activity compared to the upper (300-800 m) and lower (1350-1750 m) ones. Our results, together with those previously published for megabenthic crustacean decapods in the area, suggest a cross-phyla depth-related trend of seasonality in reproduction. In the middle and lower slope species, the reproductive activity reached a maximum in the autumn-winter months and decreased in the spring. The observed seasonal spawning patterns appear to be ultimately correlated with changes in the downward transport of organic particles and with seasonal changes in the physicochemical characteristics of the surrounding water masses. The distribution of juveniles was associated with the bathymetric stratum where intermediate nepheloid layers interact with the continental margins, indicating that this stratum acts as a deep-sea fish nursery area.

  14. Continuous Mantle Exhumation at the Outer Continental Margin of the Santos, Campos and Espírito Santo Basins, Brazil

    Zalan, P. V.; Severino, M. G.; Rigoti, C. A.; Magnavita, L. P.; Oliveira, J. B.; Viana, A. R.

    2011-12-01

    continental crust pinches out invariably on the flanks of exhumed mantle. This gives rise to a remarkable long (900 km along a N-S direction and 600 km in E-W direction), relatively narrow (15 to 70 km wide) and continuous belt of exhumed mantle that marks the passage from continental crust to oceanic crust in all three basins. The Santos, Campos and Espírito Santo Basins thus form a typical magma-poor passive margin. These are in sharp contrast with the adjacent basin to the south, the Pelotas Basin, that in turn is a typical volcanic passive margin displaying a long (1000 km in a N-S direction) and wide (100 to 220 km) belt of seaward-dipping reflectors at its outer margin and no exhumation of the mantle at the continent-ocean boundary.

  15. Numerical modeling of the development of southeastern Red Sea continental margin

    Sunil Kumar Dwivedi; Daigoro Hayashi

    2009-01-01

    The Red Sea continental margin (RSCM) corresponds to a wide hinge zone between Red Sea and Arabian plate. This margin has been studied through geological and geophysical observations primarily in regard to the evolution of Red Sea rift. This margin is characterized by occurrence of thin sediments, significant onshore uplift, tectonic subsidence of the offshore sedimentary basin, active faulting and seismicity. Studies indicate that sedimentary sequences of the margin are deformed by faults and folds resulting from at least two phases of extension and a phase of uplift. During the two phases of extension due to regional plate stress the sequence was cut by set of extensional faults. While during the phase of uplift the sequence was deformed by folding and faulting. The present paper aims to clear the structural development of RSCM during these tectonic episodes, taken as particular tectonic event, by two-dimensional finite element modeling on plane strain condition. Elastic rheology is assumed for the oceanic, continental and transitional crust along with syntectonic deposits. Stress field, shear stress and fault distribution suggests that mantle plume weakened the crust following rifting due to regional stress and developed the margin. These results are well consistent with those from present seismicity, active faulting and neotec-tonic studies.

  16. The Dynamics of fluid flow and associated chemical fluxes at active continental margins

    Solomon, Evan Alan

    2007-01-01

    Active fluid flow plays an important role in the geochemical, thermal, and physical evolution of the Earth’s crust. This dissertation investigates the active fluid flow and associated chemical fluxes at two dynamic continental margins: The Costa Rica subduction zone and the northern Gulf of Mexico hydrocarbon province, using novel seafloor instrumentation for continuous monitoring of fluid flow rates and chemistry. Traditional pore fluid sampling methods and flow rate models only provide a ...

  17. Constraining lithosphere deformation modes during continental breakup for the Iberia-Newfoundland conjugate rifted margins

    Jeanniot, Ludovic; Kusznir, Nick; Mohn, Geoffroy; Manatschal, Gianreto; Cowie, Leanne

    2016-06-01

    A kinematic model of lithosphere and asthenosphere deformation has been used to investigate lithosphere stretching and thinning modes during continental rifting leading to breakup and seafloor spreading. The model has been applied to two conjugate profiles across the Iberia-Newfoundland rifted margins and quantitatively calibrated using observed present-day water loaded subsidence and crustal thickness, together with observed mantle exhumation, subsidence and melting generation histories. The kinematic model uses an evolving prescribed flow-field to deform the lithosphere and asthenosphere leading to lithospheric breakup from which continental crustal thinning, lithosphere thermal evolution, decompression melt initiation and subsidence are predicted. We explore the sensitivity of model predictions to extension rate history, deformation migration and buoyancy induced upwelling. The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require; (1) an initial broad region of lithosphere deformation with passive upwelling, (2) lateral migration of deformation, (3) an increase in extension rate with time, (4) focussing of the deformation and (5) buoyancy induced upwelling. The model prediction of exhumed mantle at the Iberia-Newfoundland margins, as observed, requires a critical threshold of melting to be exceeded before melt extraction. The preferred calibrated models predict faster extension rates and earlier continental crustal separation and mantle exhumation for the Iberia Abyssal Plain-Flemish Pass conjugate margin profile than for the Galicia Bank-Flemish Cap profile to the north. The predicted N-S differences in the deformation evolution give insights into the 3D evolution of Iberia-Newfoundland margin crustal separation.

  18. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    C. H. Nelson

    2012-11-01

    Full Text Available We summarize the importance of great earthquakes (Mw ≳ 8 for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1 radiometric dating (14C method, and (2 relative dating, using hemipelagic sediment thickness and sedimentation rates (H method. The H method provides (1 the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2 the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia or very close (San Andreas to the early window for another great earthquake.

    On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km than on passive margins (~1000 km. The great earthquakes along the Cascadia and northern California margins

  19. Submarine mass movements around the Iberian Peninsula. The building of continental margins through hazardous processes

    Submarine mass movements, such as those which occur in all environments in every ocean of the world, are widely distributed across the Iberian continental margins. A lack of consistent data from various areas around the Iberian Peninsula makes it difficult to precisely understand their role in the sedimentary record. However, all the studies carried out over the past two decades reveal that they are a recurrent and widespread sedi- mentary process that may represent a significant geohazard. The majority of submarine mass movements observed in both the Mediterranean and Atlantic margins of the Iberian Peninsula have been generically identified as Mass Transport Deposits, but debris flows, slides, slumps and turbidites are common. Only a few remarkable examples involve huge volumes of sediment covering large areas (such as ∼500 km3 and ∼6x104 km2), but more moderate deposits (<200 km2) are frequently found on the seafloor or embedded in the sedi- mentary sequences, building margins and basins. (Author)

  20. Scheme of 3 interfaces with local isostatic compensation on the Argentine continental margin

    Pedraza De Marchi, A. C.; Ghidella, M. E.; Tocho, C.

    2013-05-01

    The segment of Argentine continental margin located between 39°S and the Malvinas platform (~49°S) is of passive type and volcanic characteristics revealed by seaward-dipping seismic reflectors sequences (SDRs). The free air gravity edge-effect associated with passive continental margins is one of the most distinctive characteristics of gravity in marine regions. This effect is in large part due to the transition between continental and oceanic crusts, because of their different thicknesses. In this presentation we investigate the Airy type isostatic compensation scheme by using three interfaces in a forward calculation with different approximations of Parker's expression to obtain the isostatic anomaly. After that we perform the inversion of the anomaly thus obtained in order to find the Moho's deflection necessary to compensate it (or minimize it) by using the same scheme of interfaces and the iterative Parker-Oldenburg method (Oldenburg, D., 1974) with more terms in the inversion. The crust-mantle interface (Moho) thus calculated represents a more realistic surface than the one calculated using one term in the inversion and the surface estimated with topographic data and sediment thickness. Even considering that the experiment constitutes a schematic assumption just to test the numerical methods involved, we find that in the comparison with the only available digitized refraction profile, the inverted Moho interface reproduces fairly well the Moho that the seismic profile yields, for the case of the iterative method. This suggests that the inverse calculation with the iterative method is sensible to the presence of the SDRS, at least for this sole profile. Keywords: isostatic anomaly, Moho, passive continental margins Oldenburg, D., 1974. The inversion and interpretation of gravity anomalíes, Geophysics, vol. 39, no. 4, p. 526-536.

  1. Heavy mineral distribution in the surficial sediments from the eastern continental margin of India and their implications on palaeoenvironment

    Mislankar, P.G.; Gujar, A.R.

    Heavy mineral distribution from the surficial sediments of the Eastern Continental Margin of India, between Machilipatnam and Gopalpur shows that their concentration ranges from 0.4 to 13.9%. Heavy minerals such as opaques, (ilmenite, magnetite...

  2. Changing sedimentary environments during Pleistocene-Holocene in a core from the eastern continental margin of India

    Rao, V.P.; Rao, Ch.M.; Mascarenhas, A.; Rao, K.M.; Reddy, N.P.C.; Das, H.C.

    Sedimentological and geochemical investigations of the sediments in a core from the eastern continental margin of India, at a water depth of 1200 m, revealed two distinct types. The Late Pleistocene sediments are greyish-black in colour and consist...

  3. Macrobenthic community structure over the continental margin of Crete (South Aegean Sea, NE Mediterranean)

    Tselepides, Anastasios; Papadopoulou, Konstantia-N.; Podaras, Dimitris; Plaiti, Wanda; Koutsoubas, Drosos

    2000-08-01

    Macrobenthic faunal composition, abundance, biomass and diversity together with a suite of sedimentary environmental parameters were investigated on a seasonal basis in order to determine factors regulating faunal distribution over the oligotrophic continental margin of the island of Crete (South Aegean Sea, North Eastern Mediterranean). Macrofaunal species composition was similar to that of the western Mediterranean and the neighboring Atlantic having several common dominant species. Mean benthic biomass, abundance and diversity decreased with depth, with a major transition zone occurring at 540 m, beyond which values declined sharply. At comparable depths biomass and abundance values were considerably lower to those found in the Atlantic, high-lighting the extreme oligotrophy of the area. The continental margin of Crete was characterised by a high diversity upper continental shelf environment (dominated by surface deposit feeding polychaetes) and a very low diversity slope and deep-basin environment (dominated by carnivorous and filter feeding polychaetes). Classification and ordination analyses revealed the existence of four principle clusters divided by a faunal boundary between 200 and 540 m, as well as beyond 940 m depth. Significant correlations between macrofauna and sediment parameters led to the conclusion that besides depth, food availability (as manifested by the concentration of chloroplastic pigments) is the principle regulating factor in the system. Such being the case, the prevailing hydrographic features that structure the pelagic food web and are directly responsible for the propagation of organic matter to the benthos also affect its community structure.

  4. Shallow-mantle Recycling and Anomalous, Voluminous Volcanism along the Northern and Northwestern African Continental Margin

    Bryce, J. G.; Blichert-Toft, J.; Graham, D. W.; Miller, S. A.

    2015-12-01

    Mantle-derived volcanism on Earth's surface is generally associated with magma generation as a consequence of volatile addition to suprasubduction zone mantle or in response to decompression melting at diverging plates or in thermochemical anomalies thought to originate deep in the convecting mantle. Many of the hotspots surrounding the northern and northwestern African margin are thought to originate from decompression melting due to upwellings from deep thermochemical anomalies. Similar compositions of lavas erupted in Sicily in the Hyblean Plateau and Mount Etna, Europe's largest most active volcano, have been attributed to contributions from subduction zone enrichments. Considering high-MgO lavas from the northern to northwestern African-Mediterranean margins in the context of recent petrologic models we find the strong majority of the lavas in this region are predominantly alkaline and bear geochemical signatures consistent with derivation from fusible lithologies (volatilized peridotite and/or pyroxenite) [1]. Such results are consistent with implications from recent experimental results that suggest that the mobilization of hydrous, carbonate-rich melts commonly occurs during subduction zone processing [2]. Accordingly, we argue many products generally considered "hot spot" volcanism in this region largely result from partial melting of easily fusible pyroxene-rich and carbonated mantle domains that are relics of shallow-level recycling of volatile-rich melts and/or lithosphere shed during plate boundary processes along the African margin. Long-lived volcanism near continental margins subsequently develops as a consequence of convective anomalies associated with unique tectonic arrangements (oversteepened slabs or slab windows) [3] or, alternatively, as manifestations of convective tectonic anomalies beneath thin lithosphere juxtaposed next to thicker, more stable continental margins [4]. [1] Herzberg and Asimow, 2008; [2] Poli, 2015; [3] Schellart, 2010; [4

  5. Continental margin atmospheric climatology and sea level (Historical setting 1974--1975)

    Pietrafesa, L.J.; D' Amato, R.; Gabriel, C.; Sawyer, R.J. Jr.

    1978-02-01

    From the many continental shelf dynamics studies which have been made in the past decade, it has become increasingly apparent that a detailed analysis of continental margin waters can only be accomplished with an appreciation of the coastal meteorology. Fortunately, coastal meteorological and, in addition, coastal sea level data have been archived and thus provide coastal oceanographers with inexpensive, priceless and complimentary data sets. Past coastal sea level studies have demonstrated that these data contain not only tidal data but also sub-inertial frequency information which measurably details shelf reesponse to atmospheric forcing. Additionally, a particular region, such as the South Atlantic Bight, can be characterized by the statistics of the temporal spectra of both data sets as well by the alonshore coherences which may exist between stations. In this study, atmospheric wind and pressure have been examined and correlated with coastal sea level changes at various coastal stations along the South Atlantic Bight.

  6. Continental Margins and the Law of the Sea - an `Arranged Marriage' with Huge Research Potential

    Parson, L.

    2005-12-01

    The United Nations Convention on the Law of the Sea (UNCLOS) requires coastal states intending to secure sovereignty over continental shelf territory extending beyond 200 nautical miles to submit geological/geophysical data, along with their analysis and synthesis of the relevant continental margin in support of their claim. These submissions are scrutinised and assessed by a UN Commission of experts who decide if the claim is justified, and thereby ultimately allowing the exploitation of non-living resources into this extended maritime space. The amount of data required to support the case will vary from margin to margin, depending on the local geological evolution, but typically will involve the running of new, dedicated marine surveys, mostly bathymetric and seismic. Key geological/geophysical issues revolve around proof of `naturalness' of the prolongation of land mass (cue - wide-angle seismics, deep drilling and sampling programmes) and shelf and slope morphology and sediment section thickness (cue - swath bathymetry and multichannel seismics programmes). These surveys, probably primarily funded by government agencies anxious not to lose out on the `land grab', will generate datasets which will inevitably boost not only the research effort leading to increased understanding of margin evolution in academic terms, but also contribute to wider applied aspects of the work such as those leading to refinement of deepwater hydrocarbon resource potential. It is conservatively estimated that in the region of fifty coastal states world-wide have a significant potential for claiming continental shelf beyond 200 nautical miles, and that the total area available as extended shelf could easily exceed 7 million square kilometres. However, while for the vast majority of these states a UNCLOS deadline of 2009 exists for submitting a claim - to date only four have done so (Russia, Brazil, Australia and Ireland). It is therefore predictable, if not inevitable, that within the

  7. Molybdenum isotope signatures from the Yangtze block continental margin and its indication to organic burial rate

    Zhou, L.; Zhou, H. B.; Huang, J. H.

    2007-12-01

    The paper presents the molybdenum isotope data, along with the trace element content, to investigate the geochemical behavior of authigenic Mo during long-term burial in sediments in continental margin settings of the Yangtze block, as well as their indication to the burial of original organic carbon. The burial rate of original organic carbon were estimated on the basis of the amount of sedimentary sulfur (TS content), whilst the carbon loss by aerobic degradation was estimated according to calculated Mn contents. On these points, the original organic carbon flux was calculated, exhibiting a large range of variation (2.54-15.82 mmol/m2/day). The strong correlation between sedimentary Mo isotope values and organic carbon burial rates previously proposed on the basis of the investigations on modern ocean sediments was also used here to estimate the organic carbon burial rate. The data gained through this model showed that organic carbon burial rates have large variations, ranging from 0.43- 2.87mmol/m2/day. Although the two sets of data gained through different geochemical records in the Yangtze block show a deviation of one order of magnitude, they do display a strong correlation. It is thus tempting to speculate that the Mo isotope signature of sediments may serve as a tracer for the accumulation rate of original organic carbon in the continental margin sediments. Keywords: Molybdenum isotopes; organic carbon burial rate; ancient continental margin setting ACKNOWLEDGMENTS We thank Professor Xie Shucheng for his constructive review comments. This research is co-supported by the Program for Changjiang Scholars and Innovative Research Team in University (grants IRT0441), the SinoPec project (grant no. G0800-06-ZS-319) and the National Nature Science Foundation of China (grants 40673020).

  8. Influence of marginal highs on the accumulation of organic carbon along the continental slope off western India

    Rao, B; Veerayya, M.

    0.70 to 5.86%. Highest values of organic carbon are recorded on the marginal highs (5.12-5.86%), followed by shelf margin basin (3.53-4.22%) and the continental slope (1.80-3.84%). The organic carbon content is relatively low in the Arabian Basin (0...

  9. Morphology of pockmarks along the western continental margin of India: Employing multibeam bathymetry and backscatter data

    Dandapath, S.; Chakraborty, B.; Karisiddaiah, S.M.; Menezes, A.A.A.; Ranade, G.; Fernandes, W.A.; Naik, D.K.; PrudhviRaju, K.N.

    suggestions considerably improved the contents of the original manuscript. One of the authors (SD) acknowledges financial support from a CSIR NET fellowship. This is NIO contribution no. xxxx. References Andresen, K.J., Huuse, M., Clausen, O.R., 2008...-1000 m in length and up to 45 m in relief (Pilcher and Argent, 2007; Andresen et al., 2008). Marine geophysical studies of the western continental margin of India (WCMI) have revealed that, the presence of surficial and sub-surficial geology relates...

  10. Multiproxy characterization and budgeting of terrigenous end-members at the NW African continental margin

    Just, J; D. Heslop; Dobeneck, T. von; Bickert, T.; Dekkers, M.J.; Frederichs, T.; Meyer, I.; Zabel, M.

    2012-01-01

    Grain-size, terrigenous element and rock magnetic remanence data of Quaternary marine sediments retrieved at the NW African continental margin off Gambia (gravity core GeoB 13602–1, 13°32.71′N, 17°50.96′W) were jointly analyzed by end-member (EM) unmixing methods to distinguish and budget past terrigenous fluxes. We compare and cross-validate the identified single-parameter EM systems and develop a numerical strategy to calculate associated multiparameter EM properties. One aeolian and two fl...

  11. Escape of methane gas from the seabed along the West Spitsbergen continental margin

    Westbrook, Graham K.; Thatcher, Kate E.; Rohling, Eelco J; Piotrowski, Alexander M.; Pälike, Heiko; Osborne, Anne H.; Nisbet, Euan G; Minshull, Tim A.; Lanoisellé, Mathias; James, Rachael H.; Huhnerbach, Veit; Green, Darryl; Fisher, Rebecca E.; Crocker, Anya J.; Chabert, Anne

    2009-01-01

    More than 250 plumes of gas bubbles have been discovered emanating from the seabed of the West Spitsbergen continental margin, in a depth range of 150-400 m, at and above the present upper limit of the gas hydrate stability zone (GHSZ). Some of the plumes extend upward to within 50 m of the sea surface. The gas is predominantly methane. Warming of the northward-flowing West Spitsbergen current by 1°C over the last thirty years is likely to have increased the release of methane from the seabed...

  12. Structure and tectonics of western continental margin of India: Implication for geologic hazards

    Chaubey, A.K.; Ajay, K.K.

    stream_size 13948 stream_content_type text/plain stream_name NHACPIC_2008_25.pdf.txt stream_source_info NHACPIC_2008_25.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Workshop on "Natural Hazard..., and Coastal Processes ofIndian. Coast" Structure and Tectonics ofWestern Continental Margin ofIndia: Implication for Geologic Hazards A.K. Chaubey and K.K. Ajay National Institute ojOceanography. DOM Paula, Goa-403 004 The geomorphological and geological...

  13. Characterizing slope morphology using multifractal technique: a study from the western continental margin of India.

    Chakraborty, B.; Karisiddaiah, S.M.; Menezes, A.A.A.; Haris, K.; Gokul, G.S.; Fernandes, W.A.; Kavitha, G.

    stream_size 57978 stream_content_type text/plain stream_name Nat_Hazards_73_547a.pdf.txt stream_source_info Nat_Hazards_73_547a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 1    Author version...: Nat. Hazards, vol.73(2); 2014; 547-565 Characterizing slope morphology using multifractal technique – a study from the western continental margin of India Bishwajit Chakraborty, S.M. Karisiddaiah, A.A.A. Menezes, K. Haris, G. S. Gokul, W...

  14. Distribution patterns of Recent planktonic foraminifera in surface sediments of the western continental margin of India

    Naidu, P.D.

    sediment. The relative abundance of individual species is expressed as a percent of the total planktonic foraminifera population. Different contour intervals were chosen for different maps in order to highlight the meaningful distribution patterns... depth along the western continental margin of India. 3600 3200 2800 E 2400 2000 (- CL 1600 D 1200 800 400 0 o , ° o % Q <30 ** % o ..8o4°°~ I I 1 I l I I l I 1 I 8 12 16 20 24 Latitude (°N) Fig. 5. Percent of resistant species (G...

  15. Quaternary development of resilient reefs on the subsiding kimberley continental margin, Northwest Australia

    Lindsay B. Collins; Viviane Testa

    2010-01-01

    The Kimberley region in remote northwest Australia has poorly known reef systems of two types; coastal fringing reefs and atoll-like shelf-edge reefs. As a major geomorphic feature (from 12ºS to 18ºS) situated along a subsiding continental margin, the shelf edge reefs are in a tropical realm with warm temperatures, relatively low salinity, clear low nutrient waters lacking sediment input, and Indo-West Pacific corals of moderate diversity. Seismic architecture of the Rowley Shoals reveals tha...

  16. Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP'96))

    Oncken, O.; Asch, G.; Haberland, C.; Metchie, J.; Sobolev, S.; Stiller, M.; Yuan, X.; Brasse, H.; Buske, S.; Giese, P.; GöRze, H.-J.; Lueth, S.; Scheuber, E.; Shapiro, S.; Wigger, P.; Yoon, M.-K.; Bravo, P.; Vieytes, H.; Chong, G.; Gonzales, G.; Wilke, H.-G.; Lüschen, E.; Martinez, E.; RöSsling, R.; Ricaldi, E.; Rietbrock, A.

    2003-07-01

    A 400-km-long seismic reflection profile (Andean Continental Research Project 1996 (ANCORP'96)) and integrated geophysical experiments (wide-angle seismology, passive seismology, gravity, and magnetotelluric depth sounding) across the central Andes (21°S) observed subduction of the Nazca plate under the South American continent. An east dipping reflector (Nazca Reflector) is linked to the down going oceanic crust and shows increasing downdip intensity before gradual breakdown below 80 km. We interpret parts of the Nazca Reflector as a fluid trap located at the front of recent hydration and shearing of the mantle, the fluids being supplied by dehydration of the oceanic plate. Patches of bright (Quebrada Blanca Bright Spot) to more diffuse reflectivity underlie the plateau domain at 15-30 km depth. This reflectivity is associated with a low-velocity zone, P to S wave conversions, the upper limits of high conductivity and high Vp/Vs ratios, and to the occurrence of Neogene volcanic rocks at surface. We interpret this feature as evidence of widespread partial melting of the plateau crust causing decoupling of the upper and lower crust during Neogene shortening and plateau growth. The imaging properties of the continental Moho beneath the Andes indicate a broad transitional character of the crust-mantle boundary owing to active processes like hydration of mantle rocks (in the cooler parts of the plate margin system), magmatic underplating and intraplating under and into the lowermost crust, mechanical instability at Moho, etc. Hence all first-order features appear to be related to fluid-assisted processes in a subduction setting.

  17. Vegetation development in sown field margins and on adjacent ditch banks

    Noordijk, J.; Musters, C. J. M.; van Dijk, J.; de Snoo, G.R.

    2010-01-01

    Sown, temporary field margins are a common agri-environment scheme (AES) in the Netherlands. Despite their wide application, though, there has been scarcely any long-term monitoring of the succession of invertebrates. In the field margins of 40 farms, invertebrate diversity and the abundance of three functional groups were assessed in relation to age. The diversity in terms of number of species groups was found to increase with the age of the margins. The abundance of herbivores and detritivo...

  18. First discovery of a cold seep on the continental margin of the central Red Sea

    Batang, Zenon B.

    2012-06-01

    A new cold brine seep system with microbial mats and metazoan assemblages was discovered by a remotely operated vehicle (ROV) on the Saudi continental margin of central Red Sea. Now named as Thuwal Seeps, it has a shallow brine pool between 840 and 850. m water depths that is formed by focused brine expulsions from two sites (Seep I: 22°17.3\\'N, 38°53.8\\'E; Seep II: 22°16.9\\'N, 38°53.9\\'E). The seep is located at the base of a steep wall rock closer to the shore (20. km) than to the axial trough (120. km). The brine pool does not exhibit a significant thermal anomaly (<. 0.3°C) and is so far the coldest (21.7°C) and least saline (74‰) among brine pools in the Red Sea. This discovery provides the first direct evidence of a cold seep with associated biota on the continental margin of the Red Sea. © 2011 Elsevier B.V.

  19. Molybdenum isotope composition from Yangtze block continental margin and its indication to organic burial rate

    ZHOU Lian; HUANG Junhua; Corey Archer; Chris Hawkesworth

    2007-01-01

    The paper presents the molybdenum isotope data,along with the trace element content,to investigate the geochemical behavior of authigenic Mo during long-term burial in sediments in continental margin settings of the Yangtze block,as well as their indication to the burial of original organic carbon.The burial rate of original organic carbon was estimated on the basis of the amount of sedimentary sulfur (TS content),whilst the carbon loss by aerobic degradation was estimated according to calculated Mn contents.On these points,the original organic carbon flux was calculated,exhibiting a large range of variation (0.17-0.67mmol/m2/day).The strong correlation between sedimentary Mo isotope values and organic carbon burial rates previously proposed on the basis of the investigations on modern ocean sediments,was also used here to estimate the organic carbon burial rate.The data gained through this model showed that organic carbon burial rates have large variations,ranging from 0.43-2.87 mmol/m2/day.Although the two sets of data gained through different geochemical records in the Yangtze block show a deviation of one order of magnitude,they do display a strong correlation.It is thus tempting to speculate that the Mo isotope signature of sediments may serve as a tracer for the accumulation rate of original organic carbon in the continental margin sediments.

  20. Sinking jelly-carbon unveils potential environmental variability along a continental margin.

    Mario Lebrato

    Full Text Available Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m(2 after trawling and integrating between 30,000 and 175,000 m(2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems.

  1. Biodiversity response to natural gradients of multiple stressors on continental margins.

    Sperling, Erik A; Frieder, Christina A; Levin, Lisa A

    2016-04-27

    Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O2 levels decline through the 0.5-0.15 ml l(-1) (approx. 22-6 µM; approx. 21-5 matm) range, and as temperature increases through the 7-10°C range. pCO2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds. PMID:27122565

  2. Macrobenthic assemblages of the Changjiang River estuary (Yangtze River, China) and adjacent continental shelf relative to mild summer hypoxia

    Liao, Yibo; Shou, Lu; Tang, Yanbin; Zeng, Jiangning; Gao, Aigen; Chen, Quanzhen; Yan, Xiaojun

    2016-06-01

    To assess the effects of hypoxia, macrobenthic communities along an estuarine gradient of the Changjiang estuary and adjacent continental shelf were analyzed. This revealed spatial variations in the communities and relationships with environmental variables during periods of reduced dissolved oxygen (DO) concentration in summer. Statistical analyses revealed significant differences in macrobenthic community composition among the three zones: estuarine zone (EZ), mildly hypoxic zone (MHZ) in the continental shelf, and normoxic zone (NZ) in the continental shelf (Global R =0.206, P =0.002). Pairwise tests showed that the macrobenthic community composition of the EZ was significantly different from the MHZ (pairwise test R =0.305, P =0.001) and the NZ (pairwise test R =0.259, P =0.001). There was no significant difference in macrobenthic communities between the MHZ and the NZ (pairwise test R =0.062, P =0.114). The taxa included small and typically opportunistic polychaetes, which made the greatest contribution to the dissimilarity between the zones. The effects of mild hypoxia on the macrobenthic communities are a result not only of reduced DO concentration but also of differences in environmental variables such as temperature, salinity, and nutrient concentrations caused by stratification.

  3. Distribution of deep-water corals along the North American continental margins: Relationships with environmental factors

    Bryan, Tanya L.; Metaxas, Anna

    2006-12-01

    Despite the increasing attention to assemblages of deep-water corals in the past decade, much of this research has been focused on documenting and enumerating associated fauna. However, an understanding of the distribution of most species of coral and the ecological processes associated with these assemblages is still lacking. In this study, we qualitatively and quantitatively described the habitats of two families of deep-water corals in relation to six oceanographic factors (depth, slope, temperature, current, chlorophyll a concentration and substrate) on the Pacific and Atlantic Continental Margins of North America (PCM and ACM study areas, respectively). This study focused primarily on the distributions of Primnoidae and Paragorgiidae because of the large number of documented occurrences. For each environmental factor, deep-water coral locations were compared to the surrounding environment using χ2 tests. On both continental margins, coral locations were found to be not randomly distributed within the study areas, but were within specific ranges for most environmental factors. In the PCM study area, Paragorgiidae and Primnoidae locations were found in areas with slopes ranging from 0° to 10.0°, temperature from -2.0 to 11.0 °C and currents from 0 to 143 cm s -1. In the ACM study area, Paragorgiidae and Primnoidae locations were found in areas with slopes ranging from 0° to 1.4°, temperature ranging from 0 to 11.0 °C and currents ranging from 0 to 207 cm s -1. Although the patterns in habitat characteristics were similar, differences existed between families with respect to particular environmental factors. In both study areas, most environmental parameters in locations where corals occurred were significantly different from the average values of these parameters as determined with χ2 tests ( p<0.05) except for substrate in Paragorgiidae locations and depth in Primnoidae locations on the PCM. This is the first study to show coral distributional patterns

  4. Anomalous Subsidence at Rifted Continental Margins: Distinguishing Mantle Dynamic Topography from Anomalous Oceanic Crustal Thickness

    Cowie, L.; Kusznir, N. J.

    2012-12-01

    It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses

  5. Particle fluxes and their drivers in the Avilés submarine canyon and adjacent slope, central Cantabrian margin, Bay of Biscay

    Rumín-Caparrós, A.; Sanchez-Vidal, A.; González-Pola, C.; Lastras, G.; Calafat, A.; Canals, M.

    2016-05-01

    The Avilés Canyon in the central Cantabrian margin is one of the largest submarine canyons in Europe, extending from the shelf edge at 130 m depth to 4765 m depth in the Biscay abyssal plain. In this paper we present the results of a year-round (March 2012 to April 2013) study of particle fluxes in this canyon and the adjacent continental slope. Three mooring lines equipped with automated sequential sediment traps, high-accuracy conductivity-temperature recorders and current meters allowed measuring total mass fluxes and their major components (lithogenics, calcium carbonate, opal and organic matter) in the settling material jointly with a set of environmental parameters. The integrated analysis of the data obtained from the moorings together with remote sensing images and meteorological and hydrographical data has shed light on the sources of particles and the across- and along margin mechanisms involved in their transfer to the deep. Our results allow interpreting the dynamics of the sedimentary particles in the study area. Two factors play a critical role: (i) direct delivery of river-sourced material to the narrow continental shelf, and (ii) major resuspension events caused by large waves and near bottom currents developing at the occasion of the rather frequent severe storms that are typical of the Cantabrian Sea. Wind direction and subsequent wind-driven currents largely determine the way sedimentary particles reach the canyon. While westerly winds favour the injection of sediments into the Avilés Canyon mainly by building an offshore transport in the bottom Ekman layer, easterly winds ease the offshore advection of particulate matter towards the Avilés Canyon and its adjacent western slope principally through the surface Ekman layer. Furthermore, repeated cycles of semidiurnal tides add an extra amount of energy to the prevailing bottom currents and actively contribute to keep a permanent background of suspended particles in near-bottom waters. High

  6. Variations in sediment transport at the central Argentine continental margin during the Cenozoic

    Gruetzner, Jens; Uenzelmann-Neben, Gabriele; Franke, Dieter

    2012-10-01

    The construction of the sedimentary cover at most passive continental margins includes gravitational downslope transport and along-slope contourite deposition, which are controlled by tectonics, climate and oceanography. At the eastern continental margin of Argentina the history of deposition and erosion is intimately linked to the evolution of the South Atlantic and its water masses. Here we present a detailed seismic investigation of the mixed depositional system located between 41°S and 45°S. The study provides a northward complement to prior investigations from the southern Argentine margin and together with these may be used as background information for future ocean drilling in the region. Prominent features in our seismic cross sections are submarine canyons, mass wasting deposits, contourite channels, and sediment drifts. Four major seismic units above regional reflector PLe (˜65 Ma) are separated by distinct unconformities of regional extent. Using a dense grid of reflection seismic profiles, we mapped the depocenter geometries of the seismic units and derived a chronology of the depositional processes during the Cenozoic. While the Paleocene/Eocene (˜65-34 Ma) is characterized by hemipelagic sedimentation under relatively sluggish bottom water conditions, strong Antarctic bottom water (AABW) circulation led to widespread erosion on the slope and growth of a detached sediment drift during the Oligocene and early Miocene (˜34-17 Ma). After deposition of an aggradational seismic unit interpreted to represent the Mid-Miocene climatic optimum (˜17-14 Ma), gravitational downslope sediment transport increased during the middle to late Miocene (˜14-6 Ma) possibly related to tectonic uplift in South America. The Pliocene to Holocene unit (<˜6 Ma) is very heterogeneous and formed by interactions of downslope and along-slope sediment transport processes as indicated by the evolution of canyons, slope plastered drifts and channels.

  7. A newly discovered Pliocene volcanic field on the western Sardinia continental margin (western Mediterranean)

    Conforti, Alessandro; Budillon, Francesca; Tonielli, Renato; De Falco, Giovanni

    2016-02-01

    A previously unknown submerged volcanic field offshore western Sardinia (western Mediterranean Sea), has been identified based on swath bathymetric data collected in 2009, 2010 and 2013, and high-resolution seismic profiles collected in 2011 and 2013. About 40 conical-shaped volcanic edifices (maximum width of about 1600 m and maximum height of about 180 m) and several lava outcrops (up to 1,200 m wide) were recognized at 20 to 150 m water depth over an area of 800 km2. The volcanic edifices are mainly eruptive monogenic vents, mostly isolated with a rather distinct shape, or grouped to form a coalescent volcanic body in which single elements are often still recognizable. High-resolution seismics enabled identifying relationships between the volcanic bodies and continental margin successions. The edifices overlie a major erosional surface related to the margin exposure following the Messinian salinity crisis, and are overlain by or interbedded with an early Pliocene marine unit. This seismo-stratigraphic pattern dates the volcanic activity to the early Pliocene, in agreement with the radiometric age of the Catalano island lavas (4.7 Ma) reported in earlier studies. The morphometry of the volcanic bodies suggests that cone erosion was higher at shallow water depths. Indeed, most of the shallow edifices are strongly eroded and flattened at 125 to 130 m water depth, plausibly explained by recurrent sub-aerial exposure during Pleistocene sea-level lowstands, whereas cones in deeper water are much better preserved. Volcanic vents and lava deposits, hereafter named the Catalano volcanic field (CVF), are emplaced along lineaments corresponding to the main directions of the normal fault system, which lowered the Sinis Basin and the western Sardinia continental margin. The CVF represents a volumetrically relevant phase of the late Miocene - Quaternary anorogenic volcanic cycle of Sardinia, which is related to the first stage of the extensional tectonics affecting the island

  8. Cenozoic vertical motions of the western continental margin of Peninsular India

    Richards, Fred; Hoggard, Mark; White, Nicky

    2016-04-01

    Despite the cessation of rifting at ˜65 Ma and its remoteness from active convergence, the topography of Peninsular India is dominated by a dramatic, high-elevation escarpment along its western margin: the Western Ghats (˜1 - 1.5 km amsl). Inland of the escarpment, South Indian topography exhibits a long-wavelength (>1000 km), low-angle (˜0.1°) eastward tilt down to the Krishna-Godavari and Cauvery deltas on the eastern continental margin. Offshore, oceanic residual depth measurements show an identical long-wavelength asymmetry from highs of +1 km in the Arabian Sea to lows of -1.2 km in the Bay of Bengal. Strong evidence from margin stratigraphy, dated palaeosurfaces, thermochronology, cosmogenic nuclides and marine terraces combine to suggest that, following a period of relative quiescence from 50 Ma - 25 Ma, the present-day topography evolved in response to Neogene uplift and erosion along the western Indian margin. By jointly inverting 530 longitudinal river profiles for uplift rate and calibrating our inversions against these geological constraints, we successfully place this Cenozoic landscape evolution into a more complete spatio-temporal framework. The results demonstrate slow growth of the eastward tilt from 50 Ma - 25 Ma (≤0.02 mm a‑1), preceding a phase of increasingly rapid development - initiating in the south - from 25 Ma onwards (≤0.2 mm a‑1). The onset of rapid uplift pre-dates the initial intensification of the Indian monsoon by >15 Ma, suggesting that rock uplift and not climate change is primarily responsible for the modern-day relief of the peninsula. Previous studies have aimed to explain this topographic evolution by invoking flexural isostatic mechanisms involving denudation, sediment loading and/or underplating. However, seismological constraints show that South Indian topography deviates significantly from crustal isostatic expectations, while the 9.8‑2.2+3.8 km effective elastic thickness of the region generates ˜125 km

  9. Grounding-zone wedges (GZWs) on high-latitude continental margins

    Batchelor, Christine; Dowdeswell, Julian

    2014-05-01

    The grounding-zone of marine-terminating ice sheets is the area at which the ice-sheet base ceases to be in contact with the underlying substrate. The grounding-zone is a key site at which ice, meltwater and sediment are transferred from ice sheets to the marine environment. GZWs are asymmetric sedimentary depocentres which form through the rapid accumulation of glacigenic debris along a line source at the grounding-zone largely through the delivery of deforming subglacial sediments, together with sediment remobilisation from gravity flows. The presence of GZWs in the geomorphological record indicates an episodic style of ice retreat punctuated by still-stands in the grounding-zone position. GZWs may take decades to centuries to form. Moraine ridges and ice-proximal fans may also build up at the grounding-zone during still-stands or re-advances of the ice margin, but these require either considerable vertical accommodation space or are derived from point-sourced subglacial meltwater streams. We present an inventory of GZWs which is compiled from available studies of bathymetric, shallow acoustic and reflection seismic data from high-latitude continental margins. The objectives are to present locations of and morphological data on GZWs from the Arctic and Antarctic, alongside a synthesis of their key architectural and geomorphic characteristics. We use, for example, newly-available two-dimensional seismic reflection data to show the approximate locations of GZWs off northwest and northeast Greenland. Controls on GZW formation are considered in relation to shelf topography and ice-sheet internal dynamics. A total of 129 GZWs are described from high-latitude continental shelves. GZWs are only observed within cross-shelf troughs and major fjord systems, which are the former locations of ice streams and fast-flowing outlet glaciers. Typical high-latitude GZWs are less than 15 km long and 15 to 100 m thick. A positive correlation between GZW length and thickness is

  10. Pyrophaeophorbide- a as a tracer of suspended particulate organic matter from the NE Pacific continental margin

    Bianchi, Thomas S.; Bauer, James E.; Druffel, Ellen R. M.; Lambert, Corey D.

    Pyrophaeophorbide- a, a degradation product of chlorophyll- a, is predominantly formed by grazing processes in sediments as well as in the water column. Water column profiles of pyrophaeophorbide- a/suspended particulate organic carbon (SPOC) concentrations, at an abyssal site in the northeast (NE) Pacific (Sta M, 34°50'N, 123°00'W; 4100 m water depth), show low concentrations (0.01-0.1 ng/μg SPOC) at surface and mesopelagic depths, and increasing concentrations with closer proximity to the sea floor (0.05-0.6 ng/μg SPOC). However, in June 1992, the deep maximum of pyrophaeophorbide- a/SPOC in the water column of Sta M extended higher into the water column, as much as 1600 m above the bottom (mab) (2500 m water depth); in other seasons they only extended up to 650 mab (3450 m water depth). Previous studies have demonstrated lateral transport of particulate matter from the continental shelf to the deep ocean off the coast of northern California. Recent work suggests that the benthic boundary layer (BBL) extends to 50 mab, based on sediment trap and transmissometry measurements (Smith, K.L., Kaukmann, R.S., Baldwin, R.J., 1994. Coupling of near-bottom pelagic and benthic processes at abyssal depths. Limnology and Oceanography 39, 1101-1118.), and that lateral transport is significant only during summer, which is consistent with our observations. A partial vertical profile of pyrophaeophorbide- a/SPOC from the north central (NC) Pacific provides some evidence that the deep maximum may be absent due to the distance of this site from the continental margin. Thus, the observed deep maximum of pyrophaeophorbide- a/SPOC at Sta M is likely due mainly to lateral transport from the continental slope rather than to local vertical resuspension in the BBL exclusively. Pyrophaeophorbide- a concentrations in SPOC at Sta M were negatively correlated with Δ 14C values of SPOC (SPOC samples from Druffel, E.R.M., Bauer, J.E., Williams, P.M., Griffin, S.A. and Wolgast, D., 1996

  11. Pre-collisional extensional tectonics in convergent continental margins: the cretaceous evolution of the central cordillera of the Colombian Andes

    Zapata Henao, Sebastian

    2015-01-01

    Abstract: The Cretaceous tectonic evolution of the Northern Andes continental margin is characterized by continuous convergence that allowed the formation of continental volcanic arcs, back arc basins, extensional divergent tectonics and accretion of exotic terranes. Such a record, particularly the extensional phases, is commonly hidden by the overimposition of deformational events associated with evolution of the subduction configuration, collision of exotic terranes and strike slip fragment...

  12. Seismic refraction shooting on the continental margin west of the Outer Hebrides, northwest Scotland

    Jones, E. J. W.

    1981-12-01

    Seventeen sonobuoy refraction profiles have been shot to determine the nature of the basement and the broad pattern of sedimentation on the continental margin west of the Outer Hebrides, NW Scotland. Under much of the shelf, crystalline rocks (Vp > 5.1 km/s) lie within 100 m of the seafloor, the basement being largely an extension of the Precambrian (Lewisian) metamorphic complex of western Scotland. Vp/Vs gives Poisson's ratios (σ) of 0.26-0.30 for the Lewisian, values which are significantly higher than σ in the deep crust under northern Britain, implying important compositional differences. Comparisons with ultrasonic velocities in rocks from the Scourian (˜ 2700 Ma) and Laxfordian (˜ 2200-1500 Ma) belts of the Scottish mainland suggest that the Lewisian on the inner continental shelf is predominantly Laxfordian (Vp ˜ 5.5 km/s). Higher-velocity rocks, probably Scourian with only a moderate degree of Laxfordian reworking (Vp ˜ 5.9 km/s), and Cenozoic intrusions occur locally. Two seismic profiles indicate that the outer continental shelf may be underlain by a zone of dense Scourian/early Laxfordian granulites, whose presence possibly influenced the siting of the continental slope.The sediments covering the basement are generally thin.Thicknesses exceeding 1 km are restricted to a fault-bounded trough off the Isle of Lewis and to the outer shelf and continental slope. The deposits can be divided into Cenozoic (1.7-1.9 km/s) and Mesozoic (3.0-4.4 km/s)units, velocity variations in the latter probably reflecting the abundance of early Cenozoic basic intrusions. The distribution of the Mesozoic is partly controlled by faults which appear to be related to early Precambrian shear zones in the basement. These highly foliated belts seem to have facilitated stress relief by normal faulting during Permo-Triassic rifting activity. The general lack of subsidence of the Outer Hebridean block is attributed to the buoyancy of granitic material incorporated at an early

  13. Lithospheric thermal-rheological structures of the continental margin in the northern South China Sea

    2000-01-01

    Thermal structures of three deep seismic profiles in the continental margin in the northern South China Sea are calculated, their "thermal" lithospheric thicknesses are evaluated based on the basalt dry solidus, and their rheological structures are evaluated with linear frictional failure criterion and power-law creep equation. "Thermal" lithosphere is about 90 km in thickness in shelf area, and thins toward the slope, lowers to 60-65 km in the lower slope, ocean crust and Xisha Trough. In the mid-west of the studied area, the lithospheric rheological structure in shelf area and Xisha Islands is of four layers: brittle, ductile, brittle and ductile. Because of uprising of heat mantle and thinning of crust and lithosphere in Xisha Trough, the bottom of the upper brittle layer is only buried at 16 km. In the eastern area, the bottom of the upper brittle layer in the north is buried at 20 km or so, while in lower slope and ocean crust, the rheological structure is of two layers of brittle and ductile, and crust and uppermost mantle form one whole brittle layer whose bottom is buried at 30-32 km. Analyses show that the characteristics of rheological structure accord with the seismic result observed. The character of rheological stratification implies that before the extension of the continent margin, there likely was a ductile layer in mid-lower crust. The influence of the existence of ductile layer to the evolution of the continent margin and the different extensions of ductile layer and brittle layer should not be overlooked. Its thickness, depth and extent in influencing continent margin's extension and evolution should be well evaluated in building a dynamic model for the area.

  14. South Atlantic continental margins of Africa: a comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins

    Seranne, M; Seranne, Michel; Anka, Zahie

    2005-01-01

    The comparative review of 2 representative segments of Africa continental margin: the equatorial western Africa and the SW Africa margins, helps in analysing the main controlling factors on their development. Early Cretaceous active rifting S of the Walvis Ridge resulted in the formation of the SW Africa volcanic margin. The non-volcanic rifting N of the Walvis ridge, led to the formation of the equatorial western Africa margin, with thick and extensive, synrift basins. Regressive erosion of SW Africa prominent shoulder uplift accounts for high clastic sedimentation rate in Late Cretaceous - Eocene, while dominant carbonate production on equatorial western Africa shelf suggests little erosion of a low hinterland. The early Oligocene climate change had contrasted response in both margins. Emplacement of the Congo deep-sea fan reflects increased erosion in equatorial Africa, under the influence of wet climate, whereas establishment of an arid climate over SW Africa induced a drastic decrease of denudation, and ...

  15. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study

    Naehr, T.H.; Eichhubl, P.; Orphan, V.J.; Hovland, M.; Paull, C.K.; Ussler, W., III; Lorenson, T.D.; Greene, H. Gary

    2007-01-01

    Authigenic carbonates from five continental margin locations, the Eel River Basin, Monterey Bay, Santa Barbara Basin, the Sea of Okhotsk, and the North Sea, exhibit a wide range of mineralogical and stable isotopic compositions. These precipitates include aragonite, low- and high-Mg calcite, and dolomite. The carbon isotopic composition of carbonates varies widely, ranging from -60??? to +26???, indicating complex carbon sources that include 13C-depleted microbial and thermogenic methane and residual, 13C-enriched, bicarbonate. A similarly large variability of ??18O values (-5.5??? to +8.9???) demonstrates the geochemical complexity of these sites, with some samples pointing toward an 18O-enriched oxygen source possibly related to advection of 18O-enriched formation water or to the decomposition of gas hydrate. Samples depleted in 18O are consistent with formation deeper in the sediment or mixing of pore fluids with meteoric water during carbonate precipitation. A wide range of isotopic and mineralogical variation in authigenic carbonate composition within individual study areas but common trends across multiple geographic areas suggest that these parameters alone are not indicative for certain tectonic or geochemical settings. Rather, the observed variations probably reflect local controls on the flux of carbon and other reduced ions, such as faults, fluid conduits, the presence or absence of gas hydrate in the sediment, and the temporal evolution of the local carbon reservoir. Areas with seafloor carbonates that indicate formation at greater depth below the sediment-water interface must have undergone uplift and erosion in the past or are still being uplifted. Consequently, the occurrence of carbonate slabs on the seafloor in areas of active hydrocarbon seepage is commonly an indicator of exhumation following carbonate precipitation in the shallow subsurface. Therefore, careful petrographic and geochemical analyses are critical components necessary for the

  16. Earth-System Scales of Biodiversity Variability in Shallow Continental Margin Seafloor Ecosystems

    Moffitt, S. E.; White, S. M.; Hill, T. M.; Kennett, J.

    2015-12-01

    High-resolution paleoceanographic sedimentary sequences allow for the description of ecosystem sensitivity to earth-system scales of climate and oceanographic change. Such archives from Santa Barbara Basin, California record the ecological consequences to seafloor ecosystems of climate-forced shifts in the California Current Oxygen Minimum Zone (OMZ). Here we use core MV0508-20JPC dated to 735,000±5,000 years ago (Marine Isotope Stage 18) as a "floating window" of millennial-scale ecological variability. For this investigation, previously published archives of planktonic δ18O (Globigerina bulloides) record stadial and interstadial oscillations in surface ocean temperature. Core MV0508-20JPC is an intermittently laminated archive, strongly influenced by the California Current OMZ, with continuously preserved benthic foraminifera and discontinuously preserved micro-invertebrates, including ophiuroids, echinoderms, ostracods, gastropods, bivalves and scaphopods. Multivariate statistical approaches, such as ordinations and cluster analyses, describe climate-driven changes in both foraminiferal and micro-invertebrate assemblages. Statistical ordinations illustrate that the shallow continental margin seafloor underwent predictable phase-shifts in oxygenation and biodiversity across stadial and interstadial events. A narrow suite of severely hypoxic taxa characterized foraminiferal communities from laminated intervals, including Bolivina tumida, Globobulimina spp., and Nonionella stella. Foraminiferal communities from bioturbated intervals are diverse and >60% similar to each other, and they are associated with echinoderm, ostracod and mollusc fossils. As with climate shifts in the latest Quaternary, there is a sensitive benthic ecosystem response in mid-Pleistocene continental margins to climatically related changes in OMZ strength.

  17. Rifted Structure of the Vietnam Continental Margin Near the South China Sea Spreading Center

    Reid, I. D.; Fyhn, M. B.; Boldreel, L. O.; Nielsen, L. H.; Duc, N. A.; Huyen, N. T.; Thang, L. D.

    2007-12-01

    The extinct spreading center of the South China Sea intersects the continental margin off Vietnam, providing an excellent opportunity to study the interaction of these two features. As part of a collaborative project between the Geological Survey of Denmark and Greenland, the University of Copenhagen and the Vietnam Petroleum Institute, the crustal structure of this area has been investigated by the use of seismic reflection profiles, to provide control on the sedimentary and basement structure, combined with modelling of gravity data from global satellite altimetry, to constrain the crustal thickness. A complex pattern of rifting is seen, which may be ascribed to the complex stress fields of the propagating rift axis, together with an apparent progression in structure. In the more oceanic area, the rifting is relatively sharp, with fairly rapid crustal thnning of about 10 km. Towards the continent, in the region of the tip of the rift axis, the crustal thinning is less, around 5-7 km, and takes place over a greater distance. In the absence of data on the deep crustal structure it is not possible to determine the absolute crustal thickness with certainty, but the gravity modelling suggests that the pre-existing crust was no more than 20 km thick, having been thinned in earlier stages of formation of the South China Sea. A preliminary analysis of the isostatic balance along the various transects was inconclusive but suggests that the sedimentary sequences are largely isostatically compensated, rather than being supported by lithospheric rigidity. Detailed modelling of the rifting and subsidence may provide further insight into the processes that occur when an oceanic spreading center intersects and propagates into a continental margin.

  18. Built-up of the continental margin offshore Central Mozambique from marine geophysical investigations

    Heyde, I.; Block, M.; Ehrhardt, A.; Reichert, C. J.; Schreckenberger, B.

    2009-12-01

    In September/October 2007, along with institutes from Germany, France and Portugal BGR conducted the cruise MoBaMaSis (Mozambique Basin Marine Seismic Survey) using RV MARION DUFRESNE. The goal of the marine geophysical measurements offshore central Mozambique was the investigation of the continental margin in terms of its structure and formation history with special focus on the opening history of Eastern Gondwana and the hydrocarbon potential. A total of four long transects (450 to 225 km long) and a number of connection lines were acquired from the shelf and the slope into the deep Mozambique Basin. The data comprises multichannel seismic reflection (MCS), magnetic, gravimetric and swath bathymetry. On the eastern two transects two on-/offshore seismic refraction studies were carried out. Apart from results of the MCS and the magnetic work, in particular the results of the gravity data are presented. A 3D density model was developed. In the Mozambique Basin a large thick sedimentary succession of up to 8 km thickness from Jurassic to present is observed. Two deep reaching wells supported, at least in part, the identification of stratigraphy. Faint indications for SDR sequences related to volcanic flows are found in the northern part of the study area. In the south, the Beira High represents a prominent structure. The basement high with sediments of considerable reduced thickness is characterized by a distinct gravity minimum. A possible explanation is that the high is formed by a continental fragment. In addition, no clear magnetic chrons are identifiable. Thus, stretched continental crust is assumed underlying this part of the Mozambique Basin.

  19. ABNORMAL GEOMAGNETIC FIELD RESPONSE AT INTRAPLATE TECTONIC BOUNDARY IN CONTINENT AND CONTINENTAL MARGIN IN SOUTHEASTERN CHINA

    TENG Jiwen; YAN Yafen

    2004-01-01

    We used matched filter, spectrum analysis, and continuation methods of potential field for data processing and obtained the geomagnetic field distribution about the continent and continental margin in southeast China. On the basis of grid data, inversion was conducted and magnetic field distribution and magnetic structure on bedding of different depths were obtained. The new results show that: 1. The magnetic field characteristics are largely different in horizontal and vertical directions and they can be divided into zones according to the continental blocks of Yangtze, Cathaysia, Kangdian (Sichuan-Yunnan)and Qinling-Dabie. 2. The Tanlu fault extends southward along the Ganjiang fault and the Wuchuan-Sihui fault after it crossed over the Yangtze River and was offset locally in the east-west direction. The Tanlu fault finally slips into the South China Sea at Hainan Island. 3. The boundary between Yangtze and Cathaysia blocks starts from Hangzhou Bay in the east, extends along Jiangshao fault and passes through Nanchang, Changsha, and Guilin, and finally enters the sea at Qinzhou, Guangxi. 4. The distribution of buried structure zone is located at 24.5°-26°N.

  20. Preliminary report on geology along Atlantic Continental Margin of northeastern United States

    Minard, J.P.; Perry, W.J.; Weed, E.G.A.; Rhodehamel, E.C.; Robbins, E.I.; Mixon, R.B.

    1974-01-01

    The U.S. Geological Survey is conducting a geologic and geophysical study of the northeastern United States outer continental shelf and the adjacent slope from Georges Bank to Cape Hatteras. The study also includes the adjacent coastal plain because it is a more accessible extension of the shelf. The total study area is about 324,000 sq km, of which the shelf and slope constitute about 181,000 sq km and the coastal plain constitutes 143,000 sq km. The shelf width ranges from about 30 km at Cape Hatteras to about 195 km off Raritan Bay and on Georges Bank. Analyses of bottom samples make it possible to construct a preliminary geologic map of the shelf and slope to a water depth of 2,000 m. The oldest beds cropping out in the submarine canyons and on the slope are of early ate Cretaceous age. Beds of Early Cretaceous and Jurassic age are present in deep wells onshore and probably are present beneath the shelf in the area of this study. Such beds are reported beneath the Scotian shelf on the northeast where they include limestone, salt, and anhydrite. Preliminary conclusions suggest a considerably thicker Mesozoic sedimentary sequence than has been described previously. The region is large; the sedimentary wedge is thick; structures seem favorable; and the hydrocarbon potential may be considerable.

  1. Uplift, exhumation and erosion along the Angolan continental margin: an integrated approach

    Gröger, Heike R.; Machado, Vladimir; Di Pinto, Giuseppe

    2013-04-01

    The topographical development along the SW African margin is not exclusively rift-related. In addition to the onset of rifting in the Early Cretaceous, additional Late Cretaceous and Cenozoic events of uplift, exhumation and erosion are discussed. Thermochronology has proven to be a valuable tool to constrain phases of exhumation in passive continental margins. For South Africa and Namibia a large number of thermochronological data are available. Angola on the other hand is still scarcely investigated. This study is based on thermochronological data from onshore Angola, integrated with quantitative morphotectonic analysis and the on- and offshore stratigraphic record. In South Africa and Namibia published thermochronological data document pronounced Early and Late Cretaceous cooling events, which can be related to 2.5-3.5 km of removed section during the Cretaceous. An additional 1-2 km of removed section are estimated during the Cenozoic. In Angola predominantly Permo-Triassic apatite fission track ages indicate significantly less Cretaceous to Cenozoic erosion (Angola (Kwanza basin) is corroborated by enhanced Oligocene and Miocene sedimentation offshore. Thus the on- and offshore geological record in Angola appear directly linked. Cenozoic erosion onshore is mirrored by enhanced Oligocene to Miocene sedimentation offshore. The geomorphological information as well as the stratigraphic record are compatible with the Cenozoic cooling and exhumation as suggested by thermal modelling of apatite fission track data. Although direct indicators for Cretaceous cooling and erosion are missing in Angola, minor amounts of Cretaceous erosion may be disguised by the Miocene final event.

  2. Magnetic anomalies of offshore Krishna-Godavari Basin, eastern continental margin of India

    K V Swamy; I V Radhakrishna Murthy; K S Krishna; K S R Murthy; A S Subrahmanyam; M M Malleswara Rao

    2009-08-01

    The marine magnetic data acquired from offshore Krishna–Godavari (K–G) basin, eastern continental margin of India (ECMI), brought out a prominent NE–SW trending feature, which could be explained by a buried structural high formed by volcanic activity. The magnetic anomaly feature is also associated with a distinct negative gravity anomaly similar to the one associated with 85°E Ridge. The gravity low could be attributed to a flexure at the Moho boundary, which could in turn be filled with the volcanic material. Inversion of the magnetic and gravity anomalies was also carried out to establish the similarity of anomalies of the two geological features (structural high on the margin and the 85°E Ridge) and their interpretations. In both cases, the magnetic anomalies were caused dominantly by the magnetization contrast between the volcanic material and the surrounding oceanic crust, whereas the low gravity anomalies are by the flexures of the order of 3–4 km at Moho boundary beneath them. The analysis suggests that both structural high present in offshore Krishna–Godavari basin and the 85°E Ridge have been emplaced on relatively older oceanic crust by a common volcanic process, but at discrete times, and that several of the gravity lows in the Bay of Bengal can be attributed to flexures on the Moho, each created due to the load of volcanic material.

