WorldWideScience

Sample records for adiposity offaster longer-distanced

  1. Self-selection contributes significantly to the lower adiposity offaster, longer-distanced, male and female walkers

    Williams, Paul T.

    2006-01-06

    Although cross-sectional studies show active individuals areleaner than their sedentary counterparts, it remains to be determined towhat extent this is due to initially leaner men and women choosing toexercise longer and more intensely (self-selection bias). In this reportwalking volume (weekly distance) and intensity (speed) were compared tocurrent BMI (BMIcurrent) and BMI at the start of walking (BMIstarting) in20,353 women and 5,174 men who had walked regularly for exercise for 7.2and 10.6 years,respectively. The relationships of BMIcurrent andBMIstarting with distance and intensity were nonlinear (convex). Onaverage, BMIstarting explained>70 percent of the association betweenBMIcurrent and intensity, and 40 percent and 17 percent of theassociation between BMIcurrent and distance in women and men,respectively. Although the declines in BMIcurrent with distance andintensity were greater among fatter than leaner individuals, the portionsattributable to BMIstarting remained relatively constant regardless offatness. Thus self-selection bias accounts for most of the decline in BMIwith walking intensity and smaller albeit significant proportions of thedecline with distance. This demonstration of self-selection is germane toother cross-sectional comparisons in epidemiological research, givenself-selection is unlikely to be limited to weight or peculiar tophysical activity.

  2. Ring recoveries of dead birds confirm that darker pheomelanic Barn Owls disperse longer distances

    Roulin A.

    2013-01-01

    Variation in melanin coloration is widespread and often associated with other phenotypic traits. A recent study showed that darker-reddish pheomelanic Barn Owls (Tyto alba) move longer distances between birth and breeding sites. Because this study considered only individuals recovered within a limited study area, it remains unclear whether the association between melanism and dispersal applies to a larger geographic scale. I analysed an independent dataset of birds ringed in the same study ar...

  3. The influence of socio-economic characteristics, land use and travel time considerations on mode choice for medium- and longer-distance trips

    Limtanakool, N.; Dijst, M.J.; Schwanen, T.

    2006-01-01

    This paper contributes to the limited number of investigations into the influence of the spatial configuration of land use and transport systems on mode choice for medium- and longer-distance travel (defined here as home-based trips of 50 km and over) in the Netherlands. We have employed data from the 1998 Netherlands National Travel Survey to address the question as to how socioeconomic factors, land use attributes, and travel time affect mode choice for medium- and longer-distance travel, a...

  4. The influence of socio-economic characteristics, land use and travel time considerations on mode choice for medium- and longer-distance trips

    Limtanakool, N.; Dijst, M.J.; Schwanen, T.

    2006-01-01

    This paper contributes to the limited number of investigations into the influence of the spatial configuration of land use and transport systems on mode choice for medium- and longer-distance travel (defined here as home-based trips of 50 km and over) in the Netherlands. We have employed data from t

  5. Adipose tissue fibrosis

    Buechler, Christa; Krautbauer, Sabrina; Eisinger, Kristina

    2015-01-01

    The increasing prevalence of obesity causes a major interest in white adipose tissue biology. Adipose tissue cells are surrounded by extracellular matrix proteins whose composition and remodeling is of crucial importance for cell function. The expansion of adipose tissue in obesity is linked to an inappropriate supply with oxygen and hypoxia development. Subsequent activation of hypoxia inducible factor 1 (HIF-1) inhibits preadipocyte differentiation and initiates adipose tissue fibrosis. The...

  6. Visceral adiposity syndrome.

    Lopes, Heno F; Corrêa-Giannella, Maria Lúcia; Consolim-Colombo, Fernanda M; Egan, Brent M

    2016-01-01

    The association of anthropometric (waist circumference) and hemodynamic (blood pressure) changes with abnormalities in glucose and lipid metabolism has been motivation for a lot of discussions in the last 30 years. Nowadays, blood pressure, body mass index/abdominal circumference, glycemia, triglyceridemia, and HDL-cholesterol concentrations are considered in the definition of Metabolic syndrome, referred as Visceral adiposity syndrome (VAS) in the present review. However, more than 250 years ago an association between visceral and mediastinal obesity with hypertension, gout, and obstructive apnea had already been recognized. Expansion of visceral adipose tissue secondary to chronic over-consumption of calories stimulates the recruitment of macrophages, which assume an inflammatory phenotype and produce cytokines that directly interfere with insulin signaling, resulting in insulin resistance. In turn, insulin resistance (IR) manifests itself in various tissues, contributing to the overall phenotype of VAS. For example, in white adipose tissue, IR results in lipolysis, increased free fatty acids release and worsening of inflammation, since fatty acids can bind to Toll-like receptors. In the liver, IR results in increased hepatic glucose production, contributing to hyperglycemia; in the vascular endothelium and kidney, IR results in vasoconstriction, sodium retention and, consequently, arterial hypertension. Other players have been recognized in the development of VAS, such as genetic predisposition, epigenetic factors associated with exposure to an unfavourable intrauterine environment and the gut microbiota. More recently, experimental and clinical studies have shown the autonomic nervous system participates in modulating visceral adipose tissue. The sympathetic nervous system is related to adipose tissue function and differentiation through beta1, beta2, beta3, alpha1, and alpha2 adrenergic receptors. The relation is bidirectional: sympathetic denervation of

  7. Adipose Tissue Metabolism During Hypobaria

    D. P. Chattopadhyay

    1974-10-01

    Full Text Available Possible factors affecting the metabolism of adipose tissue under hypobaric conditions have been reviewed. The hormonal changes brought into play under hypoxic stress generally stress generally increase the adipose tissue lipolysis.

  8. Mechanosensation in an adipose fin.

    Aiello, Brett R; Stewart, Thomas A; Hale, Melina E

    2016-03-16

    Adipose fins are found on approximately 20% of ray-finned fish species. The apparently rudimentary anatomy of adipose fins inspired a longstanding hypothesis that these fins are vestigial and lack function. However, adipose fins have evolved repeatedly within Teleostei, suggesting adaptive function. Recently, adipose fins were proposed to function as mechanosensors, detecting fluid flow anterior to the caudal fin. Here we test the hypothesis that adipose fins are mechanosensitive in the catfish Corydoras aeneus. Neural activity, recorded from nerves that innervate the fin, was shown to encode information on both movement and position of the fin membrane, including the magnitude of fin membrane displacement. Thus, the adipose fin of C. aeneus is mechanosensitive and has the capacity to function as a 'precaudal flow sensor'. These data force re-evaluation of adipose fin clipping, a common strategy for tagging fishes, and inform hypotheses of how function evolves in novel vertebrate appendages. PMID:26984621

  9. Subcutaneous adipose tissue classification

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  10. Independent Stem Cell Lineages Regulate Adipose Organogenesis and Adipose Homeostasis

    Yuwei Jiang

    2014-11-01

    Full Text Available Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult progenitors are specified during the developmental period and express PPARγ, they have distinct microanatomical, functional, morphogenetic, and molecular profiles. Furthermore, the two compartments derive from different lineages; whereas adult adipose progenitors fate-map from an SMA+ mural lineage, developmental progenitors do not. Remarkably, the adult progenitor compartment appears to be specified earlier than the developmental cells and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide a discrete therapeutic target for childhood and adult obesity.

  11. Independent Stem Cell Lineages Regulate Adipose Organogenesis and Adipose Homeostasis

    Yuwei Jiang; Daniel C. Berry; Wei Tang; Jonathan M. Graff

    2014-01-01

    Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA)-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult pr...

  12. Bioengineering beige adipose tissue therapeutics

    Kevin eTharp

    2015-10-01

    Full Text Available Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of UCP1-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable brown adipose tissues for human therapeutic purposes at this time.Recent developments in bioengineering, including novel hyaluronic acid based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit WAT derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of beige adipose tissue implants and their potential for the metabolic

  13. Bioengineering Beige Adipose Tissue Therapeutics.

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  14. Methodologies to assess paediatric adiposity.

    Horan, M

    2014-05-04

    Childhood obesity is associated with increased risk of adult obesity, cardiovascular disease, diabetes and cancer. Appropriate techniques for assessment of childhood adiposity are required to identify children at risk. The aim of this review was to examine core clinical measurements and more technical tools to assess paediatric adiposity.

  15. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation. PMID:26678825

  16. Development and differentiation of adipose tissue

    Ivković-Lazar Tatjana A.

    2003-01-01

    Introduction For years adipose tissue has been considered inert, serving only as a depot of energy surplus. However, there have been recent changes, undoubtedly due to advancement of methods for studying the morphology and metabolic activities of adipose tissue (microdialysis and adipose tissue catheterization). In normal-weight subjects, adipose tissue makes 10-12% with males and 15-20% with females. About 80 % of adipose tissue is located under the skin, and the rest envelops the internal o...

  17. Interactive effects of age and exercise on adiposity measures of41,582 physically active women

    Williams, Paul T.; Satariano William A.

    2004-06-01

    The objective of this report is to assess in women whether exercise affects the estimated age-related increase in adiposity, and contrariwise, whether age affects the estimated exercise-related decrease in adiposity. Cross-sectional analyses of 64,911 female runners who provided data on their body mass index (97.6 percent), waist (91.1percent), and chest circumferences (77.9 percent). Age affected the relationships between vigorous exercise and adiposity. The decline in BMI per km/wk run was linear in 18-25 year olds (-0.023+-0.002 kg/m2 perkm run) and became increasingly nonlinear (convex or upwardly concave) with age. The waist, hip and chest circumferences declined significantly with running distance across all age groups, but the declines were 52-58 percent greater in older than younger women (P<10-5). The relationships between body circumferences and running distance became increasingly convexity (upward concavity) in older women. Conversely, vigorous exercise diminished the apparent increase in adiposity with age. The rise in average BMI with age was greatest in women who ran less than 8 km/week (0.065+-0.005 kg/m2 per y), intermediate of women who ran 8-16km/wk (0.025+-0.004kg/m2 per y) or 16-32 km/wk (0.022+-0.003 kg/m2 pery), and least in those who averaged over 32 km/wk (0.017+-0.001 kg/m2 pery). Before age 45, waist circumference rose 0.055+-0.026 cm in for those who ran 0-8 km/wk, showed no significant change for those who ran 8-40km./wk, and declined -0.057+-0.012 and -0.069+-0.014 cm per year in those who ran 40 -56 and over 56 km/wk. The rise in hip and chest circumferences with age were significantly greater in women who ran under eight km/wk than longer distance runners for hip (0.231+-0.018 vs0.136+-0.004 cm/year) and chest circumferences (0.137+-0.013 vs0.053+-0.003 cm/year). These cross-sectional associations suggest that in women, age and vigorous exercise interact with each other in affecting adiposity. The extent that these cross

  18. Echocardiographic Assessment of Epicardial Adipose Tissue - A Marker of Visceral Adiposity

    Singh, Navneet; Singh, Harleen; Khanijoun, Harleen K; Iacobellis, Gianluca

    2007-01-01

    Visceral adipose tissue predicts an unfavorable cardiovascular and metabolic risk profile in humans. Existing methods to assess visceral adipose tissue have been limited. Thus, echocardiographic assessment of epicardial adipose tissue as a marker of visceral adiposity was suggested. The technique has been shown to be a very reliable method and an excellent measure of visceral adiposity. In this article, epicardial adipose tissue’s localization on the heart, function, method of assessment and ...

  19. Bioengineering Beige Adipose Tissue Therapeutics

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiolog...

  20. Adipose tissues and thyroid hormones

    Maria-Jesus eObregon

    2014-12-01

    Full Text Available The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases. The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. Brite or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2 and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that activate UCP1 in WAT and

  1. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering

    Wang, Lina; Johnson, Joshua A.; Zhang, Qixu; Elisabeth K. Beahm

    2013-01-01

    Repair of soft-tissue defects resulting from lumpectomy or mastectomy has become an important rehabilitation process for breast cancer patients. This study aimed to provide an adipose tissue engineering platform for soft-tissue defect repair by combining decellularized human adipose tissue extracellular matrix (hDAM) and human adipose-derived stem cells (hASCs). To derive hDAM, incised human adipose tissues underwent a decellularization process. Effective cell removal and lipid removal were p...

  2. Minireview: adiposity, inflammation, and atherogenesis.

    Lyon, Christopher J; Law, Ronald E; Hsueh, Willa A

    2003-06-01

    Adipose tissue is a dynamic endocrine organ that secretes a number of factors that are increasingly recognized to contribute to systemic and vascular inflammation. Several of these factors, collectively referred to as adipokines, have now been shown regulate, directly or indirectly, a number of the processes that contribute to the development of atherosclerosis, including hypertension, endothelial dysfunction, insulin resistance, and vascular remodeling. Several adipokines are preferentially expressed in visceral adipose tissue, and the secretion of proinflammatory adipokines is elevated with increasing adiposity. Not surprisingly, approaches that reduce adipose tissue depots, including surgical fat removal, exercise, and reduced caloric intake, improve proinflammatory adipokine levels and reduce the severity of their resultant pathologies. Systemic adipokine levels can also be favorably altered by treatment with several of the existing drug classes used to treat insulin resistance, hypertension, and hypercholesterolemia. Greater understanding of adipokine regulation, however, should result in the design of improved treatment strategies to control disease states associated with increase adiposity, an important outcome in view of the growing worldwide epidemic of obesity. PMID:12746274

  3. Engineering of vascularized adipose constructs.

    Wiggenhauser, Paul S; Müller, Daniel F; Melchels, Ferry P W; Egaña, José T; Storck, Katharina; Mayer, Helena; Leuthner, Peter; Skodacek, Daniel; Hopfner, Ursula; Machens, Hans G; Staudenmaier, Rainer; Schantz, Jan T

    2012-03-01

    Adipose tissue engineering offers a promising alternative to the current surgical techniques for the treatment of soft tissue defects. It is a challenge to find the appropriate scaffold that not only represents a suitable environment for cells but also allows fabrication of customized tissue constructs, particularly in breast surgery. We investigated two different scaffolds for their potential use in adipose tissue regeneration. Sponge-like polyurethane scaffolds were prepared by mold casting with methylal as foaming agent, whereas polycaprolactone scaffolds with highly regular stacked-fiber architecture were fabricated with fused deposition modeling. Both scaffold types were seeded with human adipose tissue-derived precursor cells, cultured and implanted in nude mice using a femoral arteriovenous flow-through vessel loop for angiogenesis. In vitro, cells attached to both scaffolds and differentiated into adipocytes. In vivo, angiogenesis and adipose tissue formation were observed throughout both constructs after 2 and 4 weeks, with angiogenesis being comparable in seeded and unseeded constructs. Fibrous tissue formation and adipogenesis were more pronounced on polyurethane foam scaffolds than on polycaprolactone prototyped scaffolds. In conclusion, both scaffold designs can be effectively used for adipose tissue engineering. PMID:21850493

  4. Lipolysis in human adipose tissue during exercise

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik;

    2002-01-01

    adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest and...

  5. Vibrational and structural investigations on adipose tissues

    Giarola, Marco; Guella, G.; Mariotto, G.; Monti, Francesca; Rossi, Barbara; Sanson, Andrea; Sbarbati, Andrea

    2008-01-01

    Abstract Two types of adipose tissue are found in mammals, including humans: the white adipose tissue (WAT) and the brown adipose tissue (BAT). The WAT has a major role in lipid storage and body thermal insulation, while the BAT is a thermogenic tissue that produces heat by oxidizing fatty acids. Both structural characterization and spectroscopic discrimination of these different adipose tissues are matter of current interest, also in view of possible medical and ...

  6. Adiposity, type 2 diabetes and Alzheimer's disease

    Luchsinger, José A.; Gustafson, Deborah R

    2009-01-01

    This manuscript provides a comprehensive review of the epidemiologic evidence linking the continuum of adiposity and type 2 diabetes (T2D) with Alzheimer's disease (AD). The mechanisms relating adiposity and T2D to AD may include hyperinsulinemia, advanced products of glycosilation, cerebrovascular disease, and products of adipose tissue metabolism. Elevated adiposity in middle age is related to a higher risk of AD but the data on this association in old age is conflicting. Several studies ha...

  7. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Harry J. Mersmann; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-01-01

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. ...

  8. Adipose-Derived Stem Cells

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan;

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...

  9. Exercise regulation of adipose tissue.

    Stanford, Kristin I; Goodyear, Laurie J

    2016-01-01

    Exercise training results in adaptations to numerous organ systems and offers protection against metabolic disorders including obesity and type 2 diabetes, and recent reports suggest that adipose tissue may play a role in these beneficial effects of exercise on overall health. Multiple studies have investigated the effects of exercise training on both white adipose tissue (WAT) and brown adipose tissue (BAT), as well as the induction of beige adipocytes. Studies from both rodents and humans show that there are exercise training-induced changes in WAT including decreased cell size and lipid content, and increased mitochondrial activity. In rodents, exercise training causes an increased beiging of WAT. Whether exercise training causes a beiging of human scWAT, as well as which factors contribute to the exercise-induced beiging of WAT are areas of current investigation. Studies investigating the effects of exercise training on BAT mass and function have yielded conflicting data, and hence, is another area of intensive investigation. This review will focus on studies aimed at elucidating the mechanisms regulating exercise training induced-adaptations to adipose tissue. PMID:27386159

  10. Adipose tissue macrophages: amicus adipem?

    Odegaard, Justin I.; Ganeshan, Kirthana; Chawla, Ajay

    2013-01-01

    Chronic overnutrition drives complex adaptations within both professional metabolic and bystander tissues that, despite intense investigation, are still poorly understood. Xu et al. (2013) now describe the unexpected ability of adipose tissue macrophages to buffer lipids released from obese adipocytes in a manner independent of inflammatory macrophage activation.

  11. Quantification of adipose tissue insulin sensitivity

    Søndergaard, Esben; Jensen, Michael D

    2016-01-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute...... to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible...... quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and...

  12. Quantification of adipose tissue insulin sensitivity.

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. PMID:27073214

  13. CT-demonstration of adipose tissue of the sinus cavernosus

    Adipose bodies of the sinus cavernosus - the only genuine intracranial adipose tissue - can be demonstrated well by CT. They appear as polymorph well defined hypodense objects in unilateral or bilateral manifestation. Adipose bodies most frequently show a size between 4 and 9 mm and densities about -20 to -40 HE. Occasionally the adipose bodies directly lead into the adipose tissue of the orbit. (orig.)

  14. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction

    Marco Calogero Amato

    2014-01-01

    Full Text Available The Visceral Adiposity Index (VAI has recently proven to be an indicator of adipose distribution and function that indirectly expresses cardiometabolic risk. In addition, VAI has been proposed as a useful tool for early detection of a condition of cardiometabolic risk before it develops into an overt metabolic syndrome. The application of the VAI in particular populations of patients (women with polycystic ovary syndrome, patients with acromegaly, patients with NAFLD/NASH, patients with HCV hepatitis, patients with type 2 diabetes, and general population has produced interesting results, which have led to the hypothesis that the VAI could be considered a marker of adipose tissue dysfunction. Unfortunately, in some cases, on the same patient population, there is conflicting evidence. We think that this could be mainly due to a lack of knowledge of the application limits of the index, on the part of various authors, and to having applied the VAI in non-Caucasian populations. Future prospective studies could certainly better define the possible usefulness of the VAI as a predictor of cardiometabolic risk.

  15. Cross-sectional relationships of exercise and age to adiposity in60,617 male runners

    Williams, Paul T.; Pate, Russell R.

    2004-06-01

    The objective of this report is to assess in men whether exercise affects the estimated age-related increase in adiposity, and contrariwise, whether age affects the estimated exercise-related decrease in adiposity. Cross-sectional analyses of 64,911 male runners who provided data on their body mass index (97.6 percent), waist (91.1 percent), hip (47.1 percent), and chest circumferences (77.9 percent). Between 18 to 55 years old, the decline in BMI with weekly distance run (slope+-SE) was significantly greater in men 25-55 years old (slope+-:-0.036+-0.001 kg/m2 per km/wk) than in younger men (-0.020+-0.002 kg/m 2 per km/wk). Declines in waist circumference with running distance were also significantly greater in older than younger men (P<10-9 for trend),i.e., the slopes decreased progressively from -0.035+-0.004 cm per km/wk in 18-25 year old men to -0.097+-0.003 cm per km/wk in 50-55 year old men. Increases in BMI with age were greater for men who ran under 16km/wk than for longer distance runners. Waist circumference increased with age at all running levels, but the increase appeared to diminish by running further (0.259+-0.015 cm per year if running<8 km/wk and 0.154+-0.003 cm per year for>16 km/wk). In men over 50 years old, BMI declined -0.038+-0.001 kg/m2 per km/wk run when adjusted for age and declined -0.054+-0.003 kg/m2 (increased 0.021+-0.007 cm) per year of age when adjusted for running distance. Their waist circumference declined-0.096+-0.002 cm per km/wk run when adjusted for age and increased 0.021+-0.007 cm per year of age when adjusted for running distance. These cross-sectional data suggest that age and vigorous exercise interact with each other in affecting mens adiposity, and support the proposition that vigorous physical activity must increase with age to prevent middle-age weight gain. We estimate that a man who ran 16 km/wk at age 25 would need to increase their weekly running distance by 65.7 km/wk by age 50 in order to maintain his same waist

  16. The adipose organ at a glance

    Saverio Cinti

    2012-09-01

    Full Text Available The main parenchymal cells of the adipose organ are adipocytes. White adipocytes store energy, whereas brown adipocytes dissipate energy for thermogenesis. These two cell types with opposing functions can both originate from endothelial cells, and co-exist in the multiple fat depots of the adipose organ – a feature that I propose is crucial for this organ’s plasticity. This poster review provides an overview of the adipose organ, describing its anatomy, cytology, physiological function and histopathology in obesity. It also highlights the remarkable plasticity of the adipose organ, explaining theories of adipocyte transdifferentiation during chronic cold exposure, physical exercise or lactation, as well as in obesity. White-to-brown adipocyte transdifferentiation is of particular medical relevance, because animal data indicate that higher amounts of brown adipose tissue are positively associated with resistance to obesity and its co-morbidities, and that ‘browning’ of the adipose organ curbs these disorders.

  17. The Adipose Tissue in Farm Animals

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura;

    2014-01-01

    and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance...... in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal...... and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in farm animal adipose tissue proteomics, mainly in cattle and pigs, but also in poultry, i.e. chicken and in farmed fish. Proteomics...

  18. Hounsfield unit dynamics of adipose tissue and non-adipose soft tissue in growing pigs

    Mcevoy, Fintan; Madsen, Mads T.; Strathe, Anders Bjerring;

    2008-01-01

    Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs.......Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs....

  19. Biochemistry of adipose tissue: an endocrine organ

    Coelho, Marisa; Oliveira, Teresa; Fernandes, Rúben

    2013-01-01

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of n...

  20. Adipose Inflammation, Insulin Resistance, and Cardiovascular Disease

    Shah, Arti; Mehta, Nehal; Reilly, Muredach P.

    2008-01-01

    Adiposity-associated inflammation and insulin resistance are strongly implicated in the development of type 2 diabetes and atherosclerotic cardiovascular disease. This article reviews the mechanisms of adipose inflammation, because these may represent therapeutic targets for insulin resistance and for prevention of metabolic and cardiovascular consequences of obesity. The initial insult in adipose inflammation and insulin resistance, mediated by macrophage recruitment and endogenous ligand ac...

  1. Development and differentiation of adipose tissue

    Ivković-Lazar Tatjana A.

    2003-01-01

    Full Text Available Introduction For years adipose tissue has been considered inert, serving only as a depot of energy surplus. However, there have been recent changes, undoubtedly due to advancement of methods for studying the morphology and metabolic activities of adipose tissue (microdialysis and adipose tissue catheterization. In normal-weight subjects, adipose tissue makes 10-12% with males and 15-20% with females. About 80 % of adipose tissue is located under the skin, and the rest envelops the internal organs. With humans there are white and brown adipose tissues, which is predominant with infants and small children. Histologic characteristics From a histological point of view, it is a special form of reticular connective tissue, which contains adipocytes with netlike structure. Human adipose tissue has four types of adrenergic receptors with different topographic dispositions, which manifest different metabolic activity of adipocytes of particular body organs. Changes in adipose tissue are associated with the process of adipocyte differentiation. Critical moments for this process are last months of pregnancy, the first six months of infancy and then puberty. However, the differentiation process may also begin during maturity. Namely, as size of adipocytes can increase to a certain limit, this process can be activated after reaching a 'critical' adipocyte volume. The differentiation process is affected by a number of hormones (insulin, glucagon, corticosteroids, somatotropin (STH, thyroid gland hormones, prolactin, testosterone, but also by some other substances (fatty acids, prostaglandins, liposoluble vitamins, butyrate, aspirin, indomethacin, metylxanthine, etc..

  2. Adipose Tissue Biology: An Update Review

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  3. Capillary permeability in adipose tissue

    Paaske, W P; Nielsen, S L

    1976-01-01

    A method for measurement of capillary permeability using external registration of gamma emitting isotopes after close arterial bolus injection was applied to the isolated inguinal fat pad in slightly fasting rabbits. An average extraction of 26 per cent for 51Cr-EDTA was found at a plasma flow of...... about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  4. Hypertrophic Obesity and Subcutaneous Adipose Tissue Dysfunction

    Anna Meiliana

    2014-08-01

    Full Text Available BACKGROUND: Over the past 50 years, scientists have recognized that not all adipose tissue is alike, and that health risk is associated with the location as well as the amount of body fat. Different depots are sufficiently distinct with respect to fatty-acid storage and release as to probably play unique roles in human physiology. Whether fat redistribution causes metabolic disease or whether it is a marker of underlying processes that are primarily responsible is an open question. CONTENT: The limited expandability of the subcutaneous adipose tissue leads to inappropriate adipose cell expansion (hypertrophic obesity with local inflammation and a dysregulated and insulin-resistant adipose tissue. The inability to store excess fat in the subcutaneous adipose tissue is a likely key mechanism for promoting ectopic fat accumulation in tissues and areas where fat can be stored, including the intra-abdominal and visceral areas, in the liver, epi/pericardial area, around vessels, in the myocardium, and in the skeletal muscles. Many studies have implicated ectopic fat accumulation and the associated lipotoxicity as the major determinant of the metabolic complications of obesity driving systemic insulin resistance, inflammation, hepatic glucose production, and dyslipidemia. SUMMARY: In summary, hypertrophic obesity is due to an impaired ability to recruit and differentiate available adipose precursor cells in the subcutaneous adipose tissue. Thus, the subcutaneous adipose tissue may be particular in its limited ability in certain individuals to undergo adipogenesis during weight increase. Inability to promote subcutaneous adipogenesis under periods of affluence would favor lipid overlow and ectopic fat accumulation with negative metabolic consequences. KEYWORDS: obesity, adipogenesis, subcutaneous adipose tissue, visceral adipose tissue, adipocyte dysfunction.

  5. Mechanical homeostasis regulating adipose tissue volume

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  6. Obesity is associated with macrophage accumulation in adipose tissue

    Weisberg, Stuart P.; McCann, Daniel; Desai, Manisha; Rosenbaum, Michael; Leibel, Rudolph L.; Ferrante, Anthony W

    2003-01-01

    Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We fou...

  7. Methods in Enzymology (MIE): Methods of Adipose Tissue Biology-: Chapter 7: Imaging of Adipose Tissue

    Berry, Ryan; Church, Christopher; Gericke, Martin T; Jeffery, Elise; Colman, Laura; Rodeheffer, Matthew S.

    2014-01-01

    Adipose tissue is an endocrine organ that specializes in lipid metabolism and is distributed throughout the body in distinct white adipose tissue (WAT) and brown adipose tissue (BAT) depots. These tissues have opposing roles in lipid metabolism with WAT storing excessive caloric intake in the form of lipid, and BAT burning lipid through non-shivering thermogenesis. As accumulation of lipid in mature adipocytes of WAT leads to obesity and increased risk of comorbidity (Pi-Sunyer et al., 1998),...

  8. Differential fatty acid profile in adipose and non-adipose tissues in obese mice

    Li, Mengting; Fu, Weisi; Li, Xiang-An

    2010-01-01

    Obesity is a metabolic disease characterized by chronic inflammation. Early studies indicated that adipose tissue from obese mice contains more saturated fatty acids and that the saturated fatty acids activate TLR4-mediated inflammatory signaling, which contributes to inflammation in adipose tissue. In this study, we determined fatty acid profile in non-adipose tissues from obese (db/db) mice and compared with that from lean mice. Unexpectedly, in contrast to a significant increase in saturat...

  9. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity

    Pang, Can; Gao, Zhanguo; Yin, Jun; Zhang, Jin; Jia, Weiping; Ye, Jianping

    2008-01-01

    The biological role of macrophage infiltration into adipose tissue in obesity remains to be fully understood. We hypothesize that macrophages may act to stimulate angiogenesis in the adipose tissue. This possibility was examined by determining macrophage expression of angiogenic factor PDGF (platelet-derived growth factor) and regulation of tube formation of endothelial cells by PDGF. The data suggest that endothelial cell density was reduced in the adipose tissue of ob/ob mice. Expression of...

  10. Aetiological factors behind adipose tissue inflammation

    von Scholten, Bernt J; Andresen, Erik N; Sørensen, Thorkild I A;

    2013-01-01

    Despite extensive research into the biological mechanisms behind obesity-related inflammation, knowledge of environmental and genetic factors triggering such mechanisms is limited. In the present narrative review we present potential determinants of adipose tissue inflammation and suggest ways...

  11. Influencing Factors of Thermogenic Adipose Tissue Activity

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called “brite” or “beig...

  12. Injectable Biomaterials for Adipose Tissue Engineering

    Young, D. Adam; Christman, Karen L.

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect, and thus classifi...

  13. Obesity and adipose tissue endocrine function

    Joshi, Anuradha Rajiv

    2013-01-01

    Many studies have profoundly changed the concept of adipose tissue from being an energy depot to an active endocrine organ. Adipose tissue secretes bioactive peptides, termed as ‘adipokines’.They act through autocrine, paracrine and endocrine pathways. In obesity, increased production of most adipokines affects multiple functions such as appetite and energy balance, immunity, insulin sensitivity, angiogenesis, blood pressure, lipid metabolism and haemostasis. Increased activity of the tumor n...

  14. Mechanical homeostasis regulating adipose tissue volume

    Svedman Paul

    2007-01-01

    Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by str...

  15. Influencing Factors of Thermogenic Adipose Tissue Activity.

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called "brite" or "beige" adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  16. Determinants of Central Adiposity among Iranian Population

    Leila Azadbakht

    2013-03-01

    Full Text Available Background: Central obesity is one of the major public health problems. Recent studies have indicated that body fat distribution would be important in general health. Materials and Methods: The present study is a review of several studies which discuss the contributing factors of abdominal obesity, particulary in Iran. This study reviews 34 cross-sectional and interventional studies, which have been comducted during 1995-2012 and issued in English language. PubMed search engine and the related keywords were used to search the papers.Results: Breakfast skipping and also the sleep duration as well as the quality of diet are also associated with central adiposity. Dietary diversity score among Iranians can be related to abdominal adiposity. Fastfood consumption can increase the risk of central adiposity among young Iranian population. Red meat intake and food source of trans fat can increase the risk of central adiposity. Low quality diet with low amount of nutrients can increase the risk of central adiposity. Conclusion: Some behaviours such as sleep duration and eating breakfast can be associated with central adiposity among Iranians. Diet quality and dietary diversity score is also associated with this problem among Iranians.

  17. Longer distance from home to invasive centre is associated with lower rate of coronary angiographies following acute coronary syndrome

    Hvelplund, Anders; Galatius, Søren; Madsen, Mette;

    the treatment of ACS. There are 5 tertiary invasive centres performing CAG, percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), 8 hospitals with diagnostic units performing CAG only, and a further 36 hospitals without these facilities receiving patients with ACS. We...... information on co-morbidity were recorded for each patient. Information on distance from each patients place of residence to the nearest invasive centre was obtained from Statistics Denmark along with information on education, family income, previous medicine use and vital status. Patients were grouped in...

  18. Visceral adiposity, insulin resistance and cancer risk

    Donohoe, Claire L

    2011-06-22

    Abstract Background There is a well established link between obesity and cancer. Emerging research is characterising this relationship further and delineating the specific role of excess visceral adiposity, as opposed to simple obesity, in promoting tumorigenesis. This review summarises the evidence from an epidemiological and pathophysiological perspective. Methods Relevant medical literature was identified from searches of PubMed and references cited in appropriate articles identified. Selection of articles was based on peer review, journal and relevance. Results Numerous epidemiological studies consistently identify increased risk of developing carcinoma in the obese. Adipose tissue, particularly viscerally located fat, is metabolically active and exerts systemic endocrine effects. Putative pathophysiological mechanisms linking obesity and carcinogenesis include the paracrine effects of adipose tissue and systemic alterations associated with obesity. Systemic changes in the obese state include chronic inflammation and alterations in adipokines and sex steroids. Insulin and the insulin-like growth factor axis influence tumorigenesis and also have a complex relationship with adiposity. There is evidence to suggest that insulin and the IGF axis play an important role in mediating obesity associated malignancy. Conclusions There is much evidence to support a role for obesity in cancer progression, however further research is warranted to determine the specific effect of excess visceral adipose tissue on tumorigenesis. Investigation of the potential mechanisms underpinning the association, including the role of insulin and the IGF axis, will improve understanding of the obesity and cancer link and may uncover targets for intervention.

  19. Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

    Andrew A. Bremer

    2013-01-01

    Full Text Available The metabolic syndrome (MetS confers an increased risk for both type 2 diabetes mellitus (T2DM and cardiovascular disease (CVD. Moreover, studies on adipose tissue biology in nascent MetS uncomplicated by T2DM and/or CVD are scanty. Recently, we demonstrated that adipose tissue dysregulation and aberrant adipokine secretion contribute towards the syndrome’s low-grade chronic proinflammatory state and insulin resistance. Specifically, we have made the novel observation that subcutaneous adipose tissue (SAT in subjects with nascent MetS has increased macrophage recruitment with cardinal crown-like structures. We have also shown that subjects with nascent MetS have increased the levels of SAT-secreted adipokines (IL-1, IL-6, IL-8, leptin, RBP-4, CRP, SAA, PAI-1, MCP-1, and chemerin and plasma adipokines (IL-1, IL-6, leptin, RBP-4, CRP, SAA, and chemerin, as well as decreased levels of plasma adiponectin and both plasma and SAT omentin-1. The majority of these abnormalities persisted following correction for increased adiposity. Our data, as well as data from other investigators, thus, highlight the importance of subcutaneous adipose tissue dysfunction in subjects with MetS and its contribution to the proinflammatory state and insulin resistance. This adipokine profile may contribute to increased insulin resistance and low-grade inflammation, promoting the increased risk of T2DM and CVD.

  20. Carotenoids in Adipose Tissue Biology and Obesity.

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition. PMID:27485231

  1. Brown Adipose Tissue Growth and Development

    Michael E. Symonds

    2013-01-01

    Full Text Available Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  2. Adipose tissue plasticity from WAT to BAT and in between

    Lee, Yun-Hee; Mottillo, Emilio P.; Granneman, James G.

    2013-01-01

    Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticit...

  3. Advances in our understanding of adipose tissue homeostasis

    Stern, Jennifer H.; Scherer, Philipp E.

    2014-01-01

    In 2014, numerous noteworthy papers focusing on adipose tissue physiology were published. Many of these articles showed the promise of adipose-tissue-targeted approaches for therapeutic intervention in obesity and type 2 diabetes mellitus. Here, we highlight advances in the development and maintenance of brown and/or beige adipocytes and the metabolic implications of infammation in adipose tissues.

  4. Developmental programming, adiposity, and reproduction in ruminants.

    Symonds, M E; Dellschaft, N; Pope, M; Birtwistle, M; Alagal, R; Keisler, D; Budge, H

    2016-07-01

    Although sheep have been widely adopted as an animal model for examining the timing of nutritional interventions through pregnancy on the short- and long-term outcomes, only modest programming effects have been seen. This is due in part to the mismatch in numbers of twins and singletons between study groups as well as unequal numbers of males and females. Placental growth differs between singleton and twin pregnancies which can result in different body composition in the offspring. One tissue that is especially affected is adipose tissue which in the sheep fetus is primarily located around the kidneys and heart plus the sternal/neck region. Its main role is the rapid generation of heat due to activation of the brown adipose tissue-specific uncoupling protein 1 at birth. The fetal adipose tissue response to suboptimal maternal food intake at defined stages of development differs between the perirenal abdominal and pericardial depots, with the latter being more sensitive. Fetal adipose tissue growth may be mediated in part by changes in leptin status of the mother which are paralleled in the fetus. Then, over the first month of life plasma leptin is higher in females than males despite similar adiposity, when fat is the fastest growing tissue with the sternal/neck depot retaining uncoupling protein 1, whereas other depots do not. Future studies should take into account the respective effects of fetal number and sex to provide more detailed insights into the mechanisms by which adipose and related tissues can be programmed in utero. PMID:27173959

  5. [White adipose tissue dysfunction observed in obesity].

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects. PMID:27234867

  6. Injectable biomaterials for adipose tissue engineering

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers but also promote in vivo adipogenesis is beginning to be realized. This paper will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. (paper)

  7. Adipose tissue and fat cell biology

    Kopecký, Jan

    New York: Springer International Publishing, 2015 - (Pappas, A.), s. 201-224 ISBN 978-3-319-09942-2 R&D Projects: GA MŠk(CZ) 7E12073; GA ČR(CZ) GA13-00871S Institutional support: RVO:67985823 Keywords : adipose tissue * endocrine function * lipid mediators Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  8. Adipose Tissue - Adequate, Accessible Regenerative Material.

