WorldWideScience

Sample records for adipose tissue-derived stem

  1. Myocardial regeneration potential of adipose tissue-derived stem cells

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  2. Myocardial regeneration potential of adipose tissue-derived stem cells

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  3. Quantum dots for labeling adipose tissue-derived stem cells.

    Yukawa, Hiroshi; Mizufune, Shogo; Mamori, Chiharu; Kagami, Yukimasa; Oishi, Koichi; Kaji, Noritada; Okamoto, Yukihiro; Takeshi, Manabu; Noguchi, Hirofumi; Baba, Yoshinobu; Hamaguchi, Michinari; Hamajima, Nobuyuki; Hayashi, Shuji

    2009-01-01

    Adipose tissue-derived stem cells (ASCs) have a self-renewing ability and can be induced to differentiate into various types of mesenchymal tissue. Because of their potential for clinical application, it has become desirable to label the cells for tracing transplanted cells and for in vivo imaging. Quantum dots (QDs) are novel inorganic probes that consist of CdSe/ZnS-core/shell semiconductor nanocrystals and have recently been explored as fluorescent probes for stem cell labeling. In this study, negatively charged QDs655 were applied for ASCs labeling, with the cationic liposome, Lipofectamine. The cytotoxicity of QDs655-Lipofectamine was assessed for ASCs. Although some cytotoxicity was observed in ASCs transfected with more than 2.0 nM of QDs655, none was observed with less than 0.8 nM. To evaluate the time dependency, the fluorescent intensity with QDs655 was observed until 24 h after transfection. The fluorescent intensity gradually increased until 2 h at the concentrations of 0.2 and 0.4 nM, while the intensity increased until 4 h at 0.8 nM. The ASCs were differentiated into both adipogenic and osteogenic cells with red fluorescence after transfection with QDs655, thus suggesting that the cells retain their potential for differentiation even after transfected with QDs655. These data suggest that QDs could be utilized for the labeling of ASCs. PMID:19775521

  4. Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells

    Sarasa Bharati Arumugam; Omana A Trentz; Devi Arikketh; Vijayalakshmi Senthinathan; Barry Rosario; P. V. A Mohandas

    2011-01-01

    Background: Bone marrow transplantation is already an established therapy, which is now widely used in medicine to treat leukemia, lymphoma, and several inherited blood disorders. The culture of multilineage cells from easily available adipose tissue is another source of multipotent mesenchymal stem cells, and is referred to as adipose tissue-derived stem cells (ADSCs). While ADSCs are being used to treat various conditions, some lacuna exists regarding the specific proteins in these. It was ...

  5. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?

    Damous, Luciana L.; Nakamuta, Juliana S.; Saturi de Carvalho, Ana ET; Carvalho, Katia Candido; Soares-Jr, José Maria; Simões, Manuel Jesus; Krieger, José Eduardo; Baracat, Edmund Chada

    2015-01-01

    Background A major concern in ovarian transplants is substantial follicle loss during the initial period of hypoxia. Adipose tissue-derived stem cells (ASCs) have been employed to improve angiogenesis when injected into ischemic tissue. This study evaluated the safety and efficacy of adipose tissue-derived stem cells (ASCs) therapy in the freshly grafted ovaries 30 days after injection. Methods Rat ASCs (rASCs) obtained from transgenic rats expressing green fluorescent protein (GFP)-(5 × 104 ...

  6. Adipose Tissue-Derived Mesenchymal Stem Cells as a New Host Cell in Latent Leishmaniasis

    Allahverdiyev, Adil M; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N.

    2011-01-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs hav...

  7. Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells

    Sarasa Bharati Arumugam

    2011-01-01

    Full Text Available Background: Bone marrow transplantation is already an established therapy, which is now widely used in medicine to treat leukemia, lymphoma, and several inherited blood disorders. The culture of multilineage cells from easily available adipose tissue is another source of multipotent mesenchymal stem cells, and is referred to as adipose tissue-derived stem cells (ADSCs. While ADSCs are being used to treat various conditions, some lacuna exists regarding the specific proteins in these. It was therefore decided to analyze the specific proteins of embryonic cells in ADSCs. Aims: To analyze the specific protein of embryonic stem cells (ESCs in ADSCs. Materials and Methods: Adult human adipose tissue-derived stem cells (ADSCs were harvested from 13 patients after obtaining patients′ consent. The specific markers of ESCs included surface proteins CD10, CD13, CD44, CD59, CD105, and CD166, and further nucleostemin,(NS NANOG, peroxisome proliferator-activated receptor-gγ, collagen type 1 (Coll1, alkaline phosphate, (ALP osteocalcin (OC, and core binding factor 1 (Cbfa1 were analyzed using by reverse transcription-polymerase chain reaction, (RT-PCR immunofluorescence (IF, and western blot. Results: All the proteins were expressed distinctly, except CD13 and OC. CD13 was found individually with different expressions, and OC expression was discernable. Conclusions: Although the ESC with its proven self-renewal capacity and pluripotency seems appropriate for clinical use, the recent work on ADSCs suggests that these adult stem cells would be a valuable source for future biotechnology, especially since there is a relative ease of procurement.

  8. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Methods: Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×105 cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). Results: We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Conclusion: Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering. PMID:27123425

  9. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin

  10. Adipose tissue-derived mesenchymal stem cells as a new host cell in latent leishmaniasis.

    Allahverdiyev, Adil M; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N

    2011-09-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs have been isolated, cultured, characterized, and infected with different species of Leishmania parasites (L. donovani, L. major, L. tropica, and L. infantum). Infectivity was examined by Giemsa staining, microculture, and polymerase chain reaction methods. As a result, infectivity of ADMSCs by Leishmania parasites has been determined for the first time in this study. According to our findings, it is very important that donors are screened for Leishmania parasites before stem cell transplantations in regions where leishmaniasis is endemic. PMID:21896818

  11. MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells

    Jung Ah Cho; Ho Park; Eun Hye Lim; Kyo Won Lee

    2011-04-01

    Adipose tissue-derived stem cells (ADSCs) are one population of adult stem cells that can self renew and differentiate into multiple lineages. Because of advantages in method and quantity of acquisition, ADSCs are gaining attention as an alternative source of bone marrow mesenchymal stem cells. In this study, we performed microRNA profiling of undifferentiated and of neurally-differentiated ADSCs to identify the responsible microRNAs in neurogenesis using this type of stem cell. MicroRNAs from four different donors were analysed by microarray. Compared to the undifferentiation control, we identified 39–101 microRNAs with more than two-fold higher expression and 3–9 microRNAs with two-fold lower expression. The identified microRNAs were further analysed in terms of gene ontology (GO) in relation with neurogenesis, based on their target mRNAs predicted by computational analysis. This study revealed the specific microRNAs involved in neurogenesis via microRNA microarray, and may provide the basic information for genetic induction of adult stem cell differentiation using microRNAs.

  12. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda;

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...

  13. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications

    Jaewoo Pak

    2016-01-01

    Full Text Available Osteoarthritis (OA is one of the most common debilitating disorders among the elderly population. At present, there is no definite cure for the underlying causes of OA. However, adipose tissue-derived stem cells (ADSCs in the form of stromal vascular fraction (SVF may offer an alternative at this time. ADSCs are one type of mesenchymal stem cells that have been utilized and have demonstrated an ability to regenerate cartilage. ADSCs have been shown to regenerate cartilage in a variety of animal models also. Non-culture-expanded ADSCs, in the form of SVF along with platelet rich plasma (PRP, have recently been used in humans to treat OA and other cartilage abnormalities. These ADSCs have demonstrated effectiveness without any serious side effects. However, due to regulatory issues, only ADSCs in the form of SVF are currently allowed for clinical uses in humans. Culture-expanded ADSCs, although more convenient, require clinical trials for a regulatory approval prior to uses in clinical settings. Here we present a systematic review of currently available clinical studies involving ADSCs in the form of SVF and in the culture-expanded form, with or without PRP, highlighting the clinical effectiveness and safety in treating OA.

  14. Ultrasound -Assisted Gene Transfer to Adipose Tissue-Derived Stem/Progenitor Cells (ASCs)

    Miyamoto, Yoshitaka; Ueno, Hitomi; Hokari, Rei; Yuan, Wenji; Kuno, Shuichi; Kakimoto, Takashi; Enosawa, Shin; Negishi, Yoichi; Yoshinaka, Kiyoshi; Matsumoto, Yoichiro; Chiba, Toshio; Hayashi, Shuji

    2011-09-01

    In recent years, multilineage adipose tissue-derived stem cells (ASCs) have become increasingly attractive as a promising source for cell transplantation and regenerative medicine. Particular interest has been expressed in the potential to make tissue stem cells, such as ASCs and marrow stromal cells (MSCs), differentiate by gene transfection. Gene transfection using highly efficient viral vectors such as adeno- and sendai viruses have been developed for this purpose. Sonoporation, or ultrasound (US)-assisted gene transfer, is an alternative gene manipulation technique which employs the creation of a jet stream by ultrasonic microbubble cavitation. Sonoporation using non-viral vectors is expected to be a much safer, although less efficient, tool for prospective clinical gene therapy. In this report, we assessed the efficacy of the sonoporation technique for gene transfer to ASCs. We isolated and cultured adipocyets from mouse adipose tissue. ASCs that have the potential to differentiate with transformation into adipocytes or osteoblasts were obtained. Using the US-assisted system, plasmid DNA containing beta-galactosidase (beta-Gal) and green fluorescent protein (GFP) genes were transferred to the ASCs. For this purpose, a Sonopore 4000 (NEPAGENE Co.) and a Sonazoid (Daiichi Sankyo Co.) instrument were used in combination. ASCs were subjected to US (3.1 MHz, 50% duty cycle, burst rate 2.0 Hz, intensity 1.2 W/cm2, exposure time 30 sec). We observed that the gene was more efficiently transferred with increased concentrations of plasmid DNA (5-150 μg/mL). However, further optimization of the US parameters is required, as the gene transfer efficiency was still relatively low. In conclusion, we herein demonstrate that a gene can be transferred to ASCs using our US-assisted system. In regenerative medicine, this system might resolve the current issues surrounding the use of viral vectors for gene transfer.

  15. Novel positively charged nanoparticle labeling for in vivo imaging of adipose tissue-derived stem cells.

    Hiroshi Yukawa

    Full Text Available Stem cell transplantation has been expected to have various applications for regenerative medicine. However, in order to detect and trace the transplanted stem cells in the body, non-invasive and widely clinically available cell imaging technologies are required. In this paper, we focused on magnetic resonance (MR imaging technology, and investigated whether the trimethylamino dextran-coated magnetic iron oxide nanoparticle -03 (TMADM-03, which was newly developed by our group, could be used for labeling adipose tissue-derived stem cells (ASCs as a contrast agent. No cytotoxicity was observed in ASCs transduced with less than 100 µg-Fe/mL of TMADM-03 after a one hour transduction time. The transduction efficiency of TMADM-03 into ASCs was about four-fold more efficient than that of the alkali-treated dextran-coated magnetic iron oxide nanoparticle (ATDM, which is a major component of commercially available contrast agents such as ferucarbotran (Resovist, and the level of labeling was maintained for at least two weeks. In addition, the differentiation ability of ASCs labeled with TMADM-03 and their ability to produce cytokines such as hepatocyte growth factor (HGF, vascular endothelial growth factor (VEGF and prostaglandin E2 (PGE2, were confirmed to be maintained. The ASCs labeled with TMADM-03 were transplanted into the left kidney capsule of a mouse. The labeled ASCs could be imaged with good contrast using a 1T MR imaging system. These data suggest that TMADM-03 can therefore be utilized as a contrast agent for the MR imaging of stem cells.

  16. Autologous adipose tissue-derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy

    Liu, Tao; Mu, Hong; SHEN, ZHONGYANG; Song, Zhuolun; CHEN, XIAOBO; Wang, Yuliang

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70%...

  17. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  18. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  19. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects. PMID:24567299

  20. Changes in the proteomic profile of adipose tissue-derived mesenchymal stem cells during passages

    Capra Emanuele

    2012-07-01

    Full Text Available Abstract Background Human mesenchymal stem cells (hMSC have recently raised the attention because of their therapeutic potential in the novel context of regenerative medicine. However, the safety of these new and promising cellular products should be carefully defined before they can be used in the clinical setting, as. The protein expression profile of these cells might reveal potential hazards associated with senescence and tumoral transformation which may occur during culture. Proteomic is a valuable tool for hMSC characterization and identification of possible changes during expansion. Results We used Surface Enhanced Laser Desorption/Ionization-Time Of Flight-Mass Spectrometry (SELDI-ToF-MS to evaluate the presence of stable molecular markers in adipose tissue-derived mesenchymal stem cells (AD-MSC produced under conditions of good manufacturing practices (GMP. Proteomic patterns of cells prepared were consistent, with 4 up-regulated peaks (mass-to-charge ratio (m/z 8950, 10087, 10345, and 13058 through subculture steps (P0-P7 with similar trend in three donors. Among the differentially expressed proteins found in the cytoplasmic and nuclear fractions, a cytoplasmic 10.1 kDa protein was upregulated during culture passages and was identified as S100A6 (Calcyclin. Conclusions This study suggests for the first time that common variation could occur in AD-MSC from different donors, with the identification of S100A6, a protein prevalently related to cell proliferation and cell culture condition. These results support the hypothesis of common proteomic changes during MSCs expansion and could give important insight in the knowledge of molecular mechanisms intervening during MSC expansion.

  1. Contribution of INTRAMUSCULAR Autologous Adipose Tissue-Derived Stem Cell Injections to Treat Cutaneous Radiation Syndrome: Preliminary Results.

    Riccobono, Diane; Agay, Diane; François, Sabine; Scherthan, Harry; Drouet, Michel; Forcheron, Fabien

    2016-08-01

    Cutaneous radiation syndrome caused by high dose located irradiation is characterized by delayed symptoms, incomplete wound healing, and poor revascularization. Subcutaneous adipose tissue derived stromal/stem cells have been shown to improve skin repair in a minipig model of cutaneous radiation syndrome despite a subcutaneous defect being a consequence of radio-induced muscular fibrosis. Based on the pro-myogenic potential of stromal/stem cells, a new protocol combining subcutaneous and intramuscular injections was evaluated in a preliminary study. Six female minipigs were locally irradiated at the dose of 50 Gy using a Co source (0.6 Gy min) and randomly divided into two groups. Three animals received the vehicle (phosphate-buffer-saline solution) and three animals received three injections of 75 × 10 adipose tissue derived stromal/stem cells each time (day 25, 46, and 66 post-irradiation). Pigs were euthanized on day 76 post-irradiation before development of clinical skin symptoms. All minipigs exhibited a homogeneous skin evolution. Macroscopic observation of irradiated muscles showed prominent fibrosis and necrosis areas in controls as opposed to adipose tissue-derived stromal/stem cells injected animals. Moreover, muscle biopsy analysis highlighted a recruitment of myofibroblasts (Immune Reactive Score: p work is ongoing to evaluate this therapeutic strategy on a larger animal number with a longer clinical follow-up. PMID:27356055

  2. Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Triple Negative Breast Cancer Xenografts

    Rowan, Brian G.; Gimble, Jeffrey M; Sheng, Mei; Anbalagan, Muralidharan; Jones, Ryan K.; Frazier, Trivia P.; Asher, Majdouline; Lacayo, Eduardo A.; Friedlander, Paul L; Kutner, Robert; Chiu, Ernest S.

    2014-01-01

    Background Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a ...

  3. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda; Kastrup, Jens; Simonsen, Ulf; Zachar, Vladimir; Fink, Trine

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxi...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  4. Isolation, culturing and characterization of rat adipose tissue-derived mesenchymal stem cells: a simple technique

    NİYAZ, Mehmet; Özer Aylin GÜRPINAR; GÜNAYDIN, Serdar; Onur, Mehmet Ali

    2012-01-01

    In this study, our aim was to develop a new simple technique for isolation of mesenchymal stem cells from adipose tissue. For this purpose, mesenchymal stem cells were isolated from rat adipose tissue by using the primary explant culture technique. When the cells became confluent, they were passaged 4 times by using the standard trypsinization method with trypsin/EDTA solution. Cells at second passage were characterized by using immunofluorescence staining against CD13 and CD29 markers. The r...

  5. Are They Really Stem Cells? Scrutinizing the Identity of Cells and the Quality of Reporting in the Use of Adipose Tissue-Derived Stem Cells

    Ernesto Balolong; Soojung Lee; Judee Grace Nemeno; Jeong Ik Lee

    2016-01-01

    There is an increasing concern that the term adipose tissue-derived stem cell (ASC) is inappropriately used to refer to the adipose stromal vascular fraction (SVF). To evaluate the accuracy and quality of reporting, 116 manuscripts on the application of ASC in humans and animals were examined based on the 2013 published International Federation for Adipose Therapeutics and Science (IFATS)/ International Society for Cellular Therapy (ISCT) joint statement and in reference to current guidelines...

  6. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA. PMID:27470612

  7. Adipogenic differentiation of scaffold-bound human adipose tissue-derived stem cells (hASC) for soft tissue engineering

    Adipose tissue engineering, instead of tissue substitution, often uses autologous adipose tissue-derived stem cells (hASC). These cells are known to improve graft integration and to support neovascularization of scaffolds when seeded onto biomaterials. In this study we thought to engineer adipose tissue using scaffold-bound hASC, since they can be differentiated into the adipocyte cell lineage and used for soft tissue regeneration. We show here by microscopy and gene expression of the peroxysome proliferator-activated receptor gene (PPARγ2) that hASC growing on polypropylene fibrous scaffolds as well as on three-dimensional nonwoven scaffolds can be turned into adipose tissue within 19 days. Freshly isolated hASC displayed a higher differentiation potential than hASC cultured for eight passages. In addition, we proved a modified alginate microcapsule to directly induce adipogenic differentiation of incorporated hASC. The results may help to improve long-term success of adipose tissue regeneration, especially for large-scale soft tissue defects, and support the development of cell–scaffold combinations which can be shaped individually and directly induce the adipogenic differentiation of incorporated hASC at the site of implantation. (paper)

  8. The Relationship of a Combination of Human Adipose Tissue-Derived Stem Cells and Frozen Fat with the Survival Rate of Transplanted Fat

    Ha, Ki-Young; Park, Hojin; Park, Seung-Ha; Lee, Byung-Il; Ji, Yi-Hwa; Kim, Tae-Yeon; Yoon, Eul-Sik

    2015-01-01

    Background The survival rate of grafted fat is difficult to predict, and repeated procedures are frequently required. In this study, the effects of the freezing period of harvested adipose tissue and the addition of human adipose tissue-derived stem cells (ASCs) on the process of fat absorption were studied. Methods Adipose tissue was obtained from patients who underwent a lipoaspirated fat graft. The fat tissue was cryopreserved at -20℃ in a domestic refrigerator. A total of 40 nude mice wer...

  9. Cotransplantation of Adipose Tissue-Derived Insulin-Secreting Mesenchymal Stem Cells and Hematopoietic Stem Cells: A Novel Therapy for Insulin-Dependent Diabetes Mellitus

    Vanikar, A. V.; Dave, S. D.; Thakkar, U. G.; H L Trivedi

    2010-01-01

    Aims. Insulin dependent diabetes mellitus (IDDM) is believed to be an autoimmune disorder with disturbed glucose/insulin metabolism, requiring life-long insulin replacement therapy (IRT), 30% of patients develop end-organ failure. We present our experience of cotransplantation of adipose tissue derived insulin-secreting mesenchymal stem cells (IS-AD-MSC) and cultured bone marrow (CBM) as IRT for these patients. Methods. This was a prospective open-labeled clinical trial to test efficacy and s...

  10. In Vivo Tracking of Murine Adipose Tissue-Derived Multipotent Adult Stem Cells and Ex Vivo Cross-Validation

    Chiara Garrovo

    2013-01-01

    Full Text Available Stem cells are characterized by the ability to renew themselves and to differentiate into specialized cell types, while stem cell therapy is believed to treat a number of different human diseases through either cell regeneration or paracrine effects. Herein, an in vivo and ex vivo near infrared time domain (NIR TD optical imaging study was undertaken to evaluate the migratory ability of murine adipose tissue-derived multipotent adult stem cells [mAT-MASC] after intramuscular injection in mice. In vivo NIR TD optical imaging data analysis showed a migration of DiD-labelled mAT-MASC in the leg opposite the injection site, which was confirmed by a fibered confocal microendoscopy system. Ex vivo NIR TD optical imaging results showed a systemic distribution of labelled cells. Considering a potential microenvironmental contamination, a cross-validation study by multimodality approaches was followed: mAT-MASC were isolated from male mice expressing constitutively eGFP, which was detectable using techniques of immunofluorescence and qPCR. Y-chromosome positive cells, injected into wild-type female recipients, were detected by FISH. Cross-validation confirmed the data obtained by in vivo/ex vivo TD optical imaging analysis. In summary, our data demonstrates the usefulness of NIR TD optical imaging in tracking delivered cells, giving insights into the migratory properties of the injected cells.