  3. Seamounts along the Iberian continental margins; Los montes submarinos en los margenes continentales de Iberia

    Vazquez, J. T.; Alonso, B.; Fernandez-Puga, M. C.; Gomez-Ballesteros, M.; Iglesias, J.; Palomino, D.; Roque, C.; Ercilla, G.; Diaz-del-Rio, V.

    2015-07-01

    Seamounts are first-order morphological elements on continental margins and in oceanic domains, which have been extensively researched over recent decades in all branches of oceanography. These features favour the development of several geological processes, and their study gives us a better understanding of their geological and morphological domains. The seamounts around Iberia are numerous and provide excellent examples of the geo diversity of these morphological elements. Here we present a compilation of 15 seamounts around the Iberian Peninsula. These seamounts have different origins related to the geodynamic evolution (volcanism, extensional or compressive tectonics, and diapirism) of the domains where they are located. The current configuration of their relief has been influenced by Neogene-Quaternary tectonics. Their positioning controls the current morpho-sedimentary processes in the basins and on the margins, and high- lights the fact that downslope processes on seamount flanks (mass flows, turbidite flows, and landslides) and processes parallel to seamounts (contouritic currents) correspond to the major geological features they are associated with them. Biogenic structures commonly develop on the tops of seamounts where occasionally isolated shelves form that have carbonate-dominated sedimentation. (Author)

  4. Cretaceous source rock characterization of the Atlantic Continental margin of Morocco

    Jabour, H. (ONAREP, Rabat (Morocco))

    1993-02-01

    Characterization of the petroleum potential for the Atlantic margin of Morocco has been based primarily on limited, antiently acquired organic geochemical data. These indicate the area of drilling behind the paleoshelf edge to be only fair in organic carbon and C15+ extract values with predominantly terrestrial kerogen types. Recently acquired geochemical data obtained from relatively recent drilling both behind and beyond the paleoshelf edge indicate 4 depositional facies containing hydrogen rich amorphous kerogen assemblages. These are: (1) Lower to Mid Jurassic inner shelf facies probably deposited in algal rich lagoon-like, (2) Lower Cretaceous non marine coaly facies probably deposited in algal rich swamplike environments, (3) Middle Cretaceous facies characterized by restrited anoxic environment with sediments rich in marine kerogen types deposited under sluggish wather circulation, (4) Upper Cretaceous to Tertiary outer-shelf to Upper slope facies probably deposited under algal-rich upwelling systems. Of these, the Cretaceous facies is the most widespread and represents the best source rock potential characteristics. Correlation of these facies to recently acquired good quality seismic packages allows for extrapolation of probable organic facies distribution throughout the continental margin. This should enhance the hydrocarbon potential of the Mesozoic and Cenozoic sediments both landward and seaward of the paleoshelf edge and thus permits refinement of strategies for hydrocarbon exploration in the area.

  5. Continental margin deformation along the Andean subduction zone: Thermo-mechanical models

    Gerbault, Muriel; Cembrano, J.; Mpodozis, C.; Farias, M.; Pardo, M.

    2009-12-01

    The Chilean Andes extend north-south for about 3000 km over the subducting Nazca plate, and show evidence of local rheological controls on first-order tectonic features. Here, rheological parameters are tested with numerical models of a subduction driven by slab-pull and upper plate velocities, and which calculate the development of stress and strain over a typical period of 4 Myr. The models test the effects of subduction interface strength, arc and fore-arc crust rheology, and arc temperature, on the development of superficial near-surface faulting as well as viscous shear zones in the mantle. Deformation geometries are controlled by the intersection of the subduction interface with continental rheological heterogeneities. Upper plate shortening and trench advance are both correlated, and favored, to a first-order by upper plate weakness, and to a second-order by interface strength. In cases of a strong interface, a weak fore-arc crust is dragged downward by “tectonic erosion”, a scenario for which indications are found along the northern Chilean margin. In contrast for a resistant fore-arc, the slab-pull force transmits to the surface and produces topographic subsidence. This process may explain present-day subsidence of the Salar de Atacama basin and/or the persistence of a Central Depression. Specific conditions for northern Chile produce a shear zone that propagates from the subduction zone in the mantle, through the Altiplano lower crust into the Sub-Andean crust, as proposed by previous studies. Models with a weak interface in turn, allow buoyant subducted material to rise into the continental arc. In case of cessation of the slab-pull, this buoyant material may rise enough to change the stress state in the continental crust, and lead to back-arc opening. In a case of young and hydrated oceanic plate forced by the slab-pull to subduct under a resistant continent, this plate is deviated and indented by the continental mantle, and stretches horizontally

  6. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    D. Archer

    2014-06-01

    Full Text Available A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbon (Yedoma deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing part of the cycle, rather than during transgression (thawing. The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic

  7. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    Archer, D.

    2014-06-01

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbon (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales

  8. Recent seismic investigations on gas hydrates at continental margins by BGR

    Boennemann, C.; Mueller, C.; Behain, D.; Meyer, H.; Neben, S.

    2002-12-01

    In the last years all marine seismic cruises of BGR on continental margins revealed deposits of gas hydrates. The standard analysis of these data begins with the mapping of BSRs in the processed reflection seismic data to estimate the minimal extension of gas hydrates. This is followed by derivation of heat flow from BSR depths at selected locations. The work of BGR with these data has a variety of objectives: reservoir investigations, structural studies, comparative studies to understand the origin of the gas and to assess the role of gas hydrates and free gas beneath as a possible future energy resource. Data from four areas are presented. The Sunda subduction zone formed the Mentawai and the Java forearc basins. Gas hydrates are observed predominantly in boundary parts of the basins and in the anticlinal structures which run nearly parallel to the subduction zone. Gas hydrate occurrence off Sabah appears to be linked to structural and tectonic units and to be focused mainly in the folded, thrusted, and uplifted structures. The BSRs occur mainly in the hanging walls of the individual thrust sheets which form anticline-like structures. Due to the tectonically controlled morphology of the seafloor the distribution of BSRs appear mainly as elongated bodies which run parallel to each other. At the active margin of middle Chile gas hydrate has only been observed in the southern part. They occur mainly on the middle slope and form lengthy patches parallel to the coast. The convergent continental margin of Costa Rica is an area with large known gas hydrate occurrences. The mapping of BSRs from these data reveals different areas of gas hydrates and indications for strong variability of the heat flow. One area is subject of an ongoing detailed seismic reservoir study. High-resolution and long-offset seismic data open the way for pre-stack analyses with methods such as amplitude variation with angle (AVA). First results indicate the possibility to differentiate between

  9. Gas hydrate stability and the assessment of heat flow through continental margins

    Grevemeyer, Ingo; Villinger, Heinrich

    2001-06-01

    A prominent feature across some continental margins is a bottom-simulating reflector (BSR). This seismic reflection generally coincides with the depth predicted for the base of the gas hydrate stability field. Because the occurrence of gas hydrates is controlled by temperature and pressure conditions, it has been suggested that BSRs mark an isotherm and they have therefore been used to estimate the heat flow through continental margins; crucial parameters are the temperature at BSR depth and at the seafloor and the thermal conductivity structure between the BSR and the seabed. However, very often the required parameters are not available and therefore they have been derived from models for gas hydrate stability and empirical relationships to obtain thermal conductivities from seismic velocities. Here, we use downhole temperature, thermal conductivity, porosity and logging data from 10 Ocean Drilling Program (ODP) sites drilled into and through the gas hydrate field to investigate the quality of estimates. Our analyses and application of constraints to the Makran margin off Pakistan indicate the following. (i) The temperature at BSR depth could be approximated by a seawater-methane system, although capillary forces, chemical impurities or non-equilibrium conditions can lower (or increase) the temperature. If calibration by heat probe measurements is possible, errors of geothermal gradients are less than 10 per cent, otherwise uncertainties of 20 per cent (or even higher) may arise. In addition, seasonal variations of bottom water temperature have to be considered, because they may affect thermal gradients by up to ~10 per cent. (ii) The impact of typical quantities of low-thermal-conductivity gas hydrate on the bulk thermal conductivity is insignificant. (iii) The thermal conductivity profile between the BSR and the seabed can generally be approximated by a mean value. Thus, (iv) seabed measurements should be used instead of empirical relationships, which may

  10. Distribution, abundance and trail characteristics of acorn worms at Australian continental margins

    Anderson, T. J.; Przeslawski, R.; Tran, M.

    2011-04-01

    Acorn worms (Enteropneusta), which were previously thought to be a missing link in understanding the evolution of chordates, are an unusual and potentially important component of many deep-sea benthic environments, particularly for nutrient cycling. Very little is known about their distribution, abundance, or behaviour in deep-sea environments around the world, and almost nothing is known about their distribution within Australian waters. In this study, we take advantage of two large-scale deep-sea mapping surveys along the eastern (northern Lord Howe Rise) and western continental margins of Australia to quantify the distribution, abundance and trail-forming behaviour of this highly unusual taxon. This is the first study to quantify the abundance and trail behaviour of acorn worms within Australian waters and provides the first evidence of strong depth-related distributions. Acorn worm densities and trail activity were concentrated between transect-averaged depths of 1600 and 3000 m in both eastern and western continental margins. The shallow limit of their depth distribution was 1600 m. The deeper limit was less well-defined, as individuals were found in small numbers below 3000 down to 4225 m. This distributional pattern may reflect a preference for these depths, possibly due to higher availability of nutrients, rather than a physiological constraint to greater depths. Sediment characteristics alone were poor predictors of acorn worm densities and trail activity. High densities of acorn worms and trails were associated with sandy-mud sediments, but similar sediment characteristics in either shallower or deeper areas did not support similar densities of acorn worms or trails. Trail shapes varied between eastern and western margins, with proportionally more meandering trails recorded in the east, while spiral and meandering trails were both common in the west. Trail shape varied by depth, with spiral-shaped trails dominant in areas of high acorn worm densities

  11. Late-Quaternary variations in clay minerals along the SW continental margin of India: Evidence of climatic variations

    Chauhan, O.S.; Sukhija, B.S.; Gujar, A.R.; Nagabhushanam, P.; Paropkari, A.L.

    Down-core variations in illite, chlorite, smectite and kaolinite (the major clays) in two sup(14)C-dated cores collected along the SW continental margin of India show that illite and chlorite have enhanced abundance during 20-17, 12.5, 11-9.5, and 5-4...

  12. Unravelling the process of continental breakup: a case study of the Australia-Antarctica conjugate margins

    Gillard, Morgane; Autin, Julia; Karpoff, Anne-Marie; Manatschal, Gianreto; Munschy, Marc; Sauter, Daniel; Schaming, Marc

    2013-04-01

    ) with variations occurring across and along the margin. The results also provide new constraints on the proposed East-West diachronous opening and on the two main directions of extension (first NW-SE then N-S). Moreover, we suggest that polyphase detachment faulting may play an important role, in particular during the mantle exhumation phase potentially leading to the breakup and onset of steady state seafloor spreading. Another important observation is that the current interpretations of magnetic anomalies for the breakup identification may not work. Indeed, these interpretations are based on a symmetric model of accretion, whereas in our assumption, the first magnetic anomalies have been recorded during an asymmetric phase related to continental mantle exhumation. The comparison with other magma-poor rifted margins such as the central segment of the South Atlantic or the southern North Atlantic, will allow determining if these observations result from similar processes in magma-poor rifted margins or if they are specific and restricted to the Australian-Antarctic margins.

  13. Tectonic-geodynamic settings of OIB-magmatism on the eastern Asian continental margin during the Cretaceous-Paleogene transition

    Filatova, N. I.

    2015-11-01

    At the Cretaceous-Paleogene transition, the convergent boundary between the Asian and Pacific plates was replaced by a transform boundary to determine destruction of the continental margin including the Okhotsk-Chukotka Cretaceous subduction-related belt along left-lateral strike-slip and downdip-strikeslip faults. The newly formed East Asian rift system (EARS) continues in the easterly direction the Mongol-Okhotsk zone of left-lateral strike-slip faults, a former transform boundary of the Asian continent. Basaltoids of the East Asian rift system that erupted through fractures onto the former active margin are similar intraplate OIB volcanics related to the lower mantle source. The specific feature of OIB-type magmatism in the system consists in its continental marginal position near the transform boundary.

  14. Germanium-silicon fractionation in a river-influenced continental margin: The Northern Gulf of Mexico

    Baronas, J. Jotautas; Hammond, Douglas E.; Berelson, William M.; McManus, James; Severmann, Silke

    2016-04-01

    In this study we have sampled the water column and sediments of the Gulf of Mexico to investigate the effects of high riverine terrigenous load and sediment redox conditions on the cycling of Ge and Si. Water column Ge/Si ratios across the Gulf of Mexico continental shelf range from 1.9 to 25 μmol/mol, which is elevated compared to the global ocean value of 0.7 μmol/mol. The Ge enrichment in the Gulf of Mexico seawater is primarily due to anthropogenic contamination of the Mississippi river, which is the main Ge and Si source to the area, and to a smaller extent due to discrimination against Ge during biogenic silica (bSi) production (Ge/Si = 1.2-1.8 μmol/mol), especially by radiolarians and siliceous sponges (Ge/Si = 0.6-1.1 μmol/mol). Most sediment pore waters (Ge/Si = 0.3-4.5 μmol/mol) and sediment incubation experiments (benthic flux Ge/Si = 0.9-1.2 μmol/mol) indicate precipitation of authigenic phases that sequester Ge from pore waters (non-opal sink). This process appears to be independent of oxidation-reduction reactions and suggests that authigenic aluminosilicate formation (reverse weathering) may be the dominant Ge sink in marine sediments. Compilation of previously published data shows that in continental margins, non-opal Ge burial flux is controlled by bSi supply, while in open ocean sediments it is 10-100 times lower and most likely limited by the supply of lithogenic material. We provide a measurement-based estimate of the global non-opal Ge burial flux as 4-32 Mmol yr-1, encompassing the 2-16 Mmol yr-1 needed to keep the global marine Ge cycle at steady state.

  15. Observed bottom boundary layer transport and uplift on the continental shelf adjacent to a western boundary current

    Schaeffer, A.; Roughan, M.; Wood, J. E.

    2014-08-01

    Western boundary currents strongly influence the dynamics on the adjacent continental shelf and in particular the cross-shelf transport and uplift through the bottom boundary layer. Four years of moored in situ observations on the narrow southeastern Australian shelf (in water depths of between 65 and 140 m) were used to investigate bottom cross-shelf transport, both upstream (30°S) and downstream (34°S) of the separation zone of the East Australian Current (EAC). Bottom transport was estimated and assessed against Ekman theory, showing consistent results for a number of different formulations of the boundary layer thickness. Net bottom cross-shelf transport was onshore at all locations. Ekman theory indicates that up to 64% of the transport variability is driven by the along-shelf bottom stress. Onshore transport in the bottom boundary layer was more intense and frequent upstream than downstream, occurring 64% of the time at 30°S. Wind-driven surface Ekman transport estimates did not balance the bottom cross-shelf flow. At both locations, strong variability was found in bottom water transport at periods of approximately 90-100 days. This corresponds with periodicity in EAC fluctuations and eddy shedding as evidenced from altimeter observations, highlighting the EAC as a driver of variability in the continental shelf waters. Ocean glider and HF radar observations were used to identify the bio-physical response to an EAC encroachment event, resulting in a strong onshore bottom flow, the uplift of cold slope water, and elevated coastal chlorophyll concentrations.

  16. Methane Derived Authigenic Carbonates from the Upper Continental Margin of the Bay of Biscay (France)

    Pierre, C.; Blanc-Valleron, M. M.; Dupré, S.

    2014-12-01

    Extensive seafloor carbonate pavements are present at water depth from 140 to 180 meters on the upper continental margin of the Bay of Biscay, 50 to 60 km away from the present-day coastline. They form at the seafloor meter-high sub-circular reliefs with a diameter from 10 m to 100 m that are surrounded by light brown silto-sandy unconsolidated sediments. All these structures are associated with active methane seeps that cover an area of 80km from N to S and up to 8km from W to E. These carbonates were sampled during the two cruises GAZCOGNE 1 (july-august 2013) and GAZCOGNE 2 (september 2013). The carbonate crusts are porous sandstones, dark brown to black by impregnation with Fe-Mn oxides/hydroxides. Subseafloor concretions are homogenous light to medium grey fine-grained sandstones. The bulk carbonate content varies in the range 36-42 weight %. The carbonate mineralogy is dominated by aragonite that cements the detrital grains whereas calcite comes from the biogenic carbonates. Dolomite occurs in significant amount in a few samples. Circular cavities of 5 to 10 µm of diameter in the carbonate cement represent traces of gas bubbles; smaller holes in the aragonite crystals are due to carbonate dissolution by CO2 issued from aerobic oxidation of methane. The oxygen isotopic compositions of the bulk carbonate (+1.7 to +4.5‰) and aragonite cement (-0.2 to +1.4‰) are lower than the values in equilibrium with the present-day temperature and salinity conditions. This indicates that the carbonate precipitated in mixtures of seawater and continental water, i.e. in a context of submarine groundwater discharge. The carbon isotopic compositions of the bulk carbonate (-51.9 to -38.2‰) and aragonite cement (-49.9 to -29.3‰) demonstrate that most carbon derived from methane oxidized as bicarbonate during microbial anaerobic oxidation of methane. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories

  17. Gas emissions at the continental margin west off Svalbard: mapping, sampling, and quantification

    H. Sahling

    2014-05-01

    Full Text Available We mapped, sampled, and quantified gas emissions at the continental margin west of Svalbard during R/V Heincke cruise He-387 in late summer 2012. Hydroacoustic mapping revealed that gas emissions were not limited to a zone just above 396 m below sea level (m b.s.l.. Flares from this depth gained significant attention in the scientific community in recent years because they may be caused by bottom water-warming induced hydrate dissolution in the course of global warming and/or by recurring seasonal hydrate formation and decay. We found that gas emissions occurred widespread between about 80 and 415 m b.s.l. which indicates that hydrate dissolution might only be one of several triggers for active hydrocarbon seepage in that area. Gas emissions were remarkably intensive at the main ridge of the forlandet moraine complex in 80 to 90 m water depths, and may be related to thawing permafrost. Focused seafloor investigations were performed with the remotely operated vehicle (ROV "Cherokee". Geochemical analyses of gas bubbles sampled at about 240 m b.s.l. as well as at the 396 m gas emission sites revealed that the vent gas is primarily composed of methane (> 99.70% of microbial origin (average δ13C = −55.7‰ V-PDB. Estimates of the regional gas bubble flux from the seafloor to the water column in the area of possible hydrate decomposition were achieved by combining flare mapping using multibeam and single beam echosounder data, bubble stream mapping using a ROV-mounted horizontally-looking sonar, and quantification of individual bubble streams using ROV imagery and bubble counting. We estimated that about 53 × 106 mol methane were annually emitted at the two areas and allow a large range of uncertainty due to our method (9 to 118 × 106 mol yr−1. These amounts, first, show that gas emissions at the continental margin west of Svalbard were in the same order of magnitude as bubble emissions at other geological settings, and second, may be used to

  18. Late Cretaceous - early Tertiary dextral transpression in north Sinai: Reactivation of the Tethyan Continental Margin

    Moustafa, A.R.; Khalil, M.H. (Ain Shams Univ., Cairo (Egypt))

    1988-08-01

    Detailed photogeologic study and field checks indicate the North Sinai folds are associated with northwest-dipping upthrusts, especially on their southeastern steeply dipping flanks. These northeast-southwest-plunging folds include both large folded ranges (tens of kilometers long, e.g., Gebels Yelleq, El Maghara, and El Halal) and smaller folds (2-10 km long). The smaller folds have right-stepping en echelon arrangement and define six east-northeast elongated belts which were probably formed by right-lateral wrenching in Late Cretaceous-early Tertiary time. These belts are called the G, El Amrar belt, the G. El Mistan belt, the G. Um Latiya belt, the G. Falig belt, the El Giddi Pass-G. El Minsherah-G. El Burqa belt, and the Mitla Pass-G. Kherim-G. Araif El Naq belt. The existence of northwest-dipping upthrusts within and between these en echelon fold belts probably indicates the wrenching was convergent. The en echelon fold belts are proposed to overlie pre-existing deep-seated faults which could have been formed by the Late Triassic-Liassic rifting of north Africa-Arabia to form the southern passive continental margin of the Tethys sea. Mesozoic rocks thicken across these faults. Late Cretaceous-early Tertiary reactivation of these faults by dextral transpression probably resulted from the oblique movement between Africa and Eurasia to close the Tethys sea.

  19. Evidence for current-controlled sedimentation along the southern Mozambique continental margin since Early Miocene times

    Preu, Benedict; Spieß, Volkhard; Schwenk, Tilmann; Schneider, Ralph

    2011-12-01

    Major plastered drift sequences were imaged using high-resolution multichannel seismics during R/V Meteor cruises M63/1 and M75/3 south of the Mozambique Channel along the continental margin of Mozambique off the Limpopo River. Detailed seismic-stratigraphic analyses enabled the reconstruction of the onset and development of the modern, discontinuous, eddy-dominated Mozambique Current. Major drift sequences can first be identified during the Early Miocene. Consistent with earlier findings, a progressive northward shift of the depocenter indicates that, on a geological timescale, a steady but variable Mozambique Current existed from this time onward. It can furthermore be shown that, during the Early/Middle Miocene, a coast-parallel current was established off the Limpopo River as part of a lee eddy system driven by the Mozambique Current. Modern sedimentation is controlled by the interplay between slope morphology and the lee eddy system, resulting in upwelling of Antarctic Intermediate Water. Drift accumulations at larger depths are related to the reworking of sediment by deep-reaching eddies that migrate southward, forming the Mozambique Current and eventually merging with the Agulhas Current.

  20. Behaviour of REEs in a tropical estuary and adjacent continental shelf of southwest coast of India: Evidence from anomalies

    P M Deepulal; T R Gireesh Kumar; C H Sujatha

    2012-10-01

    The distribution and accumulation of the rare earth elements (REE) in the sediments of the Cochin Estuary and adjacent continental shelf were investigated. The rare earth elements like La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the heavy metals like Mg, V, Cr, Mn, Fe, Cu, Zn, U, Th were analysed by using standard analytical methods. The Post-Archean Australian Shale composition was used to normalise the rare earth elements. It was found that the sediments were more enriched with the lighter rare earth elements than the heavier ones. The positive correlation between the concentrations of REE, Fe and Mn could explain the precipitation of oxyhydroxides in the study area. The factor analysis and correlation analysis suggest common sources of origin for the REEs. From the Ce-anomalies calculated, it was found that an oxic environment predominates in all stations except the station No. 2. The Eu-anomaly gave an idea that the origin of REEs may be from the feldspar. The parameters like total organic carbon, U/Th ratio, authigenic U, Cu/Zn, V/Cr ratios revealed the oxic environment and thus the depositional behaviour of REEs in the region.

  1. Timing and Magnitude of Depth-dependent Lithosphere Stretching on the Lofoten Segment of the Norwegian Rifted Continental Margin

    Kusznir, N.; Roberts, A.; Hunsdale, R.

    2002-12-01

    Flexural backstripping and forward structural-and-stratigraphic modelling show that depth-dependent lithosphere stretching occurs on the outer part of the Norwegian rifted margin. Subsidence analysis on the Lofoten segment of the margin shows substantial thinning of the continental lithosphere within 100 km of the COB at continental breakup time (at approx. 54 Ma), while the upper crust shows no significant faulting and extension at breakup or immediately preceding breakup in the Palaeocene. For the Lofoten Margin beta stretching-factors approaching infinity are required at 54 Ma west of the Utroest Ridge to restore Top Basalt and the Top Taare to presumed sub-aerial depositional environments. Breakup age beta stretching-factors are predicted to rapidly reduce towards the east of the Utroest Ridge. For the mid-Lofoten margin, an additional Eocene crustal thinning event younger than 54 Ma is required to explain observed margin subsidence; post-breakup subsidence with a beta stretching-factor of infinity is insufficient to generate observed post-breakup subsidence. The absence of significant Palaeocene extension on the Lofoten margin, and the additional Eocene subsidence and faulting, implies that depth-dependent stretching of the Norwegian rifted margin occurred during early sea-floor spreading rather than during pre-breakup intra-continental rifting. For the Voering segment of the Norwegian rifted margin, south of the Bivroest Transform and Lineament System, smaller b stretching-factors of ~ 1.8 to 2.5 are needed to restore Top Basalt and Top Taare to sea level. No similar magnitude of extension by faulting is observed in the upper crust (Roberts et al.1997). Depth dependent stretching of margin lithosphere is also observed in the northern Moere Basin. Depth-dependent stretching has been observed at other rifted continental margins including the Galicia, Goban Spur, NW Australian and South China Sea rifted margins (Driscoll and Karner 1998, Davis and Kusznir 2002

  2. Lithosphere/asthenosphere interaction during continental breakup: preliminary isotopic date on the passive Galicia margin (North-Atlantic)

    The Galicia Margin ultramafic ridge has been cross-cut by diorites, pyroxenites and gabbros before the end of the rifting stage, and then by dolerites, after the continental break-full; it has been further overlaid by basaltic lava flows. The younger the rocks, the higher the initial ξNd(2.2-8.8). This evolution would be the result of the contamination of liquids extracted from the asthenosphere, by the enriched (ξNdi=4.0) and partially melted previous continental lithosphere. Time-decreasing contamination is related to progressive lithospheric thinning from the end to the beginning of oceanic spreading. (authors)

  3. Distributions of dissolved organic and inorganic carbon and radiocarbon in the eastern North Pacific continental margin

    Bauer, James E.; Druffel, Ellen R. M.; Wolgast, David M.; Griffin, Sheila; Masiello, Caroline A.

    Temporal variations in the natural radiocarbon ( 14C) signatures of dissolved organic and inorganic carbon (DOC and DIC, respectively) in seawater have been studied previously (Druffel, E.R.M., Bauer, J.E., Williams, P.M., Griffin, S., Wolgast, D.M., 1996. Seasonal variability of radiocarbon in particulate organic carbon in the northeast Pacific. J. Geophys. Res. 101, 20 543-20 552; Bauer, J.E., Druffel, E.R.M., Williams, P.M., Wolgast, D.M., Griffin, S., 1998. Temporal variability in dissolved organic carbon and radiocarbon in the eastern North Pacific Ocean. J. Geophys. Res. 103, 2867-2882) at a long-term time-series station (Sta. M: 32°N, 123W) in the eastern North Pacific located at the eastern edge of the North Pacific abyssal plain. In June 1995 a transect was made from Sta. M inshore to approximately 500 m depth in order to evaluate the distributions of 14C in DOC and DIC from the abyssal plain to the upper continental slope. Concentrations and Δ 14C values of DOC in mixed layer waters (25 and 85 m) decreased toward the upper slope. In deeper waters, concentrations and Δ 14C values were in general similar at all three sites. Differences in DOC concentrations and Δ 14C-DOC between Sta. M and the rise and upper slope sites were explained in part by the mixing of DOC and Δ 14C along constant density ( σt) surfaces. However, specific deviations from conservative behavior due to mixing were observed for Δ 14C-DOC at mesopelagic (˜700 m) and near-bottom (˜3600- 3900 m) depths of the continental rise. Comparable findings are reported for DIC, where σt-normalized concentrations and Δ 14C values in Sta. M, rise and upper slope waters were similar, with the exception of slight increases in concentrations and Δ 14C values in near-bottom waters of the rise. These observations indicate that both DOC and DIC in continental rise and slope surface waters of the eastern North Pacific Ocean margin are comprised of a component of actively upwelled material derived

  4. Biodiversity of the deep-sea continental margin bordering the Gulf of Maine (NW Atlantic: relationships among sub-regions and to shelf systems.

    Noreen E Kelly

    Full Text Available BACKGROUND: In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. METHODOLOGY/PRINCIPAL FINDINGS: We use data from the published literature, unpublished studies, museum records and online sources, to: (1 assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39-43°N, 63-71°W, 150-3000 m depth; (2 compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3 estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. CONCLUSIONS/SIGNIFICANCE: The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life

  5. Tectonomagmatic Evolution of the Neo - Tethyan Region in the Iranian Continental Margin

    Monsef, R.; Monsef, I.; Rahgoshay, M.; Emami, M. H.; Shafaii Moghadam, H.

    2009-04-01

    The tectonic history of Neo - Tethyan realm in Iran began with the rifting of the Central Iranian Block (CIB) separated from Arabia and Gondwana during Late Permian - Early Triassic time. This realm travelled to the north to creation of the Neo-Tethyan oceanic lithosphere. The subduction of the Neo-Tethys could start to the south of the Central Iranian Block at Late Triassic to Plio-Quaternary time. The subduction of the Neo - Tethyan ocean beneath the active continental margin of the Iranian block was established by arc magmatism and back - arc spreading. These magmatic activities are marked from SW to NE by the presence of: calc-alkaline arc magmatism from Late Triassic to Late Jurassic in the Sanandaj-Sirjan Zone (SSZ), back - arc spreading with Late Cretaceous in the Esfandagheh Colour Melange Zone (ECMZ), back-arc spreading with Late Cretaceous - Palaeocene Nain-Baft Ophiolitic Belt (NBOB) and calc-alkaline arc magmatism from Eocene to Plio-Quaternary in the Urumieh-Dokhtar Magmatic Zone (UDMZ). Urumieh-Dokhtar magmatic zone has been considered as a place for the main magmatic activities in the Central Iranian continent in the Cenozoic age. This magmatic arc is situated to the North of the Mesozoic arc of the Sanandaj-Sirjan zone and the back-arc basin of the Central Iranian Block of Cretaceous age. During Oligocene-Miocene time the magmatic activity favored to alkaline magmatism. Geochemical data confirm the presence of transtensional tectonic setting along the Urumieh-Dokhtar magmatic zone, opened during Paleogene and early Neogene due to the collision of the Arabia platform and Central Iranian continent. These magmatic activities are linked to the subduction of the Neo-Tethys to the North below the CIB, followed by the Paleogene collision and continental subduction of the Gondwana (Arabia) beneath the CIB along the Main Zagros Thrust (MZT). Keywords: Neo - Tethys; Gondwana; Central Iranian Block (CIB); Sanandaj-Sirjan Zone (SSZ); Esfandagheh Colour Melange

  6. Geology of the Continental Margin of Enderby and Mac. Robertson Lands, East Antarctica: Insights from a Regional Data Set

    Stagg, H. M. J.; Colwel, J. B.; Direen, N. G.; O'Brien, P. E.; Bernardel, G.; Borissova, I.; Brown, B. J.; Ishirara, T.

    2004-09-01

    In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin.

  7. Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP'96))

    Onno Oncken; Stephan V. Sobolev; Manfred Stiller; Günter Asch; Christian Haberland; James Mechie; Xiaohui Yuan; E. Lüchen; P. Giese; P. Wigger; Stefan Lüth; E. Scheuber; H.-J. Götze; H. Brasse; S. Buske

    2003-01-01

    A 400-km-long seismic reflection profile (Andean Continental Research Project 1996 (ANCORP'96)) and integrated geophysical experiments (wide-angle seismology, passive seismology, gravity, and magnetotelluric depth sounding) across the central Andes (21°S) observed subduction of the Nazca plate under the South American continent. An east dipping reflector (Nazca Reflector) is linked to the down going oceanic crust and shows increasing downdip intensity before gradual breakdown below 80 km. We ...

  8. How magnetics and granulometry of continental margin sediments reflect terrestrial and marine environments of South America and West Africa

    Razik, Sebastian

    2014-01-01

    Continental margins are supplied by terrigenous clastic, as well as by biogenic marine sediments and, thus, act as natural archives for various environmental conditions. This thesis delineates sediment-distribution patterns off SE South America (20-55 deg. S) and NW Africa (14-17 deg. N) mainly based on rock-magnetic properties supplemented by clastic grain-size distributions, major-element concentrations, planktic and benthic foraminiferal assemblages, as well as stable-isotope signatures ob...

  9. High-resolution and Deep Crustal Imaging Across The North Sicily Continental Margin (southern Tyrrhenian Sea)

    Agate, M.; Bertotti, G.; Catalano, R.; Pepe, F.; Sulli, A.

    Three multichannel seismic reflection profiles across the North Sicily continental mar- gin have been reprocessed and interpreted. Data consist of an unpublished high pene- tration seismic profile (deep crust Italian CROP Project) and a high-resolution seismic line. These lines run in the NNE-SSW direction, from the Sicilian continental shelf to the Tyrrhenian abyssal plain (Marsili area), and are tied by a third, high penetration seismic line MS104 crossing the Sisifo High. The North Sicily continental margin represents the inner sector of the Sicilian-Maghrebian chain that is collapsed as con- sequence of extensional tectonics. The chain is formed by a tectonic wedge (12-15 km thick. It includes basinal Meso-Cenozoic carbonate units overthrusting carbonate platform rock units (Catalano et al., 2000). Presently, main culmination (e.g. Monte Solunto) and a number of tectonic depressions (e.g. Cefalù basin), filled by >1000 m thick Plio-Pleistocene sedimentary wedge, are observed along the investigated tran- sect. Seismic attributes and reflector pattern depicts a complex crustal structure. Be- tween the coast and the M. Solunto high, a transparent to diffractive band (assigned to the upper crust) is recognised above low frequency reflective layers (occurring be- tween 9 and 11 s/TWT) that dips towards the North. Their bottom can be correlated to the seismological (African?) Moho discontinuity which is (26 km deep in the Sicilian shelf (Scarascia et al., 1994). Beneath the Monte Solunto ridge, strongly deformed re- flectors occurring between 8 to 9.5 s/TWT (European lower crust?) overly the African (?) lower crust. The resulting geometry suggests underplating of the African crust respect to the European crust (?). The already deformed crustal edifice is dissected by a number of N-dipping normal faults that open extensional basins and are associ- ated with crustal thinning. The Plio-Pleistocene fill of the Cefalù basin can be subdi- vided into three subunits by

  10. Gas and Fluid Expulsion at the Congo continental margin identfied from seismoacoustic data

    Spiess, V.; Fekete, N.; Ding, F.; Caparachin, C.; Foucher, J.

    2008-12-01

    During R/V Meteor Cruise M76/3 in June/July 2008, seismic and acoustic methods were applied to study the distribution of seep structures and associated subsurface feeder systems. From the combination of swath bathymetry and backscatter, sediment echosounder, water column imaging and high-resolution multichannel seismics, numerous new seep sites could be identified. From previous studies, a few 'giant' pockmarks had been documented, representing deeply rooted migration zones and a few hundred meters wide and a few meters to more than ten meters deep depressions as the morphological expressions of fluid and gas expulsions. The new studies confirmed a widespread occurrence of such structures for the wider area of the continental margins of Gabon, Congo and Angola in deeper water. Spatial surveys have further shown that seep structures are present on different scales, in particular also with smaller sizes of tens of meters in diameter and a morphology on the meter scale. While these structures seem to be related to relatively shallow gas reservoirs, larger structures reveal roots to gas reservoirs in several hundred meters sub-bottom depth. At some of these locations, gas flares could be identified in the water column of some hundred to over thousand meters height. In comparison of working areas north and south of the Congo Canyon, it became evident that different driving forces and sedimentary and tectonic boundary conditions may be responsible for fluid seepage and its distribution. While in the North a thick sediment cover restricts seepage to selected zones of weakness and higher permeability, salt diapirism in the South is massively fracturing overlying sediments, have created numerous promising morphological features at the seafloor. However, only few active seeps could be found in the area of salt diapirism. Future work will particularly focus on the details of seep systems, the comparison with site-specific information from coring and video surveys and the

  11. IODP Expedition 307 Drills Cold-Water Coral Mound Along the Irish Continental Margin

    Trevor Williams

    2006-03-01

    Full Text Available Introduction Over the past decade, oceanographic and geophysical surveys along the slope of the Porcupine Seabight off the southwestern continental margin of Ireland have identified upwards of a thousand enigmatic mound-like structures (Figs. 1 and 2. The mounds of the Porcupine Seabight rise from the seafl oor in water depths of 600–900 m and formimpressive conical bodies several kilometers wide and up to 200 m high. Although a few mounds such as Thérèse Mound and Galway Mound are covered by a thriving thicket of coldwater corals, most mound tops and fl anks are covered by dead coral rubble or are entirely buried by sediment (De Mol et al., 2002; Fig. 2, Beyer et al., 2003. Lophelia pertusa (Fig.3 and Madrepora oculata are the most prominent cold-water corals growing without photosynthetic symbionts. The widespread discovery of large and numerous coral-bearing banks and the association of these corals with the mounds have generated signifi cant interest as to the composition, origin and development of these mound structures.Challenger Mound, in the Belgica mound province, has an elongated shape oriented along a north-northeast to south-southwest axis and ispartially buried under Pleistocene drift sediments. In high-resolution seismic profiles the mounds appear to root on an erosion surface (van Rooij et al., 2003. During IODP Expedition307 the Challenger Mound in the Porcupine Seabight was drilled with the goal of unveiling the origin and depositional processes withinthese intriguing sedimentary structures. Challenger Mound, unlike its near neighbors the Thérèse and Galway mounds, has little to no livecoral coverage and, therefore, was chosen as the main target for drilling activities, so that no living ecosystem would be disturbed.

  12. The stoichiometric ratio during biological removal of inorganic carbon and nutrient in the Mississippi River plume and adjacent continental shelf

    W.-J. Huang

    2012-02-01

    Full Text Available The stoichiometric ratios of dissolved inorganic carbon (DIC and nutrients during biological removal have been widely assumed to follow the Redfield ratios (especially the C/N ratio in large river plume ecosystems. However, this assumption has not been systematically examined and documented because DIC and nutrients are rarely studied simultaneously in a river plume area, a region in which they can be affected by strong river-ocean mixing as well as intense biological activity. We examined stoichiometric ratios of DIC, total alkalinity (TA, and nutrients (NO3, PO43− and Si(OH4 data during biological removal in the Mississippi River plume and adjacent continental shelf in June 2003 and August 2004 with biological removals defined as the difference between measured values and values predicted on the basis of conservative mixing determined using a multi-endmember mixing model. Despite complex physical and biogeochemical influences, relationships between DIC and nutrients were strongly dependent on salinity range and geographic location, and influenced by biological removal. Lower C/Si and N/Si ratios in one nearshore area were attributed to a potential silicate source induced by water exchange with coastal salt marshes. When net biological uptake was separated from river-ocean mixing and the impact of marshes and bays excluded, stoichiometric ratios of C/N/Si were similar to the Redfield ratios, thus supporting the applicability of the Redfield-type C/N/Si ratios as a principle in river-plume biogeochemical models.

  13. Quaternary development of resilient reefs on the subsiding kimberley continental margin, Northwest Australia

    Lindsay B. Collins

    2010-01-01

    Full Text Available The Kimberley region in remote northwest Australia has poorly known reef systems of two types; coastal fringing reefs and atoll-like shelf-edge reefs. As a major geomorphic feature (from 12ºS to 18ºS situated along a subsiding continental margin, the shelf edge reefs are in a tropical realm with warm temperatures, relatively low salinity, clear low nutrient waters lacking sediment input, and Indo-West Pacific corals of moderate diversity. Seismic architecture of the Rowley Shoals reveals that differential pre-Holocene subsidence and relative elevation of the pre-Holocene substrate have controlled lagoon sediment infill and reef morphology, forming an evolutionary series reflecting differential accommodation in three otherwise similar reef systems. The Holocene core described for North Scott Reef confirms previous seismic interpretations, and provides a rare ocean-facing reef record. It demonstrates that the Indo-Pacific reef growth phase (RG111 developed during moderate rates of sea level rise of 10 mm/year from 11 to about 7-6.5 ka BP until sea level stabilization, filling the available 27 m of pre-Holocene accommodation. Despite the medium to high hydrodynamic energy imposed by the 4m tides, swell waves and cyclones the reef-building communities represent relatively low-wave energy settings due to their southeast facing and protection afforded by the proximity of the South Reef platform. This study demonstrates the resilience of reefs on the subsiding margin whilst linking Holocene reef morphology to the relative amount of pre-Holocene subsidence.Kimberly é uma região remota e pouco conhecida, localizada no noroeste da Austrália, ali são encontrados dois sistemas recifais: recifes costeiros de franja e os tipo-atois localizados na margem da plataforma continental. Esses recifes formam a feição geomórfica mais importante entre 12ºS a 18ºS estando localizados ao longo de uma margem continental em subsidência. Esses recifes encontram

  14. Historical changes in terrestrially derived organic carbon inputs to Louisiana continental margin sediments over the past 150 years

    Sampere, Troy P.; Bianchi, Thomas S.; Allison, Mead A.

    2011-03-01

    Major rivers (and associated deltaic environments) provide the dominant pathway for the input of terrestrial-derived organic carbon in sediments (TOCT) to the ocean. Natural watershed processes and land-use changes are important in dictating the amount and character of carbon being buried on continental margins. Seven core sites were occupied on the Louisiana continental margin aboard the R/V Pelican in July 2003 along two major sediment transport pathways south and west of the Mississippi River mouth. Lignin profiles in these age-dated cores (210Pb geochronology) indicate artificial reservoir retention as a primary control on organic carbon quantity and quality reaching the margin post-1950, whereas pre-1950 sediments may reflect soil erosion due to land clearing and farming practices. Lignin (Λ8) concentrations (range 0.2 to 1.7) also indicate that TOCT delivery rates/decay processes have probably remained relatively consistent from proximal to distal stations along transects. The down-core profile at the Canyon station seems to be temporally linked and connected to inner shelf deposition, suggestive of rapid cross-shelf transport. Sources of terrestrially derived organic carbon were reflective of mixed angiosperms over the last 150 years in cores west and south of the Mississippi River delta. The lignin-phenol vegetation index (LPVI) (range 130.0 to 510) proved to be a sensitive indicator of source changes in these sediments and eliminated some of the variability compared to C/V (range 0.01 to 0.4) and S/V (range 0.9 to 2.1) ratios. Stochastic events such as hurricanes and large river floods have a measurable, albeit ephemeral, effect on the shelf TOCT record. Burial of TOCT on the river-dominated Louisiana continental margin is largely driven by anthropogenic land-use alterations in the last 150 years. Land-use changes in the Mississippi River basin and river damming have likely affected carbon cycling and TOCT burial on the Louisiana continental margin over a

  15. Location of bottom photographs taken along the U.S. Atlantic East Coast as part of the Continental Margin Program (1963-1968, BPHOTOS)

    U.S. Geological Survey, Department of the Interior — In 1962, Congress authorized the Continental Margin Program, a joint program between the U.S. Geological Survey (USGS) and the Woods Hole Oceanographic Institution...

  16. Elemental distributions in surficial sediments and potential offshore mineral resources from the western continental margin of India. Part 2. Potential offshore mineral resources

    Paropkari, A.L.; Mascarenhas, A.; Rao, Ch.M.; PrakashBabu, C.; Murty, P.S.N.

    The project entitled 'Geochemistry of sediments of the continental margins of India and deep sea regions' was initiated in 1976 and since then formed an important research activity of the Institute. The main objectives of this project are...

  17. Extraordinary denudation in the Sichuan Basin : insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau.

    Richardson, N J; Densmore, A. L.; Seward, D.; Wipf, M.; Li, Y; Ellis, M. A.; Zhang, Y.

    2008-01-01

    The eastern margin of the Tibetan Plateau combines very high relief with almost no Tertiary foreland sedimentation and little evidence of Cenozoic tectonic shortening. While river incision and landscape development at the plateau margin have received significant attention over the last decade, little is known about the Cenozoic development of the adjacent Sichuan Basin. Here we assess the Cenozoic thermal history of this basin using detrital apatite fission track (AFT) and (U-Th)/He technique...

  18. The Cryogenian intra-continental rifting of Rodinia: Evidence from the Laurentian margin in eastern North America

    McClellan, Elizabeth; Gazel, Esteban

    2014-10-01

    The geologic history of the eastern North American (Laurentian) margin encompasses two complete Wilson cycles that brought about the assembly and subsequent disaggregation of two supercontinents, Rodinia and Pangea. In the southern and central Appalachian region, basement rocks were affected by two episodes of crustal extension separated by > 100 m.y.; a Cryogenian phase spanning the interval 765-700 Ma and an Ediacaran event at ~ 565 Ma. During the Cryogenian phase, the Mesoproterozoic continental crust was intruded by numerous A-type felsic plutons and extensional mafic dikes. At ~ 760-750 Ma a bimodal volcanic sequence erupted onto the uplifted and eroded basement. This sequence, known as the Mount Rogers Formation (MRF), comprises a bimodal basalt-rhyolite lower section and an upper section of dominantly peralkaline rhyolitic sheets. Here, we provide new geochemical evidence from the well-preserved volcanic rocks of the Cryogenian lower MRF, with the goal of elucidating the process that induced the initial stage of the break-up of Rodinia and how this affected the evolution of the eastern Laurentian margin. The geochemical compositions of the Cryogenian lavas are remarkably similar to modern continental intra-plate settings (e.g., East African Rift, Yellowstone-Snake River Plain). Geochemical, geophysical and tectonic evidence suggests that the common denominator controlling the melting processes in these settings is deep mantle plume activity. Thus, evidence from the MRF suggests that the initial phase of extension of the Laurentian margin at ~ 760-750 Ma was possibly triggered by mantle plume activity. It is possible that lithospheric weakness caused by a mantle plume that impacted Rodinia triggered the regional extension and produced the intra-continental rifting that preceded the breakup of the Laurentian margin.

  19. Comparative organic geochemistry of Indian margin (Arabian Sea sediments: estuary to continental slope

    G. Cowie

    2014-02-01

    Full Text Available Surface sediments from sites across the Indian margin of the Arabian Sea were analysed for their carbon and nitrogen compositions (elemental and stable isotopic, grain size distributions and biochemical indices of organic matter (OM source and/or degradation state. Site locations ranged from the estuaries of the Mandovi and Zuari rivers to depths of ~ 2000 m on the continental slope, thus spanning nearshore muds and sands on the shelf and both the semi-permanent oxygen minimum zone (OMZ on the upper slope (~ 200–1300 m and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, and overwhelming predominance (80%+ of marine OM on the shelf and slope. Thus, riverine OM is heavily diluted by autochthonous marine OM and/or is efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from < 0.5 wt % in relict shelf sands to over 7 wt % at slope sites within the OMZ, decreasing to ≤ 1 wt % at 2000 m. Major variability (~ 5 wt % was found at slope sites within the OMZ of similar depth and near-identical bottom-water oxygen concentration. A strong relationship between organic C and sediment grain size was seen for sediments within the OMZ, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, the results indicate that OM enrichment on the upper slope can be explained by physical controls (winnowing and/or dilution on the shelf and progressive OM

  20. The Eastern Sardinian Margin (Tyrrhenian Sea, Western Mediterranean) : a key area to study the rifting and post-breakup evolution of a back-arc passive continental margin

    Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Maillard, Agnès; Thinon, Isabelle; Graveleau, Fabien; Lofi, Johanna; Sage, Françoise

    2016-04-01

    The Eastern Sardinian passive continental margin formed during the opening of the Tyrrhenian Sea, which is a back-arc basin created by continental rifting and oceanic spreading related to the eastward migrating Apennine subduction system (middle Miocene to Pliocene). Up to now, rifting in this key area was considered to be pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.32 Ma). We use the MSC seismic markers and the deformation of viscous salt and its brittle overburden as proxies to better delineate the timing of rifting and post-rift reactivation, and especially to quantify vertical and horizontal movements. On this young, highly-segmented margin, the Messinian Erosion Surface and the Upper and Mobile Units are systematically associated, respectively, to basement highs and deeper basins, showing that a rifted deep-sea domain already existed by Messinian times, therefore a major pre-MSC rifting episode occurred across the entire domain. Data show that there are no signs of Messinian syn-rift sediments, hence no evidence for rifting after Late Tortonian times. Moreover, because salt tectonics creates fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined to distinguish the effects of crustal tectonics (rifting) and salt tectonics. We also precise that rifting is clearly diachronous from the upper margin (East-Sardinia Basin) to the lower margin (Cornaglia Terrace) with two unconformities, attributed respectively to the necking and to the lithospheric breakup unconformities. The onshore part of the upper margin has been recently investigated in order to characterize the large crustal faults affecting the Mesozoic series (geometry, kinematics and chronology) and to decipher the role of the structural inheritance and of the early rifting. Seaward, we also try to constrain the architecture and timing of the continent-ocean transition, between the hyper-extended continental crust and the first oceanic crust. Widespread

  1. Factors controlling late Cenozoic continental margin growth from the Ebro Delta to the western Mediterranean deep sea

    Nelson, C.H.; Maldonado, A.

    1990-01-01

    The Ebro continental margin sedimentation system originated with a Messinian fluvial system. This system eroded both a major subaerial canyon cutting the margin southeastward from the present Ebro Delta and an axial valley that drained northeastward down Valencia Trough. Post-Messinian submergence of this topography and the Pliocene regime of high sea levels resulted in a marine hemipelagic drape over the margin. Late Pliocene to Pleistocene glacial climatic cycles, drainagebasin deforestation, and sea-level lowstands combined to increase sediment supply, cause the margin to prograde, and create a regime of lowstand sediment-gravity flows in the deeper margin. The depositional patterns of regressive, transgressive and highstand sea-level regimes suggest that location of the sediment source near the present Ebro Delta throughout the late Cenozoic, southward current advection of sediment, and greater subsidence in the southern margin combined to cause generally asymmetric progradation of the margin to the southeast. Thicker, less stable deposits filling the Messinian subaerial canyon underwent multiple retrograde failures, eroded wide gullied canyons and formed unchanneled base-of-slope sediment aprons in the central margin area; other margin areas to the north and south developed a series of channel-levee complexes. On the basin floor, the formation of Valencia Valley over the Messinian subaerial valley and earlier faults led to draining of about 20% of the Ebro Pleistocene sediment from channel-levee complexes through the valley to prograde Valencia Fan as much as 500 km northeast of the margin. Thus, the Ebro margin has two growth directions, mainly southeastward during higher sea levels, and eastward to northeastward during lower sea levels. The northeastward draining of turbidity currents has produced unusually thin and widely dispersed turbidite systems compared to those on ponded basin floors. During the past few centuries, man's impact has exceeded natural

  2. Sources and transport of dissolved iron and manganese along the continental margin of the Bay of Biscay

    A. Laës

    2007-01-01

    Full Text Available Dissolved iron (DFe; <0.2 µm and dissolved manganese (DMn; <0.2 µm concentrations were determined in the water column of the Bay of Biscay (eastern North Atlantic Ocean in March 2002. The samples were collected along a transect traversing from the European continental shelf over the continental slope. The highest DFe and DMn concentrations (2.39 nM and 6.10 nM, respectively were observed in the bottom waters on the shelf at stations closest to the coast. The release of trace metal from resuspended particles and the diffusion from pore waters were probably at the origin of elevated DFe and DMn concentrations in the Bottom Boundary Layer (BBL. In the slope region, the highest total dissolvable iron (TDFe, DFe and DMn values (24.6 nM, 1.58 nM and 2.12 nM, respectively were observed close to the bottom at depth of ca.~600–700 m. Internal wave activity and slope circulation are thought to be at the origin of this phenomenon. These processes were also very likely the cause of elevated concentrations (DFe: 1.27 nM, DMn: 2.34 nM measured in surface waters of stations located in the same area. At stations off the continental slope, the vertical distribution of both metals were typical of open ocean conditions, indicating that inputs from the continental margin did not impact the metal distributions in the offshore waters.

  3. Continental breakup and the dynamics of rifting in back-arc basins: The Gulf of Lion margin

    Jolivet, Laurent; Gorini, Christian; Smit, Jeroen; Leroy, Sylvie

    2015-04-01

    Deep seismic profiles and subsidence history of the Gulf of Lion margin reveal an intense stretching of the distal margin and strong postrift subsidence, despite weak extension of the onshore and shallow offshore portions of the margin. We revisit this evolution from the geological interpretation of an unpublished multichannel seismic profile and other published geophysical data. We show that an 80 km wide domain of thin lower continental crust, the "Gulf of Lion metamorphic core complex," is present in the ocean-continent transition zone and exhumed mantle makes the transition with oceanic crust. The exhumed lower continental crust is bounded upward and downward by shallow north dipping detachments. The presence of exhumed lower crust in the deep margin explains the discrepancy between the amount of extension deduced from normal faults in the upper crust and total extension. We discuss the mechanism responsible for exhumation and present two scenarios: the first one involving a simple coupling between mantle extension due to slab retreat and crustal extension and the second one involving extraction of the lower crust and mantle from below the margin by the southeastward flow of hot asthenosphere in the back-arc region during slab rollback. In both scenarios, the combination of Eocene crustal thickening related to the Pyrenees, the nearby volcanic arc, and a shallow lithosphere-asthenosphere boundary weakened the upper mantle and lower crust enough to make them flow southeastward. The overall hot geodynamic environment also explains the subaerial conditions during most of the rifting stage and the delayed subsidence after breakup.

  4. Origin and transport of trace metals deposited in the canyons off Lisboa and adjacent slopes (Portuguese Margin) in the last century

    Costa, A.M.; Mil-Homens, M.; Lebreiro, S.M.; Richter, T.O.; de Stigter, H.; Boer, W.; Trancoso, M.A.; Melo, Z.; Mouro, F.; Mateus, M.; Canário, J.; Branco, V.; Caetano, M.

    2011-01-01

    Submarine canyons play an important role in the transfer of contaminated sediments from shelf areas to the deeper ocean. To evaluate the importance of submarine canyons adjacent to the Tagus and Sado estuaries (Portuguese Margin) as sediment pathway major and trace elements, (210)Pb radionuclides, o

  5. Low-Temperature Thermochronology Applied to Constrain the Multi-Episodic Thermotectonic Evolution of the Southeastern Continental Margin of Brazil

    Mendes, L. D.; Heilbron, M. C. P. L.; Hodges, K. V.; Van Soest, M. C.; Silva, L. G. A. E.

    2015-12-01

    Low-temperature thermochronology was applied to constrain the Mesozoic and Cenozoic tectonic evolution of the continental margin of southeast Brazil. Using apatite (U-Th)/He thermochronology (AHe), we acquired data from 107 crystals of basement samples collected from a NW-SE transect in the Mantiqueira Mountains to the Guanabara Graben, as well as from the NE-SE transverse faults. The data range from 43.5 ± 1.9 Ma to 250.1 ± 8.7 Ma (2 σ) for corrected ages. The Neo-Cretaceous, Eo-Cretaceous, and Paleocene are the main recorded AHe ages, in order of importance. The Eo-Cretaceous ages indicate the occurrence of older thermal events related to a pre-rifting phase (~121 Ma). The Neo-Cretaceous ages signify the importance of tectonic and magmatic events, and regional uplifting for the thermal history of the study area, including ages related to the Serra do Mar Mountains uplift (~86 Ma). Paleocene ages seem to be related to the reactivation (~65 Ma), which was responsible for the continental rifts in the southeastern Brazil. Finally, the Eocene ages (49.7 Ma and 43.5 Ma), which are from samples restricted to the Resende Basin border faults, indicate a continental rift reactivation. Time-temperature (t-T) paths obtained from inverse modeling, performed using HeFTy (Ketcham, 2005) with a Radiation Damage Diffusion and Annealing Model (Flowers et al., 2009), suggests rapid cooling episodes for all samples. The main thermal events show a direct correlation with the timing of regional tectonic events: reactivation phases, continental margin uplift, and the sedimentary record. Apatite (U-Th)/He ages increase with distance from the coast and with elevation. However, these patterns are discontinued by samples of younger ages as a result of the reactivation process of pre-existing structures. The total estimated denudation range from 1.2 to 2.8 km. The erosion rates range from 15.2 to 35.3 m/My. Thus, the multi-episodic thermal events, which led to the formation of important

  6. Modeling the conversion of hydroacoustic to seismic energy at island and continental margins: preliminary analysis of Ascension Island data

    Seismic stations at islands and continental margins will be an essential component of the International Monitoring System (IMS) for event location and identification in support of Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring. Particularly important will be the detection and analysis of hydroacoustic-to-seismic converted waves (T-phases) at island or continental margins. Acoustic waves generated by sources in or near the ocean propagate for long distances very efficiently due to the ocean sound speed channel (SOFAR) and low attenuation. When ocean propagating acoustic waves strike an island or continental margin they are converted to seismic (elastic) waves. We are using a finite difference code to model the conversion of hydroacoustic T-waves at an island or continental margin. Although ray-based methods are far more efficient for modeling long-range ( and gt; 1000 km) high-frequency hydroacoustic propagation, the finite difference method has the advantage of being able to model both acoustic and elastic wave propagation for a broad range of frequencies. The method allows us to perform simulations of T-phases to relatively high frequencies (( and gt;=)10 Hz). Of particular interest is to identify factors that affect the efficiency of T-phase conversion, such as the topographic slope and roughness at the conversion point and elastic velocity structure within the island or continent. Previous studies have shown that efficient T-phase conversion occurs when the topographic slope at the conversion point is steep (Cansi and Bethoux, 1985; Talandier and Okal, 1998). Another factor impacting T-phase conversion may be the near-shore structure of the sound channel. It is well known that the depth to the sound channel axis decreases in shallow waters. This can weaken the channeled hydroacoustic wave. Elastic velocity structure within the island or continent will impact how the converted seismic wave is refracted to recording stations at the surface and thus impact

  7. Geochemical zonation and characteristics of cold seeps along the Makran continental margin off Pakistan

    Fischer, D.; Bohrmann, G.; Zabel, M.; Kasten, S.

