WorldWideScience

Sample records for adipose tissue-derived stem

  1. Myocardial regeneration potential of adipose tissue-derived stem cells

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  2. Myocardial regeneration potential of adipose tissue-derived stem cells

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  3. Quantum dots for labeling adipose tissue-derived stem cells.

    Yukawa, Hiroshi; Mizufune, Shogo; Mamori, Chiharu; Kagami, Yukimasa; Oishi, Koichi; Kaji, Noritada; Okamoto, Yukihiro; Takeshi, Manabu; Noguchi, Hirofumi; Baba, Yoshinobu; Hamaguchi, Michinari; Hamajima, Nobuyuki; Hayashi, Shuji

    2009-01-01

    Adipose tissue-derived stem cells (ASCs) have a self-renewing ability and can be induced to differentiate into various types of mesenchymal tissue. Because of their potential for clinical application, it has become desirable to label the cells for tracing transplanted cells and for in vivo imaging. Quantum dots (QDs) are novel inorganic probes that consist of CdSe/ZnS-core/shell semiconductor nanocrystals and have recently been explored as fluorescent probes for stem cell labeling. In this study, negatively charged QDs655 were applied for ASCs labeling, with the cationic liposome, Lipofectamine. The cytotoxicity of QDs655-Lipofectamine was assessed for ASCs. Although some cytotoxicity was observed in ASCs transfected with more than 2.0 nM of QDs655, none was observed with less than 0.8 nM. To evaluate the time dependency, the fluorescent intensity with QDs655 was observed until 24 h after transfection. The fluorescent intensity gradually increased until 2 h at the concentrations of 0.2 and 0.4 nM, while the intensity increased until 4 h at 0.8 nM. The ASCs were differentiated into both adipogenic and osteogenic cells with red fluorescence after transfection with QDs655, thus suggesting that the cells retain their potential for differentiation even after transfected with QDs655. These data suggest that QDs could be utilized for the labeling of ASCs. PMID:19775521

  4. Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells

    Sarasa Bharati Arumugam; Omana A Trentz; Devi Arikketh; Vijayalakshmi Senthinathan; Barry Rosario; P. V. A Mohandas

    2011-01-01

    Background: Bone marrow transplantation is already an established therapy, which is now widely used in medicine to treat leukemia, lymphoma, and several inherited blood disorders. The culture of multilineage cells from easily available adipose tissue is another source of multipotent mesenchymal stem cells, and is referred to as adipose tissue-derived stem cells (ADSCs). While ADSCs are being used to treat various conditions, some lacuna exists regarding the specific proteins in these. It was ...

  5. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?

    Damous, Luciana L.; Nakamuta, Juliana S.; Saturi de Carvalho, Ana ET; Carvalho, Katia Candido; Soares-Jr, José Maria; Simões, Manuel Jesus; Krieger, José Eduardo; Baracat, Edmund Chada

    2015-01-01

    Background A major concern in ovarian transplants is substantial follicle loss during the initial period of hypoxia. Adipose tissue-derived stem cells (ASCs) have been employed to improve angiogenesis when injected into ischemic tissue. This study evaluated the safety and efficacy of adipose tissue-derived stem cells (ASCs) therapy in the freshly grafted ovaries 30 days after injection. Methods Rat ASCs (rASCs) obtained from transgenic rats expressing green fluorescent protein (GFP)-(5 × 104 ...

  6. Adipose Tissue-Derived Mesenchymal Stem Cells as a New Host Cell in Latent Leishmaniasis

    Allahverdiyev, Adil M; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N.

    2011-01-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs hav...

  7. Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells

    Sarasa Bharati Arumugam

    2011-01-01

    Full Text Available Background: Bone marrow transplantation is already an established therapy, which is now widely used in medicine to treat leukemia, lymphoma, and several inherited blood disorders. The culture of multilineage cells from easily available adipose tissue is another source of multipotent mesenchymal stem cells, and is referred to as adipose tissue-derived stem cells (ADSCs. While ADSCs are being used to treat various conditions, some lacuna exists regarding the specific proteins in these. It was therefore decided to analyze the specific proteins of embryonic cells in ADSCs. Aims: To analyze the specific protein of embryonic stem cells (ESCs in ADSCs. Materials and Methods: Adult human adipose tissue-derived stem cells (ADSCs were harvested from 13 patients after obtaining patients′ consent. The specific markers of ESCs included surface proteins CD10, CD13, CD44, CD59, CD105, and CD166, and further nucleostemin,(NS NANOG, peroxisome proliferator-activated receptor-gγ, collagen type 1 (Coll1, alkaline phosphate, (ALP osteocalcin (OC, and core binding factor 1 (Cbfa1 were analyzed using by reverse transcription-polymerase chain reaction, (RT-PCR immunofluorescence (IF, and western blot. Results: All the proteins were expressed distinctly, except CD13 and OC. CD13 was found individually with different expressions, and OC expression was discernable. Conclusions: Although the ESC with its proven self-renewal capacity and pluripotency seems appropriate for clinical use, the recent work on ADSCs suggests that these adult stem cells would be a valuable source for future biotechnology, especially since there is a relative ease of procurement.

  8. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Methods: Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×105 cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). Results: We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Conclusion: Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering. PMID:27123425

  9. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin

  10. Adipose tissue-derived mesenchymal stem cells as a new host cell in latent leishmaniasis.

    Allahverdiyev, Adil M; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N

    2011-09-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs have been isolated, cultured, characterized, and infected with different species of Leishmania parasites (L. donovani, L. major, L. tropica, and L. infantum). Infectivity was examined by Giemsa staining, microculture, and polymerase chain reaction methods. As a result, infectivity of ADMSCs by Leishmania parasites has been determined for the first time in this study. According to our findings, it is very important that donors are screened for Leishmania parasites before stem cell transplantations in regions where leishmaniasis is endemic. PMID:21896818

  11. MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells

    Jung Ah Cho; Ho Park; Eun Hye Lim; Kyo Won Lee

    2011-04-01

    Adipose tissue-derived stem cells (ADSCs) are one population of adult stem cells that can self renew and differentiate into multiple lineages. Because of advantages in method and quantity of acquisition, ADSCs are gaining attention as an alternative source of bone marrow mesenchymal stem cells. In this study, we performed microRNA profiling of undifferentiated and of neurally-differentiated ADSCs to identify the responsible microRNAs in neurogenesis using this type of stem cell. MicroRNAs from four different donors were analysed by microarray. Compared to the undifferentiation control, we identified 39–101 microRNAs with more than two-fold higher expression and 3–9 microRNAs with two-fold lower expression. The identified microRNAs were further analysed in terms of gene ontology (GO) in relation with neurogenesis, based on their target mRNAs predicted by computational analysis. This study revealed the specific microRNAs involved in neurogenesis via microRNA microarray, and may provide the basic information for genetic induction of adult stem cell differentiation using microRNAs.

  12. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda;

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...

  13. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications

    Jaewoo Pak

    2016-01-01

    Full Text Available Osteoarthritis (OA is one of the most common debilitating disorders among the elderly population. At present, there is no definite cure for the underlying causes of OA. However, adipose tissue-derived stem cells (ADSCs in the form of stromal vascular fraction (SVF may offer an alternative at this time. ADSCs are one type of mesenchymal stem cells that have been utilized and have demonstrated an ability to regenerate cartilage. ADSCs have been shown to regenerate cartilage in a variety of animal models also. Non-culture-expanded ADSCs, in the form of SVF along with platelet rich plasma (PRP, have recently been used in humans to treat OA and other cartilage abnormalities. These ADSCs have demonstrated effectiveness without any serious side effects. However, due to regulatory issues, only ADSCs in the form of SVF are currently allowed for clinical uses in humans. Culture-expanded ADSCs, although more convenient, require clinical trials for a regulatory approval prior to uses in clinical settings. Here we present a systematic review of currently available clinical studies involving ADSCs in the form of SVF and in the culture-expanded form, with or without PRP, highlighting the clinical effectiveness and safety in treating OA.

  14. Ultrasound -Assisted Gene Transfer to Adipose Tissue-Derived Stem/Progenitor Cells (ASCs)

    Miyamoto, Yoshitaka; Ueno, Hitomi; Hokari, Rei; Yuan, Wenji; Kuno, Shuichi; Kakimoto, Takashi; Enosawa, Shin; Negishi, Yoichi; Yoshinaka, Kiyoshi; Matsumoto, Yoichiro; Chiba, Toshio; Hayashi, Shuji

    2011-09-01

    In recent years, multilineage adipose tissue-derived stem cells (ASCs) have become increasingly attractive as a promising source for cell transplantation and regenerative medicine. Particular interest has been expressed in the potential to make tissue stem cells, such as ASCs and marrow stromal cells (MSCs), differentiate by gene transfection. Gene transfection using highly efficient viral vectors such as adeno- and sendai viruses have been developed for this purpose. Sonoporation, or ultrasound (US)-assisted gene transfer, is an alternative gene manipulation technique which employs the creation of a jet stream by ultrasonic microbubble cavitation. Sonoporation using non-viral vectors is expected to be a much safer, although less efficient, tool for prospective clinical gene therapy. In this report, we assessed the efficacy of the sonoporation technique for gene transfer to ASCs. We isolated and cultured adipocyets from mouse adipose tissue. ASCs that have the potential to differentiate with transformation into adipocytes or osteoblasts were obtained. Using the US-assisted system, plasmid DNA containing beta-galactosidase (beta-Gal) and green fluorescent protein (GFP) genes were transferred to the ASCs. For this purpose, a Sonopore 4000 (NEPAGENE Co.) and a Sonazoid (Daiichi Sankyo Co.) instrument were used in combination. ASCs were subjected to US (3.1 MHz, 50% duty cycle, burst rate 2.0 Hz, intensity 1.2 W/cm2, exposure time 30 sec). We observed that the gene was more efficiently transferred with increased concentrations of plasmid DNA (5-150 μg/mL). However, further optimization of the US parameters is required, as the gene transfer efficiency was still relatively low. In conclusion, we herein demonstrate that a gene can be transferred to ASCs using our US-assisted system. In regenerative medicine, this system might resolve the current issues surrounding the use of viral vectors for gene transfer.

  15. Novel positively charged nanoparticle labeling for in vivo imaging of adipose tissue-derived stem cells.

    Hiroshi Yukawa

    Full Text Available Stem cell transplantation has been expected to have various applications for regenerative medicine. However, in order to detect and trace the transplanted stem cells in the body, non-invasive and widely clinically available cell imaging technologies are required. In this paper, we focused on magnetic resonance (MR imaging technology, and investigated whether the trimethylamino dextran-coated magnetic iron oxide nanoparticle -03 (TMADM-03, which was newly developed by our group, could be used for labeling adipose tissue-derived stem cells (ASCs as a contrast agent. No cytotoxicity was observed in ASCs transduced with less than 100 µg-Fe/mL of TMADM-03 after a one hour transduction time. The transduction efficiency of TMADM-03 into ASCs was about four-fold more efficient than that of the alkali-treated dextran-coated magnetic iron oxide nanoparticle (ATDM, which is a major component of commercially available contrast agents such as ferucarbotran (Resovist, and the level of labeling was maintained for at least two weeks. In addition, the differentiation ability of ASCs labeled with TMADM-03 and their ability to produce cytokines such as hepatocyte growth factor (HGF, vascular endothelial growth factor (VEGF and prostaglandin E2 (PGE2, were confirmed to be maintained. The ASCs labeled with TMADM-03 were transplanted into the left kidney capsule of a mouse. The labeled ASCs could be imaged with good contrast using a 1T MR imaging system. These data suggest that TMADM-03 can therefore be utilized as a contrast agent for the MR imaging of stem cells.

  16. Autologous adipose tissue-derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy

    Liu, Tao; Mu, Hong; SHEN, ZHONGYANG; Song, Zhuolun; CHEN, XIAOBO; Wang, Yuliang

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70%...

  17. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  18. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  19. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects. PMID:24567299

  20. Changes in the proteomic profile of adipose tissue-derived mesenchymal stem cells during passages

    Capra Emanuele

    2012-07-01

    Full Text Available Abstract Background Human mesenchymal stem cells (hMSC have recently raised the attention because of their therapeutic potential in the novel context of regenerative medicine. However, the safety of these new and promising cellular products should be carefully defined before they can be used in the clinical setting, as. The protein expression profile of these cells might reveal potential hazards associated with senescence and tumoral transformation which may occur during culture. Proteomic is a valuable tool for hMSC characterization and identification of possible changes during expansion. Results We used Surface Enhanced Laser Desorption/Ionization-Time Of Flight-Mass Spectrometry (SELDI-ToF-MS to evaluate the presence of stable molecular markers in adipose tissue-derived mesenchymal stem cells (AD-MSC produced under conditions of good manufacturing practices (GMP. Proteomic patterns of cells prepared were consistent, with 4 up-regulated peaks (mass-to-charge ratio (m/z 8950, 10087, 10345, and 13058 through subculture steps (P0-P7 with similar trend in three donors. Among the differentially expressed proteins found in the cytoplasmic and nuclear fractions, a cytoplasmic 10.1 kDa protein was upregulated during culture passages and was identified as S100A6 (Calcyclin. Conclusions This study suggests for the first time that common variation could occur in AD-MSC from different donors, with the identification of S100A6, a protein prevalently related to cell proliferation and cell culture condition. These results support the hypothesis of common proteomic changes during MSCs expansion and could give important insight in the knowledge of molecular mechanisms intervening during MSC expansion.

  1. Contribution of INTRAMUSCULAR Autologous Adipose Tissue-Derived Stem Cell Injections to Treat Cutaneous Radiation Syndrome: Preliminary Results.

    Riccobono, Diane; Agay, Diane; François, Sabine; Scherthan, Harry; Drouet, Michel; Forcheron, Fabien

    2016-08-01

    Cutaneous radiation syndrome caused by high dose located irradiation is characterized by delayed symptoms, incomplete wound healing, and poor revascularization. Subcutaneous adipose tissue derived stromal/stem cells have been shown to improve skin repair in a minipig model of cutaneous radiation syndrome despite a subcutaneous defect being a consequence of radio-induced muscular fibrosis. Based on the pro-myogenic potential of stromal/stem cells, a new protocol combining subcutaneous and intramuscular injections was evaluated in a preliminary study. Six female minipigs were locally irradiated at the dose of 50 Gy using a Co source (0.6 Gy min) and randomly divided into two groups. Three animals received the vehicle (phosphate-buffer-saline solution) and three animals received three injections of 75 × 10 adipose tissue derived stromal/stem cells each time (day 25, 46, and 66 post-irradiation). Pigs were euthanized on day 76 post-irradiation before development of clinical skin symptoms. All minipigs exhibited a homogeneous skin evolution. Macroscopic observation of irradiated muscles showed prominent fibrosis and necrosis areas in controls as opposed to adipose tissue-derived stromal/stem cells injected animals. Moreover, muscle biopsy analysis highlighted a recruitment of myofibroblasts (Immune Reactive Score: p work is ongoing to evaluate this therapeutic strategy on a larger animal number with a longer clinical follow-up. PMID:27356055

  2. Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Triple Negative Breast Cancer Xenografts

    Rowan, Brian G.; Gimble, Jeffrey M; Sheng, Mei; Anbalagan, Muralidharan; Jones, Ryan K.; Frazier, Trivia P.; Asher, Majdouline; Lacayo, Eduardo A.; Friedlander, Paul L; Kutner, Robert; Chiu, Ernest S.