    Kolaparthy, Lakshmi Kanth; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-11-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed. PMID:26634060

  9. Adipogenic Potential of Adipose Stem Cell Subpopulations

    Li, Han; Zimmerlin, Ludovic; Marra, Kacey G.; Donnenberg, Vera S.; Donnenberg, Albert D.; Rubin, J. Peter

    2014-01-01

    Background Adipose stem cells represent a heterogenous population. Understanding the functional characteristics of subpopulations will be useful in developing adipose stem cell–based therapies for regenerative medicine applications. The aim of this study was to define distinct populations within the stromal vascular fraction based on surface marker expression, and to evaluate the ability of each cell type to differentiate to mature adipocytes. Methods Subcutaneous whole adipose tissue was obtained by abdominoplasty from human patients. The stromal vascular fraction was separated and four cell populations were isolated by flow cytometry and studied. Candidate perivascular cells (pericytes) were defined as CD146+/CD31−/CD34−. Two CD31+ endothelial populations were detected and differentiated by CD34 expression. These were tentatively designated as mature endothelial (CD 31+/CD34−), and immature endothelial (CD31+/CD34+). Both endothelial populations were heterogeneous with respect to CD146. The CD31−/CD34+ fraction (preadipocyte candidate) was also CD90+ but lacked CD146 expression. Results Proliferation was greatest in the CD31−/CD34+ group and slowest in the CD146+ group. Expression of adipogenic genes, peroxisome proliferator-activated receptor-γ, and fatty acid binding protein 4, were significantly higher in the CD31−/CD34+ group compared with all other populations after in vitro adipogenic differentiation. This group also demonstrated the highest proportion of AdipoRed lipid staining. Conclusions The authors have isolated four distinct stromal populations from human adult adipose tissue and characterized their adipogenic potential. Of these four populations, the CD31/CD34+ group is the most prevalent and has the greatest potential for adipogenic differentiation. This cell type appears to hold the most promise for adipose tissue engineering. PMID:21572381

  10. Estimation of limb adiposity by bioimpedance spectroscopy in lymphoedema

    Lymphoedema is a chronic debilitating condition that may occur in approximately 25% of women treated for breast cancer. As the condition progresses, accumulated lymph fluid becomes fibrotic with infiltration of adipose tissue. Bioelectrical impedance spectroscopy is the preferred method for early detection of lymphoedema based on the measurement of impedance of extracellular fluid. The present study assessed whether these impedance measurements could also be used to estimate the adipose tissue content of the arm based on a model previously used to predict whole body composition. Estimates of arm adipose tissue in a cohort of women with lymphoedema were found to be highly correlated (r > 0.82) with measurements of adipose tissue obtained using the reference method of dual energy X-ray absorptiometry. Paired t-tests confirmed that there was no significant difference between the adipose tissue volumes obtained by the two methods. These results support the view that the method shows promise for the estimation of arm adiposity in lymphoedema.

  11. Estimation of limb adiposity by bioimpedance spectroscopy in lymphoedema

    Ward, L. C.; Essex, T.; Gaw, R.; Czerniec, S.; Dylke, E.; Abell, B.; Kilbreath, S. L.

    2013-04-01

    Lymphoedema is a chronic debilitating condition that may occur in approximately 25% of women treated for breast cancer. As the condition progresses, accumulated lymph fluid becomes fibrotic with infiltration of adipose tissue. Bioelectrical impedance spectroscopy is the preferred method for early detection of lymphoedema based on the measurement of impedance of extracellular fluid. The present study assessed whether these impedance measurements could also be used to estimate the adipose tissue content of the arm based on a model previously used to predict whole body composition. Estimates of arm adipose tissue in a cohort of women with lymphoedema were found to be highly correlated (r > 0.82) with measurements of adipose tissue obtained using the reference method of dual energy X-ray absorptiometry. Paired t-tests confirmed that there was no significant difference between the adipose tissue volumes obtained by the two methods. These results support the view that the method shows promise for the estimation of arm adiposity in lymphoedema.

  12. Determinants of human adipose tissue gene expression

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José;

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification ...... controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases....

  13. Visceral adiposity, insulin resistance and cancer risk

    Donohoe Claire L; Doyle Suzanne L; Reynolds John V

    2011-01-01

    PUBLISHED Background: There is a well established link between obesity and cancer. Emerging research is characterising this relationship further and delineating the specific role of excess visceral adiposity, as opposed to simple obesity, in promoting tumorigenesis. This review summarises the evidence from an epidemiological and pathophysiological perspective. Methods: Relevant medical literature was identified from searches of PubMed and references cited in appropriate articles...

  14. Peptides from adipose tissue in mental disorders

    Wędrychowicz, Andrzej; Zając, Andrzej; Pilecki, Maciej; Kościelniak, Barbara; Tomasik, Przemysław J

    2014-01-01

    Adipose tissue is a dynamic endocrine organ that is essential to regulation of metabolism in humans. A new approach to mental disorders led to research on involvement of adipokines in the etiology of mental disorders and mood states and their impact on the health status of psychiatric patients, as well as the effects of treatment for mental health disorders on plasma levels of adipokines. There is evidence that disturbances in adipokine secretion are important in the pathogenesis, clinical pr...

  15. Orexin modulates brown adipose tissue thermogenesis

    Madden, Christopher J.; Tupone, Domenico; Morrison, Shaun F.

    2012-01-01

    Non-shivering thermogenesis in brown adipose tissue (BAT) plays an important role in thermoregulation. In addition, activations of BAT have important implications for energy homeostasis due to the metabolic consumption of energy reserves entailed in the production of heat in this tissue. In this conceptual overview we describe the role of orexins/hypocretins within the central nervous system in the modulation of thermogenesis in BAT under several physiological conditions. Within this framewor...

  16. Central Control of Brown Adipose Tissue Thermogenesis

    ShaunF.Morrison

    2012-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally-regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the c...

  17. Hypothalamic Control of Brown Adipose Tissue Thermogenesis

    Alexandre Caron; Bartness, Timothy J.

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system, which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The charac...

  18. Hypothalamic control of brown adipose tissue thermogenesis

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The ...

  19. Epicardial adipose tissue and atrial fibrillation.

    Hatem, Stéphane N; Sanders, Prashanthan

    2014-05-01

    Atrial fibrillation (AF) is the most frequent cardiac arrhythmia in clinical practice. AF is often associated with profound functional and structural alterations of the atrial myocardium that compose its substrate. Recently, a relationship between the thickness of epicardial adipose tissue (EAT) and the incidence and severity of AF has been reported. Adipose tissue is a biologically active organ regulating the metabolism of neighbouring organs. It is also a major source of cytokines. In the heart, EAT is contiguous with the myocardium without fascia boundaries resulting in paracrine effects through the release of adipokines. Indeed, Activin A, which is produced in abundance by EAT during heart failure or diabetes, shows a marked fibrotic effect on the atrial myocardium. The infiltration of adipocytes into the atrial myocardium could also disorganize the depolarization wave front favouring micro re-entry circuits and local conduction block. Finally, EAT contains progenitor cells in abundance and therefore could be a source of myofibroblasts producing extracellular matrix. The study on the role played by adipose tissue in the pathogenesis of AF is just starting and is highly likely to uncover new biomarkers and therapeutic targets for AF. PMID:24648445

  20. Adipose Tissue Angiogenesis: Impact on Obesity and Type-2 Diabetes

    Corvera, Silvia; Gealekman, Olga

    2013-01-01

    The growth and function of tissues is critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in t...

  1. EFFECT OF SOME MEDICINAL PLANT PREPARATIONS OF ADIPOSE TISSUE METABOLISM

    Bambhole, V. D.

    1988-01-01

    Powder in fine suspension, water and alcoholic extract preparations of Cyperus Rotundus (Mustak), Iris versicolor (Haimavati) and Holoptelai integrifolia (Chirubilva) were used in adipose cell suspension and also administered orally to evaluate the effect of these plant preparations on adipose tissue metabolism in rats. The result, showed that the preparations from these medicinal plants exhibited lipolytic action to mobilize fat from adipose tissues in rats and consequently helped in the red...

  2. Adipose-derived stem cells: Implications in tissue regeneration

    Tsuji, Wakako; Rubin, J. Peter; Marra, Kacey G.

    2014-01-01

    Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differentiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs damaged by injury and dise...

  3. Insulin degradation by adipose tissue is increased in human obesity

    Rafecas Jorba, Immaculada; Fernández López, José Antonio; Salinas, Isabel; X. Formiguera Sala; Remesar Betlloch, Xavier; Foz Sala, M. (Màrius); Alemany, Marià

    1995-01-01

    White adipose tissue samples from obese and lean patients were used for the estimation ofinsulin protease and insulin:glutathione transhydrogenase using 1251-labeled insulin. There was no activity detected in the absence of reduced glutathione, which indicates that insulin is cleaved in human adipose "tissue through reduction of the disulfide bridge between the chains. O bese patients showed higher transhydrogenase activity (per U tissue protein wt, per U tissue wt, and in the total adipose t...

  4. Adiposity in British secondary school children: a population based study

    Odoki, Katherine Helen

    2008-01-01

    Summary: Adiposity is defined as the property of containing fat. Excessive adiposity is a cause of both morbidity and mortality in adults. Important consequences include increased risks of type 2 diabetes, coronary heart disease and stroke, (particularly through the increased risks of high blood pressure, dyslipidaemia and insulin resistance associated with adiposity), osteoarthritis, gall bladder disease and some cancers (particularly endometrial, breast, and colon). There is...

  5. Sustainable Three-Dimensional Tissue Model of Human Adipose Tissue

    Bellas, Evangelia; Marra, Kacey G.; Kaplan, David L

    2013-01-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31...

  6. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    Ribeiro Ricardo; Monteiro Cátia; Cunha Virgínia; Oliveira Maria; Freitas Mariana; Fraga Avelino; Príncipe Paulo; Lobato Carlos; Lobo Francisco; Morais António; Silva Vítor; Sanches-Magalhães José; Oliveira Jorge; Pina Francisco; Mota-Pinto Anabela

    2012-01-01

    Abstract Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants) or stromal vascular fraction (SVF) from paired fat samples of periprostatic (PP) ...

  7. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    Hochberg, Irit; Tran, Quynh T; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several...

  8. High intensity interval training improves liver and adipose tissue insulin sensitivity

    Katarina Marcinko

    2015-12-01

    Conclusions: These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  9. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  10. Impact of Age on the Relationships of Brown Adipose Tissue With Sex and Adiposity in Humans

    Pfannenberg, Christina; Werner, Matthias K.; Ripkens, Sabine; Stef, Irina; Deckert, Annette; Schmadl, Maria; Reimold, Matthias; Häring, Hans-Ulrich; Claussen, Claus D.; Stefan, Norbert

    2010-01-01

    OBJECTIVE Brown adipose tissue (BAT) regulates energy homeostasis and fat mass in mammals and newborns and, most likely, in adult humans. Because BAT activity and BAT mass decline with age in humans, the impact of BAT on adiposity may decrease with aging. In the present study we addressed this hypothesis and further investigated the effect of age on the sex differences in BAT activity and BAT mass. RESEARCH DESIGN AND METHODS Data from 260 subjects (98 with BAT and 162 study date–matched cont...

  11. Irbesartan increased PPARγ activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Research highlights: → Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. → Irbesartan decreased white adipose tissue weight without affecting body weight. → DNA-binding for PPARγ was increased in white adipose tissue in vivo by irbesartan. → Irbesartan increased adipocyte number in white adipose tissue. → Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPARγ agonistic action of an AT1 receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPARγ in white adipose tissue and the DNA-binding activity of PPARγ in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPARγ and improved adipose tissue dysfunction including insulin resistance.

  12. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  13. Biomarkers of Habitual Fish Intake in Adipose-Tissue

    Marckmann, P.; Lassen, Anne Dahl; Haraldsdottir, H.; Sandström, B.

    1995-01-01

    significantly associated with adipose tissue docosahexaenoic acid content (DHA; r = 0.55 and 0.58, respectively, P <0.001), but not with eicosapentaenoic and docosapentaenoic acid contents. Our study indicates that the adipose tissue DHA content is the biomarker of choice for the assessment of long...

  14. Identification of progesterone receptor in human subcutaneous adipose tissue.

    O'Brien, S N; Welter, B H; Mantzke, K A; Price, T M

    1998-02-01

    Sex steroids are postulated to play a role in adipose tissue regulation and distribution, because the amount and location of adipose tissue changes during puberty and menopause. Because of the nature of adipose tissue, receptors for the female sex steroids have been difficult to demonstrate. To date, estrogen receptor messenger RNA and protein have been identified in human subcutaneous adipose tissue, but the presence of progesterone receptor (PR) has not been reported. In this study, we demonstrate PR message by Northern blot analysis in RNA isolated from the abdominal subcutaneous adipose tissue of premenopausal women. These preliminary studies revealed that PR messenger RNA levels are higher in the stromal-vascular fraction as opposed to the adipocyte fraction. Western blot analysis demonstrates both PR protein isoforms (human PR-A and human PR-B) in human subcutaneous adipose tissue. Using an enzyme-linked immunosorbent assay, total PR could be quantitated. These studies substantiate that sex steroid receptors are present in human adipose tissue, thereby providing a direct route for regulation of adipose tissue by female sex steroids. PMID:9467566

  15. Altered autophagy in human adipose tissues in obesity

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  16. Fetal metabolic influences of neonatal anthropometry and adiposity.

    Donnelly, Jean M

    2015-01-01

    Large for gestational age infants have an increased risk of obesity, cardiovascular and metabolic complications during life. Knowledge of the key predictive factors of neonatal adiposity is required to devise targeted antenatal interventions. Our objective was to determine the fetal metabolic factors that influence regional neonatal adiposity in a cohort of women with previous large for gestational age offspring.

  17. Measures of abdominal adiposity and the risk of stroke

    Bodenant, Marie; Kuulasmaa, Kari; Wagner, Aline; Kee, Frank; Palmieri, Luigi; Ferrario, Marco M; Montaye, Michèle; Amouyel, Philippe; Dallongeville, Jean

    2011-01-01

    Excess fat accumulates in the subcutaneous and visceral adipose tissue compartments. We tested the hypothesis that indicators of visceral adiposity, namely, waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR), are better predictors of stroke risk than body mass...

  18. Characterization of the human visceral adipose tissue secretome

    Alvarez Llamas, Gloria; Szalowska, Ewa; de Vries, Marcel P.; Weening, Desiree; Landman, Karloes; Hoek, Annemieke; Wolffenbuttel, Bruce H. R.; Roelofsen, Johan; Vonk, Roel J.

    2007-01-01

    Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and t

  19. Cell supermarket: Adipose tissue as a source of stem cells

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  20. Albumin induced cytokine expression in porcine adipose tissue explants

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  1. Exploring the Relationship between Adiposity and Fitness in Young Children

    Egebæk, Heidi Klakk; Fairchild, Timothy J; Heidemann, Malene;

    2016-01-01

    PURPOSE: High levels of cardiorespiratory fitness (CRF) may attenuate the association between excessive adiposity and the risks of cardiovascular and metabolic disease. The purpose of this study was to stratify children according to their BMI and adiposity (body fat percentage, BF%) and compare...

  2. The Infrapatellar Adipose Body: A Histotopographic Study.

    Macchi, Veronica; Porzionato, Andrea; Sarasin, Gloria; Petrelli, Lucia; Guidolin, Diego; Rossato, Marco; Fontanella, Chiara Giulia; Natali, Arturo; De Caro, Raffaele

    2016-01-01

    The infrapatellar fat pad (IFP) can be regarded as a peculiar form of fibro-adipose tissue localized close to the synovial membrane and articular cartilage. The aims of the present study were to analyze the microscopic anatomy of the IFP through histological and ultrastructural methods, comparing it with that of the subcutaneous tissue of the abdomen and of the knee. Ten specimens of IFP were sampled from bodies of the Donation Program of the University of Padua without a history of osteoarthritis. The IFP consisted of white adipose tissue, of lobular type, with lobules delimited by thin connective septa. The IFP lobule areas were smaller (p 0.05) than those of subcutaneous tissues of the abdomen, whereas the IFP lobule areas were larger (p < 0.05) and the interlobular septa were thinner than those of the subcutaneous tissue of the knee (p < 0.05). The IFP adipocytes present a mean area of 3,708 ± 976 µm2 with a large intercellular space, whereas the mean area of the abdominal tissues was greater (6,082 ± 628 µm2; p < 0.05). At scanning electron microscopy the IFP adipocytes were covered by thick fibrillary sheaths, creating a basket around the adipocytes. The structural characteristics of the IFP (lobular aspect of the adipose tissue, thickness of the septa with scarce elastic fibers) could act as a plastic portion aimed at the absorption of pressure variation during knee articular activity. The extensive distribution of nerves suggests a possible role of the IFP as a mechanoreceptor, corresponding to a tridimensional connective mesh working in the proprioceptive regulation of the activity of the knee joint. PMID:26796341

  3. Adiposity and sex hormones in girls.

    Baer, Heather J; Colditz, Graham A; Willett, Walter C; Dorgan, Joanne F

    2007-09-01

    Greater body fatness during childhood is associated with reduced risk of premenopausal breast cancer, but few studies have addressed the relation of adiposity with sex hormones in girls. We prospectively examined associations between adiposity and circulating levels of sex hormones and sex hormone-binding globulin (SHBG) among 286 girls in the Dietary Intervention Study in Children. Participants were 8 to 10 years old at baseline and were followed for an average of 7 years. Anthropometric measurements were taken at baseline and at subsequent annual visits, and blood samples were collected every 2 years. Concentrations of dehydroepiandrosterone sulfate (DHEAS) during follow-up were higher among girls with greater body mass index (BMI) at baseline. The mean for the lowest BMI quartile was 63.0 microg/dL compared with 78.8 microg/dL for the highest quartile, and each kg/m(2) increment in baseline BMI was associated with a 4.3% increase (95% confidence interval, 1.6-7.0%) in DHEAS levels during follow-up (P(trend) = 0.002). Concentrations of SHBG during follow-up were lower among girls with greater BMI at baseline. The mean for the lowest BMI quartile was 94.8 nmol compared with 57.5 nmol for the highest quartile, and each kg/m(2) increment in baseline BMI was associated with an 8.8% decrease (95% confidence interval, 7.0-10.6%) in SHBG levels during follow-up (P(trend) < 0.0001). Estrogen and progesterone concentrations were similar across BMI quartiles. These findings suggest that adiposity may alter DHEAS and SHBG levels in girls. Whether and how these differences affect breast development and carcinogenesis requires further research. PMID:17855709

  4. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  5. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  6. Adipose derived stem cells and nerve regeneration

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  7. Visceral adipose tissue modulates mammalian longevity

    Muzumdar, Radhika; Allison, David B.; Huffman, Derek M.; Ma, Xiaohui; Atzmon, Gil; Einstein, Francine H.; Fishman, Sigal; Poduval, Aruna D.; McVei, Theresa; Keith, Scott W.; Barzilai, Nir

    2008-01-01

    Caloric restriction (CR) can delay many age-related diseases and extend lifespan, while an increase in adiposity is associated with enhanced disease risk and accelerated aging. Among the various fat depots, the accrual of visceral fat (VF) is a common feature of aging, and has been shown to be the most detrimental on metabolic syndrome of aging in humans. We have previously demonstrated that surgical removal of VF in rats improves insulin action; thus, we set out to determine if VF removal af...

  8. Rapid Cellular Turnover in Adipose Tissue

    Alessandra Rigamonti; Kristen Brennand; Frank Lau; Cowan, Chad A.

    2011-01-01

    It was recently shown that cellular turnover occurs within the human adipocyte population. Through three independent experimental approaches — dilution of an inducible histone 2B-green fluorescent protein (H2BGFP), labeling with the cell cycle marker Ki67 and incorporation of BrdU — we characterized the degree of cellular turnover in murine adipose tissue. We observed rapid turnover of the adipocyte population, finding that 4.8% of preadipocytes are replicating at any time and that between 1–...

  9. Automatic Segmentation of Abdominal Adipose Tissue in MRI

    Mosbech, Thomas Hammershaimb; Pilgaard, Kasper; Vaag, Allan; Larsen, Rasmus

    This paper presents a method for automatically segmenting abdominal adipose tissue from 3-dimensional magnetic resonance images. We distinguish between three types of adipose tissue; visceral, deep subcutaneous and superficial subcutaneous. Images are pre-processed to remove the bias field effect...... of intensity in-homogeneities. This effect is estimated by a thin plate spline extended to fit two classes of automatically sampled intensity points in 3D. Adipose tissue pixels are labelled with fuzzy c-means clustering and locally determined thresholds. The visceral and subcutaneous adipose tissue...... are separated using deformable models, incorporating information from the clustering. The subcutaneous adipose tissue is subdivided into a deep and superficial part by means of dynamic programming applied to a spatial transformation of the image data. Regression analysis shows good correspondences...

  10. Epicardial adipose tissue and coronary artery disease: an article review

    Sareh Mousavi

    2014-12-01

    Full Text Available Adipose tissue surrounding the heart may contribute in the progression of coronary atherosclerosis due to its proximity to the coronary arteries. In addition, epicardial adipose tissue has paracrine and endocrine functions. It can secrete numerous bioactive molecules. Most previous studies examined the relation between coronary artery disease and epicardial adipose tissue have used echocardiography and have reported controversial results, probably due to differences in measurement techniques and study populations. This study aimed to give a brief review on the value of echocardiographic assessment of epicardial adipose tissue in the prediction of coronary artery disease severity.Epicardial adipose tissue, easily and non-invasively evaluated by transthoracic echocardiography, can be considered as an adjunctive marker to classical risk factors despite all the limitations. Moreover, it might be recommended as a useful quantitative screening examination for the prediction of the presence and the severity of coronary artery disease and the extent of atherosclerosis.

  11. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  12. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  13. Techniques developed to evaluate the fracture toughness offast breeder reactor duct

    Large changes in strength and ductility of metals after irradiation are known to occur. The fracture toughness of irradiated metals, which is related to the combined strength and ductility of a material, may be significantly reduced and the potential for unstable crack extension increased. Therefore, the resistance of cladding and duct materials to fracture after exposure to fast neutron environments is of concern. Existing Type 316 stainless steel irradiated ducts are relatively thin and since this material retains substantial ductility, even after irradiation, the fracture behavior of the duct material cannot be analyzed by linear elastic fracture mechanics techniques. Instead, the multispecimen R-curve method and J-integral analysis were used to develop an experimental approach to evaluate the fracture toughness of thin breeder reactor duct materials irradiated at elevated temperatures. Alloy A-286 was chosen for these experiments because the alloy exhibits elastic/plastic behavior and the fracture toughness data of thicker (12 mm) specimens were available for comparison. Technical problems associated with specimen buckling and remote handling were treated in this work. The results are discussed in terms of thickness criterion for plane strain

  14. Rare adipose disorders (RADs) masquerading as obesity

    Karen L HERBST

    2012-01-01

    Rare adipose disorders (RADs) including multiple symmetric lipomatosis (MSL),lipedema and Dercum's disease (DD) may be misdiagnosed as obesity.Lifestyle changes,such as reduced caloric intake and increased physical activity are standard care for obesity.Although lifestyle changes and bariatric surgery work effectively for the obesity component of RADs,these treatments do not routinely reduce the abnormal subcutaneous adipose tissue (SAT) of RADs.RAD SAT likely results from the growth of a brown stem cell population with secondary lymphatic dysfunction in MSL,or by primary vascular and lymphatic dysfunction in lipedema and DD.People with RADs do not lose SAT from caloric limitation and increased energy expenditure alone.In order to improve recognition of RADs apart from obesity,the diagnostic criteria,histology and pathophysiology of RADs are presented and contrasted to familial partial lipodystrophies,acquired partial lipodystrophies and obesity with which they may be confused.Treatment recommendations focus on evidencebased data and include lymphatic decongestive therapy,medications and supplements that support loss of RAD SAT.Associated RAD conditions including depression,anxiety and pain will improve as healthcare providers learn to identify and adopt alternative treatment regimens for the abnormal SAT component of RADs.Effective dietary and exercise regimens are needed in RAD populations to improve quality of life and construct advanced treatment regimens for future generations.

  15. Laser-induced lipolysis on adipose cells

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  16. Mechanisms linking excess adiposity and carcinogenesis promotion

    Ana I. Pérez-Hernández

    2014-05-01

    Full Text Available Obesity constitutes one of the most important metabolic diseases being associated to insulin resistance development and increased cardiovascular risk. Association between obesity and cancer has also been well-established for several tumor types, such as breast cancer in postmenopausal women, colorectal and prostate cancer. Cancer is the first death cause in developed countries and the second one in developing countries, with high incidence rates around the world. Furthermore, it has been estimated that 15-20% of all cancer deaths may be attributable to obesity. Tumor growth is regulated by interactions between tumor cells and their tissue microenvironment. In this sense, obesity may lead to cancer development through dysfunctional adipose tissue and altered signaling pathways. In this review, three main pathways relating obesity and cancer development are examined: i inflammatory changes leading to macrophage polarization and altered adipokine profile; ii insulin resistance development; and iii adipose tissue hypoxia. Since obesity and cancer present a high prevalence, the association between these conditions is of great public health significance and studies showing mechanisms by which obesity lead to cancer development and progression are needed to improve prevention and management of these diseases.

  17. Does Adipose Tissue Thermogenesis Play a Role in Metabolic Health?

    Craig Porter

    2013-01-01

    Full Text Available The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers’ attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies.

  18. Adipose tissue and skeletal muscle blood flow during mental stress

    Mental stress [a modified Stroop color word conflict test (CWT)] increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation

  19. Adipose tissue and skeletal muscle blood flow during mental stress

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  20. Correlation between maternal inflammatory markers and fetomaternal adiposity.

    Farah, Nadine

    2012-10-01

    Outside pregnancy, both obesity and diabetes mellitus are associated with changes in inflammatory cytokines. Obesity in pregnancy may be complicated by gestational diabetes mellitus (GDM) and\\/or fetal macrosomia. The objective of this study was to determine the correlation between maternal cytokines and fetomaternal adiposity in the third trimester in women where the important confounding variable GDM had been excluded. Healthy women with a singleton pregnancy and a normal glucose tolerance test at 28 weeks gestation were enrolled at their convenience. Maternal cytokines were measured at 28 and 37 weeks gestation. Maternal adiposity was assessed indirectly by calculating the Body Mass Index (BMI), and directly by bioelectrical impedance analysis. Fetal adiposity was assessed by ultrasound measurement of fetal soft tissue markers and by birthweight at delivery. Of the 71 women studied, the mean maternal age and BMI were 29.1 years and 29.2 kg\\/m(2) respectively. Of the women studied 32 (45%) were obese. Of the cytokines, only maternal IL-6 and IL-8 correlated with maternal adiposity. Maternal TNF-α, IL-β, IL-6 and IL-8 levels did not correlate with either fetal body adiposity or birthweight. In this well characterised cohort of pregnant non-diabetic women in the third trimester of pregnancy we found that circulating maternal cytokines are associated with maternal adiposity but not with fetal adiposity.

  1. A retrospective analysis of thyroid lesions containing mature adipose tissue

    Recep Bedir

    2014-06-01

    Full Text Available Objectives: The aim of this retrospective study was to investigate the lesions containing mature adipose tissues in surgical materials of the patients who underwent thyroidectomy operation owing to the diagnosis of nodular goiter. Methods: A total of 2800 pathologic specimens of thyroidectomies stained with hematoxylin-eosin were collected between January 2010 and November 2013 in Recep Tayyip Erdogan University School of Medicine. Pathologic sections were selected from pathology archive and re-examined. Upon examination, we determined 10 lesions with mature adipose tissue within thyroid parenchyma. Results: Thyroid lesions containing mature adipose tissue were observed in 10 (0.004 % of 2800 thyroidectomy materials. Eight of the patients were female and two of them were male. Minimum, maximum and median age of the patients were found to be 31, 74 and 52 years respectively. All of the cases had underwent a bilateral total thyroidectomy operation. In macroscopic examination of the only one cases, a homogenous yellow-gray color was observed. In other cases a large number of colloid-rich nodules of various sizes were observed. On microscopic examination, five adipose tissues in the nodules (adenolipoma-thyrolipoma, four scattered foci of mature adipose tissues (heterotopic adiposis and one diffuse infiltrating mature adipose tissue on entire thyroid gland (diffuse thyrolipomatosis were determined among mature adipose tissue containing lesions. A follicular variant of papillary microcarcinoma was found in two of thyrolipoma cases. Conclusion: Nodular thyroid lesions containing mature adipose tissue, as a result of particularly on the outer surface of the gland and parathyroid glands containining mature adipose tissue may mimic parathyroid gland lesion. Therefore, to prevent from inappropriate treatments, pathologists should be aware of these kinds of lesions, especially when they are investigating the lesions of parathyroid glands during an

  2. Surrogate Markers of Visceral Adiposity in Young Adults: Waist Circumference and Body Mass Index Are More Accurate than Waist Hip Ratio, Model of Adipose Distribution and Visceral Adiposity Index

    Susana Borruel; Moltó, José F.; Macarena Alpañés; Elena Fernández-Durán; Francisco Álvarez-Blasco; Manuel Luque-Ramírez; Héctor F Escobar-Morreale

    2014-01-01

    Surrogate indexes of visceral adiposity, a major risk factor for metabolic and cardiovascular disorders, are routinely used in clinical practice because objective measurements of visceral adiposity are expensive, may involve exposure to radiation, and their availability is limited. We compared several surrogate indexes of visceral adiposity with ultrasound assessment of subcutaneous and visceral adipose tissue depots in 99 young Caucasian adults, including 20 women without androgen excess, 53...

  3. Adipose tissue macrophages induce PPARγ-high FOXP3+ regulatory T cells

    Toshiharu Onodera; Atsunori Fukuhara; Myoung Ho Jang; Jihoon Shin; Keita Aoi; Junichi Kikuta; Michio Otsuki; Masaru Ishii; Iichiro Shimomura

    2015-01-01

    Numerous regulatory T cells (Tregs) are present in adipose tissues compared with other lymphoid or non-lymphoid tissues. Adipose Tregs regulate inflammatory state and insulin sensitivity. However, the mechanism that maintains Tregs in adipose tissue remains unclear. Here, we revealed the contribution of adipose tissue macrophages (ATMs) to the induction and proliferation of adipose Tregs. ATMs isolated from mice under steady state conditions induced Tregs with high expression of PPARγ compare...

  4. Biomarkers of Habitual Fish Intake in Adipose-Tissue

    Marckmann, P.; Lassen, Anne Dahl; Haraldsdottir, H.; Sandström, B.

    1995-01-01

    8-mo study period. The adipose tissue fatty acid composition of each individual was determined by gas chromatography as the mean of two gluteal biopsies, obtained in the first and the last month of the study. The daily consumption of fish and of marine n-3 PUFAs in absolute terms (g/d) was...... significantly associated with adipose tissue docosahexaenoic acid content (DHA; r = 0.55 and 0.58, respectively, P <0.001), but not with eicosapentaenoic and docosapentaenoic acid contents. Our study indicates that the adipose tissue DHA content is the biomarker of choice for the assessment of long...

  5. 0Adipose-derived stem cells: Implications in tissue regeneration

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  6. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  7. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value. PMID:26124828

  8. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue

    Miroslav Šram

    2015-01-01

    Full Text Available Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT and visceral adipose tissue (VAT, the latter being highly associated with coronary artery disease (CAD. Expansion of epicardial adipose tissue (EAT is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1 the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2 determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  9. Cardio-adipose tissue cross-talk

    Lindberg, Søren; Jensen, Jan Skov; Bjerre, Mette;

    2014-01-01

    increases adiponectin secretion, indicating that NPs may improve adipose tissue function and in this way function as a cardio-protective agent in HF. Accordingly we investigated the interplay between plasma adiponectin, plasma proBNP, and development of HF. METHODS AND RESULTS: We prospectively followed...... 5574 randomly selected men and women from the community without ischaemic heart disease or HF. Plasma adiponectin and proBNP were measured at study entry. Median follow-up time was 8.5 years (interquartile range 8.0-9.1 years). During follow-up 271 participants developed symptomatic HF. Plasma...... and diastolic blood pressure, lipid profile, high sensitivity C-reactive protein, estimated glomerular filtration rate, and physical activity) by Cox regression analysis, adiponectin remained an independent predictor of HF: the hazard ratio (HR) per 1 standard deviation (SD) increase in adiponectin...

  10. Adipose Triglyceride Lipase (ATGL) and Hormone-Sensitive Lipase (HSL) Deficiencies Affect Expression of Lipolytic Activities in Mouse Adipose Tissues*

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N.; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-01-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patters of brown and white adipose tissue from ATGL (−/−) and HSL (−/−) mice using differential activity-based gel electrophoresis. This method is based on activity-r...

  11. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was...

  12. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Wojciechowicz, K.; Gledhill, K; Ambler, C.A.; Manning, C B; Jahoda, C.A.B.

    2013-01-01

    The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before bir...

  13. Effects of Platelet-Rich Plasma, Adipose-Derived Stem Cells, and Stromal Vascular Fraction on the Survival of Human Transplanted Adipose Tissue

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-01-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back o...

  14. Identification of the Avian RBP7 Gene as a New Adipose-Specific Gene and RBP7 Promoter-Driven GFP Expression in Adipose Tissue of Transgenic Quail

    Ahn, Jinsoo; Shin, Sangsu; Suh, Yeunsu; Park, Ju Yeon; Hwang, Seongsoo; Lee, Kichoon

    2015-01-01

    The discovery of an increasing number of new adipose-specific genes has significantly contributed to our understanding of adipose tissue biology and the etiology of obesity and its related diseases. In the present study, comparison of gene expression profiles among various tissues was performed by analysis of chicken microarray data, leading to identification of RBP7 as a novel adipose-specific gene in chicken. Adipose-specific expression of RBP7 in the avian species was further confirmed at ...

  15. Metabolic syndrome pathophysiology: the role of adipose tissue

    Several physiopathological explanations for the metabolic syndrome have been proposed involving insulin resistance, chronic inflammation and ectopic fat accumulation following adipose tissue saturation. However, current concepts create several paradoxes, including limited cardiovascular risk reducti...

  16. Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology

    Arner, Erik; Westermark, Pål O.; Spalding, Kirsty L.; Britton, Tom; Rydén, Mikael; Frisén, Jonas; Bernard, Samuel; Arner, Peter

    2009-01-01

    OBJECTIVE Adipose tissue may contain few large adipocytes (hypertrophy) or many small adipocytes (hyperplasia). We investigated factors of putative importance for adipose tissue morphology. RESEARCH DESIGN AND METHODS Subcutaneous adipocyte size and total fat mass were compared in 764 subjects with BMI 18–60 kg/m2. A morphology value was defined as the difference between the measured adipocyte volume and the expected volume given by a curved-line fit for a given body fat mass and was related ...

  17. Cytomegalovirus infection of adipose tissues induces steatitis in adult mice.

    Price, P; Eddy, K. S.; Papadimitriou, J M; Robertson, T. A.; Shellam, G R

    1990-01-01

    Young adult mice infected with MCMV were shown to develop inflammatory lesions in the peripancreatic and salivary gland adipose tissues. MCMV replication was detected by immunoperoxidase staining and electron microscopy in adipocytes, fibroblasts, endothelial cells and pericytes in brown and white adipose tissues. More infected cells were detected in C3H mice than in BALB/c, BALB.B, BALB.K or C57BL/6 mice. Peripancreatic steatitis consisted of a monocytic infiltrate surrounding focal necrosis...

  18. Adipose-derived Stem Cells: Isolation, Expansion and Differentiation

    Bunnell, Bruce A; Flaat, Mette; Gagliardi, Christine; Patel, Bindiya; Ripoll, Cynthia

    2008-01-01

    The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue has proven to serve as an abundant, accessible and rich source of adult stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. There has been increased interest in Adipose-derived Stem Cells (ASCs) for tissue engineering applications. Here, methods for the isolation, expa...

  19. Profiling of chicken adipose tissue gene expression by genome array

    Wang Shou-Zhi

    2007-06-01

    Full Text Available Abstract Background Excessive accumulation of lipids in the adipose tissue is a major problem in the present-day broiler industry. However, few studies have analyzed the expression of adipose tissue genes that are involved in pathways and mechanisms leading to adiposity in chickens. Gene expression profiling of chicken adipose tissue could provide key information about the ontogenesis of fatness and clarify the molecular mechanisms underlying obesity. In this study, Chicken Genome Arrays were used to construct an adipose tissue gene expression profile of 7-week-old broilers, and to screen adipose tissue genes that are differentially expressed in lean and fat lines divergently selected over eight generations for high and low abdominal fat weight. Results The gene expression profiles detected 13,234–16,858 probe sets in chicken adipose tissue at 7 weeks, and genes involved in lipid metabolism and immunity such as fatty acid binding protein (FABP, thyroid hormone-responsive protein (Spot14, lipoprotein lipase(LPL, insulin-like growth factor binding protein 7(IGFBP7 and major histocompatibility complex (MHC, were highly expressed. In contrast, some genes related to lipogenesis, such as leptin receptor, sterol regulatory element binding proteins1 (SREBP1, apolipoprotein B(ApoB and insulin-like growth factor 2(IGF2, were not detected. Moreover, 230 genes that were differentially expressed between the two lines were screened out; these were mainly involved in lipid metabolism, signal transduction, energy metabolism, tumorigenesis and immunity. Subsequently, real-time RT-PCR was performed to validate fifteen differentially expressed genes screened out by the microarray approach and high consistency was observed between the two methods. Conclusion Our results establish the groundwork for further studies of the basic genetic control of growth and development of chicken adipose tissue, and will be beneficial in clarifying the molecular mechanism of

  20. Lifecourse Childhood Adiposity Trajectories Associated With Adolescent Insulin Resistance

    Huang, Rae-Chi; de Klerk, Nicholas H.; Smith, Anne; Kendall, Garth E; Landau, Louis I.; Mori, Trevor A; NEWNHAM, John P; Stanley, Fiona J; Oddy, Wendy H; Hands, Beth; Lawrence J. Beilin

    2011-01-01

    OBJECTIVE In light of the obesity epidemic, we aimed to characterize novel childhood adiposity trajectories from birth to age 14 years and to determine their relation to adolescent insulin resistance. RESEARCH DESIGN AND METHODS A total of 1,197 Australian children with cardiovascular/metabolic profiling at age 14 years were studied serially from birth to age 14 years. Semiparametric mixture modeling was applied to anthropometric data over eight time points to generate adiposity trajectories ...