    2009-04-01

    Several highly dynamic and spatially extended cold seeps were found and analyzed on the Makran accretionary wedge off Pakistan during R/V Meteor cruise M74-3 in 2007. In water depths of 550m to 2870m along the continental slope nine different gas escape structures were examined some of which are situated within a stable oxygen minimum zone (OMZ) between 150m and 1100m water depth (von Rad et al., 1996, 2000). Echosounder data indicate several gas bubble streams in the water column. The gas seepage presumably originates from squeezing of massive sediment packages being compressed by subduction at the continental margin off Pakistan. Gas- and fluid venting and associated surface-near anaerobic oxidation of methane (AOM) feed several cold seepage systems in the seabed. The seep sites show strong inter- and intraspecific variability of benthic chemosynthetic microhabitats. Singular seeps are often colonized by different chemosynthetic organisms in a concentric fashion. The seep-center, where active bubble ebullition occurs, is often colonized by large hydrogen sulfide-oxidizing bacteria, which are surrounded by a rim inhabited by small chemosynthetic clams and tube worms. These different habitats and the associated sediments show distinct geochemical zonations and gradients. Geochemical analyses of pore water and sediment samples obtained via ROV (push corer) show that concentrations of hydrogen sulfide and alkalinity rapidly increase to >15 mmol/l and >35 mmol/l respectively several cm below the seafloor in the center of the cold seep. In places, sulfate is depleted to concentrations below detection limit at the same depth (ROV push core GeoB 12313-6). Ammonium concentrations in this core on the other hand show a different pattern: In the center of the cold seep, which is colonized by bacterial assemblages, ammonium concentrations fluctuate around 100 µmol/l and peak with 274.4 µmol/l just above the aforementioned sulfide maximum values at 5 cm followed by a rapid

  8. Bottom current processes along the Iberian continental margin; Procesos sedimentarios por corrientes de fondo a lo largo del margen continental iberico

    Llave, E.; Hernandez-Molina, F. J.; Ercilla, G.; Roque, C.; Van Rooij, D.; Garcia, M.; Juan, C.; Mena, A.; Brackenridge, R.; Jane, G.; Stow, D.; Gomez-Ballesteros, M.

    2015-07-01

    The products of bottom current circulation around the Iberian continental margin are characterised by large erosional and depositional features formed under a variety of geological and oceanographic contexts. The Iberian margins are influenced by several water masses that mainly interact along the upper and middle con- tinental slopes, as well as along the lower slope with the abyssal plains being influenced to a lesser extent. The main depositional features occur along the Ceuta Contourite Depositional System (CDS) within the SW Alboran Sea, in the Gulf of Cadiz (the most studied so far), the western margins of the Portugal/Galician mar- gin, the Ortegal Spur and the Le Danois Bank or Cachucho. Moreover, erosional contourite features have also been recently indentified, most notably terraces, abraded surfaces, channels, furrows and moats. The majority of these features are formed under the influence of the Mediterranean water masses, especially by the interaction of the Mediterranean Outflow Water (MOW) with the seafloor. The MOW is characterized as relatively warm (13 degree centigrade) and with a high salinity (∼36.5), giving it a high density relative to the surrounding water masses, hence constituting an important contribution to the global thermohaline circulation, making it one of the most studied water masses surrounding Iberia. The development of both depositional and ero- sional contourite features does not only depend on the bottom-current velocity but also on several other important controlling factors, including: 1) local margin morphology affected by recent tectonic activity; 2) multiple sources of sediment supply; 3) water-mass interphases interacting with the seafloor; and 4) glacioeustatic changes, especially during the Quaternary, when the increasing influence of the bottom cur- rent has been observed during the cold stages. The main objective of this special volume contribution is to provide a review and description of the regional along

  9. Occurrence of pockmarks and gas seepages along the central western continental margin of India

    Karisiddaiah, S.M.; Veerayya, M.

    column reflections) on the continental slope off Coondapur. Gas plumes (GPL) are seen emanating from the subsurface horizon into the water c olumn. Pockmarks (Pm), buried pockmarks (BPm), fault (F), prominent reflectors (R1, R2 and R3) are identified...

  10. Crustal differentiation due to partial melting of granitic rocks in an active continental margin, the Ryoke Belt, Southwest Japan

    Akasaki, Eri; Owada, Masaaki; Kamei, Atsushi

    2015-08-01

    The continental margin of Pacific Asia is dominated by the voluminous Cretaceous to Paleogene granitic rocks. The Ryoke granitoids that occur in the Ryoke Belt in the Southwest Japan Arc are divided into the older and younger granites. The high-K Kibe Granite represents the younger granitic intrusion and is exposed in the Yanai area in the western part of Ryoke Belt. The Kibe Granite is associated with the coeval Himurodake Quartz Diorite and their intrusive age is 91 Ma. However, the Gamano-Obatake Granodiorite, the older granite, intruded the host Ryoke gneisses at 95 Ma. The Gamano-Obatake Granodiorite is characterized by the localized development of migmatitic structure attributed to the intrusion of the Himurodake Quartz Diorite into the granodiorite. Leucocratic pools and patches occur in the granodiorite in the vicinity of the quartz diorite. The Sr and Nd isotopic compositions of the Gamano-Obatake Granodiorite corrected to 91 Ma are plotted within those of the Kibe Granite. Geochemical modeling suggests that partial melting took place in the Gamano-Obatake Granodiorite and resulted in the formation of the Kibe Granite magma. The Himurodake Quartz Diorite is believed to be a heat source for this event. This can be considered as an essential process for the formation of the evolved younger Ryoke granite and for the crustal differentiation in the active continental margin.

  11. Benthic respiration and standing stock on two contrasting continental margins in the western Indian Ocean: the Yemen-Somali upwelling region and the margin off Kenya

    Duineveld, G. C. A.; De Wilde, P. A. W. J.; Berghuis, E. M.; Kok, A.; Tahey, T.; Kromkamp, J.

    During the Netherlands Indian Ocean Project (NIOP, 1992-1993) sediment community oxygen consumption (SCOC) was measured on two continental margins in the Indian Ocean with different productivity: the productive upwelling region off Yemen-Somalia and the supposedly less productive Kenyan margin, which lacks upwelling. The two margins also differ in terms of river input (Kenya) and the more severe oxygen minimum in the Arabian Sea. Simultaneously with SCOC, distributions of benthic biomass and phytodetritus were studied. Our expectation was that benthic processes in the upwelling margin of the Arabian Sea would be relatively enhanced as a result of the higher productivity. On the Kenyan margin, SCOC (range l-36 mmol m -2 d -1) showed a clear decrease with increasing water depth, and little temporal variation was detected between June and December. Highest SCOC values of this study were recorded at 50 m depth off Kenya, with a maximum of 36 mmol m -2 d -1 in the northernmost part. On the margin off Yemen-Somalia, SCOC was on average lower and showed little downslope variation, 1.8-5.7 mmol m -2 d -1, notably during upwelling, when the zone between 70 and 1700 m was covered with low O 2 water (10-50 μM). After cessation of upwelling, SCOC at 60 m depth off Yemen increased from 5.7 to 17.6 mmol m -2 d -1 concurrently with an increase of the near-bottom O 2 concentration (from 11 to 153 μM), suggesting a close coupling between SCOC and O 2 concentration. This was demonstrated in shipboard cores in which the O 2 concentration in the overlying water was raised after the cores were first incubated under in situ conditions (17 μM O 2). This induced an immediate and pronounced increase of SCOC. Conversely, at deeper stations permanently within the oxygen minimum zone (OMZ), SCOC showed little variation between monsoon periods. Hence, organic carbon degradation in sediments on a large part of the Yemen slope appears hampered by the oxygen deficiency of the overlying water

  12. Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data

    Klingelhoefer, Frauke; Biari, Youssef; Sahabi, Mohamed; Aslanian, Daniel; Schnabel, Michael; Matias, Luis; Benabdellouahed, Massinissa; Funck, Thomas; Gutscher, Marc-André; Reichert, Christian; Austin, James A.

    2016-04-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from four study regions along the margin located in the south offshore DAKHLA, on the central continental margin offshore Safi, in the northern Moroccan salt basin, and in the Gulf of Cadiz. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. Crustal thinning takes place over a region of 150 km in the north and only 70 km in the south. The North Moroccan Basin is underlain by highly thinned continental crust of only 6-8 km thickness. The ocean-continent transition zone shows a variable width between 40 and 70 km and is characterized by seismic velocities in between those of typical oceanic and thinned continental crust. The neighbouring oceanic crust is characterized by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganization. Volcanic activity seems to be mostly confined to the region next to the Canary Islands, and is thus not related to the initial opening of the ocean, which was associated to only weak volcanism. Comparison with the conjugate margin off Nova Scotia shows comparable continental crustal structures, but 2-3 km thinner oceanic crust on the American side than on the African margin.

  13. Cenozoic magmatism in the northern continental margin of the South China Sea: evidence from seismic profiles

    Zhang, Qiao; Wu, Shiguo; Dong, Dongdong

    2016-06-01

    Igneous rocks in the northern margin of the South China Sea (SCS) have been identified via high resolution multi-channel seismic data in addition to other geophysical and drilling well data. This study identified intrusive and extrusive structures including seamounts and buried volcanoes, and their seismic characteristics. Intrusive features consist of piercement and implicit-piercement type structures, indicating different energy input associated with diapir formation. Extrusive structures are divided into flat-topped and conical-topped seamounts. Three main criteria (the overlying strata, the contact relationship and sills) were used to distinguish between intrusive rocks and buried volcanos. Three criteria are also used to estimate the timing of igneous rock formation: the contact relationship, the overlying sedimentary thickness and seismic reflection characteristics. These criteria are applied to recognize and distinguish between three periods of Cenozoic magmatism in the northern margin of the SCS: before seafloor spreading (Paleocene and Eocene), during seafloor spreading (Early Oligocene-Mid Miocene) and after cessation of seafloor spreading (Mid Miocene-Recent). Among them, greater attention is given to the extensive magmatism since 5.5 Ma, which is present throughout nearly all of the study area, making it a significant event in the SCS. Almost all of the Cenozoic igneous rocks were located below the 1500 m bathymetric contour. In contrast with the wide distribution of igneous rocks in the volcanic rifted margin, igneous rocks in the syn-rift stage of the northern margin of the SCS are extremely sporadic, and they could only be found in the southern Pearl River Mouth basin and NW sub-sea basin. The ocean-continent transition of the northern SCS exhibits high-angle listric faults, concentrated on the seaward side of the magmatic zone, and a sharply decreased crust, with little influence from a mantle plume. These observations provide further evidence to

  14. Formation of Australian continental margin highlands driven by plate-mantle interaction

    Müller, R. Dietmar; Flament, Nicolas; Matthews, Kara J.; Williams, Simon E.; Gurnis, Michael

    2016-05-01

    Passive margin highlands occur on most continents on Earth and play a critical role in the cycle of weathering, erosion, and atmospheric circulation. Yet, in contrast to the well-developed understanding of collisional mountain belts, such as the Alps and Himalayas, the origin of less elevated (1-2 km) passive margin highlands is still unknown. The eastern Australian highlands are a prime example of these plateaus, but compared to others they have a well-documented episodic uplift history spanning 120 million years. We use a series of mantle convection models to show that the time-dependent interaction of plate motion with mantle downwellings and upwellings accounts for the broad pattern of margin uplift phases. Initial dynamic uplift of 400-600 m from 120-80 Ma was driven by the eastward motion of eastern Australia's margin away from the sinking eastern Gondwana slab, followed by tectonic quiescence to about 60 Ma in the south (Snowy Mountains). Renewed uplift of ∼700 m in the Snowy Mountains is propelled by the gradual motion of the margin over the edge of the large Pacific mantle upwelling. In contrast the northernmost portion of the highlands records continuous uplift from 120 Ma to present-day totalling about 800 m. The northern highlands experienced a continuous history of dynamic uplift, first due to the end of subduction to the east of Australia, then due to moving over a large passive mantle upwelling. In contrast, the southern highlands started interacting with the edge of the large Pacific mantle upwelling ∼ 40- 50 million years later, resulting in a two-phase uplift history. Our results are in agreement with published uplift models derived from river profiles and the Cretaceous sediment influx into the Ceduna sub-basin offshore southeast Australia, reflecting the fundamental link between dynamic uplift, fluvial erosion and depositional pulses in basins distal to passive margin highlands.

  15. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.

    Eisen, Lars; Moore, Chester G

    2013-05-01

    After more than a half century without recognized local dengue outbreaks in the continental United States, there were recent outbreaks of autochthonous dengue in the southern parts of Texas (2004-2005) and Florida (2009-2011). This dengue reemergence has provoked interest in the extent of the future threat posed by the yellow fever mosquito, Aedes (Stegomyia) aegypti (L.), the primary vector of dengue and yellow fever viruses in urban settings, to human health in the continental United States. Ae. aegypti is an intriguing example of a vector species that not only occurs in the southernmost portions of the eastern United States today but also is incriminated as the likely primary vector in historical outbreaks of yellow fever as far north as New York, Philadelphia, and Boston, from the 1690s to the 1820s. For vector species with geographic ranges limited, in part, by low temperature and cool range margins occurring in the southern part of the continental United States, as is currently the case for Ae. aegypti, it is tempting to speculate that climate warming may result in a northward range expansion (similar to that seen for Ixodes tick vectors of Lyme borreliosis spirochetes in Scandinavia and southern Canada in recent decades). Although there is no doubt that climate conditions directly impact many aspects of the life history of Ae. aegypti, this mosquito also is closely linked to the human environment and directly influenced by the availability of water-holding containers for oviposition and larval development. Competition with other container-inhabiting mosquito species, particularly Aedes (Stegomyia) albopictus (Skuse), also may impact the presence and local abundance of Ae. aegypti. Field-based studies that focus solely on the impact of weather or climate factors on the presence and abundance of Ae. aegypti, including assessments of the potential impact of climate warming on the mosquito's future range and abundance, do not consider the potential confounding

  16. Gravimetric determination of the continental-oceanic boundary of the Argentine continental margin (from 36°S to 50°S)

    Arecco, María Alejandra; Ruiz, Francisco; Pizarro, Guillermo; Giménez, Mario; Martínez, Patricia; Ramos, Víctor A.

    2016-01-01

    This paper presents the gravimetric analysis together with seismic data as an integral application in order to identify the continental-oceanic crust boundary (COB) of the Argentine continental margin from 36°S to 50°S in a continuous way. The gravimetric and seismic data are made up of large grids of data obtained from satellite altimetry and marine research. The methodology consists of three distinct methods: (i) the application of enhancement techniques to gravimetric anomalies, (ii) the calculation of crustal thinning from 3-D gravity inversion modelling of the crust-mantle discontinuity and (iii) 2-D gravimetric modelling supported by multichannel reflection and refraction seismic profiles. In the first method, the analytic signal, Theta map, and tilt angle and its horizontal derivative were applied. In the second method, crustal thickness was obtained as the difference in the depths of the crystalline basement and the crust-mantle discontinuity; the latter was obtained via gravimetric inversion. Finally, 2-D modelling was performed from free-air anomalies in two representative sections by considering as restriction surfaces those coming from the interpretation of seismic data. The results of the joint application of enhancement techniques and 2-D and 3-D modelling have enabled continuous interpretation of the COB. In this study, the COB was determined continuously from the integration of 2-D profiles of the enhancement techniques, taking account of crustal thickness and performing 2-D gravimetric modelling. The modelling technique was complemented by regional studies integrated with multichannel seismic reflection and seismic refraction lines, resulting in consistent enhancement techniques.

  17. Epi-benthic megafaunal zonation across an oxygen minimum zone at the Indian continental margin

    Hunter, W.R.; Oguri, K.; Kitazato, H.; Ansari, Z.A.; Witte, U.

    (Billett, et al., 2006) making the OMZ a provide a rich foraging ground for scavengers (Yeh and Drazen, 2009). On the Indian margin intact carcasses of both fish and squid where observed, on the sea floor, at the 540m station (H. Kitazato & U. Witte, pers...

  18. Sediment Dynamics off the East African Continental Margin during the Last Deglaciation and the Holocene: Constrained by Changes in Climate and Sea Level

    Liu, Xiting

    2014-01-01

    This thesis focused on sediment dynamics on the East African continental margin and their response to paleoclimatic and sea-level changes on a millennial time scale during the last deglaciation and Holocene. High-resolution Holocene sedimentary records (core GeoB12605-3) from the continental shelf off Tanzania indicate that that there has been a shift in the sedimentation regime during the past 10 ka. During the early Holocene, when climate was humid, sediments were dominated by the allochtho...

  19. Biogeochemistry and ecosystems of continental margins in the western North Pacific Ocean and their interactions and responses to external forcing - an overview and synthesis

    Liu, K.-K.; Kang, C.-K.; Kobari, T.; Liu, H.; Rabouille, C.; Fennel, K.

    2014-12-01

    In this special issue we examine the biogeochemical conditions and marine ecosystems in the major marginal seas of the western North Pacific Ocean, namely, the East China Sea, the Japan/East Sea to its north and the South China Sea to its south. They are all subject to strong climate forcing as well as anthropogenic impacts. On the one hand, continental margins in this region are bordered by the world's most densely populated coastal communities and receive tremendous amount of land-derived materials. On the other hand, the Kuroshio, the strong western boundary current of the North Pacific Ocean, which is modulated by climate oscillation, exerts strong influences over all three marginal seas. Because these continental margins sustain arguably some of the most productive marine ecosystems in the world, changes in these stressed ecosystems may threaten the livelihood of a large population of humans. This special issue reports the latest observations of the biogeochemical conditions and ecosystem functions in the three marginal seas. The studies exemplify the many faceted ecosystem functions and biogeochemical expressions, but they reveal only a few long-term trends mainly due to lack of sufficiently long records of well-designed observations. It is critical to develop and sustain time series observations in order to detect biogeochemical changes and ecosystem responses in continental margins and to attribute the causes for better management of the environment and resources in these marginal seas.

  20. Three Stages of Mesozoic Bimodal Igneous Rocks and Their Tectonic Implications on the Continental Margin of Southeastern China

    XING Guangfu; YANG Zhuliang; CHEN Rong; SHEN Jialin; WEI Naiyi; ZHOU Yuzhang

    2004-01-01

    There are large-scale Mesozoic bimodal igneous rock associations on the continental margin of southeastern China. They aroused extensive attention in the 1980s because of their specific tectonic implications, and have been found frequently during recent geological surveys. This paper reviews the studies of regional Mesozoic bimodal rocks, and concludes that they can be subdivided into three stages, i.e., the Early Jurassic (209-170 Ma, the first (Ⅰ) stage), the Late Jurassic-early Early Cretaceous (154-121 Ma, the second (Ⅱ) stage), and the late Early Cretaceous-Late Cretaceous (115-85 Ma, the third (Ⅲ) stage). These three stages of bimodal rocks were formed in different tectonic settings, and are important indicators for regional Mesozoic tectonic evolution.

  1. 中国及邻区中新生代大型大陆扩张盆地及其造山作用(续)%Meso-Cenozoic great continental spreading basins and their orogeny of China and adjacent regions

    郭福祥

    2001-01-01

    Characteristics and nature of the Meso-Cenozoic great continental spreading basins in China and adjacent regions depend on the relative positions of the allied adjacent oceans. Intracontinental,epicontinental and marginal basins were respectively developed from the inland to the Meso-Cenozoic Tethys coast and Northwest Pacific coast,each having three series. These series are symmetrically arranged in feather-form.The general thrend is that the closer they are to the coasts,the stronger their activity,and the newer their evolutionary generations. The basins were in a spreading state and belonged to geotectonic spreading units possessing orogeny in their devolopment period. They play a decisive role in mould-making of orogenic belt in detailed morphology and become the orogenic “mighty pillar” of mould-making.The Meso-Cenozoic orogeny of China and adjacent regions can be divided into three kinds:orogeny of continental spreading basin,orogeny of oceanic spreading basin and composite orogeny of oceanic-continental basin.

  2. Impact of deep-water derived isoprenoid tetraether lipids on the TEX86 paleothermometry along the portuguese continental margin

    Kim, Jung-Hyun; Villanueva, Laura; Zell, Claudia; Sinninghe Damsté, Jaap S.

    2016-04-01

    The TEX86 proxy was developed based on isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) biosynthesized by Thaumarchaeota and afterwards slightly modified to TEX86-H, a logarithmic function for TEX86. However, it remains uncertain how well this proxy reconstructs annual mean SST, especially due to the water depth influence. We investigated the potential effect of deep-water dwelling Thaumarchaeota in the warm and saline Mediterranean Outflow Water (MOW) on the distribution of isoGDGTs by analysing suspended particulate matter (SPM) and surface sediments collected along five land-ocean transects along the southern Portuguese continental margin. To this end, we directly compared for the first time the composition of intact polar lipid (IPL)-derived isoGDGTs of SPM with the diversity, abundance, and activity of Thaumarchaeota based on the genetic analysis of the genes coding for the archaeal ammonia monooxygenase (amoA) and the geranylgeranylglyceryl phosphate (GGGP) synthase involved in the isoGDGT biosynthetic pathway. Our results show that the sedimentary distribution of CL isoGDGTs used in TEX86-H along the Portuguese margin is primarily influenced by water depth due to the increasing contribution of the deep-water population of Thaumarchaeota residing in the MOW.

  3. Benthic dynamics at the carbonate mound regions of the Porcupine Sea Bight continental margin

    White, Martin

    2007-02-01

    A brief review is given of some dynamical processes that influence the benthic dynamics within the carbonate mound provinces located at the Porcupine Bank/Sea Bight margin, NE Atlantic. The depth range of the mounds in this region (600-1,000 m) marks the upper boundary of the Mediterranean outflow water above which Eastern North Atlantic Water dominates. Both water masses are carried northwards by the eastern boundary slope current. In the benthic boundary layer both the action of internal waves, and other tidal period baroclinic waves, may enhance the bottom currents and add to both the residual and maximum flow strength. Both residual and maximum bottom currents vary at different mound locations, with stronger currents found at Belgica (SE Porcupine Sea Bight) mound and Pelagia (NW Porcupine Bank) mound regions, whilst weakest currents are found at the Hovland and Magellan Mounds at the northern Sea Bight margin. The differences may be attributed to the presence of internal waves (Pelagia) or bottom intensified diurnal waves (Belgica). These different dynamical regimes are likely to have implications for the distribution patterns of live coral at the different locations.

  4. Principles of Geological Mapping of Marine Sediments (with Special Reference to the African Continental Margin). Unesco Reports in Marine Science No. 37.

    Lisitzin, Alexandre P.

    Designed to serve as a complement to the Unesco Technical Papers in Marine Science, this report concentrates on theoretical and practical problems of geological mapping of the sea floor. An introduction is given to geological mapping procedures at continental margins as well as some practical recommendations taking as an example the African region…

  5. Basin evolution during change from convergent to transform continental margin in Central California

    Graham, S.A.; Hitzman, M.; McCloy, C.; Turner, R.; Ward, R.

    1984-03-01

    Miocene nonmarine and shallow marine strata exposed east of San Francisco Bay record a change from convergent-margin tectonics to transform margin tectonics. During the middle Miocene, the East Bay area occupied the oceanward side of a shelved forearc basin that was progressively incorporated in the evolving San Andreas strike-slip orogene. Patterns of deposition in the broad forearc basin were relatively simple: andesitic arc-derived detritus was transported the full width of the forearc basin from the Sierras to the East Bay area. In contrast, the wrench-tectonic regime produced complex patterns of sedimentation displaying greater local variability. On the basis of stratigraphic data, we infer that the west-facing slope of the forearc basin in the East Bay area was reversed about 13 Ma with uplift of the area between the eventual traces of the San Andreas and Hayward faults on the site of the present bay. A fluvial clastic wedge was shed eastward into the East Bay area from this uplifted terrane of Mesozoic subduction complex and forearc basin rocks. Initial rupturing along the Hayward fault trend followed the uplift at about 10 Ma. Loci of basaltic volcanism (10-7 Ma) along these fractures interfinger with the clastic wedge. A similar pattern of uplift and drainage reversal apparently presaged the onset of wrenching along the nearby Calaveras trend from 8-6 Ma. Expansion of the strike-slip orogene segmented the outer forearc basin into local basins, some characterized by episodic lacustrine deposition and probable internal drainage. By the end of the Miocene, Sierran arc volcanism waned at the latitude of San Francisco Bay, and arc-derived volcaniclastics were fully supplanted by recycled Coast Range-derived detritus in the East Bay area. Certain of these Coast Range sediment sources, particularly blueschist-bearing Franciscan terranes, permit an estimate of 7-27 km (4-17 mi) of total right slip on the Hayward fault.

  6. Tectonic Inversion of the Algerian Continental Margin off Great Kabylia (North Algeria) - Insights from new MCS data (SPIRAL cruise)

    Aidi, Chafik; Beslier, Marie-Odile; Yelles-Chaouche, Karim; Ribodetti, Alessandra; Bracene, Rabah; Schenini, Laure; Djellit, Hamou; Sage, Françoise; Déverchère, Jacques; Medaouri, Mourad; Klingelhoefer, Frauke; Abtout, Abdeslam; Charvis, Philippe; Bounif, Abdallah

    2014-05-01

    Sub-marine active faulting threatens the coastline of Algeria, as shown by the major Mw 6.9 May 21, 2003 earthquake that occurred in Great Kabylia close to Boumerdes. We present here the structures associated to the Plio-Quaternary (P-Q) tectonic inversion of the central part of the Algerian margin offshore Great Kabylia using new deep multichannel seismic (MCS) lines. Five MCS lines were acquired in the study area during the Algerian-French SPIRAL cruise (September 2009, R/V Atalante). Four lines were acquired using a 3040 cu. in. air-gun array and a 4.5 km 360 channel digital streamer and a 8350 cu. in. source favoring deep penetration was used for one coincident WAS profile and the fifth MCS line. All profiles are pre-stack time migrated and additional pre-stack depth migration was performed in key areas. The MCS lines crosscut the margin from the upper slope to the deep Algero-Provençal Basin either in a N-S direction sub-perpendicular to the structural trend of the margin, or in a NW-SE direction parallel to the actual convergence between Africa and Eurasia plates. Tectonic inversion is expressed on all profiles at the deep margin. The eastern line displays a flat-ramp compressive system in the deep sedimentary series, which emerges at the foot of the continental slope and marks the seaward limit of a P-Q basin perched at mid-slope. The south-dipping ramps are neo-formed structures, whereas the flats use inherited lithologic discontinuities (base of the Messinian evaporitic series, top of the acoustic basement). Westward in the Boumerdes area, the compressive deformation is expressed deeper in the acoustic basement where a southward dipping reflector is interpreted as a blind thrust on top of which all the sedimentary series (Miocene to P-Q) are bent in an antiform that uplifts the base of the Messinian series. A second antiform prolongates this uplift 20 km northward although no clear reverse structure is imaged underneath. These antiforms delimit two

  7. Modelling of Continental Lithosphere Breakup and Rifted Margin Formation in Response to an Upwelling Divergent Flow Field Incorporating a Temperature Dependent Rheology

    Tymms, V. J.; Kusznir, N. J.

    2005-05-01

    We numerically model continental lithosphere deformation leading to breakup and sea floor spreading initiation in response to an imposed upwelling and divergent flow field applied to continental lithosphere and asthenosphere. The model is used to predict rifted continental margin lithosphere thinning and temperature structure. Model predictions are compared with observed rifted margin structure for four diverse case studies. Prior to application of the upwelling divergent flow field the continental lithosphere is undeformed with a uniform temperature gradient. The upwelling divergent flow field is defined kinematically using boundary conditions consisting of the upwelling velocity Vz at the divergence axis and the half divergence rate Vx . The resultant velocity field throughout the continuum is computed using finite element (FE) code incorporating a Newtonian temperature dependent rheology. The flow field is used to advect the continental lithosphere material and lithospheric and asthenospheric temperatures. Viscosity structure is hence modified and the velocities change correspondingly in a feedback loop. We find the kinematic boundary conditions Vz and Vx to be of first order importance. A high Vz/Vx (greater than10), corresponding to buoyancy assisted flow, leads to minimal mantle exhumation and a well defined continent ocean transition consistent with observations at volcanic margins. For Vz/Vx near unity, corresponding to plate boundary driven divergence, mantle exhumation over widths of up to 100 km is predicted which is consistent with observations at non-volcanic margins. The FE method allows the upwelling velocity Vz to be propagated upwards from the top of the asthenosphere to the Earth's surface without the requirement of imposing Vx. When continental breakup is achieved the half divergence velocity Vx can be applied at the lithosphere surface and the upwelling velocity Vz left free. We find this time and space dependent set of boundary conditions is

  8. Flux and budget of BC in the continental shelf seas adjacent to Chinese high BC emission source regions

    Fang, Yin; Chen, Yingjun; Tian, Chongguo; Lin, Tian; Hu, Limin; Huang, Guopei; Tang, Jianhui; Li, Jun; Zhang, Gan

    2015-07-01

    This study conducted the first comprehensive investigation of sedimentary black carbon (BC) concentration, flux, and budget in the continental shelves of "Bohai Sea (BS) and Yellow Sea (YS)," based on measurements of BC in 191 surface sediments, 36 riverine water, and 2 seawater samples, as well as the reported data set of the atmospheric samples from seven coastal cities in the Bohai Rim. BC concentrations in these matrices were measured using the method of thermal/optical reflectance. The spatial distribution of the BC concentration in surface sediments was largely influenced by the regional hydrodynamic conditions, with high values mainly occurring in the central mud areas where fine-grained particles (median diameters > 6 Φ (i.e., area-integrated sedimentary BC sink flux in the entire BS and YS was ~325 Gg/yr, and the BS alone contributed ~50% (~157 Gg/yr). The BC budget calculated in the BS showed that atmospheric deposition, riverine discharge, and import from the Northern Yellow Sea (NYS) each contributed ~51%, ~47%, and ~2%. Therefore, atmospheric deposition and riverine discharge dominated the total BC influx (~98%). Sequestration to bottom sediments was the major BC output pattern, accounting for ~88% of the input BC. Water exchange between the BS and the NYS was also an important BC transport route, with net BC transport from the BS to the NYS.

  9. Satellite-Based Investigations of the Transition from an Oceanic to Continental Transform Margin

    Miller, M. Meghan

    1998-01-01

    Detailed characterization of neotectonics evolution of the Valle de San Felipe and Arroyo Grande regions in northern Baja California. Reoccupied GEOMEX GPS sites, and occupied a regional GPS (Global Positioning System) network. The Baja California peninsula in Mexico offers a unique setting for studying the kinematic evolution of a complex, active strike-slip/rift plate boundary. We are currently conducting remote sensing, geologic, and geodetic studies of this boundary. The combined data sets will yield instantaneous and time integrated views of its evolution. This proposal solicits renewed funding from NASA to support remote sensing and geologic studies. During the late Cenozoic, Baja California has been the locus of changing fault geometry that has accommodated components of the relative motion between the North America and Pacific plates. Contemporary slip between the two plates occurs in a broad zone that encompasses much of southern California and the Baja California Peninsula. The transfer of slip across this zone in southern California is relatively well understood. South of the border, the geometry and role of specific faults and structural provinces in transferring plate margin deformation across the peninsula is enigmatic. Results We use Landsat Thematic Mapper imagery of the Baja California Peninsula to identify recent and active faults, and then conduct field studies that characterize the temporal and spatial structural evolution of the plate margin. These data address questions concerning the neotectonic development of the Gulf of California, the Baja California Peninsula, and their role in evolution of the post-Miocene Pacific - North American plate boundary. Moreover, these studies provide constraints on the geometry of active faults, allowing more exact understanding of the results of ongoing NASA-supported geodetic experiments. In addition, anticipated publication of the TM scenes will provide a widely available geological data base for relatively

  10. Variscan to Neogene thermal and exhumation history at the Moroccan passive continental margin assessed by low temperature thermochronology

    Sehrt, M.; Glasmacher, U. A.; Stockli, D. F.; Kluth, O.; Jabour, H.

    2012-04-01

    In North Africa, a large amount of Mesozoic terrigenous sedimentary rocks are deposited in most of the basins along the continental margin indicating a major episode of erosion occurred during the rift and early post-rift period in the Central Atlantic. In the Tarfaya-Dakhla Basin, Morocco the sedimentary cover reaches thicknesses of up to 9000 m. The presence of high surface elevations in the Anti-Atlas mountain belt (2500 m) indicates a potential source area for the surrounding basins. The NE-SW oriented Anti-Atlas of Morocco is located at the northwestern fringe of the West African Craton and south of the High Atlas and represents the Phanerozoic foreland of the Late Paleozoic North African Variscides and the Cenozoic Atlas Belt. Variscan deformation affected most of Morocco. Paleozoic basins were folded and thrusted, with the major collision dated as late Devonian to Late Carboniferous. Zircon fission-track ages of 287 (±23) to 331 (±24) Ma confirmed the main exhumation referred to the Variscan folding, followed by rapid exhumation and the post-folding erosion. Currently, phases of uplift and exhumation in the Anti-Atlas during the Central Atlantic rifting and places where the associated erosion products are deposited are poorly constrained and there is little quantitative data available at present. The objective of the study is to determine the thermal and exhumation history of the Anti-Atlas and the connected Tarfaya-Dakhla Basin at the Moroccan passive continental margin. Besides zircon fission-track dating, apatite and zircon (U-Th-Sm)/He and apatite fission-track analyses and furthermore 2-D modelling with 'HeFTy' software has been carried out at Precambrian rocks of the Western Anti-Atlas and Cretaceous to Neogene sedimentary rocks from the Northern Tarfaya-Dakhla Basin. The apatite fission-track ages of 120 (±13) to 189 (±14) Ma in the Anti-Atlas and 176 (±20) to 216 (±18) Ma in the Tarfaya Basin indicate very obvious a Central Atlantic opening

  11. Low temperature thermochronology and topographic evolution of the South Atlantic passive continental margin in the region in eastern Argentina

    Pfister, Sabrina; Kollenz, Sebastian; Glasmacher, Ulrich A.

    2014-05-01

    To understand the evolution of the passive continental margin in Argentina low temperature thermochronology is an appropriate method, which will lead to new conclusions in this area. The Tandilia System, also called Sierras Septentrionales, is located south of the Río de la Plato Craton in eastern Argentina in the state of Buenos Aires. North of the hills Salado basin is located whereas the Claromecó basin is situated south of the mountain range. In contrary to most basins along the southamerican passive continental margin the Tandilia-System and the neighbouring basins trend perpendicular to the coast line. The topography is fairly flat with altitudes of. The igneous-metamorphic basement is pre-proterozoic in age and build up of mainly granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks and granitoid plutons it is overlain by a series of Neoproterozoic to early Paleozoic sediments (Cingolani, 2010), like siliciclastics, dolostones, shales and limestones (Demoulin et al., 2005). The aim of the study is to quantify the long-term landscape evolution of the passive continental margin in eastern Argentina in terms of thermal history, exhumation and tectonic activities. For that purpose, samples were taken from the Sierra Septentrionales and analyzed with the apatite fission-track method. Further 2-D thermokinematic modeling was conducted with the computer code HeFTy (Ketcham, 2005; Ketcham 2007; Ketcham et al., 2009). The results indicate apatite fission track ages between 101.6 (9.4) to 228.9 (22.3) Ma, what means all measured ages are younger as their formation age. That shows all samples have been reset. Six samples accomplished enough confined tracks and were used to test geological t-T models against the AFT data set. These models give a more detailed insight on the cooling history and tectonic activities in the research area. References: Cingolani C. A. (2010): The Tandilia System of Argentina as a southern extension of the Río de la

  12. ROV study of a giant pockmark on the Gabon continental margin

    Ondréas, H.; Olu, K.; Fouquet, Y.; Charlou, J. L.; Gay, A.; Dennielou, B.; Donval, J. P.; Fifis, A.; Nadalig, T.; Cochonat, P.; Cauquil, E.; Bourillet, J. F.; Moigne, M. Le; Sibuet, M.

    2005-11-01

    A giant, 800-m wide pockmark, called Regab, was discovered along the Equatorial African margin at 3160-m water depth and was explored by remote operated vehicle (ROV) as part of the Zaiango (1998-2000) and Biozaire (2001-2003) projects carried out conjointly by TOTAL and a number of French research institutes. A microbathymetric map obtained using the ROV sensors shows that the pockmark actually consists of a cluster of smaller pockmarks aligned N70 along a 15-m deep depression. Methane was recorded all over the pockmark, the highest values along the axis of the depression where massive carbonate crusts and dense seep communities were also found. Several faunal species belong to the Vesicomyidae and Mytilidae bivalve families, as well as to Siboglinidae (Vestimentifera) tubeworms. Preliminary analyses confirm their association with symbiotic bacteria, thus documenting their dependence on fluid seeps. The pockmark appears to be related to an infilled channel, visible on the seismic data 300 m below the seafloor, which may act as a reservoir for biogenic fluids supplied to the trap from the surrounding sediments.

  13. The biogeochemistry of carbon in continental slope sediments: The North Carolina margin

    Blair, N.; Levin, L.; DeMaster, D.; Plaia, G.; Martin, C.; Fornes, W.; Thomas, C.; Pope, R.

    1999-12-01

    The responses of the continental slope benthos to organic detritus deposition were studied with a multiple trace approach. Study sites were offshore of Cape Fear (I) and Cape Hatteras (III), N.C. (both 850 m water depth) and were characterized by different organic C deposition rates, macrofaunal densities (III>I in both cases) and taxa. Natural abundances of {sup 13}C and {sup 12}C in particulate organic carbon (POC), dissolved inorganic carbon (DIC) and macrofauna indicate that the reactive organic detritus is marine in origin. Natural abundance levels of {sup 14}C and uptake of {sup 13}C-labeled diatoms by benthic animals indicate that they incorporate a relatively young component of carbon into their biomass. {sup 13}C-labeled diatoms (Thalassiorsira pseudonana) tagged with {sup 210}Pb, slope sediment tagged with {sup 113}Sn and {sup 228}Th-labeled glass beads were emplaced in plots on the seafloor at both locations and the plots were sampled after 30 min., 1-1.5 d and 14 mo. At Site I, tracer diatom was intercepted at the surface primarily by protozoans and surface-feeding annelids. Little of the diatom C penetrated below 2 cm even after 14 months. Oxidation of organic carbon appeared to be largely aerobic. At Site III, annelids were primarily responsible for the initial uptake of tracer. On the time scale of days, diatom C was transported to a depth of 12 cm and was found in animals collected between 5-10 cm. The hoeing of tracer from the surface by the maldanid Praxillela sp. may have been responsible for some of the rapid nonlocal transport. Oxidation of the diatom organic carbon was evident to at least 10 cm depth. Anaerobic breakdown of organic matter is more important at Site III. Horizontal transport, which was probably biologically mediated, was an order of magnitude more rapid than vertical displacement over a year time scale. If the horizontal transport was associated with biochemical transformations of the organic matter, it may represent an

  14. Crustal structure variations along the NW-African continental margin: a comparison of new and existing models from wide angle and reflection seismic data

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Philippe, S.; Louden, K. E.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabellouahed, M.; Reichert, C. J.

    2014-12-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from three study regions along the margin located in the North Moroccan salt basin, on the central continental margin offshore Safi and in the south, offshore Dakhla. In each of the study areas several combined wide-angle and reflection seismic profiles perpendicular and parallel to the margin have been acquired and forward modelled using comparable methods. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. In the North Moroccan Basin continental crust thins from originally 36 km to about 8 km in a 150 km wide zone. The basin itself is underlain by highly thinned continental crust. Offshore safi thinning of the continental crust is confined to a 130 km wide zone with no neighboring sedimentary basin underlain by continental crust. In both areas the zone of crustal thinning is characterised by the presence of large blocks and abundant salt diapirs. In the south crustal thinning is more rapid in a zone of 90 km and asymmetric with the upper crust thinning more closely to the continent than the lower crust, probably due to depth-dependent stretching and the presence of the precambrian Reguibat Ridge on land. Oceanic crust is characterised by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganisation. Volcanic activity seems to be confined to the region next to the Canary Islands, and is thus not related to the initial opening of the oceanic, which was related to no

  15. Barite-forming environments along a rifted continental margin, Southern California Borderland

    Hein, James R.; Zierenberg, Robert A.; Maynard, J. Barry; Hannington, Mark D.

    2007-06-01

    The Southern California Continental Borderland (SCCB) is part of the broad San Andreas transform-fault plate boundary that consists of a series of fault-bounded, petroleum-generating basins. The SCCB has high heat flow and geothermal gradients produced by thinned continental crust and Neogene volcanism. Barite deposits in the SCCB occur along faults. Barite samples from two sea-cliff sites and four offshore sites in the SCCB were analyzed for mineralogy, chemical (54 elements) and isotopic (S, Sr) compositions, and petrography. Barite from Palos Verdes (PV) Peninsula sea-cliff outcrops is hosted by the Miocene Monterey Formation and underlying basalt; carbonate rocks from those outcrops were analyzed for C, O, and Sr isotopes and the basalt for S isotopes. Cold-seep barite from Monterey Bay, California was analyzed for comparison. SCCB offshore samples occur at water depths from about 500 to 1800 m. Those barites vary significantly in texture and occurrence, from friable, highly porous actively growing seafloor mounds to dense, brecciated, vein barite. This latter type of barite contrasts with cold-seep barite in being much more coarse grained, forms thick veins in places, and completely replaced rock clasts in breccia. The barite samples range from 94 to 99 wt% BaSO 4, with low trace-element contents, except for high Sr, Zr, Br, U, and Hg concentrations compared to their crustal abundances. δ34S for SCCB offshore barites range from 21.6‰ to 67.4‰, and for PV barite from 62‰ to 70‰. Pyrite from PV sea-cliff basalt and sedimentary rocks that host the barites averages 7.8‰ and 2.2‰, respectively. Two offshore barite samples have δ34S values (21.6‰, 22.1‰) close to that of modern seawater sulfate, whereas all other samples are enriched to strongly enriched in 34S. 87Sr/ 86Sr ratios for the barites vary over a narrow range of 0.70830-0.70856 and are much lower than that of modern seawater and also lower than the middle Miocene seawater ratio, the time

  16. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin

    Dean, W.E.; Gardner, J.V.; Piper, D.Z.

    1997-01-01

    Evidence from sediments in cores collected from within the present oxygen-minimum zone (OMZ; 600-1200 m) on the central and northern California margins record several episodes during the last interstadial (OIS-3, ca. 60-24 ka) of deposition of laminated sediments containing elevated concentrations of several trace elements indicative of anoxic conditions (e.g., Mo, Ni, Zn, and Cu). The presence of abundant well-preserved organic matter, as well as lack of bioturbation and the presence of elevated concentrations of Mo and other trace elements, all support the theory that the OMZ in the northeastern Pacific Ocean was more intense, possibly anoxic, at several times during the late Pleistocene. Sediments of all ages in cores from the southern California margin contain elevated concentrations of Mo, suggesting that this area has always had higher rates of sulfate reduction than either the central or northern California areas. Most of the Ba in sediments in all cores collected on the upper continental slope (200-2700 m) off California and southern Oregon is derived from detrital clastic material, and this source did not change much in time. However, the amount of biogenic Ba did vary with time, and these variations closely follow the temporal variations in organic C (Corg) mass accumulation rate. Using Ba and Corg mass accumulation rates as proxy variables for productivity, all cores show that organic productivity under the California Current upwelling system was highest during OIS-3 and the Holocene, and lowest during the last glacial interval (LGI, ca. 24-10 ka). All paleoproductivity proxy variables indicate that the southern California area has always experienced higher productivity than other areas under the California Current, at least over the last 50 ky. Copyright ?? 1997 Elsevier Science Ltd.

  17. Gravity anomalies, crustal structure and rift tectonics at the Konkan and Kerala basins, western continental margin of India

    Sheena V Dev; M Radhakrishna; Shyam Chand; C Subrahmanyam

    2012-06-01

    Litho-stratigraphic variation of sedimentary units constructed from seismic sections and gravity anomaly in the Konkan and Kerala basins of the western continental margin of India (WCMI) have been used to model processes such as lithospheric rifting mechanism, its strength, and evolution of flank uplift topography that led to the present-day Western Ghats escarpment. Based on the process-oriented approach, two lithospheric models (necking and magmatic underplating) of evolution of the margin were tested. Both, necking and underplating models suggest an effective elastic thickness (Te) of 5 km and 10 km along Konkan and Kerala basins, respectively and a deep level of necking at 20 km at both basins. Model study suggests that the necking model better explains the observed gravity anomalies in the southern part of the WCMI. A synthesis of these results along with the previously published elastic thickness estimates along the WCMI suggests that a low-to-intermediate strength lithosphere and a deeper level of necking explains the observed flank-uplift opography of the Western Ghats. Process-oriented gravity modeling further suggests that the lateral variations in the lithospheric strength, though not very significant, exist from north to south within a distance of 600 km in the Konkan and Kerala basins along the WCMI at the time of rifting. A comparison with previous Te estimates from coherence analysis along the WCMI indicates that the lithospheric strength did not change appreciably since the time of rifting and it is low both onshore and offshore having a range of 5–15 km.

  18. Rift to Post-rift evolution of a "passive" continental margin: The Ponta Grossa Arch, SE Brazil

    Franco-Magalhaes, Ana. O. B.; Hackspacher, Peter C.; Glasmacher, Ulrich A.; Saad, A. R.

    2010-05-01

    Low-temperature thermochronology was applied at the Brazilian passive continental margin in order to understand and reconstruct the post-rift evolution since the break-up of southwestern Gondwana. Thermochronological data obtained from apatite fission-track analysis of Neoproterozoic metamorphic and Paleozoic to Mesozoic siliciclastic rocks as well as Mesozoic dikes from the Ponta Grossa Arch provided ages between 66.2 (1.3) and 5.9 (0.8) Ma. These data clearly indicate a post-rift reactivation during the Late Cretaceous and Paleogene. Integrating the results of older thermochronological studies, the reactivation of the southeastern Brazilian margin could be described in three main phases. Furthermore, the spatial distribution of age data indicate a NE-age group (NE of Curitiba) of about 20 Ma and a SW-age group (Curitiba and NW) of about 50 Ma. The change of ages follows the NW-SE trending São Jerônimo-Curiúva fault zone that can be traced offshore into the southern end of the Santos basin. Within the Santos basin these lineament terminates the salt occurrence in the south. It seams to play a major role in the structural evolution of the Santos basin and the Rio Grande Rise. Sedimentological studies in the Santos basin evidenced that the transport direction changed in Miocene time. During the Oligocene and earlier the sediments were transported mainly from the direction of the "Curitiba area" into the Santos basin. Within the Miocene an additional transport direction from an area north of Curitiba developed.

  19. Rift to post-rift evolution of a ``passive'' continental margin: the Ponta Grossa Arch, SE Brazil

    Franco-Magalhaes, A. O. B.; Hackspacher, P. C.; Glasmacher, U. A.; Saad, A. R.

    2010-10-01

    Low-temperature thermochronology was applied at the Brazilian passive continental margin in order to understand and reconstruct the post-rift evolution since the break-up of southwestern Gondwana. Thermochronological data obtained from apatite fission-track analysis of Neoproterozoic metamorphic and Paleozoic to Mesozoic siliciclastic rocks as well as Mesozoic dikes and alkaline intrusions from the Ponta Grossa Arch provided ages between 66.2 (1.3) and 5.9 (0.8) Ma. These data clearly indicate a post-rift reactivation during Late Cretaceous and Paleogene times. Integrating the results of older thermochronological studies, the reactivation of the southeastern Brazilian margin could be described in three main phases related to the rift to post-rift evolution of SE Brazil. Furthermore, the spatial distribution of age data indicates the presence of two age groups: a NE age-group (NE of Curitiba), with ages around 20 Ma and a SW age-group (Curitiba and NW) with ages of around 50 Ma. The change of ages follows the NW-SE trending São Jerônimo-Curiúva fault zone that can be traced offshore into the southern end of the Santos basin. Within the Santos basin, this lineament ends up to the salt occurrence in the south and seams to play a major role in the structural evolution of the Santos basin and the Rio Grande Rise. Sedimentological studies in the Santos basin evidenced that the transport direction changed in Miocene from WNW to WNW/NNW. During the Oligocene and earlier, the sediments were transported mainly from southeastwards to the direction of the “Curitiba area” into the Santos basin. Within the Miocene, an additional transport direction from an area north of Curitiba developed.

  20. Magnetic characterization of distal IRD layers at the NW Iberia Continental margin

    Rey, D.; Mohamed, K. J.; Andrade, A.; Rodríguez-Germade, I.; Coimbra, R. L.; Rubio, B.; Bernabeu, A. M.; Alvarez-Iglesias, P.; Frederichs, T.

    2012-12-01

    Deep marine environments are a sink for diverse materials from very distinct sources. The magnetic signal retrieved from these sediments reflect a combination of magnetic carriers, arriving as IRD (ice rafted debris), transported as nepheloid layers or as result of aeolian contribution (Thompson and Oldfield, 1986; Verosub and Roberts, 1995; Dekkers, 1997; Maher and Thompson, 1999; Evans and Heller, 2004). IRD layers are widelly distributed along the Northern Atlantic, representing a distal input transported by icebergs released from the major continental ice caps during the Heinrich events (eg. Robinson, 1986; Heinrich, 1988; Bond et al., 1992; Oppo et al., 1998; Kissel et al., 1999). At latitudes ranging the Rudimann belt (40-55N) (Rudimann, 1977; Rudimann and McIntire, 1981), IRD layers can be identified by the rapid increase in magnetic susceptibility values (κ) up to 400x10-6SI, from background values lower than 100x10-6 SI (Robinson et al., 1995), providing key information on climatically forced events and allowing a tighter chronostratigraphic control, as demonstrated by other authors on nearby areas (eg. Lebreiro et al., 1996; Zahn et al., 1997; Moreno et al., 2002). The mixing of these materials with local/regional components may difficult their depiction, and also the occurence of diagenetic processes that alter their original magnetic composition, to the point of undetection by standard magnetic analysis (susceptibility). Particularly, that was the case on the Galicia Bank half-graben sediment cores, dominated by local biogenic and detrital turbiditic levels during MIS2, in which IRDs are interbedded, topped by hemipelagic sediments deposited during the last 14 ka (Alonso et al, 2008, Rey et al, 2008). Original low concentration, influence of diamagnetic carbonate materials, and /or elimination of magnetic carriers by diagenesis masked some of the IRD levels, only recognizable by detail magnetomineralogical characterization of the materials transported

  1. Habitat use and preferences of cetaceans along the continental slope and the adjacent pelagic waters in the western Ligurian Sea

    Azzellino, A.; Gaspari, S.; Airoldi, S.; Nani, B.

    2008-03-01

    The physical habitat of cetaceans occurring along the continental slope in the western Ligurian Sea was investigated. Data were collected from two different sighting platforms, one of the two being a whale-watching boat. Surveys, conducted from May to October and from 1996 to 2000, covered an area of approximately 3000 km 2 with a mean effort of about 10,000 km year -1. A total of 814 sightings was reported, including all the species occurring in the area: Stenella coeruleoalba, Balaenoptera physalus, Physeter macrocephalus, Globicephala melas, Grampus griseus, Ziphius cavirostris, Tursiops truncatus, Delphinus delphis. A Geographic Information System was used to integrate sighting data to a set of environmental characteristics, which included bottom gradient, area between different isobaths, and length and linearity of the isobaths within a cell unit. Habitat use was analysed by means of a multi-dimensional scaling, MDS, analysis. Significant differences were found in the habitat preference of most of the species regularly occurring in the area. Bottlenose dolphin, Risso's dolphin, sperm whale and Cuvier's beaked whale were found strongly associated to well-defined depth and slope gradient characteristics of the shelf-edge and the upper and lower slope. The hypothesis of habitat segregation was considered for Risso's dolphin, sperm whale and Cuvier's beaked whale. Canonical discriminant functions using depth and slope as predictors outlined clear and not overlapping habitat preferences for Risso's dolphin and Cuvier's beaked whale, whereas a partial overlapping of the habitat of the other two species was observed for sperm whale. Such a partitioning of the upper and lower slope area may be the result of the common feeding habits and suggests a possible competition of these three species. A temporal segregation in the use of the slope area was also observed for sperm whales and Risso's dolphins. Fin whales, and the occasionally encountered common dolphin and long

  2. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin

    Álvarez, Fernanda; Reich, Martin; Pérez-Fodich, Alida; Snyder, Glen; Muramatsu, Yasuyuki; Vargas, Gabriel; Fehn, Udo

    2015-07-01

    The Atacama region in northern Chile hosts the driest desert on Earth and is the world's premier iodine production province. The origin of iodine enrichment in Atacama is controversial and fundamentally different processes have been invoked over the years that involve marine, eolian and more recently deep sedimentary fluid and groundwater sources. As a result of the very limited geochemical iodine data in Atacama and the western South American margin, the origin of iodine enrichment in this region still remains elusive. In this study, we present a comprehensive survey of iodine concentrations and isotopic ratios (129I/I) of different reservoirs in the Atacama Desert of northern Chile, including nitrate soils, supergene copper deposits, marine sedimentary rocks, geothermal fluids, groundwater and meteoric water. Nitrate soils along the eastern slope of the Coastal Cordillera are found to have mean iodine concentrations of at least three orders of magnitude higher than the mean crustal abundances of ∼0.12 ppm, with a mean concentration of ∼700 ppm. Soils above giant copper deposits in the Central Depression are also highly enriched in iodine (100's of ppm range), and Cu-iodide and iodate minerals occur in the supergene enrichment zones of some of these deposits. Further east in the Precordillera, Jurassic sedimentary shales and limestones show above-background iodine concentrations, the latter averaging ∼50 ppm in the southern portion of the study area. The highest iodine concentrations in fluids were measured in groundwater below nitrate soils in the Coastal Range (∼3.5-10 ppm) and in geothermal waters (1-3 ppm) along the volcanic arc. Although highly variable, the iodine isotopic ratios (129I/I) of Jurassic marine sedimentary rocks (∼300-600 × 10-15), nitrate soils (∼150-1500 × 10-15) and waters (∼215 × 10-15) are consistently low (factors has played an unforeseen role in transporting and accumulating iodine and other soluble components in the

  3. Oceanographic parameters in continental margin of the State of Ceará (northeastern Brazil) deduced from C and O isotopes in foraminifers.

    Marques, Wanessa S; Menor, Eldemar de A; Sial, Alcides N; Manso, Valdir A V; Freire, Satander S

    2007-03-01

    Specimens of Recent foraminifera of Amphistegina radiata, Peneroplis planatus and Globigerinoides ruber, from fifty samples of surface sediments of the continental margin of the State of Ceará, Brazil, have been analyzed for carbon and oxygen isotopes to investigate oceanographic parameters and determine the values of delta18O of the oceanic water. From a comparison between values of delta18O obtained for ocean water using the linear equations by (Craig and Gordon 1965) and the one by Wolff et al. (1998), it became evident that the former yielded a more reliable value (0.2 per thousand SMOW) than the latter. Lower values of delta18O for the ocean water in this continental margin resulted from continental water influence. Values of 18O (-0.3 per thousand to -1.5 per thousand PDB for benthic foraminifera and -0.6 per thousand to -2.4 per thousand PDB for planktic foraminifera), attest to a variation of temperatures of oceanic water masses, in average, between 20 to 22 degrees C in deep water and 24 to 27 degrees C, in surface water. Values of delta13C from +3.2% to -0.2 per thousand PDB (benthic foraminifera) reflect a variation in the apparent oxygen utilization (AOU) in the continental margin and indicate that the environments of bacteriological decomposition of organic matter are not continuous along the investigated area. PMID:17401482

  4. Organic matter quality and supply to deep-water coral/mound systems of the NW European Continental Margin

    Kiriakoulakis, K.; Freiwald, A.; Fisher, E.; Wolff, G. A.

    2007-02-01

    Comparison of five deep-water coral (DWC)/mound ecosystems along the European Continental Margin shows that suspended particulate organic matter (sPOM), a potential food source, is lipid rich and of high quality. However, there are differences between the sites. The Darwin and Pelagia Mounds (N. Rockall Trough and N. Porcupine Bank, respectively) have higher proportions of labile particulate lipids (including high proportions of polyunsaturated fatty acids) in the benthic boundary layer than Logachev, Hovland and Belgica Mounds (Rockall Bank, S. Porcupine Bank and Porcupine Seabight, respectively). The high quality sPOM could be transported downslope from the euphotic zone. There is some evidence for inter-annual variability at some sites (e.g. Hovland and Logachev Mounds) as large differences in suspended lipid and particulate organic carbon concentrations were observed over the sampling period. Elevated total organic carbon contents of sediments at mound sites, relative to control sites in some cases (particularly Darwin Mounds), probably reflect local hydrodynamic control and the trapping of sPOM by the DWC. Fresh POM can be relatively rapidly transferred to significant depth (up to 8 cm) through bioturbation that is evident at all sites. There is no clear evidence of present day hydrocarbon seepage at any of the sites.

  5. Fission track dating: methodology and thermo-chronological applications in alpine and continental margin contexts

    the thermal history of the massifs considered since the last cooling below 120 C of the samples analysed. In the works done before 1994, we have shown that, on the one hand, the transform margin of Cote d'Ivoire-Ghana had known a heating period between 250 C and 60 C post-dating by far its scanning by an oceanic ridge and on the other hand, in the Elbe Island, we have brought the first 'fission track' data in the cooling history of the Monte Capanne granodiorite. In the beginning of the 90's, the fission track method still lacked good reference samples for volcanic glass dating. At the suggestion of the Geochronology Commission of the International Union of Geological Sciences we have studied macusanites, obsidians of the SE Peru. The results of this work suggest that these glasses are not convenient as potential age standards, even if they keep some value as a material for laboratory intercalibration purposes. (author)

  6. Linking Late Pleistocene alpine glacial erosion and continental margin sedimentation: Insights from 40Ar/39Ar dating of silt-sized sediment, Canterbury Basin, New Zealand

    Villaseñor, Tania; Jaeger, John M.; Foster, David A.

    2016-01-01

    Quaternary climatic and eustatic cycles in mid-latitude regions have led to more extensive alpine glaciations and continental shelf progradation, respectively. However, the glacial influence on sediment fluxes to the ocean creating continental margin strata is poorly documented. This contribution analyzes the provenance of fine sediment accumulating on the continental shelf during the Late Pleistocene to evaluate the influence of glacial cycles on sediment erosion and routing to the continental shelf. Taking advantage of the contrasting bedrock ages exposed across the Southern Alps, New Zealand, we perform 40Ar/39Ar incremental heating on the bulk silt-size sediment from three drill sites of IODP Expedition 317, Canterbury Basin, New Zealand. The results suggest that a large proportion of sediment accumulating on the continental shelf results from erosion within the Main Divide fault zone of the Southern Alps. Sediment 40Ar/39Ar age fluctuations over this time period suggest that bedrock with various 40Ar/39Ar cooling ages has been differentially eroded in the upper Waitaki River catchment and mixed in the Waitaki-Canterbury sediment-routing system. Across-shelf variations in sediment 40Ar/39Ar age reflect changing modes of sediment dispersal on the continental shelf. Fluvial material, likely derived from the main drainage divide zone, preferentially accumulates in the middle continental shelf, whereas material representing erosion of older bedrock (Torlesse Terrane), located lower in the drainage basin, is dispersed uniformly across the shelf. The age signature of the muddy sediment accumulating on the continental shelf reflects Late Pleistocene landscape evolution of the Southern Alps and its influence on sediment dispersal to the continental shelf.