  11. Influence of scaffold morphology on co-cultures of human endothelial and adipose tissue-derived stem cells.

    Arnal-Pastor, M; Martínez-Ramos, C; Vallés-Lluch, A; Pradas, M Monleón

    2016-06-01

    The interior of tissue engineering scaffolds must be vascularizable and allow adequate nutrients perfusion in order to ensure the viability of the cells colonizing them. The promotion of rapid vascularization of scaffolds is critical for thick artificial constructs. In the present study co-cultures of human endothelial and adipose tissue-derived stem cells have been performed in poly(ethyl acrylate) scaffolds with two different pore structures: grid-like (PEA-o) or sponge-like (PEA-s), in combination with a self-assembling peptide gel filling the pores, which aims to mimic the physiological niche. After 2 and 7 culture days, cell adhesion, proliferation and migration, the expression of cell surface markers like CD31 and CD90 and the release of VEGF were assessed by means of immunocytochemistry, scanning electronic microscopy, flow cytometry and ELISA analyses. The study demonstrated that PEA-s scaffolds promoted greater cell organization into tubular-like structures than PEA-o scaffolds, and this was enhanced by the presence of the peptide gel. Paracrine signaling from adipose cells significantly improved endothelial cell viability, proving the advantageous combination of this system for obtaining easily vascularizable tissue engineered grafts. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1523-1533, 2016. PMID:26860551

  12. Adipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin

    Sebastian Gehmert

    2014-01-01

    Full Text Available Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs, these cells (ASCs provide a therapeutic option for Duchenne Muscular Dystrophy (DMD. But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases.

  13. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold.

    Hoseinzadeh, Saghar; Atashi, Amir; Soleimani, Masoud; Alizadeh, Effat; Zarghami, Nosratollah

    2016-04-01

    The repair of skeletal defects is the main goal of bone tissue engineering. Recent literature highlighted various regulatory roles of microRNAs in stem cell fate determination. In addition, the role of porous hydroxyapatite/polycaprolacton (nHA/PCL) as a bioactive scaffold which enhances adipose tissue-derived mesenchymal stem cells (AT-MSCs) growth and osteogenic differentiation has been proved. The aim of the present study was to investigate the synergistic potential of both down-regulating miR-221 and nHA/PCL scaffold seeding in osteogenic potential of AT-MSCs. After isolation and characterization of AT-MSCs, the transfection of anti-miR-221 was performed into the cells using lipofectamine 2000 and the transfected cells were seeded into a synthesized nHA/PCL scaffold. The DAPI staining confirmed the presence of AT-MSCs on nHA/PCL scaffold. Quantitative expression of osteoblast marker genes, Runx2, and osteocalcin of the transfected cells in the scaffold were evaluated. Interestingly, significant upregulation of transcribed Runx2 and osteocalcin genes (P PCL seeded cells. Also, alkaline phosphatase activity (ALP) was significantly higher (P PCL than those seeded on nHA/PCL or transfected with anti-miR-221, individually. The results of this combination suggest a valuable method for enhancing osteogenesis in AT-MSCs. This method could be applicable for gene-cell therapy of bone defects. PMID:26822432

  14. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions

    Hypoxia is an important factor involved in the control of stem cells. To obtain a better insight into the phenotypical changes brought about by hypoxic preconditioning prior to chondrogenic differentiation; we have investigated growth, colony-forming and chondrogenic capacity, and global transcriptional responses of six adipose tissue-derived stem cell lines expanded at oxygen concentrations ranging from ambient to 1%. The assessment of cell proliferation and colony-forming potential revealed that the hypoxic conditions corresponding to 1% oxygen played a major role. The chondrogenic inducibility, examined by high-density pellet model, however, did not improve on hypoxic preconditioning. While the microarray analysis revealed a distinctive inter-donor variability, the exposure to 1% hypoxia superseded the biological variability and produced a specific expression profile with 2581 significantly regulated genes and substantial functional enrichment in the pathways of cell proliferation and apoptosis. Additionally, exposure to 1% oxygen resulted in upregulation of factors related to angiogenesis and cell growth. In particular, leptin (LEP), the key regulator of body weight and food intake was found to be highly upregulated. In conclusion, the results of this investigation demonstrate the significance of donor demographics and the importance of further studies into the use of regulated oxygen tension as a tool for preparation of ASCs in order to exploit their full potential.

  15. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions

    Pilgaard, L.; Lund, P.; Duroux, M. [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark); Lockstone, H.; Taylor, J. [Bioinformatics and Statistical Genetics, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford, OX3 7BN (United Kingdom); Emmersen, J.; Fink, T. [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark); Ragoussis, J. [Genomics, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford, OX3 7BN (United Kingdom); Zachar, V., E-mail: vlaz@hst.aau.dk [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark)

    2009-07-01

    Hypoxia is an important factor involved in the control of stem cells. To obtain a better insight into the phenotypical changes brought about by hypoxic preconditioning prior to chondrogenic differentiation; we have investigated growth, colony-forming and chondrogenic capacity, and global transcriptional responses of six adipose tissue-derived stem cell lines expanded at oxygen concentrations ranging from ambient to 1%. The assessment of cell proliferation and colony-forming potential revealed that the hypoxic conditions corresponding to 1% oxygen played a major role. The chondrogenic inducibility, examined by high-density pellet model, however, did not improve on hypoxic preconditioning. While the microarray analysis revealed a distinctive inter-donor variability, the exposure to 1% hypoxia superseded the biological variability and produced a specific expression profile with 2581 significantly regulated genes and substantial functional enrichment in the pathways of cell proliferation and apoptosis. Additionally, exposure to 1% oxygen resulted in upregulation of factors related to angiogenesis and cell growth. In particular, leptin (LEP), the key regulator of body weight and food intake was found to be highly upregulated. In conclusion, the results of this investigation demonstrate the significance of donor demographics and the importance of further studies into the use of regulated oxygen tension as a tool for preparation of ASCs in order to exploit their full potential.

  16. Cardiovascular tissue engineering and regeneration based on adipose tissue-derived stem/stromal cells

    Parvizi, Mojtaba

    2016-01-01

    Currently, the pre-clinical field is rapidly progressing in search of new therapeutic modalities that replace or complement current medication to treat cardiovascular disease. Among these are the single or combined use of stem cells, biomaterials and instructive factors, which together form the triad of tissue engineering and regenerative medicine. Stem cell therapy is a promising approach for repair, remodeling and even regenerate tissue of otherwise irreparable damage, such as after myocard...

  17. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  18. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We inves

  19. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-01-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks’ balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. PMID:27482231

  20. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs.

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-06-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks' balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. PMID:27482231

  1. Over-expression of VEGF165 in the adipose tissue-derived stem cells via the lentiviral vector

    SUN Xiang-zhou; LIU Gui-hua; WANG Zhuo-qing; ZHENG Fu-fu; BIAN Jun; HUANG Yan-ping; GAO Yong; ZHANG Ya-dong; DENG Chun-hua

    2011-01-01

    Background Many researchers studied the possibility of using stem cells as gene therapeutic vector. But few related reports on the adipose tissue-derived stem cells (ADSCs) are available. Therefore we intended to construct a lentiviral VEGF165 expression vector and then infect the ADSCs to produce therapeutic seed cells.Methods EHS1001-68950485313912 clone was mutated by PCR method to produce consensus fragment of VEGF165 transcript (NM_001025368). Lentivirus was enveloped with pGC-FU, pHelper 1.0 and pHelper 2.0 plasmids in 293T cells.And then the ADSCs (multiplicity of infection=20) were transfected with the vectors after titer determination. Stable expression of VEGF165 in ADSCs was confirmed by immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and Western blotting analysis.Results DNA sequencing and 293T transfection verified VEGF165 was linked to the GFP fused vector. The virus titer is up to 2x10a determined by quantitative PCR. VEGF165 transduced cells could show green fluorescence confirmed by immunofluorescence staining (almost 95%). ELISA analyses could detect out the density of VEGF was 850.86-1202.13pg/ml (mean (923.00±31.22) pg/ml) in the supernatant of VEGF16s-transduced cells but not detected in the GFP-transduced cells (P <0.001) and the Western blotting analyses also confirmed VEGF165 expression in VEGF165-transduced cells.Conclusions The VEGF165 over-expression ADSCs were obtained and may be used as a cell therapeutic tool and may be applied for vascular regeneration, especially in the treatment of erectile dysfunction.

  2. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  3. Are They Really Stem Cells? Scrutinizing the Identity of Cells and the Quality of Reporting in the Use of Adipose Tissue-Derived Stem Cells.

    Balolong, Ernesto; Lee, Soojung; Nemeno, Judee Grace; Lee, Jeong Ik

    2016-01-01

    There is an increasing concern that the term adipose tissue-derived stem cell (ASC) is inappropriately used to refer to the adipose stromal vascular fraction (SVF). To evaluate the accuracy and quality of reporting, 116 manuscripts on the application of ASC in humans and animals were examined based on the 2013 published International Federation for Adipose Therapeutics and Science (IFATS)/ International Society for Cellular Therapy (ISCT) joint statement and in reference to current guidelines for clinical trials and preclinical studies. It is disconcerting that 4 among the 47 papers or 8.51% (CI 2.37-20.38) surveyed after publication of IFATS/ISCT statement reported using ASCs but in fact they used unexpanded cells. 28/47 or 59.57% (CI 44.27-73.63) explicitly reported that adherent cells were used, 35/47 or 74.47% (CI 59.65-86.06) identified expression of surface markers, and 25/47 or 53.19% (CI 14.72-30.65) verified the multilineage potential of the cells. While there are a number of papers examined in this survey that were not able to provide adequate information on the characteristics of ASCs used with some erroneously referring to the SVF as stem cells, there are more room for improvement in the quality of reporting in the application of ASCs in humans and animals. PMID:26798353

  4. Differentiation of rat adipose tissue-derived mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro

    XIE Li-wei; FANG Huang; CHEN An-min; LI Feng

    2009-01-01

    Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro,so as to lay a foundation for the cell-based transplantation therapy of degenerated intervertebral discs.Methods: Rat ADSCs were isolated only from the subcutaneous inguinal region and purified by limited dilution.ADSCs of the third passages were analyzed by fluorescence activated cell sorter (FACS) to detect the cell surface markers (Sca-1,CD44,CD45,CD11b).To induce ADSCs towards a nucleus pulposus-like phenotype,ADSCs were immobilized in 3-dimensional alginate hydrogels and cultured in an inducing medium containing transforming growth factor-betal (TGF-β1) under hypoxia (2% O2),while control groups under normoxia (21% O2) in alginate beads in medium with or without the presence of TGF-β1.Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was carded out to evaluate phenotypic and biosynthetic activities in the process of differentiation.Meanwhile,Alcian blue staining were used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells.Results: The purified ADSCs were fibroblast-like and proliferated rapidly in vitro.The flow cytometry showed that ADSCs were positive for Sea-1 and CD44,negative for CD45 and CD11b.The results of RT-PCR manifested that the gene expressions of Sox-9,aggrecan and collagen Ⅱ,which were chondrocyte specific,were upregulated in medium containing TGF-β1 under hypoxia (2% O2).Likewise,gene expression of HIF-la,which was characteristics of intervertebral discs,was also upregulated.Simultaneously,Alcian blue staining exhibited the formation of many GAGs.Conclusions: The approach in our experiment is a simple and effective way to acquire a large quantity of homogenous ADSCs.Rat ADSCs can be differentiated into nucleus pulposus-like cells.ADSCs may replace bone marrow mesenchymal stem cells as a new kind of seed cells in regeneration of

  5. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety. PMID:27151205

  6. In Situ Transplantation of Alginate Bioencapsulated Adipose Tissues Derived Stem Cells (ADSCs via Hepatic Injection in a Mouse Model.

    Mong-Jen Chen

    Full Text Available Adipose tissue derived stem cells (ADSCs transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported. In this study, our objective is to evaluate a novel route to transplant ADSCs specifically to the liver. We aimed to test the feasibility of in situ transplantation of ADSCs by injecting bioencapsulated ADSCs into the liver in mouse model.The ADSCs isolated from human alpha 1 antitrypsin (M-hAAT transgenic mice were used to allow delivered ADSCs be readily identified in the liver of recipient mice, and alginate was selected as a cell carrier. We first evaluated whether alginate microspheres are implantable into the liver tissue by injection and whether ADSCs could migrate from alginate microspheres (study one. Once proven, we then examined the in vivo fate of ADSCs loaded microspheres in the liver. Specifically, we evaluated whether transplanted, undifferentiated ASDCs could be induced by the local microenvironment toward hepatogenic differentiation and the distribution of surviving ADSCs in major tissue organs (study two.Our results indicated ADSCs loaded alginate microspheres were implantable into the liver. Both degraded and residual alginate microspheres were observed in the liver up to three weeks. The viable ADSCs were detectable surrounding degraded and residual alginate microspheres in the liver and other major organs such as bone marrow and the lungs. Importantly, transplanted

  7. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Kwangseon Jung

    Full Text Available Ultraviolet A (UVA irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs. Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  8. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation

    Kim KJ

    2015-03-01

    Full Text Available Ki Joo Kim,1,2 Young Ae Joe,3 Min Kyoung Kim,1,2 Su Jin Lee,1 Yeon Hee Ryu,1,2 Dong-Woo Cho,4,5 Jong Won Rhie1,2 1Department of Plastic Surgery, College of Medicine, 2Department of Molecular Biomedicine, 3Cancer Research Institute and Department of Medical Lifescience, The Catholic University of Korea, Seoul, Republic of Korea; 4Department of Mechanical Engineering, Pohang University of Science and Technology, Gyeongbuk, Republic of Korea; 5Department of Integrative Bioscience and Bioengineering, Pohang University of Science and Technology, Gyeongbuk, Republic of Korea Background: Silicon dioxide composites have been found to enhance the mechanical properties of scaffolds and to support growth of human adipose tissue-derived stem cells (hADSCs both in vitro and in vivo. Silica (silicon dioxide alone exists as differently sized particles when suspended in culture medium, but it is not clear whether particle size influences the beneficial effect of silicon dioxide on hADSCs. In this study, we examined the effect of different sized particles on growth and mitogen-activated protein kinase signaling in hADSCs.Methods: Silica gel was prepared by a chemical reaction using hydrochloric acid and sodium silicate, washed, sterilized, and suspended in serum-free culture medium for 48 hours, and then sequentially filtered through a 0.22 µm filter (filtrate containing nanoparticles smaller than 220 nm; silica NPs. hADSCs were incubated with silica NPs or 3 µm silica microparticles (MPs, examined by transmission electron microscopy, and assayed for cell proliferation, apoptosis, and mitogen-activated protein kinase signaling.Results: Eighty-nine percent of the silica NPs were around 50–120 nm in size. When hADSCs were treated with the study particles, silica NPs were observed in endocytosed vacuoles in the cytosol of hADSCs, but silica MPs showed no cell entry. Silica NPs increased the proliferation of hADSCs, but silica MPs had no significant effect in

  9. Human adipose tissue-derived stem cells in breast reconstruction following surgery for cancer: A controversial issue

    Maria Giovanna Scioli; Valerio Cervelli; Pietro Gentile; Alessandra Bielli; Roberto Bellini; Augusto Orlandi

    2013-01-01

    cancer is the most common cancer in women. Patients, in particular young women, after surgical removal of the tumor have a poorer quality of life and psychological problems. Plastic surgery procedures for breast reconstruction, including autologous fat grafting, concur to reduce cosmetic and psychological problems. The maintenance of the transplanted fat is partially due to the presence of resident adipose derived-stem cells (ASCs). The latter can be isolated by digestion and centrifugation...

  10. L-carnitine Effectively Induces hTERT Gene Expression of Human Adipose Tissue-derived Mesenchymal Stem Cells Obtained from the Aged Subjects

    Farahzadi, Raheleh; Mesbah-Namin, Seyed Alireza; Zarghami, Nosratollah; Fathi, Ezzatollah

    2016-01-01

    Background and Objectives Human mesenchymal stem cells (hMSCs) are attractive candidates for cell therapy and regenerative medicine due to their multipotency and ready availability, but their application can be complicated by the factors such as age of the donors and senescence-associated growth arrest during culture conditions. The latter most likely reflects the fact that aging of hMSCs is associated with a rise in intracellular reactive oxygen species, loss of telomerase activity, decrease in human telomerase reverse transcriptase (hTERT) expression and finally eroded telomere ends. Over-expression of telomerase in hMSCs leads to telomere elongation and may help to maintain replicative life–span of these cells. The aim of this study was to evaluate of the effect of L-carnitine (LC) as an antioxidant on the telomerase gene expression and telomere length in aged adipose tissue-derived hMSCs. Methods For this purpose, cells were isolated from healthy aged volunteers and their viabilities were assessed by MTT assay. Quantitative gene expression of hTERT and absolute telomere length measurement were also performed by real-time PCR in the absence and presence of different doses of LC (0.1, 0.2 and 0.4 mM). Results The results indicated that LC could significantly increase the hTERT gene expression and telomere length, especially in dose of 0.2 mM of LC and in 48 h treatment for the aged adipose tissue-derived hMSCs samples. Conclusion It seems that LC would be a good candidate to improve the lifespan of the aged adipose tissue-derived hMSCs due to over-expression of telomerase and lengthening of the telomeres. PMID:27426092

  11. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  12. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Highlights: ► We investigated effects of FGF-2 on hADSCs. ► We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. ► FGF-2 induces chondrogenesis in hADSCs, which •Increasing information will decrease quality if hospital costs are very different. ► The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  13. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  14. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Highlights: ► miR-21 modulates hADSC-induced increase of tumor growth. ► The action is mostly mediated by the modulation of TGF-β signaling. ► Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-β increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  15. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series

    Pak Jaewoo

    2011-07-01

    Full Text Available Abstract Introduction This is a series of clinical case reports demonstrating that a combination of percutaneously injected autologous adipose-tissue-derived stem cells, hyaluronic acid, platelet rich plasma and calcium chloride may be able to regenerate bones in human osteonecrosis, and with addition of a very low dose of dexamethasone, cartilage in human knee osteoarthritis. Case reports Stem cells were obtained from adipose tissue of abdominal origin by digesting lipoaspirate tissue with collagenase. These stem cells, along with hyaluronic acid, platelet rich plasma and calcium chloride, were injected into the right hip of a 29-year-old Korean woman and a 47-year-old Korean man. They both had a history of right hip osteonecrosis of the femoral head. For cartilage regeneration, a 70-year-old Korean woman and a 79-year-old Korean woman, both with a long history of knee pain due to osteoarthritis, were injected with stem cells along with hyaluronic acid, platelet rich plasma, calcium chloride and a nanogram dose of dexamethasone. Pre-treatment and post-treatment MRI scans, physical therapy, and pain score data were then analyzed. Conclusions The MRI data for all the patients in this series showed significant positive changes. Probable bone formation was clear in the patients with osteonecrosis, and cartilage regeneration in the patients with osteoarthritis. Along with MRI evidence, the measured physical therapy outcomes, subjective pain, and functional status all improved. Autologous mesenchymal stem cell injection, in conjunction with hyaluronic acid, platelet rich plasma and calcium chloride, is a promising minimally invasive therapy for osteonecrosis of femoral head and, with low-dose dexamethasone, for osteoarthritis of human knees.

  16. In Vitro Toxic Effects of Zinc Oxide Nanoparticles on Rat Adipose Tissue-Derived Mesenchymal Stem Cells

    Orazizadeh, Mahmoud; Khodadadi, Ali; Bayati, Vahid; Saremy, Sadegh; Farasat, Maryam; Khorsandi, Layasadat

    2015-01-01

    Objective Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in sunscreens, bio- sensors, food additives, pigments, manufacture of rubber products, and electronic materi- als. There are several studies about the effects of NPs on dermal fibroblast or keratino- cytes, but very little attention has been directed towards adipose-derived mesenchymal stem cells (ASCs). A previous study has revealed that ZnO-NPs restricted the migration capability of ASCs. However, the potential toxicity of these NPs on ASCs is not well un- derstood. This study intends to evaluate the effects of ZnO-NPs on subcutaneous ASCs. Materials and Methods In this experimental study, In order to assess toxicity, we ex- posed rat ASCs to ZnO-NPs at concentrations of 10, 50, and 100 µg/ml for 48 hours. Tox- icity was evaluated by cell morphology changes, cell viability assay, as well as apoptosis and necrosis detection. Results ZnO-NPs concentration dependently reduced the survival rates of ASCs as re- vealed by the trypan blue exclusion and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazo- lium-bromide (MTT) tests. ZnO-NPs, at concentrations of 10 and 50 µg/ml, induced a significant increase in apoptotic indices as shown by the annexin V test. The concentration of 10 µg/ml of ZnO-NPs was more toxic. Conclusion Lower concentrations of ZnO-NPs have toxic and apoptotic effects on subcutaneous ASCs. We recommend that ZnO-NPs be used with caution if there is a dermatological problem. PMID:26464812

  17. Microvesicles enhance the mobility of human diabetic adipose tissue-derived mesenchymal stem cells in vitro and improve wound healing in vivo.