  1. Correlations among adiposity measures in school-aged children

    Boeke, Caroline E; Oken, Emily; Kleinman, Ken P.; Rifas-Shiman, Sheryl L.; Elsie M. Taveras; Gillman, Matthew W.

    2013-01-01

    Background: Given that it is not feasible to use dual x-ray absorptiometry (DXA) or other reference methods to measure adiposity in all pediatric clinical and research settings, it is important to identify reasonable alternatives. Therefore, we sought to determine the extent to which other adiposity measures were correlated with DXA fat mass in school-aged children. Methods: In 1110 children aged 6.5-10.9 years in the pre-birth cohort Project Viva, we calculated Spearman correlation coefficie...

  2. Correlations among adiposity measures in school-aged children

    Boeke, Caroline E; Oken, Emily; Kleinman, Ken P.; Rifas-Shiman, Sheryl L.; Elsie M. Taveras; Gillman, Matthew W.

    2013-01-01

    Background Given that it is not feasible to use dual x-ray absorptiometry (DXA) or other reference methods to measure adiposity in all pediatric clinical and research settings, it is important to identify reasonable alternatives. Therefore, we sought to determine the extent to which other adiposity measures were correlated with DXA fat mass in school-aged children. Methods In 1110 children aged 6.5-10.9 years in the pre-birth cohort Project Viva, we calculated Spearman correlation coefficient...

  3. White adipose tissue resilience to insulin deprivation and replacement.

    Lilas Hadji

    Full Text Available Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin.Using streptozotocin (STZ-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT, epididymal (eWAT and subcutaneous adipose tissues (scWAT. Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter. Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines.The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group.Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues.

  4. White adipose tissue resilience to insulin deprivation and replacement

    Lilas Hadji; Emmanuelle Berger; Hédi Soula; Hubert Vidal; Alain Géloën

    2014-01-01

    Introduction: Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Methods: Using streptozotocin (STZ)-induced diabetes, we induced rapi...

  5. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita,Masayuki; Noguchi,Hirofumi

    2015-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation...

  6. Recent advance in brown adipose physiology and its therapeutic potential

    Lee, Yun-Hee; Jung, Young-Suk; Choi, Dalwoong

    2014-01-01

    Brown adipose tissue (BAT) is a specialized thermoregulatory organ that has a critical role in the regulation of energy metabolism. Specifically, energy expenditure can be enhanced by the activation of BAT function and the induction of a BAT-like catabolic phenotype in white adipose tissue (WAT). Since the recent recognition of metabolically active BAT in adult humans, BAT has been extensively studied as one of the most promising targets identified for treating obesity and its related disorde...

  7. Browning of white adipose tissue: role of hypothalamic signaling

    Bi, Sheng; Li, Lin

    2013-01-01

    Two types of fat, white adipose tissue (WAT) and brown adipose tissue (BAT), exist in mammals including adult humans. While WAT stores excess calories and an excessive accumulation of fat causes obesity, BAT dissipates energy to produce heat through non-shivering thermogenesis for protection against cold environments and provides the potential for the development of novel anti-obesity treatments. The hypothalamus plays a central role in the control of energy balance. Specifically, recent obse...

  8. Hypothalamic Regulation of Brown Adipose Tissue Thermogenesis and Energy Homeostasis

    Zhang, Wei; Bi, Sheng

    2015-01-01

    Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT) is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT) or beige cells have been found and they also exhibit the thermogenic a...

  9. Adipose-Derived Stem Cells for Future Regenerative System Medicine

    Yani Lina

    2012-08-01

    Full Text Available BACKGROUND: The potential use of stem cell-based therapies for repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of disease. Despite the advances, the availability of stem cells remaining a challenge for both scientist and clinicians in pursuing regenerative medicine. CONTENT: Subcutaneous human adipose tissue is an abundant and accessible cell source for applications in tissue engineering and regenerative medicine. Routinely, the adipose issue is digested with collagenase or related lytic enzymes to release a heterogeneous population for stromal vascular fraction (SVF cells. The SVF cells can be used directly or can be cultured in plastic ware for selection and expansion of an adherent population known as adipose-derived stromal/stem cells (ASCs. Their potential in the ability to differentiate into adipogenic, osteogenic, chondrogenic and other mesenchymal lineages, as well in their other clinically useful properties, includes stimulation of angiogenesis and suppression of inflammation. SUMMARY: Adipose tissue is now recognized as an accessible, abundant and reliable site for the isolation of adult stem cels suitable for the application of tissue engineering and regenerative medicine applications. The past decade has witnessed an explosion of preclinical data relating to the isolation, characterization, cryopreservation, differentiation, and transplantation of freshly isolated stromal vascular fraction cells and adherent, culture-expanded, adipose-derived stromal/stem cells in vitro and in animal models. KEYWORDS: adipose tissue, adult stem cells, regenerative medicine, mesenchymal stem cells.

  10. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    Toda, Shuji; Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate...

  11. Deep subcutaneous adipose tissue is more saturated than superficial subcutaneous adipose tissue.

    Lundbom, J; Hakkarainen, A; Lundbom, N; Taskinen, M-R

    2013-04-01

    Upper body abdominal subcutaneous adipose tissue (SAT) can be divided into deep SAT (DSAT) and superficial SAT (SSAT) depots. Studies on adipose tissue fatty acid (FA) composition have made no distinction between these two depots. The aim of this study is to determine whether DSAT and SSAT differ in FA composition. We studied the FA composition of DSAT and SSAT in 17 male and 13 female volunteers using non-invasive proton magnetic resonance spectroscopy in vivo. Magnetic resonance imaging was used to differentiate between DSAT and SSAT. Adipose tissue spectra were analysed for lipid unsaturation, or double bond (DB) content, and polyunsaturation (PU), according to previously validated methods. The DSAT depot was more saturated than the SSAT depot, in both men (0.833 ± 0.012 vs 0.846 ± 0.009 DB, P<0.002) and women (0.826 ± 0.018 vs 0.850 ± 0.018 DB, P<0.002). In contrast, PU did not differ between DSAT and SSAT in either men (0.449 ± 0.043 vs 0.461 ± 0.044 PU, P=0.125) or women (0.411 ± 0.070 vs 0.442 ± 0.062 PU, P=0.234) and displayed a close correlation between the depots (R=0.908, P<0.001, n=30). The higher saturation in DSAT compared with SSAT can be attributed to a higher ratio of saturated to monounsaturated FAs. These results should be taken into account when determining the FA composition of SAT. PMID:22641063

  12. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    Ribeiro Ricardo

    2012-04-01

    Full Text Available Abstract Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants or stromal vascular fraction (SVF from paired fat samples of periprostatic (PP and pre-peritoneal visceral (VIS anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs 2 and 9 activity. The effects of those conditioned media (CM on growth and migration of hormone-refractory (PC-3 and hormone-sensitive (LNCaP prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration

  13. Disruption of Inducible 6-Phosphofructo-2-kinase Ameliorates Diet-induced Adiposity but Exacerbates Systemic Insulin Resistance and Adipose Tissue Inflammatory Response*

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y. Eugene; Ye, Jianping; Chapkin, Robert S.; Wu, Chaodong

    2009-01-01

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3+/− mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high...

  14. SUBCUTANEOUS ADIPOSE TISSUE INSULIN RESISTANCE IS ASSOCIATED WITH VISCERAL ADIPOSITY IN POSTMENOPAUSAL WOMEN

    Casey, Beret A.; Kohrt, Wendy M.; Schwartz, Robert S.; Van Pelt, Rachael E.

    2014-01-01

    Objective We determined whether whole body and subcutaneous adipose tissue (SAT) insulin resistance was proportional to regional fat mass (FM). Design and Methods We studied postmenopausal women (Mean±SD; age 56±4 y, n=25) who were overweight or obese (BMI 29.9±5.1 kg/m2). Whole body and regional FM were measured by dual-energy x-ray absorptiometry (DXA) and computed tomography (CT). Women were studied during basal and insulin-stimulated (3-stage euglycemic clamp) conditions. Whole-body lipol...

  15. Gene expression profiling in adipose tissue from growing broiler chickens

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  16. Increased adiposity in annexin A1-deficient mice.

    Rand T Akasheh

    Full Text Available Production of Annexin A1 (ANXA1, a protein that mediates the anti-inflammatory action of glucocorticoids, is altered in obesity, but its role in modulation of adiposity has not yet been investigated. The objective of this study was to investigate modulation of ANXA1 in adipose tissue in murine models of obesity and to study the involvement of ANXA1 in diet-induced obesity in mice. Significant induction of ANXA1 mRNA was observed in adipose tissue of both C57BL6 and Balb/c mice with high fat diet (HFD-induced obesity versus mice on chow diet. Upregulation of ANXA1 mRNA was independent of leptin or IL-6, as demonstrated by use of leptin-deficient ob/ob mice and IL-6 KO mice. Compared to WT mice, female Balb/c ANXA1 KO mice on HFD had increased adiposity, as indicated by significantly elevated body weight, fat mass, leptin levels, and adipocyte size. Whereas Balb/c WT mice upregulated expression of enzymes involved in the lipolytic pathway in response to HFD, this response was absent in ANXA1 KO mice. A significant increase in fasting glucose and insulin levels as well as development of insulin resistance was observed in ANXA1 KO mice on HFD compared to WT mice. Elevated plasma corticosterone levels and blunted downregulation of 11-beta hydroxysteroid dehydrogenase type 1 in adipose tissue was observed in ANXA1 KO mice compared to diet-matched WT mice. However, no differences between WT and KO mice on either chow or HFD were observed in expression of markers of adipose tissue inflammation. These data indicate that ANXA1 is an important modulator of adiposity in mice, with female ANXA1 KO mice on Balb/c background being more susceptible to weight gain and diet-induced insulin resistance compared to WT mice, without significant changes in inflammation.

  17. Visceral adipose tissue modulates mammalian longevity.

    Muzumdar, Radhika; Allison, David B; Huffman, Derek M; Ma, Xiaohui; Atzmon, Gil; Einstein, Francine H; Fishman, Sigal; Poduval, Aruna D; McVei, Theresa; Keith, Scott W; Barzilai, Nir

    2008-06-01

    Caloric restriction (CR) can delay many age-related diseases and extend lifespan, while an increase in adiposity is associated with enhanced disease risk and accelerated aging. Among the various fat depots, the accrual of visceral fat (VF) is a common feature of aging, and has been shown to be the most detrimental on metabolic syndrome of aging in humans. We have previously demonstrated that surgical removal of VF in rats improves insulin action; thus, we set out to determine if VF removal affects longevity. We prospectively studied lifespan in three groups of rats: ad libitum-fed (AL-fed), CR (Fed 60% of AL) and a group of AL-fed rats with selective removal of VF at 5 months of age (VF-removed rats). We demonstrate that compared to AL-fed rats, VF-removed rats had a significant increase in mean (p fat mass, specifically VF, may be one of the possible underlying mechanisms of the anti-aging effect of CR. PMID:18363902

  18. New concepts in white adipose tissue physiology

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT

  19. Salsalate activates brown adipose tissue in mice.

    van Dam, Andrea D; Nahon, Kimberly J; Kooijman, Sander; van den Berg, Susan M; Kanhai, Anish A; Kikuchi, Takuya; Heemskerk, Mattijs M; van Harmelen, Vanessa; Lombès, Marc; van den Hoek, Anita M; de Winther, Menno P J; Lutgens, Esther; Guigas, Bruno; Rensen, Patrick C N; Boon, Mariëtte R

    2015-05-01

    Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mechanism is still unknown. The aim of the current study was to unravel the molecular mechanisms involved in these beneficial metabolic effects of salsalate by treating mice with salsalate during and after development of high-fat diet-induced obesity. We found that salsalate attenuated and reversed high-fat diet-induced weight gain, in particular fat mass accumulation, improved glucose tolerance, and lowered plasma triglyceride levels. Mechanistically, salsalate selectively promoted the uptake of fatty acids from glycerol tri[(3)H]oleate-labeled lipoprotein-like emulsion particles by brown adipose tissue (BAT), decreased the intracellular lipid content in BAT, and increased rectal temperature, all pointing to more active BAT. The treatment of differentiated T37i brown adipocytes with salsalate increased uncoupled respiration. Moreover, salsalate upregulated Ucp1 expression and enhanced glycerol release, a dual effect that was abolished by the inhibition of cAMP-dependent protein kinase (PKA). In conclusion, salsalate activates BAT, presumably by directly activating brown adipocytes via the PKA pathway, suggesting a novel mechanism that may explain its beneficial metabolic effects in type 2 diabetes patients. PMID:25475439

  20. New concepts in white adipose tissue physiology

    Proença, A.R.G. [Universidade Estadual de Campinas, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Limeira, SP, Brasil, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Sertié, R.A.L. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Oliveira, A.C. [Universidade Estadual do Ceará, Instituto Superior de Ciências Biomédicas, Fortaleza, CE, Brasil, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE (Brazil); Campaãa, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-03-03

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.

  1. The survival condition and immunoregulatory function of adipose stromal vascular fraction (SVF in the early stage of nonvascularized adipose transplantation.

    Ziqing Dong

    Full Text Available INTRODUCTION: Adipose tissue transplantation is one of the standard procedures for soft-tissue augmentation, reconstruction, and rejuvenation. However, it is unknown as to how the graft survives after transplantation. We thus seek out to investigate the roles of different cellular components in the survival of graft. MATERIALS & METHODS: The ratios of stromal vascular fraction (SVF cellular components from human adipose tissue were evaluated using flow cytometry. Human liposuction aspirates that were either mixed with marked SVF cells or PBS were transplanted into nude mice. The graft was harvested and stained on days 1,4,7 and 14. The inflammation level of both SVF group and Fat-only group were also evaluated. RESULTS: Flow cytometric analysis showed SVF cells mainly contained blood-derived cells, adipose-derived stromal cells (ASCs, and endothelial cells. Our study revealed that most cells are susceptible to death after transplantation, although CD34+ ASCs can remain viable for 14 days. Notably, we found that ASCs migrated to the peripheral edge of the graft. Moreover, the RT-PCR and the immuno-fluorescence examination revealed that although the SVF did not reduce the number of infiltrating immune cells (macrophages in the transplant, it does have an immunoregulatory function of up-regulating the expression of CD163 and CD206 and down-regulating that of IL-1β, IL-6. CONCLUSIONS: Our study suggests that the survival of adipose tissue after nonvascularized adipose transplantation may be due to the ASCs in SVF cells. Additionally, the immunoregulatory function of SVF cells may be indirectly contributing to the remolding of adipose transplant, which may lead to SVF-enriched adipose transplantation.

  2. Polychlorinated naphthalenes in human adipose tissue from New York, USA

    Kunisue, Tatsuya; Johnson-Restrepo, Boris; Hilker, David R.; Aldous, Kenneth M. [Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509 (United States); Kannan, Kurunthachalam [Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: kkannan@wadsworth.org

    2009-03-15

    Polychlorinated naphthalenes (PCNs) are persistent, bioaccumulative, and toxic contaminants. Prior to this study, the occurrence of PCNs in human adipose tissues from the USA has not been analyzed. Here, we have measured concentrations of PCNs in human adipose tissue samples collected in New York City during 2003-2005. Concentrations of PCNs were in the range of 61-2500 pg/g lipid wt. in males and 21-910 pg/g lipid wt. in females. PCN congeners 52/60 (1,2,3,5,7/1,2,4,6,7) and 66/67 (1,2,3,4,6,7/1,2,3,5,6,7) were predominant, collectively accounting for 66% of the total PCN concentrations. Concentrations of PCNs in human adipose tissues were 2-3 orders of magnitude lower than the previously reported concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Concentrations of PCNs were not correlated with PCB concentrations. The contribution of PCNs to dioxin-like toxic equivalents (TEQs) in human adipose tissues was estimated to be <1% of the polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F)-TEQs. - Polychlorinated naphthalenes have been measured in human adipose tissues from the USA for the first time.

  3. Polychlorinated naphthalenes in human adipose tissue from New York, USA

    Polychlorinated naphthalenes (PCNs) are persistent, bioaccumulative, and toxic contaminants. Prior to this study, the occurrence of PCNs in human adipose tissues from the USA has not been analyzed. Here, we have measured concentrations of PCNs in human adipose tissue samples collected in New York City during 2003-2005. Concentrations of PCNs were in the range of 61-2500 pg/g lipid wt. in males and 21-910 pg/g lipid wt. in females. PCN congeners 52/60 (1,2,3,5,7/1,2,4,6,7) and 66/67 (1,2,3,4,6,7/1,2,3,5,6,7) were predominant, collectively accounting for 66% of the total PCN concentrations. Concentrations of PCNs in human adipose tissues were 2-3 orders of magnitude lower than the previously reported concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Concentrations of PCNs were not correlated with PCB concentrations. The contribution of PCNs to dioxin-like toxic equivalents (TEQs) in human adipose tissues was estimated to be <1% of the polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F)-TEQs. - Polychlorinated naphthalenes have been measured in human adipose tissues from the USA for the first time

  4. Control of adipose tissue lipolysis in ectotherm vertebrates.

    Migliorini, R H; Lima-Verde, J S; Machado, C R; Cardona, G M; Garofalo, M A; Kettelhut, I C

    1992-10-01

    Lipolytic activity of fish (Hoplias malabaricus), toad (Bufo paracnemis), and snake (Philodryas patagoniensis) adipose tissue was investigated in vivo and in vitro. Catecholamines or glucagon did not affect the release of free fatty acids (FFA) by incubated fish and toad adipose tissue. Catecholamines also failed to activate snake adipose tissue lipolysis, which even decreased in the presence of epinephrine. However, glucagon stimulated both the lipolytic activity of reptilian tissue in vitro and the mobilization of FFA to plasma when administered to snakes in vivo. The release of FFA from incubated fish, amphibian, and reptilian adipose tissue increased markedly in the presence of cAMP or xanthine derivatives, inhibitors of phosphodiesterase. Forskolin or fluoride, activators of specific components of the adenylate cyclase system, strongly stimulated toad adipose tissue lipolysis. The data suggest that adipocyte triacylglycerol lipase of ectotherm vertebrates is activated by a cAMP-mediated phosphorylation and that the organization of the membrane-bound adenylate cyclase system is similar to that of mammals. PMID:1329567

  5. Epikardiales Fett als Biomarker? // Epicardial Adipose Tissue as a Biomarker?

    Tscharre M

    2016-01-01

    Full Text Available Epicardial adipose tissue as the “visceral” adipose tissue of the heart is arousing more and more scientific interest, as it has numerous local and systemic effects. There is no fascia separating the epicardial adipose tissue and the myocardium and they both share its blood supply via the coronary arteries, thus allowing a possible interaction. Under normal physiological conditions, epicardial adipose tissue has mainly anti-atherogenic, thermogenic and mechanical characteristics. Under pathological conditions it becomes harmful to the myocardium and the coronary arteries. Important features in the clinical setting are correlations with coronary artery disease, heart failure, atrial fibrillation and visceral adipose tissue, thus acting as a possible biomarker of cardiovascular risk. p bKurzfassung:/b Das epikardiale Fettgewebe erweckt als „viszerales“ Fettdepot des Herzens mit zahlreichen lokalen und systemischen Effekten immer mehr wissenschaftliches Interesse. Das Fehlen einer trennenden Faszie zwischen epikardialem Fettgewebe und Myokard und die gemeinsame Blutversorgung durch die Koronararterien erlauben eine potenzielle Interaktion. Unter normalen physiologischen Verhältnissen hat das epikardiale Fettgewebe hauptsächlich anti-atherogene, thermogenetische und mechanische Funktionen. Unter pathologischen Verhältnissen schädigt es das Myokard und die Koronararterien. Einen klinischen Stellenwert hat es aufgrund von Korrelationen mit koronarer Herzerkrankung, Herzinsuffizienz, Vorhofflimmern und viszeralem Fettgewebe. Dadurch könnte es als neuer Biomarker für das kardiovaskuläre Risiko dienen.

  6. Galectin-3 inhibition prevents adipose tissue remodelling in obesity.

    Martínez-Martínez, E; Calvier, L; Rossignol, P; Rousseau, E; Fernández-Celis, A; Jurado-López, R; Laville, M; Cachofeiro, V; López-Andrés, N

    2016-06-01

    Extracellular matrix remodelling of the adipose tissue has a pivotal role in the pathophysiology of obesity. Galectin-3 (Gal-3) is increased in obesity and mediates inflammation and fibrosis in the cardiovascular system. However, the effects of Gal-3 on adipose tissue remodelling associated with obesity remain unclear. Male Wistar rats were fed either a high-fat diet (33.5% fat) or a standard diet (3.5% fat) for 6 weeks. Half of the animals of each group were treated with the pharmacological inhibitor of Gal-3, modified citrus pectin (MCP; 100 mg kg(-1) per day) in the drinking water. In adipose tissue, obese animals presented an increase in Gal-3 levels that were accompanied by an increase in pericellular collagen. Obese rats exhibited higher adipose tissue inflammation, as well as enhanced differentiation degree of the adipocytes. Treatment with MCP prevented all the above effects. In mature 3T3-L1 adipocytes, Gal-3 (10(-8 )m) treatment increased fibrosis, inflammatory and differentiation markers. In conclusion, Gal-3 emerges as a potential therapeutic target in adipose tissue remodelling associated with obesity and could have an important role in the development of metabolic alterations associated with obesity. PMID:26853916

  7. Impact of runting on adipokine gene expression in neonatal pig adipose tissue

    This study examined the effects of runting on adipokines in neonatal adipose tissue. Pigs were selected as runts (R) by birth weight adipose tissues were collected at d1 (n = 5), d7 (n = 7) or d21 (n...

  8. Abdominal adiposity largely explains associations between insulin resistance, hyperglycemia and subclinical atherosclerosis: the NEO study

    Gast, K.B.; Smit, J.W.A.; Heijer, M. den; Middeldorp, S.; Rippe, R.C.; Cessie, S. le; Koning, E.J. de; Jukema, J.W.; Rabelink, T.J.; Roos, A. de; Rosendaal, F.R.; Mutsert, R. de; Assendelft, P.

    2013-01-01

    OBJECTIVE: The relative importance of insulin resistance and hyperglycemia to the development of atherosclerosis remains unclear. Furthermore, adiposity may be responsible for observed associations. Our aim was to study the relative contributions of adiposity, insulin resistance and hyperglycemia to

  9. Adipose tissue, the skeleton and cardiovascular disease

    Wiklund, Peder

    2011-07-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  10. Adipose tissue, the skeleton and cardiovascular disease

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  11. Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity

    Huh, Jin Young; Park, Yoon Jeong; Ham, Mira; Kim, Jae Bum

    2014-01-01

    Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in ...

  12. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism

    Herman, Mark Andrew; Peroni, Odile Daniele; Villoria, Jorge; Schön, Michael R; Abumrad, Nada A.; Blüher, Matthias; Klein, Samuel; Kahn, Barbara

    2012-01-01

    Summary The prevalence of obesity and type 2-diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the Glut4-glucose transporter and alterations in adipose-Glut4 expression or function regulate systemic insulin sensitivity. Downregulation of adipose tissue-Glut4 occurs early in diabetes development. Here we report that adipose tissue-Glut4 regul...

  13. Natural Killer T Cells in Adipose Tissue Are Activated in Lean Mice

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or ...

  14. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in ...

  15. Adipose-Derived Stem Cell Collection and Characterization in Bottlenose Dolphins (Tursiops truncatus)

    Johnson, Shawn P.; Catania, Jeffrey M.; Harman, Robert J.; Jensen, Eric D.

    2012-01-01

    To assess the regenerative properties and potential therapeutic value of adipose-derived stem cells (ASCs) in the bottlenose dolphin, there is a need to determine whether an adequate adipose depot exists, in addition to the development of a standardized technique for minimally invasive adipose collection. In this study, an ultrasound-guided liposuction technique for adipose collection was assessed for its safety and efficacy. The ultrasound was utilized to identify and measure the postnuchal ...

  16. Alterations in Adipose Tissue during Critical Illness: An Adaptive and Protective Response?

    Langouche, Lies; Vander Perre, Sarah; Thiessen, Steven; Gunst, Jan; Hermans, Greet; D'Hoore, André; Kola, Blerina; Korbonits, Márta; Van den Berghe, Greet

    2010-01-01

    Rationale: Critical illness is characterized by lean tissue wasting, whereas adipose tissue is preserved. Overweight and obese critically ill patients may have a lower risk of death than lean patients, suggestive of a protective role for adipose tissue during illness. Objectives: To investigate whether adipose tissue could protectively respond to critical illness by storing potentially toxic metabolites, such as excess circulating glucose and triglycerides. Methods: We studied adipose tissue ...

  17. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation

    Fitzgibbons, Timothy P.; Kogan, Sophia; Aouadi, Myriam; Hendricks, Greg M.; Straubhaar, Juerg; Czech, Michael P.

    2011-01-01

    Thoracic perivascular adipose tissue (PVAT) is a unique adipose depot that likely influences vascular function and susceptibility to pathogenesis in obesity and the metabolic syndrome. Surprisingly, PVAT has been reported to share characteristics of both brown and white adipose, but a detailed direct comparison to interscapular brown adipose tissue (BAT) has not been performed. Here we show by full genome DNA microarray analysis that global gene expression profiles of PVAT are virtually ident...

  18. Endocrine and Metabolic Effects of Adipose Tissue in Children and Adolescents

    Kotnik Primož; Fischer Posovszky Pamela; Wabitsch Martin

    2015-01-01

    Adipose tissue is implicated in many endocrine and metabolic processes. Leptin was among the first identified adipose-secreted factors, which act in an auto-, para- and endocrine manner. Since leptin, many other adipose tissue factors were determined, some primarily secreted from the adipocytes, some from other cells of the adipose tissue. So-called adipokines are not only involved in obesity and its complications, as are insulin resistance, type 2 diabetes and other components of the metabol...

  19. In vivo dedifferentiation of adult adipose cells.

    Yunjun Liao

    Full Text Available Adipocytes can dedifferentiate into fibroblast-like cells in vitro and thereby acquire proliferation and multipotent capacities to participate in the repair of various organs and tissues. Whether dedifferentiation occurs under physiological or pathological conditions in vivo is unknown.A tissue expander was placed under the inguinal fat pads of rats and gradually expanded by injection of water. Samples were collected at various time points, and morphological, histological, cytological, ultrastructural, and gene expression analyses were conducted. In a separate experiment, purified green fluorescent protein+ adipocytes were transplanted into C57 mice and collected at various time points. The transplanted adipocytes were assessed by bioluminescence imaging and whole-mount staining.The expanded fat pad was obviously thinner than the untreated fat pad on the opposite side. It was also tougher in texture and with more blood vessels attached. Hematoxylin and eosin staining and transmission electron microscopy indicated there were fewer monolocular adipocytes in the expanded fat pad and the morphology of these cells was altered, most notably their lipid content was discarded. Immunohistochemistry showed that the expanded fat pad contained an increased number of proliferative cells, which may have been derived from adipocytes. Following removal of the tissue expander, many small adipocytes were observed. Bioluminescence imaging suggested that some adipocytes survived when transplanted into an ischemic-hypoxic environment. Whole-mount staining revealed that surviving adipocytes underwent a process similar to adipocyte dedifferentiation in vitro. Monolocular adipocytes became multilocular adipocytes and then fibroblast-like cells.Mature adipocytes may be able to dedifferentiate in vivo, and this may be an adipose tissue self-repair mechanism. The capacity of adipocytes to dedifferentiate into stem cell-like cells may also have a more general role in the

  20. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice.

    Bing, C; Russell, S; Becket, E; Pope, M; Tisdale, M J; Trayhurn, P; Jenkins, J R

    2006-10-23

    Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of 'slimmed' adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPalpha), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPalpha and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia. PMID:17047651

  1. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes

    Eun Young Kim

    2015-02-01

    Full Text Available Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases.

  2. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects

    Arngrim, N; Simonsen, L; Holst, Jens Juul;

    2012-01-01

    The aim of this study was to investigate subcutaneous adipose tissue lymphatic drainage (ATLD) of macromolecules in lean and obese subjects and, furthermore, to evaluate whether ATLD may change in parallel with adipose tissue blood flow. Lean and obese male subjects were studied before and after an...... increase in ATLD was seen after the glucose load in the lean subjects. In the obese subjects, ATLD remained constant throughout the study and was significantly lower compared to the lean subjects. These results indicate a reduced ability to remove macromolecules from the interstitial space through the...... lymphatic system in obese subjects. Furthermore, they suggest that postprandial changes in ATLD taking place in lean subjects are not observed in obese subjects. This may have a role in the development of obesity-related inflammation in hypertrophic adipose tissue.International Journal of Obesity advance...

  3. The effect of hypokinesia on lipid metabolism in adipose tissue

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  4. Adipose Tissue Regeneration: A State of the Art

    Alessandro Casadei

    2012-01-01

    Full Text Available Adipose tissue pathologies and defects have always represented a reconstructive challenge for plastic surgeons. In more recent years, several allogenic and alloplastic materials have been developed and used as fillers for soft tissue defects. However, their clinical use has been limited by further documented complications, such as foreign-body reactions potentially affecting function, degradation over time, and the risk for immunogenicity. Tissue-engineering strategies are thus being investigated to develop methods for generating adipose tissue. This paper will discuss the current state of the art in adipose tissue engineering techniques, exploring the biomaterials used, stem cells application, culture strategies, and current regulatory framework that are in use are here described and discussed.

  5. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  6. Contribution of skeletal muscle and adipose tissue to adrenaline-induced thermogenesis in man

    Simonsen, L; Stallknecht, Bente; Bülow, J

    subcutaneous adipose tissue metabolism was investigated. In both series Fick's principle was applied. Intravenous infusion increased blood flow, glucose uptake and oxygen uptake in both skeletal muscle and adipose tissue. It is concluded that skeletal muscle contributes about 40% and adipose tissue about 5% of...

  7. Adipose tissue development in extramuscular and intramuscular depots in meat animals

    The cellular and metabolic aspects of developing intramuscular adipose tissue and other adipose tissue depots have been studied including examination of the expression of a number of genes. Depot dependent or depot “marker” genes such as stearoyl-CoA desaturase and leptin for subcutaneous adipose ti...

  8. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  9. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: ALL.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue.bed ...

  11. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: NoD.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue.bed ...

  13. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: ALL.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue.bed ...

  18. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  20. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: NoD.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue.bed ...

  5. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: ALL.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue.bed ...

  7. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: NoD.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue.bed ...

  10. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  17. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  18. Examination of adipose depot-specific PPAR moieties

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  19. Examination of adipose depot-specific PPAR moieties

    Dodson, M.V., E-mail: dodson@wsu.edu [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Vierck, J.L. [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Hausman, G.J. [USDA-ARS, Richard B. Russell Agricultural Research Station, Athens, GA 30604 (United States); Guan, L.L. [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5 Canada (Canada); Fernyhough, M.E. [The Hartz Mountain Corporation, Secaucus, NJ 07094 (United States); Poulos, S.P. [The Coca-Cola Company, Research and Technology, Atlanta, GA 30313 (United States); Mir, P.S. [Agriculture and Agri-Food Canada Research Centre, Lethbridge, CA T1J 4B1 (United States); Jiang, Z. [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States)

    2010-04-02

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  20. Exploring the Relationship between Adiposity and Fitness in Young Children

    Egebæk, Heidi Klakk; Fairchild, Timothy J; Heidemann, Malene;

    2016-01-01

    PURPOSE: High levels of cardiorespiratory fitness (CRF) may attenuate the association between excessive adiposity and the risks of cardiovascular and metabolic disease. The purpose of this study was to stratify children according to their BMI and adiposity (body fat percentage, BF%) and compare...... children who improved their BMI and/or BF% classification over the two year period achieved CRF levels (8.9m [-30.2,47.9]) which were comparable to children with normal BMI and BF% at both measurement time points. CONCLUSION: The CRF levels in children are impacted by BMI and BF%, although BF% appears...

  1. Direct effects of leptin on brown and white adipose tissue.

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase...

  2. Vitamin D and adipose tissue - more than storage

    Shivaprakash Jagalur Mutt

    2014-06-01

    Full Text Available The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OHD, no evidence was obtained for a BMI lowering effect by higher 25(OHD. Some of the physiological functions of 1,25(OH2D3 (1,25-dihydroxycholecalciferol or calcitriol via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g. in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH2D3, vitamin D binding proteins (VDBPs and nuclear vitamin D receptor (VDR after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR -/- and CYP27B1 knock out (CYP27B1 -/- mouse models: Both VDR -/- and CYP27B1 -/- models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH2D3. Experimental studies demonstrate that 1,25(OH2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.

  3. A role of active brown adipose tissue in cancer cachexia?

    Emiel Beijer; Janna Schoenmakers; Guy Vijgen; Fons Kessels; Anne-Marie Dingemans; Patrick Schrauwen; Miel Wouters; Wouter van Marken Lichtenbelt; Jaap Teule; Boudewijn Brans

    2012-01-01

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activ...

  4. Unequivocal Identification of Brown Adipose Tissue in a Human Infant

    Hu, Houchun H.; Tovar, Jason; Pavlova, Zdena; Smith, Michelle L; Gilsanz, Vicente

    2011-01-01

    We report the unique depiction of brown adipose tissue (BAT) by MRI and computed tomography (CT) in a human three month-old infant. Based on cellular differences between BAT and more lipid-rich white adipose tissue (WAT), chemical-shift MRI and CT were both capable of generating distinct signal contrasts between the two tissues and against surrounding anatomy, utilizing fat-signal fraction metrics in the former and X-ray attenuation values in the latter. While numerous BAT imaging experiments...

  5. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction

    Sun, Kai; Park, Jiyoung; Gupta, Olga T;

    2014-01-01

    We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model to demonst......We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model...

  6. Lower rate of invasive revascularisation after coronary angiography, following acute coronary syndrome, the longer distance you live from an invasive centres

    Hvelplund, Anders; Galatius, Søren; Madsen, Mette;

    guidelines for the treatment of ACS. There are 5 tertiary invasive centres performing CAG, percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), 8 hospitals with diagnostic units performing CAG only, and a further 36 hospitals without these facilities receiving patients with...... Patient Register. We included those examined with CAG in the analysis. Information on distance from the patient's home to nearest invasive centre was obtained from Statistics Denmark along with information on education, personal income, previous medicine use and vital status. Patients were grouped in...... revascularisation for the patients living farthest away compared to those living closest. CAG was performed at a tertiary centre in 68% among those living farthest away vs. 90% among those living closest to a centre. Conclusion Despite uniform national guidelines, patients who receive CAG following ACS are treated...

  7. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita;

    2015-01-01

    Background: Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). Results: We analyzed the postnatal transformation of adipose in sheep with a......, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over...... time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial...

  8. Expression of Resistin Protein in Normal Human Subcutaneous Adipose Tissue and Pregnant Women Subcutaneous Adipose Tissue and Placenta

    ZHOU Yongming; GUO Tiecheng; ZHANG Muxun; GUO Wei; YU Meixia; XUE Keying; HUANG Shiang; CHEN Yanhong; ZHU Huanli; XU Lijun

    2006-01-01

    The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta and the relationship between obesity, type 2 diabetes mellitus (T2DM), pregnant physiological insulin resistance (IR) and gestational diabetes mellitus (GDM) was investigated. The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta was detected by using Western blotting method.Fasting serum glucose concentration was measured by glucose oxidase assay. Serum cholesterol (CHOL), serum triglycerides (TG), serum HDL cholesterol (HDL-C) and serum LDL cholesterol (LDL-C) were determined by full automatic biochemical instrument. Fasting insulin was measured by enzyme immunoassay to calculate insulin resistance index (IRI). Height, weight, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured to calculate body mass index (BMI) and body fat percentage (BF %). Resistin protein expression in pregnant women placental tissue (67 905±8441) (arbitrary A values) was much higher than that in subcutaneous adipose tissue in pregnant women abdomen (40 718 ± 3818, P < 0.01), non-pregnant women abdomen (38 288±2084, P<0.01), normal human abdomen (39 421±6087, P<0.01)and thigh (14 942 ±6706, P<0. 001) respectively. The resistin expression in abdominal subcutaneous adipose tissue showed no significant difference among pregnant, non-pregnant women and normal human, but much higher than that in thigh subcutaneous adipose tissue (P<0. 001). Pearson analysis revealed that resistin protein was correlated with BMI (r=0.42), fasting insulin concentration (r=0.38),IRI (r=0. 34), BF % (r=0.43) and fasting glucose (r=0. 39), but not with blood pressure,CHOL, TG, HDL-C and LDL-C. It was suggested that resistin protein expression in human abdominal subcutaneous adipose tissue was much higher

  9. Ambient Air Pollution and Newborn Size and Adiposity at Birth

    Schembari, Anna; de Hoogh, Kees; Pedersen, Marie; Dadvand, Payam; Martinez, David; Hoek, Gerard; Petherick, Emily S; Wright, John; Nieuwenhuijsen, Mark J

    2015-01-01

    BACKGROUND: Exposure to ambient air pollution has been associated with reduced newborn's size, however the modifying effect of maternal ethnicity remains little explored among South Asians. OBJECTIVES: To investigate ethnic differences in the association between ambient air pollution and newborn...... associations of ambient PM exposures with newborn size and adiposity differ between White British and Pakistani origin infants....