  7. Two- and three-dimensional gravity modeling along western continental margin and intraplate Narmada-Tapti rifts: Its relevance to Deccan flood basalt volcanism

    Somdev Bhattacharji; Rajesh Sharma; Nilanjan Chatterjee

    2004-12-01

    The western continental margin and the intraplate Narmada-Tapti rifts are primarily covered by Deccan flood basalts. Three-dimensional gravity modeling of +70 mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, mafic-ultramafic type, elongated, roughly ellipsoidal body. It is approximately 12.0 ± 1.2 km thick with its upper surface at an approximate depth of 6.0 ± 0.6km, and its average density is 2935 kg/m3. Calculated dimension of the high density body in the upper crust is 300 ± 30km in length and 25 ± 2.5 to 40 ± 4 km in width. Three-dimensional gravity modeling of +10 mgal to −30 mgal Bouguer gravity highs along the intraplate Narmada-Tapti rift indicates the presence of eight small isolated high density mafic bodies with an average density of 2961 kg/m3. These mafic bodies are convex upward and their top surface is estimated at an average depth of 6.5 ± 0.6 (between 6 and 8 km). These isolated mafic bodies have an average length of 23.8 ± 2.4 km and width of 15.9 ± 1.5 km. Estimated average thickness of these mafic bodies is 12.4 ± 1.2 km. The difference in shape, length and width of these high density mafic bodies along the western continental margin and the intraplate Narmada-Tapti rifts suggests that the migration and concentration of high density magma in the upper lithosphere was much more dominant along the western continental margin rift. Based on the three-dimensional gravity modeling, it is conjectured that the emplacement of large, ellipsoidal high density mafic bodies along the western continental margin and small, isolated mafic bodies along the Narmada-Tapti rift are related to lineamentreactivation and subsequent rifting due to interaction of hot mantle plume with the lithospheric weaknesses (lineaments) along the path of Indian plate motion over the R´eunion hotspot. Mafic bodies formed in the upper lithosphere as

  8. Geotechnical Properties of Submarine Sediments from Submarine Landslides on the Eastern Australian Continental Margin and Implications for Slide Initiation

    Clarke, S. L.; Hubble, T.; Airey, D.

    2014-12-01

    Geomechanical test data are presented for 12 gravity cores, up to 5 m long, taken at sites from the upper slope (Soil Classification System - USCS). Total unit weight varies between 14.1 to 17.4 kNm-3, bulk density 715-2065 kgm-3, water content 43-90+%, and specific gravity 2.5-2.74. Sediments present low plasticity, liquid limits 43-63%, and plasticity indices of 8.7-34%. Measured strength values, friction angle (Ф') and apparent cohesion (c'), vary between 30-40°, and 0-10 kPa respectively. One slide-adjacent core, and four within-landslide cores present boundary surfaces located at depths of 0.8 to 2.2 meters below the present-day seafloor that are identified by a sharp, colour-change boundary; small increases in sediment stiffness; slight increases in sediment bulk density of 0.1 gcm-3; and distinct gaps in AMS 14C age of at least 25 ka. Compression testing indicates that the sediment above and below the boundary surface is slightly overconsolidated. Triaxial tests indicate a significant increase in the brittleness of the shear response of the sediment with increasing vertical stress, which would cause a progressive increase of pore pressure if the sediment was subjected to cyclic (earthquake) loading. The boundary surfaces are interpreted to represent detachment surfaces or slide plane surfaces. Slope stability models based on classical soil mechanics and measured sediment shear-strengths indicate that the upper slope sediments should be stable. However, multibeam bathymetry data reveal that many upper slope landslides occur across the margin and that submarine landsliding is a common process. We infer from these results that: a) the margin experiences seismic events that act to destabilise the slope sediments, and/or b) an unidentified mechanism regularly acts to reduce the shear resistance of these sediments to the very low values required to enable slope failure.

  9. Ocean-continent transition and tectonic framework of the oceanic crust at the continental margin off NE Brazil: Results of LEPLAC project

    Gomes, Paulo Otávio; Gomes, Benedito S.; Palma, Jorge J. C.; Jinno, Koji; de Souza, Jairo M.

    In 1992, Brazilian Navy and PETROBRAS carried out a geophysical survey along the continental margin off northeastern Brazil, as part of a governmental plan to delineate the "Legal Continental Shelf" according to the international Law of the Sea. This data set is leading to a better understanding of the crustal transition processes and on the evolution of the oceanic crust over that part of the Brazilian continental margin. On our seismic transects, we show a rifted marginal plateau (Pernambuco Plateau) where crustal extension was controlled by detachment faulting, possibly in a non-volcanic margin setting. Farther north, dealing with the ocean-continent transition nearby a major transform margin, we found a normal passive margin-style transition zone instead of transform-related structures. With the support of multichannel seismic profiles and gravity data derived from GEOSAT altimetry, several well-known oceanic fracture zones and structural lineaments were properly located and correlated. The relationship of these structures with volcanic ridges and extensional, compressive and strike-slip tectonic reactivations suggests that fracture zones at this area behaved either as zones of weakness or as locked transform fault scars. Striking lithospheric flexural deformation is also related to FZs in this region. In the surroundings of the Fernando de Noronha Ridge, lithospheric flexure represents an isostatic response to volcanic loading, while bending across Ascension FZ is likely to have been caused by differential subsidence in crustal segments of contrasting ages. We also correlate some other deformation of the oceanic crust with changes in spreading directions that possibly took place at the Upper Cretaceous.

  10. Sources and distributions of branched tetraether lipids and crenarchaeol along the Portuguese continental margin: Implications for the BIT index

    Zell, Claudia; Kim, Jung-Hyun; Dorhout, Denise; Baas, Marianne; Sinninghe Damsté, Jaap S.

    2015-03-01

    The branched vs. isoprenoid tetraethers (BIT) index, which is based on the relative abundance of non-isoprenoidal, so-called branched glycerol dialkyl glycerol tetraethers (brGDGTs) versus a structurally related isoprenoid GDGT "crenarchaeol", has been used to trace soil organic carbon (OC) from the continent to the ocean. However, it has been found in some locations that the BIT index can be primarily influenced by crenarchaeol concentrations and brGDGT production in fresh water rather than by soil-derived brGDGT concentrations. This may hamper the application of this proxy as an indicator for the input of soil OC. In order to constrain the applicability of the BIT index along the southern Portuguese continental margin, we examined the source of brGDGTs and crenarchaeol, by investigating their concentration and distribution as well as variations in the BIT index in marine surface sediments from five transects (Douro, Mondego, Estremadura, Tagus, and Sado) and in marine suspended particulate matter (SPM) from the Douro and Tagus transects. Higher BIT values and brGDGT concentrations (normalized to OC content) were found close to the river mouths and coast than in deep offshore sites. This clearly indicated the continental input of brGDGTs and revealed that, at least in this setting, the BIT index was primarily influenced by the delivery of brGDGTs from the rivers. BrGDGT concentrations and distributions in sediments and SPM close to the rivers were similar to those of SPM in the Tagus River. This indicates that degradation processes in the estuaries had no significant effect on the riverine brGDGTs. Therefore, brGDGTs should be a good indicator for the recalcitrant OC fraction transported from the continent to the ocean. Our results also indicated that there are multiple sources of brGDGTs in the marine environment, i.e. the water column and the sediment, which complicates the use of the brGDGT distribution as an indicator for terrestrial vs. marine produced brGDGTs.

  11. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part I. Amino acids, carbohydrates and lignin

    Steinberg, S. M.; Venkatesan, M. I.; Kaplan, I. R.

    1987-01-01

    Total organic carbon (TOC), lignin, amino acids, sugars and amino sugars were measured in recent sediments for the continental margin off southern New England. The various organic carbon fractions decreased in concentration with increasing distance from shore. The fraction of the TOC that was accounted for by these major components also decreased with increasing distance from shore. The concentration of lignin indicated that only about 3-5% of the organic carbon in the nearshore sediment was of terrestrial origin. The various fractions were highly correlated, which was consistent with a simple linear mixing model of shelf organic matter with material form the slope and rise and indicated a significant transport of sediment from the continental shelf to the continental slope and rise.

  12. Biological source and provenance of deep-water derived isoprenoid tetraether lipids along the Portuguese continental margin

    Kim, Jung-Hyun; Villanueva, Laura; Zell, Claudia; Sinninghe Damsté, Jaap S.

    2016-01-01

    There is increasing evidence that nitrifying Thaumarchaeota in the deep ocean waters may contribute to the sedimentary composition of isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs), impacting TEX86 paleothermometry. We investigated the potential effect of deep-water dwelling Thaumarchaeota in the warm and saline Mediterranean Outflow Water (MOW) on the distribution of isoGDGTs by analysing suspended particulate matter (SPM) and surface sediments collected along five land-ocean transects along the southern Portuguese continental margin. To this end, we directly compared for the first time the composition of intact polar lipid (IPL)-derived isoGDGTs of SPM with the diversity, abundance, and activity of Thaumarchaeota based on the genetic analysis of the genes coding for the archaeal ammonia monooxygenase (amoA) and the geranylgeranylglyceryl phosphate (GGGP) synthase involved in the isoGDGT biosynthetic pathway. Our results revealed a strong positive relationship between water depth and TEX86H values for both SPM and surface sediments. The increasing TEX86H trends for both core lipid (CL) and IPL-derived fractions were accompanied by increasing fractional abundances of GDGT-2 and crenarchaeol regio-isomer and decreasing fractional abundances of GDGT-1 and GDGT-3 with increasing water depth. Phylogenetic analyses based on the archaeal amoA and the GGGP synthase proteins showed that Thaumarchaeota populations detected at 1 m and 50 m water depth were different from those detected in 200 m and 1000 m water depth, which had an increased contribution of so-called 'deep water' Thaumarchaeota. The differences in the fractional abundances of isoGDGTs with water depth were compatible with the increasing contribution of 'deep water' Thaumarchaeota harboring a different GGGP synthase enzyme which has been suggested to relate to changes in the relative proportion of synthesized isoGDGTs. Accordingly, it appears that the sedimentary distribution of CL isoGDGTs used

  13. 350 ka organic 13C record of the monsoon variability on the Oman continental margin, ArabianSea

    Alfred N N Muzuka

    2000-12-01

    The stable isotope compositions of sedimentary organic carbon and content of organic carbon for sediment cores recovered at two sites (sites 724C and 725C) during Ocean Drilling Program (ODP) Leg. 117 on the Oman continental margin are used to document variability of the monsoon winds for the past 350 ka. Although both sites have a mean 13C value of -20.1%, three zones depleted in 13C are observable at site 724C during isotope stages 3, 8 and 10, while only one zone is recognizable at site 725C. Increased coastal upwelling during isotope stage 3 owing to intense SW monsoon winds resulted in higher concentration of CO2 in the water column causing the formation of organic matter that was depleted in 13C. The other two zones deposited during oxygen isotope stages 8 and 10, which are also characterized by low values of organic carbon, nitrogen and C/N ratios, could be attributed to the dilution by terrestrial material derived from paleosol by transported by northwesterlies. Because of utilization of 13C enriched dissolved CO2 during the last glacial maximum Holocene sedimentary organic materials are depleted in 13C relative to the the fomer. The content of residues organic carbon (ROC) is higher at site 724C (with an average of 2.3 ± 1.2%) relative to site 725C, which averages to 0.9 ± 0.4% probably because of differences in the degree of preservation. Organic material deposited at site 725C has undergone more degradation relative to site 724C as reflected by a systematic downcore decrease in 13C resulting from a loss of 13C enriched organic compounds. Owing to lack of good chronology at site 725C, a zone that is characterized by low 13C values it could not be correlated with the other three zones observed at Site 724C.

  14. Trophic Groups Of Demersal Fish Of Santos Bay And Adjacent Continental Shelf, São Paulo State, Brazil: Temporal And Spatial Comparisons

    Elizabeti Y. Muto

    2014-07-01

    Full Text Available The temporal and spatial variations of feeding habits and trophic groups of demersal fish species of Santos Bay and the adjacent continental shelf were investigated. The samples were taken in September 2005 and March 2006 by bottom otter trawling. The stomach content analysis of 2,328 specimens of 49 species showed most fish fed on a large range of food items but relied heavily on shrimp, crabs/swimming-crabs, amphipods, mysids, polychaetes, ophiuroids, squids, and teleosteans. The species were classified into ten trophic groups. Shrimp were an important food source in the Santos bay and inner shelf, while ophiuroids were important prey for predators of the middle shelf. Many species relied on crabs/swimming-crabs during the summer, especially on the middle shelf. The spatial and temporal variability in food resource utilization by fish were related to the pattern of distribution and abundance of their prey. The predation on shrimp and crabs/swimming-crabs seems to be related to the water mass dynamics of the region. Intraspecific comparisons demonstrated that most of the species display spatial and/or temporal variation in their diet. The demersal ichtyofauna can also be divided into the more general categories of piscivores, nektonic invertebrate feeders, benthic invertebrate feeders and planktonic invertebrate feeders.

  15. From oblique subduction to intra-continental transpression: Structures of the southern Kermadec-Hikurangi margin from multibeam bathymetry, side-scan sonar and seismic reflection

    Collot, Jean-Yves; Delteil, Jean; Lewis, Keith B.; Davy, Bryan; Lamarche, Geoffroy; Audru, Jean-Christophe; Barnes, Phil; Chanier, Franck; Chaumillon, Eric; Lallemand, Serge; de Lepinay, Bernard Mercier; Orpin, Alan; Pelletier, Bernard; Sosson, Marc; Toussaint, Bertrand; Uruski, Chris

    1996-06-01

    The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4 5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the change to increasing obliquity and intracontinental transpression towards the south. In this paper, we provide evidence that faulting with a significant strike-slip component is widespread along the entire 1000 km margin. Subduction of the northeastern scrap of the Hikurangi Plateau is marked by an offset in the Kermadec Trench and adjacent margin, and by a major NW-trending tear fault in the scarp. To the south, the southern Kermadec Trench is devoid of turbidite fill and the adjacent margin is characterized by an up to 1200 m high scarp that locally separates apparent clockwise rotated blocks on the upper slope from strike-slip faults and mass wasting on the lower slope. The northern Hikurangi Trough has at least 1 km of trench-fill but its adjacent margin is characterized by tectonic erosion. The toe of the margin is indented by 10 25 km for more than 200 km, and this is inferred to be the result of repeated impacts of the large seamounts that are abundant on the northern Hikurangi Plateau. The two most recent impacts have left major indentations in the margin. The central Hikurangi margin is characterized by development of a wide accretionary wedge on the lower slope, and by transpression of presubduction passive margin sediments on the upper slope. Shortening across the wedge together with a component of strike-slip motion on the upper slope supports an interpretation of some strain partitioning. The southern Hikurangi margin is a narrow, mainly compressive belt along a

  16. Rates, causes, and dynamic of long-term landscape evolution of the South Atlantic "passive continental margin", Brazil and Namibia, as revealed by thermo-kinematic numerical modeling.

    Christian, Stippich; Anton, Glasmacher Ulrich; Peter, Christian, Hackspacher

    2014-05-01

    The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE and FastCape). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates.

  17. Structure and function of nematode communities across the Indian western continental margin and its oxygen minimum zone

    Singh, R.; Ingole, B. S.

    2016-01-01

    We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and low oxygen levels on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. The oxygen minimum zone extended from 102 to 1001 m. Nematodes (described and undescribed) were identified to species and classified according to biological and functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Three depth zones were identified: the shelf (depth range: 34-102 m; highest nematode mean density: 176.6 ± 37 ind 10 cm-2), the slope (525-1524 m; 124.3 ± 16 ind 10 cm-2), and the basin (2001-2546 m; 62.9 ± 2 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, Desmodora sp. 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Nematode communities in different zones differed in species composition. Chromadorita sp. 2 (2.78 %) and Sphaerolaimus gracilis (2.21 %) were dominant on the shelf, whereas Terschellingia longicaudata (4.73 %) and Desmodora sp. 1 (4.42 %) were dominant on the slope, but in the basin, Halalaimus sp. 1(1.11 %) and Acantholaimus elegans (1.11 %) were dominant. The information in a particular functional group was not a simple reflection of the information in species abundance. Ecological information captured by adult length, adult shape, and life-history strategy was less site-specific and thus differed notably from information contained in other taxonomic groups. The functional composition of nematodes was strongly linked to the organic-carbon and dissolved-oxygen concentration. Seven species were found exclusively in the oxygen minimum zone: Pselionema sp. 1, Choanolaimus sp. 2, Halichoanolaimus sp. 1, Cobbia dentata

  18. Distribution, migration and derivation of Mesozoic-Cenozoic regional fault systems in the central continental margin of eastern China

    SUN Xiaomeng; HAO Fujiang; BIAN Weihua; GAO Yi; BAO Yafan

    2007-01-01

    Deep-large faults in the central continental margin of eastern China are well developed. Based on the regularity of spatial and temporal distribution of the faults,four fault systems were divided: the Yanshan orogenic belt fault system, the Qinling-Dabie-Sulu orogenic belt fault system, the Tanlu fault system and the East China Sea shelfbasin-Okinawa trough fault system. The four fault systems exhibit different migration behaviors. The Yanshan orogenic belt fault system deflected from an EW to a NE direction,then to a NNE direction during the Indo-Chinese epoch-Yanshanian epoch. The thrust-nappe strength of the Qinling-Dabie orogenic belt fault system showed the tendency that the strength was greater in the south and east, but weaker in the north and west. This fault system faulted in the east and folded in the west from the Indo-Chinese epoch to the early Yanshanian epoch. At the same time, the faults also had a diachronous migration from east to west from the Indo-Chinese epoch to the early Yanshanian epoch. On the con-trary, the thrust-nappe strength was greater in the north and west, weaker in the south and east during the late Yanshanian epoch-early Himalayan epoch. The Tanlu fault system caused the basin to migrate from west to east and south to north. The migration regularity of the East China Sea shelf basin-Okinawa trough fault system shows that the for mation age became younger in the west. The four fault systems and their migration regularities were respectively the results of four different geodynamic backgrounds. The Yanshan orogenicbelt fault system derived from the intracontinental orogeny.The Qinling-Dabie-Sulu orogenic belt fault system derived from the collision of plates and intracontinental subduction.The Tanlu fault system derived from the strike-slip movement and the East China Sea shelf basin-Okinawa trough fault system derived from plate subduction and retreat of the subduction belt.

  19. Tectonically induced methane seepage into a nearly anoxic water column at the Costa Rican continental margin (Quepos Slide)

    Rehder, G. J.; Schleicher, T.; Linke, P.

    2011-12-01

    The continental margin off Cost Rica is characterized by active cold venting induced by the subduction of the Cocos Plate underneath the Caribbean Plate. Submarine landslides, often triggered by the subduction of seamounts, have been shown to considerably contribute to the fluid discharge in the area. At the same time, the hydrographic conditions are characterized by very low oxygen conditions in the oxygen minimum zone centred around 400m, as a result of the reinforcement of the already low oxygen content in the Eastern Tropical Pacific by the local upwelling of the Costa Rica Dome. Here we report on the injection of methane-rich fluids into nearly oxygen-free waters at Quepos Slide. The slide resulted in the formation of a plateau at approximately 400 m water depth, with walls in the NW and NE. In the northern part of the slide, the seafloor is paved with bacterial mats along an elongated, weakly pronounced elevation oriented in NW-SE direction, dominated by filamentous Beggiatoa, often covering more than 80% of the seafloor for more than 200m. The colour of the bacterial assemblages shows strong zoning from white to yellow-orange, while grey assemblages were often associated with bathymetric elevations and smaller, circular- shaped patches. A remarkable characteristic in this unique settin is the almost complete lack of all other forms of vent-specific fauna. A quantitative description of the benthos fauna was achieved using quantitative video analysis based on ROV-based video mapping. The methane inventory in the water column within the embayment defined by the landslide was investigated with a grid of 17 hydrocast stations, verifying the highest methane emission in the northern corner of the slope, with concentrations more than two orders of magnitude above local background. Measurements of the stable carbon isotopic ratio on most of the methane samples were used to assess mixing and oxidation processes within this water body. Together with current meter data

  20. Pre-existing oblique transfer zones and transfer/transform relationships in continental margins: New insights from the southeastern Gulf of Aden, Socotra Island, Yemen

    Bellahsen, N.; Leroy, S.; Autin, J.; Razin, P.; d'Acremont, E.; Sloan, H.; Pik, R.; Ahmed, A.; Khanbari, K.

    2013-11-01

    Transfer zones are ubiquitous features in continental rifts and margins, as are transform faults in oceanic lithosphere. Here, we present a structural study of the Hadibo Transfer Zone (HTZ), located in Socotra Island (Yemen) in the southeastern Gulf of Aden. There, we interpret this continental transfer fault zone to represent a reactivated pre-existing structure. Its trend is oblique to the direction of divergence and it has been active from the early up to the latest stages of rifting. One of the main oceanic fracture zones (FZ), the Hadibo-Sharbithat FZ, is aligned with and appears to be an extension of the HTZ and is probably genetically linked to it. Comparing this setting with observations from other Afro-Arabian rifts as well as with passive margins worldwide, it appears that many continental transfer zones are reactivated pre-existing structures, oblique to divergence. We therefore establish a classification system for oceanic FZ based upon their relationship with syn-rift structures. Type 1 FZ form at syn-rift structures and are late syn-rift to early syn-OCT. Type 2 FZ form during the OCT formation and Type 3 FZ form within the oceanic domain, after the oceanic spreading onset. The latter are controlled by far-field forces, magmatic processes, spreading rates, and oceanic crust rheology.

  1. The influence of tectonic and volcanic processes on the morphology of the Iberian continental margins; Influencia de los procesos tectonicos y volcanicos en la morfologia de los margenes continentales ibericos

    Maestro, A.; Bohoyo, F.; Lopez-Martinez, J.; Acosta, J.; Gomez-Ballesteros, M.; Llaave, E.; Munoz, A.; Terrinha, P. G.; Dominguez, M.; Fernandez-Saez, F.

    2015-07-01

    The Iberian continental margins are mainly passive margins. Nevertheless, the northern sector of the margin was active during some stages of its geological evolution. The southern sector is considered as a transformed margin, which defines the boundary between the Iberian and African plates. This margin was also an active margin in the past. The different types, origins and intensities of the endogenic processes that have affected he Iberian continental margins have led to the development of various tectonic and volcanic morphologies. The North Atlantic rifting allowed the development of large marginal platforms in the Cantabrian and Galician margins the North-Atlantic Ocean spreading. The reactivation of Variscan faults during the Mesozoic and Cenozoic controlled the strike of some of the largest canyons in the Iberian margins. The Gulf of Cadiz margin is characterized by the development of morphologies related to salt tectonic, fluid seepage, thrust fronts and strike-slip fault lineaments hundreds of kilometres long. The Alboran basin and the Betic margin show morphologies connected with the Miocene rift phase, which generated volcanic edifices and various structural reliefs, and with the subsequent compressive phase, when folds and strike-slip, reverse faults, diapirs and mud volcanoes were developed. Finally, the Catalan-Valencian margin and the Balearic promontory are characterized by the presence of horst and graben structures related to the development of the Valencia trough during the Paleogene. The morphological features of endogenic origin have largely controlled the location and extent of the sedimentary processes and morphological products along the Iberian margins. (Author)

  2. Century-to-decade scale modulation of ENSO recorded by postglacial laminated sediments from the Peru continental margin

    Full text: Cores collected from three sites on the continental margin of Peru during ODP Leg 201 recovered >5 m of LGM-recent sediment. At Site 1227 Holocene sediments are absent, but a well preserved early last glacial-interglacial transition (LGIT) section spanning ∼ 17,200-15,900 cal yrBP is present. The sediments are predominantly diatomaceous oozes with subtle dark and light laminations which may be annual in origin. The chronology of drill-core at this site is well-constrained by five bulk sediment 14C dates that define a linear sedimentation rate of ∼ 270 cm/ka. In contrast, Holocene sediments are well-represented at Sites 1228 and 1229. Sedimentation rates over this period suggest the Holocene can be subdivided into two regimes. The older period spans the early and middle Holocene (∼ 10,000 yrBP to ∼ 2,800 yrBP) during which time the sedimentation rate was relatively slow at 4-6 cm/ka. However, we cannot exclude the possibility of unconformities in this part of the stratigraphic section, and this rate should therefore be considered a minimum. From ∼ 2,800 yrBP to the present day, the chronology at both sites is well defined by multiple 14C ages that allow us to confidently define linear sedimentation rates of 70-100 cm/ka. At both sites, the late Holocene appears to be stratigraphically complete. In order to investigate an El Nino origin for the laminae on this part of the Peru shelf, we have undertaken two independent lines of study. First, high-resolution (0.1 mm per pixel) scanned colour images were analysed for all of the cores. For the early LGIT and the late Holocene, the chronological model indicates that sub-annual layers can be resolved, where present. Accordingly, we have used the red colour intensity band from the scanned images to carry out time series analysis of ENSO-band (2-8 year) variability. Analysis of Hole 1228B shows two cyclicity peaks in the ENSO band over the past 10 ka. One of these, at a peak period of 5.3 yr, dominates

  3. Century-to-decade scale modulation of ENSO recorded by postglacial laminated sediments from the Peru continental margin

    Full text: Cores collected from three sites on the continental margin of Peru during ODP Leg 201 recovered >5 m of LGM-recent sediment. At Site 1227 Holocene sediments are absent, but a well preserved early last glacial-interglacial transition (LGIT) section spanning ∼17,200-15,900 cal yrBP is present. The sediments are predominantly diatomaceous oozes with subtle dark and light laminations which may be annual in origin. The chronology of drill-core at this site is well-constrained by five bulk sediment 14C dates that define a linear sedimentation rate of ∼270 cm/ka. In contrast, Holocene sediments are well-represented at Sites 1228 and 1229. Sedimentation rates over this period suggest the Holocene can be subdivided into two regimes. The older period spans the early and middle Holocene (∼10,000 yrBP to ∼2,800 yrBP) during which time the sedimentation rate was relatively slow at 4-6 cm/ka. However, we cannot exclude the possibility of unconformities in this part of the stratigraphic section, and this rate should therefore be considered a minimum. From ∼2,800 yrBP to the present day, the chronology at both sites is well defined by multiple 14C ages that allow us to confidently define linear sedimentation rates of 70-100 cm/ka. At both sites, the late Holocene appears to be stratigraphically complete. In order to investigate an El Nino origin for the laminae on this part of the Peru shelf, we have undertaken two independent lines of study. First, high-resolution (0.1 mm per pixel) scanned colour images were analysed for all of the cores. For the early LGIT and the late Holocene, the chronological model indicates that sub-annual layers can be resolved, where present. Accordingly, we have used the red colour intensity band from the scanned images to carry out time series analysis of ENSO-band (2-8 year) variability. Analysis of Hole 1228B shows two cyclicity peaks in the ENSO band over the past 10 ka. One of these, at a peak period of 5.3 yr, dominates over

  4. Mineralogy and Origin of Sediments From Drill Holes on the Continental Margin Off Florida, 1965-1969 (NODC Accession 7100714)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drill cores obtained during the Joint Oceanographic Institutions' Deep Earth Sampling Program from the continental shelf, the Florida-Hatteras Slope, and the Blake...

  5. EX1205L2: Northeast Canyons and Continental Margins Exploration on NOAA Ship Okeanos Explorer between 20120728 and 20120803

    National Oceanic and Atmospheric Administration, Department of Commerce — EX1205 Leg 2 is the final cruise of the 2012 season for Okeanos Explorer (EX). It will be primarily focused on supplementing Northeast canyon and continental shelf...

  6. EX1204: Northeastern Canyons and Continental Margins Exploration on NOAA Ship Okeanos Explorer between 20120529 and 20120613

    National Oceanic and Atmospheric Administration, Department of Commerce — During the Okeanos Explorer (EX) mission EX1204, the vessel will sail from Norfolk, VA, along the continental shelf break of the U.S. East Coast from Virginia to...

  7. Mesozoic architecture of a tract of the European-Iberian continental margin: Insights from preserved submarine palaeotopography in the Longobucco Basin (Calabria, Southern Italy)

    Santantonio, Massimo; Fabbi, Simone; Aldega, Luca

    2016-01-01

    The sedimentary successions exposed in northeast Calabria document the Jurassic-Early Cretaceous tectonic-sedimentary evolution of a former segment of the European-Iberian continental margin. They are juxtaposed today to units representing the deformation of the African and Adriatic plates margins as a product of Apenninic crustal shortening. A complex pattern of unconformities reveals a multi-stage tectonic evolution during the Early Jurassic, which affected the facies and geometries of siliciclastic and carbonate successions deposited in syn- and post-rift environments ranging from fluvial to deep marine. Late Sinemurian/Early Pliensbachian normal faulting resulted in exposure of the Hercynian basement at the sea-floor, which was onlapped by marine basin-fill units. Shallow-water carbonate aprons and reefs developed in response to the production of new accommodation space, fringing the newborn islands which represent structural highs made of Paleozoic crystalline and metamorphic rock. Their drowning and fragmentation in the Toarcian led to the development of thin caps of Rosso Ammonitico facies. Coeval to these deposits, a thick (> 1 km) hemipelagic/siliciclastic succession was sedimented in neighboring hanging wall basins, which would ultimately merge with the structural high successions. Footwall blocks of the Early Jurassic rift, made of Paleozoic basement and basin-margin border faults with their onlapping basin-fill formations, are found today at the hanging wall of Miocene thrusts, overlying younger (Middle/Late Jurassic to Late Paleogene) folded basinal sediments. This paper makes use of selected case examples to describe the richly diverse set of features, ranging from paleontology to sedimentology, to structural geology, which are associated with the field identification of basin-margin unconformities. Our data provide key constraints for restoring the pre-orogenic architecture of a continental margin facing a branch of the Liguria-Piedmont ocean in the

  8. High-resolution seismic stratigraphy of the late Neogene of the central sector of the Colombian Pacific continental shelf: A seismic expression of an active continental margin

    Martínez, Jaime Orlando; López Ramos, Eduardo

    2011-02-01

    The sedimentary prism of the central Pacific continental shelf of Colombia was affected by regional folding and faulting, and probably later mud diapirism, from the Late Miocene to the Holocene. Interpretation of high-resolution seismic lines (2 s/dt) revealed that the prism consists of 13 high-resolution seismic units, that can be separated into 5 seismic groups. Deposition of the prism and the associated stacking pattern, are probably the response to variable uplift and subsidence in a fore-arc basin that underwent important tectonic events by the end of the Miocene. Throughout the Pliocene, the continental shelf sedimentation was affected by the growing of a dome structure probable due to mud diapirism. This fact caused peripheral faults both normal and reverse that controlled the distribution of some of the seismic units. During the Late Pleistocene (Wisconsin stage?) a eustatic sea level fall caused the shoreline to advance about 50 km westward of its present position. Because of this eustatic sea level change, a strong fluvial dissection took place and is interpreted as the probable extension of the San Juan River to the south of the present day river mouth. Within this framework it is believed that the Malaga and Buenaventura Bays were the passageways of branches of the old drainage system of the San Juan River. The inner branch circulated through the present Buenaventura Bay and runs southward leaving the mark of an apparent valley identified in the seismic information in the eastern sector of the study area. This old fluvial valley and its filling material located in the present day inner continental shelf front of Buenaventura are postulated as important targets to find placer minerals such as gold and platinum.

  9. A study on the geochemical characteristics of Upper Permian continental marginal arc volcanic rocks in the northern segment of South Lancangjiang Belt

    SHEN Shangyue; FENG Qinglai; WEI Qirong; ZHANG Zhibin; ZHANG Hu

    2006-01-01

    Geochemical characteristics of the Upper Permian ( P2 ) continental marginal arc volcanic rocks are described, which have been found recently around the areas of Xiaodingxi and Zangli on the eastern side of the Yunxian-Lincang granite, in terms of rock assemblage, petrochemistry, REE, trace elements, Pb isotopes, geotectonic environment and so on. The volcanic rock assemblage is dominated by basalt-andesite-dacite, with minor trachyte andecite-trachyte; the volcanic rock series is predominated by the calc-alkaline series, with minor tholleiite series and alkaline series rocks; the volcanic rocks are characterized by high Al2O3 and low TiO2 , with K2O contents showing extremely strong polarity; the REE distribution patterns are characterized by LREE enrichment and right-inclined type; trace elements and large cation elements are highly enriched, Ti and Cr are depleted, and P and Nb are partially depleted; the Pb composition is of the Gondwana type; the petrochemical points mostly fall within the field of island-arc volcanic rocks, in consistency with the projection of data points of continental marginal volcanic rocks in the southern segment of the South Lancangjiang Belt and the North Lancangjiang Belt. This continental marginal arc volcanic rock belt, together with the ocean-ridge and ocean-island volcanic rocks and ophiolites in the Changning-Menglian Belt, constitute the ocean-ridge volcanic rock, ophiolite-arc rock-magmatic rock belts which are distributed in pairs, indicating that the Lancangjiang oceanic crust subducted eastwards. This result is of great importance in constraining the evolution of the paleo-Tethys in the Lancangjiang Belt.

  10. A facies distribution model controlled by a tectonically inherited sea bottom topography in the carbonate rimmed shelf of the Upper Tithonian-Valanginian Southern Tethyan continental margin (NW Sicily, Italy)

    Basilone, Luca; Sulli, Attilio

    2016-08-01

    The Upper Tithonian-Valanginian shallow-water carbonates outcropping in the Palermo Mts (NW Sicily) consist of several facies associations reflecting different depositional environments of a carbonate rimmed shelf, pertaining to the Southern Tethyan continental margin. The reconstructed depositional model, based on the sedimentological features, cyclic facies arrangement and biota distribution, shows that a wide protected lagoon, dominated by algae, molluscs and scattered patch reefs, was bordered landward by a tidal flat, where stromatolitic algal mats were cyclically subaerial exposed, and seaward by a marine sand belt and reef complex. Oolitic packstone-grainstone lithofacies, cyclically subjected to subaerial exposure, suggests the occurrence of a barrier island, located nearly to the lagoonal carbonate shoreline, allowing the development of narrow embayments with restricted circulation. In the outer platform, the oolitic lithofacies of the marine sand belt pass landward into the protected lagoon, where washover oolite sands occur, and seaward into a high-energy zone (back-reef apron) gradually merging in the reef complex. In the latter, coral framestone occupied the inner sector (reef flat), while the facies association dominated by boundstone with Ellipsactinia sp. developed in the outer sectors (reef wall), adjacent to the fore-reef and upper slope environments. Stratigraphic evidence, associated with the recognized facies associations, helped to reconstruct the geo-tectonic setting of the carbonate platform, where the distribution of the depositional facies along the shelf and their extension were influenced by the tectonically-inherited sea bottom topography. In a regime of extensional tectonics, localized and thin succession of high-energy prograding oolite sand belt depositional facies occupied structural highs (footwall uplift), while the largely diffused and thick low energy aggrading peritidal-to-lagoonal depositional facies developed in subsiding

  11. Sedimentary processes and resulting continental margin configuration during large-scale sea-level drawdown: The Messinian Salinity Crisis in the Western Mediterranean Sea

    Lago Cameselle, Alejandra

    2015-01-01

    [eng] At the end of the Miocene (5.97-5.33 Ma), the Mediterranean basins underwent deep morphological and sedimentological changes as a result of the large-scale sea-level fall during the so-called Messinian Salinity Crisis (MSC) and subsequent fast sea-level rise in the 3 Zanclean. Whereas deep basins accumulated more than 1 million km of evaporites, continental margins recorded several erosion surfaces. Through the analysis of 2D and 3D seismic reflection data and 2D numerical modelling, th...

  12. Plio-Quaternary prograding clinoform wedges of the western Gulf of Lion continental margin (NW Mediterranean) after the Messinian Salinity Crisis

    Lofi, Johanna; Rabineau, Marina; Gorini, Christian; Berne, Serge; Clauzon, Georges; De Clarens, Philippe; Dos Reis, Tadeu; Mountain, Gregory; Ryan, William; Steckler, Michael; Fouchet, Christine

    2003-01-01

    In contrast to the much-studied onshore and deep offshore post-Messinian sedimentary history of the Gulf of Lion, the continental shelf had been poorly explored until recently. New seismic data, acquired by ELF Oil Company on the Languedoc-Roussillon shelf (Western Mediterranean Sea), from Cap Creus in the SW to Cap d'Agde in the NE, together with data from previously drilled exploratory wells, allow us to propose a scenario for margin reconstruction following the Messinian Salinity Crisis. T...

  13. Long-term evolution of the western South Atlantic passive continental margin in a key area of SE Brazil revealed by thermokinematic numerical modeling using the software code Pecube

    Stippich, Christian; Krob, Florian; Glasmacher, Ulrich A.; Hackspacher, Peter C.

    2016-04-01

    The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate published1 and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones1 are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE2,3 and FastScape4). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The

  14. Acoustic wipeouts over the continental margins off Krishna, Godavari and Mahanadi river basins, East coast of India

    Murthy, K.S.R.; Rao, T.C.S.

    wipeouts. Behrens (1988) reported occurrence of gas/oil seepages beneath such ridges associated with underlying salt diapir ofT Gulf of Mexico. Acoustic wipeouts in the sub-surface layers due to a faulted continental slope are also observed of... the figures. References BEHRESS, E. W., (1988) Geology of a continental slope oil seep, Northern Gulf of Mexico. Amer. Assoc. Petrot Geo!. Bulletin. v. 72, pp. 105-114. 568 K. S. R. MURTHY AND T. C. S. RAO BRYANT, W. R. and L. B. ROEMER, (1983) Structure...

  15. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    Trehu, Anne; Kannberg, Peter

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in

  16. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    Anne Trehu; Peter Kannberg

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow

  17. Structural lineaments from the magnetic anomaly maps of the eastern continental margin of India (ECMI) and NW Bengal Fan

    Murthy, K.S.R.; Rao, T.C.S.; Subrahmanyam, A.S.; Rao, M.M.M.; Lakshminarayana, S.

    degrees E. Analysis of magnetic data associated with these trends suggests that (1) trend1, located at the foot of the continental slope (around 3000 m water depth) represents the ocean-continent boundary (OCB) of ECMI, (2) trend 2 represents the northern...

  18. Evidences of late quaternary neotectonic activity and sea-level changes along the western continental margin of India

    Rao, V.P.; Veerayya, M.; Thamban, M.; Wagle, B.G.

    The offshore data on sea-level changes along the western margin of India have been reviewed and evidences of Late Quaternary neotectonic activity and subsidence are documented, based on the diagenetic textures of limestones from deeper submarine...

  19. Late Devonian and Triassic basalts from the southern continental margin of the East European Platform, tracers of a single heterogeneous lithospheric mantle source

    Françoise Chalot-Prat; Petr Tikhomirov; Aline Saintot

    2007-12-01

    In Late Devonian and Early-to-Late Triassic times, the southern continental margin of the Eastern European Platform was the site of a basaltic volcanism in the Donbas and Fore-Caucasus areas respectively. Both volcanic piles rest unconformably upon Paleoproterozoic and Late Paleozoic units respectively, and emplaced during continental rifting periods some 600 km away from expected locations of active oceanic subduction zones. This paper reports a comparative geochemical study of the basaltic rocks, and views them as the best tracers of the involved mantle below the Eastern European Platform. The Late Devonian alkaline basic rocks differ from the calc-alkaline Triassic basic rocks by their higher alkali-silica ratio, their higher TiO2, K2O, P2O5 and FeO contents, their higher trace element contents, a higher degree of fractionation between the most and the least incompatible elements and the absence of Ta-Nb negative anomalies. These general features, clearly distinct from those of partial melting and fractional crystallization, are due to mantle source effects. With similar Nd and Sr isotopic signatures indicating mantle-crust mixing, both suites would originate from the melting of a same but heterogeneous continental mantle lithosphere (refertilized depleted mantle). Accordingly the Nd model ages, the youngest major event associated with mantle metasomatism occurred during Early Neoproterozoic times (∼650Ma).

  20. Oceanographic parameters in continental margin of the State of Ceará (northeastern Brazil deduced from C and O isotopes in foraminifers

    Wanessa S. Marques

    2007-03-01

    Full Text Available Specimens of Recent foraminifera of Amphistegina radiata, Peneroplis planatus and Globigerinoides ruber, from fifty samples of surface sediments of the continental margin of the State of Ceará, Brazil, have been analyzed for carbon and oxygen isotopes to investigate oceanographic parameters and determine the values of delta18O of the oceanic water. From a comparison between values of delta18O obtained for ocean water using the linear equations by (Craig and Gordon 1965 and the one by Wolff et al. (1998, it became evident that the former yielded a more reliable value (0.2‰ SMOW than the latter. Lower values of delta18O for the ocean water in this continental margin resulted from continental water influence. Values of 18O (-0.3‰ to -1.5‰ PDB for benthic foraminifera and -0.6‰ to -2.4‰ PDB for planktic foraminifera, attest to a variation of temperatures of oceanic water masses, in average, between 20 to 22ºC in deep water and 24 to 27ºC, in surface water. Values of delta13C from +3.2‰ to -0.2‰ PDB (benthic foraminifera reflect a variation in the apparent oxygen utilization (AOU in the continental margin and indicate that the environments of bacteriological decomposition of organic matter are not continuous along the investigated area.Amphistegina radiata, Peneroplis planatus e Globigerinoides ruber, presentes em cinqüenta amostras de sedimentos superficiais da margem continental do Estado do Ceará, Brasil, foram analisados quanto à composição isotópica do Oxigênio e Carbono para investigar parâmetros oceanográficos, e um possível valor de delta18O do oceano. Foi feita uma comparação entre as equações lineares de Craig e Gordon (1965 e de Wolff et al. (1998, e verificou-se que a primeira equação foi mais apropriada para o cálculo de delta18O do oceano, na área estudada, encontrando-se um valor de 0,2‰ SMOW. Os menores valores de delta18O estão associados à desembocadura dos rios, refletindo a influ

  1. The role of continental margins in the final stages of arc formation: Constraints from teleseismic tomography of the Gibraltar and Calabrian Arc (Western Mediterranean)

    Argnani, Andrea; Cimini, Giovanni Battista; Frugoni, Francesco; Monna, Stephen; Montuori, Caterina

    2016-05-01

    The deep seismicity and lateral distribution of seismic velocity in the Central Western Mediterranean, point to the existence under the Alboran and Tyrrhenian Seas of two lithospheric slabs reaching the mantle transition zone. Gibraltar and Calabrian narrow arcs correspond to the slabs. Similarities in the tectonic and mantle structure of the two areas have been explained by a common subduction and roll-back mechanism, in which the two arcs are symmetrical end members. We present a new 3-D tomographic model at mantle scale for the Calabrian Arc and compare it with a recently published model for the Gibraltar Arc by Monna et al. (2013a). The two models, calculated with inversion of teleseismic phase arrivals, have a scale and parametrization that allow for a direct comparison. The inclusion in both inversions of ocean bottom seismometer broadband data improves the resolution of the areas underlying the seafloor networks. This additional information is used to resolve the deep structure and constrain the reconstruction of the Central Western Mediterranean geodynamic evolution. The Gibraltar tomography model suggests that the slab is separated from the Atlantic oceanic domain by a portion of African continental margin, whereas the Calabrian model displays a continuous oceanic slab that is connected, via a narrow passage (~ 350 km), to the Ionian basin oceanic domain. Starting from the comparison of the two models we propose the following interpretation: within the Mediterranean geodynamic regime (dominated by slab rollback) the geometry of the African continental margin, located on the lower plate, represents a critical control on the evolution of subduction. As buoyant continental lithosphere entered the subduction zones, slab pull caused tears in the subducted lithosphere. This tectonic response, which occurred in the final stages of arc evolution and was strongly controlled by the paleogeography of the subducted plates, explains the observed differences between the

  2. How the structure of a continental margin affects the development of a fold and thrust belt. 1: A case study in south-central Taiwan

    Brown, Dennis; Alvarez-Marron, Joaquina; Biete, Cristina; Camanni, Giovanni; Kuo-Chen, Hao; Ho, Chun-Wei

    2016-04-01

    Studies of mountain belts worldwide have shown that the structural, mechanical, and kinematic evolution of their foreland fold and thrust belts are strongly influenced by the structure of the continental margins that are involved in the deformation. The area on and around the island of Taiwan provides an unparalleled opportunity to investigate this because the entire profile of the Eurasian margin, from the shelf in the north to the slope and continent-ocean transition in the south and the offshore, is currently involved in the collision. Taiwan, then, can provide key insights into how such features as rift basins on the shelf, the extensional faults that form the shelf-slope break in the basement, or the structure of the extended crust and morphology of the sedimentary carapace of the slope can be directly reflected in the location and pattern of its seismicity, in its topography, and in its structural architecture, among other things. The continental margin of the Eurasian Plate that is currently involved in the Taiwan orogeny is thought to have evolved from a sub-continental subduction system in the Late Cretaceous to a rifting margin by the Early Eocene and, during the late Early Oligocene, to sea-floor spreading and the formation of the South China Sea, followed by localized extension in the Middle Miocene and, finally, collision with the Luzon Arc by the Early Miocene. Imaging features of the margin's structure in the Taiwan orogen is possible with seismic tomography, which shows, for example, that there are notable changes in velocity that can be directly attributed to structures in the basement. For example, there is a marked increase in Vp beneath the Hsuehshan Range which can be interpreted to be related to the uplift of higher velocity basement rocks by basin inversion. This is accompanied by significant seismicity that reaches a depth of more than 30 km's, and by surface uplift to form the highest topography in Taiwan. Furthermore, beginning at 8 km

  3. Continental break-up history of a deep magma-poor margin based on seismic reflection data (northeastern Gulf of Aden margin, offshore Oman)

    Autin, Julia; Leroy, Sylvie; Beslier, Marie-Odile; D 'acremont, Elia; Razin, Philippe; Ribodetti, Alessandra; Bellahsen, Nicolas; Robin, Cécile; Al Toubi, Khalfan

    2010-01-01

    Rifting between Arabia and Somalia started around 35 Ma followed by spreading at 17.6 Ma in the eastern part of the Gulf of Aden. The first-order segment between Alula-Fartak and Socotra-Hadbeen fracture zones is divided into three second-order segments with different structure and morphology. Seismic reflection data were collected during the Encens Cruise in 2006 on the northeastern margin. In this study, we present the results of Pre-Stack Depth Migration of the multichannel seismic data fr...

  4. Variations in Organic Matter Burial and Composition in Sediments from the Indian Ocean Continental Margin Off SW Indonesia (Sumatra - Java - Flores) Since the Last Glacial Maximum

    Jennerjahn, T. C.; Gesierich, K.; Schefuß, E.; Mohtadi, M.

    2014-12-01

    Global climate change is a mosaic of regional changes to a large extent determined by region-specific feedbacks between climate and ecosystems. At present the ocean is forming a major sink in the global carbon cycle. Organic matter (OM) storage in sediments displays large regional variations and varied over time during the Quaternary. Upwelling regions are sites of high primary productivity and major depocenters of organic carbon (OC), the least understood of which is the Indian Ocean upwelling off Indonesia. In order to reconstruct the burial and composition of OM during the Late Quaternary, we analyzed five sediment cores from the Indian Ocean continental margin off the Indonesian islands Sumatra to Flores spanning the last 20,000 years (20 kyr). Sediments were analyzed for bulk composition, stable carbon and nitrogen isotopes of OM, amino acids and hexosamines and terrestrial plant wax n-alkanes and their stable carbon isotope composition. Sedimentation rates hardly varied over time in the western part of the transect. They were slightly lower in the East during the Last Glacial Maximum (LGM) and deglaciation, but increased strongly during the Holocene. The amount and composition of OM was similar along the transect with maximum values during the deglaciation and the late Holocene. High biogenic opal covarying with OM content indicates upwelling-induced primary productivity dominated by diatoms to be a major control of OM burial in sediments in the East during the past 20 kyr. The content of labile OM was low throughout the transect during the LGM and increased during the late Holocene. The increase was stronger and the OM less degraded in the East than in the West indicating that continental margin sediments off Java and Flores were the major depocenter of OC burial along the Indian Ocean margin off SW Indonesia. Temporal variations probably resulted from changes in upwelling intensity and terrestrial inputs driven by variations in monsoon strength.

  5. Continental magnetic anomaly constraints on continental reconstruction

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Crustal magnetic anomalies mapped by the MAGSAT satellite for North and South America, Europe, Africa, India, Australia and Antarctica and adjacent marine areas were adjusted to a common elevation of 400 km and differentially reduced to the radial pole of intensity 60,000 nT. These radially polarized anomalies are normalized for differential inclination, declination and intensity effects of the geomagnetic field, so that in principle they directly reflected the geometric and magnetic polarization attributes of sources which include regional petrologic variations of the crust and upper mantle, and crustal thickness and thermal perturbations. Continental anomalies demonstrate remarkably detailed correlation of regional magnetic sources across rifted margins when plotted on a reconstruction of Pangea. Accordingly, they suggest further fundamental constraints on the geologic evolution of the continents and their reconstructions.

  6. Apatite fission track dating and long-term landscape evolution of the South Atlantic passive continental margin in the region of the Sierras Septentrionales in eastern Argentina

    Pfister, S.; Glasmacher, P. A.; Kollenz, S.

    2013-12-01

    To understand the evolution of the passive continental margin in Argentina apatite fission track dating is an appropriate method, which will lead to new conclusions in this area. The Tandilia System, also called Sierras Septentrionales, is located south of the Río de la Plato Craton in eastern Argentina in the state of Buenos Aires. North of the hills Salado basin is orientated whereas the Claromeó basin is located south of the mountain range. In contrary to most basins along the southamerican passive continental margin the Tandilia-System and the neighbouring basins trend perpendicular to the coast line. The topography ranges between 50 and 250m within the study area and is therefore fairly flat. The igneous-metamorphic basement is pre-proterozoic in age build up of mainly granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks and granitoid plutons and is overlain by a series of Neoproterozoic to early Paleozoic sediments (Cingolani, 2010). The aim of the study is to evaluate the long-term landscape evolution of the passive continental margin in eastern Argentina in terms of thermal history and exhumation. For that purpose samples were taken from the Sierra Septentrionales basement analyzed for the apatite-FT method. The results so far indicate apatite fission track ages between 146.2 (10.1) Ma and 200.4 (12.7) Ma, which shows all samples have been reseted. Still ongoing length measurements will lead to 2D thermo kinematic Hefty (Ketcham, 2005; Ketcham et al., 2009; Ketcham, 2007) models. This will leads to further more insights on the cooling history and tectonic activities in the research area. References: Cingolani C. A. (2010): The Tandilia System of Argentina as a southern extension of the Río de la Plata craton: an overview. Int. J. Earth Sci. (Geol. Rundsch.) (2011) 100:221-242, doi 10.1007/s00531-010-0611-5. Ketcham, R. A. (2005): Forward and inverse modeling of low-temperature thermochronometry data, in Low

  7. Verdine and other associated authigenic (glaucony, phosphate) facies from the surficial sediments of the southwestern continental margin of India

    Rao, V.P.; Lamboy, M.; Dupeuble, P.A.

    , the Senegalese shelf and the French Guiana shelf (Odin and Masse, in Odin, 1988), the X-ray reflections in our verdine samples are broad, com- plex in their behaviour and never represent a single authigenic mineral. The complex nature and crys- tallization... spaced contorted clay blades and globules. X-ray mineralogy suggests that these grains are a mixture of verdine dominated minerals. Phyllite C is the principal verdine mineral in the shelf zone. On the continental slope phyllite V dominates between 100...

  8. Impact of organic matter source and quality on living benthic foraminiferal distribution on a river-dominated continental margin: A study of the Portuguese Margin.

    Bonnin, Jerome; Dessandier, Pierre-Antoine; Kim, Jung-Hyun; Deflandre, Bruno; Gremare, Antoine; Sinninghe-Damsté, Jaap

    2016-04-01

    Living (rose Bengal stained) benthic foraminifera were investigated on surface sediments from 23 stations from the river-dominated north-western Portuguese margin. Samples were collected in March 2011, following the period of the maximum rainfall over the Iberian Peninsula, between 20 and 2000 m water depth along five cross-margin transects. Four of them are located off the Douro, Mondego, Tagus and Sado rivers and one off the Estremadura coast. The major objectives of this study are hence 1) to compare the influence of the rivers on the distribution of benthic foraminifera and 2) assess the impact of organic matter of various origin and quality on the benthic micro faunas. To do this, sedimentological and biogeochemical characteristics of the sediments were identified by measuring grain size, oxygen penetration depth (OPD), total organic carbon (TOC) content, stable carbon isotopic composition of TOC (δ13CTOC) and concentration of pigments and amino acids. Based on the principal component (PCA) and cluster analyses of the environmental data, three major geographical groups are identified: (1) deep stations, (2) coastal and mid-slopestations, and (3) shelf stations under river influence.At the deepest stations, species are associated with high organic matter (OM) quantity but low OM quality, where Uvigerina mediterranea, Hoeglundina elegans and agglutinated species such as Reophax scorpiurus or Bigenerina nodosaria are dominant. All stations off the Sado River, which is the most affected area by the anthropogenic influence, are also characterized by high quantity but low quality of OM with the minimum faunal density and diversity within the study area. Mid-slope stations are associated with low OM content and coarse sediments (Q50) with the predominance of N. scaphum. Shallow shelf stations close to the Douro and Tagus river mouths show a dominance of taxa (e.g. Ammonia beccarii, Bulimina aculeata, Eggerelloides scaber, Nonion scaphum, Cancris auriculus and

  9. Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343-U1345)

    Pierre, C.; Blanc-Valleron, M.-M.; Caquineau, S.; März, C.; Ravelo, A. C.; Takahashi, K.; Alvarez Zarikian, C.

    2016-03-01

    During Expedition 323 of the Integrated Ocean Drilling Program to the Bering Sea (July 5-September 4, 2009), three sites were drilled along the Bering Sea northeastern continental margin [U1343 down to 745 meters below sea floor (mbsf), U1344 (745 mbsf), U1345 (150 mbsf)]. Diagenetic carbonates are present at all sites within the clayey, diatom-rich oozes of the Bering Sea, where pore waters are also characterized by extremely high methane concentrations. We here present mineralogical, elemental and isotopic data obtained from the authigenic carbonate-rich intercalations within the clay-rich Pleistocene sediments deposited along the Bering Sea continental margin. The mineralogy of the authigenic carbonates is generally represented by composite mixtures of very small crystals of magnesian calcite, dolomite, and iron-rich carbonates, with the latter phases occurring below 260 mbsf at Site U1343, below 200 mbsf at Site U1344, and below 130 mbsf at Site U1345. Element geochemistry shows that Ca, Mg, Fe, Ba, Mn, Sr and U are enriched in the carbonate-rich intercalations relative to the background sediments due to their incorporation into the carbonates and into other authigenic phases (e.g., barite and pyrite). The oxygen and carbon isotopic compositions of the authigenic carbonate minerals show that they were sequentially precipitated from pore waters at different temperatures (i.e., different burial depths) and with different isotopic compositions of dissolved inorganic carbon (DIC). The authigenic Mg-calcite precipitated early during diagenesis and shallow burial from a 13C-depleted DIC pool, whereas dolomite and Fe-rich carbonates formed during later diagenesis and deeper burial from a 13C-enriched DIC pool. These authigenic carbonate occurrences are interpreted as resulting from microbial sulfate reduction combined with anaerobic oxidation of methane, and methanogenesis that was intimately linked to the alteration of silicates, especially iron-rich clay minerals.

  10. The Kongsfjorden Channel System offshore NW Spitsbergen, European Arctic: evidence of down-slope processes in a contour-current dominated setting on the continental margin

    Forwick, Matthias; Sverre Laberg, Jan; Hass, H. Christian; Osti, Giacomo

    2016-04-01

    The Kongsfjorden Channel System (KCS) is located on the continental slope in the eastern Fram Strait, off northwest Spitsbergen. It provides evidence that the influence of down-slope sedimentary processes locally exceeds regional along-slope sedimentation. Compared to other submarine channel systems on and off glaciated continental margins, it is a relatively short system (~120 km) occurring at a large range of water depths (~250-4000 m). It originates with multiple gullies on the Kongsfjorden Trough Mouth Fan merging to small channels that further downslope merge to a main channel. The overall location of the channel system is controlled by variations in slope gradients (0-20°) and the ambient regional bathymetry: widest and deepest incisions occur in areas of steepest slope gradients. The KCS has probably been active since ~1 Ma when glacial activity on Svalbard increased and grounded ice expanded to the shelf break off Kongsfjorden repeatedly. Activity within the system was probably highest during glacials. However, reduced activity presumably took place also during interglacials. The presentation summarizes the work of Forwick et al. (2015). Reference: Forwick, M., Laberg, J.S., Hass, H.C. & Osti, C., 2015. The Kongsfjorden Channel System offshore NW Svalbard: downslope sedimentary processes in a contour-current-dominated setting. Arktos 1, DOI: 10.1007/s41063-015-0018-4.

  11. The crustal structure of the north-eastern Gulf of Aden continental margin: insights from wide-angle seismic data

    Watremez, Louise; Leroy, Sylvie; Rouzo, Stephane; d'Acremont, E.; Unternehr, P.; Ebinger, C.; Lucazeau, F.; Al-lazki, A.

    2011-01-01

    P>The wide-angle seismic (WAS) and gravity data of the Encens survey allow us to determine the deep crustal structure of the north-eastern Gulf of Aden non-volcanic passive margin. The Gulf of Aden is a young oceanic basin that began to open at least 17.6 Ma ago. Its current geometry shows first- and second-order segmentation: our study focusses on the Ashawq-Salalah second-order segment, between Alula-Fartak and Socotra-Hadbeen fracture zones. Modelling of the WAS and gravity data (three pro...