    Trinh, Nhu Thuy; Yamashita, Toshiharu; Tu, Tran Cam; Kato, Toshiki; Ohneda, Kinuko; Sato, Fujio; Ohneda, Osamu

    2016-05-13

    Microvesicles (MVs) derived from mesenchymal stem cells showed the ability to alter the cell phenotype and function. We previously demonstrated that type 2 diabetic adipose tissue-derived mesenchymal stem cells (dAT-MSCs) increase in cell aggregation and adhesion in vitro and impair wound healing in vivo. However, the characterization and function of MVs derived from human non-diabetic AT-MSCs (nAT-MSCs) remain unknown. In this study, we characterized nAT-MSC-derived MVs and their function after the transfection of dAT-MSCs with MVs using the scratch assay and a flap mouse model. We found that human nAT-MSC-derived MVs expressed MSC-surface markers and improved dAT-MSC functions by altering the expression of genes associated with cell migration, survival, inflammation, and angiogenesis as well as miR29c and miR150. Remarkably, the transfection of dAT-MSCs with nAT-MSC-derived MVs improved their migration ability in vitro and wound healing ability in a flap mouse model. These results demonstrate a promising opportunity to modify the function of dAT-MSCs for therapeutic stem cell application in diabetic patients. PMID:27063802

  18. Adipose Tissue-Derived Mesenchymal Stem Cells Exert In Vitro Immunomodulatory and Beta Cell Protective Functions in Streptozotocin-Induced Diabetic Mice Model

    Hossein Rahavi

    2015-01-01

    Full Text Available Regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs might be applied for type 1 diabetes mellitus (T1DM treatment. Thus, we proposed in vitro assessment of adipose tissue-derived MSCs (AT-MSCs immunomodulation on autoimmune response along with beta cell protection in streptozotocin- (STZ- induced diabetic C57BL/6 mice model. MSCs were extracted from abdominal adipose tissue of normal mice and cultured to proliferate. Diabetic mice were prepared by administration of multiple low-doses of streptozotocin. Pancreatic islets were isolated from normal mice and splenocytes prepared from normal and diabetic mice. Proliferation, cytokine production, and insulin secretion assays were performed in coculture experiments. AT-MSCs inhibited splenocytes proliferative response to specific (islet lysate and nonspecific (PHA triggers in a dose-dependent manner (P<0.05. Decreased production of proinflammatory cytokines, such as IFN-γ, IL-2, and IL-17, and increased secretion of regulatory cytokines such as TGF-β, IL-4, IL-10, and IL-13 by stimulated splenocytes were also shown in response to islet lysate or PHA stimulants (P<0.05. Finally, we demonstrated that AT-MSCs could effectively sustain viability as well as insulin secretion potential of pancreatic islets in the presence of reactive splenocytes (P<0.05. In conclusion, it seems that MSCs may provide a new horizon for T1DM cell therapy and islet transplantation in the future.

  19. Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus.

    Vanikar, A V; Dave, S D; Thakkar, U G; Trivedi, H L

    2010-01-01

    Aims. Insulin dependent diabetes mellitus (IDDM) is believed to be an autoimmune disorder with disturbed glucose/insulin metabolism, requiring life-long insulin replacement therapy (IRT), 30% of patients develop end-organ failure. We present our experience of cotransplantation of adipose tissue derived insulin-secreting mesenchymal stem cells (IS-AD-MSC) and cultured bone marrow (CBM) as IRT for these patients. Methods. This was a prospective open-labeled clinical trial to test efficacy and safety of IS-AD-MSC+CBM co-transplantation to treat IDDM, approved by the institutional review board after informed consent in 11 (males : females: 7 : 4) patients with 1-24-year disease duration, in age group: 13-43 years, on mean values of exogenous insulin requirement of 1.14 units/kg BW/day, glycosylated hemoglobin (Hb1Ac): 8.47%, and c-peptide levels: 0.1 ng/mL. Intraportal infusion of xenogeneic-free IS-AD-MSC from living donors, subjected to defined culture conditions and phenotypically differentiated to insulin-secreting cells, with mean quantum: 1.5 mL, expressing Pax-6, Isl-1, and pdx-1, cell counts: 2.1 × 10(3)/μL, CD45(-)/90(+)/73(+):40/30.1%, C-Peptide level:1.8 ng/mL, and insulin level: 339.3  IU/mL with CBM mean quantum: 96.3 mL and cell counts: 28.1 × 10(3)/μL, CD45(-)/34(+):0.62%, was carried out. Results. All were successfully transplanted without any untoward effect. Over mean followup of 23 months, they had a decreased mean exogenous insulin requirement to 0.63 units/kgBW/day, Hb1Ac to 7.39%, raised serum c-peptide levels to 0.38 ng/mL, and became free of diabetic ketoacidosis events with mean 2.5 Kg weight gain on normal vegetarian diet and physical activities. Conclusion. This is the first report of treating IDDM with insulin-secreting-AD-MSC+CBM safely and effectively with relatively simple techniques. PMID:21197448

  20. Cotransplantation of Adipose Tissue-Derived Insulin-Secreting Mesenchymal Stem Cells and Hematopoietic Stem Cells: A Novel Therapy for Insulin-Dependent Diabetes Mellitus

    A. V. Vanikar

    2010-01-01

    Full Text Available Aims. Insulin dependent diabetes mellitus (IDDM is believed to be an autoimmune disorder with disturbed glucose/insulin metabolism, requiring life-long insulin replacement therapy (IRT, 30% of patients develop end-organ failure. We present our experience of cotransplantation of adipose tissue derived insulin-secreting mesenchymal stem cells (IS-AD-MSC and cultured bone marrow (CBM as IRT for these patients. Methods. This was a prospective open-labeled clinical trial to test efficacy and safety of IS-AD-MSC+CBM co-transplantation to treat IDDM, approved by the institutional review board after informed consent in 11 (males : females: 7 : 4 patients with 1–24-year disease duration, in age group: 13–43 years, on mean values of exogenous insulin requirement of 1.14 units/kg BW/day, glycosylated hemoglobin (Hb1Ac: 8.47%, and c-peptide levels: 0.1 ng/mL. Intraportal infusion of xenogeneic-free IS-AD-MSC from living donors, subjected to defined culture conditions and phenotypically differentiated to insulin-secreting cells, with mean quantum: 1.5 mL, expressing Pax-6, Isl-1, and pdx-1, cell counts: 2.1×103/μL, CD45−/90+/73+:40/30.1%, C-Peptide level:1.8 ng/mL, and insulin level: 339.3  IU/mL with CBM mean quantum: 96.3 mL and cell counts: 28.1×103/μL, CD45−/34+:0.62%, was carried out. Results. All were successfully transplanted without any untoward effect. Over mean followup of 23 months, they had a decreased mean exogenous insulin requirement to 0.63 units/kgBW/day, Hb1Ac to 7.39%, raised serum c-peptide levels to 0.38 ng/mL, and became free of diabetic ketoacidosis events with mean 2.5 Kg weight gain on normal vegetarian diet and physical activities. Conclusion. This is the first report of treating IDDM with insulin-secreting-AD-MSC+CBM safely and effectively with relatively simple techniques.

  1. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    Eom, Young Woo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Biomedical Research Institute, Lifeliver Co., Ltd., Suwon (Korea, Republic of); Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin [Biomedical Research Institute, Lifeliver Co., Ltd., Suwon (Korea, Republic of); Park, Won Jin [Dr. Park' s Aesthetic Clinic, Seoul (Korea, Republic of); Kong, Jee Hyun; Shim, Kwang Yong [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In, E-mail: oncochem@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@unitel.co.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  2. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    Highlights: → hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. → Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. → hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  3. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  4. Ameliorative effects of human adipose tissue-derived mesenchymal stem cells on myelin basic protein-induced experimental autoimmune encephalomyelitis in Lewis rats

    Myung-Soon Ko; Hyeong-geun Park; Young-Min Yun; Jeong Chan Ra; Taekyun Shin; Kyoung-Kap Lee

    2011-01-01

    Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on disease progression and cytokine expression in Lewis rats with experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein. The duration of EAE paralysis in the group treated on day 7 postimmunization with 5 × 106 hAdMSCs was significantly reduced compared with the vehicle-treated controls and the 1 × 106 hAdMSC- treated group. The duration of EAE paralysis in the groups treated with 5 × 106 hAdMSCs on both day 1 and day 7 postimmunization was significantly reduced compared with the vehicle-treated controls and the groups treated with 5 × 106 hAdMSCs on both day 7 and day 10 postimmunization. The mRNA expression of interleukin-10 and indoleamine 2, 3-dioxygenase was significantly decreased in the hAdMSC-treated group compared with the vehicle-treated group. These findings suggest that the ameliorative effects of hAdMSCs on EAE symptoms operate in a dose- and time-dependent manner and can be mediated in part by the ample production of anti-inflammatory cytokines.

  5. The Potential of GMP-Compliant Platelet Lysate to Induce a Permissive State for Cardiovascular Transdifferentiation in Human Mediastinal Adipose Tissue-Derived Mesenchymal Stem Cells

    Camilla Siciliano

    2015-01-01

    Full Text Available Human adipose tissue-derived mesenchymal stem cells (ADMSCs are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL, a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.

  6. Adipose tissue-derived stromal cells express neuronal phenotypes

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  7. Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma

    Altanerova, V.; Cihova, M.; Babič, Michal; Rychly, B.; Ondicova, K.; Mravec, B.; Altaner, C.

    2012-01-01

    Roč. 130, č. 10 (2012), s. 2455-2463. ISSN 0020-7136 Institutional research plan: CEZ:AV0Z40500505 Keywords : glioblastoma * mesenchymal stem cells * suicide gene therapy Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.198, year: 2012

  8. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro

    Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy

  9. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro

    Li, Qiang; Zhang, Aijun; Tao, Changbo; Li, Xueyang; Jin, Peisheng, E-mail: jinps2006@163.com

    2013-11-22

    Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.

  10. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    Highlights: ► Acetylation affected hASCs osteodifferentiation through Runx2–PPARγ. ► HDACs knocking-down favoured the commitment effect of osteogenic medium. ► HDACs silencing early activated Runx2 and ALP. ► PPARγ reduction and calcium/collagen deposition occurred later. ► Runx2/PPARγ target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) γ. These key osteogenic and adipogenic transcription factors are oppositely involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPARγ and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPARγ/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPARγ target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal a role for HDACs in orchestrating osteo-differentiation of hASCs at transcriptional level, and might provide new insights into the modulation of h

  11. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes.

    Shuzi Zhang

    Full Text Available BACKGROUND: Insulin-producing cell clusters (IPCCs have recently been generated in vitro from adipose tissue-derived stem cells (ASCs to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. CONCLUSIONS/SIGNIFICANCE: Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation.

  12. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    Highlights: ► Neutropenia is a principal complication of cancer treatment. ► Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. ► AD-MSC increased functions of neutrophil. ► AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-α, G-CSF, and TGF-β. ► AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor, and transforming growth factor (TGF)-β in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-α, G-CSF, and TGF-β. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  13. Porcine adipose tissue-derived mesenchymal stem cells retain their proliferative characteristics, senescence, karyotype and plasticity after long-term cryopreservation.

    Rafael Dariolli

    Full Text Available We and others have provided evidence that adipose tissue-derived mesenchymal stem cells (ASCs can mitigate rat cardiac functional deterioration after myocardial ischemia, even though the mechanism of action or the relevance of these findings to human conditions remains elusive. In this regard, the porcine model is a key translational step, because it displays heart anatomic-physiological features that are similar to those found in the human heart. Towards this end, we wanted to establish the cultural characteristics of porcine ASCs (pASCs with or without long-term cryostorage, considering that allogeneic transplantation may also be a future option. Compared to fresh pASCs, thawed cells displayed 90-95% viability and no changes in morphological characteristics or in the expression of surface markers (being pASCs characterized by positive markers CD29(+; CD90(+; CD44(+; CD140b(+; CD105(+; and negative markers CD31(-; CD34(-; CD45(- and SLA-DR(-; n = 3. Mean population doubling time was also comparable (64.26±15.11 hours to thawed cells vs. 62.74±18.07 hours to fresh cells and cumulative population doubling increased constantly until Passage 10 (P10 in the entire cell population, with a small and gradual increase in senescence (P5, 3.25%±0.26 vs. 3.47%±0.32 and P10, 9.6%±0.29 vs. 10.67%±1.25, thawed vs. fresh; SA-β-Gal staining. Chromosomal aberrations were not observed. In addition, under both conditions pASCs responded to adipogenic and osteogenic chemical cues in vitro. In conclusion, we have demonstrated the growth characteristics, senescence, and the capacity of pASCs to respond to chemical cues in vitro and have provided evidence that these properties are not influenced by cryostorage in 10% DMSO solution.

  14. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    Park, Yoon Shin; Lim, Goh-Woon [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung [Department of Microbiology, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Yoo, Eun-Sun [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Chan Ra, Jeong [Stem Cell Research Center, RNL BIO, Seoul 153-768 (Korea, Republic of); Ryu, Kyung-Ha, E-mail: ykh@ewha.ac.kr [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  15. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  16. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    Maroni, Paola [Istituto Ortopedico Galeazzi, Milano (Italy); Brini, Anna Teresa [Istituto Ortopedico Galeazzi, Milano (Italy); Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano (Italy); Arrigoni, Elena [Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano (Italy); Girolamo, Laura de [Istituto Ortopedico Galeazzi, Milano (Italy); Niada, Stefania [Istituto Ortopedico Galeazzi, Milano (Italy); Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano (Italy); Matteucci, Emanuela; Bendinelli, Paola [Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Universita degli Studi di Milano, Milano (Italy); Desiderio, Maria Alfonsina, E-mail: a.desiderio@unimi.it [Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Universita degli Studi di Milano, Milano (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Acetylation affected hASCs osteodifferentiation through Runx2-PPAR{gamma}. Black-Right-Pointing-Pointer HDACs knocking-down favoured the commitment effect of osteogenic medium. Black-Right-Pointing-Pointer HDACs silencing early activated Runx2 and ALP. Black-Right-Pointing-Pointer PPAR{gamma} reduction and calcium/collagen deposition occurred later. Black-Right-Pointing-Pointer Runx2/PPAR{gamma} target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) {gamma}. These key osteogenic and adipogenic transcription factors are oppositely involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPAR{gamma} and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPAR{gamma}/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPAR{gamma} target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal

  17. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis.

    Pires, Ana O; Mendes-Pinheiro, Barbara; Teixeira, Fábio G; Anjo, Sandra I; Ribeiro-Samy, Silvina; Gomes, Eduardo D; Serra, Sofia C; Silva, Nuno A; Manadas, Bruno; Sousa, Nuno; Salgado, Antonio J

    2016-07-15

    The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials. PMID:27226274

  18. Co-infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and bone marrow derived hematopoietic stem cells, a viable therapy for post-traumatic brachial plexus injury: A case report

    Umang G Thakkar

    2014-08-01

    Full Text Available Stem cell therapy is emerging as a viable approach in regenerative medicine. A 31-year-old male with brachial plexus injury had complete sensory-motor loss since 16 years with right pseudo-meningocele at C5-D1 levels and extra-spinal extension up to C7-D1, with avulsion on magnetic resonance imaging and irreversible damage. We generated adipose tissue derived neuronal differentiated mesenchymal stem cells (N-AD-MSC and bone marrow derived hematopoietic stem cells (HSC-BM. Neuronal stem cells expressed β-3 tubulin and glial fibrillary acid protein which was confirmed on immunofluorescence. On day 14, 2.8 ml stem cell inoculum was infused under local anesthesia in right brachial plexus sheath by brachial block technique under ultrasonography guidance with a 1.5-inch-long 23 gauge needle. Nucleated cell count was 2 × 10 4 /μl, CD34+ was 0.06%, and CD45-/90+ and CD45-/73+ were 41.63% and 20.36%, respectively. No untoward effects were noted. He has sustained recovery with re-innervation over a follow-up of 4 years documented on electromyography-nerve conduction velocity study.

  19. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  20. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: Viable therapy for type III.C. a diabetes mellitus

    Umang G Thakkar

    2014-12-01

    Full Text Available Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC along with his bone marrow derived hematopoietic stem cells (BM-HSC. Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus.

  1. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: viable therapy for type III.C. a diabetes mellitus.

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L

    2013-01-01

    Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM) is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C) 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC) along with his bone marrow derived hematopoietic stem cells (BM-HSC). Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus. PMID:24385073

  2. Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model

    Li, Xin; Zheng, Wei; Bai, Hongying; Wang, Jin; Wei, Ruili; Wen, Hongtao; Ning, Hanbing

    2016-01-01

    Previous studies have shown the beneficial effects of adipose-derived stem cells (ADSCs) transplantation in stroke. However, the molecular mechanism by which transplanted ADSCs promote nerve healing is not yet elucidated. In order to make clear the molecular mechanism for the neuroprotective effects of ADSCs and investigate roles of the BDNF–TrkB signaling in neuroprotection of ADSCs, we, therefore, examined the neurological function, brain water content, and the protein expression in middle cerebral artery occlusion (MCAO) rats with or without ADSCs transplantation. ADSCs were transplanted intravenously into rats at 30 minutes after MCAO. K252a, an inhibitor of TrkB, was administered into rats by intraventricular and brain stereotaxic injection. Modified neurological severity score tests were performed to measure behavioral outcomes. The results showed that ADSCs significantly alleviated neurological deficits and reduced brain water content in MCAO rats. The protein expression levels of BDNF and TrkB significantly increased in the cortex of MCAO rats with ADSCs treatment. However, K252a administration reversed the ADSCs-induced elevation of BDNF, TrkB, and Bcl-2 and reduction of Bax protein in MCAO rats. ADSCs promote BDNF expression via the TrkB signaling and improve functional neurological recovery in stroke rats.

  3. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage.

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Cell-based therapy has been reported to repair or restore damaged salivary gland (SG tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs can ameliorate radiation-induced SG damage. METHODS: hAdMSCs (1 × 10(6 were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs was observed in vitro using a co-culture system. RESULTS: The systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%-18% were observed to transdifferentiate into SGCs. CONCLUSION: The findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.

  4. Adenovirus-mediated expression of human sodium-iodide symporter gene permits in vivo tracking of adipose tissue-derived stem cells in a canine myocardial infarction model

    Introduction: In vivo tracking of the transplanted stem cells is important in pre-clinical research of stem cell therapy for myocardial infarction. We examined the feasibility of adenovirus-mediated sodium iodide symporter (NIS) gene to cell tracking imaging of transplanted stem cells in a canine infarcted myocardium by clinical single photon emission computed tomography (SPECT). Methods: Beagle dogs were injected intramyocardially with NIS-expressing adenovirus-transfected canine stem cells (Ad-hNIS-canine ADSCs) a week after myocardial infarction (MI) development. 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) and 99mTc-pertechnetate (99mTcO4−) SPECT imaging were performed for assessment of infarcted myocardium and viable stem cell tracking. Transthoracic echocardiography was performed to monitor any functional cardiac changes. Results: Left ventricular ejection fraction (LVEF) was decreased after LAD ligation. There was no significant difference in EF between the groups with the stem cell or saline injection. 125I uptake was higher in Ad-hNIS-canine ADSCs than in non-transfected ADSCs. Cell proliferation and differentiation were not affected by hNIS-carrying adenovirus transfection. 99mTc-MIBI myocardial SPECT imaging showed decreased radiotracer uptake in the infarcted apex and mid-anterolateral regions. Ad-hNIS-canine ADSCs were identified as a region of focally increased 99mTcO4− uptake at the lateral wall and around the apex of the left ventricle, peaked at 2 days and was observed until day 9. Conclusions: Combination of adenovirus-mediated NIS gene transfection and clinical nuclear imaging modalities enables to trace the fate of transplanted stem cells in infarcted myocardium for translational in vivo cell tracking study for prolonged duration

  5. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Kasten, Annika; Siegmund, Birte J. [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany); Grüttner, Cordula [Micromod Partikeltechnologie GmbH, Warnemünde, D-18115 Rostock (Germany); Kühn, Jens-Peter [Department of Radiology and Neuroradiology, Greifswald University Medical Center, D-17475 Greifswald (Germany); Frerich, Bernhard, E-mail: bernhard.frerich@med.uni-rostock.de [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany)

    2015-04-15

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation.

  6. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation

  7. The biological activities of (1,3)-(1,6)-{beta}-d-glucan and porous electrospun PLGA membranes containing {beta}-glucan in human dermal fibroblasts and adipose tissue-derived stem cells

    Woo, Yeon I; Park, Bong Joo; Kim, Hye-Lee; Lee, Mi Hee; Kim, Jungsung; Park, Jong-Chul [Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yang, Young-Il [Department of Pathology, School of Medicine, Paik Institute for Clinical Research, Inje University, 633-165 Gae-dong, Busan-jin-gu, Busan 614-735 (Korea, Republic of); Kim, Jung Koo [Department of Biomedical Engineering, College of Biomedical Science and Engineering, Inje University, Kimhae 621-749 (Korea, Republic of); Tsubaki, Kazufumi [R and D division, Asahi Denka Co. Ltd, 7-2-35 Higashi-ogu, Arakawa-ku, Tokyo 116-8554 (Japan); Han, Dong-Wook, E-mail: parkjc@yuhs.a [Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University, geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2010-08-01

    In this study, we investigated the possible roles of (1,3)-(1,6)-{beta}-d-glucan ({beta}-glucan) and porous electrospun poly-lactide-co-glycolide (PLGA) membranes containing {beta}-glucan for skin wound healing, especially their effect on adult human dermal fibroblast (aHDF) and adipose tissue-derived stem cell (ADSC) activation, proliferation, migration, collagen gel contraction and biological safety tests of the prepared membrane. This study demonstrated that {beta}-glucan and porous PLGA membranes containing {beta}-glucan have enhanced the cellular responses, proliferation and migration, of aHDFs and ADSCs and the result of a collagen gel contraction assay also revealed that collagen gels contract strongly after 4 h post-gelation incubation with {beta}-glucan. Furthermore, we confirmed that porous PLGA membranes containing {beta}-glucan are biologically safe for wound healing study. These results indicate that the porous PLGA membranes containing {beta}-glucan interacted favorably with the membrane and the topical administration of {beta}-glucan was useful in promoting wound healing. Therefore, our study suggests that {beta}-glucan and porous PLGA membranes containing {beta}-glucan may be useful as a material for enhancing wound healing.

  8. Human adipose-tissue derived mesenchymal stem cells induce functional de-novo regulatory T cells with methylated FOXP3 gene DNA

    Engela, A. U.; Hoogduijn, M. J.; Boer, K.; Litjens, N. H. R.; Betjes, M. G. H.; Weimar, W.; Baan, C. C.