  10. Exercise training decreases adipose tissue inflammation in cachectic rats.

    Lira, F S; Yamashita, A S; Rosa, J C; Koyama, C H; Caperuto, E C; Batista, M L; Seelaender, M C L

    2012-02-01

    Bearing in mind that cancer cachexia is associated with chronic systemic inflammation and that endurance training has been adopted as a nonpharmacological anti-inflammatory strategy, we examined the effect of 8 weeks of moderate intensity exercise upon the balance of anti- and pro-inflammatory cytokines in 2 different depots of white adipose tissue in cachectic tumour-bearing (Walker-256 carcinosarcoma) rats. Animals were assigned to a sedentary control (SC), sedentary tumour-bearing (ST), sedentary pair-fed (SPF) or exercise control (EC), exercise tumour-bearing (ET), and exercise pair-fed (EPF) group. Trained rats ran on a treadmill (60% VO(2)max) 60 min/day, 5 days/week, for 8 weeks. The retroperitoneal (RPAT) and mesenteric (MEAT) adipose pads were excised and the mRNA (RT-PCR) and protein (ELISA) expression of IL-1β, IL-6, TNF-α, and IL-10 were evaluated. The number of infiltrating monocytes in the adipose tissue was increased in cachectic rats. TNF-α mRNA in MEAT was increased in the cachectic animals (preduction of the infiltrating monocytes both in MEAT and RPAT (p<0.05), when compared with ST. We conclude that cachexia is associated with inflammation of white adipose tissue and that exercise training prevents this effect in the MEAT, and partially in RPAT. PMID:22266827

  11. Adipose tissue fatty acid patterns and changes in anthropometry

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre;

    2011-01-01

    Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissue...

  12. Ghrelin receptor regulates adipose tissue inflammation in aging

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth ho...

  13. Cell culture models for study of differentiated adipose cells

    Clynes, Martin

    2014-01-01

    Adipose cells are an important source of mesenchymal stem cells and are important for direct use in research on lipid metabolism and obesity. In addition to use of primary cultures, there is increasing interest in other sources of larger numbers of cells, using approaches including induced pluripotent stem cell differentiation and viral immortalisation.

  14. Early growth and childhood adiposity. The Generation R Study

    B. Durmus (Busra)

    2013-01-01

    textabstractThe World Health Organization defines overweight and obesity as abnormal or excessive accumulation of adipose tissue, which is an established risk factor for harmful health. Common health consequences of overweight and obesity include cardiometabolic diseases – mainly diabetes, stroke an

  15. Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia.

    Tsoli, Maria; Swarbrick, Michael M; Robertson, Graham R

    2016-06-01

    Although muscle wasting is the obvious manifestation of cancer cachexia that impacts on patient quality of life, the loss of lipid reserves and metabolic imbalance in adipose tissue also contribute to the devastating impact of cachexia. Depletion of fat depots in cancer patients is more pronounced than loss of muscle and often precedes, or even occurs in the absence of, reduced lean body mass. Rapid mobilisation of triglycerides stored within adipocytes to supply the body with fatty acids in periods of high-energy demand is normally mediated through a well-defined process of lipolysis involving the lipases ATGL, HSL and MGL. Studies into how these lipases contribute to fat loss in cancer cachexia have revealed the prominent role for ATGL in initiating lipolysis during adipose tissue atrophy, together with links between tumour-derived factors and the signalling pathways that control lipid flux within fat cells. The recent findings of increased thermogenesis in brown fat during cancer cachexia indicate that metabolically active adipose tissue contributes to the imbalance in energy homeostasis involved in catabolic wasting. Such energetically futile use of fatty acids liberated from adipose tissue to generate heat represents a maladaptive response in conjunction with anorexia experienced by cancer patients. As IL-6 release by tumours provokes lipolysis and activates the thermogenic programme in brown fat, this review explores the overlap in dysregulated metabolic processes due to inflammatory mediators in cancer cachexia and other disease states characterised by elevated cytokines such as obesity and diabetes. PMID:26529279

  16. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis.

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21. PMID:27301791

  17. Quantitative Analysis of Lower Leg Adipose Tissue Distribution in Youth with Myelomeningocele.

    Lorenzana, Daniel J; Mueske, Nicole M; Ryan, Deirdre D; Van Speybroeck, Alexander L; Wren, Tishya A L

    2016-07-01

    Children with myelomeningocele have a high prevalence of obesity and excess fat accumulation in their lower extremities. However, it is not known if this is subcutaneous or intramuscular fat, the latter of which has been associated with insulin resistance and metabolic disorders. This study quantified lower leg bone, muscle, and adipose tissue volume in children with myelomeningocele, classifying adipose as subcutaneous or muscle-associated. Eighty-eight children with myelomeningocele and 113 children without myelomeningocele underwent lower leg computed tomographic scans. Subcutaneous and muscle-associated adipose were classified based on location relative to the crural fascia. No differences were seen in subcutaneous adipose. Higher level disease severity was associated with increased muscle-associated adipose volume and decreased muscle volume. Bone volume tended to decrease with higher levels of involvement. Increases in lower leg adiposity in children with myelomeningocele are primarily attributable to accumulation of muscle-associated adipose, which may signify increased risk for metabolic disorders. PMID:26961265

  18. Myocardial regeneration potential of adipose tissue-derived stem cells

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  19. Inhibition of Sam68 triggers adipose tissue browning.

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam M; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A; Tang, Yao-Liang; Zhao, Ting C; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-06-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders. PMID:25934704

  20. Myocardial regeneration potential of adipose tissue-derived stem cells

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  1. Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra; Jensen, Michael D.

    2015-01-01

    Adipose tissue fatty acid storage varies according to sex, adipose tissue depot, and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We examined whether differences in adipose tissue glycerol-3-phosphate acyltransferase (GPAT) might play a role in these variations. We optimized an enzyme activity assay for total GPAT and GPAT1 activity in human adipose tissue and measured GPAT activity. Omental and subcutaneous adipose tissue was collected from...

  2. Adipose Inflammation Initiates Recruitment of Leukocytes to Mouse Femoral Artery: Role of Adipo-Vascular Axis in Chronic Inflammation

    Hagita, Sumihiko; Osaka, Mizuko; Shimokado, Kentaro; Yoshida, Masayuki

    2011-01-01

    Background Although inflammation within adipose tissues is known to play a role in metabolic syndrome, the causative connection between inflamed adipose tissue and atherosclerosis is not fully understood. In the present study, we examined the direct effects of adipose tissue on macro-vascular inflammation using intravital microscopic analysis of the femoral artery after adipose tissue transplantation. Methods and Results We obtained subcutaneous (SQ) and visceral (VIS) adipose tissues from C5...

  3. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells

    Hammarstedt Ann

    2012-09-01

    Full Text Available Abstract Background Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver; these include reduced insulin-stimulated glucose transport, reduced expression of GLUT4, altered expression of adipokines, and adipocyte hypertrophy. Animal studies have shown that expansion of adipose tissue alone is not sufficient to cause systemic insulin resistance in the absence of adipose tissue metabolic dysfunction. To determine if this holds true for humans, we studied the relationship between insulin resistance and markers of adipose tissue dysfunction in non-obese individuals. Method 32 non-obese first-degree relatives of Type 2 diabetic patients were recruited. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was measured with the hyperinsulinaemic-euglycaemic clamp. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene/protein expression and adipocyte cell size measurements. Results Our findings show that also in non-obese individuals low insulin sensitivity is associated with signs of adipose tissue metabolic dysfunction characterized by low expression of GLUT4, altered adipokine profile and enlarged adipocyte cell size. In this group, insulin sensitivity is positively correlated to GLUT4 mRNA (R = 0.49, p = 0.011 and protein (R = 0.51, p = 0.004 expression, as well as with circulating adiponectin levels (R = 0.46, 0 = 0.009. In addition, insulin sensitivity is inversely correlated to circulating RBP4 (R = −0.61, 0 = 0.003 and adipocyte cell size (R = −0.40, p = 0.022. Furthermore, these features are inter-correlated and also associated with other clinical features of the metabolic syndrome in the absence of obesity. No association could be found

  4. Abdominal Adiposity Distribution in Diabetic/Prediabetic and Nondiabetic Populations: A Meta-Analysis

    Jane J. Lee

    2014-01-01

    Full Text Available Excess fat in the abdomen can be classified generally as visceral and subcutaneous adiposity. Evidence suggests that visceral adiposity has greater implications for diabetes than other fat depots. The purpose of this study is to explore the disparities in the distribution of abdominal adiposity in diabetic/prediabetic and nondiabetic populations and to identify moderators that influence the pattern of central obesity via a meta-analysis technique. The Hedges’ g was used as a measure of effect size and 95% confidence interval was computed. A total of 41 relevant studies with 101 effect sizes were retrieved. Pooled effect sizes for visceral and subcutaneous adiposity were 0.69 and 0.42, respectively. Diabetic/prediabetic populations exhibited greater visceral and subcutaneous adiposity compared to nondiabetic populations (Z=10.35, P<0.05. Significant moderator effects of gender (Z=-2.90 and assessment method of abdominal adiposity (Z=-2.17 were found for visceral fat (P<0.05, but not for subcutaneous fat. Type of health condition influenced both visceral (Z=-5.10 and subcutaneous (Z=-7.09 abdominal adiposity volumes (P<0.05. Abdominal adiposity distributions were significantly altered in the diabetic/prediabetic population compared to the nondiabetic population. Gender, assessment method of abdominal adiposity, and type of health conditions (diabetic/prediabetics were identified as crucial moderators that influence the degree of abdominal adiposity.

  5. Brown adipose tissue development and metabolism in ruminants.

    Smith, S B; Carstens, G E; Randel, R D; Mersmann, H J; Lunt, D K

    2004-03-01

    We conducted several experiments to better understand the relationship between brown adipose tissue (BAT) metabolism and thermogenesis. In Exp. 1, we examined perirenal (brown) and sternum s.c. adipose tissue in 14 Wagyu x Angus neonates infused with norepinephrine (NE). Perirenal adipocytes contained numerous large mitochondria with well-differentiated cristae; sternum s.c. adipocytes contained a few, small mitochondria, with poorly developed cristae. Lipogenesis from acetate was high in BAT but barely detectable in sternum s.c. adipose tissue. In Exp. 2, we compared perirenal and tailhead adipose tissues between NE-infused Angus (n = 6) and Brahman (n = 7) newborn calves. Brahman BAT contained two-to-three times as many total beta-receptors as Angus BAT. The mitochondrial UCP1:28S rRNA ratio was greater in Brahman BAT than in BAT from Angus calves. Lipogenesis from acetate and glucose again was high, but lipogenesis from palmitate was barely detectable. Tail-head s.c. adipose tissue from both breed types contained adipocytes with distinct brown adipocyte morphology. In Exp. 3, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types, whereas the UCP1 gene expression tripled during gestation in both breed types. At birth, palmitate esterification was twice as high in Angus than in Brahman BAT and was at least 100-fold higher than in BAT from NE-infused calves from Exp. 2. Uncoupling protein-1 mRNA was readily detectable in tailhead s.c. adipose tissue in all fetal samples. In Exp. 4, male Brahman and Angus calves (n = 5 to 7 per group) were assigned to 1) newborn treatment (15 h of age), 2) 48 h of warm exposure (22 degrees C) starting at 15 h of age, or 3) 48 h of cold exposure (4 degrees C) starting at 15 h of age. Brahman BAT adipocytes shrank with cold exposure, whereas Angus BAT

  6. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity

    Mandard, S; Zandbergen, F; van Straten, E; Wahli, W; Kuipers, F; Muller, M; Kersten, S

    2006-01-01

    Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, muchless is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activat

  7. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated the...... basic and postprandial microvascular volume in adipose tissue using real-time contrast-enhanced ultrasound (CEU) imaging in healthy normal weight subjects. In nine subjects, CEU was performed in abdominal subcutaneous adipose tissue and in the underlying skeletal muscle after a bolus injection of...... ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain...

  8. Adiposity, lipogenesis, and fatty acid composition of subcutaneous and intramuscular adipose tissues of Brahman and Angus crossbred cattle.

    Campbell, E M G; Sanders, J O; Lunt, D K; Gill, C A; Taylor, J F; Davis, S K; Riley, D G; Smith, S B

    2016-04-01

    The objective of this study was to demonstrate differences in aspects of adipose tissue cellularity, lipid metabolism, and fatty and cholesterol composition in Angus and Brahman crossbred cattle. We hypothesized that in vitro measures of lipogenesis would be greater in three-fourths Angus progeny than in three-fourths Brahman progeny, especially in intramuscular (i.m.) adipose tissue. Progeny ( = 227) were fed a standard, corn-based diet for approximately 150 d before slaughter. Breed was considered to be the effect of interest and was forced into the model. There were 9 breed groups including all 4 kinds of three-fourths Angus calves: Angus bulls Angus-sired F cows ( = 32), Angus bulls Brahman-sired F cows ( = 20), Brahman-sired F bulls Angus cows ( = 24), and Angus-sired F bulls Angus cows ( = 20). There were all 4 kinds of three-fourths Brahman calves: Brahman bulls Brahman-sired F cows ( = 21), Brahman bulls Angus-sired F cows ( = 43), Brahman-sired F bulls Brahman cows ( = 26), and Angus-sired F bulls Brahman cows ( = 13). Additionally, F calves (one-half Brahman and one-half Angus) were produced only from Brahman-sired F bulls Angus-sired F cows ( = 28). Contrasts were calculated when breed was an important fixed effect, using the random effect family(breed) as the error term. Most contrasts were nonsignificant ( > 0.10). Those that were significant ( F, three-fourths Brahman > F, and three-fourths crossbred progeny combined > F), s.c. adipocyte volume (three-fourths Angus > F and three-fourths bloods combined > F), lipogenesis from acetate in s.c. adipose tissue (three-fourths Brahman calves from Brahman dams > three-fourths Brahman calves from F dams), and percentage 18:3-3 in s.c. adipose tissue (three-fourths Brahman calves from Brahman-sired F dams Brahman calves from Angus-sired F dams). Intramuscular adipocyte volume ( Brahman cattle than in three-fourths Angus cattle. Additionally, several differences were observed in i.m. adipose tissue that were

  9. Intrinsic regulation of blood flow in adipose tissue

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue...

  10. Botulinum toxin injections to reduce adiposity: possibility, or fat chance?

    Lim, Erle C H; Seet, Raymond C S

    2006-01-01

    Obese individuals often suffer from negative self-image. Many, even those with a normal body mass index, resort to pharmacotherapy (lipase inhibitors or appetite suppressants), mesotherapy and surgery (gastric volume reduction, liposuction or apronectomy) in a bid to remove excess adipose tissue. These treatments are associated with inherent morbidity and even mortality, and hence should not be undertaken lightly. The observation that denervation of adipose tissue results in lipoatrophy leads us to postulate that chemodenervation using botulinum toxin may achieve the same result, i.e. fat loss, and we explore the methods by which selective fat loss may be achieved. We concede that removal of subcutaneous fat does not, however, reduce the risks associated with the metabolic syndrome, as visceral (intra-abdominal) fat is not reduced by the removal of subcutaneous fat. PMID:16716533

  11. Levels of chlordane, oxychlordane, and nonachlor in human adipose tissues

    Hirai, Yukio; Tomokuni, Katsumaro (Saga Medical School (Japan))

    1991-08-01

    Chlordane was used as a termiticide for more than twenty years in Japan. Chlordane is stable in the environment such as sediment and its bioaccumulation in some species of bacteria, freshwater invertebrates, and marine fish is large. Many researches were done to elucidate the levels of chlordane and/or its metabolite oxychlordane in human adipose tissues. A comprehensive review concerning chlordane was recently provided by USEPA. On the other hand, Japan authorities banned the use of chlordane in September 1986. In the last paper, the authors reported that both water and sediment of the rivers around Saga city were slightly contaminated with chlordane. In the present study, they investigated the levels of chlordane, oxychlordane and nonachlor in human adipose tissues.

  12. Heterogeneous response of adipose tissue to cancer cachexia

    P.S. Bertevello

    2001-09-01

    Full Text Available Cancer cachexia causes disruption of lipid metabolism. Since it has been well established that the various adipose tissue depots demonstrate different responses to stimuli, we assessed the effect of cachexia on some biochemical and morphological parameters of adipocytes obtained from the mesenteric (MES, retroperitoneal (RPAT, and epididymal (EAT adipose tissues of rats bearing Walker 256 carcinosarcoma, compared with controls. Relative weight and total fat content of tissues did not differ between tumor-bearing rats and controls, but fatty acid composition was modified by cachexia. Adipocyte dimensions were increased in MES and RPAT from tumor-bearing rats, but not in EAT, in relation to control. Ultrastructural alterations were observed in the adipocytes of tumor-bearing rat RPAT (membrane projections and EAT (nuclear bodies.

  13. Fully automated adipose tissue measurement on abdominal CT

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  14. Adipose tissue is a regulated source of interleukin-10.

    Juge-Aubry, Cristiana E; Somm, Emmanuel; Pernin, Agnès; Alizadeh, Navid; Giusti, Vittorio; Dayer, Jean-Michel; Meier, Christoph A

    2005-03-21

    White adipose tissue (WAT) is the source of pro- and anti-inflammatory cytokines and we have recently shown that this tissue is a major source of the anti-inflammatory interleukin (IL)-1 receptor antagonist (IL-1Ra). We now aimed at identifying additional adipose-derived cytokines, which might serve as regulators of IL-1Ra. We demonstrate here for the first time that the antiinflammatory cytokine IL-10 is secreted by human WAT explants and that it is up-regulated by LPS and TNF-alpha in vitro, as well as in obesity in humans (2- and 6-fold increase in subcutaneous and visceral WAT, respectively) and rodents (4-fold increase). PMID:15749027

  15. A role of active brown adipose tissue in cancer cachexia?

    Emiel Beijer

    2012-06-01

    Full Text Available Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT. Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluorodeoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  16. Adiposity in childhood cancer survivors: insights into obesity physiopathology.

    Siviero-Miachon, Adriana Aparecida; Spinola-Castro, Angela Maria; Guerra-Junior, Gil

    2009-03-01

    As childhood cancer treatment has become more effective, survival rates have improved, and a number of complications have been described while many of these patients reach adulthood. Obesity is a well-recognized late effect, and its metabolic effects may lead to cardiovascular disease. Currently, studies concerning overweight have focused on acute lymphocytic leukemia and brain tumors, since they are at risk for hypothalamic-pituitary axis damage secondary to cancer therapies (cranial irradiation, chemotherapy, and brain surgery) or to primary tumor location. Obesity and cancer have metabolic syndrome features in common. Thus, it remains controversial if overweight is a cause or consequence of cancer, and to date additional mechanisms involving adipose tissue and hypothalamic derangements have been considered, comprising premature adiposity rebound, hyperinsulinemia, leptin regulation, and the role of peroxisome proliferator-activated receptor gamma. Overall, further research is still necessary to better understand the relationship between adipogenesis and hypothalamic control deregulation following cancer therapy. PMID:19466212

  17. Effects of a physiological GH pulse on interstitial glycerol in abdominal and femoral adipose tissue

    Gravhølt, C H; Schmitz, Ole; Simonsen, L; Bülow, J; Christiansen, J S; Møller, N

    concentrations in adipose tissue, and whether there would be regional differences between femoral and abdominal subcutaneous fat, by employing microdialysis for 6 h after administration of GH (200 microgram) or saline intravenously. Subcutaneous adipose tissue blood flow (ATBF) was measured by the local Xenon...... washout method. Baseline of interstitial glycerol was higher in adipose tissue than in blood [220 +/- 12 (abdominal) vs. 38 +/- 2 (blood) micromol/l, P <0.0005; 149 +/- 9 (femoral) vs. 38 +/- 2 (blood) micromol/l, P <0.0005] and higher in abdominal adipose tissue compared with femoral adipose tissue (P <0.......0005). Administration of GH induced an increase in interstitial glycerol in both abdominal and femoral adipose tissue (ANOVA: abdominal, P = 0. 04; femoral, P = 0.03). There was no overall difference in the response to GH in the two regions during the study period as a whole (ANOVA: P = 0.5), but during peak...

  18. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    Daniel Zeve

    Full Text Available Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes.

  19. Mest and Sfrp5 are biomarkers for healthy adipose tissue.

    Jura, Magdalena; Jarosławska, Julia; Chu, Dinh Toi; Kozak, Leslie P

    2016-05-01

    Obesity depends on a close interplay between genetic and environmental factors. However, it is unknown how these factors interact to cause changes in the obese condition during the progression of obesity from the neonatal to the aged individual. We have utilized Mest and Sfrp5 genes, two genes highly correlated with adipose tissue expansion in diet-induced obesity, to characterize the obese condition during development of 2 genetic models of obesity. A model for the early onset of obesity was presented by leptin-deficient mice (ob/ob), whereas late onset of obesity was induced with high-fat diet (HFD) consumption in C57BL/6J mice with inherent risk of obesity (DIO). We correlated obese and diabetic phenotypes with Mest and Sfrp5 gene expression profiles in subcutaneous fat during pre-weaning, pre-adulthood and adulthood. A rapid development of obesity began in ob/ob mice immediately after weaning at 21 days of age, whereas the obesity of DIO mice was not evident until after 2 months of age. Even after 5 months of HFD treatment, the adiposity index of DIO mice was lower than in ob/ob mice at 2 months of age. In both obesity models, the expression of Mest and Sfrp5 genes increased in parallel with fat mass expansion; however, gene expression proceeded to decrease when the adiposity reached a plateau. The reduction in the expression of genes of caveolae structure and glucose metabolism were also suppressed in the aging adipose tissue. The analysis of fat mass and adipocyte size suggests that reduction in Mest and Sfrp5 is more sensitive to the age of the fat than its morphology. The balance of factors controlling fat deposition can be evaluated in part by the differential expression profiles of Mest and Sfrp5 genes with functions linked to fat deposition as long as there is an active accumulation of fat mass. PMID:26001362

  20. Configuration of Fibrous and Adipose Tissues in the Cavernous Sinus

    Liang, Liang; Gao, Fei; Xu, Qunyuan; Zhang, Ming

    2014-01-01

    Objective Three-dimensional anatomical appreciation of the matrix of the cavernous sinus is one of the crucial necessities for a better understanding of tissue patterning and various disorders in the sinus. The purpose of this study was to reveal configuration of fibrous and adipose components in the cavernous sinus and their relationship with the cranial nerves and vessels in the sinus and meningeal sinus wall. Materials and Methods Nineteen cadavers (8 females and 11 males; age range, 54–89...

  1. Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries.

    Verlohren, Stefan; Dubrovska, Galyna; Tsang, Suk-Ying; Essin, Kirill; Luft, Friedrich C; Huang, Yu; Gollasch, Maik

    2004-09-01

    Periadventitial adipose tissue produces vasoactive substances that influence vascular contraction. Earlier studies addressed this issue in aorta, a vessel that does not contribute to peripheral vascular resistance. We tested the hypothesis that periadventitial adipose tissue modulates contraction of smaller arteries more relevant to blood pressure regulation. We studied mesenteric artery rings surrounded by periadventitial adipose tissue from adult male Sprague-Dawley rats. The contractile response to serotonin, phenylephrine, and endothelin I was markedly reduced in intact vessels compared with vessels without periadventitial fat. The contractile response to U46619 or depolarizing high K+-containing solutions (60 mmol/L) was similar in vessels with and without periadventitial fat. The K+ channel opener cromakalim induced relaxation of vessels precontracted by serotonin but not by U46619 or high K+-containing solutions (60 mmol/L), suggesting that K+ channels are involved. The intracellular membrane potential of smooth muscle cells was more hyperpolarized in intact vessels than in vessels without periadventitial fat. Both the anticontractile effect and membrane hyperpolarization of periadventitial fat were abolished by inhibition of delayed-rectifier K+ (K(v)) channels with 4-aminopyridine (2 mmol/L) or 3,4-diaminopyridine (1 mmol/L). Blocking other K+ channels with glibenclamide (3 micromol/L), apamin (1 micromol/L), iberiotoxin (100 nmol/L), tetraethylammonium ions (1 mmol/L), tetrapentylammonium ions (10 micromol/L), or Ba2+ (3 micromol/L) had no effect. Longitudinal removal of half the perivascular tissue reduced the anticontractile effect of fat by almost 50%, whereas removal of the endothelium had no effect. We suggest that visceral periadventitial adipose tissue controls mesenteric arterial tone by inducing vasorelaxation via K(v) channel activation in vascular smooth muscle cells. PMID:15302842

  2. White Fat Progenitor Cells Reside in the Adipose Vasculature

    Tang, Wei; Zeve, Daniel; Suh, Jae Myoung; Bosnakovski, Darko; Kyba, Michael; Hammer, Robert E.; Tallquist, Michelle D.; Graff, Jonathan M.

    2008-01-01

    White adipose (fat) tissues regulate metabolism, reproduction, and life span. Adipocytes form throughout life, with the most marked expansion of the lineage occurring during the postnatal period. Adipocytes develop in coordination with the vasculature, but the identity and location of white adipocyte progenitor cells in vivo are unknown. We used genetically marked mice to isolate proliferating and renewing adipogenic progenitors. We found that most adipocytes descend from a pool of these prol...

  3. White Fat Progenitors Reside in the Adipose Vasculature*

    Tang, Wei; Zeve, Daniel; Suh, Jae Myoung; Bosnakovski, Darko; Kyba, Michael; Hammer, Robert E.; Tallquist, Michelle D.; Graff, Jonathan M.

    2008-01-01

    White adipose (fat) tissues regulate metabolism, reproduction and lifespan. Adipocytes form throughout life, with the most marked expansion of the lineage occurring during the postnatal period. Adipocytes develop in coordination with the vasculature, but the identity and location of white adipocyte progenitor cells are unknown. We used genetically marked mice to isolate proliferating and renewing adipogenic progenitors. We find that most adipocytes descend from a pool of these proliferating p...

  4. Fluorescence Imaging of Interscapular Brown Adipose Tissue in Living Mice†

    Rice, Douglas R.; White, Alexander G.; Leevy, W. Matthew; Smith, Bradley D.

    2015-01-01

    Brown adipose tissue (BAT) plays a key role in energy expenditure and heat generation and is a promising target for diagnosing and treating obesity, diabetes and related metabolism disorders. While several nuclear and magnetic resonance imaging methods are established for detecting human BAT, there are no convenient protocols for high throughput imaging of BAT in small animal models. Here we disclose a simple but effective method for non-invasive optical imaging of interscapular BAT in mice u...

  5. Insulin Regulates the Unfolded Protein Response in Human Adipose Tissue

    Boden, Guenther; Cheung, Peter; Salehi, Sajad; Homko, Carol; Loveland-Jones, Catherine; Jayarajan, Senthil; Stein, T Peter; Williams, Kevin Jon; Liu, Ming-Lin; Barrero, Carlos A.; Merali, Salim

    2014-01-01

    Endoplasmic reticulum (ER) stress is increased in obesity and is postulated to be a major contributor to many obesity-related pathologies. Little is known about what causes ER stress in obese people. Here, we show that insulin upregulated the unfolded protein response (UPR), an adaptive reaction to ER stress, in vitro in 3T3-L1 adipocytes and in vivo, in subcutaneous (sc) adipose tissue of nondiabetic subjects, where it increased the UPR dose dependently over the entire physiologic insulin ra...

  6. Insulin action in human adipose tissue in acromegaly.

    Bolinder, J.; Ostman, J; Werner, S.; Arner, P.

    1986-01-01

    The mechanisms underlying insulin resistance in acromegaly were investigated. Adipose tissue was obtained from nine patients with acromegaly who had in vivo insulin resistance and from 14 matched healthy control subjects. Receptor binding and the antilipolytic effect of insulin were determined in isolated fat cells. Insulin-induced glucose oxidation at a physiological hexose concentration was investigated in fat segments. In fat cells obtained from acromegaly patients after an overnight fast,...

  7. Serum Visfatin Levels, Adiposity and Glucose Metabolism in Obese Adolescents

    Taşkesen, Derya; Kirel, Birgül; Us, Tercan

    2012-01-01

    Objective: Visfatin, an adipokine, has insulin-mimetic effects. The main determinants of both the production and the physiologic role of visfatin are still unclear. The aim of this study is to determine the relation of serum visfatin to adiposity and glucose metabolism. Methods: 40 pubertal adolescents (20 females, 20 males; age range: 9-17 years) with exogenous obesity and 20 age- and sex-matched healthy adolescents (10 females, 10 males) were enrolled in the study. Oral glucose tolerance te...

  8. Efficient Phagocytosis Requires Triacylglycerol Hydrolysis by Adipose Triglyceride Lipase*

    Chandak, Prakash G.; Radović, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fröhlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-01-01

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of...

  9. Effects of immunosuppressive drugs on human adipose tissue metabolism

    Pereira, Maria J

    2012-01-01

    The immunosuppressive agents (IAs) rapamycin, cyclosporin A and tacrolimus, as well as glucocorticoids are used to prevent rejection of transplanted organs and to treat autoimmune disorders. Despite their desired action on the immune system, these agents have serious longterm metabolic side-effects, including dyslipidemia and new onset diabetes mellitus after transplantation. The overall aim is to study the effects of IAs on human adipose tissue glucose and lipid metabolism, and to incr...

  10. Quantifying Size and Number of Adipocytes in Adipose Tissue

    Parlee, Sebastian D.; Lentz, Stephen I.; Mori, Hiroyuki; MacDougald, Ormond A.

    2014-01-01

    White adipose tissue (WAT) is a dynamic and modifiable tissue that develops late during gestation in humans and through early postnatal development in rodents. WAT is unique in that it can account for as little as 3% of total body weight in elite athletes or as much as 70% in the morbidly obese. With the development of obesity, WAT undergoes a process of tissue remodeling in which adipocytes increase in both number (hyperplasia) and size (hypertrophy). Metabolic derangements associated with o...

  11. Weight cycling enhances adipose tissue inflammatory responses in male mice.

    Sandra Barbosa-da-Silva

    Full Text Available BACKGROUND: Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC. METHODS: In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF diet with standard chow (SC. RESULTS: The body mass (BM grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months, more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. CONCLUSION: In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.

  12. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues

    Ren Zhang

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fas...

  13. Seeking the source of adipocytes in adult white adipose tissues

    Lee, Yun-Hee; Granneman, James G.

    2012-01-01

    Adipocyte progenitors are thought to play a fundamental role in white adipose tissue (WAT) plasticity, which enables dynamic modulation of WAT metabolic and cellular characteristics in response to various stimuli. In general, two main strategies have been used to identify adipocyte progenitor cells: fluorescence-activated cell sorting (FACS)-based prospective analysis and lineage tracing. Although FACS-isolation is highly useful in defining multipotential stem cell populations for in vitro an...

  14. Integrator complex plays an essential role in adipose differentiation

    Highlights: •IntS6 and IntS11 are subunits of the Integrator complex. •Expression levels of IntS6 and IntS11 were very low in 3T3-L1 fibroblast. •IntS6 and IntS11 were upregulated during adipose differentiation. •Suppression of IntS6 or IntS11 expression inhibited adipose differentiation. -- Abstract: The dynamic process of adipose differentiation involves stepwise expressions of transcription factors and proteins specific to the mature fat cell phenotype. In this study, it was revealed that expression levels of IntS6 and IntS11, subunits of the Integrator complex, were increased in 3T3-L1 cells in the period when the cells reached confluence and differentiated into adipocytes, while being reduced to basal levels after the completion of differentiation. Suppression of IntS6 or IntS11 expression using siRNAs in 3T3-L1 preadipocytes markedly inhibited differentiation into mature adipocytes, based on morphological findings as well as mRNA analysis of adipocyte-specific genes such as Glut4, perilipin and Fabp4. Although Pparγ2 protein expression was suppressed in IntS6 or IntS11-siRNA treated cells, adenoviral forced expression of Pparγ2 failed to restore the capacity for differentiation into mature adipocytes. Taken together, these findings demonstrate that increased expression of Integrator complex subunits is an indispensable event in adipose differentiation. Although further study is necessary to elucidate the underlying mechanism, the processing of U1, U2 small nuclear RNAs may be involved in cell differentiation steps

  15. Brown Adipose Tissue: A New Target for Antiobesity Therapy

    Anna Meiliana; Andi Wijaya

    2010-01-01

    BACKGROUND: Human fat consist of white and brown adipose tissue (WAT and BAT). Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. CONTENT: Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT) imaging, immunohistochemistry and gene and protein expression assays to prove conc...

  16. Adipose tissue and sustainable development: a connection that needs protection

    Tremblay, Angelo; Picard-Deland, Éliane; Panahi, Shirin; Marette, André

    2015-01-01

    Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic, and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsu...

  17. Cerenkov Luminescence Imaging of Interscapular Brown Adipose Tissue

    Zhang, Xueli; Kuo, Chaincy; Moore, Anna; Ran, Chongzhao

    2014-01-01

    Brown adipose tissue (BAT), widely known as a “good fat” plays pivotal roles for thermogenesis in mammals. This special tissue is closely related to metabolism and energy expenditure, and its dysfunction is one important contributor for obesity and diabetes. Contrary to previous belief, recent PET/CT imaging studies indicated the BAT depots are still present in human adults. PET imaging clearly shows that BAT has considerably high uptake of 18F-FDG under certain conditions. In this video repo...

  18. Sleep deprivation affects inflammatory marker expression in adipose tissue

    Santos Ronaldo VT

    2010-10-01

    Full Text Available Abstract Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C group and a paradoxical sleep deprivation by 96 h (PSD group. Ten rats were randomly assigned to either the control group (C or the PSD. Mesenteric (MEAT and retroperitoneal (RPAT adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL-6, interleukin (IL-10 and tumour necrosis factor (TNF-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG, VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum.

  19. Early growth and childhood adiposity. The Generation R Study

    Durmus, Busra

    2013-01-01

    textabstractThe World Health Organization defines overweight and obesity as abnormal or excessive accumulation of adipose tissue, which is an established risk factor for harmful health. Common health consequences of overweight and obesity include cardiometabolic diseases – mainly diabetes, stroke and heart diseases – orthopedical disorders and some cancers such as breast- and colon cancer. Currently, overweight and obesity are the fifth leading cause of global deaths.The burden of diabetes an...

  20. Sympathetic and sensory innervation of brown adipose tissue

    Bartness, TJ; Vaughan, CH; Song, CK

    2010-01-01

    The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade o...

  1. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity

    Stanford, Kristin I.; Middelbeek, Roeland J.W.; Townsend, Kristy L.; An, Ding; Nygaard, Eva B.; Hitchcox, Kristen M.; Markan, Kathleen R.; Nakano, Kazuhiro; Hirshman, Michael F.; Tseng, Yu-Hua; Goodyear, Laurie J.

    2012-01-01

    Brown adipose tissue (BAT) is known to function in the dissipation of chemical energy in response to cold or excess feeding, and also has the capacity to modulate energy balance. To test the hypothesis that BAT is fundamental to the regulation of glucose homeostasis, we transplanted BAT from male donor mice into the visceral cavity of age- and sex-matched recipient mice. By 8–12 weeks following transplantation, recipient mice had improved glucose tolerance, increased insulin sensitivity, lowe...

  2. Collagen-Hyaluronic Acid Scaffolds for Adipose Tissue Engineering

    Davidenko, Natalia; Campbell, J J; Thian, E. S.; C. J. Watson; Cameron, Ruth Elizabeth

    2010-01-01

    Three-dimensional (3-D) in vitro models of the mammary gland require a scaffold matrix that supports the development of adipose stroma within a robust freely permeable matrix. 3-D porous collagen-hyaluronic acid (HA: 7.5% and 15%) scaffolds were produced by controlled freeze-drying technique and crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. All scaffolds displayed uniform, interconnected pore structure (total porosity approximately 85%). Physical and chemical...

  3. Dorsomedial hypothalamic NPY modulation of adiposity and thermogenesis

    Bi, Sheng

    2013-01-01

    In addition to controlling food intake, the dorsomedial hypothalamus (DMH) plays an important role in thermoregulation. Within the DMH, a number of neuropeptides and receptors have been found and their roles in controlling energy balance are being investigated. We recently found that the orexigenic neuropeptide Y (NPY) in the DMH has specific actions on body adiposity and thermogenesis using a viral-mediated manipulation of NPY in the DMH. Knockdown of NPY in the DMH promotes the development ...

  4. Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK

    Martínez de Morentin, Pablo B.; González-García, Ismael; Martins, Luís; Lage, Ricardo; Fernández-Mallo, Diana; Martínez-Sánchez, Noelia; Ruíz-Pino, Francisco; Liu, Ji; Morgan, Donald A.; Pinilla, Leonor; Gallego, Rosalía; Saha, Asish K.; Kalsbeek, Andries; Fliers, Eric; Bisschop, Peter H.

    2014-01-01

    Summary Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in...

  5. Negative Regulators of Brown Adipose Tissue (BAT)-Mediated Thermogenesis

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-01-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence therm...

  6. Chronic Maternal Dietary Chromium Restriction Modulates Visceral Adiposity

    Padmavathi, Inagadapa J.N.; Rao, K Rajender; Venu, Lagishetty; Ganeshan, Manisha; Kumar, K. Anand; Rao, Ch. Narasima; Harishankar, Nemani; Ismail, Ayesha; Raghunath, Manchala

    2009-01-01

    OBJECTIVE We demonstrated previously that chronic maternal micronutrient restriction altered the body composition in rat offspring and may predispose offspring to adult-onset diseases. Chromium (Cr) regulates glucose and fat metabolism. The objective of this study is to determine the long-term effects of maternal Cr restriction on adipose tissue development and function in a rat model. RESEARCH DESIGN AND METHODS Female weanling WNIN rats received, ad libitum, a control diet or the same with ...