    2014-01-01

    Background Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a ...

  3. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda; Kastrup, Jens; Simonsen, Ulf; Zachar, Vladimir; Fink, Trine

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxi...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  4. Isolation, culturing and characterization of rat adipose tissue-derived mesenchymal stem cells: a simple technique

    NİYAZ, Mehmet; Özer Aylin GÜRPINAR; GÜNAYDIN, Serdar; Onur, Mehmet Ali

    2012-01-01

    In this study, our aim was to develop a new simple technique for isolation of mesenchymal stem cells from adipose tissue. For this purpose, mesenchymal stem cells were isolated from rat adipose tissue by using the primary explant culture technique. When the cells became confluent, they were passaged 4 times by using the standard trypsinization method with trypsin/EDTA solution. Cells at second passage were characterized by using immunofluorescence staining against CD13 and CD29 markers. The r...

  5. Are They Really Stem Cells? Scrutinizing the Identity of Cells and the Quality of Reporting in the Use of Adipose Tissue-Derived Stem Cells

    Ernesto Balolong; Soojung Lee; Judee Grace Nemeno; Jeong Ik Lee

    2016-01-01

    There is an increasing concern that the term adipose tissue-derived stem cell (ASC) is inappropriately used to refer to the adipose stromal vascular fraction (SVF). To evaluate the accuracy and quality of reporting, 116 manuscripts on the application of ASC in humans and animals were examined based on the 2013 published International Federation for Adipose Therapeutics and Science (IFATS)/ International Society for Cellular Therapy (ISCT) joint statement and in reference to current guidelines...

  6. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA. PMID:27470612

  7. Adipogenic differentiation of scaffold-bound human adipose tissue-derived stem cells (hASC) for soft tissue engineering

    Adipose tissue engineering, instead of tissue substitution, often uses autologous adipose tissue-derived stem cells (hASC). These cells are known to improve graft integration and to support neovascularization of scaffolds when seeded onto biomaterials. In this study we thought to engineer adipose tissue using scaffold-bound hASC, since they can be differentiated into the adipocyte cell lineage and used for soft tissue regeneration. We show here by microscopy and gene expression of the peroxysome proliferator-activated receptor gene (PPARγ2) that hASC growing on polypropylene fibrous scaffolds as well as on three-dimensional nonwoven scaffolds can be turned into adipose tissue within 19 days. Freshly isolated hASC displayed a higher differentiation potential than hASC cultured for eight passages. In addition, we proved a modified alginate microcapsule to directly induce adipogenic differentiation of incorporated hASC. The results may help to improve long-term success of adipose tissue regeneration, especially for large-scale soft tissue defects, and support the development of cell–scaffold combinations which can be shaped individually and directly induce the adipogenic differentiation of incorporated hASC at the site of implantation. (paper)

  8. The Relationship of a Combination of Human Adipose Tissue-Derived Stem Cells and Frozen Fat with the Survival Rate of Transplanted Fat

    Ha, Ki-Young; Park, Hojin; Park, Seung-Ha; Lee, Byung-Il; Ji, Yi-Hwa; Kim, Tae-Yeon; Yoon, Eul-Sik

    2015-01-01

    Background The survival rate of grafted fat is difficult to predict, and repeated procedures are frequently required. In this study, the effects of the freezing period of harvested adipose tissue and the addition of human adipose tissue-derived stem cells (ASCs) on the process of fat absorption were studied. Methods Adipose tissue was obtained from patients who underwent a lipoaspirated fat graft. The fat tissue was cryopreserved at -20℃ in a domestic refrigerator. A total of 40 nude mice wer...

  9. Cotransplantation of Adipose Tissue-Derived Insulin-Secreting Mesenchymal Stem Cells and Hematopoietic Stem Cells: A Novel Therapy for Insulin-Dependent Diabetes Mellitus

    Vanikar, A. V.; Dave, S. D.; Thakkar, U. G.; H L Trivedi

    2010-01-01

    Aims. Insulin dependent diabetes mellitus (IDDM) is believed to be an autoimmune disorder with disturbed glucose/insulin metabolism, requiring life-long insulin replacement therapy (IRT), 30% of patients develop end-organ failure. We present our experience of cotransplantation of adipose tissue derived insulin-secreting mesenchymal stem cells (IS-AD-MSC) and cultured bone marrow (CBM) as IRT for these patients. Methods. This was a prospective open-labeled clinical trial to test efficacy and s...

  10. In Vivo Tracking of Murine Adipose Tissue-Derived Multipotent Adult Stem Cells and Ex Vivo Cross-Validation

    Chiara Garrovo

    2013-01-01

    Full Text Available Stem cells are characterized by the ability to renew themselves and to differentiate into specialized cell types, while stem cell therapy is believed to treat a number of different human diseases through either cell regeneration or paracrine effects. Herein, an in vivo and ex vivo near infrared time domain (NIR TD optical imaging study was undertaken to evaluate the migratory ability of murine adipose tissue-derived multipotent adult stem cells [mAT-MASC] after intramuscular injection in mice. In vivo NIR TD optical imaging data analysis showed a migration of DiD-labelled mAT-MASC in the leg opposite the injection site, which was confirmed by a fibered confocal microendoscopy system. Ex vivo NIR TD optical imaging results showed a systemic distribution of labelled cells. Considering a potential microenvironmental contamination, a cross-validation study by multimodality approaches was followed: mAT-MASC were isolated from male mice expressing constitutively eGFP, which was detectable using techniques of immunofluorescence and qPCR. Y-chromosome positive cells, injected into wild-type female recipients, were detected by FISH. Cross-validation confirmed the data obtained by in vivo/ex vivo TD optical imaging analysis. In summary, our data demonstrates the usefulness of NIR TD optical imaging in tracking delivered cells, giving insights into the migratory properties of the injected cells.

  11. Influence of scaffold morphology on co-cultures of human endothelial and adipose tissue-derived stem cells.

    Arnal-Pastor, M; Martínez-Ramos, C; Vallés-Lluch, A; Pradas, M Monleón

    2016-06-01

    The interior of tissue engineering scaffolds must be vascularizable and allow adequate nutrients perfusion in order to ensure the viability of the cells colonizing them. The promotion of rapid vascularization of scaffolds is critical for thick artificial constructs. In the present study co-cultures of human endothelial and adipose tissue-derived stem cells have been performed in poly(ethyl acrylate) scaffolds with two different pore structures: grid-like (PEA-o) or sponge-like (PEA-s), in combination with a self-assembling peptide gel filling the pores, which aims to mimic the physiological niche. After 2 and 7 culture days, cell adhesion, proliferation and migration, the expression of cell surface markers like CD31 and CD90 and the release of VEGF were assessed by means of immunocytochemistry, scanning electronic microscopy, flow cytometry and ELISA analyses. The study demonstrated that PEA-s scaffolds promoted greater cell organization into tubular-like structures than PEA-o scaffolds, and this was enhanced by the presence of the peptide gel. Paracrine signaling from adipose cells significantly improved endothelial cell viability, proving the advantageous combination of this system for obtaining easily vascularizable tissue engineered grafts. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1523-1533, 2016. PMID:26860551

  12. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold.

    Hoseinzadeh, Saghar; Atashi, Amir; Soleimani, Masoud; Alizadeh, Effat; Zarghami, Nosratollah

    2016-04-01

    The repair of skeletal defects is the main goal of bone tissue engineering. Recent literature highlighted various regulatory roles of microRNAs in stem cell fate determination. In addition, the role of porous hydroxyapatite/polycaprolacton (nHA/PCL) as a bioactive scaffold which enhances adipose tissue-derived mesenchymal stem cells (AT-MSCs) growth and osteogenic differentiation has been proved. The aim of the present study was to investigate the synergistic potential of both down-regulating miR-221 and nHA/PCL scaffold seeding in osteogenic potential of AT-MSCs. After isolation and characterization of AT-MSCs, the transfection of anti-miR-221 was performed into the cells using lipofectamine 2000 and the transfected cells were seeded into a synthesized nHA/PCL scaffold. The DAPI staining confirmed the presence of AT-MSCs on nHA/PCL scaffold. Quantitative expression of osteoblast marker genes, Runx2, and osteocalcin of the transfected cells in the scaffold were evaluated. Interestingly, significant upregulation of transcribed Runx2 and osteocalcin genes (P PCL seeded cells. Also, alkaline phosphatase activity (ALP) was significantly higher (P PCL than those seeded on nHA/PCL or transfected with anti-miR-221, individually. The results of this combination suggest a valuable method for enhancing osteogenesis in AT-MSCs. This method could be applicable for gene-cell therapy of bone defects. PMID:26822432

  13. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions

    Hypoxia is an important factor involved in the control of stem cells. To obtain a better insight into the phenotypical changes brought about by hypoxic preconditioning prior to chondrogenic differentiation; we have investigated growth, colony-forming and chondrogenic capacity, and global transcriptional responses of six adipose tissue-derived stem cell lines expanded at oxygen concentrations ranging from ambient to 1%. The assessment of cell proliferation and colony-forming potential revealed that the hypoxic conditions corresponding to 1% oxygen played a major role. The chondrogenic inducibility, examined by high-density pellet model, however, did not improve on hypoxic preconditioning. While the microarray analysis revealed a distinctive inter-donor variability, the exposure to 1% hypoxia superseded the biological variability and produced a specific expression profile with 2581 significantly regulated genes and substantial functional enrichment in the pathways of cell proliferation and apoptosis. Additionally, exposure to 1% oxygen resulted in upregulation of factors related to angiogenesis and cell growth. In particular, leptin (LEP), the key regulator of body weight and food intake was found to be highly upregulated. In conclusion, the results of this investigation demonstrate the significance of donor demographics and the importance of further studies into the use of regulated oxygen tension as a tool for preparation of ASCs in order to exploit their full potential.

  14. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions

    Pilgaard, L.; Lund, P.; Duroux, M. [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark); Lockstone, H.; Taylor, J. [Bioinformatics and Statistical Genetics, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford, OX3 7BN (United Kingdom); Emmersen, J.; Fink, T. [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark); Ragoussis, J. [Genomics, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford, OX3 7BN (United Kingdom); Zachar, V., E-mail: vlaz@hst.aau.dk [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark)

    2009-07-01

    Hypoxia is an important factor involved in the control of stem cells. To obtain a better insight into the phenotypical changes brought about by hypoxic preconditioning prior to chondrogenic differentiation; we have investigated growth, colony-forming and chondrogenic capacity, and global transcriptional responses of six adipose tissue-derived stem cell lines expanded at oxygen concentrations ranging from ambient to 1%. The assessment of cell proliferation and colony-forming potential revealed that the hypoxic conditions corresponding to 1% oxygen played a major role. The chondrogenic inducibility, examined by high-density pellet model, however, did not improve on hypoxic preconditioning. While the microarray analysis revealed a distinctive inter-donor variability, the exposure to 1% hypoxia superseded the biological variability and produced a specific expression profile with 2581 significantly regulated genes and substantial functional enrichment in the pathways of cell proliferation and apoptosis. Additionally, exposure to 1% oxygen resulted in upregulation of factors related to angiogenesis and cell growth. In particular, leptin (LEP), the key regulator of body weight and food intake was found to be highly upregulated. In conclusion, the results of this investigation demonstrate the significance of donor demographics and the importance of further studies into the use of regulated oxygen tension as a tool for preparation of ASCs in order to exploit their full potential.

  15. Adipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin

    Sebastian Gehmert

    2014-01-01

    Full Text Available Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs, these cells (ASCs provide a therapeutic option for Duchenne Muscular Dystrophy (DMD. But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases.

  16. Cardiovascular tissue engineering and regeneration based on adipose tissue-derived stem/stromal cells

    Parvizi, Mojtaba

    2016-01-01

    Currently, the pre-clinical field is rapidly progressing in search of new therapeutic modalities that replace or complement current medication to treat cardiovascular disease. Among these are the single or combined use of stem cells, biomaterials and instructive factors, which together form the triad of tissue engineering and regenerative medicine. Stem cell therapy is a promising approach for repair, remodeling and even regenerate tissue of otherwise irreparable damage, such as after myocard...

  17. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  18. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We inves

  19. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-01-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks’ balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. PMID:27482231

  20. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs.

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-06-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks' balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. PMID:27482231

  1. Over-expression of VEGF165 in the adipose tissue-derived stem cells via the lentiviral vector

    SUN Xiang-zhou; LIU Gui-hua; WANG Zhuo-qing; ZHENG Fu-fu; BIAN Jun; HUANG Yan-ping; GAO Yong; ZHANG Ya-dong; DENG Chun-hua

    2011-01-01

    Background Many researchers studied the possibility of using stem cells as gene therapeutic vector. But few related reports on the adipose tissue-derived stem cells (ADSCs) are available. Therefore we intended to construct a lentiviral VEGF165 expression vector and then infect the ADSCs to produce therapeutic seed cells.Methods EHS1001-68950485313912 clone was mutated by PCR method to produce consensus fragment of VEGF165 transcript (NM_001025368). Lentivirus was enveloped with pGC-FU, pHelper 1.0 and pHelper 2.0 plasmids in 293T cells.And then the ADSCs (multiplicity of infection=20) were transfected with the vectors after titer determination. Stable expression of VEGF165 in ADSCs was confirmed by immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and Western blotting analysis.Results DNA sequencing and 293T transfection verified VEGF165 was linked to the GFP fused vector. The virus titer is up to 2x10a determined by quantitative PCR. VEGF165 transduced cells could show green fluorescence confirmed by immunofluorescence staining (almost 95%). ELISA analyses could detect out the density of VEGF was 850.86-1202.13pg/ml (mean (923.00±31.22) pg/ml) in the supernatant of VEGF16s-transduced cells but not detected in the GFP-transduced cells (P <0.001) and the Western blotting analyses also confirmed VEGF165 expression in VEGF165-transduced cells.Conclusions The VEGF165 over-expression ADSCs were obtained and may be used as a cell therapeutic tool and may be applied for vascular regeneration, especially in the treatment of erectile dysfunction.

  2. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  3. Are They Really Stem Cells? Scrutinizing the Identity of Cells and the Quality of Reporting in the Use of Adipose Tissue-Derived Stem Cells.