    2013-01-01

    Due to their immunomodulatory properties, mesenchymal stem cells (MSC) are interesting candidates for cellular therapy for autoimmune disorders, graft-versus-host disease and allograft rejection. MSC inhibit the proliferation of effector T cells and induce T cells with a regulatory phenotype. So far

  9. Toward angiogenesis of implanted bio-artificial liver using scaffolds with type I collagen and adipose tissue-derived stem cells

    Lee, Jae Geun; Bak, Seon Young; Nahm, Ji Hae; Lee, Sang Woo; Min, Seon Ok; Kim, Kyung Sik

    2015-01-01

    Backgrounds/Aims Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the ...

  10. Allogeneic adipose tissue-derived mesenchymal stem cells in combination with platelet rich plasma are safe and effective in the therapy of superficial digital flexor tendonitis in the horse.

    Ricco, S; Renzi, S; Del Bue, M; Conti, V; Merli, E; Ramoni, R; Lucarelli, E; Gnudi, G; Ferrari, M; Grolli, S

    2013-01-01

    Overstrain tendonitis are common pathologies in the sport horses. Therapeutic approaches to tendon healing do not always result in a satisfactory anatomical and functional repair, and healed tendon is often characterized by functional impairment and high risk of reinjury. Recently, mesenchymal stem cells (MSCs) and platelet rich plasma (PRP) have been proposed as novel therapeutic treatments to improve the tendon repair process. MSCs are multipotent, easy to culture and being originated from adult donors do not pose ethical issues. To date, autologous MSCs have been investigated mainly in the treatment of large bone defects, cardiovascular diseases, osteogenesis imperfecta and orthopaedic injuries both in human and veterinary medicine. The clinical applications in which autologous MSCs can be used are limited because patient-specific tissue collection and cell expansion require time. For clinical applications in which MSCs should be used right away, it would be more practical to use cells collected from a donor, expanded in vitro and banked to be readily available when needed. However, there are concerns over the safety and the efficacy of allogeneic MSCs. The safety and efficacy of a therapy based on the use of allogeneic adipose tissue-derived mesenchymal stem cells (ASCs) associated to platelet rich plasma (PRP) were evaluated in 19 horses affected by acute or subacute overstrain superficial digital flexor tendonitis (SDFT). The application of allogeneic ASCs neither raised clinical sign of acute or chronic adverse tissue reactions, nor the formation of abnormal tissue in the long-term. After a follow-up of 24 months, 89.5% horses returned to their previous level of competition, while the reinjury rate was 10.5%, comparable to those recently reported for SDFT treated with autologous bone marrow derived MSCs. This study suggests that the association between allogeneic ASCs and PRP can be considered a safe and effective strategy for the treatment of SDF tendonitis

  11. Differential effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells.

    Knippenberg, Marlene; Helder, Marco N; Doulabi, Behrouz Zandieh; Bank, Ruud A; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2009-08-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-beta1 (TGF-beta1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with adequate physical and mechanical properties. We investigated whether BMP-2 (10-100 ng/mL) and/or TGF-beta1 (1-10 ng/mL) affect gene expression of alpha2(I) procollagen and collagen-modifying enzymes, that is, lysyl oxidase and lysyl hydroxylases 1, 2, and 3 (encoded by PLOD1, 2, and 3), by human AT-MSCs. BMP-2, but not TGF-beta1, increased alkaline phosphatase activity after 28 days, indicating osteogenic differentiation of AT-MSCs. At day 4, both BMP-2 and TGF-beta1 upregulated alpha2(I) procollagen and PLOD1, which was downregulated at day 28. TGF-beta1, but not BMP-2, downregulated PLOD3 at day 28. Lysyl oxidase was upregulated by TGF-beta1 at day 4 and by BMP-2 at day 7. Neither BMP-2 nor TGF-beta1 affected PLOD2. In conclusion, these results suggest that AT-MSCs differentially respond to BMP-2 and TGF-beta1 with changes in gene expression of collagen-modifying enzymes. AT-MSCs may thus be able to appropriately modify type I collagen to form a functional bone extracellular matrix for tissue engineering, dependent on the growth factor added. PMID:19231972

  12. Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro.

    Chengang Song

    Full Text Available The purpose of this study was to establish a method for monitoring the neural differentiation of stem cells using ferritin transgene expression, under the control of a neural-differentiation-inducible promoter, and magnetic resonance imaging (MRI. Human adipose tissue-derived mesenchymal stem cells (hADMSCs were transduced with a lentivirus containing the human ferritin heavy chain 1 (FTH1 gene coupled to one of three neural cell-specific promoters: human synapsin 1 promoter (SYN1p, for neurons, human glial fibrillary acidic protein promoter (GFAPp, for astrocytes, and human myelin basic protein promoter (MBPp, for oligodendrocytes. Three groups of neural-differentiation-inducible ferritin-expressing (NDIFE hADMSCs were established: SYN1p-FTH1, GFAPp-FTH1, and MBPp-FTH1. The proliferation rate of the NDIFE hADMSCs was evaluated using a Cell Counting Kit-8 assay. Ferritin expression was assessed with western blotting and immunofluorescent staining before and after the induction of differentiation in NDIFE hADMSCs. The intracellular iron content was measured with Prussian blue iron staining and inductively coupled plasma mass spectrometry. R2 relaxation rates were measured with MRI in vitro. The proliferation rates of control and NDIFE hADMSCs did not differ significantly (P > 0.05. SYN1p-FTH1, GFAPp-FTH1, and MBPp-FTH1 hADMSCs expressed specific markers of neurons, astrocytes, and oligodendrocytes, respectively, after neural differentiation. Neural differentiation increased ferritin expression twofold, the intracellular iron content threefold, and the R2 relaxation rate two- to threefold in NDIFE hADMSCs, resulting in notable hypointensity in T2-weighted images (P < 0.05. These results were cross-validated. Thus, a link between neural differentiation and MRI signals (R2 relaxation rate was established in hADMSCs. The use of MRI and neural-differentiation-inducible ferritin expression is a viable method for monitoring the neural differentiation of

  13. Intratunical Injection of Genetically Modified Adipose Tissue-Derived Stem Cells with Human Interferon α-2b for Treatment of Erectile Dysfunction in a Rat Model of Tunica Albugineal Fibrosis

    Gokce, Ahmet; Abd Elmageed, Zakaria Y.; Lasker, George F.; Bouljihad, Mostafa; Braun, Stephen E.; Kim, Hogyoung; Kadowitz, Philip J.; Abdel-Mageed, Asim B.; Sikka, Suresh C.; Hellstrom, Wayne J.

    2016-01-01

    Introduction Peyronie's disease (PD) has frequently been associated with erectile dysfunction (ED) and may further compromise coitus. Aim To investigate the efficacy of intratunical injection of genetically modified rat adipose tissue-derived stem cells (ADSCs) expressing human interferon α-2b (ADSCs-IFN) in decreasing fibrosis and restoring erectile function in a rat model of tunica albugineal fibrosis (TAF). Methods A total of 36 Sprague-Dawley rats (12 weeks old; 300–350 g) were randomly divided in six equal groups: (i) sham group (50 μL saline-injected into the tunica albuginea [TA]); (ii) TAF group (transforming growth factor [TGF]-β1 [0.5 μg/50 μL] injected into the TA); (iii) TGF-β1 plus 5 × 105 control ADSCs injected same day; (iv) TGF-β1 plus 5 × 105 ADSCs-IFN injected same day; (v)TGF-β1 plus 5 × 105 control ADSCs injected after 30 days; and (vi) TGF-β1 plus 5 × 105 ADSCs-IFN injected after 30 days. Rat allogeneic ADSCs were harvested from inguinal fat tissue. Main Outcome Measures Forty-five days following the TGF-β1 injection, erectile function was assessed, and penile tissues were harvested for further evaluations. Results In the same-day injection groups, intratunical injection of ADSCs and ADSC-IFN improved erectile response observed upon stimulation of cavernous nerve compared with TAF group. Intratunical ADSC-IFN injection at day 30 improved erectile responses 3.1, 1.8, and 1.3 fold at voltages of 2.5, 5.0, and 7.0, respectively, when compared with TAF group. Furthermore, at voltages of 2.5 and 5.0, treatment on day 30 with ADSCs-IFN improved erectile responses 1.6- and 1.3-fold over treatment with ADSCs alone. Local injection of ADSCs or ADSCs-IFN reduced Peyronie's-like manifestations, and these effects might be associated with a decrease in the expression of tissue inhibitors of metalloproteinases. Conclusion This study documents that transplantation of genetically modified ADSCs, with or without human IFN α-2b, attenuated

  14. Pooled human platelet lysate versus fetal bovine serum—investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter V; Kirchhoff, Eva Maria; Mathiasen, Anders Bruun; Elberg, Jens Jørgen; Andersen, Peter Stemann; Drzewiecki, Krzysztof Tadeusz; Fischer-Nielsen, Anne

    2013-01-01

    Because of an increasing focus on the use of adipose-derived stem cells (ASCs) in clinical trials, the culture conditions for these cells are being optimized. We compared the proliferation rates and chromosomal stability of ASCs that had been cultured in Dulbecco's modified Eagle's Medium (DMEM) ...

  15. Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity

    MW Laschke

    2014-10-01

    Full Text Available Adipose tissue-derived microvascular fragments are promising vascularisation units for applications in the field of tissue engineering. Elderly patients are the major future target population of such applications due to an increasing human life expectancy. Therefore, we herein investigated the effect of aging on the fragments’ vascularisation capacity. Microvascular fragments were isolated from epididymal fat pads of adult (8 months and aged (16 months C57BL/6 donor mice. These fragments were seeded onto porous polyurethane scaffolds, which were implanted into dorsal skinfold chambers to study their vascularisation using intravital fluorescence microscopy, histology and immunohistochemistry. Scaffolds seeded with fragments from aged donors exhibited a significantly lower functional microvessel density and intravascular blood flow velocity. This was associated with an impaired vessel maturation, as indicated by vessel wall irregularities, constantly elevated diameters and a lower fraction of CD31/α-smooth muscle actin double positive microvessels in the implants’ border and centre zones. Additional in vitro analyses revealed that microvascular fragments from adult and aged donors do not differ in their stem cell content as well as in their release of angiogenic growth factors, survival and proliferative activity under hypoxic conditions. However, fragments from aged donors exhibit a significantly lower number of matrix metalloproteinase -9-positive perivascular cells. Taken together, these findings demonstrate that aging is a crucial determinant for the vascularisation capacity of isolated microvascular fragments.

  16. 蒙古马脂肪来源间充质干细胞体外成脂和成骨诱导分化%Differentiation of Mongolia Horse Adipose Tissue-Derived Mesenchymal Stem Cells into Adipocytes and Osteoblasts in Vitro

    刘宗正; 韦林盖; 苏小虎; 张焱如; 芒来

    2011-01-01

    To investigate the multilineage differentiation capacity of mesenchymal stem cells isolated and cultured from equine adipose tissue, adipose tissue-derived mesenchymal stem cells ( ADSCs) were obtained from adipose tissue of Mongolia horse. The cells appeared like fibroblast in the culture medium. Adipose tissue was minced and digested with collagenase type I. The obtained cells were plated and expanded in DMEM /F12 medium. Whereas the passage cells were cultured in adipogenisis medium and stained with Oil Red 0 for identification. The cells were cultivated in osteoblast-inducing culture medium , and osteoblast phenotype was assayed with Alizarin Red staining. The cells were daily observed under inverted microscope. Results indicated that ADSCs grew as adherent cells, appeared like fibroblast in vitro, stably proliferate and passed. Under the inverted microscope, significant lipid drops were found a-round the cell nucleus after adipogenisis-inducing cultivation. Alizarin Red staining resulted in the formation of mineralized nods in extracellular matrix. It proved that ADSCs isolated and cultured from equine adipose tissue can be induced to adipogenisis and osteo-inducing, suggesting that the cells have multilineage differentiation.%取蒙古马背臀部皮下脂肪组织,通过Ⅰ型胶原酶消化、离心等步骤分离培养脂肪组织来源的间充质干细胞(Adipose tissue-derived mesenchymal stem cells,ADSCs),经过原代培养和传代培养,分别加入成脂诱导剂和成骨诱导剂培养,采用倒置显微镜观察诱导后的细胞形态变化,并通过油红O染色和茜素红染色法对其脂肪细胞和成骨细胞表型进行鉴定.结果显示:ADSCs呈成纤维细胞样贴壁生长,其经成脂、成骨诱导培养2周后形态、体积发生明显改变.经油红O染色,细胞质内出现橙红色脂滴;茜素红染色表明聚集的细胞团中央能形成钙化结节.说明马ADSCs经体外诱导培养后可向脂肪细胞和成骨细胞

  17. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-04-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.

  18. Human Allogeneic Bone Marrow and Adipose Tissue Derived Mesenchymal Stromal Cells Induce CD8+ Cytotoxic T Cell Reactivity

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E.; Franquesa, Marcella; Engela, Anja U; Korevaar, Sander S; Roelofs, Helene; Genever, Paul G; IJzermans, Jan NM; Betjes, Michiel GH; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J.

    2013-01-01

    Introduction For clinical applications, Mesenchymal Stromal Cells (MSC) can be isolated from bone marrow and adipose tissue of autologous or allogeneic origin. Allogeneic cell usage has advantages but may harbor the risk of sensitization against foreign HLA. Therefore, we evaluated whether bone marrow and adipose tissue-derived MSC are capable of inducing HLA-specific alloreactivity. Methods MSC were isolated from healthy human Bone Marrow (BM-MSC) and adipose tissue (ASC) donors. Peripheral ...

  19. Diferenciação de células-tronco mesenquimais derivadas do tecido adiposo em cardiomiócitos Differentiation of adipose tissue-derived mesenchymal stem cells into cardiomyocytes

    Pablo Herthel Carvalho

    2012-01-01

    as MSC differentiated into cardiomyocytes, has been used in the attempt to minimize the effects of ischemic-hypoxic lesions and those affecting the electrical conduction system of the heart. OBJECTIVE: The present study compared three distinct protocols for induced differentiation of MSC into cardiomyocytes aimed at finding a viable method for producing a large number of functional cells expressing cardiomyogenic phenotype. METHODS: Mesenchymal stem cells were obtained from the adipose tissue of young transgenic Lewis rats expressing green fluorescent protein (GFP, and submitted to three distinct differentiation-inducing media: 1 Planat-Bérnard, 2 5-azacytidine, and 3 Planat-Bérnard + 5-azacytidine; further, these cells were identified based on the expression of cardiac cell markers. RESULTS: All three protocols detected the expression of sarcomeric-alpha-actinin protein in the exoskeleton of cells, expression of connexin-43 in the nuclear and cytoplasmic membrane, and formation of gap junctions, which are necessary for electrical impulse propagation in the myocardium. However, no spontaneous cell contraction was observed with any of the tested protocols. CONCLUSION: Induction with 5-azacytidine provided an effective cadiomyogenic cellular differentiation similar to that obtained with Planat-Bénard media. Therefore, 5-azacytidine was the method of choice for being the simplest, fastest and lowest-cost protocol for cell differentiation.

  20. Adipose Tissue-Derived Stromal Cells Inhibit TGF-beta 1-Induced Differentiation of Human Dermal Fibroblasts and Keloid Scar-Derived Fibroblasts in a Paracrine Fashion

    Spiekman, Maroesjka; Przybyt, Ewa; Plantinga, Josee A.; Gibbs, Susan; van der Lei, Berend; Harmsen, Martin C.

    2014-01-01

    Background: Adipose tissue-derived stromal cells augment wound healing and skin regeneration. It is unknown whether and how they can also influence dermal scarring. The authors hypothesized that adipose tissue-derived stromal cells inhibit adverse differentiation of dermal fibroblasts induced by the

  1. Compatibility of Chitosan-Gelatin Films with Adipose Tissue Derived Stromal Cells

    ZHANG Ling; GAO Yuan; KONG Lijun; GONG Yandao; ZHAO Nanming; ZHANG Xiufang

    2006-01-01

    Chitosan has been shown to be a promising material for various applications in tissue engineering. Recently, adipose tissue derived stromal cells (ADSCs) have been investigated as an alternative source of seed cells for tissue engineering. The compatibility of chitosan and chitosan-gelatin complexes with ADSCs is not known. In the present study, ADSCs were isolated and characterized by phenotype using fluorescence-activated cell sorting (FACS). The morphology, viability, and the ability of the ADSCs to differentiate on chitosan and chitosan-gelatin composite films with 60 wt.% gelatin were evaluated. Results show that the ADSCs are positive for CD29, CD44, and CD105, but negative for CD31, CD34, and CD45. ADSCs adhere and grow better on the composite films than on the chitosan films. The ability of ADSCs to differentiate into osteogenic and adipogenic lineage cells is not affected by their being cultured on chitosan-gelatin composite films. Therefore, chitosan-gelatin composite films are compatible with ADSCs and do not impair the ability of ADSCs to differentiate into osteogenic and adipogenic lineage cells.

  2. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  3. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation

  4. Transcriptomic comparisons between cultured human adipose tissue-derived pericytes and mesenchymal stromal cells

    Lindolfo da Silva Meirelles

    2016-03-01

    Full Text Available Mesenchymal stromal cells (MSCs, sometimes called mesenchymal stem cells, are cultured cells able to give rise to mature mesenchymal cells such as adipocytes, osteoblasts, and chondrocytes, and to secrete a wide range of trophic and immunomodulatory molecules. Evidence indicates that pericytes, cells that surround and maintain physical connections with endothelial cells in blood vessels, can give rise to MSCs (da Silva Meirelles et al., 2008 [1]; Caplan and Correa, 2011 [2]. We have compared the transcriptomes of highly purified, human adipose tissue pericytes subjected to culture-expansion in pericyte medium or MSC medium, with that of human adipose tissue MSCs isolated with traditional methods to test the hypothesis that their transcriptomes are similar (da Silva Meirelles et al., 2015 [3]. Here, we provide further information and analyses of microarray data from three pericyte populations cultured in pericyte medium, three pericyte populations cultured in MSC medium, and three adipose tissue MSC populations deposited in the Gene Expression Omnibus under accession number GSE67747.

  5. Adipose-Derived Stem Cells

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan;

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...

  6. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure

    Sun, Kai; Kusminski, Christine M; Luby-Phelps, Kate; Spurgin, Stephen B.; An, Yu A.; Wang, Qiong A; Holland, William L.; Scherer, Philipp E.

    2014-01-01

    We recently reported that local overexpression of VEGF-A in white adipose tissue (WAT) protects against diet-induced obesity and metabolic dysfunction. The observation that VEGF-A induces a “brown adipose tissue (BAT)-like” phenotype in WAT prompted us to further explore the direct function of VEGF-A in BAT. We utilized a doxycycline (Dox)-inducible, brown adipocyte-specific VEGF-A transgenic overexpression model to assess direct effects of VEGF-A in BAT in vivo. We observed that BAT-specific...

  7. 体外诱导脂肪源性干细胞向类肝细胞的定向分化%Directional differentiation of adipose tissue-derived stem cells into hepatic-like cells in vitro by procedure-induction

    刘剑; 李立; 冉江华; 张升宁; 邵剑春

    2011-01-01

    BACKGROUND: How to establish effective stable hepatic cell differentiation schedule, to purify or rapidly amplify stable hepatic-like cells needs to be solved before adipose tissue-derived stem cells (ADSCs) were used to treat liver diseases. OBJECTIVE: To establish sequencing induction system of ADSCs transforming into hepatic-like cells.METHODS: After isolated and purified the Lewis rat ADSCs, the surface marks of ADSCs were identified by flow cytometry. The rat ADSCs were transformed into the hepatic-like cells in the procedure-culture system by tris-step including hepatocyte growth factor (FGF), fibroblast growth factor-4, acid fibroblast growth factor and oncostatin M cytokine. RESULTS AND CONCLUSION: After rat ADSCs were induced at 7, 14 and 21 days, the expression of albumin (ALB), alpha fetoprotein (AFP) and CK18 mRNA was determined and fortified over time. Hepatic-like cells had ALB synthesis function. Metabolism of ammonia and urea synthesis occurred and lasted after 9-12 days. Results suggest ADSCs were successfully differentiated into hepatic-like cells in vitro after procedure-induction.%背景:用脂肪源性干细胞治疗肝脏疾病之前,如何建立有效稳定的肝细胞分化诱导方案,纯化并快速扩增性能稳定的类肝细胞等问题亟待解决.目的:建立大鼠脂肪源性干细胞转化为类肝细胞的程序化诱导体系.方法:分离纯化Lewis大鼠脂肪源性干细胞,流式细胞仪鉴定其表面标志,分3个阶段加入含有肝细胞生长因子、成纤维细胞生长因子4、酸性成纤维细胞生长因子、制瘤素M细胞因子的诱导培养体系,使脂肪源性干细胞向肝细胞转化.结果与结论:大鼠脂肪源性干细胞诱导7,14,21 d后,细胞阳性表达 ALB、AFP、CK18mRNA,表达量随诱导时间延长而增强,类肝细胞具有白蛋白合成功能.氨代谢和尿素的合成功能在9~12 d出现并持续存在.结果表明脂肪源性干细胞体外分段诱导可成功转化为类肝细胞.