  7. Obesity, adipose tissue function and the role of vitamin D

    Koszowska, Aneta U.; Nowak, Justyna; Dittfeld, Anna; Brończyk-Puzoń, Anna; Kulpok, Agata; Zubelewicz-Szkodzińska, Barbara

    2014-01-01

    Introduction Obesity is not just a cosmetic problem. Pathological accumulation of body fat can cause many health problems: insulin resistance, impaired glucose tolerance, and diabetes mellitus type 2. It may also increase morbidity and mortality. Adipose tissue plays an important role in body homeostasis by producing and secreting several bioactive proteins known as adipokines: adiponectin, leptin, resistin, visfatin, and apelin, which are involved in the regulation of food intake, glucose an...

  8. Surrogate markers of visceral adiposity in young adults: waist circumference and body mass index are more accurate than waist hip ratio, model of adipose distribution and visceral adiposity index.

    Susana Borruel

    Full Text Available Surrogate indexes of visceral adiposity, a major risk factor for metabolic and cardiovascular disorders, are routinely used in clinical practice because objective measurements of visceral adiposity are expensive, may involve exposure to radiation, and their availability is limited. We compared several surrogate indexes of visceral adiposity with ultrasound assessment of subcutaneous and visceral adipose tissue depots in 99 young Caucasian adults, including 20 women without androgen excess, 53 women with polycystic ovary syndrome, and 26 men. Obesity was present in 7, 21, and 7 subjects, respectively. We obtained body mass index (BMI, waist circumference (WC, waist-hip ratio (WHR, model of adipose distribution (MOAD, visceral adiposity index (VAI, and ultrasound measurements of subcutaneous and visceral adipose tissue depots and hepatic steatosis. WC and BMI showed the strongest correlations with ultrasound measurements of visceral adiposity. Only WHR correlated with sex hormones. Linear stepwise regression models including VAI were only slightly stronger than models including BMI or WC in explaining the variability in the insulin sensitivity index (yet BMI and WC had higher individual standardized coefficients of regression, and these models were superior to those including WHR and MOAD. WC showed 0.94 (95% confidence interval 0.88-0.99 and BMI showed 0.91 (0.85-0.98 probability of identifying the presence of hepatic steatosis according to receiver operating characteristic curve analysis. In conclusion, WC and BMI not only the simplest to obtain, but are also the most accurate surrogate markers of visceral adiposity in young adults, and are good indicators of insulin resistance and powerful predictors of the presence of hepatic steatosis.

  9. Brominated dioxins and dibenzofurans in human adipose tissue. Final report

    Cramer, P.H.; Stanley, J.S.; Bauer, K.; Ayling, R.E.; Thornburg, K.R.

    1990-04-11

    The report describes the analytical efforts for the determination of polybrominated dioxins (PBDDs) and furans (PBDFs) in human adipose tissues. Data on the precision and accuracy of the method for three tetra- through hexabrominated dioxins and three tetra- through hexabrominated furans (specific 2,3,7,8-substituted isomers) were generated from the analysis of 5 unspiked and 10 spiked (5 replicates at 2 spike levels) adipose tissue samples that were included with the analysis of the FY 1987 samples. In addition, data are presented on the results of the analysis of 48 composite samples for the six specific PBDD and PBDF compounds. The targeted 2,3,7,8-substituted PBDDs and PBDFs were not detected in any of the samples except those prepared as spiked QC materials. The detection limits calculated for the tetrabromo congeners in the samples ranged from 0.46 to 8.9 pg/g (lipid basis). The detection limits for the higher brominated congeners were typically greater than that observed for the tetrabrominated compounds. There is some evidence for the presence of other brominated compounds in the adipose tissue samples. Specifically, responses were noted that correspond to the qualitative criteria for polybrominated diphenyl ethers (hexa through octabromo).

  10. Adipose-derived stem cells from the breast

    Jie Yang

    2014-01-01

    Full Text Available Background: The adipose tissue is deemed as an ideal source of adipose-derived stem cells (ADSCs. Previous studies have reported that ADSCs can be isolated from several organs and locations; however, slight attention has been paid to the breast. We would like to report our experiences in isolating breast ADSCs (bADSCs. Materials and Methods: Adipose tissues were harvested from the breasts of seven hypertrophic breast patients. Collagenase I was used to isolate the primary ADSCs. Surface markers were analyzed by flow cytometry. Cellular morphologies were observed. Proliferations of different passages were compared. Viabilities after the cryopreservation were evaluated. Adipogenic and osteogenic differentiation was induced. Results: Primary cultured cells showed morphologies similar to fibroblasts, and expressed surface markers including CD13, CD44, CD90, and CD105. There was no statistical difference of proliferation between different passages (P > 0.05 and between with and without cryopreservation (P > 0.05. Additionally, isolated cells were differentiated into adipocytes and osteoblasts. Conclusion: bADSCs may represent an alternative candidate for tissue engineering. Further studies are needed to obtain more comprehensive understanding on bADSCs.

  11. Brown Adipose Tissue: A New Target for Antiobesity Therapy

    Anna Meiliana

    2010-08-01

    Full Text Available BACKGROUND: Human fat consist of white and brown adipose tissue (WAT and BAT. Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. CONTENT: Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT imaging, immunohistochemistry and gene and protein expression assays to prove conclusively that adult humans have functional BAT. BAT is important for thermogenesis and energy balance in small mammals and its induction in mice promotes energy expenditure, reduces adiposity and protects mice from diet-induced obesity. The thermogenic capacity of BAT is impressive. In humans, it has been estimated that as little as 50g of BAT could utilize up to 20% of basal caloric needs if maximally stimulated. SUMMARY: The obesity pandemic requires new and novel treatments. The past few years have witnessed multiple studies conclusively showing that adult humans have functional BAT, a tissue that has a tremendous capacity for obesity-reducing thermogenesis. Novel therapies targeting BAT thermogenesis may be available in the near future as therapeutic options for obesity and diabetes. Thermogenic ingredients may be considered as functional agents that could help in preventing a positive energy balance and obesity. KEYWORDS: brown adipose tissue, thermogenesis, energy expenditure, antiobesity therapy.

  12. Human Adipose Stromal Vascular Cell Delivery in a Fibrin Spray

    Zimmerlin, Ludovic; Rubin, J. Peter; Pfeifer, Melanie E.; Moore, L.R.; Donnenberg, Vera S.; Donnenberg, Albert D.

    2014-01-01

    Background Adipose tissue represents a practical source of autologous mesenchymal stromal cells (MSC) and vascular-endothelial progenitor cells, available for regenerative therapy without in vitro expansion. One of the problems confronting the therapeutic application of such cells is how to immobilize them at the wound site. Here, we evaluated in vitro the growth and differentiation of human adipose stromal vascular fraction (SVF) cells after delivery using a fibrin spray system. Methods SVF cells were harvested from four human adult patients undergoing elective abdominoplasty using the LipiVage™ system. After collagenase digestion, mesenchymal and endothelial progenitor cells (pericytes, supra-adventitial stromal cells, endothelial progenitors) were quantified by flow cytometry before culture. SVF cells were applied to culture vessels using the Tisseel™ fibrin spray system. SVF cell growth and differentiation was documented by immunofluorescence staining and photomicrography. Results SVF cells remained viable following application and were expanded up to three weeks, when they reached confluence and adipogenic differentiation. Under angiogenic conditions, SVF cells formed endothelial (vWF+, CD31+ and CD34+) tubules surrounded by CD146+ and α-SMA+ perivascular/stromal cells. Discussion Human adipose tissue is a rich source of autologous stem cells, which are readily available for regenerative applications such as wound healing, without in vitro expansion. Our results indicate that mesenchymal and endothelial progenitor cells, prepared in a closed system from unpassaged lipoaspirate samples, retain their growth and differentiation capacity when applied and immobilized on a substrate using a clinically approved fibrin sealant spray system. PMID:23260090

  13. Food consumption and adipose tissue DDT levels in Mexican women

    Marcia Galván-Portillo

    2002-04-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  14. Food consumption and adipose tissue DDT levels in Mexican women

    Galván-Portillo Marcia

    2002-01-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  15. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity.

    Heinonen, Sini; Buzkova, Jana; Muniandy, Maheswary; Kaksonen, Risto; Ollikainen, Miina; Ismail, Khadeeja; Hakkarainen, Antti; Lundbom, Jesse; Lundbom, Nina; Vuolteenaho, Katriina; Moilanen, Eeva; Kaprio, Jaakko; Rissanen, Aila; Suomalainen, Anu; Pietiläinen, Kirsi H

    2015-09-01

    Low mitochondrial number and activity have been suggested as underlying factors in obesity, type 2 diabetes, and metabolic syndrome. However, the stage at which mitochondrial dysfunction manifests in adipose tissue after the onset of obesity remains unknown. Here we examined subcutaneous adipose tissue (SAT) samples from healthy monozygotic twin pairs, 22.8-36.2 years of age, who were discordant (ΔBMI >3 kg/m(2), mean length of discordance 6.3 ± 0.3 years, n = 26) and concordant (ΔBMI <3 kg/m(2), n = 14) for body weight, and assessed their detailed mitochondrial metabolic characteristics: mitochondrial-related transcriptomes with dysregulated pathways, mitochondrial DNA (mtDNA) amount, mtDNA-encoded transcripts, and mitochondrial oxidative phosphorylation (OXPHOS) protein levels. We report global expressional downregulation of mitochondrial oxidative pathways with concomitant downregulation of mtDNA amount, mtDNA-dependent translation system, and protein levels of the OXPHOS machinery in the obese compared with the lean co-twins. Pathway analysis indicated downshifting of fatty acid oxidation, ketone body production and breakdown, and the tricarboxylic acid cycle, which inversely correlated with adiposity, insulin resistance, and inflammatory cytokines. Our results suggest that mitochondrial biogenesis, oxidative metabolic pathways, and OXPHOS proteins in SAT are downregulated in acquired obesity, and are associated with metabolic disturbances already at the preclinical stage. PMID:25972572

  16. Adipose tissue and vascular inflammation in coronary artery disease

    Enrica; Golia; Giuseppe; Limongelli; Francesco; Natale; Fabio; Fimiani; Valeria; Maddaloni; Pina; Elvira; Russo; Lucia; Riegler; Renatomaria; Bianchi; Mario; Crisci; Gaetano; Di; Palma; Paolo; Golino; Maria; Giovanna; Russo; Raffaele; Calabrò; Paolo; Calabrò

    2014-01-01

    Obesity has become an important public health issue in Western and developing countries,with well known metabolic and cardiovascular complications.In the last decades,evidence have been growing about the active role of adipose tissue as an endocrine organ in determining these pathological consequences.As a consequence of the expansion of fat depots,in obese subjects,adipose tissue cells develope a phenotypic modification,which turns into a change of the secretory output.Adipocytokines produced by both adipocytes and adipose stromal cells are involved in the modulation of glucose and lipid handling,vascular biology and,moreover,participate to the systemic inflammatory response,which characterizes obesity and metabolic syndrome.This might represent an important pathophysiological link with atherosclerotic complications and cardiovascular events.A great number of adipocytokines have been described recently,linking inflammatory mileu and vascular pathology.The understanding of these pathways is crucial not only from a pathophysiological point of view,but also to a better cardiovascular disease risk stratification and to the identification of possible therapeutic targets.The aim of this paper is to review the role of Adipocytokines as a possible link between obesity and vascular disease.

  17. Adipose tissue-derived stromal cells express neuronal phenotypes

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  18. Adipose tissue-liver axis in alcoholic liver disease

    2016-01-01

    Alcoholic liver disease (ALD) remains an important healthproblem worldwide. The disease spectrum is featuredby early steatosis, steatohepatitis (steatosis with inflammatorycells infiltration and necrosis), with someindividuals ultimately progressing to fibrosis/cirrhosis.Although the disease progression is well characterized,no effective therapies are currently available for thetreatment in humans. The mechanisms underlying theinitiation and progression of ALD are multifactorial andcomplex. Emerging evidence supports that adiposetissue dysfunction contributes to the pathogenesis ofALD. In the first part of this review, we discuss themechanisms whereby chronic alcohol exposure contributedto adipose tissue dysfunction, including cell death,inflammation and insulin resistance. It has been longknown that aberrant hepatic methionine metabolismis a major metabolic abnormality induced by chronicalcohol exposure and plays an etiological role in thepathogenesis of ALD. The recent studies in our groupdocumented the similar metabolic effect of chronicalcohol drinking on methionine in adipose tissue. Inthe second part of this review, we also briefly discussthe recent research progress in the field with a focuson how abnormal methionine metabolism in adiposetissue contributes to adipose tissue dysfunction and liverdamage.

  19. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a lo...

  20. Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid

    Dusaulcy, Rodolphe; Rancoule, Chloé; Grès, Sandra; Wanecq, Estelle; Colom, André; Guigné, Charlotte; van Meeteren, Laurens A.; Moolenaar, Wouter H.; Valet, Philippe; Saulnier-Blache, Jean Sébastien

    2011-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA). ATX is secreted by adipose tissue and its expression is enhanced in obese/insulin-resistant individuals. Here, we analyzed the specific contribution of adipose-ATX to fat expansion associated with nutritional obesity and its consequences on plasma LPA levels. We established ATXF/F/aP2-Cre (FATX-KO) transgenic mice carrying a null ATX allele specifically in adipose tissue. FATX-KO m...

  1. Roles of FGFs as adipokines in adipose tissue development, remodeling, and metabolism

    NobuyukiItoh

    2014-01-01

    White and brown adipose tissues, which store and burn lipids, respectively, play critical roles in energy homeostasis. Fibroblast growth factors (FGFs) are signaling proteins with diverse functions in development, metabolism, and neural function. Among twenty-two FGFs, FGF1, FGF10, and FGF21 play roles as adipokines, adipocyte-secreted proteins, in the development and function of white and brown adipose tissues. FGF1 is a critical transducer in white adipose tissue remodeling. The PPARγ–F...

  2. Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors

    Zaragosi, L.-E.; Wdziekonski, B.; Villageois, P.; Keophiphath, M.; Maumus, M; Tchkonia, T.; Bourlier, V.; Mohsen-Kanson, T.; Ladoux, A.; Elabd, C.; Scheideler, M; Trajanoski, Z.; Takashima, Y.; Amri, E.-Z.; Lacasa, D.

    2010-01-01

    OBJECTIVE Growth of white adipose tissue takes place in normal development and in obesity. A pool of adipose progenitors is responsible for the formation of new adipocytes and for the potential of this tissue to expand in response to chronic energy overload. However, factors controlling self-renewal of human adipose progenitors are largely unknown. We investigated the expression profile and the role of activin A in this process. RESEARCH DESIGN AND METHODS Expression of INHBA/activin A was in...

  3. Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity

    Arner, Erik; Mejhert, Niklas; Kulyté, Agné; Balwierz, Piotr J.; Pachkov, Mikhail; Cormont, Mireille; Lorente-Cebrián, Silvia; Ehrlund, Anna; Laurencikiene, Jurga; Hedén, Per; Dahlman-Wright, Karin; Tanti, Jean-François; Hayashizaki, Yoshihide; Rydén, Mikael; Dahlman, Ingrid

    2012-01-01

    In obesity, white adipose tissue (WAT) inflammation is linked to insulin resistance. Increased adipocyte chemokine (C-C motif) ligand 2 (CCL2) secretion may initiate adipose inflammation by attracting the migration of inflammatory cells into the tissue. Using an unbiased approach, we identified adipose microRNAs (miRNAs) that are dysregulated in human obesity and assessed their possible role in controlling CCL2 production. In subcutaneous WAT obtained from 56 subjects, 11 miRNAs were present ...

  4. Hypercholesterolemia Induces Adipose Dysfunction in Conditions of Obesity and Nonobesity1

    Aguilar, David; Fernandez, Maria Luz

    2014-01-01

    It is well known that hypercholesterolemia can lead to atherosclerosis and coronary heart disease. Adipose tissue represents an active endocrine and metabolic site, which might be involved in the development of chronic disease. Because adipose tissue is a key site for cholesterol metabolism and the presence of hypercholesterolemia has been shown to induce adipocyte cholesterol overload, it is critical to investigate the role of hypercholesterolemia on normal adipose function. Studies in pread...

  5. The effects of facial adiposity on attractiveness and perceived leadership ability

    Re, Daniel Edward; Perrett, David Ian

    2014-01-01

    Facial attractiveness has a positive influence on electoral success both in experimental paradigms and in the real world. One parameter that influences facial attractiveness and social judgements is facial adiposity (a facial correlate to body mass index, BMI). Overweight people have high facial adiposity and are perceived to be less attractive and lower in leadership ability. Here, we used an interactive design in order to assess whether the most attractive level of facial adiposity is also ...

  6. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells

    Daniel Zeve; Millay, Douglas P.; Jin Seo; Graff, Jonathan M.

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicat...

  7. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis

    Rodriguez Jorge; Alfaro Miguel; Lara Fabian; Solano Fabio; Wang Hao; Min Wei-Ping; Ichim Thomas E; Riordan Neil H; Harman Robert J; Patel Amit N; Murphy Michael P; Lee Roland R; Minev Boris

    2009-01-01

    Abstract The stromal vascular fraction (SVF) of adipose tissue is known to contain mesenchymal stem cells (MSC), T regulatory cells, endothelial precursor cells, preadipocytes, as well as anti-inflammatory M2 macrophages. Safety of autologous adipose tissue implantation is supported by extensive use of this procedure in cosmetic surgery, as well as by ongoing studies using in vitro expanded adipose derived MSC. Equine and canine studies demonstrating anti-inflammatory and regenerative effects...

  8. Consequences of Abdominal Adiposity within the Metabolic Syndrome Paradigm in Black People of African Ancestry

    Trudy Gaillard

    2014-01-01

    The metabolic syndrome (MetS) is a constellation of risk factors that are associated with increased risks for coronary heart disease and type 2 diabetes. Although the cause is unknown, abdominal adiposity is considered the underpinning of these metabolic alterations. Hence, increased abdominal adiposity contributes to dyslipidemia, hyperglycemia, beta cell dysfunction, insulin resistance, hypertension and inflammation. The role of abdominal adiposity in the causation of metabolic alterations...

  9. Relationships of generalized and regional adiposity to insulin sensitivity in men.

    Abate, N.; Garg, A.; Peshock, R M; Stray-Gundersen, J.; Grundy, S M

    1995-01-01

    The relative impacts of regional and generalized adiposity on insulin sensitivity have not been fully defined. Therefore, we investigated the relationship of insulin sensitivity (measured using hyperinsulinemic, euglycemic clamp technique with [3-3H]glucose turnover) to total body adiposity (determined by hydrodensitometry) and regional adiposity. The latter was assessed by determining subcutaneous abdominal, intraperitoneal, and retroperitoneal fat masses (using magnetic resonance imaging) a...

  10. Adiposity, hyperinsulinemia, diabetes and Alzheimer’s disease. An epidemiological perspective

    Luchsinger, José Alejandro

    2008-01-01

    The objective of this manuscript is to provide a comprehensive review of the epidemiologic evidence linking the continuum of adiposity, hyperinsulinemia, and diabetes with Alzheimer’s disease. The mechanisms for these associations remain to be elucidated, but may include direct actions from insulin, advanced products of glycosilation, cerebrovascular disease, and products of adipose tissue metabolism. Elevated adiposity in middle age is related to a higher risk of Alzheimer’s disease. The evi...

  11. Regulation of Triglyceride Metabolism. IV. Hormonal regulation of lipolysis in adipose tissue

    Jaworski, Kathy; Sarkadi-Nagy, Eszter; Duncan, Robin E.; Ahmadian, Maryam; Sul, Hei Sook

    2007-01-01

    Triacylglycerol (TAG) stored in adipose tissue can be rapidly mobilized by the hydrolytic action of lipases, with the release of fatty acids (FA) that are used by other tissues during times of energy deprivation. Unlike synthesis of TAG, which occurs not only in adipose tissue but also in other tissues such as liver for very-low-density lipoprotein formation, hydrolysis of TAG, lipolysis, predominantly occurs in adipose tissue. Until recently, hormone-sensitive lipase was considered to be the...

  12. Adipose Overexpression of Desnutrin Promotes Fatty Acid Use and Attenuates Diet-Induced Obesity

    Ahmadian, Maryam; Duncan, Robin E.; Varady, Krista A.; Frasson, Danubia; Hellerstein, Marc K.; Birkenfeld, Andreas L.; Samuel, Varman T.; Shulman, Gerald I.; Wang, Yuhui; Kang, Chulho; Sul, Hei Sook

    2009-01-01

    OBJECTIVE To investigate the role of desnutrin in adipose tissue triacylglycerol (TAG) and fatty acid metabolism. RESEARCH DESIGN AND METHODS We generated transgenic mice overexpressing desnutrin (also called adipose triglyceride lipase [ATGL]) in adipocytes (aP2-desnutrin) and also performed adenoviral-mediated overexpression of desnutrin in 3T3-L1CARΔ1 adipocytes. RESULTS aP2-desnutrin mice were leaner with decreased adipose tissue TAG content and smaller adipocyte size. Overexpression of d...

  13. Defective Differentiation of Adipose Precursor Cells from Lipodystrophic Mice Lacking Perilipin 1

    Ying Lyu; Xueying Su; Jingna Deng; Shangxin Liu; Liangqiang Zou; Xiaojing Zhao; Suning Wei; Bin Geng; Guoheng Xu

    2015-01-01

    Perilipin 1 (Plin1) localizes at the surface of lipid droplets to regulate triglyceride storage and hydrolysis in adipocytes. Plin1 defect leads to low adiposity in mice and partial lipodystrophy in human. This study investigated the roles of Plin1 in adipocyte differentiation. Plin1 null (-/-) mice showed plenty of multilocular adipocytes and small unilocular adipocytes in adipose tissue, along with lack of a subpopulation of adipose progenitor cells capable of in vivo adipogenesis and along...

  14. Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients

    Mracek, T.; Stephens, N. A.; Gao, D.; Bao, Y.; Ross, J A; Rydén, M; Arner, P; Trayhurn, P.; Fearon, K C H; Bing, C

    2011-01-01

    Background: Profound loss of adipose tissue is a hallmark of cancer cachexia. Zinc-α2-glycoprotein (ZAG), a recently identified adipokine, is suggested as a candidate in lipid catabolism. Methods: In the first study, eight weight-stable and 17 cachectic cancer patients (weight loss ⩾5% in previous 6 months) were recruited. Zinc-α2-glycoprotein mRNA and protein expression were assessed in subcutaneous adipose tissue (SAT), subcutaneous adipose tissue morphology was examined and serum ZAG conce...

  15. Loss of adipose fatty acid oxidation does not potentiate obesity at thermoneutrality

    Jieun Lee; Joseph Choi; Susan Aja; Susanna Scafidi; Michael J. Wolfgang

    2016-01-01

    Ambient temperature affects energy intake and expenditure to maintain homeostasis in a continuously fluctuating environment. Here, mice with an adipose-specific defect in fatty acid oxidation (Cpt2A−/−) were subjected to varying temperatures to determine the role of adipose bioenergetics in environmental adaptation and body weight regulation. Microarray analysis of mice acclimatized to thermoneutrality revealed that Cpt2A−/− interscapular brown adipose tissue (BAT) failed to induce the expres...

  16. Estimating adipose tissue in the chest wall using ultrasonic and alternate 40K and biometric measurements

    The percentage of adipose (fat) tissue in the chest wall must be known to accurately measure Pu in the human lung. Correction factors of 100% or more in x-ray detection efficiency are common. Methods using simple 40K and biometric measurement techniques were investigated to determine the adipose content in the human chest wall. These methods predict adipose content to within 15% of the absolute ultrasonic value. These new methods are discussed and compared with conventional ultrasonic measurement techniques

  17. Identification and Functional Characterization of Adipose-specific Phospholipase A2 (AdPLA)*S⃞

    Duncan, Robin E.; Sarkadi-Nagy, Eszter; Jaworski, Kathy; Ahmadian, Maryam; Sul, Hei Sook

    2008-01-01

    Phospholipases A2 (PLA2s) catalyze hydrolysis of fatty acids from the sn-2 position of phospholipids. Here we report the identification and characterization of a membrane-associated intracellular calcium-dependent, adipose-specific PLA2 that we named AdPLA (adipose-specific phospholipase A2). We found that AdPLA was highly expressed specifically in white adipose tissue and was induced during preadipocyte differentiation into adipocytes. Clearance of AdPLA by immuno...

  18. Targeting adipose tissue in the treatment of obesity-associated diabetes.

    Kusminski, Christine M; Bickel, Perry E; Scherer, Philipp E

    2016-09-01

    Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis. PMID:27256476

  19. Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

    Vaicik, Marcella K; Thyboll Kortesmaa, Jill; Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N; Brey, Eric M; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/-) and compared to wild-type (Lama4+/+) control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion. PMID:25310607

  20. Laminin α4 Deficient Mice Exhibit Decreased Capacity for Adipose Tissue Expansion and Weight Gain

    Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N.; Brey, Eric M.; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4−/−) and compared to wild-type (Lama4+/+) control animals. Lama4−/− mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion. PMID:25310607

  1. Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B.

    Digby, J E; Chen, J; Tang, J Y; Lehnert, H; Matthews, R N; Randeva, H S

    2006-10-01

    Orexin-A and orexin-B, via their receptors orexin-1 receptor (OX1R) and orexin-2 receptor (OX2R) have been shown to play a role in the regulation of feeding, body weight, and energy expenditure. Adipose tissue also contributes significantly to the maintenance of body weight by interacting with a complex array of bioactive peptides; however, there are no data as yet on the expression of orexin components in adipose tissue. We, therefore, analyzed the expression of OX1R and OX2R in human adipose tissue and determined functional responses to orexin-A and orexin-B. OX1R and OX2R mRNA expression was detected in subcutaneous (s.c.) and omental adipose tissue and in isolated adipocytes. Protein for OX1R and OX2R was also detected in whole adipose tissue sections and lysates. Treatment with orexin-A, and orexin-B (100 nM, 24 h) resulted in a significant increase in peroxisome proliferator-activated receptors gamma-2 mRNA expression in s.c. adipose tissue (P B treatment (P < 0.05). Glycerol release from omental adipose tissue was also significantly reduced with orexin-A treatment (P < 0.05). These findings demonstrate for the first time the presence of functional orexin receptors in human adipose tissue and suggest a role for orexins in adipose tissue metabolism and adipogenesis. PMID:17065396

  2. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats.

    Tinkov, Alexey A; Popova, Elizaveta V; Polyakova, Valentina S; Kwan, Olga V; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines' levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (prats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity. PMID:25194956

  3. Role of the sympathoadrenergic system in adipose tissue metabolism during exercise in humans

    Stallknecht, Bente; Lorentsen, J; Enevoldsen, L H;

    2001-01-01

    lipolysis. In SCI subjects, the exercise-induced increase in subcutaneous adipose tissue lipolysis was not lower in decentralized than in sympathetically innervated adipose tissue. During exercise the interstitial noradrenaline and adrenaline concentrations were lower in SCI compared with healthy subjects...... clavicular (Cl) and in umbilical (Um) (sympathetically decentralized in SCI) subcutaneous adipose tissue during 1 h of arm cycling exercise at approximately 60 % of the peak rate of oxygen uptake. 3. During exercise, adipose tissue blood flow (ATBF) and interstitial glycerol, lactate and noradrenaline...

  4. Central and Peripheral Endocannabinoids and Cognate Acylethanolamides in Humans: Association with Race, Adiposity, and Energy Expenditure

    Jumpertz, Reiner; Guijarro, Ana; Pratley, Richard E.; Piomelli, Daniele; Krakoff, Jonathan

    2010-01-01

    2-Arachidonoylethanolamide is elevated in cerebrospinal fluid (CSF) of American Indians; in plasma, anandamide correlates strongly with adiposity and in CSF oleoylethanolamide is positively associated with energy expenditure.

  5. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress induced inflammation

    Jieun Lee; Jessica M. Ellis; Michael J. Wolfgang

    2015-01-01

    To understand the contribution of adipose tissue fatty acid oxidation to whole-body metabolism, we generated mice with an adipose-specific knockout of carnitine palmitoyltransferase 2 (CPT2A−/−), an obligate step in mitochondrial long-chain fatty acid oxidation. CPT2A−/− mice became hypothermic after an acute cold challenge, and CPT2A−/− brown adipose tissue (BAT) failed to upregulate thermogenic genes in response to agonist-induced stimulation. The adipose-specific loss of CPT2 resulted in d...

  6. Central adiposity rather than total adiposity measurements are specifically involved in the inflammatory status from healthy young adults.

    Hermsdorff, H.H. (H. H.); Zulet, M.A. (María Ángeles); B. Puchau; Martinez, J. A.

    2011-01-01

    This study assessed the potential association of some proinflammatory markers with adiposity (total vs. central) and metabolic features in young adults. Measurements included body composition, lifestyle features, blood biochemical, and selected inflammatory indicators on 154 healthy subjects (53 M/101 F; 21.5 ± 3 years; 22.1 ± 2.6 kg/m(2)). Those subjects with higher waist circumference (WC) and waist-hip ratio (WHR) showed higher (P 

  7. Stromal vascular progenitors in adult human adipose tissue

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Pfeifer, Melanie E.; Meyer, E. Michael; Péault, Bruno; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    Background The in vivo progenitor of culture-expanded mesenchymal-like adipose-derived stem cells (ADSC) remains elusive, owing in part to the complex organization of stromal cells surrounding the small vessels, and the rapidity with which adipose stromal vascular cells adopt a mesenchymal phenotype in vitro. Methods Immunohistostaining of intact adipose tissue was used to identify 3 markers (CD31, CD34, CD146) which together unambiguously discriminate histologically distinct inner and outer rings of vessel-associated stromal cells, as well as capillary and small vessel endothelial cells. These markers were used in multiparameter flow cytometry in conjunction with stem/progenitor markers (CD90, CD117) to further characterize stromal vascular fraction (SVF) subpopulations. Two mesenchymal and two endothelial populations were isolated by high speed flow cytometric sorting, expanded in short term culture and tested for adipogenesis. Results The inner layer of stromal cells in contact with small vessel endothelium (pericytes) was CD146+/α-SMA+/CD90±/CD34−/CD31−; the outer adventitial stromal ring (designated supra adventitial-adipose stromal cells, SA-ASC) was CD146−/α-SMA−/CD90+/CD34+/CD31−. Capillary endothelial cells were CD31+/CD34+/CD90+ (endothelial progenitor), while small vessel endothelium was CD31+/CD34−/CD90− (endothelial mature). Flow cytometry confirmed these expression patterns and revealed a CD146+/CD90+/CD34+/CD31− pericyte subset that may be transitional between pericytes and SA-ASC. Pericytes had the most potent adipogenic potential, followed by the more numerous SA-ASC. Endothelial populations had significantly reduced adipogenic potential compared to unsorted expanded SVF cells. Conclusions In adipose tissue perivascular stromal cells are organized in two discrete layers, the innermost consisting of CD146+/CD34− pericytes, and the outermost of CD146−/CD34+ SA-ASC, both of which have adipogenic potential in culture. A CD146+/CD

  8. Mesenchymal markers on human adipose stem/progenitor cells

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described 3 major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+) and supra-adventitial adipose stromal cells (SA-ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here we determine the extent to which this mesenchymal expression pattern is expressed on the 3 adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with 14.3±2.8% (mean ± SEM) having >2N DNA. About half (53.1±7.6%) coexpressed CD73 and CD105, and 71.9±7.4% expressed CD90. Pericytes were less proliferative (8.2±3.4% >2N DNA) with a smaller proportion (29.6±6.9% CD73+/CD105+, 60.5±10.2% CD90+) expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes, were both highly proliferative (15.1±3.6% with >2N DNA) and of uniform mesenchymal phenotype (93.3±3.7% CD73+/CD105+, 97.8±0.7% CD90+), suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative (3.7 ± 0.8%>2N DNA) but were also highly mesenchymal in phenotype (94.4±3.2% CD73+/CD105+, 95.5±1.2% CD90+). These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression. PMID:23184564

  9. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita;

    2015-01-01

    time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial......, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over...

  10. Co-methylated Genes in Different Adipose Depots of Pig are Associated with Metabolic, Inflammatory and Immune Processes

    Mingzhou Li, Honglong Wu, Tao Wang, Yudong Xia, Long Jin, Anan Jiang, Li Zhu, Lei Chen, Ruiqiang Li, Xuewei Li

    2012-01-01

    Full Text Available It is well established that the metabolic risk factors of obesity and its comorbidities are more attributed to adipose tissue distribution rather than total adipose mass. Since emerging evidence suggests that epigenetic regulation plays an important role in the aetiology of obesity, we conducted a genome-wide methylation analysis on eight different adipose depots of three pig breeds living within comparable environments but displaying distinct fat level using methylated DNA immunoprecipitation sequencing. We aimed to investigate the systematic association between anatomical location-specific DNA methylation status of different adipose depots and obesity-related phenotypes. We show here that compared to subcutaneous adipose tissues which primarily modulate metabolic indicators, visceral adipose tissues and intermuscular adipose tissue, which are the metabolic risk factors of obesity, are primarily associated with impaired inflammatory and immune responses. This study presents epigenetic evidence for functionally relevant methylation differences between different adipose depots.

  11. Adipocyte Hypertrophy, Inflammation and Fibrosis Characterize Subcutaneous Adipose Tissue of Healthy, Non-Obese Subjects Predisposed to Type 2 Diabetes

    A M Josefin Henninger; Björn Eliasson; Jenndahl, Lachmi E.; Ann Hammarstedt

    2014-01-01

    BACKGROUND: The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes. ...

  12. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it

    Foster, Michelle T.; Softic, Samir; Caldwell, Jody; Kohli, Rohit; deKloet, Annette D; Seeley, Randy J.

    2013-01-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance, and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the...

  13. Intramuscular adipose is derived from a non-Pax3 lineage and required for efficient regeneration of skeletal muscles

    Liu, Weiyi; Liu, Yaqin; Lai, Xinsheng; Kuang, Shihuan

    2011-01-01

    Ectopic accumulation of adipose in the skeletal muscle is associated with muscle wasting, insulin resistance and diabetes. However, the developmental origin of postnatal intramuscular adipose and its interaction with muscle tissue are unclear. We report here that compared to the fast EDL muscles, slow SOL muscles are more enriched with adipogenic progenitors and have higher propensity to form adipose. Using Cre/LoxP mediated lineage tracing in mice, we show that intramuscular adipose in both ...

  14. Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance

    Jones, Julie R.; Barrick, Cordelia; Kim, Kyoung-Ah; Lindner, Jill; Blondeau, Bertrand; FUJIMOTO, Yuka; Shiota, Masakazu; Kesterson, Robert A.; Kahn, Barbara B.; Magnuson, Mark A.

    2005-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) plays a crucial role in adipocyte differentiation, glucose metabolism, and other physiological processes. To further explore the role of PPARγ in adipose tissues, we used a Cre/loxP strategy to generate adipose-specific PPARγ knockout mice. These animals exhibited marked abnormalities in the formation and function of both brown and white adipose tissues. When fed a high-fat diet, adipose-specific PPARγ knockout mice displayed diminished wei...

  15. Relationship of Adiposity and Insulin Resistance Mediated by Inflammation in a Group of Overweight and Obese Chilean Adolescents

    Leiva Laura; Blanco Estela; Díaz Erik; Gahagan Sheila; Reyes Marcela; Lera Lydia; Burrows Raquel

    2011-01-01

    Abstract The mild chronic inflammatory state associated with obesity may be an important link between adiposity and insulin resistance (IR). In a sample of 137 overweight and obese Chilean adolescents, we assessed associations between high-sensitivity C-reactive protein (hs-CRP), IR and adiposity; explored sex differences; and evaluated whether hs-CRP mediated the relationship between adiposity and IR. Positive relationships between hs-CRP, IR and 2 measures of adiposity were found. Hs-CRP wa...

  16. An autoradiographic study of new fat cell formation in adipose tissue in adult mice during malnutrition and refeeding

    The renewal of adipose cells in adult mice has been autoradiographically studied. The number of adipose cells was diminished by eighty percent during malnutrition and the same number of adipose cells proliferated during the refeeding stage. The results of our study showed that adipose tissue, which had previously been believed to be stable in cell number, has the capacity for cell proliferation according to changes in nutritional status. (author)

  17. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Byung Young Park

    Full Text Available It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2 and MMPs (MMP-2 and MMP-9, whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2 in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  18. Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function.

    Moreno-Indias, Isabel; Oliva-Olivera, Wilfredo; Omiste, Antonio; Castellano-Castillo, Daniel; Lhamyani, Said; Camargo, Antonio; Tinahones, Francisco J

    2016-06-01

    Discordant phenotypes, metabolically healthy obese and unhealthy normal-weight individuals, are always interesting to provide important insights into the mechanistic link between adipose tissue dysfunction and associated metabolic alterations. Macrophages can release factors that impair the proper activity of the adipose tissue. Thus, studying subcutaneous and visceral adipose tissues, we investigated for the first time the differences in monocyte/macrophage infiltration, inflammation, and adipogenesis of normal-weight subjects who differed in their degree of metabolic syndrome. The study included 92 normal-weight subjects who differed in their degree of metabolic syndrome. Their anthropometric and biochemical parameters were measured. RNA from subcutaneous and visceral adipose tissues was isolated, and mRNA expression of monocyte/macrophage infiltration (CD68, CD33, ITGAM, CD163, EMR-1, CD206, MerTK, CD64, ITGAX), inflammation (IL-6, tumor necrosis factor alpha [TNFα], IL-10, IL-1b, CCL2, CCL3), and adipogenic and lipogenic capacity markers (PPARgamma, FABP4) were measured. Taken together, our data provide evidence of a different degree of macrophage infiltration between the adipose tissues, with a higher monocyte/macrophage infiltration in subcutaneous adipose tissue in metabolically unhealthy normal-weight subjects, whereas visceral adipose tissue remained almost unaffected. An increased macrophage infiltration of adipose tissue and its consequences, such as a decrease in adipogenesis function, may explain why both the obese and normal-weight subjects can develop metabolic diseases or remain healthy. PMID:26829067

  19. Contact with existing adipose tissue is inductive for adipogenesis in matrigel.

    Kelly, John L

    2006-07-01

    The effect of adipose tissue on inductive adipogenesis within Matrigel (BD Biosciences) was assessed by using a murine chamber model containing a vascular pedicle. Three-chamber configurations that varied in the access to an adipose tissue source were used, including sealed- and open-chamber groups that had no access and limited access, respectively, to the surrounding adipose tissue, and a sealed-chamber group in which adipose tissue was placed as an autograft. All groups showed neovascularization, but varied in the amount of adipogenesis seen in direct relation to their access to preexisting adipose tissue: open chambers showed strong adipogenesis, whereas the sealed chambers had little or no adipose tissue; adipogenesis was restored in the autograft chamber group that contained 2- to 5-mg fat autografts. These showed significantly more adipogenesis than the sealed chambers with no autograft ( p < 0.01). Autografts with 1mg of fat were capable of producing adipogenesis but did so less consistently than the larger autografts. These findings have important implications for adipose tissue engineering strategies and for understanding de novo production of adipose tissue.