    Balolong, Ernesto; Lee, Soojung; Nemeno, Judee Grace; Lee, Jeong Ik

    2016-01-01

    There is an increasing concern that the term adipose tissue-derived stem cell (ASC) is inappropriately used to refer to the adipose stromal vascular fraction (SVF). To evaluate the accuracy and quality of reporting, 116 manuscripts on the application of ASC in humans and animals were examined based on the 2013 published International Federation for Adipose Therapeutics and Science (IFATS)/ International Society for Cellular Therapy (ISCT) joint statement and in reference to current guidelines for clinical trials and preclinical studies. It is disconcerting that 4 among the 47 papers or 8.51% (CI 2.37-20.38) surveyed after publication of IFATS/ISCT statement reported using ASCs but in fact they used unexpanded cells. 28/47 or 59.57% (CI 44.27-73.63) explicitly reported that adherent cells were used, 35/47 or 74.47% (CI 59.65-86.06) identified expression of surface markers, and 25/47 or 53.19% (CI 14.72-30.65) verified the multilineage potential of the cells. While there are a number of papers examined in this survey that were not able to provide adequate information on the characteristics of ASCs used with some erroneously referring to the SVF as stem cells, there are more room for improvement in the quality of reporting in the application of ASCs in humans and animals. PMID:26798353

  4. Differentiation of rat adipose tissue-derived mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro

    XIE Li-wei; FANG Huang; CHEN An-min; LI Feng

    2009-01-01

    Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro,so as to lay a foundation for the cell-based transplantation therapy of degenerated intervertebral discs.Methods: Rat ADSCs were isolated only from the subcutaneous inguinal region and purified by limited dilution.ADSCs of the third passages were analyzed by fluorescence activated cell sorter (FACS) to detect the cell surface markers (Sca-1,CD44,CD45,CD11b).To induce ADSCs towards a nucleus pulposus-like phenotype,ADSCs were immobilized in 3-dimensional alginate hydrogels and cultured in an inducing medium containing transforming growth factor-betal (TGF-β1) under hypoxia (2% O2),while control groups under normoxia (21% O2) in alginate beads in medium with or without the presence of TGF-β1.Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was carded out to evaluate phenotypic and biosynthetic activities in the process of differentiation.Meanwhile,Alcian blue staining were used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells.Results: The purified ADSCs were fibroblast-like and proliferated rapidly in vitro.The flow cytometry showed that ADSCs were positive for Sea-1 and CD44,negative for CD45 and CD11b.The results of RT-PCR manifested that the gene expressions of Sox-9,aggrecan and collagen Ⅱ,which were chondrocyte specific,were upregulated in medium containing TGF-β1 under hypoxia (2% O2).Likewise,gene expression of HIF-la,which was characteristics of intervertebral discs,was also upregulated.Simultaneously,Alcian blue staining exhibited the formation of many GAGs.Conclusions: The approach in our experiment is a simple and effective way to acquire a large quantity of homogenous ADSCs.Rat ADSCs can be differentiated into nucleus pulposus-like cells.ADSCs may replace bone marrow mesenchymal stem cells as a new kind of seed cells in regeneration of

  5. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety. PMID:27151205

  6. In Situ Transplantation of Alginate Bioencapsulated Adipose Tissues Derived Stem Cells (ADSCs via Hepatic Injection in a Mouse Model.

    Mong-Jen Chen

    Full Text Available Adipose tissue derived stem cells (ADSCs transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported. In this study, our objective is to evaluate a novel route to transplant ADSCs specifically to the liver. We aimed to test the feasibility of in situ transplantation of ADSCs by injecting bioencapsulated ADSCs into the liver in mouse model.The ADSCs isolated from human alpha 1 antitrypsin (M-hAAT transgenic mice were used to allow delivered ADSCs be readily identified in the liver of recipient mice, and alginate was selected as a cell carrier. We first evaluated whether alginate microspheres are implantable into the liver tissue by injection and whether ADSCs could migrate from alginate microspheres (study one. Once proven, we then examined the in vivo fate of ADSCs loaded microspheres in the liver. Specifically, we evaluated whether transplanted, undifferentiated ASDCs could be induced by the local microenvironment toward hepatogenic differentiation and the distribution of surviving ADSCs in major tissue organs (study two.Our results indicated ADSCs loaded alginate microspheres were implantable into the liver. Both degraded and residual alginate microspheres were observed in the liver up to three weeks. The viable ADSCs were detectable surrounding degraded and residual alginate microspheres in the liver and other major organs such as bone marrow and the lungs. Importantly, transplanted

  7. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Kwangseon Jung

    Full Text Available Ultraviolet A (UVA irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs. Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  8. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation

    Kim KJ

    2015-03-01

    Full Text Available Ki Joo Kim,1,2 Young Ae Joe,3 Min Kyoung Kim,1,2 Su Jin Lee,1 Yeon Hee Ryu,1,2 Dong-Woo Cho,4,5 Jong Won Rhie1,2 1Department of Plastic Surgery, College of Medicine, 2Department of Molecular Biomedicine, 3Cancer Research Institute and Department of Medical Lifescience, The Catholic University of Korea, Seoul, Republic of Korea; 4Department of Mechanical Engineering, Pohang University of Science and Technology, Gyeongbuk, Republic of Korea; 5Department of Integrative Bioscience and Bioengineering, Pohang University of Science and Technology, Gyeongbuk, Republic of Korea Background: Silicon dioxide composites have been found to enhance the mechanical properties of scaffolds and to support growth of human adipose tissue-derived stem cells (hADSCs both in vitro and in vivo. Silica (silicon dioxide alone exists as differently sized particles when suspended in culture medium, but it is not clear whether particle size influences the beneficial effect of silicon dioxide on hADSCs. In this study, we examined the effect of different sized particles on growth and mitogen-activated protein kinase signaling in hADSCs.Methods: Silica gel was prepared by a chemical reaction using hydrochloric acid and sodium silicate, washed, sterilized, and suspended in serum-free culture medium for 48 hours, and then sequentially filtered through a 0.22 µm filter (filtrate containing nanoparticles smaller than 220 nm; silica NPs. hADSCs were incubated with silica NPs or 3 µm silica microparticles (MPs, examined by transmission electron microscopy, and assayed for cell proliferation, apoptosis, and mitogen-activated protein kinase signaling.Results: Eighty-nine percent of the silica NPs were around 50–120 nm in size. When hADSCs were treated with the study particles, silica NPs were observed in endocytosed vacuoles in the cytosol of hADSCs, but silica MPs showed no cell entry. Silica NPs increased the proliferation of hADSCs, but silica MPs had no significant effect in

  9. Human adipose tissue-derived stem cells in breast reconstruction following surgery for cancer: A controversial issue

    Maria Giovanna Scioli; Valerio Cervelli; Pietro Gentile; Alessandra Bielli; Roberto Bellini; Augusto Orlandi

    2013-01-01

    cancer is the most common cancer in women. Patients, in particular young women, after surgical removal of the tumor have a poorer quality of life and psychological problems. Plastic surgery procedures for breast reconstruction, including autologous fat grafting, concur to reduce cosmetic and psychological problems. The maintenance of the transplanted fat is partially due to the presence of resident adipose derived-stem cells (ASCs). The latter can be isolated by digestion and centrifugation...

  10. L-carnitine Effectively Induces hTERT Gene Expression of Human Adipose Tissue-derived Mesenchymal Stem Cells Obtained from the Aged Subjects

    Farahzadi, Raheleh; Mesbah-Namin, Seyed Alireza; Zarghami, Nosratollah; Fathi, Ezzatollah

    2016-01-01

    Background and Objectives Human mesenchymal stem cells (hMSCs) are attractive candidates for cell therapy and regenerative medicine due to their multipotency and ready availability, but their application can be complicated by the factors such as age of the donors and senescence-associated growth arrest during culture conditions. The latter most likely reflects the fact that aging of hMSCs is associated with a rise in intracellular reactive oxygen species, loss of telomerase activity, decrease in human telomerase reverse transcriptase (hTERT) expression and finally eroded telomere ends. Over-expression of telomerase in hMSCs leads to telomere elongation and may help to maintain replicative life–span of these cells. The aim of this study was to evaluate of the effect of L-carnitine (LC) as an antioxidant on the telomerase gene expression and telomere length in aged adipose tissue-derived hMSCs. Methods For this purpose, cells were isolated from healthy aged volunteers and their viabilities were assessed by MTT assay. Quantitative gene expression of hTERT and absolute telomere length measurement were also performed by real-time PCR in the absence and presence of different doses of LC (0.1, 0.2 and 0.4 mM). Results The results indicated that LC could significantly increase the hTERT gene expression and telomere length, especially in dose of 0.2 mM of LC and in 48 h treatment for the aged adipose tissue-derived hMSCs samples. Conclusion It seems that LC would be a good candidate to improve the lifespan of the aged adipose tissue-derived hMSCs due to over-expression of telomerase and lengthening of the telomeres. PMID:27426092

  11. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Highlights: ► We investigated effects of FGF-2 on hADSCs. ► We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. ► FGF-2 induces chondrogenesis in hADSCs, which •Increasing information will decrease quality if hospital costs are very different. ► The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  12. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  13. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  14. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Highlights: ► miR-21 modulates hADSC-induced increase of tumor growth. ► The action is mostly mediated by the modulation of TGF-β signaling. ► Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-β increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  15. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series

    Pak Jaewoo

    2011-07-01

    Full Text Available Abstract Introduction This is a series of clinical case reports demonstrating that a combination of percutaneously injected autologous adipose-tissue-derived stem cells, hyaluronic acid, platelet rich plasma and calcium chloride may be able to regenerate bones in human osteonecrosis, and with addition of a very low dose of dexamethasone, cartilage in human knee osteoarthritis. Case reports Stem cells were obtained from adipose tissue of abdominal origin by digesting lipoaspirate tissue with collagenase. These stem cells, along with hyaluronic acid, platelet rich plasma and calcium chloride, were injected into the right hip of a 29-year-old Korean woman and a 47-year-old Korean man. They both had a history of right hip osteonecrosis of the femoral head. For cartilage regeneration, a 70-year-old Korean woman and a 79-year-old Korean woman, both with a long history of knee pain due to osteoarthritis, were injected with stem cells along with hyaluronic acid, platelet rich plasma, calcium chloride and a nanogram dose of dexamethasone. Pre-treatment and post-treatment MRI scans, physical therapy, and pain score data were then analyzed. Conclusions The MRI data for all the patients in this series showed significant positive changes. Probable bone formation was clear in the patients with osteonecrosis, and cartilage regeneration in the patients with osteoarthritis. Along with MRI evidence, the measured physical therapy outcomes, subjective pain, and functional status all improved. Autologous mesenchymal stem cell injection, in conjunction with hyaluronic acid, platelet rich plasma and calcium chloride, is a promising minimally invasive therapy for osteonecrosis of femoral head and, with low-dose dexamethasone, for osteoarthritis of human knees.

  16. In Vitro Toxic Effects of Zinc Oxide Nanoparticles on Rat Adipose Tissue-Derived Mesenchymal Stem Cells

    Orazizadeh, Mahmoud; Khodadadi, Ali; Bayati, Vahid; Saremy, Sadegh; Farasat, Maryam; Khorsandi, Layasadat

    2015-01-01

    Objective Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in sunscreens, bio- sensors, food additives, pigments, manufacture of rubber products, and electronic materi- als. There are several studies about the effects of NPs on dermal fibroblast or keratino- cytes, but very little attention has been directed towards adipose-derived mesenchymal stem cells (ASCs). A previous study has revealed that ZnO-NPs restricted the migration capability of ASCs. However, the potential toxicity of these NPs on ASCs is not well un- derstood. This study intends to evaluate the effects of ZnO-NPs on subcutaneous ASCs. Materials and Methods In this experimental study, In order to assess toxicity, we ex- posed rat ASCs to ZnO-NPs at concentrations of 10, 50, and 100 µg/ml for 48 hours. Tox- icity was evaluated by cell morphology changes, cell viability assay, as well as apoptosis and necrosis detection. Results ZnO-NPs concentration dependently reduced the survival rates of ASCs as re- vealed by the trypan blue exclusion and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazo- lium-bromide (MTT) tests. ZnO-NPs, at concentrations of 10 and 50 µg/ml, induced a significant increase in apoptotic indices as shown by the annexin V test. The concentration of 10 µg/ml of ZnO-NPs was more toxic. Conclusion Lower concentrations of ZnO-NPs have toxic and apoptotic effects on subcutaneous ASCs. We recommend that ZnO-NPs be used with caution if there is a dermatological problem. PMID:26464812

  17. Microvesicles enhance the mobility of human diabetic adipose tissue-derived mesenchymal stem cells in vitro and improve wound healing in vivo.

    Trinh, Nhu Thuy; Yamashita, Toshiharu; Tu, Tran Cam; Kato, Toshiki; Ohneda, Kinuko; Sato, Fujio; Ohneda, Osamu

    2016-05-13

    Microvesicles (MVs) derived from mesenchymal stem cells showed the ability to alter the cell phenotype and function. We previously demonstrated that type 2 diabetic adipose tissue-derived mesenchymal stem cells (dAT-MSCs) increase in cell aggregation and adhesion in vitro and impair wound healing in vivo. However, the characterization and function of MVs derived from human non-diabetic AT-MSCs (nAT-MSCs) remain unknown. In this study, we characterized nAT-MSC-derived MVs and their function after the transfection of dAT-MSCs with MVs using the scratch assay and a flap mouse model. We found that human nAT-MSC-derived MVs expressed MSC-surface markers and improved dAT-MSC functions by altering the expression of genes associated with cell migration, survival, inflammation, and angiogenesis as well as miR29c and miR150. Remarkably, the transfection of dAT-MSCs with nAT-MSC-derived MVs improved their migration ability in vitro and wound healing ability in a flap mouse model. These results demonstrate a promising opportunity to modify the function of dAT-MSCs for therapeutic stem cell application in diabetic patients. PMID:27063802

  18. Adipose Tissue-Derived Mesenchymal Stem Cells Exert In Vitro Immunomodulatory and Beta Cell Protective Functions in Streptozotocin-Induced Diabetic Mice Model

    Hossein Rahavi

    2015-01-01

    Full Text Available Regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs might be applied for type 1 diabetes mellitus (T1DM treatment. Thus, we proposed in vitro assessment of adipose tissue-derived MSCs (AT-MSCs immunomodulation on autoimmune response along with beta cell protection in streptozotocin- (STZ- induced diabetic C57BL/6 mice model. MSCs were extracted from abdominal adipose tissue of normal mice and cultured to proliferate. Diabetic mice were prepared by administration of multiple low-doses of streptozotocin. Pancreatic islets were isolated from normal mice and splenocytes prepared from normal and diabetic mice. Proliferation, cytokine production, and insulin secretion assays were performed in coculture experiments. AT-MSCs inhibited splenocytes proliferative response to specific (islet lysate and nonspecific (PHA triggers in a dose-dependent manner (P<0.05. Decreased production of proinflammatory cytokines, such as IFN-γ, IL-2, and IL-17, and increased secretion of regulatory cytokines such as TGF-β, IL-4, IL-10, and IL-13 by stimulated splenocytes were also shown in response to islet lysate or PHA stimulants (P<0.05. Finally, we demonstrated that AT-MSCs could effectively sustain viability as well as insulin secretion potential of pancreatic islets in the presence of reactive splenocytes (P<0.05. In conclusion, it seems that MSCs may provide a new horizon for T1DM cell therapy and islet transplantation in the future.