  8. 体外共培养环境对犬脂肪干细胞、口腔上皮细胞的影响%The Influence of Vitro Co-culture Environment on Canine Adipose Tissue Derived Stem Cell and Oral Keratinocyte

    张钦; 田玉景; 程力

    2013-01-01

    目的:探讨体外共培养环境对犬脂肪干细胞(ADSC)、口腔上皮细胞(OK)移行速率、增殖速率的影响。方法:获取犬ADSC和OK并鉴定,将两种细胞种植于同一个刻度培养皿内,检测共培养环境下细胞的移行速率,与单一细胞培养环境作对比,观察细胞移行速率的改变。收集两种细胞培养上清,加入到对方培养基中,形成体外模拟混合培养环境,MTT法检测细胞增殖曲线的改变。结果:共培养环境下,OK、ADSC细胞的移行速率均较单一细胞培养环境下高。与常规培养相比,在体外模拟共培养环境下,OK、ADSC细胞的增殖曲线均变陡。结论:在体外共培养环境中, ADSC、OK呈现互相促进、互相吸引、协同增殖态势,细胞的移行速率、增殖速率均得到提高,能够共同用于组织工程口腔黏膜的构建。%Objective:To investigate the influence of vitro co-culture environment on the migration and proliferation patterns of canine adipose-tissue derived stem cell and oral keratinocytes.Method:Obtain canine ADSC,OK and make the identification.Seed the two cell lines onto a scaled dish,record the migration rate of the two cell lines in co-culture environment,and compare it with the record in monoculture environment.Collect the supernatant of the two cell lines,and add it to the other’s culture medium to simulate a co-culture environment.Detect the changes in cell proliferation curves through MTT assay.Result:The migration rate of the ADSC and OK improved in co-culture environment.The proliferation curves of the two cell line were steeper in co-culture environment than in monoculture environment.Conclusion:In vitro co-culture environment,ADSC,OK exhibit mutual promotion,mutual attraction,collaborative proliferation situation,cell migration rate and proliferation rate are improved.They can be used together for the construction of the tissue engineering oral mucosa.

  9. Culture of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction cells in different media

    Gesiane Ribeiro

    2013-12-01

    Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

  10. 血管内皮生长因子转染后脂肪组织来源干细胞蛋白分泌表达及成骨活性的检测%Detection of protein secretion and expression and osteogenic activity of adipose tissue-derived stem cells after in vitro transfection of vascular endothelial growth factor

    刘兆杰; 胡永成; 张银光; 贾健

    2013-01-01

    Objective To examine vascular endothelial growth factor (VEGF) protein secretion and expression and explore the osteogenic activity of adipose tissue-derived stem cells (ADSCs) after transfection of human VEGF.Methods The ADSCs were isolated from human adipose tissue after the digestion of collagenase.After identification by flow cytometry,the ceils were cultured and passaged in nutritive medium.Gene sequence encoding human VEGF mature peptide was obtained by Trizol reagent method from human vascular tissue.Target gene VEGF was connected with bicistronic expression vector containing green fluorescent protein to form pSELECT-GFP zeo-VEGF for transfecting 2nd,3rd,4th,5th generation ADSCs mediated by liposome.The transfection results were verified under fluorescence microscope.VEGF protein secretion by transfected cells was detected by enzyme-linked immunosorbent assay (ELISA).Secondgeneration transfected ADSCs were cultured under osteogenic conditions.The supernatant levels of alkaline phosphatase (ALP) and osteocalcin (OC) were detected.Results Liposome-mediated VEGF target gene fragment could transfect ADSCs successfully.ELISA quantitative detection showed that VEGF mRNA expression levels in supematant of the transfected group was significantly higher than the control group.And there were significant differences.After osteogenic culturing,the detections of ELISA,real-time PCR and Western blot showed that the secretion of ALP and OC of VEGF transfected group was significantly higher than that of empty vector transfected and blank cell groups.And there were significant differences (P < 0.01).Conclusion After transfected by liposome-mediated VEGF target gene fragment,human ADSCs can express biologically active VEGF mRNA in vitro continuously and effectively.Directional differentiation capacity of transfected ADSCs is significantly enhanced.%目的 观察人血管内皮生长因子(VEGF)转染后的人脂肪组织来源干细胞(ADSCs)对VEGF蛋白的分泌和表达

  11. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells

    Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses

  12. Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration

    Soler-Botija, Carolina; Bagó, Juli R; Llucià-Valldeperas, Aida; Vallés-Lluch, Ana; Castells-Sala, Cristina; Martínez-Ramos, Cristina; Fernández-Muiños, Teresa; Chachques, Juan Carlos; Pradas, Manuel Monleón; Semino, Carlos E; Bayes-Genis, Antoni

    2014-01-01

    Contractile restoration of myocardial scars remains a challenge with important clinical implications. Here, a combination of porous elastomeric membrane, peptide hydrogel, and subcutaneous adipose tissue-derived progenitor cells (subATDPCs) was designed and evaluated as a bioimplant for cardiac regeneration in a mouse model of myocardial infarction. SubATDPCs were doubly transduced with lentiviral vectors to express bioluminescent-fluorescent reporters driven by constitutively active, cardiac...

  13. The Therapeutic Effect of Human Adult Stem Cells Derived from Adipose Tissue in Endotoxemic Rat Model

    Soyoung Shin, Yonggoo Kim, Sikyoung Jeong, Sungyoup Hong, Insoo Kim, Woonjeong Lee, Seungphil Choi

    2013-01-01

    Excessive systemic inflammation following sepsis, trauma or burn could lead to multi-organ damage and death. Bone marrow stromal cells (BMSCs), commonly referred to as mesenchymal stem cells (MSCs), has been studied in several immune-associated diseases in human and animal by modulating the inflammatory response. Adipose tissue derived mesenchymal stem cells (ATSCs), which can be obtained more easily, compared with BMSCs, has emerged as an attractive alternative MSCs source for cell therapy. ...

  14. The Therapeutic Effect of Human Adult Stem Cells Derived from Adipose Tissue in Endotoxemic Rat Model

    Shin, Soyoung; Kim, Yonggoo; Jeong, Sikyoung; Hong, Sungyoup; Kim, Insoo; Lee, Woonjeong; Choi, Seungphil

    2012-01-01

    Excessive systemic inflammation following sepsis, trauma or burn could lead to multi-organ damage and death. Bone marrow stromal cells (BMSCs), commonly referred to as mesenchymal stem cells (MSCs), has been studied in several immune-associated diseases in human and animal by modulating the inflammatory response. Adipose tissue derived mesenchymal stem cells (ATSCs), which can be obtained more easily, compared with BMSCs, has emerged as an attractive alternative MSCs source for cell therapy. ...

  15. USE OF AUTOLOGOUS ADIPOSE TISSUE DERIVED STROMAL VASCULAR FRACTION IN TREATMENT OF KNEE OSTEOARTHRITIS AND CHONDRAL LESIONS

    Vinay

    2015-10-01

    Full Text Available Osteoarthritis is a joint inflammation that results from cartilage degeneration. It can be caused by aging, heredity and injury from trauma or disease. Stromal vascular fraction (SVF, containing large amount of stem cells and other regenerative cells, can be easily obtained from loose connective tissue that is associated with adipose tissue. Here we evaluated safety and clinical efficacy of freshly isolated autologous SVF cells in patients with grade 2 - 4 degenerative osteoarthritis (OA. A total of 31 patients underwent standard liposuction under local anesthesia and SVF cells were isolated and prepared for application into joints. A total of 61 joints, mainly knee and hip joints, were treated with a single dose of SVF cells. 19 patients were fol lowed for minimum 6 weeks for safety and efficacy. Modified KOOS Clinical Score was used to evaluate clinical effect and was based on pain, non - steroid analgesic usage, limping, extent of joint movement, and stiffness evaluation before and at pre - operative , 1 week post - op, 1 month and 6 weeks after the treatment. No serious side effects, systemic infection or cancer was associated with SVF cell therapy. All patients improved after the treatment. Average KOOS score improved from pre - operative 37.5 to post - op erative 6 week average 66.6. All sub scale parameter for pain, symptoms, activity of living & quality of life are also improved. Higher grade of OA were associated with slower healing. In conclusion, here we report a novel and promising treatment approach for patients with degenerative OA that is safe, cost - effective, and relying only on autologous cells, and can be used as one of the minimal invasive treatment modality for osteoarthritis

  16. microRNA-145 Mediates the Inhibitory Effect of Adipose Tissue-Derived Stromal Cells on Prostate Cancer.

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Nakagawa, Takatoshi; Ibuki, Naokazu; Yoshikawa, Yuki; Tsujino, Takuya; Uchimoto, Taizo; Saito, Kenkichi; Takai, Tomoaki; Tanda, Naoki; Minami, Koichiro; Uehara, Hirofumi; Komura, Kazumasa; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2016-09-01

    Adipose-derived stromal cell (ASC), known as one of the mesenchymal stem cells (MSCs), is a promising tool for regenerative medicine; however, the effect of ASCs on tumor growth has not been studied sufficiently. We investigated the hypothesis that ASCs have an inhibitory effect on metastatic tumor progression. To evaluate the in vitro inhibitory effect of ASCs on metastatic prostate cancer (PCa), direct coculture and indirect separate culture experiments with PC3M-luc2 cells and human ASCs were performed, and ASCs were administered to PC3M-luc2 cell-derived tumor-bearing nude mice for in vivo experiment. We also performed exosome microRNA (miRNA) array analysis to explore a mechanistic insight into the effect of ASCs on PCa cell proliferation/apoptosis. Both in vitro and in vivo experiments exhibited the inhibitory effect of ASCs on PC3M-luc2 cell proliferation, inducing apoptosis and PCa growth, respectively. Among upregulated miRNAs in ASCs compared with fibroblasts, we focused on miR-145, which was known as a tumor suppressor. ASC-derived conditioned medium (CM) significantly inhibited PC3M-luc2 cell proliferation, inducing apoptosis, but the effect was canceled by miR-145 knockdown in ASCs. ASC miR-145 knockdown CM also reduced the expression of Caspase 3/7 with increased antiapoptotic protein, BclxL, expression in PC3M-luc2 cells. This study provides preclinical data that ASCs inhibit PCa growth, inducing PCa cell apoptosis with reduced activity of BclxL, at least in part, by miR-145, including exosomes released from ASCs, suggesting that ASC administration could be a novel and promising therapeutic strategy in patients with PCa. PMID:27465939

  17. Cell supermarket: Adipose tissue as a source of stem cells

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  18. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy. PMID:26981129

  19. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Ana Carolina Irioda

    2016-01-01

    Full Text Available Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d, colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d, cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  20. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Harry J. Mersmann; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-01-01

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. ...

  1. A High-Fat Diet Containing Lard Accelerates Prostate Cancer Progression and Reduces Survival Rate in Mice: Possible Contribution of Adipose Tissue-Derived Cytokines

    Han Jin Cho

    2015-04-01

    Full Text Available To examine the effects of high-fat diet (HFD containing lard on prostate cancer development and progression and its underlying mechanisms, transgenic adenocarcinoma mouse prostate (TRAMP and TRAMP-C2 allograft models, as well as in vitro culture models, were employed. In TRAMP mice, HFD feeding increased the incidence of poorly differentiated carcinoma and decreased that of prostatic intraepithelial neoplasia in the dorsolateral lobes of the prostate, which was accompanied by increased expression of proteins associated with proliferation and angiogenesis. HFD feeding also led to increased metastasis and decreased survival rate in TRAMP mice. In the allograft model, HFD increased solid tumor growth, the expression of proteins related to proliferation/angiogenesis, the number of lipid vacuoles in tumor tissues, and levels of several cytokines in serum and adipose tissue. In vitro results revealed that adipose tissue-conditioned media from HFD-fed mice stimulated the proliferation and migration of prostate cancer cells and angiogenesis compared to those from control-diet-fed mice. These results indicate that the increase of adipose tissue-derived soluble factors by HFD feeding plays a role in the growth and metastasis of prostate cancer via endocrine and paracrine mechanisms. These results provide evidence that a HFD containing lard increases prostate cancer development and progression, thereby reducing the survival rate.

  2. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten;

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF....... Genes most prominently and significantly upregulated by both conditions were growth factors (IGF1, BMP6, PDGFD, FGF9), adhesion molecule CLSTN2, extracellular matrix-related proteins such as matricellular proteins SMOC2, SPON1 and ADAMTS12, and inhibitors of proliferation (JAG1). The most significantly...... downregulated genes included matrix metalloproteinases (MMP3, MMP1), and proliferation markers (CDKN3) and GREM2 (a BMP6 antagonist). CONCLUSION: The decisive factor for the observed change in ASC gene expression proves to be serum starvation rather than VEGF stimulation. Changes in expression of growth factors...

  3. Adipose derived stem cells and nerve regeneration

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  4. Adipogenic Potential of Adipose Stem Cell Subpopulations

    Li, Han; Zimmerlin, Ludovic; Marra, Kacey G.; Donnenberg, Vera S.; Donnenberg, Albert D.; Rubin, J. Peter

    2014-01-01

    Background Adipose stem cells represent a heterogenous population. Understanding the functional characteristics of subpopulations will be useful in developing adipose stem cell–based therapies for regenerative medicine applications. The aim of this study was to define distinct populations within the stromal vascular fraction based on surface marker expression, and to evaluate the ability of each cell type to differentiate to mature adipocytes. Methods Subcutaneous whole adipose tissue was obtained by abdominoplasty from human patients. The stromal vascular fraction was separated and four cell populations were isolated by flow cytometry and studied. Candidate perivascular cells (pericytes) were defined as CD146+/CD31−/CD34−. Two CD31+ endothelial populations were detected and differentiated by CD34 expression. These were tentatively designated as mature endothelial (CD 31+/CD34−), and immature endothelial (CD31+/CD34+). Both endothelial populations were heterogeneous with respect to CD146. The CD31−/CD34+ fraction (preadipocyte candidate) was also CD90+ but lacked CD146 expression. Results Proliferation was greatest in the CD31−/CD34+ group and slowest in the CD146+ group. Expression of adipogenic genes, peroxisome proliferator-activated receptor-γ, and fatty acid binding protein 4, were significantly higher in the CD31−/CD34+ group compared with all other populations after in vitro adipogenic differentiation. This group also demonstrated the highest proportion of AdipoRed lipid staining. Conclusions The authors have isolated four distinct stromal populations from human adult adipose tissue and characterized their adipogenic potential. Of these four populations, the CD31/CD34+ group is the most prevalent and has the greatest potential for adipogenic differentiation. This cell type appears to hold the most promise for adipose tissue engineering. PMID:21572381

  5. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications.

    Van Pham, Phuc; Truong, Nhat Chau; Le, Phuong Thi-Bich; Tran, Tung Dang-Xuan; Vu, Ngoc Bich; Bui, Khanh Hong-Thien; Phan, Ngoc Kim

    2016-06-01

    Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC-MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC-MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1-2 mm(2)) of UC membrane and Wharton's jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic-antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC-MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC-MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC-MSCs cultured in DMEM/F12 plus 1 % antibiotic-antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC-MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC-MSCs maintained

  6. Collagen Type II Enhances Chondrogenesis in Adipose Tissue-Derived Stem Cells by Affecting Cell Shape

    Lu, ZuFu; Doulabi, Behrouz Zandieh; Huang, ChunLing; Bank, Ruud A.; Helder, Marco N.

    2010-01-01

    Ideally, biomaterials have inductive properties, favoring specific lineage differentiation. For chondrogenic induction, these properties have been attributed to collagen type II. However, the underlying mechanisms are largely unknown. This study aimed to investigate whether collagen type II favors c

  7. Collagen type II enhances chondrogenesis in adipose tissue-derived stem cells by affecting cell shape

    Z. Lu; B.Z. Doulabi; C. Huang; R.A. Bank; M.N. Helder

    2010-01-01

    Ideally, biomaterials have inductive properties, favoring specific lineage differentiation. For chondrogenic induction, these properties have been attributed to collagen type II. However, the underlying mechanisms are largely unknown. This study aimed to investigate whether collagen type II favors c

  8. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering

    Wang, Lina; Johnson, Joshua A.; Zhang, Qixu; Elisabeth K. Beahm

    2013-01-01

    Repair of soft-tissue defects resulting from lumpectomy or mastectomy has become an important rehabilitation process for breast cancer patients. This study aimed to provide an adipose tissue engineering platform for soft-tissue defect repair by combining decellularized human adipose tissue extracellular matrix (hDAM) and human adipose-derived stem cells (hASCs). To derive hDAM, incised human adipose tissues underwent a decellularization process. Effective cell removal and lipid removal were p...

  9. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells

    Yanez, Rosa, E-mail: rosamaria.yanez@ciemat.es; Oviedo, Alberto, E-mail: alberto.oviedo@ciemat.es; Aldea, Montserrat, E-mail: montserrat.aldea@ciemat.es; Bueren, Juan A., E-mail: juan.bueren@ciemat.es; Lamana, Maria L., E-mail: maruja.lamana@ciemat.es

    2010-11-15

    Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.

  10. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells

    Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.

  11. Adipose-derived stem cells: Implications in tissue regeneration

    Tsuji, Wakako; Rubin, J. Peter; Marra, Kacey G.

    2014-01-01

    Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differentiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs damaged by injury and dise...

  12. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    Tatrai, Peter, E-mail: peter.tatrai@biomembrane.hu [Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Karolina ut 29, H-1113 Budapest (Hungary); Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Szepesi, Aron, E-mail: aron.szepesi@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Matula, Zsolt, E-mail: matula.zsolt@gmail.com [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Szigeti, Anna, E-mail: anna.szigeti@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Buchan, Gyoengyi, E-mail: buchan@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Madi, Andras, E-mail: madi@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Stem Cell, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Uher, Ferenc, E-mail: uher@biomembrane.hu [Stem Cell Laboratory, Hungarian National Blood Transfusion Service, Dioszegi ut 64, H-1113 Budapest (Hungary); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. Black-Right-Pointing-Pointer hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. Black-Right-Pointing-Pointer SV40T introduced along with hTERT abrogates proliferation control and multipotency. Black-Right-Pointing-Pointer hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC{sup hTERT}, ASC{sup Bmi-1}, ASC{sup Bmi-1+hTERT} and ASC{sup SV40T+hTERT} were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC{sup Bmi-1} had limited replicative potential, while the rapidly proliferating ASC{sup SV40T+hTERT} acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC{sup hTERT} and ASC{sup hTERT+Bmi-1}, on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC{sup hTERT} also acquired aberrant karyotype and showed signs of transformation after long-term culture

  13. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    Highlights: ► We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. ► hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. ► SV40T introduced along with hTERT abrogates proliferation control and multipotency. ► hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASChTERT, ASCBmi-1, ASCBmi-1+hTERT and ASCSV40T+hTERT were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASCBmi-1 had limited replicative potential, while the rapidly proliferating ASCSV40T+hTERT acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASChTERT and ASChTERT+Bmi-1, on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASChTERT also acquired aberrant karyotype and showed signs of transformation after long-term culture. In conclusion, hTERT alone was sufficient to extend the life span of human ASC, but ASChTERT are prone to transformation during extensive subculturing

  14. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity.

    Debora B Mello

    Full Text Available Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi, is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy.ASC were injected intraperitoneally at 3 days post-infection (dpi. Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV dilation was prevented in ASC-treated mice.In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.

  15. Adipose-derived Stem Cells: Isolation, Expansion and Differentiation

    Bunnell, Bruce A; Flaat, Mette; Gagliardi, Christine; Patel, Bindiya; Ripoll, Cynthia

    2008-01-01

    The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue has proven to serve as an abundant, accessible and rich source of adult stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. There has been increased interest in Adipose-derived Stem Cells (ASCs) for tissue engineering applications. Here, methods for the isolation, expa...

  16. Independent Stem Cell Lineages Regulate Adipose Organogenesis and Adipose Homeostasis

    Yuwei Jiang

    2014-11-01

    Full Text Available Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult progenitors are specified during the developmental period and express PPARγ, they have distinct microanatomical, functional, morphogenetic, and molecular profiles. Furthermore, the two compartments derive from different lineages; whereas adult adipose progenitors fate-map from an SMA+ mural lineage, developmental progenitors do not. Remarkably, the adult progenitor compartment appears to be specified earlier than the developmental cells and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide a discrete therapeutic target for childhood and adult obesity.

  17. Independent Stem Cell Lineages Regulate Adipose Organogenesis and Adipose Homeostasis

    Yuwei Jiang; Daniel C. Berry; Wei Tang; Jonathan M. Graff

    2014-01-01

    Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA)-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult pr...

  18. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells

    Raquel Taléns-Visconti; Ana Bonora; Ramiro Jover; Vicente Mirabet; Francisco Carbonell; José Vicente Castell; María José Gómez-Lechón

    2006-01-01

    AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC.METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thy1 decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC,but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.

  19. Adipose-Derived Stem Cells for Future Regenerative System Medicine

    Yani Lina

    2012-08-01

    Full Text Available BACKGROUND: The potential use of stem cell-based therapies for repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of disease. Despite the advances, the availability of stem cells remaining a challenge for both scientist and clinicians in pursuing regenerative medicine. CONTENT: Subcutaneous human adipose tissue is an abundant and accessible cell source for applications in tissue engineering and regenerative medicine. Routinely, the adipose issue is digested with collagenase or related lytic enzymes to release a heterogeneous population for stromal vascular fraction (SVF cells. The SVF cells can be used directly or can be cultured in plastic ware for selection and expansion of an adherent population known as adipose-derived stromal/stem cells (ASCs. Their potential in the ability to differentiate into adipogenic, osteogenic, chondrogenic and other mesenchymal lineages, as well in their other clinically useful properties, includes stimulation of angiogenesis and suppression of inflammation. SUMMARY: Adipose tissue is now recognized as an accessible, abundant and reliable site for the isolation of adult stem cels suitable for the application of tissue engineering and regenerative medicine applications. The past decade has witnessed an explosion of preclinical data relating to the isolation, characterization, cryopreservation, differentiation, and transplantation of freshly isolated stromal vascular fraction cells and adherent, culture-expanded, adipose-derived stromal/stem cells in vitro and in animal models. KEYWORDS: adipose tissue, adult stem cells, regenerative medicine, mesenchymal stem cells.