  12. A Sub-Decadal Continental Margin Record of Little Ice Age-to-Modern Climate-Induced Changes in Sediment Delivery and Transport in the Gulf of Alaska

    Jaeger, J. M.; Viene, W.; Finney, B.; Stoner, J.; Evans, H.

    2003-12-01

    The Gulf of Alaska (GOA) margin is one of the few locations on Earth where orogenic processes, glacial climate, and continental margin sedimentation can be studied and quantitatively modeled in unison. Climatic changes control glacial dynamics, erosion, and sediment/meltwater fluxes to the ocean, and GOA margin strata appear to preserve a strong record of terrestrial climate (i.e., temperature and precipitation) as well as paleoceanographic signals on seasonal to tectonic time scales. In collaboration with the GOA-NEP GLOBEC program, gravity cores were collected at key sampling sites under the influence of the climatically sensitive Alaska Coastal Current (ACC). Chronologies for the past 400-y were established using Pb-210/Cs-137, coupled with paleo-and-environmental magnetism analyzed from u-channel samples at one-cm intervals. The sedimentary paleomagnetic record is correlated to the Sitka geomagnetic observatory record for the last century and extended using the Jackson et al. 400-yr global field model. Carbon and nitrogen stable isotopes, C/N ratios and opal concentrations were analyzed to determine OM source and paleoproductivity. Proximal to large sediment sources, high (>1 cm/y) sediment accumulation rates vary over decadal times scales and appear to be directly tied to the amount of coastal precipitation and the corresponding strength of the ACC. Distal shelf cores have sedimentation rates that vary over longer time scales and are 2-3 x higher during glacial melting from LIA maxima. High-resolution grain size analyses and core logging of bulk density and environmental magnetic parameters including magnetic susceptibility vary at LIA, pentadecadal, and decadal time scales and are strongly correlated with variability in regional precipitation as seen in the nearby Mt. Logan ice core record. Preliminary results suggest that the amount of freshwater discharge and corresponding strength of the ACC was substantially higher during the LIA.

  13. Ostracoda and Foraminifera associated with macrofauna of marginal marine origin in continental sabkha sediments of Tayma (NW Saudi Arabia)

    Pint, Anna; Frenzel, Peter; Engel, Max; Plessen, Birgit; Melzer, Sandra; Brückner, Helmut

    2016-04-01

    The oasis Tayma in northwestern Saudi Arabia (27°38'N, 38°33'E) is well known for its rich archaeological heritage and also hosts a key sedimentary record of Holocene environmental change.The palaeontologically investigated material comes from two 5.5 m long sediment cores taken in the northeastern and central part of the sabkha and two outcrops of shoreline deposits at the northeastern and southwestern margin of a large lake. Microfossil-rich layers have an age of about 9.2-ca. 8 ka BP. The sandy and carbonate-dominated sediments contain autochthonous balanids, the gastropods Melanoides tuberculatus and hydrobiids as well as the foraminifers Ammonia tepida (Cushman, 1926), Quinqueloculina seminula (Linnaeus, 1758), and Flintionoides labiosa (d'Orbigny, 1839). This brackish water association is completed by partially mass-occurrence of Cyprideis torosa (JONES, 1850), an euryhaline and generally widely tolerant ostracod species. Only the smooth shelled morphotype littoralis occurs. The association indicates a large brackish water lake with temporary freshwater inflows. All species documented originate in the marginal marine environment of the Red or Mediterranean Sea within the intertidal zone and hence they are adapted for strong environmental changes. We assume negative water balance under arid climatic conditions as cause for the high salinity of this athalassic lake. Sieve-pore analyses and shell chemistry suppose a trend of increasing salinity towards the top of the studied microfossil-bearing sections. This pattern is confirmed by increasing test malformation ratios of foraminifers. The marine origin of the fauna is surprising in this area 250 km away from the sea in an altitude of about 800 m a.s.l. We assume an avian-mediated transport of eggs, larvae or even adult animals to this site. The brackish water character of the lake enabled a permanent settling of marginal marine foraminifers, ostracods and even macrofauna as gastropods and balanids. The studied

  14. Mesozoic magmatism in an upper- to middle-crustal section through the Cordilleran continental margin arc, eastern Transverse Ranges, California

    Needy, S.K.; Anderson, J.L.; Wooden, J.L.; Fleck, R.J.; Barth, A.P.; Paterson, S.R.; Memeti, V.; Pignotta, G.S.

    2009-01-01

    The eastern Transverse Ranges provide essentially continuous exposure for >100 km across the strike of the Mesozoic Cordilleran orogen. Thermobarometric calculations based on hornblende and plagioclase compositions in Mesozoic plutonic rocks show that the fi rst-order distribution of rock units resulted from differential Laramide exhumation. Mesozoic supracrustal rocks are preserved in the relatively little exhumed eastern part of the eastern Transverse Ranges and south-central Mojave Desert, and progressively greater rock uplift and exhumation toward the west exposed rocks originating at mid-crustal depths. The eastern Transverse Ranges thus constitute a tilted, nearly continuously exposed crustal section of the Mesozoic magmatic arc and framework rocks from subvolcanic levels to paleodepths as great as ??22 km. The base of this tilted arc section is a moderately east-dipping sheeted magmatic complex >10 km in width by 70 km in length, constructed structurally beneath, yet synchronous with Late Jurassic and Cretaceous upper-crustal plutons. Geochronology and regional structural relations thus suggest that arc magmas generated in the lower crust of this continental arc interacted in a complex mid-crustal zone of crystallization and mixing; products of this zone were parental magmas that formed relatively homogeneous upper crustal felsic plutons and fed lavas and voluminous ignimbrites. ?? 2009 The Geological Society of America.

  15. Different sources involved in generation of continental arc volcanism: The Carboniferous-Permian volcanic rocks in the northern margin of the North China block

    Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min; Hu, Zhao-Chu

    2016-01-01

    New zircon U-Pb dating results on the Carboniferous-Permian volcanic rocks in the northern margin of the North China block (NCB) indicate their eruption during the Early Carboniferous to Late Permian from 347 ± 3 Ma to 258 ± 1 Ma and a slight decrease of the upper limits of the volcanic sequences from west to east. They have a main rock association of basalt, basaltic andesite, andesite, dacite, rhyolite, tuff, and tufaceous sandstone. Most of them have calc-alkaline compositions and exhibit variable SiO2 contents from 48.2 wt.% to 77.1 wt.%. There is no significant gap between the mafic and felsic volcanic rocks in major and trace element classification diagrams, indicating that they are not bimodal in composition. The Carboniferous-Permian volcanic rocks exhibit subduction-related geochemical features such as negative Nb and Ta anomalies of mafic to intermediate rocks on primitive mantle-normalized diagrams, indicating they were formed in an Andean-type continental arc during southward subduction of the Paleo-Asian oceanic plate beneath the northern NCB. However, their wide range of whole-rock Sr-Nd and zircon Hf isotopic compositions indicate that their source areas are very complex and different sources were involved in generation of these volcanic rocks. Geochemical and Sr-Nd-Hf isotopic results show that the basalt and some andesite were produced by fractional crystallization of mafic magma derived from partial melting of mantle wedge and subducted oceanic crust; however, most of the intermediate to felsic volcanic rocks were derived from partial melting of lower continental crust. There is an increasing input of crustal materials from the Carboniferous to Permian as indicated by increasing volumes of felsic volcanic rocks in the volcanic sequences. The results show that origin of the continental arc volcanism is very complex and both materials from the subducted oceanic crust and sediments, mantle wedge and arc continental crust could be involved in their

  16. Structural, sedimentary and igneous evidence for the genesis and emplacement of the rifted continental margin of the Southern Neotethys, SE Turkey

    Robertson, Alastair; Parlak, Osman; Dumitrica, Paulian; Tasli, Kemal; Yıldırım, Nail

    2014-05-01

    Evidence of the rift, spreading and closure history of the Southern Neotethys is revealed by allochthonous continental margin and ocean-derived units that were emplaced onto the Arabian foreland during latest Cretaceous (Adıyaman area). The structurally lower Karadut Complex is a broken formation, mainly composed of a fragmented sequence of pelagic/hemipelagic carbonates, radiolarites and redeposited limestones. Sedimentary structures and petrographic work suggest that detrital material was mostly derived from the Arabian margin in the form of gravity flows rich in shallow-water carbonate material. Interbedded siliceous sediments are dated as Early Toarcian and Late Albian using radiolarians, whereas hemipelagic carbonates are dated as Turonian-Santonian using planktic foraminifera. The outcrops of the Karadut Complex are restored as Late Cretaceous slope, to base-of-slope deposits of the Arabian continental margin. The more widely exposed, generally structurally higher, Koçali Complex comprises variably disrupted thrust sheets that are in places folded on a kilometric scale. Intact successions were measured in several of the volcanic-sedimentary thrust sheets. The successions begin with basaltic volcanic rocks that are interbedded with volcaniclastic, radiolarian and carbonate sediments, and then pass upwards into thin-bedded non-calcareous ribbon radiolarites, shales and thin to medium-bedded redeposited limestones. Previous work documented a relatively intact sequence of ocean island basalt (OIB)-type (intra-plate) basaltic lavas and volcaniclastic sediments, associated with Middle Carnian-Rhaetian radiolarites. Study of several different thrust sheets during this work indicates the presence of widespread OIB and also enriched mid-ocean ridge-type basalt (E-MORB). Associated radiolarites are dated as Early Norian, Early Pliensbachian and Bajocian, extending the known age range of the Koçali Complex succession. Variably dismembered ophiolitic rocks, mostly

  17. Rheological implications of sediment transport for continental rifting and its impact in margin geometry and major unconformities

    Andres-Martinez, Miguel; Perez-Gussinye, Marta; Armitage, John; Morgan, Jason

    2016-04-01

    The inner dynamics of the Earth such as mantle convection, geochemical reactions and isostasy have been typically interpreted as the main engine of plate tectonics and crustal deformation. However, nowadays it is well established that processes transporting material along the surface of the Earth influence the inner dynamics. Surface processes play a key role particularly during rifting, where great subsidence rates occur at synrift basins while shoulder uplift provides rock to be eroded for later infilling of these basins. Erosion implies unloading of the crust which favours uplift, and sedimentation at basins results in loading which favours subsidence. Consequently, erosion and sedimentation amplify stresses and the flexural response of the lithosphere in situations with extensive faulting. These changes to the stress field may be large enough to result in changes in the evolution of rifting and its modes of extension. Additionally, higher subsidence rates and thermal blanketing due to sediments may result in higher geotherms and consequently, a weaker/more-viscous behaviour of the crustal rocks. This would also have a large impact on the deformation style during extension. Here, we explore the interactions between surface processes and tectonics using numerical modelling. Experiments are run with the absence of sediment transport and with different sediment transport regimes for 35 and 40 km crustal thicknesses. Tests with higher transport coefficient show more effective localization of deformation into upper crustal faults which results in effective crustal thinning, larger blocks and longer-lived faults. Our experiments also prove that more effective surface processes reduce the length of margins generated by sequential faulting. For our end member situations, high sedimentation rates lead to pure shear extension of the crust induced by high temperatures, which finally results in broad extension and symmetric margins. Furthermore, our model allows for the

  18. Long-term landscape evolution of the South Atlantic "passive" continental margin in Eastern Argentina using apatite fission-track thermochronology

    Pfister, Sabrina; Kollenz, Sebastian; Glasmacher, Ulrich A.

    2015-04-01

    To understand the evolution of the "passive" continental margin in Argentina low temperature thermochronology is an appropriate method, which might lead to new insights in this area. The Tandilia System, also called Sierras Septentrionales, is located south of the Río de la Plato Craton in eastern Argentina in the state of Buenos Aires. North of the hills the Salado basin is located whereas the Claromecó basin is situated south of the mountain range. In contrary to most basins along the South American "passive" continental margin, the Tandilia-System and the neighbouring basins trend perpendicular to the coast line. The topography is fairly flat with altitudes up to 350 m. The igneous-metamorphic basement is pre-Proterozoic in age and build up of mainly granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks and granitoid plutons. It is overlain by a series of Neoproterozoic to early Paleozoic sedimentary rocks (Cingolani 2011), like siliciclastic rocks, dolostones, shales and limestones (Demoulin 2005). The aim of the study is to quantify the long-term landscape evolution of the "passive" continental margin in eastern Argentina in terms of thermal, exhumation and tectonic evolution. For that purpose, samples were taken from the basement of the Sierra Septentrionales and analyzed with the apatite fission-track method. Further 2-D thermokinematic modeling was conducted with the computer code HeFTy (Ketcham 2005; Ketcham 2007; Ketcham et al. 2009). Because there are different hypotheses in literature regarding the geological evolution of this area two different models were generated, one after Demoulin et al. (2005) and another after Zalba et al.(2007). All samples were taken from the Neoproterozoic igneous-metamorphic basement. Apatite fission-track ages range from 101.6 (9.4) to 228.9 (22.3) Ma, and, therefore, are younger than their formation age, indicating all samples have been thermally reset. Six samples accomplished enough confined

  19. Distribution and preservation of black carbon in the East China Sea sediments: Perspectives on carbon cycling at continental margins

    Huang, Liang; Zhang, Jing; Wu, Ying; Wang, Jinlong

    2016-02-01

    We determined the concentrations and radiocarbon (14C) compositions of black carbon (BC) in the sediments of the East China Sea (ECS). The BC concentrations, which were in the range of 0.30-1.52 mg/g, accounted for 12-65% of the total organic carbon (TOC). The distribution of BC in ECS sediments was controlled by factors such as grain size, distance from the coast, and deposition rate. Radiocarbon measurements of BC yielded ages of 6350-10,440 years before present (BP), suggesting that the percentage of BC derived from biomass combustion was in the range of 29-48%. The BC burial flux in sediments of the ECS was estimated to be ∼1.39×106 t/yr, which was similar to burial fluxes reported for shelf sediments in other areas. However, the magnitude of the total BC sink was far greater than that of any other shelf regions studied to date, indicating the global importance of BC accumulation in the ECS, and the magnitude of BC input from large rivers (e.g., the Changjiang). The riverine delivery of BC to the ECS (73%) was far greater than that of atmospheric flux (27%). Further study of the BC cycle and the interactions of BC with other organic compounds in marginal seas was required to better understand the role of BC in the global carbon cycle.

  20. 南海南、北陆缘中生代构造层序及其沉积环境%Mesozoic tectonic squence of southern and northern continental margins of South China Sea and their depositional environment

    李伍志; 王璞珺; 吴景富; 鲁宝亮; 郎元强

    2011-01-01

    Continental margin of South China Sea was divided into two parts for seafloor spreading in Cenozo-ic. Liyue block and continental margin of northern South China Sea should be the same margin before seafloor spreading. Based on drilling data from northern and southern continental margins of South China Sea and seismic profile interpretation across the wells, Mesozoic strata are devided into four seismic sequences and three structural layers. Tectonic sequences and provenance analysis of northern and southern continental margins showed that the Liyue block and continental margin of northern South China Sea collided in Early Cretaceous. In Early Cretaceous, depositional environment in continental margin of northern South China Sea evolved from marine-continental transitional facies to continental facies, and Iiyue area from shallow sea facies to littoral facies correspondingly, which showed the same upward shoaling cycle, indicating the two areas had unified tectonic and depositional setting after the collision of northern and southern continental margins. By the end of Late Cretaceous, the two areas upheaved to be continent and have been destroyed, which caused that partial Upper Cretaceous strata in northern continental margin of South China Sea was destroyed and complete Upper Cretaceous strata in Iiyue area closer to subduction boundary was destroyed.%新生代海底扩张,使南海陆缘分为南、北两部分.南部礼乐地块与南海北缘在扩张之前构成了统一的活动陆缘.通过对南、北陆缘的钻井研究和井旁地震剖面解释,发现二者的中生界均具有4个地震层序及3个构造层.南北陆缘构造层序及物源分析表明,早白垩世礼乐地块与南海北缘曾发生碰撞拼贴.早白垩世的南海北缘地区沉积环境由海陆过渡相向陆相演化,相应的礼乐地区是由浅海相向滨海相演化,二者反映出相同的向上变浅旋回,说明在南、北陆缘拼贴之后,两者具有了统一的构

  1. Neoproterozoic active continental margin in the southeastern Yangtze Block of South China: Evidence from the ca. 830-810 Ma sedimentary strata

    Wang, Wei; Zhou, Mei-Fu; Zhao, Jun-Hong; Pandit, Manoj K.; Zheng, Jian-Ping; Liu, Ze-Rui

    2016-08-01

    The Jiangnan Fold Belt in the South China Block has been traditionally assumed to be Mesoproterozoic in age and related to the global Grenville orogeny. Sedimentary successions in the Jiangnan Fold Belt archive direct record of tectonic evolution; however, they have not yet been evaluated properly. The Lushan massif, comprising Kangwanggu and Xingzi groups, is the major basement complex in the Jiangnan Belt. Regional correlation of these two groups is poorly constrained, such as with the Shuangqiaoshan group, and thus their role in the regional tectonic evolution is not clear. Detrital zircon U-Pb ages suggest that the Xingzi and Kangwanggu groups were deposited at 820-810 and ca. 830 Ma, respectively. They are composed of dominantly felsic to intermediate volcanic detritus, as indicated by the relatively high Th/Cr (0.24-0.06) ratios and radiogenic Nd isotopes (εNd(t) values = + 1.5 to - 2.9) of the sedimentary rocks. An overwhelming abundance of Neoproterozoic (ca. 860-810 Ma) angular, detrital zircon grains in both the groups indicates derivation chiefly from locally distributed syn-sedimentary igneous rocks. A predominance of zircons with ages close to the time of deposition implies a convergent plate margin setting for Kangwanggu and Xingzi groups. Geochemical signatures, such as La-Th-Co and Th-Sc-Zr/10 plots for Xingzi and Kangwanggu sedimentary rocks also underline tectonically active settings, consistent with the arc affinity of the associated mafic and felsic volcanic rocks. In contrast to the dominant Neoproterozoic detritus in the Kangwanggu sandstone, argillaceous rocks of the Xingzi group received additional input of pre-Neoproterozoic detritus. Moreover, the Xingzi argillaceous rocks have εNd(t) values (+ 0.9 to - 2.9) slightly lower than those of the Kangwanggu sandstones (+ 1.5 to 0.0), indicating contribution from mature crustal materials exposed during progressive uplift of continental basement during orogenesis. These features suggest the

  2. Long-term landscape evolution of the South Atlantic passive continental margin along the Kaoko- and Damara Belts, NW-Namibia

    Menges, Daniel; Glasmacher, Ulrich Anton; Hackspacher, Peter; Schneider, Gabriele; Salomon, Eric

    2015-04-01

    The Kaoko Belt in northwestern Namibia originates in the collision of the Rio de la Plata and Kongo Craton during the Pan-African Orogeny in the Neoproterozoic (1) and represents the northern arm of the Damara Orogen. NW-Namibias continental crust mainly consists of the NE-SW striking intracontinental branch of the Pan-African Damara mobile belt, which separates the Congo from the Kalahari craton. The Damara Orogen is divided into several tectonostratigraphic zones that are bounded by steeply dipping, ductile shear zones. These regional lineaments can be traced at least 150 km offshore (2). The lithostratigraphic units consist of Proterozoic and Cambrian metamorphosed rocks (534 (7) Ma - 481 (25) Ma (3) as well as Mesozoic sedimentary and igneous rocks. From Permo-Carboniferous to Mid Jurassic northern Namibia was affected by deep erosion of the Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (4), and the deposition of the Nama Group sediments and the Karoo megasequence (5). Between the Otjihorongo and the Omaruru Lineament-Waterberg Thrust early Mesozoic tectonic activity is recorded by coarse clastic sediments deposited within NE trending half-graben structures. The Early Jurassic Karoo flood basalt lavas erupted rapidly at 183±1 Ma (6). The Early Cretaceous Paraná-Etendeka flood basalts (132±1 Ma) and mafic dike swarms mark the rift stage of the opening of the South Atlantic (7). Early Cretaceous alkaline intrusions (137-124 Ma) occur preferentially along Mesozoic half-graben structures and are called the Damaraland Igneous Province (8). Late Cretaceous alkaline intrusions and kimberlite pipes occur in northern Namibia. Post Early Paleocene siliciclastic sedimentation in Namibia was largely restricted to a 150 km wide zone (9) and is represented by the Tsondab Sandstone Formation (~ 300 m thickness). The oldest part has an age of early Paleocene and the upper part span from middle Miocene

  3. Simbiontes associados com Anomalocardia brasiliana (Gmelin (Mollusca, Bivalvia, Veneridae na Ilha de Santa Catarina e região continental adjacente, Santa Catarina, Brasil Symbionts associated with Anomalocardia brasiliana (Gmelin (Mollusca, Bivalvia, Veneridae on Santa Catarina Island and adjacent continental region, Santa Catarina, Brazil

    Guisla Boehs

    2004-12-01

    Full Text Available Berbigões, Anomalocardia brasiliana (Gmelin, 1791, de bancos naturais da Ilha de Santa Catarina e região continental adjacente (SC, Brasil, foram examinados quanto a presença de simbiontes. Holothuriophilus tomentosus (Ortmann, 1894 (Brachyura, Sphenia antillensis Dall & Simpson, 1901 (Bivalvia e poliquetos espionídeos (Polychaeta foram observados macroscopicamente. A análise das secções histológicas evidenciou esporocistos de trematódeos (Digenea, um metacestóide (Cestoda e dois ciliados (Ciliophora.Pointed venus, Anomalocardia brasiliana (Gmelin, 1791, from natural beds of Santa Catarina Island and adjacent continental region (SE Brazil were examined in respect of symbiotic associations. Holothuriophilus tomentosus (Ortmann, 1894 (Brachyura, Sphenia antillensis Dall & Simpson, 1901 (Bivalvia, and polychaete worms (Polychaeta were found by macroscopic diagnosis. By analysis of histological sections, it was noted trematode sporocysts (Digenea, a metacestode (Cestoda and two ciliates (Ciliophora.

  4. Techniques for the non-destructive and continuous analysis of sediment cores. Application in the Iberian continental margin

    Sediment sequences are the most valuable record of long-term environmental conditions at local, regional and/or global scales. Consequently, they are amongst the best archives of the climatic and oceanographic his- tory of the Earth. In the last few decades a strong effort has been made, both in terms of quantity and quality, to improve our knowledge regarding the evolution of our planet from marine and lake sediment records, and also from other records such as ice cores. Such an effort requires reinforcing the geographical coverage and achieving the highest possible robustness in the reconstruction of past environments. Such a target requires the optimization of the time resolution of the records and reconstructions so that fast, high frequency shifts, such as those occurring nowadays due to the on-going global warming, can be disentangled. Beyond paleoenvironmental research, other disciplines have also contributed significantly to the fast growing number of sediment cores already available worldwide. Knowing the physical state and the chemical composition of sedimentary deposits is essential for land management purposes and for many industrial applications. A number of key technological developments are now allowing the acquisition for the first time of massive amounts of multiple parameters from sediment cores in a non-destructive, fast, continuous, repetitive and high-resolution form. In this paper we provide an overview of the state-of-the-art continuous and non-destructive analytical techniques used by the geo scientific community for the study of sediment cores and we present some examples of the application of these methods in several studies carried out around the Iberian Margin. (Author)

  5. Methane Gas Hydrate Stability Models on Continental Shelves in Response to Glacio-Eustatic Sea Level Variations: Examples from Canadian Oceanic Margins

    Jan Safanda

    2013-11-01

    Full Text Available We model numerically regions of the Canadian continental shelves during successive glacio-eustatic cycles to illustrate past, current and future marine gas hydrate (GH stability and instability. These models indicated that the marine GH resource has dynamic features and the formation age and resource volumes depend on the dynamics of the ocean-atmosphere system as it responds to both natural (glacial-interglacial and anthropogenic (climate change forcing. Our models focus on the interval beginning three million years ago (i.e., Late Pliocene-Holocene. They continue through the current interglacial and they are projected to its anticipated natural end. During the current interglacial the gas hydrate stability zone (GHSZ thickness in each region responded uniquely as a function of changes in water depth and sea bottom temperature influenced by ocean currents. In general, the GHSZ in the deeper parts of the Pacific and Atlantic margins (≥1316 m thinned primarily due to increased water bottom temperatures. The GHSZ is highly variable in the shallower settings on the same margins (~400–500 m. On the Pacific Margin shallow GH dissociated completely prior to nine thousand years ago but the effects of subsequent sea level rise reestablished a persistent, thin GHSZ. On the Atlantic Margin Scotian Shelf the warm Gulf Stream caused GHSZ to disappear completely, whereas in shallow water depths offshore Labrador the combination of the cool Labrador Current and sea level rise increased the GHSZ. If future ocean bottom temperatures remain constant, these general characteristics will persist until the current interglacial ends. If the sea bottom warms, possibly in response to global climate change, there could be a significant reduction to complete loss of GH stability, especially on the shallow parts of the continental shelf. The interglacial GH thinning rates constrain rates at which carbon can be transferred between the GH reservoir and the atmosphere

  6. Crustal structure and rift tectonics across the Cauvery–Palar basin, Eastern Continental Margin of India based on seismic and potential field modelling

    D Twinkle; G Srinivasa Rao; M Radhakrishna; K S R Murthy

    2016-03-01

    The Cauvery–Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India–Sri Lanka–East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-tooffshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery–Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusiverocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ∼36 km thick and thins down to as much as 13–16 km in the Ocean Continent Transition (OCT) region and increases to around 19–21 km towards deep oceanic areas of the basin. Thefaulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India–Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.

  7. Crustal structure and rift tectonics across the Cauvery-Palar basin, Eastern Continental Margin of India based on seismic and potential field modelling

    Twinkle, D.; Rao, G. Srinivasa; Radhakrishna, M.; Murthy, K. S. R.

    2016-03-01

    The Cauvery-Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India-Sri Lanka-East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-to-offshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery-Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusive rocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ˜36 km thick and thins down to as much as 13-16 km in the Ocean Continent Transition (OCT) region and increases to around 19-21 km towards deep oceanic areas of the basin. The faulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India-Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.

  8. Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.

    2011-01-01

    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.

  9. Shallow geological environment of Krishna–Godavari offshore, eastern continental margin of India as inferred from the interpretation of high resolution sparker data

    G Anitha; M V Ramana; T Ramprasad; P Dewangan; M Anuradha

    2014-03-01

    Krishna–Godavari offshore basin, a part of the eastern continental margin of India is a proven petroliferous basin. Recent drilling in this area in search of gas hydrates reveals that the upper ∼300 m thick Quaternary–Recent strata comprised of nannofossil bearing rich clays and, fractures/faults are the suitable zones for gas hydrates accumulation. Therefore, the knowledge about the shallow geological environments and its architecture are significantly important in assessing the gas hydrates potential of this area. In order to enhance the geological understanding, the newly acquired high resolution seismic (HRS) reflection data in this gas hydrates prone area is interpreted. The processed seismic sections show a maximum penetration of 562 ms TWT (∼450 m) underneath the seabed with high resolution stratification. An attempt has been made to: (i) deduce the shallow geological environment from the reflection characteristics, and, (ii) assign tentative ages under the constraints of drilling/coring results. We further explained the observed folded structures on the surface and subsurface through a mechanism linked to shale tectonism and neotectonic activity.

  10. Continental weathering in the Early Triassic in Himalayan Tethys, central Nepal: Implications for abrupt environmental change on the northern margin of Gondwanaland

    Yoshida, Kohki; Kawamura, Toshio; Suzuki, Shigeyuki; Regmi, Amar Deep; Gyawali, Babu Ram; Shiga, Yuka; Adachi, Yoshiko; Dhital, Megh Raj

    2014-01-01

    The geochemistry of Triassic mudstones in the Himalayan Tethys sequence, central Nepal, was studied with respect to changes in sedimentary facies, grain size, and source rocks. The Triassic sedimentary facies of mudstone and carbonates show deposition in offshore to hemiplegic environments. The rare earth element (REE) pattern of the Permian and Triassic mudstones suggests uniformity correlatable to average shale. The major element geochemistry of the Early Triassic Griesbachian-early Smithian mudstones indicates a sediment supply from strongly weathered sources with the chemical index of alteration (CIA) values of 76-81. However, the mudstones in the late Smithian show weakly weathered sources with CIA values of 68-74. The lower part of the Middle Triassic Anisian mudstones return to Early Triassic paleoweathering levels. There are no significant relationships among lithofacies, the grain size of the sediments, and CIA values. Thus, the abrupt change of the degree of paleoweathering in the Early Triassic, late Smithian time, suggests a dramatic decrease in continental weathering, which is related to a predominantly arid climate in the northern marginal area of Gondwana.

  11. Reproductive biology of two macrourid fish, Nezumia aequalis and Coelorinchus mediterraneus, inhabiting the NW Mediterranean continental margin (400-2000 m)

    Fernandez-Arcaya, U.; Ramirez-Llodra, E.; Rotllant, G.; Recasens, L.; Murua, H.; Quaggio-Grassiotto, I.; Company, J. B.

    2013-08-01

    Nezumia aequalis and Coelorinchus mediterraneus are abundant species on the upper and lower continental slopes, respectively, in the Mediterranean Sea. A study on the reproductive strategy of the two species was conducted on the Catalan margin (NW Mediterranean). The reproductive cycle of both species was investigated using visual analyses of gonads and histological screening. The shallower species, N. aequalis, showed continuous reproduction with a peak of spawning females in winter months. In contrast, the deeper-living species, C. mediterraneus, showed semi-continuous reproduction with a regression period during the spring. Juveniles of N. aequalis were present in all seasons, but most abundant in the spring. Only two juveniles of C. mediterraneus were found. Both species had asynchronous oocyte development. The average fecundity of N. aequalis was 10,630 oocytes per individual, lower than known for the same species in the Atlantic Ocean. The fecundity of C. mediterraneus was measured for the first time in this study, with an average of 7693 oocytes per individual. Males of both species appear to have semi-cystic spermatogenesis.

  12. The Two Subduction Zones of the Southern Caribbean: Lithosphere Tearing and Continental Margin Recycling in the East, Flat Slab Subduction and Laramide-Style Uplifts in the West

    Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.

    2015-12-01

    The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta

  13. Sedimentary Environment and Climate Evolution at the Northern Continental Margin of the South China Sea During the Last Glacial Cycle and Holocene

    Tomczak, M.; Kaiser, J.; Borowka, R. K.; Chen, H.; Zhang, J.; Harff, J.; Qiu, Y.; Witkowski, A.

    2014-12-01

    Climate, oceanographic and sea level history during last glacial cycle (LGC) and Holocene at the NW continental margin of the South China Sea (SCS) are investigated within the SECEB project. For that purpose two sediment cores (HDQ2 & 83PC) and single-channel seismic sections were selected to serve as a proxy data source for paleoceanographic and paleoclimatic reconstructions. The sedimentary facies is interpreted by multi-proxy approaches considering micropaleontological, sedimentological and geochemical analyses. According to 14C and OSL datings, sediments of shallow water drill core HDQ2 (88.3 m) cover a time span of ca. 115 kyr BP. Seismic images of the sampling site show a series of reflectors which can be correlated with coarse layers of core HDQ2. These layers are interpreted as transgression / regression horizons. Due to the age model it is possible to correlate these horizons with the general sea level dynamics within the SCS as it is displayed in relative sea level excursions for the MIS 5 to 2 from the Sunda Shelf (Hanebuth et al. 2011). Core 83PC (8.6 m) retrieved from the continental slope provide constant record and calm environment. Therefore, this core is used as a source for data proxy for environmental reconstructions. According to δ18O and paleomagnetic analysis, a good age model which indicate age of this core to ca. 110 kyr BP was elaborated and help correlate the paleoenvironmental data with core HDQ2. Alkenones, δ18O, the Mg/Ca ratio, and microfossil proxies serve for paleo-SST curves and monsoon variability reconstructions. δ15N and δ13C indicate nutrient supply to the marine environment. Diatomological analysis outlines the environmental evolution and interrelations between their parameters during the LGC. Interpretation of seismic profiling allowed identification of submarine paleo-delta. It's anticipated that deposited sediments descent from the Hainan Island and allow correlation of the source and sink area.Hanebuth, T.J.J, Voris, H

  14. The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology

    Wildman, Mark; Brown, Roderick; Beucher, Romain; Persano, Cristina; Stuart, Fin; Gallagher, Kerry; Schwanethal, James; Carter, Andrew

    2016-03-01

    Atlantic-type continental margins have long been considered "passive" tectonic settings throughout the entire postrift phase. Recent studies question the long-term stability of these margins and have shown that postrift uplift and reactivation of preexisting structures may be a common feature of a continental margin's evolution. The Namaqualand sector of the western continental margin of South Africa is characterized by a ubiquitously faulted basement but lacks preservation of younger geological strata to constrain postrift tectonic fault activity. Here we present the first systematic study using joint apatite fission track and apatite (U-Th-Sm)/He thermochronology to achieve a better understanding on the chronology and tectonic style of landscape evolution across this region. Apatite fission track ages range from 58.3 ± 2.6 to 132.2 ± 3.6 Ma, with mean track lengths between 10.9 ± 0.19 and 14.35 ± 0.22 µm, and mean (U-Th-Sm)/He sample ages range from 55.8 ± 31.3 to 120.6 ± 31.4 Ma. Joint inverse modeling of these data reveals two distinct episodes of cooling at approximately 150-130 Ma and 110-90 Ma with limited cooling during the Cenozoic. Estimates of denudation based on these thermal histories predict approximately 1-3 km of denudation coinciding with two major tectonic events. The first event, during the Early Cretaceous, was driven by continental rifting and the development and removal of synrift topography. The second event, during the Late Cretaceous, includes localized reactivation of basement structures as well as regional mantle-driven uplift. Relative tectonic stability prevailed during the Cenozoic, and regional denudation over this time is constrained to be less than 1 km.

  15. Structural and functional study of the nematode community from the Indian western continental margin with reference to habitat heterogeneity and oxygen minimum zone

    Singh, R.; Ingole, B. S.

    2015-07-01

    We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and oxygen minimum on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. Nematodes were identified to species and classified according to biological/functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Mean nematode density was higher on the shelf (176 ind 10 cm-2, 34 m depth) than on the slope (124 ind 10 cm-2) or in the basin 62.9 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, (15.2 %), Desmodora sp 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Multidimensional scaling ordination (nMDS) of the nematode species abundance data indicated the effect of different zones (ANOSIM; Global R = 0.607; P = 0.028), but it was not the same in case of functional traits. Only seven species were found exclusively in the oxygen minimum zone: Pselionema sp 1, Choanolaimus sp 2, Halichoanolaimus sp 1, Cobbia dentata, Daptonema sp 1, Trissonchulus sp 1, and Minolaimus sp 1. Moreover, in our study, species diversity was higher on the shelf than on the slope or in the basin. The distinctive features of all three zones as based on nematofaunal abundance were also reflected in the functional traits (feeding types, body shape, tail shape, and life history strategy). Correlation with a number of environmental variables indicated that food quality (measured as the organic carbon content and chlorophyll content) and oxygen level were the major factors that influenced the nematode community (structural and functional).

  16. Structural and functional study of the nematode community from the Indian western continental margin with reference to habitat heterogeneity and oxygen minimum zone

    R. Singh

    2015-07-01

    Full Text Available We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and oxygen minimum on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. Nematodes were identified to species and classified according to biological/functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Mean nematode density was higher on the shelf (176 ind 10 cm−2, 34 m depth than on the slope (124 ind 10 cm−2 or in the basin 62.9 ind 10 cm−2. Across the entire study area, the dominant species were Terschellingia longicaudata, (15.2 %, Desmodora sp 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Multidimensional scaling ordination (nMDS of the nematode species abundance data indicated the effect of different zones (ANOSIM; Global R = 0.607; P = 0.028, but it was not the same in case of functional traits. Only seven species were found exclusively in the oxygen minimum zone: Pselionema sp 1, Choanolaimus sp 2, Halichoanolaimus sp 1, Cobbia dentata, Daptonema sp 1, Trissonchulus sp 1, and Minolaimus sp 1. Moreover, in our study, species diversity was higher on the shelf than on the slope or in the basin. The distinctive features of all three zones as based on nematofaunal abundance were also reflected in the functional traits (feeding types, body shape, tail shape, and life history strategy. Correlation with a number of environmental variables indicated that food quality (measured as the organic carbon content and chlorophyll content and oxygen level were the major factors that influenced the nematode community (structural and functional.

  17. Strong depth-related zonation of megabenthos on a rocky continental margin (∼700-4000 m off southern Tasmania, Australia.

    Ronald Thresher

    Full Text Available Assemblages of megabenthos are structured in seven depth-related zones between ∼700 and 4000 m on the rocky and topographically complex continental margin south of Tasmania, southeastern Australia. These patterns emerge from analysis of imagery and specimen collections taken from a suite of surveys using photographic and in situ sampling by epibenthic sleds, towed video cameras, an autonomous underwater vehicle and a remotely operated vehicle (ROV. Seamount peaks in shallow zones had relatively low biomass and low diversity assemblages, which may be in part natural and in part due to effects of bottom trawl fishing. Species richness was highest at intermediate depths (1000-1300 m as a result of an extensive coral reef community based on the bioherm-forming scleractinian Solenosmilia variabilis. However, megabenthos abundance peaked in a deeper, low diversity assemblage at 2000-2500 m. The S. variabilis reef and the deep biomass zone were separated by an extensive dead, sub-fossil S. variabilis reef and a relatively low biomass stratum on volcanic rock roughly coincident with the oxygen minimum layer. Below 2400 m, megabenthos was increasingly sparse, though punctuated by occasional small pockets of relatively high diversity and biomass. Nonetheless, megabenthic organisms were observed in the vast majority of photographs on all seabed habitats and to the maximum depths observed--a sandy plain below 3950 m. Taxonomic studies in progress suggest that the observed depth zonation is based in part on changing species mixes with depth, but also an underlying commonality to much of the seamount and rocky substrate biota across all depths. Although the mechanisms supporting the extraordinarily high biomass in 2000-2500 m depths remains obscure, plausible explanations include equatorwards lateral transport of polar production and/or a response to depth-stratified oxygen availability.

  18. Investigations of the East Greenland continental margin between 70° and 72° N by deep seismic sounding and gravity studies

    Weigel, W.; Flüh, E. R.; Miller, H.; Butzke, A.; Dehghani, G. A.; Gebhardt, V.; Harder, I.; Hepper, J.; Jokat, W.; Kläschen, D.; Kreymann, S.; Schüβler, S.; Zhao, Z.

    1995-04-01

    Results are presented from a deep seismic sounding experiment with the research vessel POLARSTERN in the Scoresby Sund area, East Greenland. For this continental margin study 9 seismic recording landstations were placed in Scoresby Sund and at the southeast end of Kong Oscars Fjord, and ocean bottom seismographs (OBS) were deployed at 26 positions in and out of Scoresby Sund offshore East Greenland between 70° and 72° N and on the west flank of the Kolbeinsey Ridge. The landstations were established using helicopters from RV POLARSTERN. Explosives, a 321 airgun and 81 airguns were used as seismic sources in the open sea. Gravity data were recorded in addition to the seismic measurements. A free-air gravity map is presented. The sea operations — shooting and OBS recording — were strongly influenced by varying ice conditions. Crustal structure 2-D models have been calculated from the deep seismic sounding results. Free-air gravity anomalies have been calculated from these models and compared to the observed gravity. In the inner Scoresby Sund — the Caledonian fold belt region — the crustal thickness is about 35 km, and thins seaward to 10 km. Sediments more than 10 km thick on Jameson Land are of mainly Mesozoic age. In the outer shelf region and deep sea a ‘Moho’ cannot clearly be identified by our data. There are only weak indications for the existence of a ‘Moho’ west of the Kolbeinsey Ridge. Inside and offshore Scoresby Sund there is clear evidence for a lower crust refractor characterised by p-velocities of 6.8 7.3 km s-1 at depths between 6 and 10 km. We believe these velocities are related to magmatic processes of rifting and first drifting controlled by different scale mantle updoming during Paleocene to Eocene and Late Oligocene to Miocene times: the separation of Greenland/Norway and the separation of the Jan Mayen Ridge/Greenland, respectively. A thin igneous upper crust, interpreted to be of oceanic origin, begins about 50 km seaward of

  19. The Present Space-Time Motion and Deformation Features of the Northeastern Margin of the Qinghai-Xizang(Tibet) Block and Its Adjacent Area

    Zhang Xiaoliang; Jiang Zaisen; Wang Shuangxu; Zhang Xi; Wang Qi; Chen Bing

    2004-01-01

    On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeastern margin of Qinghai-Xizang(Tibet) block and the kinematical model for depicting deformation of small regions as well by using GPS observations of three periods (1991, 1999 and 2001 ). By simulating, we obtained the motion features of the firstorder blocks between the large WWN faults on the sides of the studied region, the distribution features of the principal strain rate field and the inhomogeneous motion features with spacetime of the faults in the northern boundary of the Qinghai-Xizang (Tibet) block.

  20. Long-term landscape evolution of the South Atlantic passive continental margin along the Kaoko- and Damara Belts, NW-Namibia

    Menges, Daniel; Glasmacher, Ulrich Anton; Hackspacher, Peter; Schneider, Gabriele; Salomon, Eric

    2015-04-01

    The Kaoko Belt in northwestern Namibia originates in the collision of the Rio de la Plata and Kongo Craton during the Pan-African Orogeny in the Neoproterozoic (1) and represents the northern arm of the Damara Orogen. NW-Namibias continental crust mainly consists of the NE-SW striking intracontinental branch of the Pan-African Damara mobile belt, which separates the Congo from the Kalahari craton. The Damara Orogen is divided into several tectonostratigraphic zones that are bounded by steeply dipping, ductile shear zones. These regional lineaments can be traced at least 150 km offshore (2). The lithostratigraphic units consist of Proterozoic and Cambrian metamorphosed rocks (534 (7) Ma - 481 (25) Ma (3) as well as Mesozoic sedimentary and igneous rocks. From Permo-Carboniferous to Mid Jurassic northern Namibia was affected by deep erosion of the Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (4), and the deposition of the Nama Group sediments and the Karoo megasequence (5). Between the Otjihorongo and the Omaruru Lineament-Waterberg Thrust early Mesozoic tectonic activity is recorded by coarse clastic sediments deposited within NE trending half-graben structures. The Early Jurassic Karoo flood basalt lavas erupted rapidly at 183±1 Ma (6). The Early Cretaceous Paraná-Etendeka flood basalts (132±1 Ma) and mafic dike swarms mark the rift stage of the opening of the South Atlantic (7). Early Cretaceous alkaline intrusions (137-124 Ma) occur preferentially along Mesozoic half-graben structures and are called the Damaraland Igneous Province (8). Late Cretaceous alkaline intrusions and kimberlite pipes occur in northern Namibia. Post Early Paleocene siliciclastic sedimentation in Namibia was largely restricted to a 150 km wide zone (9) and is represented by the Tsondab Sandstone Formation (~ 300 m thickness). The oldest part has an age of early Paleocene and the upper part span from middle Miocene

  1. Relationship between isotopic composition (Δ18O and Δ13C and plaktonic foraminifera test size in core tops from the Brazilian Continental Margin

    Paula Franco-Fraguas

    2011-12-01

    Full Text Available Stable oxygen (δ18O and carbon (δ13C isotopic signature registered in fossil planktonic foraminifera tests are widely used to reconstruct ancient oceanographic conditions. Test size is a major source of stable isotope variability in planktonic foraminifera found in sediment samples and thus can compromise paleoceanographic interpretations. Test size/stable isotope (δ18O and δ13C relationships were evaluated in two planktonic foraminifer species (Globigerinoides ruber (white and Globorotalia truncatulinoides (right in two core tops from the Brazilian Continental Margin. δ18 Omeasurements were used to predict the depth of calcification of each test size fraction. δ13C offsets for each test size fraction were then estimated. No systematic δ18O changes with size were observed in G. ruber (white suggesting a similar calcification depth range (c.a. 100 m during ontogeny. For G. truncatulinoides (right δ18O values increased with size indicating ontogenetic migration along thermocline waters (250-400 m. δ13C measurements and δ13C offsets increased with size for both species reflecting well known physiological induced ontogenetic-related variability. In G. ruber (white the largest test size fractions (300µm and >355µm more closely reflect δ13C DIC indicating they are best suited for paleoceanographic studies.O tamanho de testa dos foraminíferos é uma importante fonte de variabilidade isotópica (δ18O e δ13C em amostras de sedimento marinho comprometendo as interpretações paloeceanograficas. No presente estudo, avaliou-se a relação entre o sinal isotópico medido em diferentes frações de tamanho de testa das espécies planctônicas, Globigerinoides ruber (branca e Globorotalia truncatulinoides (dextral em amostras de topo de dois testemunhos localizados na Margem Continental Brasileira. Os valores de δ18O foram utilizados para estimar a profundidade de calcificação de cada fração de tamanho. Os desequilíbrios nos valores de

  2. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum, Rupturing Continental Lithosphere Part II: Introducing Euler Poles Using Baja-North America Relative Plate Motion Across the Gulf of California

    Loveless, J. P.; Bennett, S. E. K.; Cashman, S. M.; Dorsey, R. J.; Goodliffe, A. M.; Lamb, M. A.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere (RCL) initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum, including lectures, labs, and in-class activities that can be used as a whole or individually. This component of the curriculum introduces students to the Euler pole description of relative plate motion (RPM) by examining the tectonic interactions of the Baja California microplate and North American plate. The plate boundary varies in rift obliquity along strike, from highly oblique and strike-slip dominated in the south to slightly less oblique and with a larger extensional component in the north. This Google Earth-based exercise provides students with a visualization of RPM using small circle contours of the local direction and magnitude of Baja-North America movement on a spherical Earth. Students use RPM to calculate the fault slip rates on transform, normal, and oblique-slip faults and examine how the varying faulting styles combine to accommodate RPM. MARGINS results are integrated via comparison of rift obliquity with the structural style of rift-related faults around the GOC. We find this exercise to fit naturally into courses about plate tectonics, geophysics, and especially structural geology, given the similarity between Euler pole rotations and stereonet-based rotations of structural data.

  3. Determination of mass accumulation rates for organic carbon, carbonate, metal and sediment on the eastern continental margin of the Black Sea sediments during Late Holocene

    Mass Accumulation Rates (MAR) in Black Sea samples for carbonate, organic carbon and some metal based on 210Pb dating are determined and their interpretation are presented. The samples are recovered from the international cruise 2000 organized by the IAEA as a part of the Marine Environmental Assessment of the Black Sea Region Technical Cooperation Project RER/2/003. In this study only one core (BS-23) located on the eastern continental margin of the Black Sea in water depth of 2168 m is examined. The sediment in these core consist of two units which are from top to bottom: the laminated coccolith marl and micro laminated sapropel units reach in organic carbon. These units were formed after the flooding of the lacustrine Black Sea basin by the Mediterranean waters via the Istanbul strait at 7150 yr BP. The total average MAR for the last 125 years for these site is found as 40.15 g.m-2.yr-1 (26 cm.kyr-1). Considering that the corrected AMS 14C ages, the average linear sedimentation rate for core BS-23 over 2000 yr. are found to be about 1.5 times lower than those for the last 125 yr. determined from the 210Pb data. This suggests that the sediment accumulation rate have significantly increased probably in the last few hundred years as a result of man's impact. The average MARTOC and MARCaCO3 in the upper three cm. of the core (Unit I) representing the last 125 yr. are 1.84 and 15.82 g.m-2.yr-1, respectively, whereas MARTOC and MARCaCO3 values in Unit II are 2.79 and 3.74 g.m-2.yr-1. The high MARCaCO3 in the unit I is caused by the coccolithophore E. huxleyi which forms the white laminae. In the upper part of the sediment, the Ba enrichment indicate a sharp increase in organic productivity that causes eutrophication process over the last 50 yr. Similarly Pb, Zn and Cu exhibit very sharp increase in the top part of the core, reaching more than twice the background values and attesting high metal inputs into the Black Sea during the last half century

  4. Muscovite-Dehydration Melting: A Textural Study of a Key Reaction in Transforming Continental Margin Strata Into a Migmatitic Orogenic Core

    Dyck, B. J.; St Onge, M. R.; Waters, D. J.; Searle, M. P.

    2015-12-01

    Metamorphosed continental margin sedimentary sequences, which comprise the dominant tectonostratigraphic assemblage exposed in orogenic hinterlands, are crucial to understanding the architecture and evolution of collisional mountain belts. This study explores the textural effect of anatexis in amphibolite-grade conditions and documents the mineral growth mechanisms that control nucleation and growth of K-feldspar, sillimanite and silicate melt. The constrained textural evolution follows four stages: 1) Nucleation - K-feldspar is documented to nucleate epitaxially on isomorphic plagioclase in quartzofeldspathic (psammitic) domains, whereas sillimanite nucleates in the Al-rich (pelitic) domain, initially on [001] mica planes. The first melt forms at the site of muscovite breakdown. 2) Chemically driven growth - In the quartzofeldspathic domain, K-feldspar progressively replaces plagioclase by a K+ - Na+ cation transfer reaction, driven by the freeing of muscovite-bound K+ during breakdown of the mica. Sillimanite forms intergrowths with the remaining hydrous melt components, contained initially in ovoid clots. 3) Merge and coarsening - With an increase in pressure, melt and sillimanite migrate away from clots along grain boundaries. A melt threshold is reached once the grain-boundary network is wetted by melt, increasing the length-scale of diffusion, resulting in grain boundary migration and grain-size coarsening. The melt threshold denotes the transition to an open-system on the lithology scale, where melt is a transient phase. 4) Residual melt crystallization - Residual melt crystallizes preferentially on existing peritectic grains as anatectic quartz, plagioclase, and K-feldspar. As the system cools and closes, grain growth forces melt into the intersections of grain-boundaries, recognized as irregular shaped melt films, or as intergrowths of the volatile-rich phases (i.e. Tur-Ms-Ap). In the Himalayan metamorphic core these processes result in the formation of

  5. Characterization of Sedimentary Deposits Using usSEABED for Large-scale Mapping, Modeling and Research of U.S.Continental Margins

    Williams, S. J.; Reid, J. A.; Arsenault, M. A.; Jenkins, C.

    2006-12-01

    Geologic maps of offshore areas containing detailed morphologic features and sediment character can serve many scientific and operational purposes. Such maps have been lacking, but recent computer technology and software to capture diverse marine data are offering promise. Continental margins, products of complex geologic history and dynamic oceanographic processes, dominated by the Holocene marine transgression, contain landforms which provide a variety of important functions: critical habitats for fish, ship navigation, national defense, and engineering activities (i.e., oil and gas platforms, pipeline and cable routes, wind-energy sites) and contain important sedimentary records. Some shelf areas also contain sedimentary deposits such as sand and gravel, regarded as potential aggregate resources for mitigating coastal erosion, reducing vulnerability to hazards, and restoring ecosystems. Because coastal and offshore areas are increasingly important, knowledge of the framework geology and marine processes is useful to many. Especially valuable are comprehensive and integrated digital databases based on data from original sources in the marine community. Products of interest are GIS maps containing thematic information such as seafloor physiography, geology, sediment character and texture, seafloor roughness, and geotechnical engineering properties. These map products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The USGS with partners is leading a Nation-wide program to gather a wide variety of extant marine geologic data into the usSEABED system (http://walrus.wr.usgs/usseabed). This provides a centralized, fully integrated digital database of marine geologic data collected over the past 50 years by USGS, other federal and state agencies, universities and private companies. To date, approximately 325,000 data points from the U.S. EEZ reside in usSEABED. The usSEABED, which combines a broad array of physical data

  6. The morphotectonic history of the Atlantic continental margin of South Africa: insights from combined (U-Th)/He and fission track thermochronometry

    Wildman, M.; Beucher, R.; Brown, R.; Persano, C.; Stuart, F.; Roelofse, F.

    2012-04-01

    The morphotectonic evolution of the South African continental margins and the interior plateau remains unresolved, with the crux of the debate being whether the present day topography represents an eroded remnant of a Cretaceous elevated interior or if the topography is much younger, developed as a result of Miocene epeirogenic-style uplift. In recent years, advances in the understanding of mantle dynamics have led to an appreciation of its importance as a major controlling factor on the evolution of the South African plateau since the break-up of Gondwana. However, constraints on the timing and amount of uplift derived from geodynamical models are still controversial due to a lack of tight constraints on mantle viscosity and density structure and because of differences in the way the plate motions at the surface are incorporated into the different models. It is therefore essential to obtain more directly relevant empirical observations that can be used to test these models. Low temperature thermochronology (LTT) is a powerful tool well able to address this question by providing constraints on the time-temperature history of rocks, denudation, landscape evolution and tectonic history. Over the past two decades, the main focus of LTT analysis in South Africa has been on Apatite Fission Track Analysis (AFTA) which generally supports a dominant Cretaceous (c. 90Ma) uplift event with km-scale erosion, but spatially as well as temporally variable, in the interior of the plateau. However, AFTA data is unable to provide robust constraints on the Tertiary cooling history due to the temperature range covered by the fission track system (e.g. 60-110°C). The (U-Th)/He method with a lower temperature range (c. 40-75°C) will therefore be more sensitive to more recent and smaller amounts of erosion offers a new opportunity to evaluate the magnitude of Cenozoic denudation in southern Africa. Here we present the first (U-Th)/He ages from SW South Africa, obtained from a transect

  7. Zedong terrane revisited: An intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin?

    Zhang, Liang-Liang; Liu, Chuan-Zhou; Wu, Fu-Yuan; Ji, Wei-Qiang; Wang, Jian-Gang

    2014-02-01

    granitic rocks also have positive ɛHf(t) values of ˜+12.6 to +15.2, implying their derivation from a juvenile lower crust. Therefore, we proposed that the basalts in the Zedong terrane were formed through partial melting of the mantle wedge metasomatized by slab-released fluids/melts. A part of hydrous basalts were underplated in the thickened lower crust beneath the Zedong terrane, which gave rise to the cumulate and granitic rocks. By comparison, magmatic rocks in the Zedong terrane show compositional similarities with the Jurassic rocks exposed in the Gangdese arc. This suggests that the Zedong terrane represents a slice of the active continental margin developed on the southern margin of the Lhasa terrane as a result of the northward subduction of the Neo-Tethys Ocean during the Late Jurassic, rather than the vestige of an intra-oceanic arc.

  8. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum, Rupturing Continental Lithosphere Part I: Introducing Seismic Interpretation and Isostasy Principles Using Gulf of California Examples

    Lamb, M. A.; Cashman, S. M.; Dorsey, R. J.; Bennett, S. E. K.; Loveless, J. P.; Goodliffe, A. M.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum designed for an upper-division structural geology, tectonics or geophysics course. The curriculum includes lectures, labs, and in-class activities that can be used as a whole or individually. The first set of materials introduces the RCL initiative to students and has them analyze the bathymetry and oblique-rifting geometry of the GOC in an exercise using GeoMapApp. The second set of materials has two goals: (1) introduce students to fundamental concepts of interpreting seismic reflection data via lectures and in-class interpretation of strata, basement, and faults from recent GOC seismic data, and (2) encourage students to discover the structural geometry and rift evolution, including the east-to-west progression of faulting and transition from detachment to high-angle faulting in the northern GOC, and changes in deformation style from north to south. In the third set of materials, students investigate isostatic affects of sediment fill in GOC oblique rift basins. This activity consists of a problem set, introduced in a lecture, where students integrate their findings from the previous bathymetry- and seismic-interpretation exercises.

  9. In situ zircon U-Pb and Hf-O isotopic results for ca. 73 Ma granite in Hainan Island: Implications for the termination of an Andean-type active continental margin in southeast China

    Jiang, Xiao-Yan; Li, Xian-Hua

    2014-03-01

    We report in the paper integrated analyses of in situ zircon U-Pb ages, Hf-O isotopes, whole-rock geochemistry and Sr-Nd isotopes for the Longlou granite in northern Hainan Island, southeast China. SIMS zircon U-Pb dating results yield a crystallization age of ˜73 Ma for the Longlou granite, which is the youngest granite recognized in southeast China. The granite rocks are characterized by high SiO2 and K2O, weakly peraluminous (A/CNK = 1.04-1.10), depletion in Sr, Ba and high field strength elements (HFSE) and enrichment in LREE and large ion lithophile elements (LILE). Chemical variations of the granite are dominated by fractional crystallization of feldspar, biotite, Ti-Fe oxides and apatite. Their whole-rock initial 87Sr/86Sr ratios (0.7073-0.7107) and ɛNd(t) (-4.6 to -6.6) and zircon ɛHf(t) (-5.0 to 0.8) values are broadly consistent with those of the Late Mesozoic granites in southeast China coast. Zircon δ18O values of 6.9-8.3‰ suggest insignificant involvement of supracrustal materials in the granites. These granites are likely generated by partial melting of medium- to high-K basaltic rocks in an active continental margin related to subduction of the Pacific plate. The ca. 73 Ma Longlou granite is broadly coeval with the Campanian (ca. 80-70 Ma) granitoid rocks in southwest Japan and South Korea, indicating that they might be formed along a common Andean-type active continental margin of east-southeast Asia. Tectonic transition from the Andean-type to the West Pacific-type continental margin of southeast China likely took place at ca.70 Ma, rather than ca. 90-85 Ma as previously thought.