  19. Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus.

    Vanikar, A V; Dave, S D; Thakkar, U G; Trivedi, H L

    2010-01-01

    Aims. Insulin dependent diabetes mellitus (IDDM) is believed to be an autoimmune disorder with disturbed glucose/insulin metabolism, requiring life-long insulin replacement therapy (IRT), 30% of patients develop end-organ failure. We present our experience of cotransplantation of adipose tissue derived insulin-secreting mesenchymal stem cells (IS-AD-MSC) and cultured bone marrow (CBM) as IRT for these patients. Methods. This was a prospective open-labeled clinical trial to test efficacy and safety of IS-AD-MSC+CBM co-transplantation to treat IDDM, approved by the institutional review board after informed consent in 11 (males : females: 7 : 4) patients with 1-24-year disease duration, in age group: 13-43 years, on mean values of exogenous insulin requirement of 1.14 units/kg BW/day, glycosylated hemoglobin (Hb1Ac): 8.47%, and c-peptide levels: 0.1 ng/mL. Intraportal infusion of xenogeneic-free IS-AD-MSC from living donors, subjected to defined culture conditions and phenotypically differentiated to insulin-secreting cells, with mean quantum: 1.5 mL, expressing Pax-6, Isl-1, and pdx-1, cell counts: 2.1 × 10(3)/μL, CD45(-)/90(+)/73(+):40/30.1%, C-Peptide level:1.8 ng/mL, and insulin level: 339.3  IU/mL with CBM mean quantum: 96.3 mL and cell counts: 28.1 × 10(3)/μL, CD45(-)/34(+):0.62%, was carried out. Results. All were successfully transplanted without any untoward effect. Over mean followup of 23 months, they had a decreased mean exogenous insulin requirement to 0.63 units/kgBW/day, Hb1Ac to 7.39%, raised serum c-peptide levels to 0.38 ng/mL, and became free of diabetic ketoacidosis events with mean 2.5 Kg weight gain on normal vegetarian diet and physical activities. Conclusion. This is the first report of treating IDDM with insulin-secreting-AD-MSC+CBM safely and effectively with relatively simple techniques. PMID:21197448

  20. Cotransplantation of Adipose Tissue-Derived Insulin-Secreting Mesenchymal Stem Cells and Hematopoietic Stem Cells: A Novel Therapy for Insulin-Dependent Diabetes Mellitus

    A. V. Vanikar

    2010-01-01

    Full Text Available Aims. Insulin dependent diabetes mellitus (IDDM is believed to be an autoimmune disorder with disturbed glucose/insulin metabolism, requiring life-long insulin replacement therapy (IRT, 30% of patients develop end-organ failure. We present our experience of cotransplantation of adipose tissue derived insulin-secreting mesenchymal stem cells (IS-AD-MSC and cultured bone marrow (CBM as IRT for these patients. Methods. This was a prospective open-labeled clinical trial to test efficacy and safety of IS-AD-MSC+CBM co-transplantation to treat IDDM, approved by the institutional review board after informed consent in 11 (males : females: 7 : 4 patients with 1–24-year disease duration, in age group: 13–43 years, on mean values of exogenous insulin requirement of 1.14 units/kg BW/day, glycosylated hemoglobin (Hb1Ac: 8.47%, and c-peptide levels: 0.1 ng/mL. Intraportal infusion of xenogeneic-free IS-AD-MSC from living donors, subjected to defined culture conditions and phenotypically differentiated to insulin-secreting cells, with mean quantum: 1.5 mL, expressing Pax-6, Isl-1, and pdx-1, cell counts: 2.1×103/μL, CD45−/90+/73+:40/30.1%, C-Peptide level:1.8 ng/mL, and insulin level: 339.3  IU/mL with CBM mean quantum: 96.3 mL and cell counts: 28.1×103/μL, CD45−/34+:0.62%, was carried out. Results. All were successfully transplanted without any untoward effect. Over mean followup of 23 months, they had a decreased mean exogenous insulin requirement to 0.63 units/kgBW/day, Hb1Ac to 7.39%, raised serum c-peptide levels to 0.38 ng/mL, and became free of diabetic ketoacidosis events with mean 2.5 Kg weight gain on normal vegetarian diet and physical activities. Conclusion. This is the first report of treating IDDM with insulin-secreting-AD-MSC+CBM safely and effectively with relatively simple techniques.

  1. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    Eom, Young Woo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Biomedical Research Institute, Lifeliver Co., Ltd., Suwon (Korea, Republic of); Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin [Biomedical Research Institute, Lifeliver Co., Ltd., Suwon (Korea, Republic of); Park, Won Jin [Dr. Park' s Aesthetic Clinic, Seoul (Korea, Republic of); Kong, Jee Hyun; Shim, Kwang Yong [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In, E-mail: oncochem@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@unitel.co.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  2. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    Highlights: → hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. → Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. → hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  3. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  4. Ameliorative effects of human adipose tissue-derived mesenchymal stem cells on myelin basic protein-induced experimental autoimmune encephalomyelitis in Lewis rats

    Myung-Soon Ko; Hyeong-geun Park; Young-Min Yun; Jeong Chan Ra; Taekyun Shin; Kyoung-Kap Lee

    2011-01-01

    Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on disease progression and cytokine expression in Lewis rats with experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein. The duration of EAE paralysis in the group treated on day 7 postimmunization with 5 × 106 hAdMSCs was significantly reduced compared with the vehicle-treated controls and the 1 × 106 hAdMSC- treated group. The duration of EAE paralysis in the groups treated with 5 × 106 hAdMSCs on both day 1 and day 7 postimmunization was significantly reduced compared with the vehicle-treated controls and the groups treated with 5 × 106 hAdMSCs on both day 7 and day 10 postimmunization. The mRNA expression of interleukin-10 and indoleamine 2, 3-dioxygenase was significantly decreased in the hAdMSC-treated group compared with the vehicle-treated group. These findings suggest that the ameliorative effects of hAdMSCs on EAE symptoms operate in a dose- and time-dependent manner and can be mediated in part by the ample production of anti-inflammatory cytokines.

  5. The Potential of GMP-Compliant Platelet Lysate to Induce a Permissive State for Cardiovascular Transdifferentiation in Human Mediastinal Adipose Tissue-Derived Mesenchymal Stem Cells

    Camilla Siciliano

    2015-01-01

    Full Text Available Human adipose tissue-derived mesenchymal stem cells (ADMSCs are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL, a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.

  6. Adipose tissue-derived stromal cells express neuronal phenotypes

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  7. Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma

    Altanerova, V.; Cihova, M.; Babič, Michal; Rychly, B.; Ondicova, K.; Mravec, B.; Altaner, C.

    2012-01-01

    Roč. 130, č. 10 (2012), s. 2455-2463. ISSN 0020-7136 Institutional research plan: CEZ:AV0Z40500505 Keywords : glioblastoma * mesenchymal stem cells * suicide gene therapy Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.198, year: 2012

  8. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro

    Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy

  9. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro

    Li, Qiang; Zhang, Aijun; Tao, Changbo; Li, Xueyang; Jin, Peisheng, E-mail: jinps2006@163.com

    2013-11-22

    Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.

  10. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes.

    Shuzi Zhang

    Full Text Available BACKGROUND: Insulin-producing cell clusters (IPCCs have recently been generated in vitro from adipose tissue-derived stem cells (ASCs to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. CONCLUSIONS/SIGNIFICANCE: Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation.

  11. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    Highlights: ► Neutropenia is a principal complication of cancer treatment. ► Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. ► AD-MSC increased functions of neutrophil. ► AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-α, G-CSF, and TGF-β. ► AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor, and transforming growth factor (TGF)-β in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-α, G-CSF, and TGF-β. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  12. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    Highlights: ► Acetylation affected hASCs osteodifferentiation through Runx2–PPARγ. ► HDACs knocking-down favoured the commitment effect of osteogenic medium. ► HDACs silencing early activated Runx2 and ALP. ► PPARγ reduction and calcium/collagen deposition occurred later. ► Runx2/PPARγ target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) γ. These key osteogenic and adipogenic transcription factors are oppositely involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPARγ and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPARγ/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPARγ target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal a role for HDACs in orchestrating osteo-differentiation of hASCs at transcriptional level, and might provide new insights into the modulation of h

  13. Porcine adipose tissue-derived mesenchymal stem cells retain their proliferative characteristics, senescence, karyotype and plasticity after long-term cryopreservation.

    Rafael Dariolli

    Full Text Available We and others have provided evidence that adipose tissue-derived mesenchymal stem cells (ASCs can mitigate rat cardiac functional deterioration after myocardial ischemia, even though the mechanism of action or the relevance of these findings to human conditions remains elusive. In this regard, the porcine model is a key translational step, because it displays heart anatomic-physiological features that are similar to those found in the human heart. Towards this end, we wanted to establish the cultural characteristics of porcine ASCs (pASCs with or without long-term cryostorage, considering that allogeneic transplantation may also be a future option. Compared to fresh pASCs, thawed cells displayed 90-95% viability and no changes in morphological characteristics or in the expression of surface markers (being pASCs characterized by positive markers CD29(+; CD90(+; CD44(+; CD140b(+; CD105(+; and negative markers CD31(-; CD34(-; CD45(- and SLA-DR(-; n = 3. Mean population doubling time was also comparable (64.26±15.11 hours to thawed cells vs. 62.74±18.07 hours to fresh cells and cumulative population doubling increased constantly until Passage 10 (P10 in the entire cell population, with a small and gradual increase in senescence (P5, 3.25%±0.26 vs. 3.47%±0.32 and P10, 9.6%±0.29 vs. 10.67%±1.25, thawed vs. fresh; SA-β-Gal staining. Chromosomal aberrations were not observed. In addition, under both conditions pASCs responded to adipogenic and osteogenic chemical cues in vitro. In conclusion, we have demonstrated the growth characteristics, senescence, and the capacity of pASCs to respond to chemical cues in vitro and have provided evidence that these properties are not influenced by cryostorage in 10% DMSO solution.

  14. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    Park, Yoon Shin; Lim, Goh-Woon [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung [Department of Microbiology, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Yoo, Eun-Sun [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Chan Ra, Jeong [Stem Cell Research Center, RNL BIO, Seoul 153-768 (Korea, Republic of); Ryu, Kyung-Ha, E-mail: ykh@ewha.ac.kr [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  15. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  16. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    Maroni, Paola [Istituto Ortopedico Galeazzi, Milano (Italy); Brini, Anna Teresa [Istituto Ortopedico Galeazzi, Milano (Italy); Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano (Italy); Arrigoni, Elena [Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano (Italy); Girolamo, Laura de [Istituto Ortopedico Galeazzi, Milano (Italy); Niada, Stefania [Istituto Ortopedico Galeazzi, Milano (Italy); Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano (Italy); Matteucci, Emanuela; Bendinelli, Paola [Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Universita degli Studi di Milano, Milano (Italy); Desiderio, Maria Alfonsina, E-mail: a.desiderio@unimi.it [Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Universita degli Studi di Milano, Milano (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Acetylation affected hASCs osteodifferentiation through Runx2-PPAR{gamma}. Black-Right-Pointing-Pointer HDACs knocking-down favoured the commitment effect of osteogenic medium. Black-Right-Pointing-Pointer HDACs silencing early activated Runx2 and ALP. Black-Right-Pointing-Pointer PPAR{gamma} reduction and calcium/collagen deposition occurred later. Black-Right-Pointing-Pointer Runx2/PPAR{gamma} target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) {gamma}. These key osteogenic and adipogenic transcription factors are oppositely involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPAR{gamma} and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPAR{gamma}/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPAR{gamma} target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal

  17. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis.

    Pires, Ana O; Mendes-Pinheiro, Barbara; Teixeira, Fábio G; Anjo, Sandra I; Ribeiro-Samy, Silvina; Gomes, Eduardo D; Serra, Sofia C; Silva, Nuno A; Manadas, Bruno; Sousa, Nuno; Salgado, Antonio J

    2016-07-15

    The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials. PMID:27226274

  18. Co-infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and bone marrow derived hematopoietic stem cells, a viable therapy for post-traumatic brachial plexus injury: A case report

    Umang G Thakkar

    2014-08-01

    Full Text Available Stem cell therapy is emerging as a viable approach in regenerative medicine. A 31-year-old male with brachial plexus injury had complete sensory-motor loss since 16 years with right pseudo-meningocele at C5-D1 levels and extra-spinal extension up to C7-D1, with avulsion on magnetic resonance imaging and irreversible damage. We generated adipose tissue derived neuronal differentiated mesenchymal stem cells (N-AD-MSC and bone marrow derived hematopoietic stem cells (HSC-BM. Neuronal stem cells expressed β-3 tubulin and glial fibrillary acid protein which was confirmed on immunofluorescence. On day 14, 2.8 ml stem cell inoculum was infused under local anesthesia in right brachial plexus sheath by brachial block technique under ultrasonography guidance with a 1.5-inch-long 23 gauge needle. Nucleated cell count was 2 × 10 4 /μl, CD34+ was 0.06%, and CD45-/90+ and CD45-/73+ were 41.63% and 20.36%, respectively. No untoward effects were noted. He has sustained recovery with re-innervation over a follow-up of 4 years documented on electromyography-nerve conduction velocity study.

  19. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  20. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: Viable therapy for type III.C. a diabetes mellitus

    Umang G Thakkar

    2014-12-01

    Full Text Available Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC along with his bone marrow derived hematopoietic stem cells (BM-HSC. Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus.

  1. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: viable therapy for type III.C. a diabetes mellitus.

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L

    2013-01-01

    Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM) is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C) 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC) along with his bone marrow derived hematopoietic stem cells (BM-HSC). Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus. PMID:24385073

  2. Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model

    Li, Xin; Zheng, Wei; Bai, Hongying; Wang, Jin; Wei, Ruili; Wen, Hongtao; Ning, Hanbing

    2016-01-01

    Previous studies have shown the beneficial effects of adipose-derived stem cells (ADSCs) transplantation in stroke. However, the molecular mechanism by which transplanted ADSCs promote nerve healing is not yet elucidated. In order to make clear the molecular mechanism for the neuroprotective effects of ADSCs and investigate roles of the BDNF–TrkB signaling in neuroprotection of ADSCs, we, therefore, examined the neurological function, brain water content, and the protein expression in middle cerebral artery occlusion (MCAO) rats with or without ADSCs transplantation. ADSCs were transplanted intravenously into rats at 30 minutes after MCAO. K252a, an inhibitor of TrkB, was administered into rats by intraventricular and brain stereotaxic injection. Modified neurological severity score tests were performed to measure behavioral outcomes. The results showed that ADSCs significantly alleviated neurological deficits and reduced brain water content in MCAO rats. The protein expression levels of BDNF and TrkB significantly increased in the cortex of MCAO rats with ADSCs treatment. However, K252a administration reversed the ADSCs-induced elevation of BDNF, TrkB, and Bcl-2 and reduction of Bax protein in MCAO rats. ADSCs promote BDNF expression via the TrkB signaling and improve functional neurological recovery in stroke rats.