  20. Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling

    Moriyama Mariko

    2012-08-01

    Full Text Available Abstract Background Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12. Results We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO, resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2 and fibroblast growth factor 2 (FGF2 transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK. Conclusions Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.

  1. Comparison of viability of adipose-derived Mesenchymal stem cells on agarose and fibrin glue scaffolds

    Farzaneh Tafvizi

    2015-06-01

    Full Text Available Background & aim: Utilizing tissue engineering techniques and designing similar structures of the damaged tissues require the use of tools such as scaffolds, cells, and bioactive molecules in vitro. Meanwhile, appropriate cell cultures with the ability to divide and differentiate on the natural scaffolds lacking features like immunogenicity and tumorgenesis is particularly important. Adipose tissue has attracted researchers’ attention due to its abundance of mesenchymal stem cells and its availability through a liposuction. The purpose of the present study was to investigate the reproducibility and viability of the adipose-derived stem cells on natural scaffolds of fibrin glue and agarose. Methods: In the present experimental study, the isolation and identification of the mesenchymal stem cells was performed on tissue obtained from liposuction. The tissues were extensively washed with PBS and were digested with collagenase I, then the mesenchymal stem cells were isolated. The cells were cultured in RPMI medium supplemented with antibiotic. Subsequently, the expression of cell surface markers including CD34, CD44, CD90, and CD105 were analyzed by flow cytometry to confirm the mesenchymal cells. After preparing fibrin glue and agarose scaffolds, the viability and proliferation of the adipose tissue-derived mesenchymal stem cells were examined at the period of 24, 48, and 72 hours by MTT and ELISA assays. The obtained results were analyzed by SPSS ver.19. Results: The results of adipose tissue-derived mesenchymal stem cells culture on the fibrin glue and agarose scaffolds indicated that cell viability on fibrin glue and agarose scaffold were 68.22% and 89.75% in 24 hrs, 64.04% and 66.97% in 48 hours, 222.87% and 1089.68% in 72 hours respectively. Significant proliferation and viability cells on a synthesized agarose scaffold were seen compared to the fibrin glue scaffold after 72 hrs. The viability of the cells significantly increased on the

  2. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita,Masayuki; Noguchi,Hirofumi

    2015-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation...

  3. 0Adipose-derived stem cells: Implications in tissue regeneration

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  4. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes.

    Raja, Waseem K; Mungenast, Alison E; Lin, Yuan-Ta; Ko, Tak; Abdurrob, Fatema; Seo, Jinsoo; Tsai, Li-Huei

    2016-01-01

    The dismal success rate of clinical trials for Alzheimer's disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD. PMID:27622770

  5. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Carvalho, A.M.; A.L.M. Yamada; M.A. Golim; L.E.C. Álvarez; L.L. Jorge; M.L. Conceição; E. Deffune; C.A. Hussni; A.L.G. Alves

    2013-01-01

    Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs) in horses through (1) the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2) flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to...

  6. 4-Hydroxynonenal Regulates TNF-α Gene Transcription Indirectly via ETS1 and microRNA-29b in Human Adipocytes Induced From Adipose Tissue-Derived Stromal Cells.

    Zhang, Xi-Mei; Guo, Lin; Huang, Xiang; Li, Qiu-Ming; Chi, Mei-Hua

    2016-08-01

    Obesity is characterized by an accumulation of excessive body fat and can be diagnosed by a variety of measures, such as BMI. However, in some obese individuals, oxidative stress is also thought to be an important pathogenic mechanism of obesity-associated metabolic syndrome. Oxidative stress increases the lipid peroxidation product, 4-hydroxynonenal (4-HNE), which is one of the most abundant and active lipid peroxides. Within the adipose tissue, adipocytes are derived from adipose tissue-derived stromal cells (ADSCs), which play a key role in the generation and metabolism of adipose tissue. Additionally, obesity is associated with low-grade inflammation. Specific microRNAs (miRNAs) that regulate obesity-associated inflammation are largely dysregulated in metabolic syndrome (MS). In this study, we aim to confirm whether 4-HNE and miRNAs play a role in the regulation of TNF-α gene transcription. We enrolled six obese individuals who were referred to Harbin Medical University (Heilongjiang, China) and six nonobese control participants. Plasma 4-HNE levels of the 12 subjects were determined by ELISA. Using qRT-PCR, we measured ETS1, miR-29b, SP1, and TNF-α levels in subcutaneous white adipose tissue (WAT). Furthermore, we examined the relationship between ETS1 and TNF-α using a luciferase reporter assay and a ChIP assay. Our results suggest that ETS1 promotes TNF-α gene transcription in adipocytes. In addition, we demonstrated that 4-HNE promotes TNF-α gene transcription through the inhibition of the miR-29b → SP1 → TNF-α pathway and promotion of the ETS1 → TNF-α pathway. Anat Rec, 299:1145-1152, 2016. © 2016 Wiley Periodicals, Inc. PMID:27164408

  7. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  8. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study

    Phuc Van Pham

    2014-01-01

    Full Text Available Osteoarthritis is one of the most common diseases, and it affects 12% of the population around the world. Although the disease is chronic, it significantly reduces the patient's quality of life. At present, stem cell therapy is considered to be an efficient approach for treating this condition. Mesenchymal stem cells (MSCs show the most potential for stem cell therapy of osteoarthritis. In fact, MSCs can differentiate into certain mesodermal tissues such as cartilage and bone. Therefore, in the present study, we applied adipose tissue-derived MSCs to osteoarthritis treatment. This study aimed to evaluate the clinical efficiency of autologous adipose tissue-derived MSC transplantation in patients with confirmed osteoarthritis at grade II and III. Adipose tissue was isolated from the belly, and used for extraction of the stromal vascular fraction (SVF. The SVF was mixed with activated platelet- rich plasma before injection. The clinical efficiencies were evaluated by the pain score (VAS, Lysholm score, and MRI findings. We performed the procedure in 21 cases from 2012 to 2013. All 21 patients showed improved joint function after 8.5 months. The pain score decreased from 7.6+/-0.5 before injection to 3.5+/-0.7 at 3 months and 1.5+/-0.5 at 6 months after injection. The Lysholm score increased from 61+/-11 before injection to 82+/-8.1 after injection. Significant improvements were noted in MRI findings, with increased thickness of the cartilage layer. Moreover, there were no side-effects or complications related to microorganism infection, graft rejection, or tumorigenesis. These results provide a new opportunity for osteoarthritis treatment. Level of evidence: IV. [Biomed Res Ther 2014; 1(1.000: 02-08

  9. Transfection of adenovirus containing hepatocyte growth factor gene into adipose tissue-derived stromal cells%腺病毒介导肝细胞生长因子基因感染脂肪干细胞

    王克明; 马继光; 栾杰

    2011-01-01

    目的 观察腺病毒介导的肝细胞生长因子(Ad-HGF)对脂肪干细胞的感染效率以及感染后是否可形成有效的肝细胞生长因子(HGF),确定感染强度(MOI)值.方法 利用消化分离方法和脂肪干细胞贴壁生长的特性,分离人脂肪干细胞,利用相同MOI的Ad-HGF感染脂肪干细胞,ELISA法检测HGF的表达.结果 脂肪干细胞均呈贴壁生长的成纤维细胞样形态,原代培养的细胞7~10 d即达70%~80%融合,Ad-HGF感染脂肪干细胞后HGF可在48 h高效表达.结论 提示腺病毒可有效介导HGF基因,可感染脂肪干细胞,并能够产生有效浓度的HGF.%Objective To observe the efficiency of infection of adenovirus containing hepatocyte growth factor(Ad-HGF) on adipose derived stem cells and to prove whether the valid HGF can appear after infection and the multiplicity of infection. Methods We use the digestion separation method and the attachingwall characteristic of the adipose-derived stem cells to separate the human adipose-derived stem cells. Adipose-derived stem cells were infected by the vector of adenovirus (Ad-GFP) which carries the GFP gene,and the GFP acts as the indicating gene to determine the infection efficiency of recombinant adenovirus to adipose- derived stem cells. HGF-ELISA was used to detect HGF as expression-secretion. Results The adherent cells displayed themselves as fibroblast in morphology. The primary cultured cells fusion can arrive to 70% - 80% in 7 - 10 days. The infected HGF can be highly expressed in 48hours. Conclusion Adenovirus can meditate the expression of HGF gene in adipose-derived stem cells effectively.

  10. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  11. Efficient Isolation of Cardiac Stem Cells from Brown Adipose

    Zhiqiang Liu

    2010-01-01

    Full Text Available Cardiac stem cells represent a logical cell type to exploit in cardiac regeneration. The efficient harvest of cardiac stem cells from a suitable source would turn promising in cardiac stem cell therapy. Brown adipose was recently found to be a new source of cardiac stem cells, instrumental to myocardial regeneration. Unfortunately, an efficient method for the cell isolation is unavailable so far. In our study we have developed a new method for the efficient isolation of cardiac stem cells from brown adipose by combining different enzymes. Results showed that the total cell yield dramatically increased (more than 10 times, P<.01 compared with that by previous method. The content of CD133-positive cells (reported to differentiate into cardiomyocytes with a high frequency was much higher than that in the previous report (22.43% versus 3.5%. Moreover, the isolated cells could be the efficiently differentiated into functional cardiomyocytes in optimized conditions. Thus, the new method we established would be of great use in further exploring cardiac stem cell therapy.

  12. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation

    Kim KJ; Joe YA; Kim MK; Lee SJ; Ryu YH; Cho DW; Rhie JW

    2015-01-01

    Ki Joo Kim,1,2 Young Ae Joe,3 Min Kyoung Kim,1,2 Su Jin Lee,1 Yeon Hee Ryu,1,2 Dong-Woo Cho,4,5 Jong Won Rhie1,2 1Department of Plastic Surgery, College of Medicine, 2Department of Molecular Biomedicine, 3Cancer Research Institute and Department of Medical Lifescience, The Catholic University of Korea, Seoul, Republic of Korea; 4Department of Mechanical Engineering, Pohang University of Science and Technology, Gyeongbuk, Republic of Korea; 5Department of Integrative Bioscience and Bioengineer...

  13. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun;

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival ...

  14. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  15. The Therapeutic Effect of Human Adult Stem Cells Derived from Adipose Tissue in Endotoxemic Rat Model

    Soyoung Shin, Yonggoo Kim, Sikyoung Jeong, Sungyoup Hong, Insoo Kim, Woonjeong Lee, Seungphil Choi

    2013-01-01

    Full Text Available Excessive systemic inflammation following sepsis, trauma or burn could lead to multi-organ damage and death. Bone marrow stromal cells (BMSCs, commonly referred to as mesenchymal stem cells (MSCs, has been studied in several immune-associated diseases in human and animal by modulating the inflammatory response. Adipose tissue derived mesenchymal stem cells (ATSCs, which can be obtained more easily, compared with BMSCs, has emerged as an attractive alternative MSCs source for cell therapy. We investigated the therapeutic effects of human ATSCs (hATSCs in endotoxemic rat model and their capacity to modulate the inflammatory response. Endotoxemia was induced with Lipopolysaccaride intravenously injection (LPS, 10mg/kg. Animals were divided into the following three groups: (1 saline + saline (n=5, (2 LPS + saline (n=5 and (3 LPS + hATSCs (2x106 (n=5. The administration of LPS caused a consistent systemic inflammatory responses, increased concentrations of the pro-inflammatory cytokines that have an important role in sepsis. Treatment of endotoxemia with hATSCs decreased the level of inflammatory cytokines both in serum and in the lung, reduced inflammatory changes in the lung, prevented apoptosis in the kidney and improved multi-organ injury. In conclusion, our data demonstrates that hATSCs regulate the immue/inflammatory responses and improve multi-organ injury and they could be attractive candidates for cell therapy to treat endotoxemia.

  16. Mesenchymal markers on human adipose stem/progenitor cells

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described 3 major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+) and supra-adventitial adipose stromal cells (SA-ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here we determine the extent to which this mesenchymal expression pattern is expressed on the 3 adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with 14.3±2.8% (mean ± SEM) having >2N DNA. About half (53.1±7.6%) coexpressed CD73 and CD105, and 71.9±7.4% expressed CD90. Pericytes were less proliferative (8.2±3.4% >2N DNA) with a smaller proportion (29.6±6.9% CD73+/CD105+, 60.5±10.2% CD90+) expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes, were both highly proliferative (15.1±3.6% with >2N DNA) and of uniform mesenchymal phenotype (93.3±3.7% CD73+/CD105+, 97.8±0.7% CD90+), suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative (3.7 ± 0.8%>2N DNA) but were also highly mesenchymal in phenotype (94.4±3.2% CD73+/CD105+, 95.5±1.2% CD90+). These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression. PMID:23184564

  17. Characterization of mesenchymal stem cells derived from equine adipose tissue

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  18. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    Wan Safwani Wan Kamarul Zaman; Makpol Suzana; Sathapan Somasundaram; Chua Kien

    2012-01-01

    Abstract Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study...

  19. Adipose-Derived Stem Cell Collection and Characterization in Bottlenose Dolphins (Tursiops truncatus)

    Johnson, Shawn P.; Catania, Jeffrey M.; Harman, Robert J.; Jensen, Eric D.

    2012-01-01

    To assess the regenerative properties and potential therapeutic value of adipose-derived stem cells (ASCs) in the bottlenose dolphin, there is a need to determine whether an adequate adipose depot exists, in addition to the development of a standardized technique for minimally invasive adipose collection. In this study, an ultrasound-guided liposuction technique for adipose collection was assessed for its safety and efficacy. The ultrasound was utilized to identify and measure the postnuchal ...

  20. Adipose-derived stem cells from the breast

    Jie Yang

    2014-01-01

    Full Text Available Background: The adipose tissue is deemed as an ideal source of adipose-derived stem cells (ADSCs. Previous studies have reported that ADSCs can be isolated from several organs and locations; however, slight attention has been paid to the breast. We would like to report our experiences in isolating breast ADSCs (bADSCs. Materials and Methods: Adipose tissues were harvested from the breasts of seven hypertrophic breast patients. Collagenase I was used to isolate the primary ADSCs. Surface markers were analyzed by flow cytometry. Cellular morphologies were observed. Proliferations of different passages were compared. Viabilities after the cryopreservation were evaluated. Adipogenic and osteogenic differentiation was induced. Results: Primary cultured cells showed morphologies similar to fibroblasts, and expressed surface markers including CD13, CD44, CD90, and CD105. There was no statistical difference of proliferation between different passages (P > 0.05 and between with and without cryopreservation (P > 0.05. Additionally, isolated cells were differentiated into adipocytes and osteoblasts. Conclusion: bADSCs may represent an alternative candidate for tissue engineering. Further studies are needed to obtain more comprehensive understanding on bADSCs.

  1. Case Reports of Adipose-derived Stem Cell Therapy

    Min Su Jung

    2012-01-01

    Full Text Available With the gradual increase of cases using fillers, cases of patients treated by non-medicalprofessionals or inexperienced physicians resulting in complications are also increasing. Weherein report 2 patients who experienced acute complications after receiving filler injectionsand were successfully treated with adipose-derived stem cell (ADSCs therapy. Case 1 wasa 23-year-old female patient who received a filler (Restylane injection in her forehead,glabella, and nose by a non-medical professional. The day after her injection, inflammationwas observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who receiveda filler injection of hyaluronic acid gel (Juvederm on her nasal dorsum and tip at a privateclinic. She developed erythema and swelling in the filler-injected area A solution containingADSCs harvested from each patient’s abdominal subcutaneous tissue was injected intothe lesion at the subcutaneous and dermis levels. The wounds healed without additionaltreatment. With continuous follow-up, both patients experienced only fine linear scars 6months postoperatively. By using adipose-derived stem cells, we successfully treated theacute complications of skin necrosis after the filler injection, resulting in much less scarring,and more satisfactory results were achieved not only in wound healing, but also in esthetics.

  2. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  3. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells.

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2015-12-17

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs. PMID:26858903

  4. Osteogenic Potential of Mouse Adipose-Derived Stem Cells Sorted for CD90 and CD105 In Vitro

    Maiko Yamamoto

    2014-01-01

    Full Text Available Adipose tissue-derived stromal cells, termed ASCs, play an important role in regenerative applications. They resemble mesenchymal stem cells owing to their inexhaustibility, general differentiation potential, and plasticity and display a series of cell-specific and cluster-of-differentiation (CD marker profiles similar to those of other somatic stem cells. Variations in phenotypes or differentiation are intimately associated with CD markers. The purpose of our study was to exhibit distinct populations of ASCs with differing characteristics for osteogenic differentiation. The primary cell batch of murine-derived ASCs was extracted from subcutaneous adipose tissue and the cells were sorted for the expression of the surface protein molecules CD90 and CD105 using flow cytometry. Each cell population sorted for CD90 and CD105 was analyzed for osteogenic potency after cell culture. The results suggested that ASCs exhibit distinct populations with differing characteristics for osteogenic differentiation: unsorted ASCs stimulated comparable mineralized nodule formation as bone marrow stromal cells (BMSCs in osteogenic medium and viral transfection for BMP2 accelerated the formation of mineralized nodules in CD90 and/or CD105 positive ASCs with observation of decrease in CD105 expression after 14 days. Future studies assessing different immunophenotypes of ASCs should be undertaken to develop cell-based tissue engineering.

  5. Therapeutic efficacy of amniotic membrane stem cells and adipose tissue stem cells in rats with chemically induced ovarian failure.

    Fouad, Hanan; Sabry, Dina; Elsetohy, Khaled; Fathy, Naglaa

    2016-03-01

    The present study was conducted to compare between the therapeutic efficacies of human amniotic membrane-derived stem cells (hAM-MSCs) vs. adipose tissue derived stem cells (AD-MSCs) in cyclophosphamide (CTX)-induced ovarian failure in rats. Forty-eight adult female rats were included in the study; 10 rats were used as control group. Thirty-eight rats were injected with CTX to induce ovarian failure and divided into four groups: ovarian failure (IOF) (IOF group), IOF + phosphate buffer saline (PBS group), IOF + hAM-MSCs group and IOF + AD-MSCs group. Serum levels of FSH and estradiol (E2) were assessed. Histopathological examination of the ovarian tissues was performed and quantitative gene expressions of Oct-4, Stra8 and integrin beta-1 genes were conducted by quantitative real time PCR. Results showed that IOF and IOF + PBS rat groups exhibited decreased ovarian follicles, increased interstitial fibrosis with significant decrease of serum E2, significant increase serum FSH level and significant down-regulation of Stra8 and integrin beta-1. In hAM-MSCs and AD-MSCs rat groups, there were increased follicles and corpora with evident the presence of oocytes, significant increase in serum E2, significant decrease in serum FSH levels (in hAM-MSCs treated group only) and significant up-regulation of the three studied genes with higher levels in hAM-MSCs treated rats group when compared to AD-MSCs treated rats group. In Conclusion, administration of either hAM-derived MSCs or AD-MSCs exerts a significant therapeutic efficacy in chemotherapy induced ovarian insult in rats. hAM-MSCs exert higher therapeutic efficacy as compared to AD-MSCs. PMID:26966564

  6. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  7. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was...

  8. Adipose-Derived Stem Cells (ADSC) and Aesthetic Surgery: A Mini Review

    Mehrabani, Davood; Mehrabani, Golshid; Zare, Shahrokh; Manafi, Ali

    2013-01-01

    In cell therapy and regenerative medicine, a reliable source of stem cells together with cytokine growth factors and biomaterial scaffolds seem necessary. As adipose tissue is easy accessible and is abundant source of adult stem cells and can differentiate along multiple lineages, it can be considered as a good candidate in aesthetic medicine. The clinical application of adipose-derived stem cells (ASCs) is reviewed in this article.

  9. Regeneration of articular cartilage using adipose stem cells.

    Im, Gun-Il

    2016-07-01

    Articular cartilage (AC) has limited potential for self-regeneration and damage to AC eventually leads to the development and progression of osteoarthritis (OA). Cell implantation strategies have emerged as a new treatment modality to regenerate AC. Adipose stem cells/adipose-derived stromal cells (ASCs) have gained attention due to their abundance, excellent proliferative potential, and minimal morbidity during harvest. These advantages lower the cost of cell therapy by circumventing time-consuming procedure of culture expansion. ASCs have drawn attention as a potential source for cartilage regeneration since the feasibility of chondrogenesis from ASCs was first reported. After several groups reported inferior chondrogenesis from ASCs, numerous methods were devised to overcome the intrinsic properties. Most in vivo animal studies have reported good results using predifferentiated or undifferentiated, autologous or allogeneic ASCs to regenerate cartilage in osteochondral defects or surgically-induced OA. In this review, we summarize literature on the isolation and in vitro differentiation processes of ASCs, in vivo studies to regenerate AC in osteochondral defects and OA using ASCs, and clinical applications of ASCs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1830-1844, 2016. PMID:26990234

  10. Hair regeneration using adipose-derived stem cells.

    Jin, Su-Eon; Sung, Jong-Hyuk

    2016-03-01

    Adipose-derived stem cells (ASCs) have been used in tissue repair and regeneration. Recently, it was reported that ASC transplantation promotes hair growth in animal experiments, and a conditioned medium of ASCs (ASC-CM) induced the proliferation of hair-compositing cells in vitro. However, ASCs and their conditioned medium have shown limited effectiveness in clinical settings. ASC preconditioning is one strategy that can be used to enhance the efficacy of ASCs and ASC-CM. Therefore, we highlighted the functional role of ASCs in hair cycle progression and also the advantages and disadvantages of their application in hair regeneration. In addition, we introduced novel ASC preconditioning methods to enhance hair regeneration using ASC stimulators, such as vitamin C, platelet-derived growth factor, hypoxia, and ultraviolet B. PMID:26536569

  11. Transplanted adipose-derived stem cells delay D-galactose-induced aging in rats

    Chun Yang; Ou Sha; Jingxing Dai; Lin Yuan; Dongfei Li; Zhongqiu Wen; Huiying Yang; Meichun Yu; Hui Tao; Rongmei Qu; Yikuan Du; Yong Huang

    2011-01-01

    To investigate the effects of allogeneically transplanted, adipose-derived stem cells in aging rats, in the present study, we established a rat model of subacute aging using continuous subcutaneous injections of D-galactose. Two weeks after the adipose-derived stem cells transplantations, serum superoxide dismutase activity was significantly increased, malondialdehyde content was significantly reduced, hippocampal neuronal degeneration was ameliorated, the apoptotic index of hippocampal neurons was decreased, and learning and memory function was significantly improved in the aging rats. These results indicate that allogeneic transplantation of adipose-derived stem cells may effectively delay D-galactose-induced aging.