  20. Television viewing, computer use, obesity, and adiposity in US preschool children

    There is limited evidence in preschool children linking media use, such as television/video viewing and computer use, to obesity and adiposity. We tested three hypotheses in preschool children: 1) that watching > 2 hours of TV/videos daily is associated with obesity and adiposity, 2) that computer u...

  1. ß-carotene conversion products and their effects on adipose tissue

    Tourniaire, F.; Gouranton, E.; Lintig, von J.; Keijer, J.; Bonet, M.L.; Amengual, J.; Lietz, G.; Landrier, J.F.

    2009-01-01

    Recent epidemiological data suggest that ß-carotene may be protective against metabolic diseases in which adipose tissue plays a key role. Adipose tissue constitutes the major ß-carotene storage tissue and its functions have been shown to be modulated in response to ß-carotene breakdown products, es

  2. In vivo human lipolytic activity in preperitoneal and subdivisions of subcutaneous abdominal adipose tissue

    Enevoldsen, L H; Simonsen, L; Stallknecht, Bente;

    2001-01-01

    We studied eight normal-weight male subjects to examine whether the lipolytic rate of deep subcutaneous and preperitoneal adipose tissues differs from that of superficial abdominal subcutaneous adipose tissue. The lipolytic rates in the superficial anterior and deep posterior subcutaneous abdomin...

  3. A pilot study of sampling subcutaneous adipose tissue to examine biomarkers of cancer risk

    Campbell, Kristin L.; Makar, Karen W.; Kratz, Mario; Foster-Schubert, Karen E.; McTiernan, Anne; Ulrich, Cornelia M.

    2009-01-01

    Examination of adipose tissue biology may provide important insight into mechanistic links for the observed association between higher body fat and risk of several types of cancer, in particular colorectal and breast cancer. We tested two different methods of obtaining adipose tissue from healthy individuals.

  4. Desensitization of human adipose tissue to adrenaline stimulation studied by microdialysis

    Stallknecht, Bente; Bülow, J; Frandsen, E;

    1997-01-01

    1. Desensitization of fat cell lipolysis to catecholamine exposure has been studied extensively in vitro but only to a small extent in human adipose tissue in vivo. 2. We measured interstitial glycerol concentrations by microdialysis in subcutaneous, abdominal adipose tissue in healthy humans...

  5. Physical Activity, Adiposity, and Diabetes Risk in Middle-Aged and Older Chinese Population

    Qin, Li; Corpeleijn, Eva; Jiang, Chaoqiang; Thomas, G. Neil; Schooling, C. Mary; Zhang, Weisen; Cheng, Kar Keung; Leung, Gabriel M.; Stolk, Ronald P.; Lam, Tai Hing

    2010-01-01

    OBJECTIVE- Physical activity may modify the association of adiposity with type 2 diabetes. We investigated the independent and joint association of adiposity and physical activity with fasting plasma glucose, impaired fasting glucose, and type 2 diabetes in a Chinese population. RESEARCH DESIGN AND

  6. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis?

    Enrichot, Elvire; Juge-Aubry, Cristiana E; Pernin, Agnès; Pache, Jean-Claude; Velebit, Valdimir; Dayer, Jean-Michel; Meda, Paolo; Chizzolini, Carlo; Meier, Christoph A

    2005-01-01

    Obesity is associated with an increased risk for cardiovascular disease. Although it is known that white adipose tissue (WAT) produces numerous proinflammatory and proatherogenic cytokines and chemokines, it is unclear whether adipose-derived chemotactic signals affect the chronic inflammation in atherosclerosis.

  7. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Aimee L. Dordevic

    2015-07-01

    Full Text Available Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD; body mass index (BMI 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water, carbohydrate (maltodextrin or lipid (dairy-cream. Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h, as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1, interleukin 6 (IL-6 and tumor necrosis factor-α (TNF-α increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03 and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001 decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  8. The Relationship of Body Size and Adiposity to Source of Self-Esteem in College Women

    Moncur, Breckann; Bailey, Bruce W.; Lockhart, Barbara D.; LeCheminant, James D.; Perkins, Annette E.

    2013-01-01

    Background: Studies looking at self-esteem and body size or adiposity generally demonstrate a negative relationship. However, the relationship between the source of self-esteem and body size has not been examined in college women. Purpose: The purpose of this study was to evaluate the relationship of body size and adiposity to source of…

  9. A novel role for adipose ephrin-B1 in inflammatory response.

    Takuya Mori

    Full Text Available AIMS: Ephrin-B1 (EfnB1 was selected among genes of unknown function in adipocytes or adipose tissue and subjected to thorough analysis to understand its role in the development of obesity. METHODS AND RESULTS: EfnB1 mRNA and protein levels were significantly decreased in adipose tissues of obese mice and such reduction was mainly observed in mature adipocytes. Exposure of 3T3-L1 adipocytes to tumor necrosis factor-α (TNF-α and their culture with RAW264.7 cells reduced EFNB1 levels. Knockdown of adipose EFNB1 increased monocyte chemoattractant protein-1 (Mcp-1 mRNA level and augmented the TNF-α-mediated THP-1 monocyte adhesion to adipocytes. Adenovirus-mediated adipose EFNB1-overexpression significantly reduced the increase in Mcp-1 mRNA level induced by coculture of 3T3-L1 adipocytes with RAW264.7 cells. Monocyte adherent assay showed that adipose EfnB1-overexpression significantly decreased the increase of monocyte adhesion by coculture with RAW264.7 cells. TNF-α-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2 was reduced by EFNB1-overexpression. CONCLUSIONS: EFNB1 contributes to the suppression of adipose inflammatory response. In obesity, reduction of adipose EFNB1 may accelerate the vicious cycle involved in adipose tissue inflammation.

  10. Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans

    Mulla, N A; Simonsen, L; Bülow, J

    2000-01-01

    One purpose of the present experiments was to examine whether the relative workload or the absolute work performed is the major determinant of the lipid mobilization from adipose tissue during exercise. A second purpose was to determine the co-ordination of skeletal muscle and adipose tissue lipid...

  11. Brown adipose tissue. III. Effect of ethanol, nicotine and caffeine exposure.

    Sidlo, J; Zaviacic, M; Trutzová, H

    1996-05-01

    Brown adipose tissue is known to be the most important organ for generating heat in non-shivering thermogenesis. Process of thermogenesis and thermoregulation may be affected by many drugs. The paper deals with actual literary data of effect of ethanol, nicotine and caffeine on brown adipose tissue, heat production and its regulation in experimental animals and in human. PMID:9560910

  12. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  13. Adipose tissue lipolysis is increased during a repeated bout of aerobic exercise

    Stich, V; de Glisezinski, I; Berlan, M;

    2000-01-01

    The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate...

  14. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    A. Grefhorst (Aldo); J.C. van den Beukel (Johanna); A.F. van Houten (A.); J. Steenbergen (Jacobie); J.A. Visser (Jenny); A.P.N. Themmen (Axel)

    2015-01-01

    textabstractBackground: In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed

  15. Configuration of Fibrous and Adipose Tissues in the Cavernous Sinus

    Liang, Liang; Gao, Fei; Xu, Qunyuan; Zhang, Ming

    2014-01-01

    Objective Three-dimensional anatomical appreciation of the matrix of the cavernous sinus is one of the crucial necessities for a better understanding of tissue patterning and various disorders in the sinus. The purpose of this study was to reveal configuration of fibrous and adipose components in the cavernous sinus and their relationship with the cranial nerves and vessels in the sinus and meningeal sinus wall. Materials and Methods Nineteen cadavers (8 females and 11 males; age range, 54–89 years; mean age, 75 years) were prepared as transverse (6 sets), coronal (3 sets) and sagittal (10 sets) plastinated sections that were examined at both macroscopic and microscopic levels. Results Two types of the web-like fibrous networks were identified and localized in the cavernous sinus. A dural trabecular network constituted a skeleton-frame in the sinus and contributed to the sleeves of intracavernous cranial nerves III, IV, V1, V2 and VI. A fine trabecular network, or adipose tissue, was the matrix of the sinus and was mainly distributed along the medial side of the intracavernous cranial nerves, forming a dumbbell-shaped adipose zone in the sinus. Conclusions This study revealed the nature, fine architecture and localization of the fine and dural trabecular networks in the cavernous sinus and their relationship with intracavernous cranial nerves and vessels. The results may be valuable for better understanding of tissue patterning in the cranial base and better evaluation of intracavernous disorders, e.g. the growth direction and extent of intracavernous tumors. PMID:24586578

  16. The effects of exercise modalities on adiposity in obese rats

    Guilherme Fleury Fina Speretta

    2012-12-01

    Full Text Available OBJECTIVE: The aim of the present study was to evaluate the effect of both swimming and resistance training on tumor necrosis factor-alpha and interleukin-10 expression, adipocyte area and lipid profiles in rats fed a high-fat diet. METHODS: The study was conducted over an eight-week period on Wistar adult rats, who were divided into six groups as follows (n = 10 per group: sedentary chow diet, sedentary high-fat diet, swimming plus chow diet, swimming plus high-fat diet, resistance training plus chow diet, and resistance training plus high-fat diet. Rats in the resistance training groups climbed a vertical ladder with weights on their tails once every three days. The swimming groups swam for 60 minutes/day, five days/week. RESULTS: The high-fat diet groups had higher body weights, a greater amount of adipose tissue, and higher tumor necrosis factor-alpha expression in the visceral adipose tissue. Furthermore, the high-fat diet promoted a negative change in the lipid profile. In the resistance training high-fat group, the tumor necrosis factor-alpha expression was lower than that in the swimming high-fat and sedentary high-fat groups. Moreover, smaller visceral and retroperitoneal adipocyte areas were found in the resistance training high-fat group than in the sedentary high-fat group. In the swimming high-fat group, the tumor necrosis factor-alpha expression was lower and the epididymal and retroperitoneal adipocyte areas were smaller compared with the sedentary high-fat group. CONCLUSION: The results showed that both exercise modalities improved the lipid profile, adiposity and obesity-associated inflammation in rats, suggesting their use as an alternative to control the deleterious effects of a high-fat diet in humans.

  17. Transketolase Haploinsufficiency Reduces Adipose Tissue and Female Fertility in Mice

    Xu, Zheng-Ping; Wawrousek, Eric F.; Piatigorsky, Joram

    2002-01-01

    Transketolase (TKT) is a ubiquitous enzyme used in multiple metabolic pathways. We show here by gene targeting that TKT-null mouse embryos are not viable and that disruption of one TKT allele can cause growth retardation (≈35%) and preferential reduction of adipose tissue (≈77%). Other TKT+/− tissues had moderate (≈33%; liver, gonads) or relatively little (≈7 to 18%; eye, kidney, heart, brain) reductions in mass. These mice expressed a normal level of growth hormone and reduced leptin levels....

  18. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Carvalho, A.M.; A.L.M. Yamada; M.A. Golim; L.E.C. Álvarez; L.L. Jorge; M.L. Conceição; E. Deffune; C.A. Hussni; A.L.G. Alves

    2013-01-01

    Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs) in horses through (1) the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2) flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to...

  19. Induced Differentiation of Adipose-derived Stromal Cells into Myoblasts

    吴桂珠; 郑秀; 江忠清; 王金华; 宋岩峰

    2010-01-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells(ADSCs) into myoblasts,which may provide a new strategy for tissue engineering in patients with stress urinary incontinence(SUI).ADSCs,isolated and cultured ex vivo,were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine(5-aza),5% FBS,and 5% horse serum.Cellular morphology was observed under an i...

  20. Direct effects of leptin on brown and white adipose tissue.

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin

  1. Interleukin-6 production in human subcutaneous abdominal adipose tissue

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    change was observed during exercise. Post-exercise the IL-6 output began to increase after 30 min. Three hours post-exercise it was 58.6 +/- 22.2 pg (100 g)(-1) min(-1). In the control experiments the IL-6 output also increased, but it only reached a level of 3.5 +/- 0.8 pg (100 g)(-1) min(-1). The...... begin to increase. Thus, we suggest that the enhanced IL-6 production post-exercise in abdominal, subcutaneous adipose tissue may act locally via autocrine/paracrine mechanisms influencing lipolysis and fatty acid mobilization rate from this lipid depot....

  2. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis

    McKenney, Mikaela L.; Schultz, Kyle A.; Boyd, Jack H.; Byrd, James P; Alloosh, Mouhamad; Teague, Shawn D.; Arce-Esquivel, Arturo A.; Fain, John N.; Laughlin, M. Harold; Sacks, Harold S.; Sturek, Michael

    2014-01-01

    Background In humans there is a positive association between epicardial adipose tissue (EAT) volume and coronary atherosclerosis (CAD) burden. We tested the hypothesis that EAT contributes locally to CAD in a pig model. Methods Ossabaw miniature swine (n = 9) were fed an atherogenic diet for 6 months to produce CAD. A 15 mm length by 3–5 mm width coronary EAT (cEAT) resection was performed over the middle segment of the left anterior descending artery (LAD) 15 mm distal to the left main bifur...

  3. Preweaning food intake influences the adiposity of young adult baboons.

    Lewis, D. S.; Bertrand, H A; McMahan, C.A.; McGill, H. C.; Carey, K D; Masoro, E J

    1986-01-01

    The hypothesis that preweaning nutrition influences adult fat cell number and adiposity was tested in baboons. Newborn baboons were fed Similac formulas with caloric densities of 40.5 kcal (underfed), 67.5 kcal (fed normally), and 94.5 kcal (overfed) per 100 g formula. From weaning (16 wk) until necropsy at 5 yr of age all baboons were fed the same diet. At necropsy, fat cell number and fat cell size in 10 fat depots were measured. Female baboons overfed as infants had markedly greater fat de...

  4. Have we entered the brown adipose tissue renaissance?

    Ravussin, E.; Kozak, L P

    2009-01-01

    In the 1970s and 1980s, it was observed that rodents could offset excess calories ingested when they were fed a human-like `cafeteria diet'. Although it was erroneously concluded that this so-called diet-induced thermogenesis was because of brown adipose tissue (BAT), it led to efforts to test whether variations in brown fat in humans may explain the susceptibility to obesity. However, from evidence on the inability of ephedrine or beta-3 adrenergic agonists to induce BAT thermogenesis, it wa...

  5. n-3 PUFA: bioavailability and modulation of adipose tissue function

    Kopecký, Jan; Rossmeisl, Martin; Flachs, Pavel; Kuda, Ondřej; Brauner, Petr; Jílková, Zuzana; Staňková, B.; Tvrzická, E.; Bryhn, M.

    2009-01-01

    Roč. 68, č. 4 (2009), s. 361-369. ISSN 0029-6651. [Meeting of the Nutrition Society. Edinburgh, 07.04.2009-08.04.2009] R&D Projects: GA ČR(CZ) GA303/08/0664; GA ČR(CZ) GD305/08/H037 Grant ostatní: EC(XE) LSHM-CT-2004-005272 Institutional research plan: CEZ:AV0Z50110509 Keywords : n-3 PUFA * DHA * adipose tissue Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.321, year: 2009

  6. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  7. File list: InP.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available InP.Adp.10.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: NoD.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: InP.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available InP.Adp.20.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: NoD.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: InP.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available InP.Adp.50.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: NoD.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  13. Vascular and metabolic effects of adrenaline in adipose tissue in type 2 diabetes

    Tobin, L; Simonsen, L; Galbo, H; Bülow, Jens

    2012-01-01

    Objective:The aim was to investigate adipose tissue vascular and metabolic effects of an adrenaline infusion in vivo in subjects with and without type 2 diabetes mellitus (T2DM).Design:Clinical intervention study with 1-h intravenous adrenaline infusion.Subjects:Eight male overweight T2DM subjects...... and eight male weight-matched, non-T2DM subjects were studied before, during and after an 1-h intravenous adrenaline infusion. Adipose tissue blood flow (ATBF) was determined by Xenon wash-out technique, and microvascular volume in the adipose tissue was studied by contrast-enhanced ultrasound imaging....... Adipose tissue fluxes of glycerol, non-esterified fatty acids (NEFA), triacylglycerol and glucose were measured by Fick's principle after catherisation of a radial artery and a vein draining the abdominal, subcutaneous adipose tissue.Results:ATBF increased similarly in both groups during the adrenaline...

  14. Effect of training on epinephrine-stimulated lipolysis determined by microdialysis in human adipose tissue

    Stallknecht, Bente; Simonsen, L; Bülow, J; Vinten, Jørgen; Galbo, H

    Trained humans (Tr) have a higher fat oxidation during submaximal physical work than sedentary humans (Sed). To investigate whether this reflects a higher adipose tissue lipolytic sensitivity to catecholamines, we infused epinephrine (0.3 nmol.kg-1.min-1) for 65 min in six athletes and six...... sedentary young men. Glycerol was measured in arterial blood, and intercellular glycerol concentrations in abdominal subcutaneous adipose tissue were measured by microdialysis. Adipose tissue blood flow was measured by 133Xe-washout technique. From these measurements adipose tissue lipolysis was calculated....... During epinephrine infusion intercellular glycerol concentrations were lower, but adipose tissue blood flow was higher in trained compared with sedentary subjects (P <0.05). Glycerol output from subcutaneous tissue (Tr: 604 +/- 322 nmol.100 g-1.min-1; Sed: 689 +/- 203; mean +/- SD) as well as arterial...

  15. Changes in the relative thickness of individual subcutaneous adipose tissue layers in growing pigs

    McEvoy, Fintan; Strathe, Anders Bjerring; Madsen, Mads T.; Svalastoga, Eiliv Lars

    2007-01-01

    longevity and finally to assist in the calculation of payments to producers that allow for general adiposity. Currently for reasons of tradition and ease, total adipose thickness measurements are made at one or multiple sites although it has been long recognized that up to three well defined layers (outer...... (L1), middle (L2), and inner (L3)) may be present to make up the total. Various features and properties of these layers have been described. This paper examines the contribution of each layer to total adipose thickness at three time points and describes the change in thickness of each layer per unit...... thickness per unit change in body weight was greatest for L2, followed by L1 and L3. Conclusion: These results demonstrate that subcutaneous adipose layers grow at different rates These results demonstrate that subcutaneous adipose layers grow at different rates relative to each other and to change in body...

  16. The effects of facial adiposity on attractiveness and perceived leadership ability.

    Re, Daniel E; Perrett, David I

    2014-01-01

    Facial attractiveness has a positive influence on electoral success both in experimental paradigms and in the real world. One parameter that influences facial attractiveness and social judgements is facial adiposity (a facial correlate to body mass index, BMI). Overweight people have high facial adiposity and are perceived to be less attractive and lower in leadership ability. Here, we used an interactive design in order to assess whether the most attractive level of facial adiposity is also perceived as most leader-like. We found that participants reduced facial adiposity more to maximize attractiveness than to maximize perceived leadership ability. These results indicate that facial appearance impacts leadership judgements beyond the effects of attractiveness. We suggest that the disparity between optimal facial adiposity in attractiveness and leadership judgements stems from social trends that have produced thin ideals for attractiveness, while leadership judgements are associated with perception of physical dominance. PMID:23971489

  17. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan;

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal ad......), particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance....... elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs......We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal...

  18. Metabolic effects of interleukin-6 in human splanchnic and adipose tissue

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    Interleukin-6 (IL-6) was infused intravenously for 2.5 h in seven healthy human volunteers at a dose giving rise to a circulating IL-6 concentration of approximately 35 ng l(-1). The metabolic effects of this infusion were studied in subcutaneous adipose tissue on the anterior abdominal wall and in...... the IL-6 infusion. It is concluded that IL-6 elicits lipolytic effects in human adipose tissue in vivo, and that IL-6 also has effects on the splanchnic lipid and carbohydrate metabolism....... the splanchnic tissues by the Fick principle after catheterizations of an artery, a subcutaneous vein draining adipose tissue, and a hepatic vein, and measurements of regional adipose tissue and splanchnic blood flows. In control studies without IL-6 infusion subcutaneous adipose tissue metabolism was...

  19. Numerous Genes in Loci Associated With Body Fat Distribution Are Linked to Adipose Function.

    Dahlman, Ingrid; Rydén, Mikael; Brodin, David; Grallert, Harald; Strawbridge, Rona J; Arner, Peter

    2016-02-01

    Central fat accumulation is a strong risk factor for type 2 diabetes. Genome-wide association studies have identified numerous loci associated with body fat distribution. The objectives of the current study are to examine whether genes in genetic loci linked to fat distribution can be linked to fat cell size and number (morphology) and/or adipose tissue function. We show, in a cohort of 114 women, that almost half of the 96 genes in these loci are indeed associated with abdominal subcutaneous adipose tissue parameters. Thus, adipose mRNA expression of the genes is strongly related to adipose morphology, catecholamine-induced lipid mobilization (lipolysis), or insulin-stimulated lipid synthesis in adipocytes (lipogenesis). In conclusion, the genetic influence on body fat distribution could be mediated via several specific alterations in adipose tissue morphology and function, which in turn may influence the development of type 2 diabetes. PMID:26798124

  20. Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity

    Kraunsøe, Regitze; Boushel, Robert Christopher; Hansen, Christina Neigaard;

    2010-01-01

    Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human...... abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples.......05) higher in visceral (0.95 +/- 0.05 and 1.15 +/- 0.06 pmol O(2) s(1) mg(1), respectively) compared with subcutaneous (0.76 +/- 0.04 and 0.98 +/- 0.05 pmol O(2) s(1) mg(1), respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P <0.05) lower mitochondrial respiration...

  1. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery

    Niada, S; L.M. Ferreira; Arrigoni, E.; Addis, A.; M. Campagnol; E. Broccaioli; Brini, A T

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. Metho...

  2. Testing the fetal overnutrition hypothesis: the relationship of maternal and paternal adiposity to adiposity, insulin resistance and cardiovascular risk factors in Indian children

    Veena, S. R.; Krishnaveni, G.V.; Karat, S. C.; Osmond, C.; Fall, C

    2013-01-01

    Objective We aimed to test the fetal overnutrition hypothesis by comparing the associations of maternal and paternal adiposity (sum of skinfolds) with adiposity and cardiovascular risk factors in children. Design Children from a prospective birth cohort had anthropometry, fat percentage (bio-impedance), plasma glucose, insulin and lipid concentrations and blood pressure measured at 9·5 years of age. Detailed anthropometric measurements were recorded for mothers (at 30 ± 2 weeks’ gestation...

  3. Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    Toh, Shen Yon; Gong, Jingyi; Du, Guoli; Li, John Zhong; Yang, Shuqun; Ye, Jing; Yao, Huilan; Zhang, Yinxin; Xue, Bofu; Li, Qing; Yang, Hongyuan; Wen, Zilong; Li, Peng

    2008-01-01

    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27 −/− mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse st...

  4. Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    Shen Yon Toh; Jingyi Gong; Guoli Du; John Zhong Li; Shuqun Yang; Jing Ye; Huilan Yao; Yinxin Zhang; Bofu Xue; Qing Li; Hongyuan Yang; Zilong Wen; Peng Li

    2008-01-01

    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/-) mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse s...

  5. Leucine Deprivation Decreases Fat Mass by Stimulation of Lipolysis in White Adipose Tissue and Upregulation of Uncoupling Protein 1 (UCP1) in Brown Adipose Tissue

    Ying CHENG; Meng, Qingshu; Wang, Chunxia; Li, Houkai; Huang, Zhiying; Chen, Shanghai; Xiao, Fei; Guo, Feifan

    2009-01-01

    OBJECTIVE White adipose tissue (WAT) and brown adipose tissue (BAT) play distinct roles in adaptation to changes in nutrient availability, with WAT serving as an energy store and BAT regulating thermogenesis. We previously showed that mice maintained on a leucine-deficient diet unexpectedly experienced a dramatic reduction in abdominal fat mass. The cellular mechanisms responsible for this loss, however, are unclear. The goal of current study is to investigate possible mechanisms. RESEARCH DE...

  6. Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures

    Werner, Katharina Julia

    2014-01-01

    Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the ap...

  7. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    Ribeiro Ricardo

    2012-09-01

    Full Text Available Abstract Background Periprostatic (PP adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia. Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated. Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis, whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH. Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable

  8. Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

    Mohamadreza Baghaban Eslaminejad

    2011-01-01

    Full Text Available Objective(sSome investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored.Materials and MethodsAdherent cells were isolated from the collagenase digests of adipose tissues excised from rat epicardial and epididymal regions and propagated with several subcultures. The cells were then investigated whether or not they were able to differentiate into bone, cartilage and adipose cell lineages. Studied cells from two adipose tissues were also compared with respect to their in vitro proliferation capacity. The presence of senescent cells in the culture was determined and compared using senescence-associated (SA ß-galactosidase staining method. ResultsSuccessful differentiations of the cells were indicative of their mesenchymal stem cells (MSCs identity. Epicardial adipose-derived cells tended to have a short population doubling time (45±9.6 hr than the epididymal adipose-derived stem cells (69±16 hr, P< 0.05. Colonogenic activity and the growth curve characteristics were all better in the culture of stem cells derived from epicardial compared to epididymal adipose tissue. Comparatively more percentage of senescent cells was present at the cultures derived from epididymal adipose tissue (P< 0.05.ConclusionOur data emphasize on the differences existed between the stem cells derived from adipose depots of different anatomical sites in terms of their proliferative capacity and in vitro aging. Such data can help understand varying results reported by different laboratories involved in adipose stem cell investigations.

  9. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers.

    Jeffrey Deiuliis

    Full Text Available BACKGROUND: The development of insulin resistance (IR in mouse models of obesity and type 2 diabetes mellitus (DM is characterized by progressive accumulation of inflammatory macrophages and subpopulations of T cells in the visceral adipose. Regulatory T cells (Tregs may play a critical role in modulating tissue inflammation via their interactions with both adaptive and innate immune mechanisms. We hypothesized that an imbalance in Tregs is a critical determinant of adipose inflammation and investigated the role of Tregs in IR/obesity through coordinated studies in mice and humans. METHODS AND FINDINGS: Foxp3-green fluorescent protein (GFP "knock-in" mice were randomized to a high-fat diet intervention for a duration of 12 weeks to induce DIO/IR. Morbidly obese humans without overt type 2 DM (n = 13 and lean controls (n = 7 were recruited prospectively for assessment of visceral adipose inflammation. DIO resulted in increased CD3(+CD4(+, and CD3(+CD8(+ cells in visceral adipose with a striking decrease in visceral adipose Tregs. Treg numbers in visceral adipose inversely correlated with CD11b(+CD11c(+ adipose tissue macrophages (ATMs. Splenic Treg numbers were increased with up-regulation of homing receptors CXCR3 and CCR7 and marker of activation CD44. In-vitro differentiation assays showed an inhibition of Treg differentiation in response to conditioned media from inflammatory macrophages. Human visceral adipose in morbid obesity was characterized by an increase in CD11c(+ ATMs and a decrease in foxp3 expression. CONCLUSIONS: Our experiments indicate that obesity in mice and humans results in adipose Treg depletion. These changes appear to occur via reduced local differentiation rather than impaired homing. Our findings implicate a role for Tregs as determinants of adipose inflammation.

  10. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  11. Adiposity, obesity, and arterial aging: longitudinal study of aortic stiffness in the Whitehall II cohort.

    Brunner, Eric J; Shipley, Martin J; Ahmadi-Abhari, Sara; Tabak, Adam G; McEniery, Carmel M; Wilkinson, Ian B; Marmot, Michael G; Singh-Manoux, Archana; Kivimaki, Mika

    2015-08-01

    We sought to determine whether adiposity in later midlife is an independent predictor of accelerated stiffening of the aorta. Whitehall II study participants (3789 men; 1383 women) underwent carotid-femoral applanation tonometry at the mean age of 66 and again 4 years later. General adiposity by body mass index, central adiposity by waist circumference and waist:hip ratio, and fat mass percent by body impedance were assessed 5 years before and at baseline. In linear mixed models adjusted for age, sex, ethnicity, and mean arterial pressure, all adiposity measures were associated with aortic stiffening measured as increase in pulse wave velocity (PWV) between baseline and follow-up. The associations were similar in the metabolically healthy and unhealthy, according to Adult Treatment Panel-III criteria excluding waist circumference. C-reactive protein and interleukin-6 levels accounted for part of the longitudinal association between adiposity and PWV change. Adjusting for chronic disease, antihypertensive medication and risk factors, standardized effects of general and central adiposity and fat mass percent on PWV increase (m/s) were similar (0.14, 95% confidence interval: 0.05-0.24, P=0.003; 0.17, 0.08-0.27, P<0.001; 0.14, 0.05-0.22, P=0.002, respectively). Previous adiposity was associated with aortic stiffening independent of change in adiposity, glycaemia, and lipid levels across PWV assessments. We estimated that the body mass index-linked PWV increase will account for 12% of the projected increase in cardiovascular risk because of high body mass index. General and central adiposity in later midlife were strong independent predictors of aortic stiffening. Our findings suggest that adiposity is an important and potentially modifiable determinant of arterial aging. PMID:26056335

  12. Adipose-Specific Disruption of Signal Transducer and Activator of Transcription 3 Increases Body Weight and Adiposity

    Cernkovich, Erin R.; Deng, Jianbei; Bond, Michael C.; Combs, Terry P.; Harp, Joyce B.

    2007-01-01

    To determine the role of STAT3 in adipose tissue, we used Cre-loxP DNA recombination to create mice with an adipocyte-specific disruption of the STAT3 gene (ASKO mice). aP2-Cre-driven disappearance of STAT3 expression occurred on d 6 of adipogenesis, a time point when preadipocytes have already undergone conversion to adipocytes. Thus, this knockout model examined the role of STAT3 in mature but not differentiating adipocytes. Beginning at 9 wk of age, ASKO mice weighed more than their litter...

  13. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development

    Basarab John A; Moore Stephen S; Dodson Michael V; Jin Weiwu; Guan Le Luo

    2010-01-01

    Abstract Background MicroRNAs (miRNAs), a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis). However, no miRNA to date has been reported to modulate adipogenesis and lipid deposition in beef cattle. Results The expression patterns of 89 miRNAs including four bovine specific miRNAs in subcutaneous adipose tissues from three groups of crossbred steers differing in backfat thi...

  14. Case Reports of Adipose-derived Stem Cell Therapy

    Min Su Jung

    2012-01-01

    Full Text Available With the gradual increase of cases using fillers, cases of patients treated by non-medicalprofessionals or inexperienced physicians resulting in complications are also increasing. Weherein report 2 patients who experienced acute complications after receiving filler injectionsand were successfully treated with adipose-derived stem cell (ADSCs therapy. Case 1 wasa 23-year-old female patient who received a filler (Restylane injection in her forehead,glabella, and nose by a non-medical professional. The day after her injection, inflammationwas observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who receiveda filler injection of hyaluronic acid gel (Juvederm on her nasal dorsum and tip at a privateclinic. She developed erythema and swelling in the filler-injected area A solution containingADSCs harvested from each patient’s abdominal subcutaneous tissue was injected intothe lesion at the subcutaneous and dermis levels. The wounds healed without additionaltreatment. With continuous follow-up, both patients experienced only fine linear scars 6months postoperatively. By using adipose-derived stem cells, we successfully treated theacute complications of skin necrosis after the filler injection, resulting in much less scarring,and more satisfactory results were achieved not only in wound healing, but also in esthetics.

  15. Carotid Repair Using Autologous Adipose-Derived Endothelial Cells

    Froehlich, Harald; Gulati, Rajiv; Boilson, Barry; Witt, Tyra; Harbuzariu, Adriana; Kleppe, Laurel; Dietz, Allan B.; Lerman, Amir; Simari, Robert D.

    2009-01-01

    Background and Purpose Adipose tissue is an abundant source of endothelial cells as well as stem and progenitor cells which can develop an endothelial phenotype. It has been demonstrated that these cells have distinct angiogenic properties in vitro and in vivo. However, whether these cells have the capacity to directly improve large vessel form and function following vascular injury remains unknown. To define whether delivery of adipose-derived endothelial cells (ADECs) would improve healing of injured carotid arteries, a rabbit model of acute arterial injury was employed. Methods Autologous rabbit ADECS were generated utilizing defined culture conditions. To test the ability of ADECs to enhance carotid artery repair, cells were delivered intra-arterially following acute balloon injury. Additional delivery studies were performed following functional selection of cells prior to delivery. Results Following rabbit omental fat harvest and digestion, a proliferative, homogenous, and distinctly endothelial population of ADECs was identified. Direct delivery of autologous ADECs resulted in marked re-endothelialization 48 hours following acute vascular injury as compared to saline controls (82.2 ±26.9% vs 4.2±3.0% pADECs that were selected for their ability to take up acetylated LDL significantly improved vasoreactivity and decreased intimal formation following vascular injury. Conclusions Taken together, these data suggest that ADECs represent an autologous source of proliferative endothelial cells which demonstrate the capacity to rapidly improve re-endothelialization, improve vascular reactivity, and decrease intimal formation in a carotid artery injury model. PMID:19286583

  16. Contribution of adipose tissue to health span and longevity.

    Huffman, Derek M; Barzilai, Nir

    2010-01-01

    Adipose tissue accounts for approximately 20% (lean) to >50% (in extreme obesity) of body mass and is biologically active through its secretion of numerous peptides and release and storage of nutrients such as free fatty acids. Studies in rodents and humans have revealed that body fat distribution, including visceral fat (VF), subcutaneous (SC) fat and ectopic fat are critical for determining the risk posed by obesity. Specific depletion or expansion of the VF depot using genetic or surgical strategies in animal models has proven to have direct effects on metabolic characteristics and disease risk. In humans, there is compelling evidence that abdominal obesity most strongly predicts mortality risk, while in rats, surgical removal of VF improves mean and maximum life span. There is also growing evidence that fat deposition in ectopic depots such as skeletal muscle and liver can cause lipotoxicity and impair insulin action. Conversely, expansion of SC adipose tissue may confer protection from metabolic derangements by serving as a 'metabolic sink' to limit both systemic lipids and the accrual of visceral and ectopic fat. Treatments targeting the prevention of fat accrual in these harmful depots should be considered as a primary target for improving human health span and longevity. PMID:20703052

  17. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  18. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  19. Algorithms for muscle oxygenation monitoring corrected for adipose tissue thickness

    Geraskin, Dmitri; Platen, Petra; Franke, Julia; Kohl-Bareis, Matthias

    2007-07-01

    The measurement of skeletal muscle oxygenation by NIRS methods is obstructed by the subcutaneous adipose tissue which might vary between muscle haemoglobin / myoglobin concentrations. First, we demonstrate by comparison with ultrasound imaging that the optical lipid signal peaking at 930 nm is a good predictor of the adipose tissue thickness (ATT). Second, the algorithm is based on measurements of the wavelength dependence of the slope ΔA/Δρ of attenuation A with respect to source detector distance ρ and Monte Carlo simulations which estimate the muscle absorption coefficient based on this slope and the additional information of the ATT. Third, we illustrate the influence of the wavelength dependent transport scattering coefficient of the new algorithm by using the solution of the diffusion equation for a two-layered turbid medium. This method is tested on experimental data measured on the vastus lateralis muscle of volunteers during an incremental cycling exercise under normal and hypoxic conditions (corresponding to 0, 2000 and 4000 m altitude). The experimental setup uses broad band detection between 700 and 1000 nm at six source-detector distances. We demonstrate that the description of the experimental data as judged by the residual spectrum is significantly improved and the calculated changes in oxygen saturation are markedly different when the ATT correction is included.

  20. Changes in lipolysis in rat adipose tissue during continuous irradiation

    Changes in lipolysis were monitored by measuring the release of non-esterified fatty acids (NEFA) and glycerol under basal conditions and after stimulation with L-noradrenaline in rat adipose tissue in the course of continuous irradiation with daily gamma doses of 0.57 Gy (60 R) for 50 days. As compared with the control animals, lipolysis in the irradiated rats was lower on days 3 to 14, and higher on days 21 to 25 to 32 and at the end of the screening period (day 50) of continuous irradiation. The changes in lipolysis in the course of irradiation reflected individual stages of the general adaptation syndrome. Many changes were modified by the effect of non-specific factors due to the experimental field and the starvation prior to the analysis. Changes in lipolysis were connected with changes in the mobilization of fatty acids and the concentrations of NEFA in white adipose tissue with changes in serum lipids predominantly in the period of 21 to 25 days of continuous irradiation. (author)

  1. Efficient Isolation of Cardiac Stem Cells from Brown Adipose

    Zhiqiang Liu

    2010-01-01

    Full Text Available Cardiac stem cells represent a logical cell type to exploit in cardiac regeneration. The efficient harvest of cardiac stem cells from a suitable source would turn promising in cardiac stem cell therapy. Brown adipose was recently found to be a new source of cardiac stem cells, instrumental to myocardial regeneration. Unfortunately, an efficient method for the cell isolation is unavailable so far. In our study we have developed a new method for the efficient isolation of cardiac stem cells from brown adipose by combining different enzymes. Results showed that the total cell yield dramatically increased (more than 10 times, P<.01 compared with that by previous method. The content of CD133-positive cells (reported to differentiate into cardiomyocytes with a high frequency was much higher than that in the previous report (22.43% versus 3.5%. Moreover, the isolated cells could be the efficiently differentiated into functional cardiomyocytes in optimized conditions. Thus, the new method we established would be of great use in further exploring cardiac stem cell therapy.