  3. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage.

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Cell-based therapy has been reported to repair or restore damaged salivary gland (SG tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs can ameliorate radiation-induced SG damage. METHODS: hAdMSCs (1 × 10(6 were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs was observed in vitro using a co-culture system. RESULTS: The systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%-18% were observed to transdifferentiate into SGCs. CONCLUSION: The findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.

  4. Adenovirus-mediated expression of human sodium-iodide symporter gene permits in vivo tracking of adipose tissue-derived stem cells in a canine myocardial infarction model

    Introduction: In vivo tracking of the transplanted stem cells is important in pre-clinical research of stem cell therapy for myocardial infarction. We examined the feasibility of adenovirus-mediated sodium iodide symporter (NIS) gene to cell tracking imaging of transplanted stem cells in a canine infarcted myocardium by clinical single photon emission computed tomography (SPECT). Methods: Beagle dogs were injected intramyocardially with NIS-expressing adenovirus-transfected canine stem cells (Ad-hNIS-canine ADSCs) a week after myocardial infarction (MI) development. 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) and 99mTc-pertechnetate (99mTcO4−) SPECT imaging were performed for assessment of infarcted myocardium and viable stem cell tracking. Transthoracic echocardiography was performed to monitor any functional cardiac changes. Results: Left ventricular ejection fraction (LVEF) was decreased after LAD ligation. There was no significant difference in EF between the groups with the stem cell or saline injection. 125I uptake was higher in Ad-hNIS-canine ADSCs than in non-transfected ADSCs. Cell proliferation and differentiation were not affected by hNIS-carrying adenovirus transfection. 99mTc-MIBI myocardial SPECT imaging showed decreased radiotracer uptake in the infarcted apex and mid-anterolateral regions. Ad-hNIS-canine ADSCs were identified as a region of focally increased 99mTcO4− uptake at the lateral wall and around the apex of the left ventricle, peaked at 2 days and was observed until day 9. Conclusions: Combination of adenovirus-mediated NIS gene transfection and clinical nuclear imaging modalities enables to trace the fate of transplanted stem cells in infarcted myocardium for translational in vivo cell tracking study for prolonged duration

  5. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Kasten, Annika; Siegmund, Birte J. [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany); Grüttner, Cordula [Micromod Partikeltechnologie GmbH, Warnemünde, D-18115 Rostock (Germany); Kühn, Jens-Peter [Department of Radiology and Neuroradiology, Greifswald University Medical Center, D-17475 Greifswald (Germany); Frerich, Bernhard, E-mail: bernhard.frerich@med.uni-rostock.de [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany)

    2015-04-15

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation.

  6. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation

  7. The biological activities of (1,3)-(1,6)-{beta}-d-glucan and porous electrospun PLGA membranes containing {beta}-glucan in human dermal fibroblasts and adipose tissue-derived stem cells

    Woo, Yeon I; Park, Bong Joo; Kim, Hye-Lee; Lee, Mi Hee; Kim, Jungsung; Park, Jong-Chul [Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yang, Young-Il [Department of Pathology, School of Medicine, Paik Institute for Clinical Research, Inje University, 633-165 Gae-dong, Busan-jin-gu, Busan 614-735 (Korea, Republic of); Kim, Jung Koo [Department of Biomedical Engineering, College of Biomedical Science and Engineering, Inje University, Kimhae 621-749 (Korea, Republic of); Tsubaki, Kazufumi [R and D division, Asahi Denka Co. Ltd, 7-2-35 Higashi-ogu, Arakawa-ku, Tokyo 116-8554 (Japan); Han, Dong-Wook, E-mail: parkjc@yuhs.a [Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University, geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2010-08-01

    In this study, we investigated the possible roles of (1,3)-(1,6)-{beta}-d-glucan ({beta}-glucan) and porous electrospun poly-lactide-co-glycolide (PLGA) membranes containing {beta}-glucan for skin wound healing, especially their effect on adult human dermal fibroblast (aHDF) and adipose tissue-derived stem cell (ADSC) activation, proliferation, migration, collagen gel contraction and biological safety tests of the prepared membrane. This study demonstrated that {beta}-glucan and porous PLGA membranes containing {beta}-glucan have enhanced the cellular responses, proliferation and migration, of aHDFs and ADSCs and the result of a collagen gel contraction assay also revealed that collagen gels contract strongly after 4 h post-gelation incubation with {beta}-glucan. Furthermore, we confirmed that porous PLGA membranes containing {beta}-glucan are biologically safe for wound healing study. These results indicate that the porous PLGA membranes containing {beta}-glucan interacted favorably with the membrane and the topical administration of {beta}-glucan was useful in promoting wound healing. Therefore, our study suggests that {beta}-glucan and porous PLGA membranes containing {beta}-glucan may be useful as a material for enhancing wound healing.

  8. Human adipose-tissue derived mesenchymal stem cells induce functional de-novo regulatory T cells with methylated FOXP3 gene DNA

    Engela, A. U.; Hoogduijn, M. J.; Boer, K.; Litjens, N. H. R.; Betjes, M. G. H.; Weimar, W.; Baan, C. C.

    2013-01-01

    Due to their immunomodulatory properties, mesenchymal stem cells (MSC) are interesting candidates for cellular therapy for autoimmune disorders, graft-versus-host disease and allograft rejection. MSC inhibit the proliferation of effector T cells and induce T cells with a regulatory phenotype. So far

  9. Toward angiogenesis of implanted bio-artificial liver using scaffolds with type I collagen and adipose tissue-derived stem cells

    Lee, Jae Geun; Bak, Seon Young; Nahm, Ji Hae; Lee, Sang Woo; Min, Seon Ok; Kim, Kyung Sik

    2015-01-01

    Backgrounds/Aims Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the ...

  10. Allogeneic adipose tissue-derived mesenchymal stem cells in combination with platelet rich plasma are safe and effective in the therapy of superficial digital flexor tendonitis in the horse.

    Ricco, S; Renzi, S; Del Bue, M; Conti, V; Merli, E; Ramoni, R; Lucarelli, E; Gnudi, G; Ferrari, M; Grolli, S

    2013-01-01

    Overstrain tendonitis are common pathologies in the sport horses. Therapeutic approaches to tendon healing do not always result in a satisfactory anatomical and functional repair, and healed tendon is often characterized by functional impairment and high risk of reinjury. Recently, mesenchymal stem cells (MSCs) and platelet rich plasma (PRP) have been proposed as novel therapeutic treatments to improve the tendon repair process. MSCs are multipotent, easy to culture and being originated from adult donors do not pose ethical issues. To date, autologous MSCs have been investigated mainly in the treatment of large bone defects, cardiovascular diseases, osteogenesis imperfecta and orthopaedic injuries both in human and veterinary medicine. The clinical applications in which autologous MSCs can be used are limited because patient-specific tissue collection and cell expansion require time. For clinical applications in which MSCs should be used right away, it would be more practical to use cells collected from a donor, expanded in vitro and banked to be readily available when needed. However, there are concerns over the safety and the efficacy of allogeneic MSCs. The safety and efficacy of a therapy based on the use of allogeneic adipose tissue-derived mesenchymal stem cells (ASCs) associated to platelet rich plasma (PRP) were evaluated in 19 horses affected by acute or subacute overstrain superficial digital flexor tendonitis (SDFT). The application of allogeneic ASCs neither raised clinical sign of acute or chronic adverse tissue reactions, nor the formation of abnormal tissue in the long-term. After a follow-up of 24 months, 89.5% horses returned to their previous level of competition, while the reinjury rate was 10.5%, comparable to those recently reported for SDFT treated with autologous bone marrow derived MSCs. This study suggests that the association between allogeneic ASCs and PRP can be considered a safe and effective strategy for the treatment of SDF tendonitis

  11. Differential effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells.

    Knippenberg, Marlene; Helder, Marco N; Doulabi, Behrouz Zandieh; Bank, Ruud A; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2009-08-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-beta1 (TGF-beta1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with adequate physical and mechanical properties. We investigated whether BMP-2 (10-100 ng/mL) and/or TGF-beta1 (1-10 ng/mL) affect gene expression of alpha2(I) procollagen and collagen-modifying enzymes, that is, lysyl oxidase and lysyl hydroxylases 1, 2, and 3 (encoded by PLOD1, 2, and 3), by human AT-MSCs. BMP-2, but not TGF-beta1, increased alkaline phosphatase activity after 28 days, indicating osteogenic differentiation of AT-MSCs. At day 4, both BMP-2 and TGF-beta1 upregulated alpha2(I) procollagen and PLOD1, which was downregulated at day 28. TGF-beta1, but not BMP-2, downregulated PLOD3 at day 28. Lysyl oxidase was upregulated by TGF-beta1 at day 4 and by BMP-2 at day 7. Neither BMP-2 nor TGF-beta1 affected PLOD2. In conclusion, these results suggest that AT-MSCs differentially respond to BMP-2 and TGF-beta1 with changes in gene expression of collagen-modifying enzymes. AT-MSCs may thus be able to appropriately modify type I collagen to form a functional bone extracellular matrix for tissue engineering, dependent on the growth factor added. PMID:19231972

  12. Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro.

    Chengang Song

    Full Text Available The purpose of this study was to establish a method for monitoring the neural differentiation of stem cells using ferritin transgene expression, under the control of a neural-differentiation-inducible promoter, and magnetic resonance imaging (MRI. Human adipose tissue-derived mesenchymal stem cells (hADMSCs were transduced with a lentivirus containing the human ferritin heavy chain 1 (FTH1 gene coupled to one of three neural cell-specific promoters: human synapsin 1 promoter (SYN1p, for neurons, human glial fibrillary acidic protein promoter (GFAPp, for astrocytes, and human myelin basic protein promoter (MBPp, for oligodendrocytes. Three groups of neural-differentiation-inducible ferritin-expressing (NDIFE hADMSCs were established: SYN1p-FTH1, GFAPp-FTH1, and MBPp-FTH1. The proliferation rate of the NDIFE hADMSCs was evaluated using a Cell Counting Kit-8 assay. Ferritin expression was assessed with western blotting and immunofluorescent staining before and after the induction of differentiation in NDIFE hADMSCs. The intracellular iron content was measured with Prussian blue iron staining and inductively coupled plasma mass spectrometry. R2 relaxation rates were measured with MRI in vitro. The proliferation rates of control and NDIFE hADMSCs did not differ significantly (P > 0.05. SYN1p-FTH1, GFAPp-FTH1, and MBPp-FTH1 hADMSCs expressed specific markers of neurons, astrocytes, and oligodendrocytes, respectively, after neural differentiation. Neural differentiation increased ferritin expression twofold, the intracellular iron content threefold, and the R2 relaxation rate two- to threefold in NDIFE hADMSCs, resulting in notable hypointensity in T2-weighted images (P < 0.05. These results were cross-validated. Thus, a link between neural differentiation and MRI signals (R2 relaxation rate was established in hADMSCs. The use of MRI and neural-differentiation-inducible ferritin expression is a viable method for monitoring the neural differentiation of

  13. Intratunical Injection of Genetically Modified Adipose Tissue-Derived Stem Cells with Human Interferon α-2b for Treatment of Erectile Dysfunction in a Rat Model of Tunica Albugineal Fibrosis

    Gokce, Ahmet; Abd Elmageed, Zakaria Y.; Lasker, George F.; Bouljihad, Mostafa; Braun, Stephen E.; Kim, Hogyoung; Kadowitz, Philip J.; Abdel-Mageed, Asim B.; Sikka, Suresh C.; Hellstrom, Wayne J.

    2016-01-01

    Introduction Peyronie's disease (PD) has frequently been associated with erectile dysfunction (ED) and may further compromise coitus. Aim To investigate the efficacy of intratunical injection of genetically modified rat adipose tissue-derived stem cells (ADSCs) expressing human interferon α-2b (ADSCs-IFN) in decreasing fibrosis and restoring erectile function in a rat model of tunica albugineal fibrosis (TAF). Methods A total of 36 Sprague-Dawley rats (12 weeks old; 300–350 g) were randomly divided in six equal groups: (i) sham group (50 μL saline-injected into the tunica albuginea [TA]); (ii) TAF group (transforming growth factor [TGF]-β1 [0.5 μg/50 μL] injected into the TA); (iii) TGF-β1 plus 5 × 105 control ADSCs injected same day; (iv) TGF-β1 plus 5 × 105 ADSCs-IFN injected same day; (v)TGF-β1 plus 5 × 105 control ADSCs injected after 30 days; and (vi) TGF-β1 plus 5 × 105 ADSCs-IFN injected after 30 days. Rat allogeneic ADSCs were harvested from inguinal fat tissue. Main Outcome Measures Forty-five days following the TGF-β1 injection, erectile function was assessed, and penile tissues were harvested for further evaluations. Results In the same-day injection groups, intratunical injection of ADSCs and ADSC-IFN improved erectile response observed upon stimulation of cavernous nerve compared with TAF group. Intratunical ADSC-IFN injection at day 30 improved erectile responses 3.1, 1.8, and 1.3 fold at voltages of 2.5, 5.0, and 7.0, respectively, when compared with TAF group. Furthermore, at voltages of 2.5 and 5.0, treatment on day 30 with ADSCs-IFN improved erectile responses 1.6- and 1.3-fold over treatment with ADSCs alone. Local injection of ADSCs or ADSCs-IFN reduced Peyronie's-like manifestations, and these effects might be associated with a decrease in the expression of tissue inhibitors of metalloproteinases. Conclusion This study documents that transplantation of genetically modified ADSCs, with or without human IFN α-2b, attenuated

  14. Pooled human platelet lysate versus fetal bovine serum—investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter V; Kirchhoff, Eva Maria; Mathiasen, Anders Bruun; Elberg, Jens Jørgen; Andersen, Peter Stemann; Drzewiecki, Krzysztof Tadeusz; Fischer-Nielsen, Anne

    2013-01-01

    Because of an increasing focus on the use of adipose-derived stem cells (ASCs) in clinical trials, the culture conditions for these cells are being optimized. We compared the proliferation rates and chromosomal stability of ASCs that had been cultured in Dulbecco's modified Eagle's Medium (DMEM) ...

  15. Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity

    MW Laschke

    2014-10-01

    Full Text Available Adipose tissue-derived microvascular fragments are promising vascularisation units for applications in the field of tissue engineering. Elderly patients are the major future target population of such applications due to an increasing human life expectancy. Therefore, we herein investigated the effect of aging on the fragments’ vascularisation capacity. Microvascular fragments were isolated from epididymal fat pads of adult (8 months and aged (16 months C57BL/6 donor mice. These fragments were seeded onto porous polyurethane scaffolds, which were implanted into dorsal skinfold chambers to study their vascularisation using intravital fluorescence microscopy, histology and immunohistochemistry. Scaffolds seeded with fragments from aged donors exhibited a significantly lower functional microvessel density and intravascular blood flow velocity. This was associated with an impaired vessel maturation, as indicated by vessel wall irregularities, constantly elevated diameters and a lower fraction of CD31/α-smooth muscle actin double positive microvessels in the implants’ border and centre zones. Additional in vitro analyses revealed that microvascular fragments from adult and aged donors do not differ in their stem cell content as well as in their release of angiogenic growth factors, survival and proliferative activity under hypoxic conditions. However, fragments from aged donors exhibit a significantly lower number of matrix metalloproteinase -9-positive perivascular cells. Taken together, these findings demonstrate that aging is a crucial determinant for the vascularisation capacity of isolated microvascular fragments.