  12. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus;

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  13. Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

    Mohamadreza Baghaban Eslaminejad

    2011-01-01

    Full Text Available Objective(sSome investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored.Materials and MethodsAdherent cells were isolated from the collagenase digests of adipose tissues excised from rat epicardial and epididymal regions and propagated with several subcultures. The cells were then investigated whether or not they were able to differentiate into bone, cartilage and adipose cell lineages. Studied cells from two adipose tissues were also compared with respect to their in vitro proliferation capacity. The presence of senescent cells in the culture was determined and compared using senescence-associated (SA ß-galactosidase staining method. ResultsSuccessful differentiations of the cells were indicative of their mesenchymal stem cells (MSCs identity. Epicardial adipose-derived cells tended to have a short population doubling time (45±9.6 hr than the epididymal adipose-derived stem cells (69±16 hr, P< 0.05. Colonogenic activity and the growth curve characteristics were all better in the culture of stem cells derived from epicardial compared to epididymal adipose tissue. Comparatively more percentage of senescent cells was present at the cultures derived from epididymal adipose tissue (P< 0.05.ConclusionOur data emphasize on the differences existed between the stem cells derived from adipose depots of different anatomical sites in terms of their proliferative capacity and in vitro aging. Such data can help understand varying results reported by different laboratories involved in adipose stem cell investigations.

  14. Effects of Platelet-Rich Plasma, Adipose-Derived Stem Cells, and Stromal Vascular Fraction on the Survival of Human Transplanted Adipose Tissue

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-01-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back o...

  15. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  16. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    Highlights: ► We administered human CLCs in a swine model of MI via intracoronary artery. ► Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. ► Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. ► Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer’s solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of human specific alpha-cardiac actin. Human alpha cardiac actin-positive cells also expressed cardiac

  17. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    Okura, Hanayuki [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Saga, Ayami; Soeda, Mayumi [Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Miyagawa, Shigeru; Sawa, Yoshiki [Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Daimon, Takashi [Division of Biostatistics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Ichinose, Akihiro [Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); Matsuyama, Akifumi, E-mail: akifumi-matsuyama@umin.ac.jp [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); RIKEN Program for Drug Discovery and Medical Technology Platforms, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer We administered human CLCs in a swine model of MI via intracoronary artery. Black-Right-Pointing-Pointer Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. Black-Right-Pointing-Pointer Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. Black-Right-Pointing-Pointer Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer's solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of

  18. Human adipose-derived stem cells stimulate neuroregeneration.

    Masgutov, Ruslan F; Masgutova, Galina A; Zhuravleva, Margarita N; Salafutdinov, Ilnur I; Mukhametshina, Regina T; Mukhamedshina, Yana O; Lima, Luciana M; Reis, Helton J; Kiyasov, Andrey P; Palotás, András; Rizvanov, Albert A

    2016-08-01

    Traumatic brain injuries and degenerative neurological disorders such as Alzheimer's dementia, Parkinson's disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves. PMID:26047869

  19. Adipose-derived stem cells - Methods and protocols

    Carlo Alberto Redi

    2011-09-01

    Full Text Available This book is pleasing the reader already by the Authors’ preface. It is one in a million case to find a figure or a graph in the foreword presentation of a book. Here, Professors Gimble and Bunnell decided to give a warning to the reader about the increasing relevance that the topics covered by the book is playing in the life sciences researches: they simply decided to show the ISI Web of knowledge annual publications and citations for adipose stem cells. Clear enough, the statistics is impressive: few papers in 2000, nearly 600 in 2009 and 2010. The same pattern is present in the citations per year, quite a few in 2000 – 2001 and something like 12,000 in 2010 ! I think that these numbers justify the idea to have a volume devoted to cover all of the topics related to these intriguing stem cell type, likely originating from a perivascular histological niche within highly vascularized fat tissue. The book is divided in four parts.......

  20. Mesenchymal Stem Cells Isolated from Adipose and Other Tissues: Basic Biological Properties and Clinical Applications

    Hakan Orbay; Morikuni Tobita; Hiroshi Mizuno

    2012-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyoc...

  1. The Comparison of Adipose Stem Cell and Placental Stem Cell in Secretion Characteristics and in Facial Antiaging

    Yan Xu

    2016-01-01

    Full Text Available Background. Mesenchymal stem cells are the most commonly used seed cells in biomedical research and tissue engineering. Their secretory proteins have also been proven to play an important role in tissue healing. Methods. We isolated adipose stem cells and placental stem cells and performed analysis examining characteristics. The secretory proteins were extracted from conditioned medium and analyzed by MALDI-TOF/TOF. The antiaging effect of conditioned mediums was evaluated by the results of facial skin application. Results. Adipose stem cells and placental stem cells were found to be very similar in their surface markers and multipotency. The specific proteins secreted from adipose stem cells were more adept at cell adhesion, migration, wound healing, and tissue remodeling, while the proteins secreted by placental stem cells were more adept at angiogenesis, cell proliferation, differentiation, cell survival, immunomodulation, and collagen degradation. While these two types of conditioned medium could improve the facial index, the improvement of Melanin index after injection of the adipose stem cell conditioned medium was much more significant. Conclusion. The results suggest that the secreted proteins are ideal cell-free substances for regeneration medicine, especially in the antiaging field.

  2. The Comparison of Adipose Stem Cell and Placental Stem Cell in Secretion Characteristics and in Facial Antiaging.

    Xu, Yan; Guo, Shilei; Wei, Cui; Li, Honglan; Chen, Lei; Yin, Chang; Zhang, Chuansen

    2016-01-01

    Background. Mesenchymal stem cells are the most commonly used seed cells in biomedical research and tissue engineering. Their secretory proteins have also been proven to play an important role in tissue healing. Methods. We isolated adipose stem cells and placental stem cells and performed analysis examining characteristics. The secretory proteins were extracted from conditioned medium and analyzed by MALDI-TOF/TOF. The antiaging effect of conditioned mediums was evaluated by the results of facial skin application. Results. Adipose stem cells and placental stem cells were found to be very similar in their surface markers and multipotency. The specific proteins secreted from adipose stem cells were more adept at cell adhesion, migration, wound healing, and tissue remodeling, while the proteins secreted by placental stem cells were more adept at angiogenesis, cell proliferation, differentiation, cell survival, immunomodulation, and collagen degradation. While these two types of conditioned medium could improve the facial index, the improvement of Melanin index after injection of the adipose stem cell conditioned medium was much more significant. Conclusion. The results suggest that the secreted proteins are ideal cell-free substances for regeneration medicine, especially in the antiaging field. PMID:27057176

  3. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  4. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC

  5. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Salamon, Achim; Adam, Stefanie; Herzmann, Nicole [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Taubenheim, Jan [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Peters, Kirsten [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  6. The Comparison of Adipose Stem Cell and Placental Stem Cell in Secretion Characteristics and in Facial Antiaging

    Yan Xu; Shilei Guo; Cui Wei; Honglan Li; Lei Chen; Chang Yin; Chuansen Zhang

    2016-01-01

    Background. Mesenchymal stem cells are the most commonly used seed cells in biomedical research and tissue engineering. Their secretory proteins have also been proven to play an important role in tissue healing. Methods. We isolated adipose stem cells and placental stem cells and performed analysis examining characteristics. The secretory proteins were extracted from conditioned medium and analyzed by MALDI-TOF/TOF. The antiaging effect of conditioned mediums was evaluated by the results of f...

  7. Isolation, amplification and identification of mesenchymal stem cells de-rived from human adipose tissue

    Sanambar Sadighi

    2014-04-01

    Conclusion: Although we have not the results of in vivo tests to support in vivo adipo-genesis either alone or in combination with natural or synthetic matrix, the results showed that stem cells isolation from adipose tissue was successful, and we provided an environment for differentiation of stem cells.

  8. Adipose Derived Mesenchymal Stem Cells In Wound Healing: A Clinical Review

    Gunalp Uzun

    2014-08-01

    Full Text Available The aim of this article is to review clinical studies on the use of adipose derived mesenchymal stem cells in the treatment of chronic wounds. A search on PubMed was performed on April 30th, 2014 to identify the relevant clinical studies. We reviewed 13 articles that reported the use adipose derived stem cells in the treatment of different types of wounds. Adipose derived stem cells have the potential to be used in the treatment of chronic wounds. However, standard methods for isolation, storage and application of these cells are needed. New materials to transfer these stem cells to injured tissues should be investigated. [Dis Mol Med 2014; 2(4.000: 57-64

  9. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    the characterization of MSCs derived from different tissue sources. Collectively, our results suggest that, based on their tri-lineage differentiation potential and immunomodulatory effects, BM-MSCs and adipose tissue-derived MSCs (A-MSCs) represent the optimal stem cell source for tissue engineering and regenerative medicine. PMID:26719857

  10. A review on recent developments in dental tissue-derived stem cells%牙源性干细胞的研究进展

    李琨; 安莹

    2012-01-01

    Recent evidence has shown that a variety of mesenchymal stem cells ( MSC) located in multiple dental - derived tissues such as the periodontal ligament, dental pulp, apical papilla and dental follicle. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have been speculated. It is known that these stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes and adipocytes. These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including dental tissues , nerves and bone regeneration. This review describes new findings in the field of dental stem cell research and on their potential use in tissue regeneration.%目前已证实,牙周膜、牙髓、根尖乳头和牙囊等牙源性组织中存在间充质干细胞(mesenchymal stem cells,MSC),即牙源性干细胞;而且能在一定条件下被成功分离、培养和扩增;并证实其具有多向分化的潜能,且可在体内实现包括牙齿、神经和骨等多种组织的再生.另外,该细胞来源广泛、容易获得,日益成为组织工程学中最具有潜质的间充质干细胞.本文就牙源性干细胞的研究进展及其在组织工程学中的应用等作一综述.

  11. Isolation of adipose derived stem cells and their induction to a chondrogenic phenotype

    Estes, Bradley T.; Diekman, Brian O.; Gimble, Jeffrey M.; Guilak, Farshid

    2010-01-01

    The ability to isolate, expand, and differentiate adult stem cells into a chondrogenic lineage is an important step in the development of tissue engineering approaches for cartilage repair or regeneration for the treatment of joint injury or osteoarthritis, or for application in plastic or reconstructive surgery. Adipose-derived stem cells (ASCs) provide an abundant and easily accessible source of adult stem cells for use in such regenerative approaches. This protocol describes the isolation ...

  12. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    Ru Dai; Zongjie Wang; Roya Samanipour; Kyo-in Koo; Keekyoung Kim

    2016-01-01

    Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs ...

  13. Tissue Engineering of Injectable Soft tissue Filler: Using Adipose Stem Cells and Micronized Acellular Dermal Matrix

    Yoo, Gyeol; Lim, Jin Soo

    2009-01-01

    In this study of a developed soft tissue filler, adipose tissue equivalents were constructed using adipose stem cells (ASCs) and micronized acellular dermal matrix (Alloderm). After labeling cultured human ASCs with fluorescent green protein and attaching them to micronized Alloderm (5×105 cells/1 mg), ASC-Alloderm complexes were cultured in adipogenic differentiation media for 14 days and then injected into the dorsal cranial region of nude male mice. The viabilities of ASCs in micronized Al...

  14. Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

    Mohamadreza Baghaban Eslaminejad; Soura Mardpour; Marzieh Ebrahimi

    2011-01-01

    Objective(s)Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored.Materials and MethodsAdherent cells were isolated from the collagenase digests of adipose tissues excised from rat epicardial and epididymal regions and propagated with several subcultures. The cel...

  15. Increased Adipogenesis of Human Adipose-Derived Stem Cells on Polycaprolactone Fiber Matrices

    Cecilia Brännmark; Alexandra Paul; Diana Ribeiro; Björn Magnusson; Gabriella Brolén; Annika Enejder; Anna Forslöw

    2014-01-01

    With accelerating rates of obesity and type 2 diabetes world-wide, interest in studying the adipocyte and adipose tissue is increasing. Human adipose derived stem cells - differentiated to adipocytes in vitro - are frequently used as a model system for white adipocytes, as most of their pathways and functions resemble mature adipocytes in vivo. However, these cells are not completely like in vivo mature adipocytes. Hosting the cells in a more physiologically relevant environment compared to c...

  16. Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells

    Mohammadi, Zahra; Afshari, Jalil Tavakkol; Keramati, Mohammad Reza; Alamdari, Daryoush Hamidi; Ganjibakhsh, Meysam; Zarmehri, Azam Moradi; Jangjoo, Ali; Sadeghian, Mohammad Hadi; Ameri, Masoumeh Arab; Moinzadeh, Leila

    2015-01-01

    Objective(s): Mesenchymal stem cells (MSC) can be isolated from adult tissues such as adipose tissue and other sources. Among these sources, adipose tissue (because of easy access) and placenta (due to its immunomodulatory properties, in addition to other useful properties), have attracted more attention in terms of research. The isolation and comparison of MSC from these two sources provides a proper source for clinical experimentation. The aim of this study was to compare the characteristic...

  17. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  18. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds.

    Gastaldi, Giulia; Asti, Annalia; Scaffino, Manuela Federica; Visai, Livia; Saino, Enrica; Cometa, Angela Maria; Benazzo, Francesco

    2010-09-01

    The use of stem cells in regenerative medicine is an appealing area of research that has received a great deal of interest in recent years. The population called human adipose tissue-derived stem cells (hASCs) share many of the characteristic of its counterpart of marrow including extensive proliferative potential and the ability to undergo multilineage differentiation along classical mesenchymal lineages: adipogenesis, chondrogenesis, osteogenesis, and myogenesis. The aim of this study was to evaluate with biochemical and morphological methods the adhesion and differentiation of hASCs grown on trabecular titanium scaffolds. The hASCs isolated from subcutaneous adipose tissue after digestion with collagenase were seeded on monolayer and on trabecular titanium scaffolds and incubated at 37 degrees C in 5% CO(2) with osteogenic medium or control medium.The results showed that hASCs were able to adhere to titanium scaffolds, to proliferate, to acquire an osteoblastic-like phenotype, and to produce a calcified extracellular matrix with protein, such as, decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type I collagen. These data suggest that this kind of scaffold/cells construct is effective to regenerate damaged tissue and to restore the function of bone tissue. PMID:20336739

  19. Bioengineering beige adipose tissue therapeutics

    Kevin eTharp

    2015-10-01

    Full Text Available Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of UCP1-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable brown adipose tissues for human therapeutic purposes at this time.Recent developments in bioengineering, including novel hyaluronic acid based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit WAT derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of beige adipose tissue implants and their potential for the metabolic

  20. Bioengineering Beige Adipose Tissue Therapeutics.

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  1. Allogeneic and Xenogeneic Transplantation of Adipose-Derived Stem Cells in Immunocompetent Recipients Without Immunosuppressants

    Lin, Ching-Shwun; Lin, Guiting; Lue, Tom F.

    2012-01-01

    Mesenchymal stem cells (MSCs) are well known for their immunomodulatory capabilities. In particular, their immunosuppressive property is believed to permit their allogeneic or even xenogeneic transplantation into immunocompetent recipients without the use of immunosuppressants. Adipose-derived stem cell (ADSC), owing to its ease of isolation from an abundant tissue source, is a promising MSC for the treatment of a wide range of diseases. ADSC has been shown to lack major histocompatibility co...

  2. Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis

    Maria Elena Falomo; Letizia Ferroni; Ilaria Tocco; Chiara Gardin; Barbara Zavan

    2015-01-01

    Endometriosis is a degenerative process due to a chronic inflammatory damage leading to extracellular matrix components deposition and glandular fibrosis. It is known that mesenchymal stem cells secrete a wide range of bioactive molecules, some of them modulating the immune inflammatory response, and others providing regeneration and remodeling of injured tissue. We have performed in vitro experiments in order to analyze the capability of allogenic equine adipose-derived stem cells (ADSCs) to...

  3. Mesenchymal Stem Cells Isolated from Adipose and Other Tissues: Basic Biological Properties and Clinical Applications

    Hakan Orbay

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyocytes. Isolation and induction of these cells could provide a new therapeutic tool for replacing damaged or lost adult tissues. However, the biological properties and use of stem cells in a clinical setting must be well established before significant clinical benefits are obtained. This paper summarizes data on the biological properties of MSCs and discusses current and potential clinical applications.

  4. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation

    Human adipose-derived stem cells (hADSC) encapsulated in alginate and alginate/gelatin microspheres with adjustable properties were fabricated via an improved microsphere generating device. The mechanism of the device, porous property, swelling behavior of the microspheres and hADSC proliferation as well as adipogenic differentiation were studied extensively. Microspheres with high-ratio evenly distributed adipocytes could be obtained by utilizing the proper matrix material and manufacturing parameters. The adipocyte/hADSC microspheres were a sound in vitro mimicking of a natural fat lobule and therefore a good candidate for adipose tissue engineering and regenerative medicine. (paper)

  5. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation.

    Yao, Rui; Zhang, Renji; Luan, Jie; Lin, Feng

    2012-06-01

    Human adipose-derived stem cells (hADSC) encapsulated in alginate and alginate/gelatin microspheres with adjustable properties were fabricated via an improved microsphere generating device. The mechanism of the device, porous property, swelling behavior of the microspheres and hADSC proliferation as well as adipogenic differentiation were studied extensively. Microspheres with high-ratio evenly distributed adipocytes could be obtained by utilizing the proper matrix material and manufacturing parameters. The adipocyte/hADSC microspheres were a sound in vitro mimicking of a natural fat lobule and therefore a good candidate for adipose tissue engineering and regenerative medicine. PMID:22556122

  6. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen;

    2009-01-01

    In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent...... adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta...

  7. Hybrid Adipogenic Implants from Adipose Stem Cells for Soft Tissue Reconstruction In Vivo

    MOIOLI, EDUARDO K.; Chen, Mo; Yang, Rujing; Shah, Bhranti; Wu, June; Mao, Jeremy J

    2010-01-01

    A critical barrier in tissue regeneration is scale-up. Bioengineered adipose tissue implants have been limited to ∼10 mm in diameter. Here, we devised a 40-mm hybrid implant with a cellular layer encapsulating an acellular core. Human adipose-derived stem cells (ASCs) were seeded in alginate. Poly(ethylene)glycol-diacrylate (PEGDA) was photopolymerized into 40-mm-diameter dome-shaped gel. Alginate-ASC suspension was painted onto PEGDA surface. Cultivation of hybrid constructs ex vivo in adipo...

  8. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Noor Azmi, Mat Adenan; Omar, Siti Zawiah [Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Chua, Kien Hui [Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Wan Safwani, Wan Kamarul Zaman, E-mail: wansafwani@um.edu.my [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{sub 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.

  9. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O2 tension on their functional properties has not been well determined. In this study, we investigated the effects of O2 tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O2) and hypoxia (2% O2). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O2 tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects

  10. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery

    Niada, S; L.M. Ferreira; Arrigoni, E.; Addis, A.; M. Campagnol; E. Broccaioli; Brini, A T

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. Metho...

  11. AN EVALUATION OF THE SAFETY OF ADIPOSE-DERIVED STEM CELLS

    Ngoc Bich Vu

    2015-09-01

    Full Text Available The adipose tissue contains a large numbers of stem cells; adipose-derived stem cells (ADSCs can be em- ployed in regenerative medicine. This study was aimed at isolating ADSCs and evaluating the safety of ADSCs in mouse models. Stromal vascular fraction (SVF was collected from the adipose tissue using collagenase. ADSCs were then isolated from SVFs by in vitro culture. The stemness of the ADSCs was evaluated in vitro based on their self-renewal potential, po- tential to differentiate into osteoblasts, and adipocytes, and the expression of specific markers. Finally, the tumor forma- tion ability of ADSCs was evaluated in vivo in athymic mice. Results showed that 100% of the ADSC samples developed well and maintained homogeneity up to passage 10. The ADSCs were completely sterilized and could not form tumors in athymic mice. These initial results showed that ADSCs were safe for use in stem cell therapy. [Biomed Res Ther 2015; 2(9.000: 359-365

  12. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    2012-01-01

    Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs. Methods The cardiogenic potential of ASCs was analysed by studying the morphological changes after induction, the changes in the cardiogenic genes expression i.e. GATA4, MLC-2v, MLC-2a, NKX2.5, β-MHC, α-MHC, Atrial natriuretic peptide (ANP), Connexin 43, Cardiac Troponin C, Cardiac Troponin I and myocyte enhancer factor (MEF2C) and the changes of embryonic stem cells genes expression at P5 and P10 using quantitative PCR. Results Our results showed that the induced ASCs did not show significant morphological difference compared to the non-induced ASCs. While quantitative PCR data indicated that most cardiogenic genes and stemness genes expression level decreased after induction at P5 and P10. Conclusion 5-azacytidine is insufficient for the cardiogenic induction of the ASCs. PMID:22221649

  13. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    Wan Safwani Wan Kamarul Zaman

    2012-01-01

    Full Text Available Abstract Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs. Methods The cardiogenic potential of ASCs was analysed by studying the morphological changes after induction, the changes in the cardiogenic genes expression i.e. GATA4, MLC-2v, MLC-2a, NKX2.5, β-MHC, α-MHC, Atrial natriuretic peptide (ANP, Connexin 43, Cardiac Troponin C, Cardiac Troponin I and myocyte enhancer factor (MEF2C and the changes of embryonic stem cells genes expression at P5 and P10 using quantitative PCR. Results Our results showed that the induced ASCs did not show significant morphological difference compared to the non-induced ASCs. While quantitative PCR data indicated that most cardiogenic genes and stemness genes expression level decreased after induction at P5 and P10. Conclusion 5-azacytidine is insufficient for the cardiogenic induction of the ASCs.