  10. End-Member modelling and quantification of terrigenous flux rates to the NW African continental margin during the late Pleistocene to Holocene

    Just, Janna; von Dobeneck, Tilo; Bickert, Torsten; Frederichs, Thomas

    2010-05-01

    The region off Gambia is an interesting study area because of its geographical location in between the ITCZ summer and winter position. We study a sediment core spanning the last 60 kyrs off the Gambia river mouth (W Africa) to identify different sources of the terrigenous sediment components exported to the continental margin. Our aim is the quantification of terrigenous flux rates of fluvial and aeolian load, respectively to improve our understanding of palaeoclimatic conditions and climatic changes in the Sahel and Sahara. It is known that in western Africa arid conditions prevailed during glacials and North Atlantic Heinrich Events. After the Last Glacial Maximum (LGM) a humid climate dominated northern Africa between 5-12 kyrs BP, known as the African Humid Period (AHP). These climatic changes have already been documented in magnetic, chemical, mineralogical and sedimentological proxies, respectively. However, these investigations were mainly carried out in qualitative approaches and lack an integrated multi-proxy validation. We apply a multi-proxy approach using XRF-element data and environmental magnetic parameter analysis on 5 cm interval samples of sediment core GeoB13602-1 (13°32.71 N; 17°50.96 W). Carbonate and biogenic opal content were analysed to estimate the total terrigenous fraction. Environmental magnetic parameters including ARM, IRM, HIRM, SIRM and frequency-dependent susceptibility allow the estimation of magnetic minerals, e.g. magnetite, hematite and goethite. Ratios of these parameters reflect grainsizes of the magnetic minerals which are indicative of transport mechanisms. We performed an End-Member (EM) analysis of IRM acquisition curves, decomposing the bulk sample into different components which represent individual sediment sources. Our approach is to include chemical, sedimentological and magnetic parameters in this EM model to reconstruct the composition as well as the transport pathways of the sediments. Based on an age model

  11. The Ocean-Continent Transition at the North Atlantic Volcanic Margins

    White, R. S.; Christie, P. A.; Kusznir, N. J.; Roberts, A. M.; Eccles, J.; Lunnon, Z.; Parkin, C. J.; Smith, L. K.; Spitzer, R.; Roberts, A. W.

    2005-05-01

    The continental margins of the northern North Atlantic are the best studied volcanic margins in the world. There is a wealth of integrated wide-angle and deep seismic profiles across the continent-ocean transition and the adjacent oceanic and continental crust, several of which form conjugate margin studies. We show new results from the integrated Seismic Imaging and Modelling of Margins (iSIMM) profiles across the Faroes continental margin which image both the extruded volcanics which generate seaward dipping reflector sequences and the underlying lower-crustal intrusions from which the extruded basalts are fed. This enables estimation of the degree of continental stretching and the total volume of melt generated from the mantle at the time of continental breakup. The new results are set in the context of profiles along the entire northern North Atlantic margins. The pattern of melt generation during continental breakup and the initiation of seafloor spreading allows us to map the pattern of enhanced sub-lithospheric mantle temperatures caused by initiation of the Iceland mantle plume over this period. The initial mantle plume thermal anomalies have the shape of rising hot sheets of mantle up to 2000 km in length, which focus into a more axisymmetric shape under the present location of Iceland. These spatial and temporal variations in the mantle temperature exert important controls on the history of uplift and subsidence and thermal maturation of the sediments near the continental margin and its hinterland. The iSIMM Scientific Team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms, J Eccles and D Healy. The iSIMM project is supported by Liverpool and Cambridge Universities, Schlumberger Cambridge Research, Badley Technology Limited, WesternGeco, Amerada Hess, Anadarko, BP, ConocoPhillips, ENI-UK, Statoil, Shell, the NERC and DTI. We thank WesternGeco for provision of Q-streamer data.

  12. Structure of the NE-Rockall Trough from Wide-Angle Seismic Data Modelling: The Role of Pre-break-up Extension on the Formation of Continental Margins

    Klingelhoefer, F.; Edwards, R. A.; England, R. W.; Hobbs, R. W.

    2005-12-01

    The Rockall Trough is a 250 km wide and up to 3 km deep bathymetric basin separating the Irish and UK continental shelves from the Rockall and Hatton Banks. It is one of a series of rift basins that formed prior to the opening of the present day North Atlantic Ocean. Two wide-angle seismic lines located in the northeast Rockall Trough were acquired in May 2000. One Line crosses the Trough from the Hebrides continental shelf to oceanic crust west of Lousy Bank in a NW-SE direction. The other line intersects the first, crosses the Wyville-Thomson Ridge in a SW-NE direction and ends in the Faroe-Shetland Trough. Sonobuoy data and expanding-spread profiles acquired in the same area have been remodelled. Analysis of the seismic data using travel-times and amplitudes reveals an up 5 km thick sedimentary layer including an up to 1.5 km thick basaltic layer present in most of the trough. Beneath the sediments is highly stretched continental crust of ca. 13 km thickness. The crust thickens to about 24 km beneath Lousy Bank, which is interpreted to be of continental nature. Beneath the Hebrides continental shelf a three layer continental crust 26 km thick is modelled. A high-velocity layer up to 12 km thick is observed underneath the ocean-continent boundary west of Lousy Bank and is interpreted as magmatic underplating resulting from excess volcanism during rifting. The modelled wide-angle profiles show that the Rockall and Faroe Shetland Troughs have stretching factors of between 2 and 6. Stratigraphic data suggests that rifting in these Troughs took place in early to mid-Cretaceous times (c. 120 Ma), some 60 Ma before the opening of the NE Atlantic. Consequently, at the time of continental break-up at about 55 Ma, the lithosphere beneath the Troughs was dominated by strong mantle lithosphere, making them resistant to further rifting. They remained strong as N Atlantic rifting gave way to ocean floor spreading and they do not show evidence of extension (e.g. faulting) of

  13. Synthesis of deep multichannel seismic and high resolution sparker data: Implications for the geological environment of the Krishna–Godavari offshore, Eastern Continental Margin of India

    Ramana, M.V.; Goli, A.; Desa, M.; Ramprasad, T.; Dewangan, P.

    to mantle 7    unroofing belonging to proto-oceanic crust reported elsewhere. Based on the disposition of the basement and underlying Moho, the basement can be differentiated into three types of crust, i) continental crust ii) proto-oceanic crust and iii...

  14. Geochemistry of the metavolcanic rocks in the vicinity of the MacLellan Au-Ag deposit and an evaluation of the tectonic setting of the Lynn Lake greenstone belt, Canada: Evidence for a Paleoproterozoic-aged rifted continental margin

    Glendenning, Michael W. P.; Gagnon, Joel E.; Polat, Ali

    2015-09-01

    The Paleoproterozoic (ca. 1900 Ma) Lynn Lake greenstone belt of northern Manitoba, Canada, has been previously characterized as comprising a series of tectonically juxtaposed intra-oceanic-derived metavolcanic rocks. The results of more recent local and regional studies, however, support a significant contribution of continental crust during formation of the metasedimentary, metavolcanic, and intrusive igneous rocks that comprise the majority of the Lynn Lake greenstone belt. The tectonic model previously proposed for the Lynn Lake greenstone belt, however, did not consider the geodynamics of the Lynn Lake greenstone belt in the context of all available data. In this study, we report the results of outcrop mapping and petrographic analysis, as well as major, minor, and trace element geochemical analyses for 54 samples from the Northern terrane, and integrate and compare the results with data from previously published studies. These data are used to recharacterize the metavolcanic rocks and to develop a new geodynamic model for the formation of the Lynn Lake greenstone belt. Ultramafic to intermediate rocks in the vicinity of the MacLellan Au-Ag deposit are characterized primarily by E-MORB-like trace element characteristics and Th-Nb-La systematics, which are interpreted to be the result of a primary, plume-derived melt interacting with continental lithosphere at a thinned (i.e., rifted) continental margin. Similarly, the majority of the mafic to intermediate rocks that comprise the Lynn Lake greenstone belt are characterized by flat to E-MORB-like trace element patterns and Th-Nb-La systematics, which are consistent with mantle plume-derived, contaminated, oceanic continental rift or rifted margin setting rocks. This study suggests that the metavolcanic rocks of the Lynn Lake greenstone belt were derived via rifting between the Superior and Hearne Cratons, which resulted in the formation and growth of the Manikewan Ocean. Alternatively, the metavolcanic rocks

  15. From oblique subduction to intra-continental transpression : structures of the southern Kermadec-Hikurangi margin from multibeam bathymetry, side-scan sonar and seismic reflection

    Collot, Jean-Yves; Delteil, J; Lewis, K B; Davy, B.; Lamarche, Geoffroy; Audru, J.C.; Barnes, P; Charnier, F.; Chaumillon, E. (collab.); Lallemand, S; Mercier de Lepinay, B.; Orpin, A.; Pelletier, Bernard; Sosson, M; Toussaint, Bertrand

    1996-01-01

    The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4-5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the ...

  16. Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental break-up

    K. Becker

    2014-06-01

    Full Text Available High-velocity lower crust (HVLC and seaward dipping reflector sequences (SDRs are typical features of volcanic rifted margins. However, the nature and origin of HVLC is under discussion. Here we provide a comprehensive analysis of deep crustal structures in the southern segment of the South Atlantic and an assessment of HVLC along the margins. Two new seismic refraction lines off South America fill a gap in the data coverage and together with five existing velocity models allow a detailed investigation of the lower crustal properties on both margins. An important finding is the major asymmetry in volumes of HVLC on the conjugate margins. The seismic refraction lines across the South African margin reveal four times larger cross sectional areas of HVLC than at the South American margin, a finding that is in sharp contrast to the distribution of the flood basalts in the Paraná-Etendeka Large Igneous Provinces (LIP. Also, the position of the HVLC with respect to the seaward dipping reflector sequences varies consistently along both margins. Close to the Falkland-Agulhas Fracture Zone a small body of HVLC is not accompanied by seaward dipping reflectors. In the central portion of both margins, the HVLC is below the inner seaward dipping reflector wedges while in the northern area, closer to the Rio Grande Rise/Walvis Ridge, large volumes of HVLC extend far seawards of the inner seaward dipping reflectors. This challenges the concept of a simple extrusive/intrusive relationship between seaward dipping reflector sequences and HVLC, and it provides evidence for formation of the HVLC at different times during the rifting and break-up process. We suggest that the drastically different HVLC volumes are caused by asymmetric rifting in a simple shear dominated extension.

  17. Evolution of the South Atlantic passive continental margin and lithosphere dynamic movement in Southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data

    Krob, Florian; Stippich, Christian; Glasmacher, Ulrich A.; Hackspacher, Peter C.

    2016-04-01

    Passive continental margins are important geoarchives related to mantle dynamics, the breakup of continents, lithospheric dynamics, and other processes. The main concern yields the quantifying long-term lithospheric evolution of the continental margin between São Paulo and Laguna in southeastern Brazil since the Neoproterozoic. We put special emphasis on the reactivation of old fracture zones running into the continent and their constrains on the landscape evolution. In this contribution, we represent already consisting thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4) Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 427.6 (1.8) Ma whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0) Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.52) and 92.0 (1.86) Ma. These thermochronological ages from metamorphic, sedimentary and intrusive rocks show six distinct blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos) with different evolution cut by old fracture zones. Furthermore, models of time-temperature evolution illustrate the differences in Pre- to post-rift exhumation histories of these blocks. The presented data will provide an insight into the complex exhumation history of the continental margin based on the existing literature data on the evolution of the Paraná basin in Brazil and the latest thermochronological data. We used the geological model of the Paraná basin supersequences (Rio Ivaí, Paraná, Gondwana I-III and Bauru) to remodel the subsidence and exhumation history of our consisting thermochronological sample data. First indications include a fast exhumation during the early Paleozoic, a slow shallow (northern blocks) to fast and deep (Laguna block) subduction from middle Paleozoic to Mesozoic time and a extremely fast exhumation during the opening of the South Atlantic

  18. Distribuição de Hg total e suas associações com diferentes suportes geoquímicos em sedimentos marinhos da margem continental brasileira: Bacia de Campos - Rio de Janeiro Total mercury distribution and its association with diferent geochemical supports in marine sediment from the brazilian continental margin: Campos Basin

    Beatriz Ferreira Araujo

    2010-01-01

    Full Text Available Mercury distribution and geochemical support on the Continental Margin was evaluated at the Campos Basin, Rio de Janeiro state, Brazil. The average concentrations for all analyzed elements were, respectively, 20 ± 5 ng g-1 (Hg; 30 ± 14 mg g-1 (Al; 16 ± 6 mg g-1 (Fe, and 254 ± 83 µg g-1 (Mn. Silt and clay content, total carbonate and Hg, and organic carbon increased with depth. Finally, the relationship between Hg and silt clay showed significant positive correlation. Total Hg concentrations are the background level described primarily (~40 ng g-1.

  19. The South China sea margins: Implications for rifting contrasts

    Hayes, D.E.; Nissen, S.S.

    2005-01-01

    Implications regarding spatially complex continental rifting, crustal extension, and the subsequent evolution to seafloor spreading are re-examined for the northern and southern-rifted margins of the South China Sea. Previous seismic studies have shown dramatic differences in the present-day crustal thicknesses as the manifestations of the strain experienced during the rifting of the margin of south China. Although the total crustal extension is presumed to be the same along the margin and adjacent ocean basin, the amount of continental crustal extension that occurred is much less along the east and central segments of the margin than along the western segment. This difference was accommodated by the early formation of oceanic crust (creating the present-day South China Sea basin) adjacent to the eastern margin segment while continued extension of continental crust was sustained to the west. Using the observed cross-sectional areas of extended continental crust derived from deep penetration seismics, two end-member models of varying rift zone widths and varying initial crustal thicknesses are qualitatively examined for three transects. Each model implies a time difference in the initiation of seafloor spreading inferred for different segments along the margin. The two models examined predict that the oceanic crust of the South China Sea basin toward the west did not begin forming until sometime between 6-12 my after its initial formation (???32 Ma) toward the east. These results are compatible with crustal age interpretations of marine magnetic anomalies. Assuming rifting symmetry with conjugate margin segments now residing along the southern portions of the South China Sea basin implies that the total width of the zone of rifting in the west was greater than in the east by about a factor of two. We suggest the most likely causes of the rifting differences were east-west variations in the rheology of the pre-rift crust and associated east-west variations in the

  20. Analyses of multichannel seismic reflection, gravity and magnetic data along a regional profile across the central-western continental margin of India

    Chaubey, A.K.; Rao, D.G.; Srinivas, K.; Ramprasad, T.; Ramana, M.V.; Subrahmanyam, V.

    Ridge is sameasthatofL6. MARGO 3002 2-5-02 A.K. Chaubey et al. / Marine Geology 182 (2002) 303^323 306 7airgunswithatotalcapacityof7.98l.Astan- dard processing package NORSEIS of GECO, Norway was used on an ND-570 computer at the National Institute... (intrusions, £ows, grabens, physio- graphic features) and free-air gravity and mag- MARGO30022-5-02 A.K. Chaubey et al./Marine Geology 182 (2002) 303^323 321 netic signatures of the Laccadive Ridge indicate thinned continental crust and associated volcan- ism...

  1. Cruise report: RV Ocean Alert Cruise A2-98-SC: mapping the southern California continental margin; March 26 through April 11, 1998; San Diego to Long Beach, California

    Gardner, James V.; Mayer, Larry A.

    1998-01-01

    The major objective of cruise A2-98 was to map portions of the southern California continental margin, including mapping in detail US Environmental Protection Agency (USEPA) ocean dumping sites. Mapping was accomplished using a high-resolution multibeam mapping system. The cruise was a jointly funded project between the USEPA and the US Geological Survey (USGS). The USEPA is specifically interested in a series of ocean dump sites off San Diego, Newport Beach, and Long Beach (see Fig. 1 in report) that require high-resolution base maps for site monitoring purposes. The USGS Coastal and Marine Geology Program has several on-going projects off southern California that lack high-precision base maps for a variety of ongoing geological studies. The cruise was conducted under a Cooperative Agreement between the USGS and the Ocean Mapping Group, University of New Brunswick, Canada.

  2. Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity

    Tesoniero, Andrea; Auer, Ludwig; Boschi, Lapo; Cammarano, Fabio

    2015-11-01

    We present a new global model of shear and compressional wave speeds for the entire mantle, partly based on the data set employed for the shear velocity model savani. We invert Rayleigh and Love surface waves up to the sixth overtone in combination with major P and S body wave phases. Mineral physics data on the isotropic δlnVS/δlnVP ratio are taken into account in the form of a regularization constraint. The relationship between VP and VS that we observe in the top 300 km of the mantle has important thermochemical implications. Back-arc basins in the Western Pacific are characterized by large VP/VS and not extremely low VS at ˜150 km depth, consistently with presence of water. Most pronounced anomalies are located in the Sea of Japan, in the back-arc region of the Philippine Sea, and in the South China Sea. Our results indicate the effectiveness of slab-related processes to hydrate the mantle and suggest an important role of Pacific plate subduction also for the evolution of the South China Sea. We detect lateral variations in composition within the continental lithospheric mantle. Regions that have been subjected to rifting, collisions, and flood basalt events are underlain by relatively large VP/VS ratio compared to undeformed Precambrian regions, consistently with a lower degree of chemical depletion. Compositional variations are also observed in deep lithosphere. At ˜200 km depth, mantle beneath Australia and African cratons has comparable positive VS anomalies with other continental regions, but VP is ˜1% higher.

  3. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary

    Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.

    2016-04-01

    Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.

  4. Preservación y abundancia de escamas de peces en sedimentos del margen continental de Chile (21-36° S Fish scale preservation and abundance in sediments from the continental margin off Chile (21-36° S

    JAVIER A DÍAZ-OCHOA

    2008-12-01

    Full Text Available Con el objetivo de evaluar la relación entre la preservación de escamas de peces y las variaciones en las condiciones redox en sedimentos del margen continental de Chile, este trabajo presenta recuentos de escamas de peces y concentraciones normalizadas de elementos redox sensibles (Mo/Al, S/Al, Fe/Al en ocho testigos de sedimento recolectados en la zona de minimo oxígeno frente a Chile (Iquique: 20°15' S, bahía de Mejillones: 23° S y Concepción: 36° S. En el norte de Chile (Iquique y Mejillones predominan las escamas de anchoveta (Engraulis ringens y de peces de la familia Myctophidae (media = 90 y 120 escamas 1.000 cm-3, respectivamente mientras que en Chile centro-sur (Concepción son más abundantes las escamas de jurel (Trachurus murphy; media = 140 escamas 1.000 cm-3. La abundancia de escamas de merluza común (Merluccius gayi gayi y de sardina (Sardinops sagax es aproximadamente un orden de magnitud más baja que la de anchoveta o jurel. En general, los valores más altos y los rangos más amplios de variación en las razones Mo/Al, S/Al y Fe/Al se encuentran en Mejillones (Mo/Al ~0,8-12 mg g-1, S/Al 0,2-4,6 g g-1, Fe/Al 0,3-0,7 g g-1 seguidos por Iquique (Mo/Al -0,2-1,8; S/Al 0,2-0,7, Fe/Al 0,5-0,8, mientras que Concepción revela valores más bajos y poco variables (Mo/Al ~0,07, S/Al ~0,15 y Fe/Al ~0,5. La razón Mo/Al, utilizada como indicador de paleo-oxigenación, permite inferir condiciones reductoras relativamente más intensas en los sedimentos de la Bahía de Mejillones e Iquique que en Concepción. En las tres localidades de muestreo se evidencia una asociación estadísticamente significativa entre la abundancia de escamas de anchoveta y el logaritmo de la razón Mo/Al (r²= 0,46; P 1 mg g-1.The relationship between fish scale preservation and variations in the sediment redox conditions on Chile's continental shelf are evaluated herein through fish scale counts and normalized concentrations of redox sensitive elements

  5. Imaging continental shelf shallow stratigraphy by using different high-resolution seismic sources: an example from the Calabro-Tyrrhenian margin (Mediterranean Sea

    Eleonora Martorelli

    2010-01-01

    Full Text Available High-resolution seismic reflection profiles of the Calabro-Tyrrhenian continental shelf were collected using different seismic sources (Sub-Bottom Profiler, Uniboom, Sparker 0.5-1-4.5 kJ. Noticeable differences and results were obtained both from a geophysical and geological-interpretative point of view. The availability of different sources permitted the definition of the most suitable seismostratigraphic characterization in terms of resolution, penetration and acoustic facies. Very high resolution stratigraphy was defined through profiles produced by different seismic systems used in parallel. This permitted the application of sequence-stratigraphy concepts with the reconstruction of a thick postglacial depositional sequence, formed by a transgressive and a high-stand systems tract. The thickness distribution of postglacial deposits reveals that the main depocenter (55-65 m is located offshore of the Coastal Range, along a stretch of coast supplied by several small and seasonal streams ("fiumare" and characterized by the lack of a coastal plain. This suggests the greater efficiency of sediment supply and bypass in this area relatively to sectors located offshore of the main rivers. The transgressive systems tract, usually thin or nearly absent, is particularly well developed (up to 33 m and is composed of up to three parasequences with a retrogradational stacking pattern. The high-stand systems tract, up to 30 m thick, is made up of two parasequences and has a quite regular geometry and acoustic facies.Perfis de reflexão sísmica de alta resolução da plataforma continental tirreniana de Calabro foram obtidos utilizando-se recursos sísmicos diversos (Perfilador de Sub-superfície, Uniboom, Sparker 0.5-1-4.5 kJ. Diferenças evidentes foram encontradas sob o ponto de vista geofísico e geológico-interpretativo. A disponibilidade de diferentes fontes permitiu a definição de uma caracterização sismo-estratigráfica mais acurada em termos

  6. Techniques for the non-destructive and continuous analysis of sediment cores. Application in the Iberian continental margin; Tecnicas para el analisis no destructivo y en continuo de testigos de sedimento. Aplicacion en el Margen Continental de Iberia

    Frigola, J.; Canals, M.; Mata, P.

    2015-07-01

    Sediment sequences are the most valuable record of long-term environmental conditions at local, regional and/or global scales. Consequently, they are amongst the best archives of the climatic and oceanographic his- tory of the Earth. In the last few decades a strong effort has been made, both in terms of quantity and quality, to improve our knowledge regarding the evolution of our planet from marine and lake sediment records, and also from other records such as ice cores. Such an effort requires reinforcing the geographical coverage and achieving the highest possible robustness in the reconstruction of past environments. Such a target requires the optimization of the time resolution of the records and reconstructions so that fast, high frequency shifts, such as those occurring nowadays due to the on-going global warming, can be disentangled. Beyond paleoenvironmental research, other disciplines have also contributed significantly to the fast growing number of sediment cores already available worldwide. Knowing the physical state and the chemical composition of sedimentary deposits is essential for land management purposes and for many industrial applications. A number of key technological developments are now allowing the acquisition for the first time of massive amounts of multiple parameters from sediment cores in a non-destructive, fast, continuous, repetitive and high-resolution form. In this paper we provide an overview of the state-of-the-art continuous and non-destructive analytical techniques used by the geo scientific community for the study of sediment cores and we present some examples of the application of these methods in several studies carried out around the Iberian Margin. (Author)

  7. Genesis of the Madang Cenozoic sodic alkaline basalt in the eastern margin of the Tibetan Plateau and its continental dynamic implications

    LAI; ShaoCong; ZHANG; GuoWei; LI; YongFei; QIN; JiangFeng

    2007-01-01

    The Madang Cenozoic sodic alkaline basalt occurred in the eastern margin of the Tibetan Plateau, where is a key tectonic transform region of Tibet, North China, and Yangtze blocks. The basalts are characterized by the variation in SiO2=42%―51%, Na2O/K2O>4, belonging to the sodic alkaline basalt series. The rocks are enriched in Ba, Th, Nb, Ta, relative to a slight depletion in K, Rb in the trace and rare earth element (REE) spider diagrams that are similar to the typical oceanic island alkaline basalt. The Sr-Nd-Pb isotopic compositions suggest that they are derived from a mixed mantle reservoir. The western Qinling-Songpan tectonic region was controlled by Tibet, North China and Yangtze blocks since Cenozoic, therefore, the region was in the stage of the substance converge from the mantle to upper crust, producing a mixed mantle reservoir in the studied area. The Madang basalts occurred in the specific tectonic background, they result from partial melting of a mixed asthenospheric mantle reservoir in the western Qinling-Songpan tectonic node.

  8. MT soundings in south Shetland Islands and Antarctic Peninsula (Antarctica). Constraints to the crustal structure of the Bransfield strait conjugated continental margins

    Complete text of publication follows. The South Shetland Block was separated from the Antarctic Peninsula during the opening of the Bransfield Strait since the Pliocene (about 3.3 Ma). The Bransfield basin is developed by the interaction of two tectonic processes that continue active up to Present: the back-arc extension related to the subduction of the former Phoenix plate oceanic crust along the South Shetland trench and the transtensional deformation associated to the western end of the sinistral Scotia-Antarctic plate boundary along the South Scotia Ridge fault zone. In this tectonic framework 12 MT broadband data (BBMT) were recorded along a NW-SE transect orthogonal to the Bransfield Strait, with Metronix ADU-06 equipments, during 2008 and 2009 International Polar Year field surveys. Due to the difficult access of the region and in order to compare the resistivity crustal features, MT soundings were grouped in three sectors representing the different tectonic settings. In the South Shetland Block 4 MT soundings were located in Livingston Island (3 in Byers Peninsula and one in Hurd Peninsula) and suggest the presence of conductive Cretaceous to Cenozoic sedimentary and volcanic rocks above the resistive and heterogeneous metamorphic basement that outcrop in Hurd Peninsula. Southwards, 7 MT sounding were situated around the Quaternary volcanic caldera of Deception Island, formed on the fault system separating the South Shetland Block and the Bransfield basin. Conductive bodies highlight the location of the main magma chambers. Finally, in the Antarctic Peninsula northern margin a MT sounding was obtained in Isla Larga, near the O'Higgins base that constitutes one of the scarce islands of this region not covered by ice during the summer. This MT sounding suggest a 3D complex resistivity structure related to the metamorphic rocks intruded by basic dykes. These MT soundings may contribute to improve the scarce available data on the crustal structure of this

  9. Detrital zircon U-Pb geochronology and stratigraphy of the Cretaceous Sanjiang Basin in NE China: Provenance record of an abrupt tectonic switch in the mode and nature of the NE Asian continental margin evolution

    Zhang, Feng-Qi; Chen, Han-Lin; Batt, Geoffrey E.; Dilek, Yildirim; A, Min-Na; Sun, Ming-Dao; Yang, Shu-Feng; Meng, Qi-An; Zhao, Xue-Qin

    2015-12-01

    The age spectra obtained from 505 spots of detrital zircon U-Pb ages of five representative sandstone samples from the Sanjiang Basin in NE China point to a significant change in its provenance during the Coniacian-Santonian. The predominant detrital source for the Sanjiang Basin during the early Cretaceous was the Zhangguangcai Range magmatic belt and Jiamusi Block along its western and southern periphery, whereas it changed in the late Cretaceous to its eastern periphery. The timing of these inferred changes in the detrital source regions and drainage patterns nearly coincide with the age of a regional unconformity in and across the basin. The time interval of non-deposition and unconformity development was coeval with a transitional period between an extensional tectonic regime in the early Cretaceous and a contractional deformation episode in the late Cretaceous. The Sanjiang Basin evolved during this time window from a backarc to a foreland basin. The migration of the coastal orogenic belt and the fold and thrust belt development farther inland during the late Cretaceous marked the onset of regional-scale shortening and surface uplift in the upper plate of a flat (or very shallow-dipping) subduction zone. The stratigraphic record, the detrital source and geochronology of the basinal strata, and the internal structure of the Sanjiang Basin present, therefore, an important record of a tectonic switch in the nature of continental margin evolution of Northeast Asia during the late Mesozoic.

  10. Hydrothermal Mineralization on the Mesoproterozoic Passive Continental Margins of China:A Case Study of the Langshan-Zha'ertaishan Belt, Inner Mongolia, China

    PENG Runmin; ZHAI Yusheng

    2004-01-01

    Most ore-forming characteristics of the Langshan-Zha'ertaishan hydrothermal exhalation belt, which consists of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan large-superlarge Zn-Pb-Cu-Fe sulfide deposits, are most similar to those of Mesoproterozoic SEDEX-type provinces of the world. The characteristics include: (1) All deposits of this type in the belt occur in third-order fault-basins in the Langshan-Zha'ertaishan aulacogen along the northern margin of the North China Platform; (2) these deposits with all their orebodies hosted in the Mesoproterozoic impure dolomite-marble and carbonaceous phyllite (or schists) have an apparent stratabound nature; ores display laminated and banded structures,showing clear depositional features; (3) there is some evidence of syn-sedimentary faulting, which to a certain extent accounts for the temporal and spatial distribution and the size of the orebodies in all deposits and the formation of intrabed conglomerates and breccias; (4) they show lateral and vertical zonation of sulfides; (5) The Cu/(Pb+Zn+Cu) ratio of the large and thick Pb+Zn+Cu orebodies gradually decreases from bottom to top; and (6) barite is interbedded with pyrites and sometimes with sphalerite. However, some characteristics such as the Co/Ni radio of the pyrites, the volcanism, for example, of the Langshan-Zha'ertaishan metallogenic belt, are different from those of the typical SEDEX deposits of the world. The meta-basic volcanic rock in Huogeqi, the sodic bimodal volcanic rocks in the Dongshengmiao and potassic bimodal-volcanic rocks with blastoporphyritic and blasto-glomeroporphyritic texture as well as blasto-amygdaloidal structure in the Tanyaokou deposits have been discovered in the only ore-bearing second formation of the Langshan Group in the past 10 years. The metallogeny of some deposits hosted in the Langshan Group is closely related to syn-sedimentary volcanism based on the following facts: most of the lead isotopes in sphalerite, galena

  11. Tectonics and melting in intra-continental settings

    Gorczyk, Weronika; Vogt, Katharina

    2015-01-01

    Most of the geodynamic theories of deformation aswell asmetamorphismandmelting of continental lithosphere are concentrated on plate boundaries and are dominated by the effects of subduction upon deformation of the margins of continental lithospheric blocks. However, it is becoming increasingly appar

  12. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-01-01

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins. PMID:24301173

  13. Study of the particulate matter transfer and dumping using 210 Po et le 210 Pb. Application to the Gulf of Biscary (NE Atlantic Ocean) and the Gulf of Lion (NW Mediterranean Sea) continental margins

    210 Po and 210 Pb activities and fluxes were measured on seawater, sediment-trapped material collected during one year and sediment. Focalization of 210 Pb is clearly noticed on the Cap-Ferret canyon (Gulf of Biscary) and the Lacaze-Duthiers canyon (western part of the Gulf of Lion). In both sites, 210 Pb fluxes in traps and sediment are always higher than 210 Pb flux available from atmospheric and in situ production. On the contrary, Grand-Rhone canyon and its adjacent open slope exhibit a 210 Pb budget near equilibrium in the near-bottom sediment traps, but focalization is important in the sediment. For the entire Gulf of Lion margin, focalization of 210 Pb in the sediment occurred principally between 500 and 1500 m water depth on the slope, and on the middle shelf mud-patch. 210 Po and 210 Pb have been used in the Cap Ferret and Grand-Rhone canyons to characterize the origin of the particulate trapped material. Two main sources feed the water column. The first source, localized in surface waters, is constituted by biogenic particles from primary production and lithogenic material. The second source, deeper, is due to resuspension at the shelf break and/or on the open slope. In each site, 210 Po and 210 Pb activities of the trapped particles did not show any relations with the major constituents. Quantity of particles appeared to be the main factor regulating adsorption processes of these nuclides. Sedimentation rates based on 210 Po profiles decreased with increasing water depth, from 0.4 ti 0.06 cm y-1 on the Cap Ferret canyon (400 to 3000 m water depth) and from 0.5 to 0.05 cm y-1 for the entire Gulf of Lion margin (50 to 2000 m water depth). (author)

  14. Dynamics of continental accretion.

    Moresi, L; Betts, P G; Miller, M S; Cayley, R A

    2014-04-10

    Subduction zones become congested when they try to consume buoyant, exotic crust. The accretionary mountain belts (orogens) that form at these convergent plate margins have been the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North American Cordilleras and southwest Pacific subduction zones. The geologic record contains abundant accretionary orogens, such as the Tasmanides, along the eastern margin of the supercontinent Gondwana, and the Altaïdes, which formed on the southern margin of Laurasia. In modern and ancient examples of long-lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back-arc basin development, often related to subduction rollback and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. Here we present three-dimensional dynamic models that show how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back-arc region. The complexity of the morphology and the evolution of the system are caused by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonally to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, and infer that this is a recurrent and global phenomenon. PMID:24670638

  15. Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey

    Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.

    1975-01-01

    A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.

  16. Transfer/transform relationships in continental rifts and margins and their control on syn- and post-rift denudation: the case of the southeastern Gulf of Aden, Socotra Island, Yemen

    Pik, Raphael; Bellahsen, Nicolas; Leroy, Sylvie; Denele, Yoann; Razin, Philippe; Ahmed, Abdulhakim; Khanbari, Khaled

    2013-04-01

    Transfer zones are ubiquist features in continental rifts and margins, as well as transform faults in oceanic lithosphere. Here, we present the structural study of such a structure (the Hadibo Transfer Zone, HTZ) from the southeastern Gulf of Aden, in Socotra Island, Yemen. There, from field data, the HTZ is interpreted as being reactivated, obliquely to divergence, since early rifting stages. Then, from a short review of transfer/transform fault zone geometries worldwide, we derive a classification in terms of relative importance (1st, 2nd, 3rd order), geometry, and location. We suggest that the HTZ is a 1st order transfer fault zone as it controls the initiation of a 1st order oceanic transform fault zone. We then investigate the denudation history of the region surrounding the HTZ in order to highlight the interplay of normal and transfer/transform tectonic structures in the course of rift evolution. Samples belong from two distinct East and West domains of the Socotra Island, separated by the (HTZ). Tectonic denudation started during the Priabonian-Rupelian along flat normal faults and removed all the overlying sedimentary formations, allowing basement exhumation up to the surface (~ 1.2 - 1.6 km of exhumation). Forward t-T modelling of the data requires a slightly earlier date and shorter period for development of rifting in the E-Socotra domain (38 - 34 Ma), compared to the W-Socotra domain (34 - 25 Ma), which suggests that the HTZ was already active at that time. A second major event of basement cooling and exhumation (additional ~ 0.7 - 1 km), starting at about ~ 20 Ma, has only been recorded on the E-Socotra domain. This second denudation phase significantly post-dates local rifting period but appears synchronous with Ocean Continent Transition (OCT: 20 - 17.6 Ma). This late syn-OCT uplift is maximum close to the HTZ, in the wedge of hangingwall delimited by this transfer system and the steep north-dipping normal faults that accommodated the vertical

  17. Depositional Architecture Characteristics of Deepwater Depositional Systems on the Continental Margins of Northwestern South China Sea%南海西北陆缘深水沉积体系内部构成特征

    解习农; 陈志宏; 孙志鹏; 姜涛; 何云龙

    2012-01-01

    深水沉积是近年来我国海域油气勘探重点之一,利用高精度二维和三维地震剖面的精细解剖,揭示了南海西北陆缘区深水沉积体系类型及其内部构成特征.这些深水地区除堆积正常深海一半深海泥岩外,还发育大量深水重力流沉积,包括块体流沉积、深水峡谷、沉积物波等大型沉积体.研究表明,南海西北陆缘区发育4类陆坡,即进积型、滑塌型、水道化型、宽缓渐变型陆坡.不同陆坡类型具有不同地貌形态,发育不同的沉积体类型.大型块体流沉积主要发育于滑塌型和水道化型陆坡,沉积物波主要发育于宽缓渐变型陆坡下部及深海中央峡谷长昌段的周缘地区.由于南海西北陆缘自晚中新世以来形成向东开口的喇叭形变深的地貌形态,导致在盆地中央形成了独特的与陆坡走向一致的深海峡谷体系——中央峡谷.该峡谷的沉积充填不仅包括来自于西部峡谷头部的浊积水道沉积,还包括来自于北部陆坡的块体流沉积,特别是来自于滑塌型陆坡的块体流沉积.中央峡谷体系构成了西北陆缘区多源汇聚的深水沉积物输送系统,同时也是南海西北陆缘深水区重要的油气储层发育层系.%Deepwater reservoir has become one of the major issues in submarine hydrocarbon exploration in China recently. Based on high resolution 2D and 3D seismic data, depositional patterns and architectures of deepwater depositional systems are identified on the northwestern continental margins of the South China Sea. Apart from hemipelagic and pelagic mudstones, a number of gravity flow deposits are extensively developed, including large scale mass transport deposits (MTDs), submarine canyons and sediment waves. Four slope types are identified, including progradational type, slumping type, channelized type, wide and gentle type slopes. Each slope type has different morphological features and depositional architectures. Giant MTDs

  18. Authigenic minerals from the continental margins

    Rao, V.P.

    with the detrital clays, which form as fine-grained clay sized materials, authigenic clays are iron-rich and thus can be separated by Iso-dynamic separator. They are light green to dark green in colour, with usual surface cracks indicative of degree... with an increasing potassium content in the interlayers (Odin and Matter, 1981). Glauconitic mica is the recommended term for glauconite. In younger and present day forming glaucony should contain glauconitic smectite rather than glauconitic mica which needs...

  19. An Inverse Method to Derive the Kinematic History of Rifted Margin Formation Using a New Model of Sea Floor Spreading Initiation

    Healy, D.; Kusznir, N.

    2004-05-01

    Recent discoveries of depth-dependent stretching and mantle exhumation at rifted continental margins require new models of margin formation. A two-dimensional coupled fluid mechanics/thermal kinematic model of sea-floor spreading initiation has been developed to predict the deformational and thermal evolution of rifted continental margins through time. The model can also include the effects of pre-breakup pure-shear stretching of continental lithosphere. Rifted margin lithosphere thinning and thermal evolution is dependent on ocean-ridge spreading rate (Vx), the mantle upwelling velocity beneath the ridge axis (Vz), and the pre-breakup lithosphere stretching factor (a). The model predicts the thinning of the upper crust, lower crust and lithospheric mantle of the continental margin, and the history of rifted margin subsidence, water depths and top basement heat-flow. We apply inverse methods to this new forward model of rifted margin formation to explore how successfully model input parameters may be extracted from observational data at rifted margins. The ability of the inverse method to find a unique solution has been established using synthetic data from forward modelling. Output parameters from the inversion are the horizontal and vertical velocities of sea-floor spreading, their variation with time, and the initial pre-breakup lithosphere stretching factor. Initial inversion tests used forward model predictions of the stretching of the upper crust, the whole crust and the whole lithosphere. These model predictions control the variation of crustal thickness and lithosphere temperature beneath the thinned continental margin and adjacent ocean, which in turn control margin subsidence and gravity anomaly. For application of the inversion procedure to observed data on rifted margins, the input data used are measured bathymetry, sediment thickness, gravity anomaly and upper crustal stretching. The forward problem is characterised by a non-linear relationship between

  20. Crustal structure and extension mode in the northwestern margin of the South China Sea

    Gao, Jinwei; Wu, Shiguo; McIntosh, Kirk; Mi, Lijun; Liu, Zheng; Spence, George

    2016-06-01

    Combining multi-channel seismic reflection and gravity modeling, this study has investigated the crustal structure of the northwestern South China Sea margin. These data constrain a hyper-extended crustal area bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a subparallel fossil ridge in the adjacent Northwest Sub-basin. The thinnest crust is located in the Xisha Trough, where it is remnant lower crust with a thickness of less than 3 km. Gravity modeling also revealed a hyper-extended crust across the Xisha Trough. The postrift magmatism is well developed and more active in the Xisha Trough and farther southeast than on the northwestern continental margin of the South China Sea; and the magmatic intrusion/extrusion was relatively active during the rifting of Xisha Trough and the Northwest Sub-basin. A narrow continent-ocean transition zone with a width of ˜65 km bounded seaward by a volcanic buried seamount is characterized by crustal thinning, rift depression, low gravity anomaly and the termination of the break-up unconformity seismic reflection. The aborted rift near the continental margin means that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric rift, extreme hyper-extended continental crust and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northwestern South China Sea margin.

  1. Post-orogenic evolution of the Sierras Septentrionales and the Sierras Australes and links to the evolution of the eastern Argentina South Atlantic passive continental margin constrained by low temperature thermochronometry and 2D thermokinematic modeling

    Kollenz, Sebastian; Glasmacher, Ulrich Anton; Rossello, Eduardo A.

    2013-04-01

    The eastern Argentina South Atlantic passive continental margin is distinguished by a very flat topography. Out of the so called Pampean flat two mountain ranges are arising. These mountain ranges, the Sierras Australes and the Sierras Septentrionales, are located in the State of Buenos Aires south of the capital Buenos Aires. North of the Sierras Septentrionales the Salado basin is located. The Sierras Septentrionales and the Sierras Australes are also divided by a smaller intracratonic basin. Further in the South the Colorado basin is located. The Sierras Australes is a variscian fold belt originated by strong phases of metamorphosis, but till now it is unclear by how many tectonic phases the area was influenced (Tomezzoli & Vilas, 1999). It consists of Proterozoic to Paleozoic rocks. The Sierras Septentrionales consists mainly of Precambrian crystalline rocks. The Precambrian sequences are overlain by younger Sediments (Cingolani, 2010). The aim is to understand the long-term landscape evolution of the area by quantifiying erosion- and exhumation-rates and by dating ancient rock-uplift-events. Another goal is to find out how the opening of the south atlantic took effect on this region. To fulfill this goal, thermochronological techniques, such as fission-track dating and (U-Th-Sm)/He dating has been applied to samples from the region. Because there was no low-temperature thermochronology done in this area, both techniques were applied on apatites and zircons. Furthermore, numerical modeling of the cooling history has provided the data base for the quantification of the exhumation rates. The first data-set shows clusters of different ages which can be linked to tectonic activities during late Paleozoic times. Also the thermokinematic modeling is leading to new insights of the evolution of both mountain ranges. References: Renata Nela Tomezzoli and Juan Francisco Vilas (1999): Palaeomagnetic constraints on the age of deformation of the Sierras Australes thrust and

  2. Exploration Status and Major Controlling Factors of Hydrocarbon Accumulation in the Continental Margin Basins of the Bengal Bay%孟加拉湾地区大陆边缘盆地勘探概况与油气富集主控因素

    朱光辉; 李林涛

    2012-01-01

    The Bengal Bay lies in the east of India continent, west of Burma-Andaman-Sumatra area, and south of the Bangladesh. There are two different kinds of continental margins: passive and active continental margin. Many hydrocarbons bearing basins lie in the continental margins of the Bengal Bay, Based on the structure characteristics and plate position, we divided the basins into three types: passive continental margin basin (Mahanadi, Cauvery, and the K-G basins) , active continental margin basin (Rakhine, central Burma, Moattama, Andaman, and the north Sumatra basins) and remnant ocean basin (Bengal Basin). According to the distribution of the volcanic arcs, we further divided the active continental basin into trench, fore-arc and back-arc related basin. Through petroleum exploration analysis of the continental margin basins of the Bengal Bay, we come into the conclusion that the type of hydrocarbon source rocks and abundance of organic matters determined the nature of fluids and abundance of resources. Large river-delta system determined the distribution of big hydrocarbon field. Finally type, property and intensity of tectonic activities (especially of the late stage) determined the potential of exploration zones.%孟加拉湾位于印度大陆以东、缅甸—安达曼—苏门答腊以西、孟加拉国南部海上地区,该区存在主动和被动两种不同类型的大陆边缘,并发育众多大陆边缘含油气盆地.根据板块位置和构造特征将其划分为三大类,分别是:被动大陆边缘盆地(马哈纳迪、K-G和高韦里盆地);主动大陆边缘盆地(若开、缅甸中央、马达班、安达曼和北苏门答腊盆地);残留洋盆地(孟加拉盆地).根据火山岛弧带分布情况进一步将主动大陆边缘盆地划分为:①海沟型——若开盆地;②弧前型——缅甸中央盆地;③弧后型——马达班、安达曼和北苏门答腊盆地.对这些盆地油气勘探情况的统计与分析表明,该区大

  3. Spongicoloides sp. aff. a Spongicoloides galapagensis (Decapoda: Stenopodidea: Spongicolidae: una nueva especie para la carcinofauna chilena y primer registro de un estenopodido en aguas del margen continental de Chile Spongicoloides sp. aff. to Spongicoloides galapagensis (Decapoda: Stenopodidea: Spongicolidae: a new species for Chilean carcinofauna and the first record of aStenopodid for the Chilean margin

    Guillermo L Guzmán

    2011-11-01

    Full Text Available Se cita por primera vez para el margen continental de Chile una especie de camarón Stenopodidae, asociado a una esponja hexactinelida. Los especímenes fueron recolectados en dos sitios de Chile central (31°12'S, 71°52'W y 36°00'S, 73°38'W; 922 a 1000 m de profundidad. Las esponjas estaban adheridas al sustrato con probable origen en emanaciones de metano. Spongicoloides sp. aff. a S. gala-pagensis, es el primer registro de la familia en aguas del margen continental del Pacífico suroriental. Los ejemplares coinciden con los rangos de la variación morfológica de S. galapagensis, no obstante difieren en el número de branquias descrito.This is the first record of a species of Stenopodid shrimp along the Chilean margin, associated with a hexactinellid sponge. The specimens were collected at two sites in central Chile (31°12'S, 71°52'W and 36°00'S, 73°38'W; 922 to 1000 m depth. The sponges were attached to the substrate with probable origins in methane seepage. Spongicoloides sp. aff. to S. galapagensis constitutes the first record of the family for the eastern south Pacific continental margin. The specimens coincide with the ranges of morphological variation of S. galapagensis, although they differ in the number of brachia described.

  4. Continental drilling

    Shoemaker, E.M. (ed.)

    1975-01-01

    The Workshop on Continental Drilling was convened to prepare a report for submission to the US Geodynamics Committee with respect to the contribution that could be made by land drilling to resolve major problems of geodynamics and consider the mechanisms by which the responsibility for scientific planning, establishment of priorities, administration, and budgeting for a land-drilling program within the framework of the aims of the Geodynamics Project would best be established. A new and extensive program to study the continental crust is outlined in this report. The Workshop focused on the following topics: processes in the continental crust (mechanism of faulting and earthquakes, hydrothermal systems and active magma chambers); state and structure of the continental crust (heat flow and thermal structure of the crust; state of ambient stress in the North American plate; extent, regional structure, and evolution of crystalline continental crust); short hole investigations; present state and needs of drilling technology; drill hole experimentation and instrumentation; suggestions for organization and operation of drilling project; and suggested level of effort and funding. Four recommendations are set down. 8 figures, 5 tables. (RWR)

  5. The mapping methods and division of tectonic units of the regional tectonic map in the eastern China seas and adjacent regions

    YIN Yanhong; ZHANG Xunhua; WEN Zhenhe; GUO Zhenxuan

    2009-01-01

    The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The Mapping methods, the division method of geological tectonic units and the main geological tectonic units are mainly discussed. The strata from Pliocene to Holocene are peeled off so as to display the Pre-Pliocene structures. In basins, isopaches are drawn for the Cenozoic deposits. The plate tectonic theory and present tectonic pattern are adopted as the priorities in tectonic division. As to the division of intraplate tectonic units, it is a revision, complement and improvement of previous dividing systems, and the nomenclature for each tectonic unit follows the current system in China. The first-order tectonic unit is plate (Pacific Plate, Eurasian Plate and Philippine Sea Plate). The second-order tectonic unit is tectonic domain (East Asian continental tectonic domain,East Asian continental margin tectonic domain and west Pacific tectonic domain). The Philippine Sea Plate and the west part of the Pacific Plate are called the West Pacific tectonic domain. The part of the Eurasian Plate involved in this study area can be further divided into East Asian continental tectonic domain and East Asian continental margin tectonic domain. The East Asian continental margin domain is composed of the Ryukyu island arc, the Okinawa Trough back-arc basin and the back-arc basin of Sea of Japan. The East Asian continental tectonic domain in this study area is composed of the Sino-Korea Massif, the Changjiang River (Yangtze) Massif and South China Massif. In turn, these massifs consist of basins, folded belts or uplift zones. The basins,the folded belts or the uplift zones are further divided into uplifts and depressions made up of sags and swells.

  6. Modeling the dynamics of continental shelf carbon.

    Hofmann, Eileen E; Cahill, Bronwyn; Fennel, Katja; Friedrichs, Marjorie A M; Hyde, Kimberly; Lee, Cindy; Mannino, Antonio; Najjar, Raymond G; O'Reilly, John E; Wilkin, John; Xue, Jianhong

    2011-01-01

    Continental margin systems are important contributors to global nutrient and carbon budgets. Effort is needed to quantify this contribution and how it will be modified under changing patterns of climate and land use. Coupled models will be used to provide projections of future states of continental margin systems. Thus, it is appropriate to consider the limitations that impede the development of realistic models. Here, we provide an overview of the current state of modeling carbon cycling on continental margins as well as the processes and issues that provide the next challenges to such models. Our overview is done within the context of a coupled circulation-biogeochemical model developed for the northeastern North American continental shelf region. Particular choices of forcing and initial fields and process parameterizations are used to illustrate the consequences for simulated distributions, as revealed by comparisons to observations using quantitative statistical metrics. PMID:21329200

  7. Continental tectonics and continental kinetics

    We present a model of continental growth which combines the results of geochemical studies and tectonic ideas about the evolution of continents through geological time. The process of continental growth is mainly controlled by surface phenomena. Continental material is extracted from the mantle along subduction zones at the periphery of oceans, and is destroyed in collision zones where it is remobilized and made available for subduction. We derive an equation for S, the portion of the Earth's surface occupied by continents, which reads as follows: dS/dt=a . √(1-S)-b . S. Coefficients a and b depend on the geometry of plates, on their number and on their velocities. We assume that they decrease exponentially with time with the same time-scale α. This model satisfies both geochemical and tectonic constraints, and allows the integration of several current observations in a single framework. (orig.)

  8. Adjacent segment disease.

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  9. Continental dynamics and continental earthquakes

    张东宁; 张国民; 张培震

    2003-01-01

    Two key research projects in geoscience field in China since the IUGG meeting in Birmingham in 1999, the project of "East Asian Continental Geodynamics" and the project of "Mechanism and Prediction of Strong Continental Earthquakes" are introduced in this paper. Some details of two projects, such as their sub-projects, some initial research results published are also given here. Because of the large magnitude of the November 14, 2001 Kunlun Mountain Pass MS=8.1 earthquake, in the third part of this paper, some initial research results are reviewed for the after-shock monitoring and the multi-discipline field survey, the impact and disaster of this earthquake on the construction site of Qinghai-Xizang (Tibet) railway and some other infrastructure.

  10. Freshwater peat on the continental shelf

    Emery, K.O.; Wigley, R.L.; Bartlett, A.S.; Rubin, M.; Barghoorn, E.S.

    1967-01-01

    Freshwater peats from the continental shelf off northeastern United States contain the same general pollen sequence as peats from ponds that are above sea level and that are of comparable radiocarbon ages. These peats indicate that during glacial times of low sea level terrestrial vegetation covered the region that is now the continental shelf in an unbroken extension from the adjacent land areas to the north and west.

  11. Late Permian to Triassic intraplate orogeny of the southern Tianshan and adjacent regions, NW China

    Wei Ju; Guiting Hou

    2014-01-01

    The South Tianshan Orogen and adjacent regions of Central Asia are located in the southwestern part of the Central Asian Orogenic Belt. The formation of South Tianshan Orogen was a diachronous, scissors-like process, which took place during the Palaeozoic, and its western segment was accepted as a site of the final collision between the Tarim Craton and the North Asian continent, which occurred in the late Palaeozoic. However, the post-collisional tectonic evolution of the South Tianshan Orogen and adjacent regions remains debatable. Based on previous studies and recent geochronogical data, we suggest that the final collision between the Tarim Craton and the North Asian continent occurred during the late Carboniferous. Therefore, the Permian was a period of intracontinental environment in the southern Tianshan and adjacent regions. We propose that an earlier, small-scale intraplate orogenic stage occurred in late Permian to Triassic time, which was the first intraplate process in the South Tianshan Orogen and adjacent regions. The later large-scale and well-known Neogene to Quaternary intraplate orogeny was induced by the collision between the India subcontinent and the Eurasian plate. The paper presents a new evolutionary model for the South Tianshan Orogen and adjacent regions, which includes seven stages: (I) late Ordovicianeearly Silurian opening of the South Tianshan Ocean;(II) middle Silurianemiddle Devonian subduction of the South Tianshan Ocean beneath an active margin of the North Asian continent; (III) late Devonianelate Carboniferous closure of the South Tianshan Ocean and collision between the Kazakhstan-Yili and Tarim continental blocks;(IV) early Permian post-collisional magmatism and rifting;(V) late PermianeTriassic the first intraplate orogeny;(VI) JurassicePalaeogene tectonic stagnation and (VII) NeoceneeQuaternary intraplate orogeny.

  12. Mesoproterozoic Neoproterozoic transition: Geochemistry, provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block, South China

    Deru, Xu; Xuexiang, Gu; Pengchun, Li; Guanghao, Chen; Bin, Xia; Bachlinski, Robert; Zhuanli, He; Gonggu, Fu

    2007-03-01

    The SE margin of the Yangtze Block, South China is composed of the Mesoproterozoic Lengjiaxi Group and the Neoproterozoic Banxi Group, with Sinian- and post-Sinian-cover. A geochemical study was undertaken on the Mesoproterozoic-Neoproterozoic clastic sediments in order to delineate the characteristics of the sediment source and to constrain the tectonic development and crustal evolution of South China. Our results show that the Mesoproterozoic clastic sediments have a dominant component derived from a metavolcanic-plutonic terrane, with a large of mafic component. There is a minor contribution of mafic rocks and older upper crustal rocks to the provenance. Strong chemical weathering in the source area occurred before transport and deposition. The provenance for the Neoproterozoic clastic sediments was most likely old upper continental crust composed of tonalite-granodiorite-dominated, tonalite-granodiorite-granite source rocks, which had undergone strong weathering and/or recycling. A minor component of older K-rich granitic plutonic rocks and younger volcanogenic bimodal rocks is also indicated. Based on the regional geology, the geochemical data and the inferred provenance, the Mesoproterozoic Group is interpreted as a successive sedimentary sequence, deposited in an extensional/rifting back-arc basin, adjacent to a >1.80 Ga continental margin arc-terrane. The progressive extension/rifting of the back-arc basin was followed by increasing subsidence and regional uplift during continental marginal arc-continent (the Cathaysian Block) collision at ˜1.0 Ga caused the deposition of the Neoproterozoic Group into back-arc to retro-arc foreland basin. Therefore, the depositional setting of the Proterozoic clastic sediments and associated volcanic rocks within the back-arc basin reflected basin development from an active continental margin (back-arc basin), with extension or rifting of the back-arc basin, to a passive continental margin.

  13. Gordian adjacency for torus knots

    Feller, Peter

    2013-01-01

    A knot K is called Gordian adjacent to a knot L if there exists an unknotting sequence for L containing K. We provide a sufficient condition for Gordian adjacency of torus knots via the study of knots in the thickened torus. We also completely describe Gordian adjacency for torus knots of index 2 and 3 using Levine-Tristram signatures as obstructions to Gordian adjacency. Finally, Gordian adjacency for torus knots is compared to the notion of adjacency for plane curve singularities.

  14. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin

  15. Continental Rifts

    Rosendahl, B. R.

    Continental Rifts, edited by A. M. Quennell, is a new member of the Benchmark Papers in Geology Series, edited in toto by R. W. Fairbridge. In this series the individual volume editors peruse the literature on a given topic, select a few dozen papers of ostensibly benchmark quality, and then reorder them in some sensible fashion. Some of the original papers are republished intact, but many are chopped into “McNuggets™” of information. Depending upon the volume editor, the chopping process can range from a butchering job to careful and prudent pruning. The collecting, sifting, and reorganizing tasks are, of course, equally editor-sensitive. The end product of this series is something akin to a set of Reader's Digest of Geology.

  16. Continental crust beneath southeast Iceland.

    Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  17. Late Cenozoic Tectonic Deformation in the Dongsha Islands and Adjacent Sea Area

    WU Shiguo(吴时国); LIU Zhan(刘展); WANG Wanyin(王万银); GUO Junhua(郭军华); T. Lüdmann; H. K. Wong

    2003-01-01

    Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magnetic and drilling wells data led to the discovery of three post-fault sequences (V, VI, VII). Extensive tectonic uplift, magma activity and erosion occurred in Dongsha Island and the adjacent area, where most of the faults in the northeastern SCS were still active during Pliocene and Quaternary. Two groups of faults trending NEE and NW were developed during Late Cenozoic. We conclude that three important tectonic movements, especially Dongsha movement (4.4-5.2 Ma) and Liuhua movement (1.4-1.89 Ma), controlled the structural framework in the Dongsha rise; whose deformation in the east is stronger than that in the west and whose stress field variation suggests that the tectonic uplift in the study area contributed to magmato-tectonic events correlated to the main collision phases between the East China and Taiwan 5-3 and 3-0 Ma ago.

  18. Characteristics of late hercynian magmatic activity and its formation mechanism in Nanpanjiang depression and adjacent areas

    Based on the distribution and petrochemistry of magmatic rocks, the technic background of sedimentary basin and the mechanism of magmatic activity at the Late Hercynian in Nanpanjiang depression and its adjacent areas, southern China, have been studied. The results indicate: (1) The distribution of magmatic rocks shows the feature that in the middle and western part of the study area basic igneous rocks dominate, and in the middle-eastern part intermediate rocks are predominant, while in the southeastern part acid ones are developed. (2) In the area west to the Shiwandashan basin, intermediate magmatites were controlled by deep NE-striking and NW-striking faults, especially as the conjunction site of these two group faults, magmatic activity was strong; and its tectonic background can be attributed to extensional continental rift. On the contrary, in the area east to the Shiwandashan basin, intermediate-acid magmatites were developed and controlled by Qingfang orogenic belt resulting from the Dongwu movement and its tectonic background can be identified as the orogenic belt of continental margin or island arc. (3) The model of magmatic activity has been determined as follows: at the end of Early Permian, under the action of strong tension of the crust in the middle and western part of the study area, the Yangzhi plate was obducted southeastward onto the Yunkai terrane, leading to the closure of Qingfang oceanic trough and the occurrence of continent-continent collision along the NE-trending Bobai-Chengxi fault belt. The dynamics source might be associated with 'the basalt province of E-mei Mountain' adjacent to the study area, and the mechanism of magmatic activity reflected the sedimentary features of Late Hercynian basins. (authors)

  19. Interpretation of crustal structure from regional gravity anomalies, Ouachita Mountains area and adjacent Gulf coastal plain

    Kruger, J.M.; Keller, G.R.