  16. 蒙古马脂肪来源间充质干细胞体外成脂和成骨诱导分化%Differentiation of Mongolia Horse Adipose Tissue-Derived Mesenchymal Stem Cells into Adipocytes and Osteoblasts in Vitro

    刘宗正; 韦林盖; 苏小虎; 张焱如; 芒来

    2011-01-01

    To investigate the multilineage differentiation capacity of mesenchymal stem cells isolated and cultured from equine adipose tissue, adipose tissue-derived mesenchymal stem cells ( ADSCs) were obtained from adipose tissue of Mongolia horse. The cells appeared like fibroblast in the culture medium. Adipose tissue was minced and digested with collagenase type I. The obtained cells were plated and expanded in DMEM /F12 medium. Whereas the passage cells were cultured in adipogenisis medium and stained with Oil Red 0 for identification. The cells were cultivated in osteoblast-inducing culture medium , and osteoblast phenotype was assayed with Alizarin Red staining. The cells were daily observed under inverted microscope. Results indicated that ADSCs grew as adherent cells, appeared like fibroblast in vitro, stably proliferate and passed. Under the inverted microscope, significant lipid drops were found a-round the cell nucleus after adipogenisis-inducing cultivation. Alizarin Red staining resulted in the formation of mineralized nods in extracellular matrix. It proved that ADSCs isolated and cultured from equine adipose tissue can be induced to adipogenisis and osteo-inducing, suggesting that the cells have multilineage differentiation.%取蒙古马背臀部皮下脂肪组织,通过Ⅰ型胶原酶消化、离心等步骤分离培养脂肪组织来源的间充质干细胞(Adipose tissue-derived mesenchymal stem cells,ADSCs),经过原代培养和传代培养,分别加入成脂诱导剂和成骨诱导剂培养,采用倒置显微镜观察诱导后的细胞形态变化,并通过油红O染色和茜素红染色法对其脂肪细胞和成骨细胞表型进行鉴定.结果显示:ADSCs呈成纤维细胞样贴壁生长,其经成脂、成骨诱导培养2周后形态、体积发生明显改变.经油红O染色,细胞质内出现橙红色脂滴;茜素红染色表明聚集的细胞团中央能形成钙化结节.说明马ADSCs经体外诱导培养后可向脂肪细胞和成骨细胞

  17. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-04-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.

  18. Human Allogeneic Bone Marrow and Adipose Tissue Derived Mesenchymal Stromal Cells Induce CD8+ Cytotoxic T Cell Reactivity

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E.; Franquesa, Marcella; Engela, Anja U; Korevaar, Sander S; Roelofs, Helene; Genever, Paul G; IJzermans, Jan NM; Betjes, Michiel GH; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J.

    2013-01-01

    Introduction For clinical applications, Mesenchymal Stromal Cells (MSC) can be isolated from bone marrow and adipose tissue of autologous or allogeneic origin. Allogeneic cell usage has advantages but may harbor the risk of sensitization against foreign HLA. Therefore, we evaluated whether bone marrow and adipose tissue-derived MSC are capable of inducing HLA-specific alloreactivity. Methods MSC were isolated from healthy human Bone Marrow (BM-MSC) and adipose tissue (ASC) donors. Peripheral ...

  19. Diferenciação de células-tronco mesenquimais derivadas do tecido adiposo em cardiomiócitos Differentiation of adipose tissue-derived mesenchymal stem cells into cardiomyocytes

    Pablo Herthel Carvalho

    2012-01-01

    as MSC differentiated into cardiomyocytes, has been used in the attempt to minimize the effects of ischemic-hypoxic lesions and those affecting the electrical conduction system of the heart. OBJECTIVE: The present study compared three distinct protocols for induced differentiation of MSC into cardiomyocytes aimed at finding a viable method for producing a large number of functional cells expressing cardiomyogenic phenotype. METHODS: Mesenchymal stem cells were obtained from the adipose tissue of young transgenic Lewis rats expressing green fluorescent protein (GFP, and submitted to three distinct differentiation-inducing media: 1 Planat-Bérnard, 2 5-azacytidine, and 3 Planat-Bérnard + 5-azacytidine; further, these cells were identified based on the expression of cardiac cell markers. RESULTS: All three protocols detected the expression of sarcomeric-alpha-actinin protein in the exoskeleton of cells, expression of connexin-43 in the nuclear and cytoplasmic membrane, and formation of gap junctions, which are necessary for electrical impulse propagation in the myocardium. However, no spontaneous cell contraction was observed with any of the tested protocols. CONCLUSION: Induction with 5-azacytidine provided an effective cadiomyogenic cellular differentiation similar to that obtained with Planat-Bénard media. Therefore, 5-azacytidine was the method of choice for being the simplest, fastest and lowest-cost protocol for cell differentiation.

  20. Adipose Tissue-Derived Stromal Cells Inhibit TGF-beta 1-Induced Differentiation of Human Dermal Fibroblasts and Keloid Scar-Derived Fibroblasts in a Paracrine Fashion

    Spiekman, Maroesjka; Przybyt, Ewa; Plantinga, Josee A.; Gibbs, Susan; van der Lei, Berend; Harmsen, Martin C.

    2014-01-01

    Background: Adipose tissue-derived stromal cells augment wound healing and skin regeneration. It is unknown whether and how they can also influence dermal scarring. The authors hypothesized that adipose tissue-derived stromal cells inhibit adverse differentiation of dermal fibroblasts induced by the

  1. Compatibility of Chitosan-Gelatin Films with Adipose Tissue Derived Stromal Cells

    ZHANG Ling; GAO Yuan; KONG Lijun; GONG Yandao; ZHAO Nanming; ZHANG Xiufang

    2006-01-01

    Chitosan has been shown to be a promising material for various applications in tissue engineering. Recently, adipose tissue derived stromal cells (ADSCs) have been investigated as an alternative source of seed cells for tissue engineering. The compatibility of chitosan and chitosan-gelatin complexes with ADSCs is not known. In the present study, ADSCs were isolated and characterized by phenotype using fluorescence-activated cell sorting (FACS). The morphology, viability, and the ability of the ADSCs to differentiate on chitosan and chitosan-gelatin composite films with 60 wt.% gelatin were evaluated. Results show that the ADSCs are positive for CD29, CD44, and CD105, but negative for CD31, CD34, and CD45. ADSCs adhere and grow better on the composite films than on the chitosan films. The ability of ADSCs to differentiate into osteogenic and adipogenic lineage cells is not affected by their being cultured on chitosan-gelatin composite films. Therefore, chitosan-gelatin composite films are compatible with ADSCs and do not impair the ability of ADSCs to differentiate into osteogenic and adipogenic lineage cells.

  2. Transcriptomic comparisons between cultured human adipose tissue-derived pericytes and mesenchymal stromal cells

    Lindolfo da Silva Meirelles

    2016-03-01

    Full Text Available Mesenchymal stromal cells (MSCs, sometimes called mesenchymal stem cells, are cultured cells able to give rise to mature mesenchymal cells such as adipocytes, osteoblasts, and chondrocytes, and to secrete a wide range of trophic and immunomodulatory molecules. Evidence indicates that pericytes, cells that surround and maintain physical connections with endothelial cells in blood vessels, can give rise to MSCs (da Silva Meirelles et al., 2008 [1]; Caplan and Correa, 2011 [2]. We have compared the transcriptomes of highly purified, human adipose tissue pericytes subjected to culture-expansion in pericyte medium or MSC medium, with that of human adipose tissue MSCs isolated with traditional methods to test the hypothesis that their transcriptomes are similar (da Silva Meirelles et al., 2015 [3]. Here, we provide further information and analyses of microarray data from three pericyte populations cultured in pericyte medium, three pericyte populations cultured in MSC medium, and three adipose tissue MSC populations deposited in the Gene Expression Omnibus under accession number GSE67747.

  3. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  4. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation

  5. Adipose-Derived Stem Cells

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan;

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...

  6. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure

    Sun, Kai; Kusminski, Christine M; Luby-Phelps, Kate; Spurgin, Stephen B.; An, Yu A.; Wang, Qiong A; Holland, William L.; Scherer, Philipp E.

    2014-01-01

    We recently reported that local overexpression of VEGF-A in white adipose tissue (WAT) protects against diet-induced obesity and metabolic dysfunction. The observation that VEGF-A induces a “brown adipose tissue (BAT)-like” phenotype in WAT prompted us to further explore the direct function of VEGF-A in BAT. We utilized a doxycycline (Dox)-inducible, brown adipocyte-specific VEGF-A transgenic overexpression model to assess direct effects of VEGF-A in BAT in vivo. We observed that BAT-specific...

  7. 体外诱导脂肪源性干细胞向类肝细胞的定向分化%Directional differentiation of adipose tissue-derived stem cells into hepatic-like cells in vitro by procedure-induction

    刘剑; 李立; 冉江华; 张升宁; 邵剑春

    2011-01-01

    BACKGROUND: How to establish effective stable hepatic cell differentiation schedule, to purify or rapidly amplify stable hepatic-like cells needs to be solved before adipose tissue-derived stem cells (ADSCs) were used to treat liver diseases. OBJECTIVE: To establish sequencing induction system of ADSCs transforming into hepatic-like cells.METHODS: After isolated and purified the Lewis rat ADSCs, the surface marks of ADSCs were identified by flow cytometry. The rat ADSCs were transformed into the hepatic-like cells in the procedure-culture system by tris-step including hepatocyte growth factor (FGF), fibroblast growth factor-4, acid fibroblast growth factor and oncostatin M cytokine. RESULTS AND CONCLUSION: After rat ADSCs were induced at 7, 14 and 21 days, the expression of albumin (ALB), alpha fetoprotein (AFP) and CK18 mRNA was determined and fortified over time. Hepatic-like cells had ALB synthesis function. Metabolism of ammonia and urea synthesis occurred and lasted after 9-12 days. Results suggest ADSCs were successfully differentiated into hepatic-like cells in vitro after procedure-induction.%背景:用脂肪源性干细胞治疗肝脏疾病之前,如何建立有效稳定的肝细胞分化诱导方案,纯化并快速扩增性能稳定的类肝细胞等问题亟待解决.目的:建立大鼠脂肪源性干细胞转化为类肝细胞的程序化诱导体系.方法:分离纯化Lewis大鼠脂肪源性干细胞,流式细胞仪鉴定其表面标志,分3个阶段加入含有肝细胞生长因子、成纤维细胞生长因子4、酸性成纤维细胞生长因子、制瘤素M细胞因子的诱导培养体系,使脂肪源性干细胞向肝细胞转化.结果与结论:大鼠脂肪源性干细胞诱导7,14,21 d后,细胞阳性表达 ALB、AFP、CK18mRNA,表达量随诱导时间延长而增强,类肝细胞具有白蛋白合成功能.氨代谢和尿素的合成功能在9~12 d出现并持续存在.结果表明脂肪源性干细胞体外分段诱导可成功转化为类肝细胞.

  8. 体外共培养环境对犬脂肪干细胞、口腔上皮细胞的影响%The Influence of Vitro Co-culture Environment on Canine Adipose Tissue Derived Stem Cell and Oral Keratinocyte

    张钦; 田玉景; 程力

    2013-01-01

    目的:探讨体外共培养环境对犬脂肪干细胞(ADSC)、口腔上皮细胞(OK)移行速率、增殖速率的影响。方法:获取犬ADSC和OK并鉴定,将两种细胞种植于同一个刻度培养皿内,检测共培养环境下细胞的移行速率,与单一细胞培养环境作对比,观察细胞移行速率的改变。收集两种细胞培养上清,加入到对方培养基中,形成体外模拟混合培养环境,MTT法检测细胞增殖曲线的改变。结果:共培养环境下,OK、ADSC细胞的移行速率均较单一细胞培养环境下高。与常规培养相比,在体外模拟共培养环境下,OK、ADSC细胞的增殖曲线均变陡。结论:在体外共培养环境中, ADSC、OK呈现互相促进、互相吸引、协同增殖态势,细胞的移行速率、增殖速率均得到提高,能够共同用于组织工程口腔黏膜的构建。%Objective:To investigate the influence of vitro co-culture environment on the migration and proliferation patterns of canine adipose-tissue derived stem cell and oral keratinocytes.Method:Obtain canine ADSC,OK and make the identification.Seed the two cell lines onto a scaled dish,record the migration rate of the two cell lines in co-culture environment,and compare it with the record in monoculture environment.Collect the supernatant of the two cell lines,and add it to the other’s culture medium to simulate a co-culture environment.Detect the changes in cell proliferation curves through MTT assay.Result:The migration rate of the ADSC and OK improved in co-culture environment.The proliferation curves of the two cell line were steeper in co-culture environment than in monoculture environment.Conclusion:In vitro co-culture environment,ADSC,OK exhibit mutual promotion,mutual attraction,collaborative proliferation situation,cell migration rate and proliferation rate are improved.They can be used together for the construction of the tissue engineering oral mucosa.

  9. Culture of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction cells in different media

    Gesiane Ribeiro

    2013-12-01

    Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

  10. 血管内皮生长因子转染后脂肪组织来源干细胞蛋白分泌表达及成骨活性的检测%Detection of protein secretion and expression and osteogenic activity of adipose tissue-derived stem cells after in vitro transfection of vascular endothelial growth factor

    刘兆杰; 胡永成; 张银光; 贾健

    2013-01-01

    Objective To examine vascular endothelial growth factor (VEGF) protein secretion and expression and explore the osteogenic activity of adipose tissue-derived stem cells (ADSCs) after transfection of human VEGF.Methods The ADSCs were isolated from human adipose tissue after the digestion of collagenase.After identification by flow cytometry,the ceils were cultured and passaged in nutritive medium.Gene sequence encoding human VEGF mature peptide was obtained by Trizol reagent method from human vascular tissue.Target gene VEGF was connected with bicistronic expression vector containing green fluorescent protein to form pSELECT-GFP zeo-VEGF for transfecting 2nd,3rd,4th,5th generation ADSCs mediated by liposome.The transfection results were verified under fluorescence microscope.VEGF protein secretion by transfected cells was detected by enzyme-linked immunosorbent assay (ELISA).Secondgeneration transfected ADSCs were cultured under osteogenic conditions.The supernatant levels of alkaline phosphatase (ALP) and osteocalcin (OC) were detected.Results Liposome-mediated VEGF target gene fragment could transfect ADSCs successfully.ELISA quantitative detection showed that VEGF mRNA expression levels in supematant of the transfected group was significantly higher than the control group.And there were significant differences.After osteogenic culturing,the detections of ELISA,real-time PCR and Western blot showed that the secretion of ALP and OC of VEGF transfected group was significantly higher than that of empty vector transfected and blank cell groups.And there were significant differences (P < 0.01).Conclusion After transfected by liposome-mediated VEGF target gene fragment,human ADSCs can express biologically active VEGF mRNA in vitro continuously and effectively.Directional differentiation capacity of transfected ADSCs is significantly enhanced.%目的 观察人血管内皮生长因子(VEGF)转染后的人脂肪组织来源干细胞(ADSCs)对VEGF蛋白的分泌和表达

  11. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells

    Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses

  12. Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration

    Soler-Botija, Carolina; Bagó, Juli R; Llucià-Valldeperas, Aida; Vallés-Lluch, Ana; Castells-Sala, Cristina; Martínez-Ramos, Cristina; Fernández-Muiños, Teresa; Chachques, Juan Carlos; Pradas, Manuel Monleón; Semino, Carlos E; Bayes-Genis, Antoni

    2014-01-01

    Contractile restoration of myocardial scars remains a challenge with important clinical implications. Here, a combination of porous elastomeric membrane, peptide hydrogel, and subcutaneous adipose tissue-derived progenitor cells (subATDPCs) was designed and evaluated as a bioimplant for cardiac regeneration in a mouse model of myocardial infarction. SubATDPCs were doubly transduced with lentiviral vectors to express bioluminescent-fluorescent reporters driven by constitutively active, cardiac...