  2. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  3. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells.

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2015-12-17

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs. PMID:26858903

  4. Regeneration of articular cartilage using adipose stem cells.

    Im, Gun-Il

    2016-07-01

    Articular cartilage (AC) has limited potential for self-regeneration and damage to AC eventually leads to the development and progression of osteoarthritis (OA). Cell implantation strategies have emerged as a new treatment modality to regenerate AC. Adipose stem cells/adipose-derived stromal cells (ASCs) have gained attention due to their abundance, excellent proliferative potential, and minimal morbidity during harvest. These advantages lower the cost of cell therapy by circumventing time-consuming procedure of culture expansion. ASCs have drawn attention as a potential source for cartilage regeneration since the feasibility of chondrogenesis from ASCs was first reported. After several groups reported inferior chondrogenesis from ASCs, numerous methods were devised to overcome the intrinsic properties. Most in vivo animal studies have reported good results using predifferentiated or undifferentiated, autologous or allogeneic ASCs to regenerate cartilage in osteochondral defects or surgically-induced OA. In this review, we summarize literature on the isolation and in vitro differentiation processes of ASCs, in vivo studies to regenerate AC in osteochondral defects and OA using ASCs, and clinical applications of ASCs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1830-1844, 2016. PMID:26990234

  5. Characterization of mesenchymal stem cells derived from equine adipose tissue

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  6. Using genetic loci to understand the relationship between adiposity and psychological distress: a Mendelian Randomization study in the Copenhagen General Population Study of 53,221 adults

    Lawlor, Debbie A; Harbord, Roger M; Tybjærg-Hansen, Anne;

    2011-01-01

    We used genetic variants that are robustly associated with adiposity to examine the causal association of adiposity with psychological distress.......We used genetic variants that are robustly associated with adiposity to examine the causal association of adiposity with psychological distress....

  7. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development

    Basarab John A

    2010-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs, a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis. However, no miRNA to date has been reported to modulate adipogenesis and lipid deposition in beef cattle. Results The expression patterns of 89 miRNAs including four bovine specific miRNAs in subcutaneous adipose tissues from three groups of crossbred steers differing in backfat thickness were compared using qRT-PCR analysis. Eighty-six miRNAs were detectable in all samples, with 42 miRNAs differing among crossbreds (P Conclusions MiRNA expression patterns differed significantly in response to host genetic components. Approximately 20% of the miRNAs in this study were identified as being correlated with backfat thickness. This result suggests that miRNAs may play a regulatory role in white adipose tissue development in beef animals.

  8. Creation of an Adiposity Index for Children Aged 6–8 Years: The Gateshead Millennium Study

    Mark S. Pearce

    2013-01-01

    Full Text Available Objective. A number of measures of childhood adiposity are in use, but all are relatively imprecise and prone to bias. We constructed an adiposity index (AI using a number of different measures. Methods. Detailed body composition data on 460 of the Gateshead Millennium Study cohort at the age of 6–8 years were analysed. The AI was calculated using factor analysis on age plus thirteen measures of adiposity and/or size. Correlations between these variables, the AI, and more traditional measures of adiposity in children were investigated. Results. Based on the factor loading sizes, the first component, taken to be the AI, consisted mainly of measures of fat-mass (the skinfold measurements, fat mass score, and waist circumference. The second comprised variables measuring frame size, while the third consisted mainly of age. The AI had a high correlation with body mass index (BMI (rho = 0.81. Conclusions. While BMI is practical for assessing adiposity in children, the AI combines a wider range of data related to adiposity than BMI alone and appears both valid and valuable as a research tool for studies of childhood adiposity. Further research is necessary to investigate the utility of AI for research in other samples of children and also in adults.

  9. Waves of adipose tissue growth in the genetically obese Zucker fatty rat.

    Jennifer MacKellar

    Full Text Available BACKGROUND: In mammals, calories ingested in excess of those used are stored primarily as fat in adipose tissue; consistent ingestion of excess calories requires an enlargement of the adipose tissue mass. Thus, a dysfunction in adipose tissue growth may be a key factor in insulin resistance due to imbalanced fat storage and disrupted insulin action. Adipose tissue growth requires the recruitment and then the development of adipose precursor cells, but little is known about these processes in vivo. METHODOLOGY: In this study, adipose cell-size probability distributions were measured in two Zucker fa/fa rats over a period of 151 and 163 days, from four weeks of age, using micro-biopsies to obtain subcutaneous (inguinal fat tissue from the animals. These longitudinal probability distributions were analyzed to assess the probability of periodic phenomena. CONCLUSIONS: Adipose tissue growth in this strain of rat exhibits a striking temporal periodicity of approximately days. A simple model is proposed for the periodicity, with PPAR signaling driven by a deficit in lipid uptake capacity leading to the periodic recruitment of new adipocytes. This model predicts that the observed period will be diet-dependent.

  10. CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity.

    Morris, David L; Oatmen, Kelsie E; Mergian, Taleen A; Cho, Kae Won; DelProposto, Jennifer L; Singer, Kanakadurga; Evans-Molina, Carmella; O'Rourke, Robert W; Lumeng, Carey N

    2016-06-01

    Obesity activates both innate and adaptive immune responses in adipose tissue, but the mechanisms critical for regulating these responses remain unknown. CD40/CD40L signaling provides bidirectional costimulatory signals between antigen-presenting cells and CD4(+) T cells, and CD40L expression is increased in obese humans. Therefore, we examined the contribution of CD40 to the progression of obesity-induced inflammation in mice. CD40 was highly expressed on adipose tissue macrophages in mice, and CD40/CD40L signaling promoted the expression of antigen-presenting cell markers in adipose tissue macrophages. When fed a high fat diet, Cd40-deficient mice had reduced accumulation of conventional CD4(+) T cells (Tconv: CD3(+)CD4(+)Foxp3(-)) in visceral fat compared with wild-type mice. By contrast, the number of regulatory CD4(+) T cells (Treg: CD3(+)CD4(+)Foxp3(+)) in lean and obese fat was similar between wild-type and knockout mice. Adipose tissue macrophage content and inflammatory gene expression in fat did not differ between obese wild-type and knockout mice; however, major histocompatibility complex class II and CD86 expression on adipose tissue macrophages was reduced in visceral fat from knockout mice. Similar results were observed in chimeric mice with hematopoietic Cd40-deficiency. Nonetheless, neither whole body nor hematopoietic disruption of CD40 ameliorated obesity-induced insulin resistance in mice. In human adipose tissue, CD40 expression was positively correlated with CD80 and CD86 expression in obese patients with type 2 diabetes. These findings indicate that CD40 signaling in adipose tissue macrophages regulates major histocompatibility complex class II and CD86 expression to control the expansion of CD4(+) T cells; however, this is largely dispensable for the development of obesity-induced inflammation and insulin resistance in mice. PMID:26658005

  11. Activation of prostaglandin E2-EP4 signaling reduces chemokine production in adipose tissue.

    Tang, Eva H C; Cai, Yin; Wong, Chi Kin; Rocha, Viviane Z; Sukhova, Galina K; Shimizu, Koichi; Xuan, Ge; Vanhoutte, Paul M; Libby, Peter; Xu, Aimin

    2015-02-01

    Inflammation of adipose tissue induces metabolic derangements associated with obesity. Thus, determining ways to control or inhibit inflammation in adipose tissue is of clinical interest. The present study tested the hypothesis that in mouse adipose tissue, endogenous prostaglandin E2 (PGE2) negatively regulates inflammation via activation of prostaglandin E receptor 4 (EP4). PGE2 (5-500 nM) attenuated lipopolysaccharide-induced mRNA and protein expression of chemokines, including interferon-γ-inducible protein 10 and macrophage-inflammatory protein-1α in mouse adipose tissue. A selective EP4 antagonist (L161,982) reversed, and two structurally different selective EP4 agonists [CAY10580 and CAY10598] mimicked these actions of PGE2. Adipose tissue derived from EP4-deficient mice did not display this response. These findings establish the involvement of EP4 receptors in this anti-inflammatory response. Experiments performed on adipose tissue from high-fat-fed mice demonstrated EP4-dependent attenuation of chemokine production during diet-induced obesity. The anti-inflammatory actions of EP4 became more important on a high-fat diet, in that EP4 activation suppressed a greater variety of chemokines. Furthermore, adipose tissue and systemic inflammation was enhanced in high-fat-fed EP4-deficient mice compared with wild-type littermates, and in high-fat-fed untreated C57BL/6 mice compared with mice treated with EP4 agonist. These findings provide in vivo evidence that PGE2-EP4 signaling limits inflammation. In conclusion, PGE2, via activation of EP4 receptors, functions as an endogenous anti-inflammatory mediator in mouse adipose tissue, and targeting EP4 may mitigate adipose tissue inflammation. PMID:25510249

  12. Insulin action in adipose tissue in type 1 diabetes

    F Arrieta-Blanco

    2011-02-01

    Full Text Available F Arrieta-Blanco1, JI Botella-Carretero1, P Iglesias1, JA Balsa1, I Zamarrón1, C De la Puerta1, JJ Arrieta2, F Ramos3, C Vázquez1, A Rovira21Unit of Clinical Nutrition and Dietetics, Department of Endocrinology and Nutrition, Hospital Ramóny, Cajal, Madrid, Spain, Irycis, Ciberobn; 2Fundación Jimenez Díaz. Madrid, Spain; 3Hospital Sureste de ArgandaBackground: Insulin action has been reported to be normal in type 1 diabetic patients. However, some studies have reported an insulin resistance state in these patients. The aim of this study was to investigate insulin resistance in a group of type 1 diabetic patients. We studied the insulin action in adipose tissue and analyzed the effects of duration of disease, body mass index (BMI, and glycosylated hemoglobin on insulin action at the receptor and postreceptor levels in adipocytes.Methods: Nine female type 1 diabetic patients with different durations of disease and eight nondiabetic female patients of comparable age and BMI were studied. 125I-insulin binding and U-[14C]-D-glucose transport was measured in a sample of subcutaneous gluteus adipose tissue obtained by open surgical biopsy from each subject.Results: The duration of disease was negatively correlated with both 125I-insulin binding capacity (r = -0.70, P < 0.05 and basal and maximum insulin-stimulated glucose transport (r = -0.87, P < 0.01, and r = -0.88, P < 0.01, respectively. Maximum specific 125I-insulin binding to the receptors in adipocytes was higher in the group of patients with a shorter duration of disease (P < 0.01. Basal and maximum insulin-stimulated glucose transport was significantly higher in the group with less than 5 years of disease (P < 0.01. No correlation was found between BMI and insulin action.Conclusion: Female type 1 diabetic patients have normal insulin action. There is a high glucose uptake in the early phase of the disease, although a longer duration of disease appears to be a contributing factor to a

  13. Increased adipose tissue in male and female estrogen receptor-α knockout mice

    Heine, P. A.; Taylor, J.A.; Iwamoto, G. A.; Lubahn, D.B.; Cooke, P S

    2000-01-01

    Estrogen regulates the amount of white adipose tissue (WAT) in females, but its role in males and whether WAT effects involve estrogen receptor-α (ERα) or ERβ were unclear. We analyzed the role of ERα in WAT and brown adipose tissue by comparing these tissues in wild-type (WT) and ERα-knockout (αERKO) male and female mice. Brown adipose tissue weight was similar in αERKO and WT males at all ages. Progressive increases in WAT were seen in αERKO males with advancing ...

  14. Transplanted adipose-derived stem cells delay D-galactose-induced aging in rats

    Chun Yang; Ou Sha; Jingxing Dai; Lin Yuan; Dongfei Li; Zhongqiu Wen; Huiying Yang; Meichun Yu; Hui Tao; Rongmei Qu; Yikuan Du; Yong Huang

    2011-01-01

    To investigate the effects of allogeneically transplanted, adipose-derived stem cells in aging rats, in the present study, we established a rat model of subacute aging using continuous subcutaneous injections of D-galactose. Two weeks after the adipose-derived stem cells transplantations, serum superoxide dismutase activity was significantly increased, malondialdehyde content was significantly reduced, hippocampal neuronal degeneration was ameliorated, the apoptotic index of hippocampal neurons was decreased, and learning and memory function was significantly improved in the aging rats. These results indicate that allogeneic transplantation of adipose-derived stem cells may effectively delay D-galactose-induced aging.

  15. New tissue substitutes representing cortical bone and adipose tissue in quantitative radiology

    To employ quantitative radiology more accurately, we examined phantom materials for cortical bone and adipose tissue as calibration standards and as experimental phantoms. New tissue substitutes for cortical bone and adipose tissue composed of liquid phantom were verified by computing their attenuation coefficients and observing their chemical properties. We showed that a potassium pyrophosphate (K4P2O7) solution for cortical bone was comparable to a dipotassium hydrogen phosphate (K2HPO4) solution. Also, the use of methyl alcohol for adipose tissue was more suitable than ethyl alcohol as a phantom material because of its physical and chemical properties. (author)

  16. Measures of Adiposity and Risk of Stroke in China: A Result from the Kailuan Study

    Wang, Anxin; Wu, Jianwei; Zhou, Yong; Guo, Xiuhua; Luo, Yanxia; Wu, Shouling; Zhao, Xingquan

    2013-01-01

    Objective The objective of this study was to explore the association between adiposity and risk of incident stroke among men and women. Methods We studied the relationship between adiposity and stroke among 94,744 participants (18–98 years old) in the Kailuan study. During a follow-up of 4 years, 1,547 ischemic or hemorrhagic strokes were recorded. Measurements of adiposity included body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHpR), and waist-to-height ratio (WHtR). H...

  17. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Aimee L. Dordevic; Pendergast, Felicity J.; Han Morgan; Silas Villas-Boas; Caldow, Marissa K.; Larsen, Amy E.; Andrew J. Sinclair; David Cameron-Smith

    2015-01-01

    Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage ...

  18. IL-6 regulates exercise and training-induced adaptations in subcutaneous adipose tissue in mice

    Brandt, Claus; Jakobsen, Anne Hviid; Hassing, Helle Adser;

    2012-01-01

    Aim: The aim of this study was to test the hypothesis that IL-6 regulates exercise-induced gene responses in subcutaneous adipose tissue in mice. Methods: Four months old male IL-6 whole body knockout (KO) mice and C57B wild-type (WT) mice performed 1h of treadmill exercise, where subcutaneous ad...... regulating exercise and training-induced leptin and PPAR¿ expression in adipose tissue. In addition, while IL-6 is required for TNF-a mRNA reduction in response to acute exercise, IL-6 does not appear to be mandatory for anti-inflammatory effects of exercise training in adipose tissue....

  19. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue

    Yin, Jun; Gao, Zhanguo; He, Qing; Zhou, Dequan; Guo, ZengKui; Ye, Jianping

    2008-01-01

    Recent studies suggest that adipose tissue hypoxia (ATH) may contribute to endocrine dysfunction in adipose tissue of obese mice. In this study, we examined hypoxia's effects on metabolism in adipocytes. We determined the dynamic relationship of ATH and adiposity in ob/ob mice. The interstitial oxygen pressure (Po2) was monitored in the epididymal fat pads for ATH. During weight gain from 39.5 to 55.5 g, Po2 declined from 34.8 to 20.1 mmHg, which are 40–60% lower than those in the lean mice. ...

  20. Contribution of skeletal muscle and adipose tissue to adrenaline-induced thermogenesis in man

    Simonsen, L; Stallknecht, B; Bülow, J

    1993-01-01

    Elevated plasma adrenaline is known to increase whole body energy expenditure. We studied the thermogenic effect and the effects on substrate utilization in man during infusion of adrenaline. Two series were performed: in one series skeletal muscle metabolism was investigated and in another series...... subcutaneous adipose tissue metabolism was investigated. In both series Fick's principle was applied. Intravenous infusion increased blood flow, glucose uptake and oxygen uptake in both skeletal muscle and adipose tissue. It is concluded that skeletal muscle contributes about 40% and adipose tissue about 5...

  1. Protein turnover in adipose tissue from fasted or diabetic rats

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  2. Dietary intake, FTO genetic variants and adiposity

    Qi, Qibin; Downer, Mary K; Oskari Kilpeläinen, Tuomas;

    2015-01-01

    The FTO gene harbors variation with the strongest effect on adiposity and obesity risk. Previous data support a role for FTO variation in influencing food intake. We conducted a combined analysis of 16,094 boys and girls aged 1–18 years from 14 studies to examine the following: 1) the association...... (effect per allele = 14.3 kcal/day [95% CI 5.9, 22.7 kcal/day], P = 6.5 × 10−4), but not with protein, carbohydrate, or fat intake. We also found that protein intake modified the association between the FTO variant and BMI (interactive effect per allele = 0.08 SD [0.03, 0.12 SD], P for interaction = 7...

  3. Skin temperature and subcutaneous adipose blood flow in man

    Astrup, A; Bülow, J; Madsen, J

    1980-01-01

    correlation between skin temperature and ATBF. In the range from 25 to 37 degrees CATBF increased 9% of the control flow on average per centigrade increase in skin temperature. ATBF at the control side was uninfluenced by the contralateral variations in skin temperature. Although no better correlation could......The abdominal subcutaneous adipose tissue blood flow (ATBF) was measured bilaterally by the 133Xe washout method. At one side of the skin (epicutaneous) temperature was varied with a temperature blanket, the other side served as control. There was a significant (P less than 0.001) positive...... be demonstrated between ATBF and subcutaneous temperature than between ATBF and skin temperature, arguments are presented in favour of the hypothesis that ATBF is influenced by the subcutaneous temperature rather than via reflexes from the skin. Infiltration of the 133Xe depots with 20 microgram...

  4. Hair regeneration using adipose-derived stem cells.

    Jin, Su-Eon; Sung, Jong-Hyuk

    2016-03-01

    Adipose-derived stem cells (ASCs) have been used in tissue repair and regeneration. Recently, it was reported that ASC transplantation promotes hair growth in animal experiments, and a conditioned medium of ASCs (ASC-CM) induced the proliferation of hair-compositing cells in vitro. However, ASCs and their conditioned medium have shown limited effectiveness in clinical settings. ASC preconditioning is one strategy that can be used to enhance the efficacy of ASCs and ASC-CM. Therefore, we highlighted the functional role of ASCs in hair cycle progression and also the advantages and disadvantages of their application in hair regeneration. In addition, we introduced novel ASC preconditioning methods to enhance hair regeneration using ASC stimulators, such as vitamin C, platelet-derived growth factor, hypoxia, and ultraviolet B. PMID:26536569

  5. Adipose tissue resistin gene expression in DIO and DR rats

    Yuanyuan Zhao; Yuhui Ni; Xirong Guo; Haixia Gong; Xia Chi; Ronghua Chen

    2006-01-01

    Objective: To investigate the expression of resistin gene in diet-induced obesity (DIO) and diet resistance (DR)rats. Methods: DIO and DR models were prepared with male SD rats after 6 weeks feeding by a diet of relatively high fat, sucrose, and caloric content (HE diet). Body-weight, fat mass, and the concentration of serum insulin were measured, and the expression of resistin and Peroxisome proliferator-activated receptory-γ(PPAR-γ) gene in whit adipose tissue (WAT) was also detected by RT-PCR. Results: ①Body weight, fat mass and the concentration of serum insulin were significantly increased in DIO rats and decreased in DR rats. ② The expression of resistin and PPARγ gene was upregulated in DIO group and supressed in DR group, but the expression of resistin was not detectable in all samples within three groups. Conclusion: Resistin may serve as a link between obesity and insulin resistance, but the individual difference is enormous.

  6. Screen time and adiposity in adolescents in Mexico

    Lajous, Martín; Chavarro, Jorge; Peterson, Karen E; Hernández-Prado, Bernardo; Cruz-Valdéz, Aurelio; Hernández-Ávila, Mauricio; Lazcano-Ponce, Eduardo

    2014-01-01

    Objective To assess the association of time spent viewing television, videos and videogames with measures of fat mass [body mass index (BMI)] and distribution [triceps and subscapular skin folds (TSF, SSF)]. Design Cross-sectional validated survey, self-administered to students to assess screen time (TV, videos and videogames) and lifestyle variables. Trained personnel obtained anthropometry. The association of screen time with fat mass and distribution, stratified by sex, was modeled with multivariable linear regression, adjusting for potential confounders and correlation of observations within schools. Subjects and setting 3519 males and 5613 females aged 11 to 18 years attending urban and rural schools in the State of Morelos, Mexico Results In males, ≥5 hr/day compared with Mexico. Maturational tempo appears to affect the relationship of screen time with adiposity in boys and girls. Findings suggest obesity preventive interventions in the Mexican context should explore strategies to reduce screen time among youth in early adolescence. PMID:19232154

  7. Leptin receptor in peripheral adipose tissues of obesity subjects

    To investigate the relationship between leptin receptor and obesity by studying the leptin receptor density Bmax and dissociation constant Kd value in peripheral adipose tissues with different body weight mass index (BMI), leptin receptor density Bmax and Kd value were assayed via radioligand competition method from 71 cases, including 32 classified as obesity, 19 weight excess and 20 normal controls. With the elevation of BMI, the leptin receptor density was significantly higher in obese and weight excess group than that in normal controls (both Pd value, there were no differences among all three groups, suggesting no correlation between the binding ability of leptin to its receptor and BMI. There was negative correlation between BMI and Bmax (r=- 0.76, P<0.01). Conclusion: Leptin receptor density correlated with the BMI in obese cases and it suggested that the down-regulation of leptin receptor may contribute to occurrence of leptin resistance and obesity afterwards

  8. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  9. Activation of brown adipose tissue mitochondrial GDP binding sites

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of [3H]-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time

  10. Activation of brown adipose tissue mitochondrial GDP binding sites

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  11. Adipose tissue gene expression and metabolic health of obese adults.

    Das, S K; Ma, L; Sharma, N K

    2015-05-01

    Obese subjects with a similar body mass index (BMI) exhibit substantial heterogeneity in gluco- and cardiometabolic heath phenotypes. However, defining genes that underlie the heterogeneity of metabolic features among obese individuals and determining metabolically healthy and unhealthy phenotypes remain challenging. We conducted unsupervised hierarchical clustering analysis of subcutaneous adipose tissue transcripts from 30 obese men and women ⩾40 years old. Despite similar BMIs in all subjects, we found two distinct subgroups, one metabolically healthy (group 1) and one metabolically unhealthy (group 2). Subjects in group 2 showed significantly higher total cholesterol (P=0.005), low-density lipoprotein cholesterol (P=0.006), 2-h insulin during oral glucose tolerance test (P=0.015) and lower insulin sensitivity (SI, P=0.029) compared with group 1. We identified significant upregulation of 141 genes (for example, MMP9 and SPP1) and downregulation of 17 genes (for example, NDRG4 and GINS3) in group 2 subjects. Intriguingly, these differentially expressed transcripts were enriched for genes involved in cardiovascular disease-related processes (P=2.81 × 10(-11)-3.74 × 10(-02)) and pathways involved in immune and inflammatory response (P=8.32 × 10(-5)-0.04). Two downregulated genes, NDRG4 and GINS3, have been located in a genomic interval associated with cardiac repolarization in published GWASs and zebra fish knockout models. Our study provides evidence that perturbations in the adipose tissue gene expression network are important in defining metabolic health in obese subjects. PMID:25520251

  12. The role of active brown adipose tissue in human metabolism

    Ozguven, Salih; Turoglu, H.T. [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Ones, Tunc [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Kozyatagi/Kadikoy, Istanbul (Turkey); Yilmaz, Yusuf; Imeryuz, Nese [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Internal Medicine, Division of Gastroenterology, Istanbul (Turkey)

    2016-02-15

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing {sup 18}F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the {sup 18}F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  13. Effects of adiposity on postural control and cognition.

    Meng, Hao; O'Connor, Daniel P; Lee, Beom-Chan; Layne, Charles S; Gorniak, Stacey L

    2016-01-01

    In the U.S., it is estimated that over one-third of adults are obese (Body Mass Index (BMI)>30kg/m(2)). Previous studies suggest that obesity may be associated with deficits in cognitive performance and postural control. Increased BMI may challenge cognitive and postural performance in a variety of populations; however, most relevant studies have classified participants based on BMI values, which cannot be used to accurately assess the effects of adiposity on cognitive performance and postural control. The objective of the current study was to examine motor and cognitive responses for overweight and obese adults compared to normal weight individuals by using both BMI and adiposity measures. Ten normal weight (BMI=18-24.9kg/m(2)), ten overweight (BMI=25-29.9kg/m(2)), and ten obese (BMI=30-40kg/m(2)) adults were evaluated (age: 24±4 years). Participants were classified into three groups based on BMI values at the onset of the study, prior to body composition analysis. Participants performed (1) working memory task while maintaining upright stance, and (2) a battery of sensorimotor evaluations. Working memory reaction times, response accuracy, center-of-pressure (COP) path length, velocity, migration area, time to boundary values in anterior-posterior direction, and ankle-hip strategy-scores were calculated to evaluate cognitive-motor performance. No significant deficits in working memory performance were observed. Overall, measures of motor function deteriorated as BMI and body fat percentage increased. The relationship between deteriorating postural performance indices and body fat percentage were greater than those found between BMI and postural performance indices. PMID:26669948

  14. The role of active brown adipose tissue in human metabolism

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing 18F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the 18F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  15. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size

  16. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto

    2015-08-07

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.

  17. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

    Stallknecht, B; Larsen, J J; Mikines, K J; Simonsen, L; Bülow, J; Galbo, H

    2000-01-01

    Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men...... [insulin infusion rates: 10,000 (step I), 20,000 (step II), and 150,000 (step III) microU x min(-1) x m(-2)]. Glucose and glycerol concentrations were measured in arterial blood and also by microdialysis in interstitial fluid in periumbilical, subcutaneous adipose tissue and in quadriceps femoris muscle...... (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration...

  18. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  19. Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance

    Kunešová, M; Hlavatý, P; Tvrzická, E;

    2012-01-01

    Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. Objective was to assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants...... of the DIOGENES dietary intervention study. After an 8-week low calorie diet (LCD) subjects with > 8 % weight loss were randomized to 5 ad libitum weight maintenance diets for 6 months: low protein (P)/low glycemic index (GI) (LP/LGI), low P/high GI (LP/HGI), high P/low GI (HP/LGI), high P/high GI...... (HP/HGI), and a control diet. Fatty acid composition in adipose tissue triglycerides was determined by gas chromatography in 195 subjects before the LCD (baseline), after LCD and weight maintenance. Weight change after the maintenance phase was positively correlated with baseline adipose palmitoleic...

  20. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk.

    Lu, Yingchang; Day, Felix R; Gustafsson, Stefan; Buchkovich, Martin L; Na, Jianbo; Bataille, Veronique; Cousminer, Diana L; Dastani, Zari; Drong, Alexander W; Esko, Tõnu; Evans, David M; Falchi, Mario; Feitosa, Mary F; Ferreira, Teresa; Hedman, Åsa K; Haring, Robin; Hysi, Pirro G; Iles, Mark M; Justice, Anne E; Kanoni, Stavroula; Lagou, Vasiliki; Li, Rui; Li, Xin; Locke, Adam; Lu, Chen; Mägi, Reedik; Perry, John R B; Pers, Tune H; Qi, Qibin; Sanna, Marianna; Schmidt, Ellen M; Scott, William R; Shungin, Dmitry; Teumer, Alexander; Vinkhuyzen, Anna A E; Walker, Ryan W; Westra, Harm-Jan; Zhang, Mingfeng; Zhang, Weihua; Zhao, Jing Hua; Zhu, Zhihong; Afzal, Uzma; Ahluwalia, Tarunveer Singh; Bakker, Stephan J L; Bellis, Claire; Bonnefond, Amélie; Borodulin, Katja; Buchman, Aron S; Cederholm, Tommy; Choh, Audrey C; Choi, Hyung Jin; Curran, Joanne E; de Groot, Lisette C P G M; De Jager, Philip L; Dhonukshe-Rutten, Rosalie A M; Enneman, Anke W; Eury, Elodie; Evans, Daniel S; Forsen, Tom; Friedrich, Nele; Fumeron, Frédéric; Garcia, Melissa E; Gärtner, Simone; Han, Bok-Ghee; Havulinna, Aki S; Hayward, Caroline; Hernandez, Dena; Hillege, Hans; Ittermann, Till; Kent, Jack W; Kolcic, Ivana; Laatikainen, Tiina; Lahti, Jari; Mateo Leach, Irene; Lee, Christine G; Lee, Jong-Young; Liu, Tian; Liu, Youfang; Lobbens, Stéphane; Loh, Marie; Lyytikäinen, Leo-Pekka; Medina-Gomez, Carolina; Michaëlsson, Karl; Nalls, Mike A; Nielson, Carrie M; Oozageer, Laticia; Pascoe, Laura; Paternoster, Lavinia; Polašek, Ozren; Ripatti, Samuli; Sarzynski, Mark A; Shin, Chan Soo; Narančić, Nina Smolej; Spira, Dominik; Srikanth, Priya; Steinhagen-Thiessen, Elisabeth; Sung, Yun Ju; Swart, Karin M A; Taittonen, Leena; Tanaka, Toshiko; Tikkanen, Emmi; van der Velde, Nathalie; van Schoor, Natasja M; Verweij, Niek; Wright, Alan F; Yu, Lei; Zmuda, Joseph M; Eklund, Niina; Forrester, Terrence; Grarup, Niels; Jackson, Anne U; Kristiansson, Kati; Kuulasmaa, Teemu; Kuusisto, Johanna; Lichtner, Peter; Luan, Jian'an; Mahajan, Anubha; Männistö, Satu; Palmer, Cameron D; Ried, Janina S; Scott, Robert A; Stancáková, Alena; Wagner, Peter J; Demirkan, Ayse; Döring, Angela; Gudnason, Vilmundur; Kiel, Douglas P; Kühnel, Brigitte; Mangino, Massimo; Mcknight, Barbara; Menni, Cristina; O'Connell, Jeffrey R; Oostra, Ben A; Shuldiner, Alan R; Song, Kijoung; Vandenput, Liesbeth; van Duijn, Cornelia M; Vollenweider, Peter; White, Charles C; Boehnke, Michael; Boettcher, Yvonne; Cooper, Richard S; Forouhi, Nita G; Gieger, Christian; Grallert, Harald; Hingorani, Aroon; Jørgensen, Torben; Jousilahti, Pekka; Kivimaki, Mika; Kumari, Meena; Laakso, Markku; Langenberg, Claudia; Linneberg, Allan; Luke, Amy; Mckenzie, Colin A; Palotie, Aarno; Pedersen, Oluf; Peters, Annette; Strauch, Konstantin; Tayo, Bamidele O; Wareham, Nicholas J; Bennett, David A; Bertram, Lars; Blangero, John; Blüher, Matthias; Bouchard, Claude; Campbell, Harry; Cho, Nam H; Cummings, Steven R; Czerwinski, Stefan A; Demuth, Ilja; Eckardt, Rahel; Eriksson, Johan G; Ferrucci, Luigi; Franco, Oscar H; Froguel, Philippe; Gansevoort, Ron T; Hansen, Torben; Harris, Tamara B; Hastie, Nicholas; Heliövaara, Markku; Hofman, Albert; Jordan, Joanne M; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Knekt, Paul B; Koskinen, Seppo; Kovacs, Peter; Lehtimäki, Terho; Lind, Lars; Liu, Yongmei; Orwoll, Eric S; Osmond, Clive; Perola, Markus; Pérusse, Louis; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Rivadeneira, Fernando; Rudan, Igor; Salomaa, Veikko; Sørensen, Thorkild I A; Stumvoll, Michael; Tönjes, Anke; Towne, Bradford; Tranah, Gregory J; Tremblay, Angelo; Uitterlinden, André G; van der Harst, Pim; Vartiainen, Erkki; Viikari, Jorma S; Vitart, Veronique; Vohl, Marie-Claude; Völzke, Henry; Walker, Mark; Wallaschofski, Henri; Wild, Sarah; Wilson, James F; Yengo, Loïc; Bishop, D Timothy; Borecki, Ingrid B; Chambers, John C; Cupples, L Adrienne; Dehghan, Abbas; Deloukas, Panos; Fatemifar, Ghazaleh; Fox, Caroline; Furey, Terrence S; Franke, Lude; Han, Jiali; Hunter, David J; Karjalainen, Juha; Karpe, Fredrik; Kaplan, Robert C; Kooner, Jaspal S; McCarthy, Mark I; Murabito, Joanne M; Morris, Andrew P; Bishop, Julia A N; North, Kari E; Ohlsson, Claes; Ong, Ken K; Prokopenko, Inga; Richards, J Brent; Schadt, Eric E; Spector, Tim D; Widén, Elisabeth; Willer, Cristen J; Yang, Jian; Ingelsson, Erik; Mohlke, Karen L; Hirschhorn, Joel N; Pospisilik, John Andrew; Zillikens, M Carola; Lindgren, Cecilia; Kilpeläinen, Tuomas Oskari; Loos, Ruth J F

    2016-01-01

    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk. PMID:26833246

  1. Feeding feedlot steers fish oil alters the fatty acid composition of adipose and muscle tissue.

    Wistuba, T J; Kegley, E B; Apple, J K; Rule, D C

    2007-10-01

    Sixteen steers (441±31.7kg initial body weight) consumed two high concentrate diets with either 0 or 3% fish oil to determine the impact of fish oil, an omega-3 fatty acid source, on the fatty acid composition of beef carcasses. Collected tissue samples included the Longissimus thoracis from the 6th to 7th rib section, ground 10th to 12th rib, liver, subcutaneous adipose tissue adjacent to the 12th rib, intramuscular adipose tissue in the 6th to 7th rib sections, perirenal adipose tissue, and brisket adipose tissue. Including fish oil in the diet increased most of the saturated fatty acids (Pniche marketing if there are no deleterious effects on consumer satisfaction. PMID:22061591

  2. IMPROVED RECOVERY OF HEXACHLOROBENZENE IN ADIPOSE TISSUE WITH A MODIFIED MICRO MULTIRESIDUE PROCEDURE

    Using the described methodology the recovery of hexachlorobenzene from adipose tissue was significantly increased over that normally obtained with other multiresidue procedures. The recovery of other commonly encountered chlorinated hydrocarbon pesticides was not affected nor was...

  3. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease.

    Fuster, José J; Ouchi, Noriyuki; Gokce, Noyan; Walsh, Kenneth

    2016-05-27

    Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines. PMID:27230642

  4. Investigation of the mechanisms that influence the accretion of bovine intramuscular and subcutaneous adipose tissue

    The understanding of the mechanisms that differ between breeds of cattle and their ability to deposit intramuscular adipose tissue is imperative to profitable beef production. Thus, the interactions among breeds, metabolic substrates and specific hormones in bovine intramuscular and subcutaneous adipose tissue were investigated. Subcutaneous and intramuscular adipose tissues were obtained from 10 Angus and 9 Santa Gertrudis steers immediately postmortem. The adipose tissues were incubated for 2 h and 48 h with and without 1 mU/ml insulin and 30 mg/ml bovine serum albumin (BSA) to measure the incorporation of 14C-labeled acetate and glucose into lipid fractions. At the same chronological age, Angus steers had a more youthful lean maturity score, higher USDA marbling scores and higher USDA quality grades than carcasses from Santa Gertrudis steers

  5. Long-term allergen exposure induces adipose tissue inflammation and circulatory system injury.

    Jung, Chien-Cheng; Su, Huey-Jen

    2016-05-01

    The purpose of this study was to study whether allergen exposure can induce inflammation and lower the anti-inflammation levels in serum and in adipose tissues, and further develop cardiovascular injury. Our data showed that heart rate was significantly higher in the OVA-challenged mice compared to control mice. Moreover, there were higher expressions of pro-inflammation genes in the OVA-challenged mice in adipose tissues, and the expressions of anti-inflammation genes were lower. The levels of inflammation mediators were associated in serum and adipose tissues. The level of circulatory injury lactate dehydrogenase was significantly associated with the levels of E-selectin, resistin and adiponectin in the serum. The hematoxylin and eosin and immunohistochemistry stains indicated the OVA-challenged mice had higher levels of inflammation. In summary, the current study demonstrated allergen exposure can cause cardiovascular injury, and inflammatory mediators in adipose tissues play an important role in the pathogenesis of cardiovascular injury. PMID:27004794

  6. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N;

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA in the...... ranking order PPARalpha > PPARdelta > PPARgamma. Expression of PPARgamma target genes in adipose tissue was unaffected by TTA treatment, whereas the hepatic expression of PPARalpha-responsive genes encoding enzymes involved in fatty acid uptake, transport, and oxidation was induced. This was accompanied...

  7. Prolactin suppresses malonyl-CoA concentration in human adipose tissue

    Nilsson, L. A.; Roepstorff, Carsten; Kiens, Bente;

    2009-01-01

    Prolactin is best known for its involvement in lactation, where it regulates mechanisms that supply nutrients for milk production. In individuals with pathological hyperprolactinemia, glucose and fat homeostasis have been reported to be negatively influenced. It is not previously known, however, ...... lipogenesis could contribute to an insulin resistant state with consequences for the health......., whether prolactin regulates lipogenesis in human adipose tissue. The aim of this study was to investigate the effect of prolactin on lipogenesis in human adipose tissue in vitro. Prolactin decreased the concentration of malonyl-CoA, the product of the first committed step in lipogenesis, to 77......+/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue as a...