    1986-06-01

    A gravity data base from more than 35,000 stations was used to generate a series of regional gravity maps of the Ouachita Mountains area including adjacent parts of the craton and the Gulf coastal plain. These maps were used in conjunction with information from 96 wells, data from preexisting geophysical and geological investigations, and computer models to interpret four gravity profiles that transect the study area (approximately lat. 30-37/sup 0/N, long. 91.5-99/sup 0/W). These models, gravity maps, and previous investigations were then used to analyze various regional gravity anomalies and to interpret the gross crustal structure of the region and its tectonic implications. These data suggest that variably attenuated continental crust lies beneath the Gulf coastal plain, south of the Ouachita system gravity gradient, as opposed to typical continental crust of the craton north of this gradient. This variation in crustal structure probably reflects the complexity of Eocambrian and early Mesozoic rifting in the area. The Arkoma basin gravity minima may result from the combined effect of a late Paleozoic foreland basin and an Eocambrian northwest-trending, rift-related basin. The Ouachita system interior zone gravity maximum varies along strike of this orogenic belt. This anomaly appears to be a good indicator of the position of the Eocambrian continental margin and associated rift zone. Gravity anomalies in the Gulf coastal plain appear to be a combined effect of variable crustal attenuation, basins and uplifts, and mafic intrusions. Gravity maxima in the southern Oklahoma aulacogen result from uplifts and deep-seated mafic intrusions; gravity minima result from deep sedimentary basins.

  20. Serpentized mantle at rifted margins: The Goban Spur example

    Bullock, A. D.; Minshull, T. A.

    2002-12-01

    The crustal structure of rifted continental margins can tell us about the processes that operated from continental extension to eventual break-up and sea floor spreading. Variations between margins may record different processes operating during extension or indicate changes in the external geological controls such as mantle plume influence. Extension between Europe and North America began in the mid Cretaceous, dated at the Goban Spur-Flemish Cap rift as late Hauterivian-early Barremian (126-128 Ma) from deep sea drilling (DSDP leg 80) results on the Goban Spur margin. Marine magnetic anomaly 34 can be identified clearly on both margins and indicates that sea floor spreading began no later than 83 Ma. Syn-rift volcanism is limited to a 20 km basaltic body, with considerable lateral extent, at the foot of the continental slope, emplaced at the end of continental rifting. \

  1. Exploring Benthic Biodiversity Patterns and Hotspots on European Margin Slopes

    Roberto Danovaro; Miquel Canals; Serge Heussner; Nikolaos Lampadariou; Ann Vanreusel

    2009-01-01

    There is increasing evidence that continental slope ecosystems represent one of the major repositories of benthic marine biodiversity. The enhanced levels of biodiversity along slopes are hypothesized to be a source of biodiversity for continental shelves and deeper basins. Continental margins are increasingly altered by human activities, but the consequences of these anthropogenic impacts on benthic biodiversity and ecosystem functioning are almost completely unknown. Thus, there is an urgen...

  2. Exploring benthic biodiversity patterns and hotspots on European margin slopes

    Danovaro, R.; M. Canals; Gambi, C.; S. Heussner; Lampadariou, N.; Vanreusel, A.

    2009-01-01

    There is increasing evidence that continental slope ecosystems represent one of the major repositories of benthic marine biodiversity. The enhanced levels of biodiversity along slopes are hypothesized to be a source of biodiversity for continental shelves and deeper basins. Continental margins are increasingly altered by human activities, but the consequences of these anthropogenic impacts on benthic biodiversity and ecosystem functioning are almost completely unknown. Thus, there is an urgen...

  3. Continental Lower-crustal Flow: Channel Flow and Laminar Flow

    LI, Dewei

    Numerous geological, geophysical and geochemical investigations and finite element modeling indicate that crustal flow layers exist in the continental crust. Both channel flow model and laminar flow model have been created to explain the flow laws and flow mechanisms. As revealed by the channel flow model, a low-viscosity channel in middle to lower crust in orogen or plateau with thick crust and high elevation would flow outward from mountain root in response to lateral pressure gradient resulted from topographic loading or to denudation. However, according to the laminar flow model proposed based on investigation of the Qinghai-Tibet plateau, circulative movement of crustal lithologies with different rheological properties between basin and orogen would occur, under the driving forces resulted from dehydration and melting of subduction plate on active continental margin and from thermal energy related to upwelling and diapiring of intercontinental mantle plume or its gravitational interactions. Similarly, when driven by gravity, the softened or melted substances of the lower crust in a basin would flow laterally toward adjacent mountain root, which would result in a thinned basin crust and a thickened orogenic crust. Partially melted magma within the thickened orogenic lower crust would cause vertical movement of metamorphic rocks of lower to middle crust due to density inversion, and the vertical main stress induced by thermal underplating of lower crust would in turn lead to formation of metamorphic core complexes and low-angle detachment fault systems. Lateral spreading of uplifting mountain due to gravitation potential would result in thrust fault systems on the border between mountain and basin. Meanwhile, detritus produced synchronously by intense erosion of uplifting mountain would be transported and deposited along the marginal deep depression in the foreland basin dragged by lower crust flow. Channel flow is similar to laminar flow in a variety of aspects

  4. Continental Divide Trail

    Earth Data Analysis Center, University of New Mexico — This shapefile was created to show the proximity of the Continental Divide to the Continental Divide National Scenic Trail in New Mexico. This work was done as part...

  5. Crustal P-wave velocity structure and layering beneath Zhujiangkou-Qiongdongnan basins, the northern continental margin of South China Sea%南海北部珠江口-琼东南盆地地壳速度结构与几何分层

    张中杰; 刘一峰; 张素芳; 张功成; 范蔚茗

    2009-01-01

    基于南海北部大陆边缘珠江口-琼东南盆地深水区实施的14条近垂直深反射地震探测叠加速度谱,利用Dix公式将叠加速度剖面转换为地壳层速度剖面,并利用时深转换方法构建了深度域地壳层速度模型,综合各地壳速度剖面分析了南海北部大陆边缘珠江口与琼东南盆地不同深度层次的P波速度变化趋势以及地壳几何分层特征.结果表明,琼东南盆地区可分为4~8 km沉积层(V_P为1.7~4.7 km/s)、4~10 km厚的上地壳层(V_P为5.2~6.3 km/s)、5 km左右的下地壳层(V_P为6.4~7.0 km/s)以及2~6 km厚的高速下地壳底层(V_P>7.0 km/s).V_P>7.0 km/s下地壳高速层的存在被认为是岩石圈伸展、下地壳底部底辟构造或者是残存的原始华夏下地壳基性层的地震学指示;综合研究区地球物理探测成果构建了跨越华南大陆与南海北部陆坡区剖面莫霍和岩石圈底界图像,揭示出岩石圈上地幔在华南大陆与南海北部大陆边缘的减薄特征.%Base on stack velocity spectrum dataset of 14 near-vertical deep reflection profiles in the Zhujiang River estuary-Qiongdongnan basin in the continental margin of northern South China Sea, we use Dix formula to transform the corresponding stack velocities into the crustal-layer-velocities (in TWT domain) and convert the layer velocities into the depth domain by time-depth transformation scheme. Integrating all the crustal velocity models, we analyze the spatial variation of P wave velocity in different depths and the stratified geometry of crust in the Yinggehai and Qiongdongnan basin area in the continent margin of northern South China Sea. The results demonstrate that the kinematic structure of Qiongdongnan basin can be divided into 4 ~8km thick sediment layer (V_p is 1. 7~4. 7 km/s), 4~10 km thick upper crust (V_p is 5. 2~6. 3 km/s), about 5 km thick normal lower crust (V_p is 6. 4~7. 0 km/s) and about 2~6 km thick anomalous lower crust with high

  6. Passive margin asymmetry and its polarity in the presence of a craton

    Andres-Martinez, Miguel; Perez-Gussinye, Marta; Neto-Araujo, Mario; Morgan, Jason

    2016-04-01

    When continental lithosphere is extended to break-up it forms two conjugate passive margins. In many instances these margins are asymmetric: while one is wide and extensively faulted, the conjugate thins more abruptly and exhibits little faulting. Recent observational studies have suggested that this asymmetry results from the formation of an oceanward-younging sequential normal fault array on the future wide margin. Numerical models have shown that fault sequentiality arises as a result of asymmetric uplift of the hot mantle towards the hanging wall of the active fault, which weakens this area and promotes the formation of a new oceanward fault. In numerical models the polarity of the asymmetry is random. It results from spontaneous preferential localization of strain in a given fault, a process reinforced by strain weakening effects. Slight changes in the experiments initial grid result in an opposite polarity of the asymmetry. However, along a long stretch of the South Atlantic margins, from the Camamu-Gabon to the North Santos-South Kwanza conjugates, the polarity is not random and is very well correlated with the distance of the rift to nearby cratons. Here, we use numerical experiments to show that the presence of a thick cratonic root inhibits asthenospheric flow from underneath the craton towards the adjacent fold belt, while flow from underneath the fold belt towards the craton is favoured. This enhances and promotes sequential faulting towards the craton and results in a wide faulted margin located in the fold belt and a narrow conjugate margin in the craton side, thereby determining the polarity of the asymmetry, as observed in nature.

  7. Full-fit reconstruction of opening of Labrador Sea and Baffin Bay: A special focus on continental deformation

    Hosseinpour, M.; Müller, R.; Williams, S.

    2012-12-01

    Reconstructing the pre-rift configuration of Greenland and North America, and the early tectonic evaluation within the Labrador Sea and Baffin Bay, raises several issues. Some models treat linear magnetic anomalies adjacent to the continental margins of the Labrador Sea as 28-33 seafloor-spreading isochrones. However, more recent seismic data suggest that so-called "transitional crust" extends much further seaward. In addition, various authors have proposed that treating Greenland and North America as rigid plates leads to unreasonable gaps and overlaps in full-fit reconstructions. Extension within Hudson Bay, or large strike-slip motions within Greenland, has been suggested as possible explanations. To address these issues, we investigate the full-fit configuration of Greenland and North America using an approach that considers continental deformation in a quantitative manner, in contrast to traditional models that treat continents as rigid blocks. This new method has been applied in this region to derive new poles of rotation for full-fit plate reconstruction. This method takes in to account the landward limit of thinning and extension in continental crust of the rift margins. We first generate a crustal thickness map using a gravity inversion method, calibrated against all available crustal thickness information from seismic refraction profiles and receiver functions from onshore seismic stations. We also define the extent of the limit of stretched continental crust along each margin. The continental-oceanic boundary (COB) is located using interpreted seismic profiles and revising COBs previously proposed for both margins. Restoration of COBs was accomplished by generating small circle motion paths between UCCL and COB lines. Crustal thickness was extracted along each profile to calculate its length before subjected to stretching. Major corrections in the extent of stretched continental crust, and it's pre-rift thickness were taken into account to achieve the

  8. Short-term sediment resuspension on the continental slope and geochemical implications: the Faeroe-Shetland Channel

    Bonnin, J.

    2004-01-01

    Continental slopes are important and complex regions that connect shallow shelf seas with the deep ocean. Since a large part of the global primary productivity takes place on the continental margins, knowledge on sediment resuspension and associated processes on the continental slope is cruci

  9. Crustal-Scale Images of the Continent-Ocean Transition Across the Eastern Canadian Margins

    Louden, K.; Gerlings, J.

    2009-05-01

    The acquisition and analysis of ~10, 400-500-km-long, deep MCS reflection and wide-angle reflection/refraction (WAR/R) profiles across the eastern Canadian continental margins from Nova Scotia to Baffin Is. have been accomplished over the past 20 years during a number of joint Canadian and international programs. The combination of both reflectivity and velocity images from separate MCS and WAR/R profiles have detailed the large-scale patterns of crustal extension, mantle serpentinization and exhumation, and ocean crustal formation both within and between rifted segments from full thickness continental crust to oceanic crust produced by sea-floor spreading. A number of striking features are documented by these crustal-scale sections. In particular, a wide transition region with very thin seismic crust is delineated by a well-defined upper mantle zone with reduced velocities interpreted as partially serpentinized peridotite. The geological nature of the transitional crust is quite complex and may consist of various regions dominated by highly stretched continental crust, highly serpentinized continental mantle or thin ultra-slow spread ocean crust. It is difficult to define the nature of this region from its velocity structure alone, however, since it is only poorly resolved by standard travel-time methods. One robust characteristic that is generally observed is an abrupt change to typical ocean crust at the seaward edge of the transition zone. This boundary shows characteristic and coincident variations in both velocity structure and basement morphology. New results from the eastern margin of Flemish Cap demonstrate such a pattern particularly well. This observation suggests that once melt begins to form it causes an abrupt shift from a diffuse pattern of lithospheric extension to a focused zone of melt formation. Based on our profiles, we suggest that such transitions have occurred at a number of discrete pulses, which progress in age from south to north and may

  10. Continental Margin Deformation along the Andean Subduction zone: Thermomechanical Models

    Gerbault, Muriel; Cembrano,; Mpodozis, J.; Farias, C; Pardo M, M.

    2009-01-01

    Abstract The Chilean Andes extend north-south for about 3000km over the subducting Nazca plate, and show evidence of local rheological controls on first-order tectonic features. Here, rheological parameters are tested with numerical models of a subduction driven by slab-pull and upper plate velocities, and which calculate the development of stress and strain over a typical period of 4 Myr. The models test the effects of subduction interface strength, arc and fore-arc crust rheology...

  11. Evolution of passive continental margins and initiation of subduction zones

    Cloetingh, S.A.P.L.

    1982-01-01

    The initiation of subduction is a key element in plate tectonic schemes for the evolution of the Earth's lithosphere. Nevertheless, up to present, the underlying mechanism has not been very well understood (e.g. Dickinson and Seely, 1979; Hager, 1980; Kanamori, 1980). The insight into the initiation

  12. Pathways of organic carbon oxidation in three continental margin sediments

    Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  13. Pathways of organic carbon oxidation in three continental margin sediments

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik;

    1993-01-01

    important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and......We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that...... O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...

  14. Structure and tectonics of the southwestern continental margin of India

    Subrahmanyam, V.; Rao, D.G.; Ramana, M.V.; Krishna, K.S.; Murty, G.P.S.; Rao, M.G.

    with ages (Courtillot et al., 1986; Beckman et al., 1988). Dots with numbers indicate ODP sites. CLR = Chagos-Laccadive Ridge; NR = Ninety-east Ridge; LR = Laxmi Ridge; BH = basement high; PR = Prathap Ridge; MBR = mid-shelf basement ridge. (b) Hotspot..., 1982). The Mascarene-Chagos-Laccadive volcanic lin- eament is a major aseismic ridge system that con- nects the young volcanic activity of the Reunion hotspot (Beckman et al., 1988). This lineament paral- lels the remarkable Ninety-east Ridge which...

  15. A potential phosphorite deposit on the continental margin off Chennai

    Rao, V.P.; Rao, K.M.; Vora, K.H.; Almeida, F.; Subramaniam, M.M.; Souza, C.G.A.

    sands. Quartz, feldspar and high magnesium calcite are the accessory minerals. EDAX (energy dispersive x-ray analysis) carried out for 9 elements on JEOL 840 SEM/EDAX, reveal that measurable S contents (0.9%) occur in only algal nodules....

  16. Continental margin of Andhra Pradesh: Some new problems and perspectives

    Murthy, K.S.R.

    deposits are located in the innershelf of Visakhapatnam - Bhimunipatnam (Fig. 3) mainly at Ramakrishna Beach and Lawson's Bay in Visakhapatnam City, at Bhimunipatnam Bay (see Fig. 1 for location) and at Uppada Bay in between. Sediment samples from... into the innershelf off Lawsons Bay in Visakhapatnam City from maiine magnetic anomalies. Analysis of magnetic data also revealed offshore extension of charnockitic intrusions into innershelf on either side of the fold axis (Fig 3). Marine magnetic anomalies off...

  17. Continental margin neotectonics in South Africa: a nuclear siting approach

    Neotectonic activity in South Africa has only recently received attention despite the fact that a rigorous knowledge of this phenomenon could have a major impact on industrial development within certain areas. Since the early 1980s the Atomic Energy Corporation of South Africa has addressed this specific problem in the process of detailed site investigations for the licensing of six facilities related to the nuclear industry. The data indicates that there is a general correspondence in five selected areas along the South African coast between the development of Quarternary joints/faults and the degree of seismic activity recorded in each geological domain. Finally, the results provide new data that may add to a recent survey of global tectonic stresses. 13 refs., 1 fig

  18. Magsat magnetic anomaly contrast across Labrador Sea passive margins

    Bradley, Lauren M.; Frey, Herbert

    1991-01-01

    Many passive margins not complicated by nearby anomalous crustal structure have satellite elevation crustal magnetic anomaly contrasts across them that are recognizable in reduced-to-pole versions of the Magsat and POGO data. In the Labrador Sea region this contrast is particularly well developed with strong positive anomalies overlying the continental crust of Greenland and eastern Canada and prominent negative anomalies situated over the Labrador Sea and Baffin Bay. In this work, forward modeling of the large-scale crustal bodies in this region (continental, oceanic, passive margin, several anomalous structures) was used to show that the Magsat anomaly contrast is due simply to the change in crustal susceptibility and thickness at the continental/oceanic crustal transition. Because the thickness varies more than the average susceptibility from continental to oceanic crust, the strong anomaly contrast is essentially an edge effect due mostly to the change in crustal structure.

  19. Map of Distribution of Bottom Sediments on the Continental Shelf, Gulf of Alaska

    Evans, Kevin R.; Carlson, Paul R.; Hampton, Monty A.; Marlow, Michael S.; Barnes, Peter W.

    2000-01-01

    floor structures. Sea-floor sediment on shallow banks is eroded by seasonal wave-generated currents. The winnowing action of the large storm waves results in concentrations of gravel over broad segments of the Kodiak shelf. Northeastern Gulf of Alaska -- Tectonic framework studies demonstrate that rocks of distant origin (Yakutat terrane) are currently attached to and moving with the Pacific Plate, as it collides with and is subducted beneath southern Alaska. This collision process has led to pronounced structural deformation of the continental margin and adjacent southern Alaska. Consequences include rapidly rising mountains and high fluvial and glacial sedimentation rates on the adjacent margin and ocean floor. The northeastern Gulf of Alaska shelf also has concentrations of winnowed (lag) gravel on Tarr Bank and on the outer shelf southeast of Yakutat Bay. Between Kayak Island and Yakutat Bay the outer shelf consists of pebbly mud (diamict). This diamict is a product of glacial marine sedimentation during the Pleistocene and is present today as a relict sediment. A prograding wedge of Holocene sediment consisting of nearshore sand grading seaward into clayey silt and silty clay covers the relict pebbly mud to mid-shelf and beyond. Shelf and slope channel systems transport glacially derived sediment across the continental margin into Surveyor Channel, an abyssal fan and channel system that reaches over 1,000 km to the Aleutian Trench.

  20. Lithospheric controls on melt production during continental breakup at slow rates of extension: Application to the North Atlantic

    Armitage, J.J.; Henstock, T. J.; Minshull, T.A.; Hopper, J. R.

    2009-01-01

    Rifted margins form from extension and breakup of the continental lithosphere. If this extension is coeval with a region of hotter lithosphere, then it is generally assumed that a volcanic margin would follow. Here we present the results of numerical simulations of rift margin evolution by extending continental lithosphere above a thermal anomaly. We find that unless the lithosphere is thinned prior to the arrival of the thermal anomaly or half spreading rates are more than ...

  1. Continental Margin Mapping Program (CONMAP) sediments grainsize distribution for the United States East Coast Continental Margin (CONMAPSG)

    U.S. Geological Survey, Department of the Interior — Sediments off the eastern United States vary markedly in texture - the size, shape, and arrangement of their grains. However, for descriptive purposes, it is...

  2. The Gramscatho Basin, south Cornwall, UK : Devonian active margin successions

    Leveridge, B.E.; Shail, R.K.

    2011-01-01

    Deep marine deposits of the Gramscatho Basin of south Cornwall reflect two tectonic regimes; Early to Middle Devonian rifting of continental lithosphere with formation of oceanic lithosphere to the south, and Middle Devonian to earliest Carboniferous convergence along its southern margin. Sediments on thinned continental crust to the north and oceanic lithosphere to the south were juxtaposed in the Late Devonian when nappes of deep water flysch and olistostrome were thrust up on to the northe...

  3. Regional magnetic anomaly constraints on continental rifting

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  4. Crustal structure of the French Guiana margin, West Equatorial Atlantic

    Greenroyd, C. J.; Peirce, C.; Rodger, M.; Watts, A. B.; Hobbs, R. W.

    2007-06-01

    Geophysical data from the Amazon Cone Experiment are used to determine the structure and evolution of the French Guiana and Northeast Brazil continental margin, and to better understand the origin and development of along-margin segmentation. A 427-km-long combined multichannel reflection and wide-angle refraction seismic profile acquired across the southern French Guiana margin is interpreted, where plate reconstructions suggest a rift-type setting. The resulting model shows a crustal structure in which 35-37-km-thick pre-rift continental crust is thinned by a factor of 6.4 over a distance of ~70 km associated with continental break-up and the initiation and establishment of seafloor spreading. The ocean-continent boundary is a transition zone up to 45 km in width, in which the two-layered oceanic-type crustal structure develops. Although relatively thin at 3.5-5.0 km, such thin oceanic crust appears characteristic of the margin as a whole. There is no evidence of rift-related magmatism, either as seaward-dipping sequences in the reflection data or as a high velocity region in the lower crust in the P-wave velocity model, and as a such the margin is identified as non-volcanic in type. However, there is also no evidence of the rotated fault block and graben structures characteristic of rifted margins. Consequently, the thin oceanic crust, the rapidity of continental crustal thinning and the absence of characteristic rift-related structures leads to the conclusion that the southern French Guiana margin has instead developed in an oblique rift setting, in which transform motion also played a significant role in the evolution of the resulting crustal structure and along-margin segmentation in structural style.

  5. Tectonic subsidence analyses of miogeoclinal strata from mesozoic marginal basin of Peru

    Devlin, W.J.

    1988-01-01

    The Western Peruvian trough is composed of an eastern miogeoclinical facies of carbonate and clastic strata, and a western eugeoclinal facies consisting of a succession of volcanic and sedimentary rocks. In norther and central Peru, the miogeocline is located between a tectonic hinge adjacent to platformal facies of the Maranon geanticline on the east, and an outer marginal high bounded by the Cordillera Blanca fault and Tapacocha axis on the west. Miogeoclinal and platformal strata in southern Peru occur in a broad belt between Arequipa and Lago Titicaca. A marginal basin setting has been proposed for the Western Peruvian trough and the several kilometers of subsidence in the basin has been attributed to back-arc extension and crustal thinning. As a test of this model, quantitative tectonic subsidence curves were constructed from representative sections within miogeoclinar strata from four localities. Preliminary results indicate that the calculated curves have the same overall form as the age-depth curve for ocean floor, suggesting that subsidence was controlled by cooling and thermal contraction of heated lithosphere. The slopes of the curves are less than those for subsidence of oceanic lithosphere. However, they are in agreement with geologic evidence that the miogeocline accumulated on continental crust. Significant variations in the timing of onset, duration, and magnitude of subsidence are observed between sections from northern and southern Peru.

  6. Volcanic passive margins: another way to break up continents.

    Geoffroy, L; Burov, E B; Werner, P

    2015-01-01

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle. PMID:26442807

  7. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

    Ajay, K.K.; Chaubey, A.K.; Krishna, K.S.; Rao, D.G.; Sar, D.

    –Madagascar separa- tion: Breakup along a pre-existing mobile belt and chip- ping of the craton; Gondwana Res. 6 467–485. Reddy P R 2005 Crustal velocity structure of western India and its use in understanding intraplate seismicity; Curr. Sci. 88 1652–1657. Seaward...

  8. Influence of margin segmentation and anomalous volcanism upon the break-up of the Hatton Bank rifted margin, west of the UK

    Elliott, G. M.; Parson, L. M.

    2007-12-01

    The Hatton Bank margin, flanking the Iceland Basin is a widely cited example of a volcanic rifted margin. Prior to this study insights into the break-up history of the margin have been limited to profiles in the north and south, yet whilst valuable, the along margin tectono-magmatic variability has not been revealed. Over 5660 line km of high quality reflection seismic profiles with supplementary multibeam bathymetry were collected to support the UK's claim to Hatton region under the United Nations Convention on Law of the Sea (UNCLOS). Integration of this new data with existing profiles, allowed the margin to be divided into three segments, each of which are flanked by oceanic crust with a smooth upper surface and internal dipping reflectors. The southernmost segment is characterised by a series of inner and outer seaward dipping reflector (SDR) packages, which are separated by an outer high feature. The outer SDR are truncated by Endymion Spur, a chain of steep sided, late stage volcanic cones linked with necks. The central sector has no inner SDR package and is characterised by the presence of a highly intruded continental block, the Hatton Bank Block (HBB). The northern sector is adjacent to Lousy Bank, with a wider region of SDR recognised than to the south and a high amount of volcanic cones imaged. The variations in the distribution of the SDR's along the margin, the presence of the HBB and Endymion Spur all suggest that the break-up process was not uniform alongstrike. The division of the margin into three sectors reveals that structural segmentation played an important role in producing the variations along the margin. Break- up initiated in the south and progressed north producing the SDR packages witnessed, when the HBB was encountered the focus of break-up moved seaward of the block. The northern sector was closer to the Iceland Hotspot and hence a greater amount of volcanism is encountered. The smooth oceanic basement also indicates a high thermal flux

  9. Biogeografia de Portugal Continental

    Costa, José C.; Aguiar, Carlos; Capelo, J.; Lousã, Mário; Neto, Carlos

    1998-01-01

    Apresentam-se alguns conceitos fundamentais usados em Biogeografia. Propõe-se uma tipologia biogeográfica para Portugal continental desenvolvida a partir dos trabalhos de S. Rivas-Martínez para a Península Ibérica, principalmente: RIVAS-MARTÍNEZ et al (1990). São enumeradas as unidades biogeográficas reconhecidas no território continental nacional e discutem-se os seus limites até ao nível de Superdistrito, bem como os critérios e fundamentos florísticos e fitossociológicos ...

  10. Crust and upper mantle structure of the Ailao Shan-Red River fault zone and adjacent regions

    XU Yi; LIU Jianhua; LIU Futian; SONG Haibin; HAO Tianyao; JIANG Weiwei

    2005-01-01

    Using arrival data of the body waves recorded by seismic stations, we reconstructed the velocity structure of the crust and upper mantle beneath the southeastern edge of the Tibetan Plateau and the northwestern continental margin of the South China Sea through a travel time tomography technique. The result revealed the apparent tectonic variation along the Ailao Shan-Red River fault zone and its adjacent regions. High velocities are observed in the upper and middle crust beneath the Ailao Shan-Red River fault zone and they reflect the character of the fast uplifting and cooling of the metamorphic belt after the ductile shearing of the fault zone, while low velocities in the lower crust and near the Moho imply a relatively active crust-mantle boundary beneath the fault zone. On the west of the fault zone, the large-scale low velocities in the uppermost mantle beneath western Yunnan prove the influence of the mantle heat flow on volcano, hot spring and magma activities, however, the upper mantle on the east of the fault zone shows a relatively stable structure similar to the Yangtze block. The low velocities of the deep mantle beneath the southeastern extending segment of the fault zone are probably related to the mantle convection produced by the pull-apart of the South China Sea.

  11. Role of magmatism in continental lithosphere extension: an introduction to tectnophysics special issue

    Van Wijk, Jolante W [Los Alamos National Laboratory

    2008-01-01

    The dynamics and evolution of rifts and continental rifted margins have been the subject of intense study and debate for many years and still remain the focus of active investigation. The 2006 AGU Fall Meeting session 'Extensional Processes Leading to the Formation of Basins and Rifted Margins, From Volcanic to Magma-Limited' included several contributions that illustrated recent advances in our understanding of rifting processes, from the early stages of extension to breakup and incipient seafloor spreading. Following this session, we aimed to assemble a multi-disciplinary collection of papers focussing on the architecture, formation and evolution of continental rift zones and rifted margins. This Tectonophysics Special Issue 'Role of magmatism in continental lithosphere extension' comprises 14 papers that present some of the recent insights on rift and rifted margins dynamics, emphasising the role of magmatism in extensional processes. The purpose of this contribution is to introduce these papers.

  12. Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India

    Rao, V.P.; Rao, B.R.

    The distribution of clay minerals from 156 surficial sediments of the western continental margin of India, ranging from 17 to 2000 m water depth, indicate that there are three principal sources of sediments. The illite and chlorite-rich assemblage...

  13. The Cadiz margin study off Spain: An introduction

    Nelson, C.H.; Maldonado, A.

    1999-01-01

    The Cadiz continental margin of the northeastern Gulf of Cadiz off Spain was selected for a multidisciplinary project because of the interplay of complex tectonic history between the Iberian and African plates, sediment supply from multiple sources, and unique Mediterranean Gateway inflow and outflow currents. The nature of this complex margin, particularly during the last 5 million years, was investigated with emphasis on tectonic history, stratigraphic sequences, marine circulation, contourite depositional facies, geotechnical properties, geologic hazards, and human influences such as dispersal of river contaminants. This study provides an integrated view of the tectonic, sediment supply and oceanographic factors that control depositional processes and growth patterns of the Cadiz and similar modem and ancient continental margins.

  14. Determining the COB location along the Iberian margin and Galicia Bank from gravity anomaly inversion, residual depth anomaly and subsidence analysis

    Cowie, Leanne; Kusznir, Nick; Manatschal, Gianreto

    2015-11-01

    Knowledge and understanding of the ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and crustal type are of critical importance in evaluating rifted continental margin formation and evolution. OCT structure, COB location and magmatic type also have important implications for the understanding of the geodynamics of continental breakup and in the evaluation of petroleum systems in deep-water frontier oil and gas exploration at rifted continental margins. Mapping the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust and hence determining the OCT structure and COB location at rifted continental margins is therefore a generic global problem. In order to assist in the determination of the OCT structure and COB location, we present methodologies using gravity anomaly inversion, residual depth anomaly (RDA) analysis and subsidence analysis, which we apply to the west Iberian rifted continental margin. The west Iberian margin has one of the most complete data sets available for deep magma-poor rifted margins, so there is abundant data to which the results can be calibrated. Gravity anomaly inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted continental margins. These quantitative analytical techniques have been applied to the west Iberian rifted continental margin along profiles IAM9, Lusigal 12 (with the TGS-extension) and ISE-01. Our predictions of OCT structure, COB location and magmatic type (i.e. the volume of magmatic addition, whether the margin is `normal' magmatic, magma-starved or magma-rich) have been tested and validated using ODP wells (Legs 103, 149 and 173), which provide

  15. [Marginalization and health. Introduction].

    Yunes, J

    1992-06-01

    The relationship between marginalization and health is clear. In Mexico, for example, life expectancy is 53 years for the poorest population sectors and 20 years more for the wealthiest. Infant mortality in poor Colombian families is twice that of wealthier families, and one-third of developing countries the rural population is only half as likely as the urban to have access to health services. Women in the Southern hemisphere are 12 times likelier than those in the Northern to die of maternal causes. The most important step in arriving at a solution to the inequity may be to analyze in depth the relationship between marginality and health. Marginality may be defined as the lack of participation of individuals or groups in certain key phases of societal life, such as production, consumption, or political decision making. Marginality came to be viewed as a social problem only with recognition of the rights of all individuals to participate in available social goods. Marginality is always relative, and marginal groups exist because central groups determine the criteria for inclusion in the marginal and central groups. Marginality thus always refers to a concrete society at a specific historical moment. Marginal groups may be of various types. At present, marginal groups include women, rural populations, people with AIDS or mental illness or certain other health conditions, refugees, ethnic or religious groups, homosexuals, and the poor, who are the largest group of marginal persons in the world. Even in developed countries, 100-200 million persons live below the poverty line. Latin America is struggling to emerge from its marginal status in the world. The economic crisis of the 1980s increased poverty in the region, and 40% are not considered impoverished. Latin America is a clear example of the relationship between marginality and health. Its epidemiologic profile is intimately related to nutrition, availability of potable water, housing, and environmental

  16. Controls on organic carbon distribution in sediments from the eastern Arabian Sea margin

    Thamban, M.; Rao, V.P.; Raju, S.V.

    on the continental slope of the eastern Arabian Margin. (L, continental slope cores; d, topo- graphic high cores; m, continental terrace core). A schematic cross section (o⁄ Goa) showing the location of topographic high on the slope is also inserted (transect x...), CaCO 3 , and sand content in the cores from the continental terrace and topo- graphic highs Sediment core from the terrace The OC content is 2.4% at the surface and also at the LGM. It initially decreases with increasing CaCO 3 and sand contents from...

  17. Brazilian continental cretaceous

    Petri, Setembrino; Campanha, Vilma A.

    1981-04-01

    Cretaceous deposits in Brazil are very well developed, chiefly in continental facies and in thick sequences. Sedimentation occurred essentially in rift-valleys inland and along the coast. Three different sequences can be distinguished: (1) a lower clastic non-marine section, (2) a middle evaporitic section, (3) an upper marine section with non-marine regressive lithosomes. Continental deposits have been laid down chiefly between the latest Jurassic and Albian. The lower lithostratigraphic unit is represented by red shales with occasional evaporites and fresh-water limestones, dated by ostracods. A series of thick sandstone lithosomes accumulated in the inland rift-valleys. In the coastal basins these sequences are often incompletely preserved. Uplift in the beginning of the Aptian produced a widespread unconformity. In many of the inland rift-valleys sedimentation ceased at that time. A later transgression penetrated far into northeastern Brazil, but shortly after continental sedimentation continued, with the deposition of fluvial sandstones which once covered large areas of the country and which have been preserved in many places. The continental Cretaceous sediments have been laid down in fluvial and lacustrine environments, under warm climatic conditions which were dry from time to time. The fossil record is fairly rich, including besides plants and invertebrates, also reptiles and fishes. As faulting tectonism was rather strong, chiefly during the beginning of the Cretaceous, intercalations of igneous rocks are frequent in some places. Irregular uplift and erosion caused sediments belonging to the remainder of this period to be preserved only in tectonic basins scattered across the country.

  18. Neotectonics in the northern equatorial Brazilian margin

    Rossetti, Dilce F.; Souza, Lena S. B.; Prado, Renato; Elis, Vagner R.

    2012-08-01

    An increasing volume of publications has addressed the role of tectonics in inland areas of northern Brazil during the Neogene and Quaternary, despite its location in a passive margin. Hence, northern South America plate in this time interval might have not been as passive as usually regarded. This proposal needs further support, particularly including field data. In this work, we applied an integrated approach to reveal tectonic structures in Miocene and late Quaternary strata in a coastal area of the Amazonas lowland. The investigation, undertaken in Marajó Island, mouth of the Amazonas River, consisted of shallow sub-surface geophysical data including vertical electric sounding and ground penetrating radar. These methods were combined with morphostructural analysis and sedimentological/stratigraphic data from shallow cores and a few outcrops. The results revealed two stratigraphic units, a lower one with Miocene age, and an upper one of Late Pleistocene-Holocene age. An abundance of faults and folds were recorded in the Miocene deposits and, to a minor extent, in overlying Late Pleistocene-Holocene strata. In addition to characterize these structures, we discuss their origin, considering three potential mechanisms: Andean tectonics, gravity tectonics related to sediment loading in the Amazon Fan, and rifting at the continental margin. Amongst these hypotheses, the most likely is that the faults and folds recorded in Marajó Island reflect tectonics associated with the history of continental rifting that gave rise to the South Atlantic Ocean. This study supports sediment deposition influenced by transpression and transtension associated with strike-slip divergence along the northern Equatorial Brazilian margin in the Miocene and Late Pleistocene-Holocene. This work records tectonic evidence only for the uppermost few ten of meters of this sedimentary succession. However, available geological data indicate a thickness of up to 6 km, which is remarkably thick for

  19. Indian Ocean margins

    Naqvi, S.W.A.

    stream_size 10 stream_content_type text/plain stream_name Carbon_Nutrient_Fluxes_Cont_Margins_2010_171.pdf.txt stream_source_info Carbon_Nutrient_Fluxes_Cont_Margins_2010_171.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  20. Tourist preferences for ecotourism in rural communities adjacent to Kruger National Park: A choice experiment approach

    Chaminuka, P.; Groeneveld, R.A.; Selomane, A.O.; Ierland, van E.C.

    2012-01-01

    This paper analyses the potential for development of ecotourism in rural communities adjacent to Kruger National Park (KNP) in South Africa. We determine preferences of tourists, according to origin and income levels, for ecotourism and their marginal willingness to pay (MWTP) for three ecotourism a

  1. Study of the particulate matter transfer and dumping using {sup 210} Po et le {sup 210} Pb. Application to the Gulf of Biscary (NE Atlantic Ocean) and the Gulf of Lion (NW Mediterranean Sea) continental margins; Etude du transfert et du depot du materiel particulaire par le {sup 210} Po et le {sup 210} Pb. Application aux marges continentales du Golfe de Gascogne (NE Atlantique) et du Golfe du Lion (NW Mediterranee)

    Radakovitch, O.

    1995-07-07

    {sup 210} Po and {sup 210} Pb activities and fluxes were measured on seawater, sediment-trapped material collected during one year and sediment. Focalization of {sup 210} Pb is clearly noticed on the Cap-Ferret canyon (Gulf of Biscary) and the Lacaze-Duthiers canyon (western part of the Gulf of Lion). In both sites, {sup 210} Pb fluxes in traps and sediment are always higher than {sup 210} Pb flux available from atmospheric and in situ production. On the contrary, Grand-Rhone canyon and its adjacent open slope exhibit a {sup 210} Pb budget near equilibrium in the near-bottom sediment traps, but focalization is important in the sediment. For the entire Gulf of Lion margin, focalization of {sup 210} Pb in the sediment occurred principally between 500 and 1500 m water depth on the slope, and on the middle shelf mud-patch. {sup 210} Po and {sup 210} Pb have been used in the Cap Ferret and Grand-Rhone canyons to characterize the origin of the particulate trapped material. Two main sources feed the water column. The first source, localized in surface waters, is constituted by biogenic particles from primary production and lithogenic material. The second source, deeper, is due to resuspension at the shelf break and/or on the open slope. In each site, {sup 210} Po and {sup 210} Pb activities of the trapped particles did not show any relations with the major constituents. Quantity of particles appeared to be the main factor regulating adsorption processes of these nuclides. Sedimentation rates based on {sup 210} Po profiles decreased with increasing water depth, from 0.4 ti 0.06 cm y-1 on the Cap Ferret canyon (400 to 3000 m water depth) and from 0.5 to 0.05 cm y-1 for the entire Gulf of Lion margin (50 to 2000 m water depth). (author). 243 refs.

  2. Seismic sequence and depositional evolution of slope basins in mid-northern margin of the South China Sea

    LI Mingbi; JIN Xianglong; LI Jiabiao; DING Weiwei; FANG Yinxia; LIU Jianhua; TANG Yong

    2011-01-01

    As one of the biggest marginal seas in the western Pacific margin,the South China Sea (SCS) experienced continental riffing and seafloor spreading during the Cenozoic.The northern continental margin of the SCS is classified as a passive continental margin.However,its depositional and structural evolution remains controversial,especially in the deep slope area.The lack of data hindered the correlation between continental shelf and oceanic basin,and prevented the establishment of sequence stratigraphic frame of the whole margin.The slope basins in the mid-northern margin of SCS developed in the Cenozoic;the sediments and basin infill recorded the geological history of the continental margin and the SCS spreading.Using multi-channel seismic dataset acquired in three survey cruises during 1987 to 2004,combined with the data of ODP Leg 184 core and industrial wells,we carried out the sequence stratigraphic division and correlation of the Cenozoic in the middle-northern margin of SCS with seismic profiles and sedimentary facies.We interpreted the seismic reflection properties including continuity,amplitude,frequency,reflection terminals,and 15 sequence boundaries of the Cenozoic in the study area,and correlated the well data in geological age.The depositional environment changed from river and lake,shallow bay to open-deep sea,in correspondence to tectonic events of syn-rifting,early drifting,and late drifting stages of basin evolution.

  3. Atmospheric methane emissions along the western Svalbard margin

    Pohlman, J.; Greinert, J.; Silyakova, A.; Casso, M.; Ruppel, C. D.; Mienert, J.; Lund Myhre, C.; Bunz, S.

    2014-12-01

    Documented warming of intermediate waters by ~1oC over the past 30 years along the western Svalbard margin has been suggested as a driver of climate-change induced dissociation of marine methane hydrate. However, recent evidence suggests methane release from gas hydrate has been occurring for thousands of years near the upper limit of methane hydrate stability and that seasonal changes in bottom water temperature may be more important than longer-term warming of intermediate waters. Nevertheless, this area has been and remains an active area for researching the physical and climate controls of methane release from the seafloor, yet the amount of methane reaching the atmosphere (the ultimate climate driver) in this region is largely unknown. As part of the MOCA project led by the Norwegian Institute for Air Research (NILU), water column and atmospheric marine boundary layer methane data were collected in June 2014 aboard the R/V Helmer Hanssenduring a collaboration among CAGE at University of Tromsӧ, NILU, GEOMAR, and the USGS. The results provide a continuous record of surface methane concentration and carbon isotope data from continental slope sites near temperature-sensitive hydrate-bearing seeps along the shelf-break and upper slope, the deep-water pockmarked gas-venting Vestnesa Ridge and a shallow water seep area within the Forlandet moraine complex at the shelf. Surface water methane and associated data used to calculate sea-air fluxes were obtained with the cavity ring-down spectrometer-based USGS Gas Analysis System (USGS-GAS). Only the shallow seep site (~90 m water depth) had appreciable methane in surface waters. We conducted an exhaustive survey of this site, mapping the full extent of the surface methane plume. To provide three-dimensional constraints, we acquired 65 vertical dissolved methane profiles to delineate the vertical and horizontal extent of the subsurface methane plume. Using these data, we assess how effectively shallow arctic seeps

  4. Tectonics and sedimentary process in the continental talud in Uruguay

    The morphology and evolution of the continental margin of Uruguay is due to the interaction of an important set of sedimentary processes. The contourite and turbiditic are the most significant processes which are associated with the development of submarine canyons as well as the gravitational mass respect to major landslides. These processes generate erosional and depositional features with a direct impact on different areas of application, which have potential environmental risks (gravitational landslides, earthquakes, tsunamis) and potential economic resources

  5. The Continental Distillery: Building Thick Continental Crust in the Central Andes (Invited)

    Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.; Tavera, H.; Minaya, E.; Biryol, C. B.; Bishop, B.; Eakin, C. M.; Franca, G.; Knezevic Antonijevic, S.; Kumar, A.; Ryan, J. C.; Scire, A. C.; Ward, K. M.; Young, B. E.

    2013-12-01

    The formation of stable continental crust and the associated development and destruction of mantle lithospheric roots is central to our understanding of plate tectonics, both at its inception and as an ongoing process today. Subduction zones play an important role in the creation and refinement of continental crust, and also serve as a possible mechanism for the removal of residual mantle material. The central Andes provide an intriguing laboratory for the study of these processes. Up to 400 km wide, 1500 km long, and with an average elevation of 4 km, the Altiplano Plateau is the largest orogen on earth associated with an ocean-continent subduction zone. This is much larger than adjacent 'normal' sections of the Andes, raising the question of why this portion of South American crust became so much more substantial than surrounding areas. Over the past several years, new seismic data have made it possible for us to develop a more complete picture of the lithospheric and asthenospheric processes involved in the development of the Altiplano Plateau and the adjacent narrower orogen further to the north. The 'Central Andean Uplift and the Geodynamics of High Topography' (CAUGHT) comprises in part a broadband deployment of 50 stations across the northern flank of the Altiplano Plateau in southern Peru and northern Bolivia. The adjacent 'PerU Lithosphere and Slab Experiment' (PULSE) includes 40 broadband stations that cover the region directly north of the CAUGHT deployment, encompassing the northern edge of the Altiplano, the transition to 'normal' width orogen, and the transition in slab geometry from normal to flat from south to north across the study area. Uplift of the Altiplano Plateau is likely due to some combination shortening, isostasy due to lithospheric destruction or changes in crustal density, magmatic addition to the crust, and/or flow within the thickened crust. Our studies indicate pervasive low velocities across the Altiplano consistent with a

  6. Coordination: southeast continental shelf studies. Progress report

    Menzel, D.W.

    1980-03-01

    The GABEX I experiment is designed to provide synoptic coverage of a series of Gulf Stream wave-like disturbances, the effect of these on the circulation of the entire shelf, and on biological and chemical processes. This study was initiated in February 1980 when current meter arrays were deployed. These meters will be removed in July 1980. In April three ships will simultaneously study the effects of Gulf Stream disturbances on the hydrography, chemistry, and biology of the shelf. One vessel will track a specific wave-like disturbance and provide synoptic coverage of the shelf area. The second vessel will determine the effect of shelf break processes on adjacent shelf water; and the third will study trace metal distributions in and outside of disturbances. Research progress is reported in continental shelf studies, nearshore and estuarine studies (diffusion of freshwater out of nearshore zone), tidal currents and material transport, and mixing of inlet plumes.

  7. Organizing marginalized workers.

    Taylor, A K

    1999-01-01

    Figures from the U.S. Department of Labor show that low-wage or marginalized workers are more likely to be injured on the job and suffer more work-related medical conditions than better-paid workers. Despite an increasingly hostile organizing climate, market globalization, and corporate downsizing, significant progress has been made in organizing marginalized workers. A multifaceted, comprehensive organizing strategy, incorporating union-building strategies that include (but are not limited to) safety and health, must be used by unions to successfully organize marginalized workers and obtain the first contract. PMID:10378982

  8. The Ebro margin study, northwestern Mediterranean Sea - an introduction

    Maldonado, A.; Hans, Nelson C.

    1990-01-01

    The Ebro continental margin from the coast to the deep sea off northeastern Spain was selected for a multidisciplinary project because of the abundant Ebro River sediment supply, Pliocene and Quaternary progradation, and margin development in a restricted basin where a variety of controlling factors could be evaluated. The nature of this young passive margin for the last 5 m.y. was investigated with particular emphasis on marine circulation, sediment dynamics, sediment geochemistry, depositional facies, seismic stratigraphy, geotechnical properties, geological hazards and human influences. These studies show the importance of marine circulation, variation in sediment supply, sea-level oscillation and tectonic setting for the understanding of modern and ancient margin depositional processes and growth patterns. ?? 1990.

  9. Pickering seismic safety margin

    A study was conducted to recommend a methodology for the seismic safety margin review of existing Canadian CANDU nuclear generating stations such as Pickering A. The purpose of the seismic safety margin review is to determine whether the nuclear plant has sufficient seismic safety margin over its design basis to assure plant safety. In this review process, it is possible to identify the weak links which might limit the seismic performance of critical structures, systems and components. The proposed methodology is a modification the EPRI (Electric Power Research Institute) approach. The methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path, and the determination of the seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of using historical records and the regional seismo-tectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection, analysis or testing. An implementation plan for the application of the methodology to the Pickering A NGS is prepared

  10. Sulfur and metal fertilization of the lower continental crust

    Locmelis, Marek; Fiorentini, Marco L.; Rushmer, Tracy; Arevalo, Ricardo; Adam, John; Denyszyn, Steven W.

    2016-02-01

    Mantle-derived melts and metasomatic fluids are considered to be important in the transport and distribution of trace elements in the subcontinental lithospheric mantle. However, the mechanisms that facilitate sulfur and metal transfer from the upper mantle into the lower continental crust are poorly constrained. This study addresses this knowledge gap by examining a series of sulfide- and hydrous mineral-rich alkaline mafic-ultramafic pipes that intruded the lower continental crust of the Ivrea-Verbano Zone in the Italian Western Alps. The pipes are relatively small (asthenospheric rise during the orogenic collapse of the Variscan belt (< 300 Ma). Unlike previous models, outcomes from this study suggest a significant temporal gap between the occurrence of mantle metasomatism, subsequent partial melting and emplacement of the pipes. We argue that this multi-stage process is a very effective mechanism to fertilize the commonly dry and refractory lower continental crust in metals and volatiles. During the four-dimensional evolution of the thermo-tectonic architecture of any given terrain, metals and volatiles stored in the lower continental crust may become available as sources for subsequent ore-forming processes, thus enhancing the prospectivity of continental block margins for a wide range of mineral systems.

  11. The Paleoecology of Vegetation on Pennsylvanian Basin Margins

    Bashforth, Arden Roy

    patchiness occurring at local and regional scales.  Habitat partitioning saw plant clades organized along ecological gradients controlled by the drainage and stability of substrates.  In the Tynemouth Creek Formation (Lower Pennsylvanian, Cumberland Basin, New Brunswick), which records deposition on a...... common on wetter, shifting substrates of frequently flooded abandoned channels, low-lying floodplains, and lake margins.  In La Magdalena Coalfield (Late Pennsylvanian, Spain), pteridosperms dominated marginal wetlands adjacent to steep basin margins.  Opportunistic ferns were abundant in or adjacent to...... frequently disturbed braided channel belts, whereas communities on interfluve wetlands distant from channel influence comprised pteridosperm patches enclosed in a fern-dominated matrix.             In the South Bar Formation (Middle Pennsylvanian, Sydney Coalfield), sandstone successions comprising flood...

  12. Mafic dykes at the southwestern margin of Eastern Ghats belt: Evidence of rifting and collision

    S Bhattacharya; A K Chaudhary; W Teixeira

    2010-12-01

    The southwestern margin of the Eastern Ghats Belt characteristically exposes ma fic dykes intruding massif-type charnockites. Dykes of olivine basalt of alkaline composition have characteristic trace element signatures comparable with Ocean Island Basalt (OIB). Most importantly strong positive Nb anomaly and low values of Zr/Nb ratio are consistent with OIB source of the mafic dykes. K –Ar isotopic data indicate two cooling ages at 740 and 530 Ma. The Pan-African thermal event could be related to reactivation of major shear zones and represented by leuco-granite vein along minor shear bands. And 740 Ma cooling age may indicate the low grade metamorphic imprints, noted in some of the dykes. Although no intrusion age could be determined from the present dataset, it could be constrained by some age data of the host charnockite gneiss and Alkaline rocks of the adjacent Prakasam Province. Assuming an intrusion age of ∼1 .3 Ga, Sr –Nd isotopic composition of the dykes indicate that they preserved time-integrated LREE enrichment. In view of the chemical signatures of OIB source, the ma fic dykes could as well be related to continental rifting, around 1.3 Ga, which may have been initiated by intra-plate volcanism.

  13. Imaging the lithosphere of rifted passive margins using waveform tomography: North Atlantic, South Atlantic and beyond

    Lebedev, Sergei; Schaeffer, Andrew; Celli, Nicolas Luca

    2016-04-01

    Lateral variations in seismic velocities in the upper mantle reflect variations in the temperature of the rocks at depth. Seismic tomography thus provides a proxy for lateral changes in the temperature and thickness of the lithosphere. It can map the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our 3D tomographic models of the upper mantle and the crust at the Atlantic and global scales are constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provide improved resolution of the lithosphere, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons, including those in North America, Greenland, northern and eastern Europe, Africa and South America. The dominant, large-scale, low-velocity feature is the global system of mid-ocean ridges, with broader low-velocity regions near hotspots, including Iceland. Currently active continental rifts show highly variable expression in the upper mantle, from pronounced low velocities to weak anomalies; this correlates with the amount of magmatism within the rift zone. Rifted passive margins have typically undergone cooling since the rifting and show more subtle variations in their seismic-velocity structure. Their thermal structure and evolution, however, are also shaped by 3D geodynamic processes since their formation, including cooling by the adjacent cratonic blocks inland and heating by warm oceanic asthenosphere.

  14. Southeast continental shelf studies

    Menzel, D.W.

    1979-02-12

    Research efforts on the southeast continental shelf currently describe the manner in which fluctuations in Gulf Stream motion influence biological and chemical processes. Current meter arrays are maintained in the Georgia Bight and in Onslow Bay to describe general circulation patterns and to identify forcing functions. biological studies describe processes affecting temporal and spatial variations on the shelf and have attempted to track the biological history of intruded Gulf Stream water masses. Chemical studies examine the influence of both physical and biological variables on the distribution and fate of trace elements. The current state of knowledge is reviewed, the hypotheses developed and are described, a rationale for testing these hypotheses is given. 1 figure, 1 table.

  15. The continental lithosphere

    Artemieva, Irina

    2009-01-01

    The goal of the present study is to extract non-thermal signal from seismic tomography models in order to distinguish compositional variations in the continental lithosphere and to examine if geochemical and petrologic constraints on global-scale compositional variations in the mantle are...... consistent with modern geophysical data. In the lithospheric mantle of the continents, seismic velocity variations of a non-thermal origin (calculated from global Vs seismic tomography data [Grand S.P., 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions of the...... and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research 106, 16387–16414.] show strong correlation with tectono-thermal ages and with regional variations in lithospheric thickness constrained by surface heat flow data and seismic velocities. In agreement with xenolith...

  16. Voltage margin control for offshore multi-use platform integration

    Mier, V.; Casielles, P.G.; Koto, J.; Zeni, Lorenzo

    2012-01-01

    This paper discusses a multiterminal direct current (MTDC) connection proposed for integration of offshore multi-use platforms into continental grids. Voltage source converters (VSC) were selected for their suitability for multiterminal dc systems and for their flexibility in control. A five terminal VSC-MTDC which includes offshore generation, storage, loads and ac connection, was modeled and simulated in DigSILENT Power Factory software. Voltage margin method has been used for reliable oper...

  17. Incorporating Cutting Edge Scientific Results from the MARGINS-GeoPRISMS Program into the Undergraduate Curriculum: An Overview

    Morgan, J. K.; Costa, A.; Goodliffe, A. M.; Marshall, J. S.; Iverson, E. A. R.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes, organized around four initiatives: (1) chemical cycling in subduction zones (SubFac), (2) seismogenic zone processes at subduction zones (SEIZE), (3) rupturing continental lithosphere (RCL), and (4) source to sink sediment cycling at continental margins (S2S). The outcomes of this research provided critical new observations and insights into fundamental geologic processes along continental margins, and associated geologic hazards and economic resources. The transition to the successor GeoPRISMS Program provided a unique opportunity to identify and synthesize the highlights of MARGINS research, and to disseminate this knowledge to educators and students who will carry out the next phase of cutting-edge scientific research. The NSF TUES Program funded a two-year project entitled: "Bringing NSF MARGINS Continental Margins Research into the Undergraduate Curriculum," enabling development of ~15 mini-lessons drawing on key MARGINS results and data sets. The mini-lesson development team consists of 18 educators and scientists, grouped by initiative, and guided by experts in MARGINS science and current educational research and practices. Webinars and virtual check-ins enable team interactions and exchange of ideas and experiences; in person workshops solidified pedagogical approaches and assessment strategies, as well as initiative frameworks for the mini-lessons. Field testing by team members and outside volunteers during AY 2013-14 identified challenges and opportunities, guiding mini-lesson revision and finalization. The MARGINS mini-lessons define coordinated, data-rich educational resources, easy to access and free to the public, ready to be incorporated into multiple common geoscience course frameworks, taking the first step toward building a community of practice of scientists and curriculum specialists with the shared goal of moving cutting-edge science into undergraduate

  18. Ocean Margins Programs, Phase I research summaries

    Verity, P. [ed.

    1994-08-01

    During FY 1992, the DOE restructured its regional coastal-ocean programs into a new Ocean Margins Program (OMP), to: Quantify the ecological and biogeochemical processes and mechanisms that affect the cycling, flux, and storage of carbon and other biogenic elements at the land/ocean interface; Define ocean-margin sources and sinks in global biogeochemical cycles, and; Determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or export to the interior ocean. Currently, the DOE Ocean Margins Program supports more than 70 principal and co-principal investigators, spanning more than 30 academic institutions. Research funded by the OMP amounted to about $6.9M in FY 1994. This document is a collection of abstracts summarizing the component projects of Phase I of the OMP. This phase included both research and technology development, and comprised projects of both two and three years duration. The attached abstracts describe the goals, methods, measurement scales, strengths and limitations, and status of each project, and level of support. Keywords are provided to index the various projects. The names, addresses, affiliations, and major areas of expertise of the investigators are provided in appendices.

  19. Homogenizing the dose for adjacent fields

    Difficulties are found in radiotherapy in the determination of the gap which should be left among adjacent fields on the skin. In order to homogenize the dose at a given depth, measurements are done with a wood phantom using films, thermoluminescent dosemeters and ionization chambers. Field match is checked according to tables related in the literature and experimental data. Two tables of field separation are built at various depths, one for simultaneous adjacent fields and the other for non-simultaneous adjacent fields. Tables must be checked and the additional distances corrected for each field

  20. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  1. From Borders to Margins

    Parker, Noel

    2009-01-01

    upon Deleuze's philosophy to set out an ontology in which the continual reformulation of entities in play in ‘post-international' society can be grasped.  This entails a strategic shift from speaking about the ‘borders' between sovereign states to referring instead to the ‘margins' between a plethora...... of entities that are ever open to identity shifts.  The concept of the margin possesses a much wider reach than borders, and focuses continual attention on the meetings and interactions between a range of indeterminate entities whose interactions may determine both themselves and the types of entity...

  2. Detect Adjacent Well by Analyzing Geomagnetic Anomalies

    Su Zhang

    2014-03-01

    Full Text Available This study describes a method of determining the position of adjacent well by analyzing geomagnetic anomalies in the drilling. In the experiment, put a casing in the geomagnetic field respectively to simulate 3 conditions, which are vertical well, deviated well and horizontal well. Study the interference of regional geomagnetic caused by casing, summary the law of the regional geomagnetic field anomalies caused by the adjacent casing. Experimental results show that: magnetic intensity distortion caused by deviated well is similar to that caused by horizontal well, but the distortion is different from vertical well. The scope and amplitude of N and E component magnetic intensity distortion will increase with the increase of casing inclination, meanwhile the scope and amplitude of V component distortion will decrease and the distortion value changes from negative to positive to the southwest of adjacent well. Through the analysis of geomagnetic anomalies, the position of the adjacent wells could be determined.