  13. The Therapeutic Effect of Human Adult Stem Cells Derived from Adipose Tissue in Endotoxemic Rat Model

    Soyoung Shin, Yonggoo Kim, Sikyoung Jeong, Sungyoup Hong, Insoo Kim, Woonjeong Lee, Seungphil Choi

    2013-01-01

    Excessive systemic inflammation following sepsis, trauma or burn could lead to multi-organ damage and death. Bone marrow stromal cells (BMSCs), commonly referred to as mesenchymal stem cells (MSCs), has been studied in several immune-associated diseases in human and animal by modulating the inflammatory response. Adipose tissue derived mesenchymal stem cells (ATSCs), which can be obtained more easily, compared with BMSCs, has emerged as an attractive alternative MSCs source for cell therapy. ...

  14. The Therapeutic Effect of Human Adult Stem Cells Derived from Adipose Tissue in Endotoxemic Rat Model

    Shin, Soyoung; Kim, Yonggoo; Jeong, Sikyoung; Hong, Sungyoup; Kim, Insoo; Lee, Woonjeong; Choi, Seungphil

    2012-01-01

    Excessive systemic inflammation following sepsis, trauma or burn could lead to multi-organ damage and death. Bone marrow stromal cells (BMSCs), commonly referred to as mesenchymal stem cells (MSCs), has been studied in several immune-associated diseases in human and animal by modulating the inflammatory response. Adipose tissue derived mesenchymal stem cells (ATSCs), which can be obtained more easily, compared with BMSCs, has emerged as an attractive alternative MSCs source for cell therapy. ...

  15. microRNA-145 Mediates the Inhibitory Effect of Adipose Tissue-Derived Stromal Cells on Prostate Cancer.

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Nakagawa, Takatoshi; Ibuki, Naokazu; Yoshikawa, Yuki; Tsujino, Takuya; Uchimoto, Taizo; Saito, Kenkichi; Takai, Tomoaki; Tanda, Naoki; Minami, Koichiro; Uehara, Hirofumi; Komura, Kazumasa; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2016-09-01

    Adipose-derived stromal cell (ASC), known as one of the mesenchymal stem cells (MSCs), is a promising tool for regenerative medicine; however, the effect of ASCs on tumor growth has not been studied sufficiently. We investigated the hypothesis that ASCs have an inhibitory effect on metastatic tumor progression. To evaluate the in vitro inhibitory effect of ASCs on metastatic prostate cancer (PCa), direct coculture and indirect separate culture experiments with PC3M-luc2 cells and human ASCs were performed, and ASCs were administered to PC3M-luc2 cell-derived tumor-bearing nude mice for in vivo experiment. We also performed exosome microRNA (miRNA) array analysis to explore a mechanistic insight into the effect of ASCs on PCa cell proliferation/apoptosis. Both in vitro and in vivo experiments exhibited the inhibitory effect of ASCs on PC3M-luc2 cell proliferation, inducing apoptosis and PCa growth, respectively. Among upregulated miRNAs in ASCs compared with fibroblasts, we focused on miR-145, which was known as a tumor suppressor. ASC-derived conditioned medium (CM) significantly inhibited PC3M-luc2 cell proliferation, inducing apoptosis, but the effect was canceled by miR-145 knockdown in ASCs. ASC miR-145 knockdown CM also reduced the expression of Caspase 3/7 with increased antiapoptotic protein, BclxL, expression in PC3M-luc2 cells. This study provides preclinical data that ASCs inhibit PCa growth, inducing PCa cell apoptosis with reduced activity of BclxL, at least in part, by miR-145, including exosomes released from ASCs, suggesting that ASC administration could be a novel and promising therapeutic strategy in patients with PCa. PMID:27465939

  16. USE OF AUTOLOGOUS ADIPOSE TISSUE DERIVED STROMAL VASCULAR FRACTION IN TREATMENT OF KNEE OSTEOARTHRITIS AND CHONDRAL LESIONS

    Vinay

    2015-10-01

    Full Text Available Osteoarthritis is a joint inflammation that results from cartilage degeneration. It can be caused by aging, heredity and injury from trauma or disease. Stromal vascular fraction (SVF, containing large amount of stem cells and other regenerative cells, can be easily obtained from loose connective tissue that is associated with adipose tissue. Here we evaluated safety and clinical efficacy of freshly isolated autologous SVF cells in patients with grade 2 - 4 degenerative osteoarthritis (OA. A total of 31 patients underwent standard liposuction under local anesthesia and SVF cells were isolated and prepared for application into joints. A total of 61 joints, mainly knee and hip joints, were treated with a single dose of SVF cells. 19 patients were fol lowed for minimum 6 weeks for safety and efficacy. Modified KOOS Clinical Score was used to evaluate clinical effect and was based on pain, non - steroid analgesic usage, limping, extent of joint movement, and stiffness evaluation before and at pre - operative , 1 week post - op, 1 month and 6 weeks after the treatment. No serious side effects, systemic infection or cancer was associated with SVF cell therapy. All patients improved after the treatment. Average KOOS score improved from pre - operative 37.5 to post - op erative 6 week average 66.6. All sub scale parameter for pain, symptoms, activity of living & quality of life are also improved. Higher grade of OA were associated with slower healing. In conclusion, here we report a novel and promising treatment approach for patients with degenerative OA that is safe, cost - effective, and relying only on autologous cells, and can be used as one of the minimal invasive treatment modality for osteoarthritis

  17. Cell supermarket: Adipose tissue as a source of stem cells

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  18. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy. PMID:26981129

  19. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Ana Carolina Irioda

    2016-01-01

    Full Text Available Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d, colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d, cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  20. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Harry J. Mersmann; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-01-01

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. ...

  1. A High-Fat Diet Containing Lard Accelerates Prostate Cancer Progression and Reduces Survival Rate in Mice: Possible Contribution of Adipose Tissue-Derived Cytokines

    Han Jin Cho

    2015-04-01

    Full Text Available To examine the effects of high-fat diet (HFD containing lard on prostate cancer development and progression and its underlying mechanisms, transgenic adenocarcinoma mouse prostate (TRAMP and TRAMP-C2 allograft models, as well as in vitro culture models, were employed. In TRAMP mice, HFD feeding increased the incidence of poorly differentiated carcinoma and decreased that of prostatic intraepithelial neoplasia in the dorsolateral lobes of the prostate, which was accompanied by increased expression of proteins associated with proliferation and angiogenesis. HFD feeding also led to increased metastasis and decreased survival rate in TRAMP mice. In the allograft model, HFD increased solid tumor growth, the expression of proteins related to proliferation/angiogenesis, the number of lipid vacuoles in tumor tissues, and levels of several cytokines in serum and adipose tissue. In vitro results revealed that adipose tissue-conditioned media from HFD-fed mice stimulated the proliferation and migration of prostate cancer cells and angiogenesis compared to those from control-diet-fed mice. These results indicate that the increase of adipose tissue-derived soluble factors by HFD feeding plays a role in the growth and metastasis of prostate cancer via endocrine and paracrine mechanisms. These results provide evidence that a HFD containing lard increases prostate cancer development and progression, thereby reducing the survival rate.

  2. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten;

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF....... Genes most prominently and significantly upregulated by both conditions were growth factors (IGF1, BMP6, PDGFD, FGF9), adhesion molecule CLSTN2, extracellular matrix-related proteins such as matricellular proteins SMOC2, SPON1 and ADAMTS12, and inhibitors of proliferation (JAG1). The most significantly...... downregulated genes included matrix metalloproteinases (MMP3, MMP1), and proliferation markers (CDKN3) and GREM2 (a BMP6 antagonist). CONCLUSION: The decisive factor for the observed change in ASC gene expression proves to be serum starvation rather than VEGF stimulation. Changes in expression of growth factors...

  3. Adipose derived stem cells and nerve regeneration

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  4. Adipogenic Potential of Adipose Stem Cell Subpopulations

    Li, Han; Zimmerlin, Ludovic; Marra, Kacey G.; Donnenberg, Vera S.; Donnenberg, Albert D.; Rubin, J. Peter

    2014-01-01

    Background Adipose stem cells represent a heterogenous population. Understanding the functional characteristics of subpopulations will be useful in developing adipose stem cell–based therapies for regenerative medicine applications. The aim of this study was to define distinct populations within the stromal vascular fraction based on surface marker expression, and to evaluate the ability of each cell type to differentiate to mature adipocytes. Methods Subcutaneous whole adipose tissue was obtained by abdominoplasty from human patients. The stromal vascular fraction was separated and four cell populations were isolated by flow cytometry and studied. Candidate perivascular cells (pericytes) were defined as CD146+/CD31−/CD34−. Two CD31+ endothelial populations were detected and differentiated by CD34 expression. These were tentatively designated as mature endothelial (CD 31+/CD34−), and immature endothelial (CD31+/CD34+). Both endothelial populations were heterogeneous with respect to CD146. The CD31−/CD34+ fraction (preadipocyte candidate) was also CD90+ but lacked CD146 expression. Results Proliferation was greatest in the CD31−/CD34+ group and slowest in the CD146+ group. Expression of adipogenic genes, peroxisome proliferator-activated receptor-γ, and fatty acid binding protein 4, were significantly higher in the CD31−/CD34+ group compared with all other populations after in vitro adipogenic differentiation. This group also demonstrated the highest proportion of AdipoRed lipid staining. Conclusions The authors have isolated four distinct stromal populations from human adult adipose tissue and characterized their adipogenic potential. Of these four populations, the CD31/CD34+ group is the most prevalent and has the greatest potential for adipogenic differentiation. This cell type appears to hold the most promise for adipose tissue engineering. PMID:21572381

  5. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications.

    Van Pham, Phuc; Truong, Nhat Chau; Le, Phuong Thi-Bich; Tran, Tung Dang-Xuan; Vu, Ngoc Bich; Bui, Khanh Hong-Thien; Phan, Ngoc Kim

    2016-06-01

    Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC-MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC-MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1-2 mm(2)) of UC membrane and Wharton's jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic-antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC-MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC-MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC-MSCs cultured in DMEM/F12 plus 1 % antibiotic-antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC-MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC-MSCs maintained

  6. Collagen Type II Enhances Chondrogenesis in Adipose Tissue-Derived Stem Cells by Affecting Cell Shape

    Lu, ZuFu; Doulabi, Behrouz Zandieh; Huang, ChunLing; Bank, Ruud A.; Helder, Marco N.

    2010-01-01

    Ideally, biomaterials have inductive properties, favoring specific lineage differentiation. For chondrogenic induction, these properties have been attributed to collagen type II. However, the underlying mechanisms are largely unknown. This study aimed to investigate whether collagen type II favors c

  7. Collagen type II enhances chondrogenesis in adipose tissue-derived stem cells by affecting cell shape

    Z. Lu; B.Z. Doulabi; C. Huang; R.A. Bank; M.N. Helder

    2010-01-01

    Ideally, biomaterials have inductive properties, favoring specific lineage differentiation. For chondrogenic induction, these properties have been attributed to collagen type II. However, the underlying mechanisms are largely unknown. This study aimed to investigate whether collagen type II favors c

  8. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering

    Wang, Lina; Johnson, Joshua A.; Zhang, Qixu; Elisabeth K. Beahm

    2013-01-01

    Repair of soft-tissue defects resulting from lumpectomy or mastectomy has become an important rehabilitation process for breast cancer patients. This study aimed to provide an adipose tissue engineering platform for soft-tissue defect repair by combining decellularized human adipose tissue extracellular matrix (hDAM) and human adipose-derived stem cells (hASCs). To derive hDAM, incised human adipose tissues underwent a decellularization process. Effective cell removal and lipid removal were p...

  9. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells

    Yanez, Rosa, E-mail: rosamaria.yanez@ciemat.es; Oviedo, Alberto, E-mail: alberto.oviedo@ciemat.es; Aldea, Montserrat, E-mail: montserrat.aldea@ciemat.es; Bueren, Juan A., E-mail: juan.bueren@ciemat.es; Lamana, Maria L., E-mail: maruja.lamana@ciemat.es

    2010-11-15

    Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.

  10. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells

    Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.

  11. Adipose-derived stem cells: Implications in tissue regeneration

    Tsuji, Wakako; Rubin, J. Peter; Marra, Kacey G.

    2014-01-01

    Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differentiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs damaged by injury and dise...

  12. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    Highlights: ► We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. ► hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. ► SV40T introduced along with hTERT abrogates proliferation control and multipotency. ► hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASChTERT, ASCBmi-1, ASCBmi-1+hTERT and ASCSV40T+hTERT were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASCBmi-1 had limited replicative potential, while the rapidly proliferating ASCSV40T+hTERT acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASChTERT and ASChTERT+Bmi-1, on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASChTERT also acquired aberrant karyotype and showed signs of transformation after long-term culture. In conclusion, hTERT alone was sufficient to extend the life span of human ASC, but ASChTERT are prone to transformation during extensive subculturing

  13. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    Tatrai, Peter, E-mail: peter.tatrai@biomembrane.hu [Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Karolina ut 29, H-1113 Budapest (Hungary); Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Szepesi, Aron, E-mail: aron.szepesi@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Matula, Zsolt, E-mail: matula.zsolt@gmail.com [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Szigeti, Anna, E-mail: anna.szigeti@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Buchan, Gyoengyi, E-mail: buchan@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Madi, Andras, E-mail: madi@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Stem Cell, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Uher, Ferenc, E-mail: uher@biomembrane.hu [Stem Cell Laboratory, Hungarian National Blood Transfusion Service, Dioszegi ut 64, H-1113 Budapest (Hungary); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. Black-Right-Pointing-Pointer hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. Black-Right-Pointing-Pointer SV40T introduced along with hTERT abrogates proliferation control and multipotency. Black-Right-Pointing-Pointer hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC{sup hTERT}, ASC{sup Bmi-1}, ASC{sup Bmi-1+hTERT} and ASC{sup SV40T+hTERT} were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC{sup Bmi-1} had limited replicative potential, while the rapidly proliferating ASC{sup SV40T+hTERT} acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC{sup hTERT} and ASC{sup hTERT+Bmi-1}, on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC{sup hTERT} also acquired aberrant karyotype and showed signs of transformation after long-term culture

  14. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity.