  8. Interstitial concentrations of adipokines in subcutaneous abdominal and femoral adipose tissue

    Nielsen, Ninna Bo; Højbjerre, Lise; Sonne, Mette P;

    2009-01-01

    Adipokines play important regulatory roles in the pathophysiology of obesity and insulin resistance. We measured plasma and interstitial concentrations of the adipokines adiponectin, resistin, leptin, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and interleukin-8 (IL-8) in...... subcutaneous, abdominal and femoral adipose tissue using calibrated, large-pore microdialysis technique in 8 healthy, lean men on 2 experimental days. The interstitial leptin concentration was 2.5-fold higher in subcutaneous, femoral than abdominal adipose tissue (P<0.05), but no regional differences were...... found for the remaining adipokines (P>0.05). Adiponectin and leptin concentrations were higher in plasma than subcutaneous adipose tissue (approximately 25-fold and approximately 2-fold, respectively, P<0.05), whereas MCP-1, IL-6 and IL-8 concentrations were higher in subcutaneous adipose tissue than...

  9. Circadian Clocks and the Interaction between Stress Axis and Adipose Function

    Isa Kolbe

    2015-01-01

    Full Text Available Many physiological processes and most endocrine functions show fluctuations over the course of the day. These so-called circadian rhythms are governed by an endogenous network of cellular clocks and serve as an adaptation to daily and, thus, predictable changes in the organism’s environment. Circadian clocks have been described in several tissues of the stress axis and in adipose cells where they regulate the rhythmic and stimulated release of stress hormones, such as glucocorticoids, and various adipokine factors. Recent work suggests that both adipose and stress axis clock systems reciprocally influence each other and adrenal-adipose rhythms may be key players in the development and therapy of metabolic disorders. In this review, we summarize our current understanding of adrenal and adipose tissue rhythms and clocks and how they might interact to regulate energy homoeostasis and stress responses under physiological conditions. Potential chronotherapeutic strategies for the treatment of metabolic and stress disorders are discussed.

  10. The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance

    Chmelař, Jindřich; Chung, K.-J.; Chavakis, T.

    2013-01-01

    Roč. 109, č. 3 (2013), s. 399-406. ISSN 0340-6245 Institutional support: RVO:60077344 Keywords : Obesity * adipose tissue * inflammation * review * leukocytes Subject RIV: EC - Immunology Impact factor: 5.760, year: 2013

  11. The expression of testosterone converting enzymes in adipose tissue of polycystic ovary syndrome rat mode

    王丽华

    2013-01-01

    Objective To establish a polycystic ovary syndrome(PCOS) rat model and compare the expression of testosterone converting enzymes in adipose tissue of PCOS rat with that of controls.Methods 21-day-old female SD

  12. Investigation of the mechanisms that influence the accretion of bovine intramuscular and subcutaneous adipose tissue

    Miller, M.F.

    1987-01-01

    The understanding of the mechanisms that differ between breeds of cattle and their ability to deposit intramuscular adipose tissue is imperative to profitable beef production. Thus, the interactions among breeds, metabolic substrates and specific hormones in bovine intramuscular and subcutaneous adipose tissue were investigated. Subcutaneous and intramuscular adipose tissues were obtained from 10 Angus and 9 Santa Gertrudis steers immediately postmortem. The adipose tissues were incubated for 2 h and 48 h with and without 1 mU/ml insulin and 30 mg/ml bovine serum albumin (BSA) to measure the incorporation of /sup 14/C-labeled acetate and glucose into lipid fractions. At the same chronological age, Angus steers had a more youthful lean maturity score, higher USDA marbling scores and higher USDA quality grades than carcasses from Santa Gertrudis steers.

  13. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  14. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Lu, Yingchang; Day, Felix R.; Gustafsson, Stefan; Buchkovich, Martin L.; Na, Jianbo; Bataille, Veronique; Cousminer, Diana L.; Dastani, Zari; Drong, Alexander W.; Esko, Tõnu; Evans, David M.; Falchi, Mario; Feitosa, Mary F.; Ferreira, Teresa; Hedman, Åsa K.; Haring, Robin; Hysi, Pirro G.; Iles, Mark M.; Justice, Anne E.; Kanoni, Stavroula; Lagou, Vasiliki; Li, Rui; Li, Xin; Locke, Adam; Lu, Chen; Mägi, Reedik; Perry, John R. B.; Pers, Tune H.; Qi, Qibin; Sanna, Marianna; Schmidt, Ellen M.; Scott, William R.; Shungin, Dmitry; Teumer, Alexander; Vinkhuyzen, Anna A. E.; Walker, Ryan W.; Westra, Harm-Jan; Zhang, Mingfeng; Zhang, Weihua; Zhao, Jing Hua; Zhu, Zhihong; Afzal, Uzma; Ahluwalia, Tarunveer Singh; Bakker, Stephan J. L.; Bellis, Claire; Bonnefond, Amélie; Borodulin, Katja; Buchman, Aron S.; Cederholm, Tommy; Choh, Audrey C.; Choi, Hyung Jin; Curran, Joanne E.; de Groot, Lisette C. P. G. M.; De Jager, Philip L.; Dhonukshe-Rutten, Rosalie A. M.; Enneman, Anke W.; Eury, Elodie; Evans, Daniel S.; Forsen, Tom; Friedrich, Nele; Fumeron, Frédéric; Garcia, Melissa E.; Gärtner, Simone; Han, Bok-Ghee; Havulinna, Aki S.; Hayward, Caroline; Hernandez, Dena; Hillege, Hans; Ittermann, Till; Kent, Jack W.; Kolcic, Ivana; Laatikainen, Tiina; Lahti, Jari; Leach, Irene Mateo; Lee, Christine G.; Lee, Jong-Young; Liu, Tian; Liu, Youfang; Lobbens, Stéphane; Loh, Marie; Lyytikäinen, Leo-Pekka; Medina-Gomez, Carolina; Michaëlsson, Karl; Nalls, Mike A.; Nielson, Carrie M.; Oozageer, Laticia; Pascoe, Laura; Paternoster, Lavinia; Polašek, Ozren; Ripatti, Samuli; Sarzynski, Mark A.; Shin, Chan Soo; Narančić, Nina Smolej; Spira, Dominik; Srikanth, Priya; Steinhagen-Thiessen, Elisabeth; Sung, Yun Ju; Swart, Karin M. A.; Taittonen, Leena; Tanaka, Toshiko; Tikkanen, Emmi; van der Velde, Nathalie; van Schoor, Natasja M.; Verweij, Niek; Wright, Alan F.; Yu, Lei; Zmuda, Joseph M.; Eklund, Niina; Forrester, Terrence; Grarup, Niels; Jackson, Anne U.; Kristiansson, Kati; Kuulasmaa, Teemu; Kuusisto, Johanna; Lichtner, Peter; Luan, Jian'an; Mahajan, Anubha; Männistö, Satu; Palmer, Cameron D.; Ried, Janina S.; Scott, Robert A.; Stancáková, Alena; Wagner, Peter J.; Demirkan, Ayse; Döring, Angela; Gudnason, Vilmundur; Kiel, Douglas P.; Kühnel, Brigitte; Mangino, Massimo; Mcknight, Barbara; Menni, Cristina; O'Connell, Jeffrey R.; Oostra, Ben A.; Shuldiner, Alan R.; Song, Kijoung; Vandenput, Liesbeth; van Duijn, Cornelia M.; Vollenweider, Peter; White, Charles C.; Boehnke, Michael; Boettcher, Yvonne; Cooper, Richard S.; Forouhi, Nita G.; Gieger, Christian; Grallert, Harald; Hingorani, Aroon; Jørgensen, Torben; Jousilahti, Pekka; Kivimaki, Mika; Kumari, Meena; Laakso, Markku; Langenberg, Claudia; Linneberg, Allan; Luke, Amy; Mckenzie, Colin A.; Palotie, Aarno; Pedersen, Oluf; Peters, Annette; Strauch, Konstantin; Tayo, Bamidele O.; Wareham, Nicholas J.; Bennett, David A.; Bertram, Lars; Blangero, John; Blüher, Matthias; Bouchard, Claude; Campbell, Harry; Cho, Nam H.; Cummings, Steven R.; Czerwinski, Stefan A.; Demuth, Ilja; Eckardt, Rahel; Eriksson, Johan G.; Ferrucci, Luigi; Franco, Oscar H.; Froguel, Philippe; Gansevoort, Ron T.; Hansen, Torben; Harris, Tamara B.; Hastie, Nicholas; Heliövaara, Markku; Hofman, Albert; Jordan, Joanne M.; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Knekt, Paul B.; Koskinen, Seppo; Kovacs, Peter; Lehtimäki, Terho; Lind, Lars; Liu, Yongmei; Orwoll, Eric S.; Osmond, Clive; Perola, Markus; Pérusse, Louis; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rice, Treva K.; Rivadeneira, Fernando; Rudan, Igor; Salomaa, Veikko; Sørensen, Thorkild I. A.; Stumvoll, Michael; Tönjes, Anke; Towne, Bradford; Tranah, Gregory J.; Tremblay, Angelo; Uitterlinden, André G.; van der Harst, Pim; Vartiainen, Erkki; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Völzke, Henry; Walker, Mark; Wallaschofski, Henri; Wild, Sarah; Wilson, James F.; Yengo, Loïc; Bishop, D. Timothy; Borecki, Ingrid B.; Chambers, John C.; Cupples, L. Adrienne; Dehghan, Abbas; Deloukas, Panos; Fatemifar, Ghazaleh; Fox, Caroline; Furey, Terrence S.; Franke, Lude; Han, Jiali; Hunter, David J.; Karjalainen, Juha; Karpe, Fredrik; Kaplan, Robert C.; Kooner, Jaspal S.; McCarthy, Mark I.; Murabito, Joanne M.; Morris, Andrew P.; Bishop, Julia A. N.; North, Kari E.; Ohlsson, Claes; Ong, Ken K.; Prokopenko, Inga; Richards, J. Brent; Schadt, Eric E.; Spector, Tim D.; Widén, Elisabeth; Willer, Cristen J.; Yang, Jian; Ingelsson, Erik; Mohlke, Karen L.; Hirschhorn, Joel N.; Pospisilik, John Andrew; Zillikens, M. Carola; Lindgren, Cecilia

    2016-01-01

    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10−8), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk. PMID:26833246

  15. Loss of subcutaneous adipose tissue in HIV-associated lipodystrophy is not due to accelerated apoptosis.

    Mynarcik, Dennis; Wei, Lin-Xiang; Komaroff, Eugene; Ferris, Robert; McNurlan, Margaret; Gelato, Marie

    2005-01-01

    HIV-associated lipodystrophy is characterized by a loss of adipose tissue from the subcutaneous compartment. Previously reported data suggested that this loss of adipose tissue was the result of an increased rate of apoptosis in subcutaneous adipose tissue. The present study examined the rate of apoptosis in subcutaneous adipose tissue with a sensitive ligase-mediated polymerase chain reaction technique to amplify DNA ladders. Individuals with HIV lipodystrophy were compared with HIV-infected subjects without lipodystrophy and subjects without HIV disease. Although apoptosis was observed in subjects with HIV lipodystrophy, there was no difference in the frequency of individuals with apoptosis among those with HIV lipodystrophy (10/22), those with HIV but no lipodystrophy (13/25), and subjects without HIV disease (13/27). PMID:15608525

  16. Adipocyte macrophage colony-stimulating factor is a mediator of adipose tissue growth.

    Levine, J. A.; Jensen, M.D.; Eberhardt, N L; O'Brien, T.

    1998-01-01

    Adipose tissue growth results from de novo adipocyte recruitment (hyperplasia) and increased size of preexisting adipocytes. Adipocyte hyperplasia accounts for the severalfold increase in adipose tissue mass that occurs throughout life, yet the mechanism of adipocyte hyperplasia is unknown. We studied the potential of macrophage colony-stimulating factor (MCSF) to mediate adipocyte hyperplasia because of the profound effects MCSF exerts on pluripotent cell recruitment and differentiation in o...

  17. Differential gene expression profile in pig adipose tissue treated with/without clenbuterol

    Deng Xue M; Guo Wei; Liu Qiu Y; He Qiang; Zhang Jin; Zhang Wei W; Hu Xiao X; Li Ning

    2007-01-01

    Abstract Background Clenbuterol, a beta-agonist, can dramatically reduce pig adipose accumulation at high dosages. However, it has been banned in pig production because people who eat pig products treated with clenbuterol can be poisoned by the clenbuterol residues. To understand the molecular mechanism for this fat reduction, cDNA microarray, real-time PCR, two-dimensional electrophoresis and mass spectra were used to study the differential gene expression profiles of pig adipose tissues tre...

  18. Differential co-expression analysis of obesity-associated networks in human subcutaneous adipose tissue

    Walley, A J; Jacobson, P.; Falchi, M.; Bottolo, L.; Andersson, J.C.; Petretto, E; Bonnefond, A.; Vaillant, E; Lecoeur, C; Vatin, V.; Jernas, M; Balding, D; Petteni, M.; Park, Y S; Aitman, T

    2011-01-01

    Objective To use a unique obesity-discordant sib-pair study design to combine differential expression analysis, expression quantitative trait loci (eQTLs) mapping, and a co-expression regulatory network approach in subcutaneous human adipose tissue to identify genes relevant to the obese state. Study design Genome-wide transcript expression in subcutaneous human adipose tissue was measured using Affymetrix U133+2.0 microarrays and genomewide genotyping data was obtained using an Applied Biosy...

  19. Proteome differences associated with fat accumulation in bovine subcutaneous adipose tissues

    Basarb John A; Dodson Michael V; Basu Urmila; Zhao Yong; Guan Le

    2010-01-01

    Abstract Background The fat components of red meat products have been of interest to researchers due to the health aspects of excess fat consumption by humans. We hypothesized that differences in protein expression have an impact on adipose tissue formation during beef cattle development and growth. Therefore, in this study we evaluated the differences in the discernable proteome of subcutaneous adipose tissues of 35 beef crossbred steers [Charolais × Red Angus (CHAR) (n = 13) and Hereford × ...

  20. Influence of different dietary fats on triacylglycerol deposition in rat adipose tissue

    Perona, Javier S.; Portillo, María Puy; Macarulla, M. Teresa; Tueros, Ana I.; Ruiz-Gutiérrez, Valentina

    2000-01-01

    It has been demonstrated that triacylglycerol (TAG) mobilization from adipose tissue is selective and depends on fatty acid (FA) chain length, unsaturation and positional isomerism. The present study was performed to determine the influence of dietary fat on the composition of TAG stored in rat perirenal and subcutaneous adipose tissues. These results may provide information on the susceptibility of stored TAG to hydrolysis and further mobilization, and may help to establish an interrelations...

  1. Gene expression profiling reveals distinct features of various porcine adipose tissues

    Zhou, Chaowei; Zhang, Jie; Ma, Jideng; Jiang, Anan; Tang, Guoqing; Mai, Miaomiao; Zhu, Li; Bai, Lin; Li, Mingzhou; Li, Xuewei

    2013-01-01

    Background The excessive accumulation of body fat is a major risk factor to develop a variety of metabolic diseases. To investigate the systematic association between the differences in gene expression profiling and adipose deposition, we used pig as a model, and measured the gene expression profiling of six variant adipose tissues in male and females from three pig breeds which display distinct fat level. Results We identified various differential expressed genes among breeds, tissues and be...

  2. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol

    Mehmet Bilgehan Pektas; Halit Bugra Koca; Gokhan Sadi; Fatma Akar

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin ...

  3. Microarray Evidences the Role of Pathologic Adipose Tissue in Insulin Resistance and Their Clinical Implications

    Prashant Mathur; Priyanka Jain; Sandeep Kumar Mathur

    2011-01-01

    Clustering of insulin resistance and dysmetabolism with obesity is attributed to pathologic adipose tissue. The morphologic hallmarks of this pathology are adipocye hypertrophy and heightened inflammation. However, it's underlying molecular mechanisms remains unknown. Study of gene function in metabolically active tissues like adipose tissue, skeletal muscle and liver is a promising strategy. Microarray is a powerful technique of assessment of gene function by measuring transcription of large...

  4. Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

    Mohamadreza Baghaban Eslaminejad; Soura Mardpour; Marzieh Ebrahimi

    2011-01-01

    Objective(s)Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored.Materials and MethodsAdherent cells were isolated from the collagenase digests of adipose tissues excised from rat epicardial and epididymal regions and propagated with several subcultures. The cel...

  5. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus

    Azeez, Odunayo Ibraheem; Meintjes, Roy; Chamunorwa, Joseph Panashe

    2014-01-01

    The fat body in invertebrates was shown to participate in energy storage and homeostasis, apart from its other roles in immune mediation and protein synthesis to mention a few. Thus, sharing similar characteristics with the liver and adipose tissues in vertebrates. However, vertebrate adipose tissue or fat has been incriminated in the pathophysiology of metabolic disorders due to its role in production of pro-inflammatory cytokines. This has not been reported in the insect fat body. The link ...

  6. Sex differences in human adipose tissues – the biology of pear shape

    Karastergiou Kalypso; Smith Steven R; Greenberg Andrew S; Fried Susan K

    2012-01-01

    Abstract Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men and women, significant research attention has focused on comparing adipocyte morphological and metabolic properties, as well as the capacity of preadipocytes derived fr...

  7. Increased Adipogenesis of Human Adipose-Derived Stem Cells on Polycaprolactone Fiber Matrices

    Cecilia Brännmark; Alexandra Paul; Diana Ribeiro; Björn Magnusson; Gabriella Brolén; Annika Enejder; Anna Forslöw

    2014-01-01

    With accelerating rates of obesity and type 2 diabetes world-wide, interest in studying the adipocyte and adipose tissue is increasing. Human adipose derived stem cells - differentiated to adipocytes in vitro - are frequently used as a model system for white adipocytes, as most of their pathways and functions resemble mature adipocytes in vivo. However, these cells are not completely like in vivo mature adipocytes. Hosting the cells in a more physiologically relevant environment compared to c...

  8. Penetration of Moxifloxacin into Healthy and Inflamed Subcutaneous Adipose Tissues in Humans

    Joukhadar, Christian; Stass, Heino; Müller-Zellenberg, Ulrike; Lackner, Edith; Kovar, Florian; Minar, Erich; Müller, Markus

    2003-01-01

    The present study addressed the ability of moxifloxacin to penetrate into healthy and inflamed subcutaneous adipose tissues in 12 patients with soft tissue infections (STIs). Penetration of moxifloxacin into the interstitial space fluid of healthy and inflamed subcutaneous adipose tissues was measured by use of in vivo microdialysis following administration of a single intravenous dosage of 400 mg in six diabetic and six nondiabetic patients with STIs. For the entire study population, the mea...

  9. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus

    Neeland, Ian J.; McGuire, Darren K.; Chilton, Robert; Crowe, Susanne; Lund, Søren S; Woerle, Hans J.; Broedl, Uli C.; Johansen, Odd Erik

    2016-01-01

    Aims: To determine the effects of empagliflozin on adiposity indices among patients with type 2 diabetes mellitus. Methods: Changes in weight, waist circumference, estimated total body fat, index of central obesity and visceral adiposity index were assessed using analysis of covariance and testing of treatment by strata for age, sex and baseline waist circumference in patients with type 2 diabetes mellitus randomized to blinded treatment with empagliflozin versus placebo in clinical trials of...

  10. Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats.

    Bai Xue

    Full Text Available Type 2 diabetes (T2DM is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic

  11. Competing physiological pathways link individual differences in weight and abdominal adiposity to white matter microstructure

    Verstynen, Timothy D.; Weinstein, Andrea; Erickson, Kirk I.; Lei K Sheu; Marsland, Anna L.; Gianaros, Peter J.

    2013-01-01

    Being overweight or obese is associated with reduced white matter integrity throughout the brain. It is not yet clear which physiological systems mediate the association between inter-individual variation in adiposity and white matter. We tested whether composite indicators of cardiovascular, lipid, glucose, and inflammatory factors would mediate the adiposity-related variation in white matter microstructure, measured with diffusion tensor imaging on a group of neurologically healthy adults (...

  12. A New Approach for Adipose Tissue Treatment and Body Contouring Using Radiofrequency-Assisted Liposuction

    Paul, Malcolm; Mulholland, Robert Stephen

    2009-01-01

    A new liposuction technology for adipocyte lipolysis and uniform three-dimensional tissue heating and contraction is presented. The technology is based on bipolar radiofrequency energy applied to the subcutaneous adipose tissue and subdermal skin surface. Preliminary clinical results, thermal monitoring, and histologic biopsies of the treated tissue demonstrate rapid preaspiration liquefaction of adipose tissue, coagulation of subcutaneous blood vessels, and uniform sustained heating of tissue.

  13. Cellular and molecular basis of adipose tissue development: from stem cells to adipocyte physiology

    Louveau, Isabelle; Perruchot, Marie-Hélène; Gondret, Florence

    2014-01-01

    White adipose tissue plays a key role in the regulation of energy balance in vertebrates. Its primary function is to store and release energy. It is also recognized to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Unlike other tissues, adipose tissue mass has large capacity to expand and can be seen as a dynamic tissue able to adapt to a variety of environmental and genetic factors. The aim of this review...

  14. Tissue Engineering of Injectable Soft tissue Filler: Using Adipose Stem Cells and Micronized Acellular Dermal Matrix

    Yoo, Gyeol; Lim, Jin Soo

    2009-01-01

    In this study of a developed soft tissue filler, adipose tissue equivalents were constructed using adipose stem cells (ASCs) and micronized acellular dermal matrix (Alloderm). After labeling cultured human ASCs with fluorescent green protein and attaching them to micronized Alloderm (5×105 cells/1 mg), ASC-Alloderm complexes were cultured in adipogenic differentiation media for 14 days and then injected into the dorsal cranial region of nude male mice. The viabilities of ASCs in micronized Al...

  15. Short- and long-term glucocorticoid treatment enhances insulin signalling in human subcutaneous adipose tissue

    Gathercole, LL; Morgan, SA; Bujalska, IJ; Stewart, PM; Tomlinson, JW

    2011-01-01

    Background: Endogenous or exogenous glucocorticoid (GC) excess (Cushing's syndrome) is characterized by increased adiposity and insulin resistance. Although GCs cause global insulin resistance in vivo, we have previously shown that GCs are able to augment insulin action in human adipose tissue, contrasting with their action in skeletal muscle. Cushing's syndrome develops following chronic GC exposure and, in addition, is a state of hyperinsulinemia. Objectives: We have therefore compared the ...

  16. Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats

    Alexey A. Tinkov

    2016-03-01

    Full Text Available Background. Limited data on adipose tissue zinc content in obesity exist. At the same time, the association between adipose tissue zinc content and metabolic parameters in dietary-induced obesity is poorly studied. Therefore, the primary objective of this study is to assess adipose tissue zinc content and its association  with morphometric parameters, adipokine spectrum, proinflammatory cytokines, and apolipoprotein profile in high fat fed Wistar rats. Material and methods. A total of 48 adult female Wistar rats were used in the present study. Rats were fed either control (10% of fat or high fat diet (31.6% of fat. Adipose tissue zinc content was assessed using inductively coupled plasma mass spectrometry. Rats’ serum was examined for adiponectin, leptin, insulin, interleukin-6, and tumor necrosis factor-α using enzyme-linked immunosorbent assay kits. Serum glucose and apolipoprotein spectrum were also evaluated. Results. High fat feeding resulted in a significant 34% decrease in adipose tissue zinc content in comparison to the control values. Fat pad zinc levels were significantly inversely associated with morphometric param- eters, circulating leptin, insulin, tumor necrosis factor-α levels and HOMA-IR values. At the same time,      a significant correlation with apolipoprotein A1 concentration was observed. Conclusion. Generally, the obtained data indicate that (1 high fat feeding results in decreased adipose tis- sue zinc content; (2 adipose tissue zinc content is tightly associated with excessive adiposity, inflammation, insulin resistance and potentially atherogenic changes.

  17. Evidence for the intra-uterine programming of adiposity in later life

    Fall, Caroline HD

    2011-01-01

    Research in animals has shown that altering fetal nutrition by under-nourishing or over-nourishing the mother or rendering her diabetic, or fetal exposure to glucocorticoids and toxins, can programme obesity in later life. The increased adiposity is mediated by permanent changes in appetite, food choices, physical activity and energy metabolism. In humans, increased adiposity has been shown in people who experienced fetal under-nutrition due to maternal famine, or over-nutrition due to matern...

  18. Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells

    Sarasa Bharati Arumugam; Omana A Trentz; Devi Arikketh; Vijayalakshmi Senthinathan; Barry Rosario; P. V. A Mohandas

    2011-01-01

    Background: Bone marrow transplantation is already an established therapy, which is now widely used in medicine to treat leukemia, lymphoma, and several inherited blood disorders. The culture of multilineage cells from easily available adipose tissue is another source of multipotent mesenchymal stem cells, and is referred to as adipose tissue-derived stem cells (ADSCs). While ADSCs are being used to treat various conditions, some lacuna exists regarding the specific proteins in these. It was ...

  19. Isolation, culturing and characterization of rat adipose tissue-derived mesenchymal stem cells: a simple technique

    NİYAZ, Mehmet; Özer Aylin GÜRPINAR; GÜNAYDIN, Serdar; Onur, Mehmet Ali

    2012-01-01

    In this study, our aim was to develop a new simple technique for isolation of mesenchymal stem cells from adipose tissue. For this purpose, mesenchymal stem cells were isolated from rat adipose tissue by using the primary explant culture technique. When the cells became confluent, they were passaged 4 times by using the standard trypsinization method with trypsin/EDTA solution. Cells at second passage were characterized by using immunofluorescence staining against CD13 and CD29 markers. The r...

  20. Adipose tissue stem cells meet preadipocyte commitment: going back to the future[S

    Cawthorn, William P; Erica L. Scheller; MacDougald, Ormond A.

    2012-01-01

    White adipose tissue (WAT) is perhaps the most plastic organ in the body, capable of regeneration following surgical removal and massive expansion or contraction in response to altered energy balance. Research conducted for over 70 years has investigated adipose tissue plasticity on a cellular level, spurred on by the increasing burden that obesity and associated diseases are placing on public health globally. This work has identified committed preadipocytes in the stromal vascular fraction o...

  1. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?

    Damous, Luciana L.; Nakamuta, Juliana S.; Saturi de Carvalho, Ana ET; Carvalho, Katia Candido; Soares-Jr, José Maria; Simões, Manuel Jesus; Krieger, José Eduardo; Baracat, Edmund Chada

    2015-01-01

    Background A major concern in ovarian transplants is substantial follicle loss during the initial period of hypoxia. Adipose tissue-derived stem cells (ASCs) have been employed to improve angiogenesis when injected into ischemic tissue. This study evaluated the safety and efficacy of adipose tissue-derived stem cells (ASCs) therapy in the freshly grafted ovaries 30 days after injection. Methods Rat ASCs (rASCs) obtained from transgenic rats expressing green fluorescent protein (GFP)-(5 × 104 ...

  2. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    Wan Safwani Wan Kamarul Zaman; Makpol Suzana; Sathapan Somasundaram; Chua Kien

    2012-01-01

    Abstract Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study...

  3. Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells

    Mohammadi, Zahra; Afshari, Jalil Tavakkol; Keramati, Mohammad Reza; Alamdari, Daryoush Hamidi; Ganjibakhsh, Meysam; Zarmehri, Azam Moradi; Jangjoo, Ali; Sadeghian, Mohammad Hadi; Ameri, Masoumeh Arab; Moinzadeh, Leila

    2015-01-01

    Objective(s): Mesenchymal stem cells (MSC) can be isolated from adult tissues such as adipose tissue and other sources. Among these sources, adipose tissue (because of easy access) and placenta (due to its immunomodulatory properties, in addition to other useful properties), have attracted more attention in terms of research. The isolation and comparison of MSC from these two sources provides a proper source for clinical experimentation. The aim of this study was to compare the characteristic...

  4. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Horowitz, Mark C.

    2014-01-01

    White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for gen...

  5. Impaired Preadipocyte Differentiation Into Adipocytes in Subcutaneous Abdominal Adipose of PCOS-Like Female Rhesus Monkeys

    Keller, Erica; Chazenbalk, Gregorio D.; Aguilera, Paul; Madrigal, Vanessa; Grogan, Tristan; Elashoff, David; Daniel A Dumesic; David H Abbott

    2014-01-01

    Metabolic characteristics of polycystic ovary syndrome women and polycystic ovary syndrome-like, prenatally androgenized (PA) female monkeys worsen with age, with altered adipogenesis of sc abdominal adipose potentially contributing to age-related adverse effects on metabolism. This study examines whether adipocyte morphology and gene expression in sc abdominal adipose differ between late reproductive-aged PA female rhesus monkeys compared with age-matched controls (C). Subcutaneous abdominal...

  6. Adipose tissue dysfunction and cardiometabolic risk. Ex vitro, in vivo and clinical studies

    Kranendonk, M.E.G.

    2014-01-01

    While the obesity epidemic develops at an alarming rate, scientifically we are still far behind with regard to diagnostic and therapeutic actions. In this thesis, we aimed to explore current and novel pathways in adipose tissue dysfunction, as a result of obesity, and investigated how they might contribute to metabolic and cardiovascular disease. In chapter 2, current knowledge of pathophysiological mechanisms linking abdominal adipose tissue to obesity-related metabolic dysfunction is review...

  7. Significance of adipose tissue characteristics for development of metabolic complications in obesity

    Andersson, Daniel P

    2014-01-01

    Background: Obesity is closely related to development of insulin resistance and dyslipidemia. Intrinsic properties of adipose tissue are also of great importance for obesity related comorbidity. The aim of this thesis was to gain further knowledge of adipose depot specific effects of how fat cell size and lipolysis, as well as removal of a large portion of the visceral fat depot, affect metabolic risk. Methods: All subjects were from a cohort of 81 obese women undergoing gastric bypass ...

  8. Genetic Analysis of Brown Adipose Tissue, Obesity and Growth in Mice

    Saxton, A. M.; Eisen, E. J.

    1984-01-01

    The hypothesis developed from single-gene mutant obese rodents that brown adipose tissue (BAT), through its thermogenic ability, is an important factor in the development of obesity, was tested in a randombred population of mice in which degree of adiposity is polygenically determined. Additive direct genetic parameters for measures of body size, lean, fatness and BAT at 6 wk of age were estimated under control and high-fat postweaning dietary regimens. Heritabilities were generally similar f...

  9. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity

    Mohd. Shahid; Ammar A. Javed; David Chandra; Haley E. Ramsey; Dilip Shah; Khan, Mohammed F.; Liping Zhao; Mei X. Wu

    2016-01-01

    Chronic inflammation plays a crucial role in the pathogenesis of obesity and insulin resistance. However, the primary mediators that affect energy homeostasis remain ill defined. Here, we report an unexpected role for immediate early response gene X-1 (IEX-1), a downstream target of NF-κB, in energy metabolism. We found that IEX-1 expression was highly induced in white adipose tissue (WAT) in both epidydmal and subcutaneous depots but not in interscapular brown adipose tissue (BAT) in mice fe...

  10. Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue

    Hoffmann, Linda S.; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W.C.; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander

    2015-01-01

    Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimu...

  11. Evidence for the ectopic synthesis of melanin in human adipose tissue

    Randhawa, Manpreet; Huff, Tom; Valencia, Julio C.; Younossi, Zobair; Chandhoke, Vikas; Hearing, Vincent J.; Baranova, Ancha

    2009-01-01

    Melanin is a common pigment in animals. In humans, melanin is produced in melanocytes, in retinal pigment epithelium (RPE) cells, in the inner ear, and in the central nervous system. Previously, we noted that human adipose tissue expresses several melanogenesis-related genes. In the current study, we confirmed the expression of melanogenesis-related mRNAs and proteins in human adipose tissue using real-time polymerase chain reaction and immunohistochemical staining. TYR mRNA signals were also...

  12. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles.

    Xue, Yuan; Xu, Xiaoyang; Zhang, Xue-Qing; Farokhzad, Omid C; Langer, Robert

    2016-05-17

    The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. PMID:27140638

  13. Myostatin Inhibition in Muscle, but Not Adipose Tissue, Decreases Fat Mass and Improves Insulin Sensitivity

    Guo, Tingqing; Jou, William; Chanturiya, Tatyana; Portas, Jennifer; Gavrilova, Oksana; McPherron, Alexandra C.

    2009-01-01

    Myostatin (Mstn) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn−/− mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn−/− mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscl...

  14. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    Grefhorst, Aldo; van den Beukel, Johanna C; van Houten, E Leonie AF; Steenbergen, Jacobie; Visser, Jenny A.; Themmen, Axel PN

    2015-01-01

    Background In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed in BAT and are involved in BAT activity. We hypothesized that differential expression of BMPs and FGFs might contribute to sex differences in BAT activity. Methods We investigated the expression of BMPs and FG...

  15. Adipose-Derived Stem Cells (ADSC) and Aesthetic Surgery: A Mini Review

    Mehrabani, Davood; Mehrabani, Golshid; Zare, Shahrokh; Manafi, Ali

    2013-01-01

    In cell therapy and regenerative medicine, a reliable source of stem cells together with cytokine growth factors and biomaterial scaffolds seem necessary. As adipose tissue is easy accessible and is abundant source of adult stem cells and can differentiate along multiple lineages, it can be considered as a good candidate in aesthetic medicine. The clinical application of adipose-derived stem cells (ASCs) is reviewed in this article.

  16. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis

    Fisher, ffolliott M.; Kleiner, Sandra; Douris, Nicholas; Fox, Elliott C.; Mepani, Rina J.; Verdeguer, Francisco; Wu, Jun; Kharitonenkov, Alexei; Flier, Jeffrey S.; Maratos-Flier, Eleftheria; Spiegelman, Bruce M.

    2012-01-01

    Brown adipose tissue (BAT) can protect against hypothermia and obesity by using lipids to produce heat. In this study, Spiegelman and colleagues studied FGF21 control of thermogenesis in mice. The authors used gain- and loss-of-function experiments to demonstrate that FGF21 induces a brown fat phenotype in white adipose tissues. In addition, they found that FGF21 is required for the adaptive thermogenic response of mice by increasing PGC-1α protein levels, independent of its transcription. Th...

  17. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis

    Morrison, Shaun F.; Madden, Christopher J.; Tupone, Domenico

    2012-01-01

    Non-shivering thermogenesis in brown adipose tissue (BAT) plays an important role in thermoregulatory cold-defense and, through its metabolic consumption of energy reserves to produce heat, can affect the long-term regulation of adiposity. An orexinergic pathway from the perifornical lateral hypothalamus (PeF/LH) to the rostral raphe pallidus (rRPa) has been demonstrated to increase the gain of the excitatory drives to medullary sympathetic premotor neurons controlling BAT sympathetic outflow...

  18. Lipocalin 2, a Regulator of Retinoid Homeostasis and Retinoid-mediated Thermogenic Activation in Adipose Tissue.

    Guo, Hong; Foncea, Rocio; O'Byrne, Sheila M; Jiang, Hongfeng; Zhang, Yuanyuan; Deis, Jessica A; Blaner, William S; Bernlohr, David A; Chen, Xiaoli

    2016-05-20

    We have recently characterized the role of lipocalin 2 (Lcn2) as a new adipose-derived cytokine in the regulation of adaptive thermogenesis via a non-adrenergic pathway. Herein, we explored a potential non-adrenergic mechanism by which Lcn2 regulates thermogenesis and lipid metabolism. We found that Lcn2 is a retinoic acid target gene, and retinoic acid concurrently stimulated UCP1 and Lcn2 expression in adipocytes. Lcn2 KO mice exhibited a blunted effect of all-trans-retinoic acid (ATRA) on body weight and fat mass, lipid metabolism, and retinoic acid signaling pathway activation in adipose tissue under the high fat diet-induced obese condition. We further demonstrated that Lcn2 is required for the full action of ATRA on the induction of UCP1 and PGC-1α expression in brown adipocytes and the restoration of cold intolerance in Lcn2 KO mice. Interestingly, we discovered that Lcn2 KO mice have decreased levels of retinoic acid and retinol in adipose tissue. The protein levels of STRA6 responsible for retinol uptake were significantly decreased in adipose tissue. The retinol transporter RBP4 was increased in adipose tissue but decreased in the circulation, suggesting the impairment of RBP4 secretion in Lcn2 KO adipose tissue. Moreover, Lcn2 deficiency abolished the ATRA effect on RBP4 expression in adipocytes. All the data suggest that the decreased retinoid level and action are associated with impaired retinol transport and storage in adipose tissue in Lcn2 KO mice. We conclude that Lcn2 plays a critical role in regulating metabolic homeostasis of retinoids and retinoid-mediated thermogenesis in adipose tissue. PMID:27008859

  19. Exercise protects against obesity-induced endothelial dysfunction via promoting perivascular adipose tissue browning

    Zhong, Cheng

    2015-01-01

    Overweight and obesity have reached epidemics worldwide. Obesity represents the independent risk factor for a serious of diseases including cardiovascular diseases. Exercise is one of the most efficient ways to prevent or delay the onset of cardiovascular diseases. But the detailed mechanism is still poorly understood. Perivascular adipose tissue (PVAT) is the adipose tissue surrounding the blood vessels. Emerging evidence has shown that PVAT plays an active role in modulating vascular functi...

  20. Body adiposity index and incident hypertension: The Aerobics Center Longitudinal Study

    Moliner Urdiales, Diego; Artero, Enrique G.; España Romero, Vanesa; Blair, Steven N.

    2014-01-01

    Background and aim The body adiposity index (BAI) has been recently proposed as a new method to estimate the percentage of body fat. The association between BAI and hypertension risk has not been investigated yet. The aim of our study was to evaluate the ability of BAI to predict hypertension in males and females compared with traditional body adiposity measures. Methods and results The present follow-up analysis comprised 10,309 individuals (2259 females) free of hypertension fro...