  3. Formation and evolution of magma-poor margins, an example of the West Iberia margin

    Perez-Gussinye, Marta; Andres-Martinez, Miguel; Morgan, Jason P.; Ranero, Cesar R.; Reston, Tim

    2016-04-01

    The West Iberia-Newfoundland (WIM-NF) conjugate margins have been geophysically and geologically surveyed for the last 30 years and have arguably become a paradigm for magma-poor extensional margins. Here we present a coherent picture of the WIM-NF rift to drift evolution that emerges from these observations and numerical modeling, and point out important differences that may exist with other magma-poor margins world-wide. The WIM-NF is characterized by a continental crust that thins asymmetrically and a wide and symmetric continent-ocean transition (COT) interpreted to consist of exhumed and serpentinised mantle with magmatic products increasing oceanward. The architectural evolution of these margins is mainly dominated by cooling under very slow extension velocities (uplift and weakening of the hanginwall of the active fault, where a new fault forms. This continued process leads to the formation of an array of sequential faults that dip and become younger oceanward. Here we show that these processes acting in concert: 1) reproduce the margin asymmetry observed at the WIM-NF, 2) explain the fault geometry evolution from planar, to listric to detachment like by having one common Andersonian framework, 3) lead to the symmetric exhumation of mantle with little magmatism, and 4) explain the younging of the syn-rift towards the basin centre and imply that unconformities separating syn- and post-rift may be diachronous and younger towards the ocean. Finally, we show that different lower crustal rheologies lead to different patterns of extension and to an abrupt transition to oceanic crust, even at magma-poor margins.

  4. Adjacency Algebra of Unitary Cayley Graph

    A. Satyanarayana Reddy

    2013-02-01

    Full Text Available A few properties of unitary Cayley graphs are explored using their eigenvalues. It is shown that the adjacency algebra of a unitary Cayley graph is a coherent algebra. Finally, a class of unitary Cayley graphs that are distance regular are also obtained.Key Words: Adjacency Algebra, Circulant Graph, Coherent Algebra, Distance Regular Graph,Ramanujan's sum .AMS(2010: 05C25, 05C50

  5. Marginally Deformed Starobinsky Gravity

    Codello, A.; Joergensen, J.; Sannino, Francesco;

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  6. Margins in radiotherapy

    As part of the treatment prescription procedure, one has to prescribe in anatomical terms any GTV (Gross Tumor Volume) according to the general TNM-rules as well as any other tissues that are to be treated for presumed subclinical diseases. These prescriptions of one or several Clinical Target Volumes (CTVs) are based on general oncological principles, and are not related to the treatment modality. If external beam radiotherapy is being used, one has to consider special problems related to different geometric inaccuracies and uncertainties, which can be both intrafractional and interfractional. Such inaccuracies and uncertainties are due to either the position, shape and size of the patient/tissues in relation to a fix point, or to variations in beam geometry. The two different types of variations may or may not co-variate. A margin or margins for these uncertainties has to be included in the dose planning procedure, which then will evaluate a static situation, representing the CTV(s) plus geometric ''safety'' margin(s) (Planning Target Volume, PTV) and in fact not the true clinical situation. The dose distribution arrived at for this static representation will however have to be considered as representative for the CTV. This presents of course a dilemma, but one has to accept a reasonable compromise. There is no general rule on the size of the different geometric uncertainties or how they should be added up. Individual evaluations are needed. (author)

  7. "We call ourselves marginalized"

    Jørgensen, Nanna Jordt

    2014-01-01

    In recent decades, indigenous knowledge has been added to the environmental education agenda in an attempt to address the marginalization of non-western perspectives. While these efforts are necessary, the debate is often framed in terms of a discourse of victimization that overlooks the agency o...

  8. Numerical models of slab migration in continental collision zones

    V. Magni

    2012-09-01

    Full Text Available Continental collision is an intrinsic feature of plate tectonics. The closure of an oceanic basin leads to the onset of subduction of buoyant continental material, which slows down and eventually stops the subduction process. In natural cases, evidence of advancing margins has been recognized in continental collision zones such as India-Eurasia and Arabia-Eurasia. We perform a parametric study of the geometrical and rheological influence on subduction dynamics during the subduction of continental lithosphere. In our 2-D numerical models of a free subduction system with temperature and stress-dependent rheology, the trench and the overriding plate move self-consistently as a function of the dynamics of the system (i.e. no external forces are imposed. This setup enables to study how continental subduction influences the trench migration. We found that in all models the slab starts to advance once the continent enters the subduction zone and continues to migrate until few million years after the ultimate slab detachment. Our results support the idea that the advancing mode is favoured and, in part, provided by the intrinsic force balance of continental collision. We suggest that the advance is first induced by the locking of the subduction zone and the subsequent steepening of the slab, and next by the sinking of the deepest oceanic part of the slab, during stretching and break-off of the slab. These processes are responsible for the migration of the subduction zone by triggering small-scale convection cells in the mantle that, in turn, drag the plates. The amount of advance ranges from 40 to 220 km and depends on the dip angle of the slab before the onset of collision.

  9. Continental United States Hurricane Strikes

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  10. -induced continental warming

    Kamae, Youichi; Watanabe, Masahiro; Kimoto, Masahide; Shiogama, Hideo

    2014-11-01

    In this the second of a two-part study, we examine the physical mechanisms responsible for the increasing contrast of the land-sea surface air temperature (SAT) in summertime over the Far East, as observed in recent decades and revealed in future climate projections obtained from a series of transient warming and sensitivity experiments conducted under the umbrella of the Coupled Model Intercomparison Project phase 5. On a global perspective, a strengthening of land-sea SAT contrast in the transient warming simulations of coupled atmosphere-ocean general circulation models is attributed to an increase in sea surface temperature (SST). However, in boreal summer, the strengthened contrast over the Far East is reproduced only by increasing atmospheric CO2 concentration. In response to SST increase alone, the tropospheric warming over the interior of the mid- to high-latitude continents including Eurasia are weaker than those over the surrounding oceans, leading to a weakening of the land-sea SAT contrast over the Far East. Thus, the increasing contrast and associated change in atmospheric circulation over East Asia is explained by CO2-induced continental warming. The degree of strengthening of the land-sea SAT contrast varies in different transient warming scenarios, but is reproduced through a combination of the CO2-induced positive and SST-induced negative contributions to the land-sea contrast. These results imply that changes of climate patterns over the land-ocean boundary regions are sensitive to future scenarios of CO2 concentration pathways including extreme cases.

  11. Geophysical imaging of buried volcanic structures within a continental back-arc basin

    Stratford, Wanda Rose; Stern, T.A.

    2008-01-01

    Hidden beneath the ~2 km thick low-velocity volcaniclastics on the western margin of the Central Volcanic Region, North Island, New Zealand, are two structures that represent the early history of volcanic activity in a continental back-arc. These ~20×20 km structures, at Tokoroa and Mangakino, fo...

  12. Pleistocene tectonic accretion of the continental slope off Washington

    Silver, E.A.

    1972-01-01

    Interpretation of reflection profiles across the Washington continental margin suggests deformation of Cascadia basin strata against the continental slope. Individual reflecting horizons can be traced across the slope-basin boundary. The sense of offset along faults on the continental slope is predominantly, but not entirely, west side up. Two faults of small displacement are seen to be west-dipping reverse faults. Magnetic anomalies on the Juan de Fuca plate can be traced 40-100 km eastward under the slope, and structural interpretation combined with calculated rates of subduction suggests that approximately 50 km of the outer continental slope may have been formed in Pleistocene time. Rocks of Pleistocene age dredge from a ridge exposing acoustic "basement" on the slope, plus the results of deep-sea drilling off northern Oregon, are consistent with this interpretation. The question of whether or not subduction is occurring at present is unresolved because significant strain has not affected the upper 200 m of section in the Cascadia basin. However, deformation of the outer part of the slope has been episodic and may reflect episodic yield, deposition rate, subduction rate, or some combination of these factors. ?? 1972.

  13. A Holocene cryptotephra record from the Chukchi margin: the first tephrostratigraphic study in the Arctic Ocean

    Ponomareva, Vera; Polyak, Leonid; Portnyagin, Maxim; Abbott, Peter; Davies, Siwan

    2014-01-01

    Developing geochronology for sediments in the Arctic Ocean and its continental margins is an important but challenging task complicated by multiple problems. In particular, the Chukchi/Beaufort margin, a critical area for reconstructing paleoceanographic conditions in the Pacific sector of the Arctic, features widespread dissolution of calcareous material, which limits posibilities for radiocarbon chronology. In order to evaluate the untapped potential of tephrochronology for constraining the...

  14. Quaternary nanofossils on the Brazilian continental shelf; Nanofosseis calcarios do quaternario da margem continental brasileira

    Antunes, Rogerio Loureiro [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Gerencia de Bioestratigrafia e Paleoecologia], E-mail: rlantunes@petrobras.com.br

    2007-07-01

    The study of calcareous nanofossils occurring in the deposits on the Brazilian continental margin began in the late 1960s, undertaken solely by PETROBRAS. Instead of presenting an academic outlook, the purpose of these investigations is first to formulate a biostratigraphic framework to apply to oil well samples. The initial result was the first zoning for the Brazilian continental margin, which considered the deposits formed between the Aptian and Miocene series. Since the 1960s to date, many papers have been written either with details of that original zoning or applying nanofossil biostratigraphy to solve stratigraphic problems. Regardless of all the papers and studies undertaken, little attention has been paid to the Quaternary, since these deposits are normally of no interest to petroleum geology stricto sensu, especially in a large part of the Brazilian margin. On the other hand, there are a few articles and some Master's dissertations and PhD theses that were written and/or are in progress in Brazilian universities. On the other hand, elsewhere in the world, Quaternary nanofossils have been thoroughly investigated in terms of biostratigraphy and paleoceanography. It is, therefore, very clear that there is a gap between what is being done elsewhere in the world and what has been done in Brazil. In fact, this gap is not larger simply because of a few researchers in Brazilian universities who are studying this topic. The intention of this paper is to contribute toward a richer study of Quaternary nanofossils. It, therefore, contains illustrations and taxonomic descriptions of many species observed in the younger strata of the Brazilian margin basins. This article not only aspires to portray and disseminate the potential of nanofossils for the marine Quaternary study but is also an invitation to students (under and post-graduates) and university researchers - an invitation to learn a little more about the subject and spend some time studying these real gems

  15. Fluid-escape structures and slope instabilities along the French Guiana margin

    Loncke, L.; Gaullier, V.; Basile, C.; Maillard, A.; Patriat, M.; Vendeville, B. C.; Folens, L.; Roest, W.

    2009-04-01

    Many of the world's passive margins are shear margins. Those margins present a very steep ocean-continent boundary which is expressed by high surface-slope gradients. In this type of margins, complex rift structures including wrench and strike-slip faults affect the continental crust. These rift basins usually trap organic matter, hence kerogen that later become hydrocarbons. Along the Guiana margin, late cretaceous black Shales provide additional organic matter. The French Guiana margin has been recently surveyed (GUYAPLAC cruise, 2003) allowing the discovery of a giant pockmark field likely caused by active degassing of deep reservoirs and expressed at the surface through giant elongated pock-marks. These pockmarks are systematically associated with massive slope instabilities and underlying polygonal fault network. Major seaward collapses seem to have affected the margin, and the breakup unconformity is tilted seaward. We believe that fluid overpressure above Cretaceous under-consolidated organic rocks may have destabilized part of the sedimentary cover, allowing massive escape of fluids toward the surface, as is suggested further North by geotechnical analyses made after leg ODP 207 (O'Regan & Moran, 2007). A compactional origin of fluids is also possible. In any case, the specific structural pattern of the Guiana transform margin, with a seaward tilted geometry and no marginal ridge, may favour particularly active fluid releases and slope instabilities (favoured by the decrease in sediment's strength related to high pore-fluid pressure). As suggested by O'Regan & Moran (2007) it is possible also that fluid migration occurs along the break-up unconformity, which crops out along the very steep continental slope. If this is correct, a great part of fossil hydrocarbon resources may escape to the surface along of the Guiana and Surinam continental margins. References: O'Regan M. & K. Moran, 2007. Compressibility, permeability and stress history of sediments from

  16. Strategies for managing margins.

    2012-08-01

    Potential Medicare and Medicaid reimbursement cuts have made it critical for home health agencies to manage their gross and net operating profit margins. Agencies need to develop tools to analyze their margins and make sure they are following best practices. Try as you may, your agency might still face the question, "Why am I not meeting my budget?" Get some answers in this session from David Berman and Andrea L. Devoti. Berman is a principal at Simione Healthcare Consultants in Hamden, CT, where he is responsible for merchant acquisitions, business valuation due diligence, and oversight of the financial monitor benchmarking tool besides serving as interim chief financial officer. Devoti is chairman of the NAHC board and President & CEO of Neighborhood Health Visiting Nurse Association in West Chester PA. PMID:23074756

  17. Actively stressed marginal networks

    Sheinman, M; MacKintosh, F C

    2012-01-01

    We study the effects of motor-generated stresses in disordered three dimensional fiber networks using a combination of a mean-field, effective medium theory, scaling analysis and a computational model. We find that motor activity controls the elasticity in an anomalous fashion close to the point of marginal stability by coupling to critical network fluctuations. We also show that motor stresses can stabilize initially floppy networks, extending the range of critical behavior to a broad regime of network connectivities below the marginal point. Away from this regime, or at high stress, motors give rise to a linear increase in stiffness with stress. Finally, we demonstrate that our results are captured by a simple, constitutive scaling relation highlighting the important role of non-affine strain fluctuations as a susceptibility to motor stress.

  18. Adjacent Instability after Instrumented Lumbar Fusion.

    Wen-Jer Chen

    2003-11-01

    Full Text Available The invention of pedicle screw instrumentation has greatly improved outcomes ofspinal fusion, which has become the treatment of choice for lumbar spondylolisthesis. Asresearchers accumulate experience, both theoretical and clinical advances are continuallybeing reported. A review of the literature and the experience of the authors show that thedevelopment of adjacent instability, as in the breakdown of a neighboring unfixed motionsegment, is a common consequence of an instrumented lumbar spine. This article reviewsthe risk factors and surgical treatment of adjacent instability. The authors believe that properpreoperative planning and complete surgical procedures are imperative to prevent adjacentinstability. For those who need revision surgery, meticulous surgical techniques can achievesatisfactory results.

  19. On the complexity of adjacent resource scheduling

    Duin, C.W.; Sluis, van, P.

    2004-01-01

    We study the problem of scheduling resource(s) for jobs in an adjacent manner (ARS). The problem relates to fixed interval scheduling on the one hand, and to the problem of two-dimensional strip packing on the other hand. Further, there is a close relation with multiprocessor scheduling. A distinguishing characteristic is the constraint of resource-adjacency. As an application of ARS, consider an airport where passengers check in for their flight, joining lines before one or more desks; at th...

  20. Collision zone magmatism aids continental crustal growth

    Savov, Ivan; Meliksetian, Khachatur; Ralf, Halama; Gevorg, Navasardian; Chuck, Connor; Massimo, D'Antonio; Samuele, Agostini; Osamu, Ishizuka; Sergei, Karapetian; Arkadi, Karakhanian

    2014-05-01

    The continental crust has a broadly andesitic bulk composition and is predominantly generated at convergent margins. However, estimates of the bulk composition of oceanic arcs indicate a bulk composition closer to basalt than to andesite. Hence, reworking processes that transform basaltic island arc crust into andesitic continental crust are essential[1] and explaining growth of andesitic continental crust via accretion of arc crustal fragments remains problematic. Recent studies of magmatism in the Great Tibetan Plateau[2], as site of multiple and still active continent-continent collisions, have proposed that andesitic CC is generated via amalgamation of large volumes of collision-related felsic magmas generated by melting of hydrated oceanic crust with mantle geochemical signatures. We aim to test this hypothesis by evaluating geochemical data from the volcanically and tectonically active Lesser Caucasus region (Armenia, Azerbaijan, Georgia and E. Turkey), as the only other region where active continent-continent collision takes place. We will benefit from the newly compiled volcano-tectonic database of collision-related volcanic and plutonic rocks of Armenia that is comparable in quality and detail to the one available on Tibet. Our dataset combines several detailed studies from the large Aragats shield volcano[3] and associated monogenetic volcanic fields (near the capital city of Yerevan), as well as > 500 Quaternary to Holocene volcanoes from Gegham, Vardenis and Syunik volcanic highlands (toward Armenia-Nagorno-Karabakh-Azerbaijan-Iran border). The Armenian collision-related magmatism is diverse in volume, composition, eruption style and volatile contents. Interestingly, the majority of exposed volcanics are andesitic in composition. Nearly all collision-related volcanic rocks, even the highly differentiated dacite and rhyolite ignimbrites, have elevated Sr concentrations and 87Sr/86Sr and 143Nd/144Nd ratios varying only little (average ~ 0.7043 and ~ 0

  1. Bioenergetics of Continental Serpentinites

    Cardace, D.; Meyer-Dombard, D. R.

    2011-12-01

    Serpentinization is the aqueous alteration of ultramafic (Fe- and Mg-rich) rocks, resulting in secondary mineral assemblages of serpentine, brucite, iron oxyhydroxides and magnetite, talc, and possibly carbonate and silica-rich veins and other minor phases-all depending on the evolving pressure-temperature-composition of the system. The abiotic evolution of hydrogen and possibly organic compounds via serpentinization (McCollom and Bach, 2009) highlights the relevance of this geologic process to carbon and energy sources for the deep biosphere. Serpentinization may fuel life over long stretches of geologic time, throughout the global seabed and in exposed, faulted peridotite blocks (as at Lost City Hydrothermal Field, Kelley et al., 2005), and in obducted oceanic mantle units in ophiolites (e.g., Tiago et al., 2004). Relatively little work has been published on life in continental serpentinite settings, though they likely host a unique resident microbiota. In this work, we systematically model the serpentinizing fluid as an environmental niche. Reported field data for high and moderate pH serpentinizing fluids were modeled from Cyprus, the Philippines, Oman, Northern California, New Caledonia, Yugoslavia, Portugal, Italy, Newfoundland Canada, New Zealand, and Turkey. Values for Gibbs Energy of reaction (ΔGr), kJ per mole of electrons transferred for a given metabolism, are calculated for each field site. Cases are considered both for (1) modest assumptions of 1 nanomolar hydrogen and 1 micromolar methane, based on unpublished data for a similar northern California field site (Cardace and Hoehler, in prep.) and (2) an upper estimate of 10 nanomolar hydrogen and 500 micromolar methane. We survey the feasibility of microbial metabolisms for key steps in the nitrogen cycle, oxidation of sulfur in pyrite, iron oxidation or reduction reactions, sulfate reduction coupled to hydrogen or methane oxidation, methane oxidation coupled to the reduction of oxygen, and

  2. Late Glacial – Holocene climate variability and sedimentary environments on northern continental shelves Zonal and meridional Atlantic Water advection

    Sørensen, Steffen Aagaard

    2011-01-01

    The overall objective for this PhD-study was to further advance the understanding of the oceanographic variability and development in the Nordic Seas during the Late Glacial and the Holocene and towards the present. The focus is specifically on the poleward Atlantic Water advection along the continental margins of Norway, into the SW Barents Sea and along the West Spitsbergen slope. Four high resolution sediment cores retrieved from northern continental shelve allowed examination of spatial a...

  3. Adjacent stimulation and measurement patterns considered harmful

    We characterize the ability of electrical impedance tomography (EIT) to distinguish changes in internal conductivity distributions, and analyze it as a function of stimulation and measurement patterns. A distinguishability measure, z, is proposed which is related to the signal-to-noise ratio of a medium and to the probability of detection of conductivity changes in a region of interest. z is a function of the number of electrodes, the EIT stimulation and measurement protocol, the stimulation amplitude, the measurement noise, and the size and location of the contrasts. Using this measure we analyze various choices of stimulation and measurement patterns under the constraint of medical electrical safety limits (maximum current into the body). Analysis is performed for a planar placement of 16 electrodes for simulated 3D tank and chest shapes, and measurements in a saline tank. Results show that the traditional (and still most common) adjacent stimulation and measurement patterns have by far the poorest performance (by 6.9 ×). Good results are obtained for trigonometric patterns and for pair drive and measurement patterns separated by over 90°. Since the possible improvement over adjacent patterns is so large, we present this result as a call to action: adjacent patterns are harmful, and should be abandoned. We recommend using pair drive and measurement patterns separated by one electrode less than 180°. We describe an approach to modify an adjacent pattern EIT system by adjusting electrode placement

  4. Masculinity at the margins

    Jensen, Sune Qvotrup

    2010-01-01

    meaning in the subject position of the black man in order to become dangerous and sexy. Another type of reaction is resistance, which may take the form of inarticulate oppositional behaviour often aimed at female welfare state professionals or more articulate ‘street politics’ making the margin a site of...... critique although in a masculinist way. These reactions to othering represent a challenge to researchers interested in intersectionality and gender, because gender is reproduced as a hierarchical form of social differentiation at the same time as racism is both reproduced and resisted....

  5. Safety margins of containments

    The critical question in evaluating various hydrogen accidents is whether or not significant quantities of fission products are released to the atmosphere. The function of containment systems is to prevent the escape of fission products. Thus, the determination of the capacity of containment structures to function during accident conditions is important to the study of hydrogen accidents. Toward this end, the objective of the Containment Safety Margins program is the development and verification of methodologies for reliably predicting the ultimate capacity of lightwater containment structures. The program was initiated in June 1980, and this paper addresses the first phase of the program, a planning effort, which is nearly complete

  6. Amphetamine margin in sports

    Laties, V.G.; Weiss, B.

    1981-10-01

    The amphetamines can enhance athletic performance. That much seem clear from the literature, some of which is reviewed here. Increases in endurance have been demonstrated in both humans and rats. Smith and Beecher, 20 years ago, showed improvement of running, swimming, and weight throwing in highly trained athletes. Laboratory analogs of such performances have also been used and similar enhancement demonstrated. The amount of change induced by the amphetamines is usually small, of the order of a few percent. Nevertheless, since a fraction of a percent improvement can make the difference between fame and oblivion, the margin conferred by these drugs can be quite important.

  7. Biogeochemistry of southern Australian continental slope sediments

    Sediment cores from the middle to lower slope of the southern continental margin of Australia between the Great Australian Bight and western Tasmania are compared in terms of marine and terrigenous input signals during the Holocene. The mass accumulation rates of carbonate, organic carbon, biogenic Ba. and Al are corrected for lateral sediment input (focusing), using the inventory of excess 230Th in the sediment normalised to its known production rate in the water column above each site. The biogenic signal is generally higher in the eastern part of the southern margin probably due to enhanced productivity associated with seasonal upwelling off southeastern South Australia and the proximity of the Subtropical Front, which passes just south of Tasmania. The input of Al, representing the terrigenous signal, is also higher in this region reflecting the close proximity of river runoff from the mountainous catchment of southeastern Australia. The distribution pattern of Mn and authigenic U, together with pore-water profiles of Mn++, indicate diagenetic reactions driven by the oxidation of buried organic carbon in an oxic to suboxic environment. Whereas Mn is reduced at depth and diffuses upwards to become immobilised in a Mn-rich surface layer. U is derived from seawater and diffuses downward into the sediment, driven by reduction and precipitation at a depth below the reduction zone of Mn. The estimated removal rate of U from seawater by this process is within the range of U removal measured in hemipelagic sediments from other areas, and supports the proposition that hemipelagic sediments are a major sink of U in the global ocean. Unlike Mn, the depth profile of sedimentary Fe appears to be little affected by diagenesis, suggesting that little of the total Fe inventory in the sediment is remobilised and redistributed as soluble Fe. Copyright (1999) Blackwell Science Pty Ltd

  8. Proceedings of the Integrated Ocean Drilling Program Vol. 341: Expedition reports Southern Alaska margin

    Jaeger, J.M.; Gulick, S.P.S.; LeVay, L.J.; Asahi, H.; Bahlburg, H.; Belanger, C.L.; Berbel, G.B.B.; Childress, L.B.; Cowan, E.A.; Drab, L.; Forwick, M.; Fukumura, A.; Ge, S.; Gupta, S.M.; et. al.

    the LGM likely occurred after 16,000 cal y BP, as indicated by peat accumulation in parts of the Bering foreland, and had apparently retreated well onshore by 14,700 cal y BP (Peteet, 2007; Davies et al., 2011). Continental margin and Surveyor Fan...

  9. The SME (site margin earthquake)

    A methodology is proposed for assessing the seismic safety margin of existing CANDU nuclear generating stations. The available seismic margin assessment approaches and the unique features of the CANDU system, were appraised. The proposed methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path and determination of its seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of a combined approach of using historical records and regional seismotectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection and analysis. (author)

  10. The Flemish Cap - Goban Spur conjugate margins: New evidence of asymmetry

    Gerlings, J.; Louden, K. E.; Minshull, T. A.; Nedimović, M. R.

    2011-12-01

    The combined results of deep multichannel seismic (MCS) and refraction/wide-angle reflection seismic (R/WAR) profiles across the Flemish Cap-Goban Spur conjugate margin pair will be presented to help constrain rifting and breakup processes. Both profiles cross magnetic anomaly 34 and extend into oceanic crust, which makes it possible to observe the complete extensional history from continental rifting through the formation of initial oceanic crust. Kirchhoff poststack time and prestack time and depth migration images of the Flemish Cap MCS data are produced using a velocity model constructed from the MCS and R/WAR data. These new images show improved continuity of the Moho under the thick continental crust of Flemish Cap. The basement morphology image is sharper and reflections observed in the thin crust of the transition zone are more coherent. A basement high at the seaward-most end of the transition zone now displays clear diapiric features. To compare the two margins, the existing migrated MCS data across Goban Spur has been time-to-depth converted using the R/WAR velocity model of the margin. These reimaged seismic profiles demonstrate asymmetries in continental rifting and breakup with a complex transition to oceanic spreading: (1) During initial phases of rifting, the Flemish Cap margin displays a sharper necking profile than that of the Goban Spur margin. (2) Within the ocean-continent-transition zone, constraints from S-wave velocities on both margins indentifies previously interpreted oceanic crust as thinned continental crust offshore Flemish Cap in contrast with primarily serpentinized mantle offshore Goban Spur. (3) Continental breakup and initial seafloor spreading occur in a complex, asymmetric manner where the initial ~50 km of oceanic crust appears different on the two margins. Offshore Flemish Cap, both R/WAR and MCS results indicate a sharp boundary immediately seaward of a ridge feature, where the basement morphology becomes typical of slow

  11. Post-breakup Basin Evolution along the South-Atlantic Margins

    Strozyk, Frank; Back, Stefan; Kukla, Peter

    2014-05-01

    The post-breakup tectono-stratigraphic evolution of large offshore basins along the South American and African continental margins record strongly varying post-rift sedimentary successions. The northernmost segment of the South Atlantic rift and salt basins is characterized by a pronounced asymmetry, with the Brazilian margin comprising narrower and deeper rift basins with less salt in comparison to the Congo-Gabon conjugate margin. Another important observation is that multiple phases of uplift and subsidence are recorded after the break-up of the southern South Atlantic on both sides of the Florianopolis-Walvis Ridge volcanic complex, features that are regarded as atypical when compared to published examples of other post-breakup margin successions. A regional comparison based on tectonic-stratigraphic analysis of selected seismic transects between the large basins offshore southern Brazil (Espirito Santo Basin, Campos Basin, Santos Basin, Pelotas Basin) and southwest Africa (Lower Congo Basin, Kwanza Basin, Namibe Basin, Walvis Basin) provides a comprehensive basin-to-basin documentation of the key geological parameters controlling ocean and continental margin development. This comparison includes the margin configuration, subsidence development through time, sediment influx and storage patterns, type of basin fill (e.g. salt vs. non-salt systems; carbonate-rich vs. clastics-dominated systems) and finally major tectonic and magmatic events. Data from the salt basins indicate that salt-related tectonic deformation is amongst the prime controls for the non-uniform post-rift margin development. The diversity in the stratigraphic architecture of the conjugate margins offshore southern Brazil, Namibia and Angola reflects variations in the interplay of a number of controlling factors, of which the most important are (a) the structural configuration of each margin segment at the time of break-up, (b) the post break-up subsidence history of the respective margin segment

  12. Thrusting between exhumed mantle blocks at the Gorringe Bank (SW Iberian margin): Evidence from combined seismic and gravity modeling

    Sallarès, V.; Martinez-Loriente, S.; Prada, M.; Gailler, A.; Gutscher, M.-A.; Bartolome, R.; Gracia, E.

    2012-04-01

    The Gorringe Bank is a massive seamount located offshore the SW Iberian margin that displays one of the largest gravity anomalies on Earth's oceans. To determine its deep seismic structure, a wide-angle seismic transect with OBS/H crossing it from the Tagus to Horseshoe Abyssal plains, was acquired in 2008. The corresponding velocity model, obtained by joint refraction and reflection travel-time inversion, displays a variably-thick sedimentary layer on top of a basement showing a strong vertical velocity gradient and no evidence for a crust-mantle boundary, not only in the Gorringe Bank but also in the adjacent segments of the deep oceanic basins. The seismic structure closely resembles that of exhumed mantle sections described along the Western Iberian margin and largely differs from that of either oceanic or extended continental crust. A velocity-derived density model assuming that the basement is made of serpentinized peridotite matches well the observed gravity anomaly, showing a basement with a variable degree of serpentinization, decreasing from ~90 % at the seafloor to ~20 % at 10 km deep. Our preferred interpretation is that the Gorringe Bank was initially the central segment of an exhumed mantle band that included also the present-day Eastern Tagus and Western Horseshoe basins. This band, which constitutes the southernmost and oldest section of the Western Iberia oceanic domain, was probably exhumed in the Earliest Cretaceous, during the onset of the North Atlantic opening. During the WNW-ESE Neogene compression, the westernmost Horseshoe basin was thrust on top of the easternmost Tagus basin, uplifting the Gorringe Bank.

  13. Adjacent Segment Pathology after Lumbar Spinal Fusion.

    Lee, Jae Chul; Choi, Sung-Woo

    2015-10-01

    One of the major clinical issues encountered after lumbar spinal fusion is the development of adjacent segment pathology (ASP) caused by increased mechanical stress at adjacent segments, and resulting in various radiographic changes and clinical symptoms. This condition may require surgical intervention. The incidence of ASP varies with both the definition and methodology adopted in individual studies; various risk factors for this condition have been identified, although a significant controversy still exists regarding their significance. Motion-preserving devices have been developed, and some studies have shown their efficacy of preventing ASP. Surgeons should be aware of the risk factors of ASP when planning a surgery, and accordingly counsel their patients preoperatively. PMID:26435804

  14. Nonequilibrium phenomena in adjacent electrically isolated nanostructures

    Khrapai, V. S.; Ludwig, S.; Kotthaus, J. P.; Tranitz, H. P.; Wegscheider, W.

    2008-01-01

    We report on nonequilibrium interaction phenomena between adjacent but electrostatically separated nanostructures in GaAs. A current flowing in one externally biased nanostructure causes an excitation of electrons in a circuit of a second nanostructure. As a result we observe a dc current generated in the unbiased second nanostructure. The results can be qualitatively explained in terms of acoustic phonon based energy transfer between the two mutually isolated circuits.

  15. Colorado Basin Structure and Rifting, Argentine passive margin

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    partly supports this hypothesis and shows two main directions of faulting: margin-parallel faults (~N30°) and rift-parallel faults (~N125°). A specific distribution of the two fault sets is observed: margin-parallel faults are restrained to the most distal part of the margin. Starting with a 3D structural model of the basin fill based on seismic and well data the deeper structure of the crust beneath the Colorado Basin can be evaluate using isostatic and thermal modelling. Franke, D., et al. (2002), Deep Crustal Structure Of The Argentine Continental Margin From Seismic Wide-Angle And Multichannel Reflection Seismic Data, paper presented at AAPG Hedberg Conference "Hydrocarbon Habitat of Volcanic Rifted Passive Margins", Stavanger, Norway Franke, D., et al. (2006), Crustal structure across the Colorado Basin, offshore Argentina Geophysical Journal International 165, 850-864. Gladczenko, T. P., et al. (1997), South Atlantic volcanic margins Journal of the Geological Society, London 154, 465-470. Hinz, K., et al. (1999), The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during breakup Marine and Petroleum Geology 16(1-25). Hirsch, K. K., et al. (2009), Tectonic subsidence history and thermal evolution of the Orange Basin, Marine and Petroleum Geology, in press, doi:10.1016/j.marpetgeo.2009.1006.1009

  16. Preferential mantle lithospheric extension under the South China margin

    Continental rifting in the South China Sea culminated in seafloor spreading at ∼ 30Ma (Late Oligocene). The basin and associated margins form a classic example of break-up in a relatively juvenile arc crust environment. In this study, we documented the timing, distribution and amount of extension in the crust and mantle lithosphere on the South China Margin during this process. Applying a one-dimensional backstripping modeling technique to drilling data from the Pearl River Mouth Basin (PRMB) and Beibu Gulf Basin, we calculated subsidence rates of the wells and examined the timing and amount of extension. Our results show that extension of the crust exceeded that in the mantle lithosphere under the South China Shelf, but that the two varied in phase, suggesting depth-dependent extension rather than a lithospheric-scale detachment. Estimates of total crustal extension derived in this way are similar to those measured by seismic refraction, indicating that isostatic compensation is close to being local. Extension in the Beibu Gulf appears to be more uniform with depth, a difference that we attribute to the different style of strain accommodation during continental break-up compared to intra-continental rifting. Extension in PRMB and South China slope continues for ∼ 5m.y. after the onset of seafloor spreading due to the weakness of the continental lithosphere. The timing of major extension is broadly mid-late Eocene to late Oligocene (∼ 45-25Ma), but is impossible to correlate in detail with poorly dated strike-slip deformation in the Red River Fault Zone. (author)

  17. Positive margins and primary decomposition

    Kahle, Thomas; Sullivant, Seth

    2012-01-01

    We study random walks on contingency tables with fixed marginals, corresponding to a (log-linear) hierarchical model. If the set of allowed moves is not a Markov basis, then there exist tables with the same marginals that are not connected. We study linear conditions on the values of the marginals that ensure that all tables in a given fiber are connected. We show that many graphical models have the positive margins property, which says that all fibers with strictly positive marginals are connected by the quadratic moves that correspond to conditional independence statements. The property persists under natural operations such as gluing along cliques, but we also construct examples of graphical models not enjoying this property. Our analysis of the positive margins property depends on computing the primary decomposition of the associated conditional independence ideal. The main technical results of the paper are primary decompositions of the conditional independence ideals of graphical models of the N-cycle a...

  18. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean

    Kennedy, Martin J.; Wagner, Thomas

    2011-01-01

    The majority of carbon sequestration at the Earth’s surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m2 g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% ...

  19. Novel Bounds on Marginal Probabilities

    Mooij, Joris M.; Kappen, Hilbert J

    2008-01-01

    We derive two related novel bounds on single-variable marginal probability distributions in factor graphs with discrete variables. The first method propagates bounds over a subtree of the factor graph rooted in the variable, and the second method propagates bounds over the self-avoiding walk tree starting at the variable. By construction, both methods not only bound the exact marginal probability distribution of a variable, but also its approximate Belief Propagation marginal (``belief''). Th...

  20. Crustal composition of the Møre Margin and compilation of a conjugate Atlantic margin transect

    Kvarven, Trond; Mjelde, Rolf; Hjelstuen, Berit Oline; Faleide, Jan Inge; Thybo, Hans; Flueh, Ernst R.; Murai, Yoshio

    2016-01-01

    The inner part of the volcanic, passive Møre Margin, mid-Norway, expresses an unusual abrupt thinning from high onshore topography with a thick crust to an offshore basin with thin crystalline crust. Previous P-wave modeling of wide-angle seismic data revealed the presence of a high-velocity (7.7-8.0 km/s) body in the lower crust in this transitional region. These velocities are too high to be readily interpreted as Early Cenozoic intrusions, a model often invoked to explain lower crustal high-velocity bodies in the region. We present a Vp/Vs model, derived from the modeling of wide-angle seismic data, acquired by use of Ocean Bottom Seismograph horizontal components. The modeling suggests dominantly felsic composition of the crust. An average Vp/Vs value for the lower crustal body is modeled at 1.77, which is compatible with a mixture of continental blocks and Caledonian eclogites. The results are compiled with earlier results into a transect extending from onshore Norway to onshore Greenland. Back-stripping of the transect to Early Cenozoic indicates asymmetric conjugate magmatism related to the continental break-up. Further back-stripping to the time when most of the Caledonian mountain range had collapsed indicates that the thinning during the first phase of extension was about 25% higher for proto Norway than proto Greenland.

  1. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

    Ben D. Goscombe

    2013-07-01

    Full Text Available Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon

  2. Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea

    Clift, Peter D.

    2015-12-01

    Hot, thick continental crust is susceptible to ductile flow within the middle and lower crust where quartz controls mechanical behavior. Reconstruction of subsidence in several sedimentary basins around the South China Sea, most notably the Baiyun Sag, suggests that accelerated phases of basement subsidence are associated with phases of fast erosion onshore and deposition of thick sediments offshore. Working together these two processes induce pressure gradients that drive flow of the ductile crust from offshore towards the continental interior after the end of active extension, partly reversing the flow that occurs during continental breakup. This has the effect of thinning the continental crust under super-deep basins along these continental margins after active extension has finished. This is a newly recognized form of climate-tectonic coupling, similar to that recognized in orogenic belts, especially the Himalaya. Climatically modulated surface processes, especially involving the monsoon in Southeast Asia, affects the crustal structure offshore passive margins, resulting in these "load-flow basins". This further suggests that reorganization of continental drainage systems may also have a role in governing margin structure. If some crustal thinning occurs after the end of active extension this has implications for the thermal history of hydrocarbon-bearing basins throughout the area where application of classical models results in over predictions of heatflow based on observed accommodation space.

  3. Roles of marginal seas in absorbing and storing fossil fuel CO2

    Lee, Kitack; Sabine, Christopher L.; Tanhua, Toste; Kim, Tae-Wook; Feely, Richard A.; Kim, Hyun-Cheol

    2011-01-01

    We review data on the absorption of anthropogenic CO2 by Northern Hemisphere marginal seas (Arctic Ocean, Mediterranean Sea, Sea of Okhotsk, and East/Japan Sea) and its transport to adjacent major basins, and consider the susceptibility to recent climatic change of key factors that influence CO2 uptake by these marginal seas. Dynamic overturning circulation is a common feature of these seas, and this effectively absorbs anthropogenic CO2 and transports it from the surface to the interior of t...

  4. Voltage margin control for offshore multi-use platform integration

    Mier, V.; Casielles, P.G.; Koto, J.;

    This paper discusses a multiterminal direct current (MTDC) connection proposed for integration of offshore multi-use platforms into continental grids. Voltage source converters (VSC) were selected for their suitability for multiterminal dc systems and for their flexibility in control. A five...... terminal VSC-MTDC which includes offshore generation, storage, loads and ac connection, was modeled and simulated in DigSILENT Power Factory software. Voltage margin method has been used for reliable operation of the MTDC system without the need of fast communication. Simulation results show that the......, sell or store energy attending to the price in the electricity market....

  5. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  6. The marginalization of hormesis.

    Calabrese, E J; Baldwin, L A

    2000-01-01

    Despite the substantial development and publication of highly reproducible toxicological data, the concept of hormetic dose-response relationships was never integrated into the mainstream of toxicological thought. Review of the historical foundations of the interpretation of the bioassay and assessment of competitive theories of dose-response relationships lead to the conclusion that multiple factors contributed to the marginalization of hormesis during the middle and subsequent decades of the 20th century. These factors include: (a) the close-association of hormesis with homeopathy lead to the hostility of modern medicine toward homeopathy thereby creating a guilt by association framework, and the carry-over influence of that hostility in the judgements of medically-based pharmacologists/ toxicologists toward hormesis; (b) the emphasis of high dose effects linked with a lack of appreciation of the significance of the implications of low dose stimulatory effects; (c) the lack of an evolutionary-based mechanism(s) to account for hormetic effects; and (d) the lack of appropriate scientific advocates to counter aggressive and intellectually powerful critics of the hormetic perspective. PMID:10745293

  7. The importance of rift history for volcanic margin formation.

    Armitage, John J; Collier, Jenny S; Minshull, Tim A

    2010-06-17

    Rifting and magmatism are fundamental geological processes that shape the surface of our planet. A relationship between the two is widely acknowledged but its precise nature has eluded geoscientists and remained controversial. Largely on the basis of detailed observations from the North Atlantic Ocean, mantle temperature was identified as the primary factor controlling magmatic production, with most authors seeking to explain observed variations in volcanic activity at rifted margins in terms of the mantle temperature at the time of break-up. However, as more detailed observations have been made at other rifted margins worldwide, the validity of this interpretation and the importance of other factors in controlling break-up style have been much debated. One such observation is from the northwest Indian Ocean, where, despite an unequivocal link between an onshore flood basalt province, continental break-up and a hot-spot track leading to an active ocean island volcano, the associated continental margins show little magmatism. Here we reconcile these observations by applying a numerical model that accounts explicitly for the effects of earlier episodes of extension. Our approach allows us to directly compare break-up magmatism generated at different locations and so isolate the key controlling factors. We show that the volume of rift-related magmatism generated, both in the northwest Indian Ocean and at the better-known North Atlantic margins, depends not only on the mantle temperature but, to a similar degree, on the rift history. The inherited extensional history can either suppress or enhance melt generation, which can explain previously enigmatic observations. PMID:20559385

  8. Workers' marginal costs of commuting

    van Ommeren, Jos; Fosgerau, Mogens

    2009-01-01

    This paper applies a dynamic search model to estimate workers' marginal costs of commuting, including monetary and time costs. Using data on workers' job search activity as well as moving behaviour, for the Netherlands, we provide evidence that, on average, workers' marginal costs of one hour of...

  9. Density Sorting During the Evolution of Continental Crust

    Kelemen, P. B.; Behn, M. D.; Hacker, B. R.

    2015-12-01

    We consider two settings - in addition to "delamination" of arc lower crust - in which dense, mafic eclogites founder into the convecting mantle while buoyant, felsic lithologies accumulate at the base of evolving continental crust. Arc processes play a central role in generating continental crust, but it remains uncertain how basaltic arc crust is transformed to andesitic continental crust. Dense, SiO2-poor products of fractionation may founder from the base of arc crust by "delamination", but lower arc crust after delamination has significantly different trace elements compared to lower continental crust (LCC). In an alternative model, buoyant magmatic rocks generated at arcs are first subducted, mainly via subduction erosion. Upon heating, these buoyant lithologies ascend through the mantle wedge or along a subduction channel, and are "relaminated" at
the base of overlying crust (e.g., Hacker et al EPSL 11, AREPS 15). Average buoyant lavas and plutons
for the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs fall within the range of estimated LCC major and trace elements. Relamination is more efficient in generating continental crust than delamination. Himalayan cross-sections show Indian crust thrust beneath Tibetan crust, with no intervening mantle. There is a horizontal Moho at ca 80 km depth, extending from thickened Indian crust, across the region where Tibetan crust overlies Indian crust, into thickened Tibetan crust. About half the subducted Indian crust is present, whereas the other half is missing. Data (Vp/Vs; Miocene lavas formed by interaction of continental crust with mantle; xenolith thermometry) indicate 1000°C or more from ca 50 km depth to the Moho since the Miocene. We build on earlier studies (LePichon et al Tectonics 92, T'phys 97; Schulte-Pelkum et al Nature 05; Monsalve et al JGR 08) to advance the hypothesis that rapid growth of garnet occurs at 70-80 km and 1000°C within subducting Indian crust. Dense eclogites founder

  10. Kauffman's adjacent possible in word order evolution

    Ferrer-i-Cancho, Ramon

    2015-01-01

    Word order evolution has been hypothesized to be constrained by a word order permutation ring: transitions involving orders that are closer in the permutation ring are more likely. The hypothesis can be seen as a particular case of Kauffman's adjacent possible in word order evolution. Here we consider the problem of the association of the six possible orders of S, V and O to yield a couple of primary alternating orders as a window to word order evolution. We evaluate the suitability of various competing hypotheses to predict one member of the couple from the other with the help of information theoretic model selection. Our ensemble of models includes a six-way model that is based on the word order permutation ring (Kauffman's adjacent possible) and another model based on the dual two-way of standard typology, that reduces word order to basic orders preferences (e.g., a preference for SV over VS and another for SO over OS). Our analysis indicates that the permutation ring yields the best model when favoring pa...

  11. Structural and Stratigraphic Evolution of the Iberia and Newfoundland Rifted Margins: A Quantitative Modeling Approach

    Mohn, G.; Karner, G. D.; Manatschal, G.; Johnson, C. A.

    2014-12-01

    Rifted margins develop generally through polyphased extensional events leading eventually to break-up. We investigate the spatial and temporal evolution of the Iberia-Newfoundland rifted margin from its Permian post-orogenic stage to early Cretaceous break-up. We have applied Quantitative Basin Analysis to integrate seismic stratigraphic interpretations and drill hole data of representative sections across the Iberia-Newfoundland margins with kinematic models for the thinning of the lithosphere and subsequent isostatic readjustment. Our goal is to predict the distribution of extension and thinning, environments of deposition, crustal structure and subsidence history as functions of space and time. The first sediments deposited on the Iberian continental crust were in response to Permian lithospheric thinning, associated with magmatic underplating and subsequent thermal re-equilibration of the lithosphere. During late Triassic-early Jurassic rifting, a broadly distributed depth-independent lithospheric extension occurred, followed by late Jurassic rifting that increasingly focused with time and became depth-dependent during the early Cretaceous. However, there exists a temporality in the along-strike deformation of the Iberia-Newfoundland margin: significant Valanginian-Hauterivian deformation characterizes the northern Galicia Bank-Flemish Cap while the southern Iberian-Newfoundland region is characterized by Tithonian-early Berriasian extension. Deformation localized with time on both margins leading to late Aptian break-up. To match the distribution and magnitude of subsidence across the profiles requires significant thinning of middle/lower crustal level and subcontinental lithospheric mantle, leading to the formation of the hyper-extended domains. The late-stage deformation of both margins was characterized by a predominantly brittle deformation of the residual continental crust, leading to exhumation of subcontinental mantle and ultimately to seafloor

  12. Regional geomorphology of the continental slope of NW India: Delineation of the signatures of deep-seated structures

    Chauhan, O.S.; Almeida, F.; Moraes, C.

    Geomorphological features (derived from 16,000 lkm of echo-sounding and bathymetric data) and deep-seated tectonic tectonic structures of the continental margin off NW India are presented. The shelf break over the entire region occurs between 80...

  13. Biodiversity and agro-ecology in field margins.

    De Cauwer, B; Reheul, D; Nijs, I; Milbau, A

    2005-01-01

    diminish the risk of species ingrowth into adjacent crops by creeping roots and rhizomes. Seed dispersal was only problematic one year after the installation of the field margin strips particularly nearby the unsown margin strip and wind-borne seeds were dispersed over limited distances, mainly within 4 m of field margins. Annual herbage yield was not affected by mowing management. DM yield of sown/unsown communities converged over time. Compared to herbage from an intensively managed fertilized grassland, field margin herbage revealed a low feeding value, owing to a low crude protein content, a low digestibility and a high crude fibre content. The unsown community had a higher forage quality than communities sown to bred commercially available grass varieties. Both digestibility and crude protein content decreased over time irrespective of plant community or location. Mid June cuts were more productive than mid September cuts but digestibility and crude protein content was lower. The use of herbage from field margins as hay for horses or as a component in farmland compost are good alternatives. A strong relation was found between the distribution of pest insects and their antagonist families along field margin strips indicating a status of biological equilibrium. From environmental concern, field margin strips buffered boundary vegetation and watercourses against cropped areas loaded with high levels of mineral nitrogen. Margin strips reduced the mineral nitrogen content of the soil in the margin and mineral nitrogen loss during wintermonths. Mineral nitrogen loss was not affected by field margin type but by distance from the field crop. A minimal width of 5 m is necessary to reach an optimal reduction in mineral soil N and N losses. PMID:16363358

  14. Elastic thickness estimates at north east passive margin of North America and its implications

    R T Ratheesh Kumar; Tanmay K Maji; Suresh Ch Kandpal; D Sengupta; Rajesh R Nair

    2011-06-01

    Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ∼20–100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E–W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE–SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200–400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.

  15. Factory waste influence on Elbrus adjacent area

    Complete text of publication follows. Two major burials of waste from concentrating mill of The Tyrnauz Tungsten-Molybdic Plant are situated at the recreation area of Elbrus adjacent territory. But it is significant that the strong winds periods are available here at the river Baksan valley constantly, which are transfers the particles of burials along that valley. The waste pollutes pastures and agricultural lands. The sampling of the buried material on the surface and of the soil of adjacent territory was fulfilled here in order to check up that assumption. The chemical analyses of the buried waste were performed at the X-ray spectrometer Philips PW2400. The results received showed the high quantity of some environmental threat elements. The soil sample analyses on 20 elements (including Ca, Ti, Mn, Fe, P, S, Cr, V, Co, Ni, Cu, Zn, Sr, Zr, Ba, Pb, As, Mo, W, Sn) showed the excess of maximum permissible concentrations (according to Russian Federation hygienic regulations 2.1.7.2041-06) of some investigated elements in the all researched samples. Some results of the investigations are shown below in the table 1. The excesses of maximum permissible concentrations were observed for phosphorus from 5.3 to 11.3 times as much; for sulphur from 3 to 8.75 times as much; for cobalt from 2.6 to 4.6 times as much; for nickel from 8.25 to 15.25 times as much; for copper from 9.3 to 22 times as much; for arsenic up to 10 and at one sample - to 28 times as much. At the MPC level was the lead contents and also at single instances - the manganese and vanadium contents. The excess of background contents were observed for molybdenum up to 8, tungsten - up to 38 and tin - up to 7 times as much. Presented data confirmed the supposition that buried waste pollutes pastures and agricultural lands of Elbrus adjacent area and that means the necessity of either more careful burial of these waste products, or their full recycling.

  16. Structural, petrological and geochronological analysis of the lithotypes from the Pien region (Parana State, Brazil) and adjacences

    The Pien area presents the major geotectonic domains separated by the Pien Shear Zone (PSZ). The northern one is the Rio Pien Granite-Mylonitic Suite composed by calc-alkaline granitoids of Neoproterozoic age. The southern domain is represented by the Amphibolite-Granulite where high grade metamorphism took place at the end of paleoproterozoic time. Considering the identified lithotypes, their geochemical affinity (particularly the Ti, Cr, Ni and REE content) and the geological context observed in the area, a geotectonical model of active continental margin related to subduction SSZ (Supra-Subduction Zone) is proposed. K-Ar on plagioclase from gabbronorites gave Neoproterozoic ages although Sm-Nd whole rock isochron yielded Paleoproterozoic ages. Based in geochemical data, it is proposed that the biotite gneiss and biotite-amphibole-gneiss which occur near the PSZ have a shoshonitic to high-K calc-alkaline features which are characteristic of active continental margins. K-Ar on biotite extracted from these rocks, gave Neoproterozoic ages. The available radiometric data for the Rio Pien mylonitic granitoids show that between 650-595 Ma the generation, deformation and cooling below the isotherm of 250 deg C occurred. On the other hand, the geochronological data for the Agudos do Sul Massif are in the 590-570 Ma interval showing its younger generation. The Sr87 / Sr86 initial ratios for both granitoids suggest more involvement of the continental crust in the origins of Agudos do Sul granitic Massif. The analyses of the entire set of the available data for the Pien area allows the suggestion of a geotectonic scenery related to the evolution of an active continental margin during the collages associated to the Brasiliano Cycle

  17. Seismicity in Azerbaijan and Adjacent Caspian Sea

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries

  18. Detecting Adjacent Relativity of Engineering Drawing Entities with Container Window

    林福严; 邱友申; 秦吉胜

    2001-01-01

    Automatic recognition and interpretation of engineering drawing plays an important role in computer aided engineering. Detecting the positional relation between entities is an important topic in this research field. In this paper the concepts of adjacent relativity and container window of drawing entities were proposed. By means of container window, the adjacent irrelative entities can be detected quickly and effectively, which speeds up the process of adjacent relativity detection. Meanwhile, the algorithm of adjacent relativity detection was discussed.

  19. Constraining lithosphere deformation mode evolution for the Iberia-Newfoundland rifted margins

    Jeanniot, Ludovic; Kusznir, Nick; Mohn, Geoffroy; Manatschal, Gianreto

    2015-04-01

    The deformation of lithosphere and asthenosphere and its evolution during continental rifting leading to breakup and seafloor spreading initiation is poorly understood. The resulting margin architecture and OCT structure is complex and diverse, and observations at magma poor margins includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. A coupled kinematic-dynamic model of lithosphere and asthenosphere deformation has been used to investigate the sequence of lithosphere deformation modes for 2 conjugate margin profiles for the Iberia-Newfoundland rifted margins. We use the observed water-loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation, to test and constrain lithosphere and asthenosphere deformation models. A sequence of lithosphere deformation modes is represented by a succession of flow-fields, which are generated by a 2D finite element viscous flow model (FE-Margin), and is used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (e.g. Braun et al. 2000) is also kinematically included. The methodology of Katz et al., 2003 is used to predict melt generation by decompressional melting. The magnitude of extension used in the modelling is consistent with that proposed by Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  20. Gulf of Alaska continental slope morphology: Evidence for recent trough mouth fan formation

    Swartz, John M.; Gulick, Sean P. S.; Goff, John A.

    2015-01-01

    continental shelves are host to numerous morphologic features that help understand past glacier dynamics. Southeastern Alaska is home to the St. Elias mountains, an active orogen that also hosts temperate marine glaciers. During glacial periods ice streams advance across the continental shelf, carving shelf-crossing troughs that reach the shelf edge. We use high-resolution multibeam data to develop the relationship between the Yakutat and Alsek Sea Valleys and the resulting continental slope morphology. The shelf and slope geomorphology can be divided into statistical groupings that relate to the relative balance of erosion and deposition. Our analysis indicates that only the Yakutat system has been able to build an incipient trough-mouth fan. The extreme sediment supply from this region was able to overwhelm the steep initial topography of the transform margin while further to the east sediment slope-bypass dominates. This analysis provides an extreme end member to existing studies of temperate glaciation along continental margins. The unique interplay between rapid uplift due to ongoing collision and the massive erosion caused by temperate glaciers provides for sedimentary flux far above most other systems.

  1. Steel Industry Marginal Opportunity Analysis

    none,

    2005-09-01

    The Steel Industry Marginal Opportunity Analysis (PDF 347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.

  2. Profit margins in Japanese retailing

    Potjes, J.C.A.; Thurik, Roy

    1993-01-01

    textabstractUsing a rich data source, we explain differences and developments in profit margins of medium-sized stores in Japan. We conclude that the protected environment enables the retailer to pass on all operating costs to the customers and to obtain a relatively high basic income. High service levels are positively related with high profit margins, illuminating the importance of service in Japan. Small store competition does not affect performance of medium-sized stores, because small st...

  3. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a

  4. Habitat specialization in tropical continental shelf demersal fish assemblages.

    Ben M Fitzpatrick

    Full Text Available The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304 collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth, down the fore reef slope to the reef base (10-30 m depth then across the adjacent continental shelf (30-110 m depth. Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of

  5. Benthic Community Structure and Sediment Geochemical Properties at Hydrocarbon Seeps Along the Continental Slope of the Western North Atlantic

    Demopoulos, A. W.; Bourque, J. R.; Brooke, S.

    2015-12-01

    Hydrocarbon seeps support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. In recent years, methane seepage has been increasingly documented along the continental slope of the U.S. Atlantic margin. In 2012 and 2013, two seeps were investigated in this region: a shallow site near Baltimore Canyon (410-450 m) and a deep site near Norfolk Canyon (1600 m). Both sites contain extensive mussel beds and microbial mats. Sediment cores and grab samples were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 mm) in relationship to the associated sediment environment (organic carbon and nitrogen, stable isotopes 13C and 15N, grain size, and depth) of mussel beds, mats, and slope habitats. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments. Macrofaunal communities were distinctly different both between depths and among habitat types. Specifically, microbial mat sediments were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in Baltimore microbial mat habitats, but higher in mussel and slope sediments compared to Norfolk seep habitats found at deeper depths. Multivariate statistical analysis identified sediment carbon:nitrogen (C:N) ratios and 13C values as important variables for structuring the macrofaunal communities. Higher C:N ratios were present within microbial mat habitats and depleted 13C values occurred in sediments adjacent to mussel beds found in Norfolk Canyon seeps. Differences in the quality and source of organic matter present in the seep habitats are known to be important drivers in macrofaunal community structure and associated food webs. The multivariate analysis provides new insight into the relative importance of the seep sediment quality in supporting dense macrofaunal communities compared

  6. Thoughts on studies of China continental geology and tectonics

    ZHANG Guowei; GUO Anli; YAO Anping

    2006-01-01

    As an important part of the global continents, China continent has long been situated in the peculiar tectonic position and experienced extremely complicated activities, which resulted in the regional unique characteristics for China continent on the global common geological background. These characteristics contain abundant information regarding scientific key issues of modern geological frontier. Thus, China continent can be a natural laboratory and excellent arena for the modern geosciences. The modern earth sciences have started entering the era featured with earth systematic science and beyond plate tectonics. How to take the regional advantage and exploit the treasure resource to participate the new theoretical and methodological creation is a historic opportunity and great challenge we are facing. This paper generalizes research priorities in four fields on China continental geology and tectonics for discussion. They are: China continental tectonics and dynamics; Mesozoic-Cenozoic crustal deformation and deep-seated processes in China continent and the adjacent regions; deep-seated dynamic background and evolutionary trend of crustal tectonic activities on the time scale of human existence; deepseated background and processes of conjunction and transformation of different tectonic systems.

  7. Mesozoic Source-to-Sink of the African margin of the Equatorial Atlantic

    ye, jing; Chardon, Dominique; rouby, delphine; Guillocheau, François; Robin, Cecile; Loparev, Artiom; Huyghe, damien; Dall'Asta, Massimo; Brown, Roderick; wildman, mark; webster, david

    2016-04-01

    The objective of the Transform Source to Sink Project (TS2P) is to link the dynamics of the erosion of the West African Craton to the offshore sedimentary basins of the African margin of the Equatorial Atlantic at geological time scales. This margin, alternating transform and oblique segments from Guinea to Nigeria, shows a strong structural variability in the