  14. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  15. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation

    Adila A Hamid

    2012-01-01

    Full Text Available OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adiposederived stem cells was most prominent after one week of chondrogenic induction.

  16. Adipose Mesenchymal Stem Cells Isolated after Manual or Water-jet-Assisted Liposuction Display Similar Properties

    Bony, Claire; Cren, Mailys; Domergue, Sophie; Toupet, Karine; Jorgensen, Christian; Noël, Danièle

    2016-01-01

    Mesenchymal stem or stromal cells (MSC) are under investigation in many clinical trials for their therapeutic potential in a variety of diseases, including autoimmune and inflammatory disorders. One of the main sources of MSCs is the adipose tissue, which is mainly obtained by manual liposuction using a cannula linked to a syringe. However, in the past years, a number of devices for fat liposuction intended for clinical use have been commercialized but few papers have compared these procedure...

  17. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells?

    Bajek, Anna; GURTOWSKA, NATALIA; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz

    2015-01-01

    Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from ...

  18. Tracking Intravenous Adipose-Derived Mesenchymal Stem Cells in a Model of Elastase-Induced Emphysema

    Kim, You-sun; Kim, Ji-Young; Shin, Dong-Myung; Huh, Jin Won; Lee, Sei Won; Oh, Yeon-Mok

    2014-01-01

    Background Mesenchymal stem cells (MSCs) obtained from bone marrow or adipose tissue can successfully repair emphysematous animal lungs, which is a characteristic of chronic obstructive pulmonary disease. Here, we describe the cellular distribution of MSCs that were intravenously injected into mice with elastase-induced emphysema. The distributions were also compared to the distributions in control mice without emphysema. Methods We used fluorescence optical imaging with quantum dots (QDs) to...

  19. Phenotypic and Functional Characterization of Long-Term Cryopreserved Human Adipose-derived Stem Cells

    Yong, Kar Wey; Pingguan-Murphy, Belinda; Xu, Feng; Abas, Wan Abu Bakar Wan; Choi, Jane Ru; Omar, Siti Zawiah; Azmi, Mat Adenan Noor; Chua, Kien Hui; Safwani, Wan Kamarul Zaman Wan

    2015-01-01

    Cryopreservation represents an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs) and allows pooling of cells via long-term storage for clinical applications, e.g., cell-based therapies. It is crucial to reduce freezing injury during the cryopreservation process by loading the ASCs with the optimum concentration of suitable cryoprotective agents (CPAs). In this study, human ASCs were preserved for 3 months in different combinations of CPAs, in...

  20. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  1. Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function

    Urszula Skalska; Ewa Kontny

    2016-01-01

    Adiponectin and leptin have recently emerged as potential risk factors in rheumatoid arthritis (RA) pathogenesis. In this study we evaluated the effects of adiponectin and leptin on immunomodulatory function of adipose mesenchymal stem cells (ASCs) derived from infrapatellar fat pad of RA patients. ASCs were stimulated with leptin, low molecular weight (LMW) and high/middle molecular weight (HMW/MMW) adiponectin isoforms. The secretory activity of ASCs and their effect on rheumatoid synovial ...

  2. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  3. Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells

    Duscher, Dominik; Luan, Anna; Rennert, Robert C; Atashroo, David; Maan, Zeshaan N; Brett, Elizabeth A.; Whittam, Alexander J.; Ho, Natalie; Lin, Michelle; Hu, Michael S.; Graham G Walmsley; Wenny, Raphael; Schmidt, Manfred; Schilling, Arndt F.; Machens, Hans-Günther

    2016-01-01

    Background Adipose-derived stem cells (ASCs) have been identified as a population of multipotent cells with promising applications in tissue engineering and regenerative medicine. ASCs are abundant in fat tissue, which can be safely harvested through the minimally invasive procedure of liposuction. However, there exist a variety of different harvesting methods, with unclear impact on ASC regenerative potential. The aim of this study was thus to compare the functionality of ASCs derived from t...

  4. Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model

    Zhang, Qi; Liu, Li-Na; Yong, Qi; Deng, Jing-Cheng; Cao, Wei-Gang

    2015-01-01

    Introduction Redundant collagen deposition at sites of healing dermal wounds results in hypertrophic scars. Adipose-derived stem cells (ADSCs) exhibit promise in a variety of anti-fibrosis applications by attenuating collagen deposition. The objective of this study was to explore the influence of an intralesional injection of ADSCs on hypertrophic scar formation by using an established rabbit ear model. Methods Twelve New Zealand albino rabbits were equally divided into three groups, and six ...

  5. Adipose-Derived Stem Cells Improve Efficacy of Melanocyte Transplantation in Animal Skin

    Lim, Won-Suk; Kim, Chang-Hyun; Kim, Ji-Young; Do, Byung-Rok; Kim, Eo Jin; Lee, Ai-Young

    2014-01-01

    Vitiligo is a pigmentary disorder induced by a loss of melanocytes. In addition to replacement of pure melanocytes, cocultures of melanocytes with keratinocytes have been used to improve the repigmentation outcome in vitiligo treatment. We previously identified by in vitro studies, that adipose-derived stem cells (ADSCs) could be a potential substitute for keratinocytes in cocultures with melanocytes. In this study, the efficacy of pigmentation including durability of grafted melanocytes and ...

  6. Potential of Adipose-derived stem cells in muscular regenerative therapies

    Sonia Forcales

    2015-07-01

    Full Text Available Regenerative capacity of skeletal muscles resides in satellite cells, a self-renewing population of muscle cells. Several studies are investigating epigenetic mechanisms that control myogenic proliferation and differentiation to find new approaches that could boost regeneration of endogenous myogenic progenitor populations. In recent years, a lot of effort has been applied to purify, expand and manipulate adult stem cells from muscle tissue. However, this population of endogenous myogenic progenitors in adults is limited and their access is difficult and invasive. Therefore, other sources of stem cells with potential to regenerate muscles need to be examined. An excellent candidate could be a population of adult stromal cells within fat characterized by mesenchymal properties, which have been termed adipose-derived stem cells (ASCs. These progenitor adult stem cells have been successfully differentiated in vitro to osteogenic, chondrogenic, neurogenic and myogenic lineages. Autologous adipose-derived stem cells are multipotent and can be harvested with low morbidity; thus, they hold promise for a range of therapeutic applications. This review will discuss the use of ASCs in muscle regenerative approaches.

  7. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  8. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    MacIsaac, Zoe Marie, E-mail: zmm4a@virgina.edu [University of Virginia (United States); Shang, Hulan, E-mail: shanghulan@gmail.com [Department of Plastic Surgery, University of Virginia (United States); Agrawal, Hitesh, E-mail: hiteshdos@hotmail.com [Department of Plastic Surgery, University of Virginia (United States); Yang, Ning, E-mail: ny6u@virgina.edu [Department of Plastic Surgery, University of Virginia (United States); Parker, Anna, E-mail: amp4v@virginia.edu [Department of Surgery, University of Virginia (United States); Katz, Adam J., E-mail: ajk2f@virginia.edu [Department of Plastic Surgery, University of Virginia (United States)

    2012-02-15

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non

  9. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: ► Adipose stem cells promise novel clinical therapies. ► Before clinical translation, safety profiles must be further elucidated. ► Subcutaneously injected non-autologous adipose stem cells do not form tumors. ► Subcutaneously injected non-autologous adipose stem cells undergo complete removal by one year.

  10. Differentiation of human adipose-derived stem cells into neuron-like cells by Radix Angelicae Sinensis

    Qiaozhi Wang; Lile Zhou; Yong Guo; Guangyi Liu; Jiyan Cheng; Hong Yu

    2013-01-01

    Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigate the use of Radix Angelicae Sinensis as an inducer of neuronal differentiation. Primary human adipose-derived stem cells were obtained from adult subcutaneous fatty tissue, then pre-induced with 10%Radix Angelicae Sinensis injection for 24 hours, and incubated in serum-free Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12 containing 40% Radix Angelicae Si-nensis to induce its differentiation into neuron-like cells. Butylated hydroxyanisole, a common in-ducer for neuronal differentiation, was used as the control. After human adipose-derived stem cells differentiated into neuron-like cells under the induction of Radix Angelicae Sinensis for 24 hours, the positive expression of neuron-specific enolase was lower than that of the butylated hydroxyani-sole-induced group, and the expression of glial fibril ary acidic protein was negative. After they were induced for 48 hours, the positive expression of neuron specific enolase in human adipose-derived stem cells was significantly higher than that of the butylated hydroxyanisole-induced group. Our experimental findings indicate that Radix Angelicae Sinensis can induce human adipose-derived stem celldifferentiation into neuron-like cells and produce less cytotoxicity.

  11. Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: role of protein kinase C delta (PKCδ) in adipose stem cell niche

    Patel, Rekha S.; Carter, Gay; El Bassit, Ghattas; Patel, Achintya A.; Cooper, Denise R.; Murr, Michel

    2016-01-01

    Background Adipose-derived stem cells (ASC) and its exosomes are gaining utmost importance in the field of regenerative medicine. The ASCs tested for their potential in wound healing are predominantly derived from the subcutaneous depot of lean donors. However, it is important to characterize the ASC derived from different adipose depots as these depots have clinically distinct roles. Methods We characterized the ASC derived from subcutaneous and omental depots from a lean donor (sc-ASCn and om-ASCn) and compared it to the ASC derived from an obese donor (sc-ASCo and om-ASCo) using flow cytometry and real time qPCR. Results We show that stem cell markers Oct4, Sal4, Sox15, KLF4 and BMI1 have distinct expression patterns in each ASC. We evaluated the secretome of the ASC and characterized their secreted exosomes. We show long noncoding RNAs (lncRNAs) are secreted by ASC and their expression varied between the ASC’s derived from different depots. Protein kinase C delta (PKCδ) regulates the mitogenic signals in stem cells. We evaluated the effect of silencing PKCδ in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Using β-galactosidase staining, we evaluated the percentage of senescent cells in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Our results also indicated that silencing PKCδ increases the percentage of senescent cells. Conclusions Our case-specific study demonstrates a role of PKCδ in maintaining the adipose stem cell niche and importantly demonstrates depot-specific differences in adipose stem cells and their exosome content. PMID:27358894

  12. Adipose Stem Cells Used to Reconstruct 13 Cases With Cranio-Maxillofacial Hard-Tissue Defects

    Numminen, Jura; Wolff, Jan; Thesleff, Tuomo; Miettinen, Aimo; Tuovinen, Veikko J.; Mannerström, Bettina; Patrikoski, Mimmi; Seppänen, Riitta; Miettinen, Susanna; Rautiainen, Markus; Öhman, Juha

    2014-01-01

    Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient’s uncontrolled nasal picking habit. PMID:24558162

  13. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration

  14. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice

    Yufang Yan; Tuo Ma; Kai Gong; Qiang Ao; Xiufang Zhang; Yandao Gong

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer’s disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer’s disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer’s disease mice, thereby facilitating functional recovery.

  15. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    Ranera Beatriz; Remacha Ana; Álvarez-Arguedas Samuel; Romero Antonio; Vázquez Francisco; Zaragoza Pilar; Martín-Burriel Inmaculada; Rodellar Clementina

    2012-01-01

    Abstract Background Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of c...

  16. Characterization of 75:25 poly(l-lactide-co-epsilon-caprolactone) thin films for the endoluminal delivery of adipose-derived stem cells to abdominal aortic aneurysms.

    Burks, Chris A; Bundy, Kirk; Fotuhi, Parwis; Alt, Eckhard

    2006-09-01

    Abdominal aortic aneurysms occur in 5-7% of men over the age of 60 and their incidence is rising. Current therapies remove the affected tissue or prevent blood flow through the aneurysm, but do not repair the underlying structural changes of the vascular wall. Adipose tissue derived stem cells (ADSCs) seeded on a biodegradable thin film and delivered endoluminally to the aneurysm site could potentially repair the vessel wall, preventing growth and rupture of the aneurysm. In this study, the mechanical and degradation properties of a novel 75:25 poly(l-lactide-co-epsilon-caprolactone) (PLCL) thin film, as well as, the effects of different surface structures on stem cell adherence and resistance to shear stress was investigated. It was possible to reproducibly create films of consistent physical properties. These films degraded approximately 50% in 6 month, which would be a sufficient time to allow cells to engraft in the aortic wall. Ethylene oxide treatment significantly increased the stiffness and yield stress of the films, which exhibit >700% elongation. Treatment of the films with NaOH and HCl induced the formation of surface texture on the films; however, this texture did not affect stem cell adherence or resistance to delamination by shear stress when compared to nontreated or fibronectin-coated films. These results indicate that PLCL thin films have a sufficient degradation time and mechanical strength to serve as a scaffold in vivo for ADSCs, and that ADSCs seeded on the thin film can withstand a range of physiologic shear stresses. PMID:16995792

  17. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    Highlights: → In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. → We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. → dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. → ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.

  18. Tightly regulated and homogeneous transgene expression in human adipose-derived mesenchymal stem cells by lentivirus with tet-off system.

    Hiroyuki Moriyama

    Full Text Available Genetic modification of human adipose tissue-derived multilineage progenitor cells (hADMPCs is highly valuable for their exploitation in therapeutic applications. Here, we have developed a novel single tet-off lentiviral vector platform. This vector combines (1 a modified tetracycline (tet-response element composite promoter, (2 a multi-cistronic strategy to express an improved version of the tet-controlled transactivator and the blasticidin resistance gene under the control of a ubiquitous promoter, and (3 acceptor sites for easy recombination cloning of the gene of interest. In the present study, we used the cytomegalovirus (CMV or the elongation factor 1 α (EF-1α promoter as the ubiquitous promoter, and EGFP was introduced as the gene of interest. hADMPCs transduced with a lentiviral vector carrying either the CMV promoter or the EF-1α promoter were effectively selected by blasticidin without affecting their stem cell properties, and EGFP expression was strictly regulated by doxycycline (Dox treatment in these cells. However, the single tet-off lentiviral vector carrying the EF-1α promoter provided more homogenous expression of EGFP in hADMPCs. Intriguingly, differentiated cells from these Dox-responsive cell lines constitutively expressed EGFP only in the absence of Dox. This single tet-off lentiviral vector thus provides an important tool for applied research on hADMPCs.

  19. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    Wen, Xiujie; Nie, Xin; Zhang, Li [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China); Liu, Luchuan, E-mail: liuluchuan1957@126.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China); Deng, Manjing, E-mail: iradeng@163.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China)

    2011-06-10

    Highlights: {yields} In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. {yields} We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. {yields} dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. {yields} ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.

  20. Adipose mesenchymal stem cells isolated after manual or water jet-assisted liposuction display similar properties

    Claire eBony

    2016-01-01

    Full Text Available Mesenchymal stem or stromal cells (MSC are under investigation in many clinical trials for their therapeutic potential in a variety of diseases, including autoimmune and inflammatory disorders. One of the main sources of MSCs is the adipose tissue, which is mainly obtained by manual liposuction using a cannula linked to a syringe. However, in the last years, a number of devices for fat liposuction intended for clinical use have been commercialized but few papers have compared these procedures in terms of stromal vascular fraction (SVF or adipose stromal cells (ASC. The objective of the present study was to compare and qualify for clinical use the adipose stromal cells (ASC obtained from fat isolated with the manual or the Bodyjet® waterjet-assisted procedure. Although the initial number of cells after collagenase digestion was higher with the manual procedure, both the percentage of dead cells, the number of CFU-F and the phenotype of cells were identical in the SVF at isolation and in the ASC populations at day 14. We also showed that the osteogenic and adipogenic differentiation potentials of ASCs were identical between preparations while a slight but significant higher in vitro immunosuppressive effect was observed with ASCs isolated from fat removed with a cannula. The difference in the immunomodulatory effect between ASC populations was however not observed in vivo using the delayed-type hypersensitivity model. Our data therefore indicate that the procedure for fat liposuction does not impact the characteristics or the therapeutic function of ASCs.

  1. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A.

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  2. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells

    Han-Tsung; Liao; Chien-Tzung; Chen

    2014-01-01

    Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its’ clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in

  3. Human adipose-derived stromal/stem cell isolation, culture, and osteogenic differentiation.

    Qureshi, Ammar T; Chen, Cong; Shah, Forum; Thomas-Porch, Caasy; Gimble, Jeffrey M; Hayes, Daniel J

    2014-01-01

    Annually, more than 200,000 elective liposuction procedures are performed in the United States and over a million worldwide. The ease of harvest and abundance make human adipose-derived stromal/stem cells (hASCs) isolated from lipoaspirates an attractive, readily available source of adult stem cells that have become increasingly popular for use in many studies. Here, we describe common methods for hASC culture, preservation, and osteogenic differentiation. We introduce methods of ceramic, polymer, and composite scaffold synthesis with a description of morphological, chemical, and mechanical characterization techniques. Techniques for scaffold loading are compared, and methods for determining cell loading efficiency and proliferation are described. Finally, we provide both qualitative and quantitative techniques for in vitro assessment of hASC osteogenic differentiation. PMID:24529434

  4. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, hmax max >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells

  5. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  6. Current progress in use of adipose derived stem cells inperipheral nerve regeneration

    Shomari DL Zack-Williams; Peter E Butler; Deepak M Kalaskar

    2015-01-01

    Unlike central nervous system neurons; those in theperipheral nervous system have the potential for fullregeneration after injury. Following injury, recovery iscontrolled by schwann cells which replicate and modulatethe subsequent immune response. The level of nerverecovery is strongly linked to the severity of the initialinjury despite the significant advancements in imagingand surgical techniques. Multiple experimental modelshave been used with varying successes to augment thenatural regenerative processes which occur following nerveinjury. Stem cell therapy in peripheral nerve injury maybe an important future intervention to improve the bestattainable clinical results. In particular adipose derivedstem cells (ADSCs) are multipotent mesenchymal stemcells similar to bone marrow derived stem cells, which arethought to have neurotrophic properties and the ability todifferentiate into multiple lineages. They are ubiquitouswithin adipose tissue; they can form many structuresresembling the mature adult peripheral nervous system.Following early in vitro work; multiple small and largeanimal in vivo models have been used in conjunction withconduits, autografts and allografts to successfully bridgethe peripheral nerve gap. Some of the ADSC relatedneuroprotective and regenerative properties have beenelucidated however much work remains before a modelcan be used successfully in human peripheral nerve injury(PNI). This review aims to provide a detailed overview ofprogress made in the use of ADSC in PNI, with discussionon the role of a tissue engineered approach for PNI repair.

  7. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  8. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH2), carboxyl (-COOH) and methyl (-CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH2) can absorb more proteins than these modified with more hydrophobic functional group (-CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH2 modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  9. Treatment with adipose stem cells in a patient with moderate Alzheimer's disease: case report

    Tsolaki M

    2015-10-01

    Full Text Available Magda Tsolaki,1,2 Stelios Zygouris,1,3 Vassilis Tsoutsikas,2 Doxakis Anestakis,2,4,5 George Koliakos6,7 1Third Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; 2Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece; 3CND+, 4Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; 5Laboratory of General Biology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; 6Biohellenika Stem Cells Bank, Thessaloniki, Greece; 7Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece Objective: This article presents the case of a female patient with Alzheimer's disease (AD. The patient was treated with cholinesterase inhibitors and also with intravenous administration of autologous adipose stem cells.Methods: The patient was assessed with a neuropsychological battery including measures of general cognition, functional problems, neuropsychiatric issues, memory (verbal, visual and episodic, verbal learning and visuospatial abilities. Magnetic resonance imaging (MRI scans were conducted before and after the treatment with stem cells.Results: A transient and mild improvement of scores in measures of general cognition and neuropsychiatric issues was evident. A rapid deterioration followed the initial improvement. The first MRI scan showed ischemic areas in periventricular white matter of both hemispheres, as well as in both temporal and parietal lobes. The second MRI scan revealed the same picture with no significant changes.Conclusion: This case report indicates that the administration of stem cells is feasible in a clinical setting however its effectiveness in the treatment of AD is uncertain. The improvement of the patient's condition highlights the potential therapeutic action of stem cells, however the rapid deterioration poses

  10. The Effects of Environmental Factors on Smooth Muscle Cells Differentiation from Adipose-Derived Stem Cells and Esophagus Tissues Engineering

    Wang, Fang

    2015-01-01

    Adipose-derived stem cells (ASCs) are increasingly being used for regenerative medicine and tissue engineering. Smooth muscle cells (SMCs) can be differentiated from ASCs. Oxygen is a key factor influencing the stem cell differentiation. Tissue engineered esophagus has been a preferred solution for diseased esophagus replacement. The first part involved the effect of hypoxia on differentiation. The results showed 5% hypoxia to be the optimal condition for differentiation of ASCs into contract...