    Debora B Mello

    Full Text Available Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi, is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy.ASC were injected intraperitoneally at 3 days post-infection (dpi. Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV dilation was prevented in ASC-treated mice.In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.

  15. Adipose-derived Stem Cells: Isolation, Expansion and Differentiation

    Bunnell, Bruce A; Flaat, Mette; Gagliardi, Christine; Patel, Bindiya; Ripoll, Cynthia

    2008-01-01

    The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue has proven to serve as an abundant, accessible and rich source of adult stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. There has been increased interest in Adipose-derived Stem Cells (ASCs) for tissue engineering applications. Here, methods for the isolation, expa...

  16. Independent Stem Cell Lineages Regulate Adipose Organogenesis and Adipose Homeostasis

    Yuwei Jiang

    2014-11-01

    Full Text Available Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult progenitors are specified during the developmental period and express PPARγ, they have distinct microanatomical, functional, morphogenetic, and molecular profiles. Furthermore, the two compartments derive from different lineages; whereas adult adipose progenitors fate-map from an SMA+ mural lineage, developmental progenitors do not. Remarkably, the adult progenitor compartment appears to be specified earlier than the developmental cells and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide a discrete therapeutic target for childhood and adult obesity.

  17. Independent Stem Cell Lineages Regulate Adipose Organogenesis and Adipose Homeostasis

    Yuwei Jiang; Daniel C. Berry; Wei Tang; Jonathan M. Graff

    2014-01-01

    Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA)-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult pr...

  18. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells

    Raquel Taléns-Visconti; Ana Bonora; Ramiro Jover; Vicente Mirabet; Francisco Carbonell; José Vicente Castell; María José Gómez-Lechón

    2006-01-01

    AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC.METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thy1 decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC,but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.

  19. Adipose-Derived Stem Cells for Future Regenerative System Medicine

    Yani Lina

    2012-08-01

    Full Text Available BACKGROUND: The potential use of stem cell-based therapies for repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of disease. Despite the advances, the availability of stem cells remaining a challenge for both scientist and clinicians in pursuing regenerative medicine. CONTENT: Subcutaneous human adipose tissue is an abundant and accessible cell source for applications in tissue engineering and regenerative medicine. Routinely, the adipose issue is digested with collagenase or related lytic enzymes to release a heterogeneous population for stromal vascular fraction (SVF cells. The SVF cells can be used directly or can be cultured in plastic ware for selection and expansion of an adherent population known as adipose-derived stromal/stem cells (ASCs. Their potential in the ability to differentiate into adipogenic, osteogenic, chondrogenic and other mesenchymal lineages, as well in their other clinically useful properties, includes stimulation of angiogenesis and suppression of inflammation. SUMMARY: Adipose tissue is now recognized as an accessible, abundant and reliable site for the isolation of adult stem cels suitable for the application of tissue engineering and regenerative medicine applications. The past decade has witnessed an explosion of preclinical data relating to the isolation, characterization, cryopreservation, differentiation, and transplantation of freshly isolated stromal vascular fraction cells and adherent, culture-expanded, adipose-derived stromal/stem cells in vitro and in animal models. KEYWORDS: adipose tissue, adult stem cells, regenerative medicine, mesenchymal stem cells.

  20. Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling

    Moriyama Mariko

    2012-08-01

    Full Text Available Abstract Background Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12. Results We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO, resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2 and fibroblast growth factor 2 (FGF2 transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK. Conclusions Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.

  1. Comparison of viability of adipose-derived Mesenchymal stem cells on agarose and fibrin glue scaffolds

    Farzaneh Tafvizi

    2015-06-01

    Full Text Available Background & aim: Utilizing tissue engineering techniques and designing similar structures of the damaged tissues require the use of tools such as scaffolds, cells, and bioactive molecules in vitro. Meanwhile, appropriate cell cultures with the ability to divide and differentiate on the natural scaffolds lacking features like immunogenicity and tumorgenesis is particularly important. Adipose tissue has attracted researchers’ attention due to its abundance of mesenchymal stem cells and its availability through a liposuction. The purpose of the present study was to investigate the reproducibility and viability of the adipose-derived stem cells on natural scaffolds of fibrin glue and agarose. Methods: In the present experimental study, the isolation and identification of the mesenchymal stem cells was performed on tissue obtained from liposuction. The tissues were extensively washed with PBS and were digested with collagenase I, then the mesenchymal stem cells were isolated. The cells were cultured in RPMI medium supplemented with antibiotic. Subsequently, the expression of cell surface markers including CD34, CD44, CD90, and CD105 were analyzed by flow cytometry to confirm the mesenchymal cells. After preparing fibrin glue and agarose scaffolds, the viability and proliferation of the adipose tissue-derived mesenchymal stem cells were examined at the period of 24, 48, and 72 hours by MTT and ELISA assays. The obtained results were analyzed by SPSS ver.19. Results: The results of adipose tissue-derived mesenchymal stem cells culture on the fibrin glue and agarose scaffolds indicated that cell viability on fibrin glue and agarose scaffold were 68.22% and 89.75% in 24 hrs, 64.04% and 66.97% in 48 hours, 222.87% and 1089.68% in 72 hours respectively. Significant proliferation and viability cells on a synthesized agarose scaffold were seen compared to the fibrin glue scaffold after 72 hrs. The viability of the cells significantly increased on the

  2. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita,Masayuki; Noguchi,Hirofumi

    2015-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation...

  3. 0Adipose-derived stem cells: Implications in tissue regeneration

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  4. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes.

    Raja, Waseem K; Mungenast, Alison E; Lin, Yuan-Ta; Ko, Tak; Abdurrob, Fatema; Seo, Jinsoo; Tsai, Li-Huei

    2016-01-01

    The dismal success rate of clinical trials for Alzheimer's disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD. PMID:27622770

  5. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Carvalho, A.M.; A.L.M. Yamada; M.A. Golim; L.E.C. Álvarez; L.L. Jorge; M.L. Conceição; E. Deffune; C.A. Hussni; A.L.G. Alves

    2013-01-01

    Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs) in horses through (1) the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2) flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to...

  6. 4-Hydroxynonenal Regulates TNF-α Gene Transcription Indirectly via ETS1 and microRNA-29b in Human Adipocytes Induced From Adipose Tissue-Derived Stromal Cells.

    Zhang, Xi-Mei; Guo, Lin; Huang, Xiang; Li, Qiu-Ming; Chi, Mei-Hua

    2016-08-01

    Obesity is characterized by an accumulation of excessive body fat and can be diagnosed by a variety of measures, such as BMI. However, in some obese individuals, oxidative stress is also thought to be an important pathogenic mechanism of obesity-associated metabolic syndrome. Oxidative stress increases the lipid peroxidation product, 4-hydroxynonenal (4-HNE), which is one of the most abundant and active lipid peroxides. Within the adipose tissue, adipocytes are derived from adipose tissue-derived stromal cells (ADSCs), which play a key role in the generation and metabolism of adipose tissue. Additionally, obesity is associated with low-grade inflammation. Specific microRNAs (miRNAs) that regulate obesity-associated inflammation are largely dysregulated in metabolic syndrome (MS). In this study, we aim to confirm whether 4-HNE and miRNAs play a role in the regulation of TNF-α gene transcription. We enrolled six obese individuals who were referred to Harbin Medical University (Heilongjiang, China) and six nonobese control participants. Plasma 4-HNE levels of the 12 subjects were determined by ELISA. Using qRT-PCR, we measured ETS1, miR-29b, SP1, and TNF-α levels in subcutaneous white adipose tissue (WAT). Furthermore, we examined the relationship between ETS1 and TNF-α using a luciferase reporter assay and a ChIP assay. Our results suggest that ETS1 promotes TNF-α gene transcription in adipocytes. In addition, we demonstrated that 4-HNE promotes TNF-α gene transcription through the inhibition of the miR-29b → SP1 → TNF-α pathway and promotion of the ETS1 → TNF-α pathway. Anat Rec, 299:1145-1152, 2016. © 2016 Wiley Periodicals, Inc. PMID:27164408

  7. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  8. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study

    Phuc Van Pham

    2014-01-01

    Full Text Available Osteoarthritis is one of the most common diseases, and it affects 12% of the population around the world. Although the disease is chronic, it significantly reduces the patient's quality of life. At present, stem cell therapy is considered to be an efficient approach for treating this condition. Mesenchymal stem cells (MSCs show the most potential for stem cell therapy of osteoarthritis. In fact, MSCs can differentiate into certain mesodermal tissues such as cartilage and bone. Therefore, in the present study, we applied adipose tissue-derived MSCs to osteoarthritis treatment. This study aimed to evaluate the clinical efficiency of autologous adipose tissue-derived MSC transplantation in patients with confirmed osteoarthritis at grade II and III. Adipose tissue was isolated from the belly, and used for extraction of the stromal vascular fraction (SVF. The SVF was mixed with activated platelet- rich plasma before injection. The clinical efficiencies were evaluated by the pain score (VAS, Lysholm score, and MRI findings. We performed the procedure in 21 cases from 2012 to 2013. All 21 patients showed improved joint function after 8.5 months. The pain score decreased from 7.6+/-0.5 before injection to 3.5+/-0.7 at 3 months and 1.5+/-0.5 at 6 months after injection. The Lysholm score increased from 61+/-11 before injection to 82+/-8.1 after injection. Significant improvements were noted in MRI findings, with increased thickness of the cartilage layer. Moreover, there were no side-effects or complications related to microorganism infection, graft rejection, or tumorigenesis. These results provide a new opportunity for osteoarthritis treatment. Level of evidence: IV. [Biomed Res Ther 2014; 1(1.000: 02-08

  9. Transfection of adenovirus containing hepatocyte growth factor gene into adipose tissue-derived stromal cells%腺病毒介导肝细胞生长因子基因感染脂肪干细胞

    王克明; 马继光; 栾杰

    2011-01-01

    目的 观察腺病毒介导的肝细胞生长因子(Ad-HGF)对脂肪干细胞的感染效率以及感染后是否可形成有效的肝细胞生长因子(HGF),确定感染强度(MOI)值.方法 利用消化分离方法和脂肪干细胞贴壁生长的特性,分离人脂肪干细胞,利用相同MOI的Ad-HGF感染脂肪干细胞,ELISA法检测HGF的表达.结果 脂肪干细胞均呈贴壁生长的成纤维细胞样形态,原代培养的细胞7~10 d即达70%~80%融合,Ad-HGF感染脂肪干细胞后HGF可在48 h高效表达.结论 提示腺病毒可有效介导HGF基因,可感染脂肪干细胞,并能够产生有效浓度的HGF.%Objective To observe the efficiency of infection of adenovirus containing hepatocyte growth factor(Ad-HGF) on adipose derived stem cells and to prove whether the valid HGF can appear after infection and the multiplicity of infection. Methods We use the digestion separation method and the attachingwall characteristic of the adipose-derived stem cells to separate the human adipose-derived stem cells. Adipose-derived stem cells were infected by the vector of adenovirus (Ad-GFP) which carries the GFP gene,and the GFP acts as the indicating gene to determine the infection efficiency of recombinant adenovirus to adipose- derived stem cells. HGF-ELISA was used to detect HGF as expression-secretion. Results The adherent cells displayed themselves as fibroblast in morphology. The primary cultured cells fusion can arrive to 70% - 80% in 7 - 10 days. The infected HGF can be highly expressed in 48hours. Conclusion Adenovirus can meditate the expression of HGF gene in adipose-derived stem cells effectively.

  10. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  11. Efficient Isolation of Cardiac Stem Cells from Brown Adipose

    Zhiqiang Liu

    2010-01-01

    Full Text Available Cardiac stem cells represent a logical cell type to exploit in cardiac regeneration. The efficient harvest of cardiac stem cells from a suitable source would turn promising in cardiac stem cell therapy. Brown adipose was recently found to be a new source of cardiac stem cells, instrumental to myocardial regeneration. Unfortunately, an efficient method for the cell isolation is unavailable so far. In our study we have developed a new method for the efficient isolation of cardiac stem cells from brown adipose by combining different enzymes. Results showed that the total cell yield dramatically increased (more than 10 times, P<.01 compared with that by previous method. The content of CD133-positive cells (reported to differentiate into cardiomyocytes with a high frequency was much higher than that in the previous report (22.43% versus 3.5%. Moreover, the isolated cells could be the efficiently differentiated into functional cardiomyocytes in optimized conditions. Thus, the new method we established would be of great use in further exploring cardiac stem cell therapy.

  12. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation

    Kim KJ; Joe YA; Kim MK; Lee SJ; Ryu YH; Cho DW; Rhie JW

    2015-01-01

    Ki Joo Kim,1,2 Young Ae Joe,3 Min Kyoung Kim,1,2 Su Jin Lee,1 Yeon Hee Ryu,1,2 Dong-Woo Cho,4,5 Jong Won Rhie1,2 1Department of Plastic Surgery, College of Medicine, 2Department of Molecular Biomedicine, 3Cancer Research Institute and Department of Medical Lifescience, The Catholic University of Korea, Seoul, Republic of Korea; 4Department of Mechanical Engineering, Pohang University of Science and Technology, Gyeongbuk, Republic of Korea; 5Department of Integrative Bioscience and Bioengineer...

  13. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun;

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival ...

  14. The Therapeutic Effect of Human Adult Stem Cells Derived from Adipose Tissue in Endotoxemic Rat Model

    Soyoung Shin, Yonggoo Kim, Sikyoung Jeong, Sungyoup Hong, Insoo Kim, Woonjeong Lee, Seungphil Choi

    2013-01-01

    Full Text Available Excessive systemic inflammation following sepsis, trauma or burn could lead to multi-organ damage and death. Bone marrow stromal cells (BMSCs, commonly referred to as mesenchymal stem cells (MSCs, has been studied in several immune-associated diseases in human and animal by modulating the inflammatory response. Adipose tissue derived mesenchymal stem cells (ATSCs, which can be obtained more easily, compared with BMSCs, has emerged as an attractive alternative MSCs source for cell therapy. We investigated the therapeutic effects of human ATSCs (hATSCs in endotoxemic rat model and their capacity to modulate the inflammatory response. Endotoxemia was induced with Lipopolysaccaride intravenously injection (LPS, 10mg/kg. Animals were divided into the following three groups: (1 saline + saline (n=5, (2 LPS + saline (n=5 and (3 LPS + hATSCs (2x106 (n=5. The administration of LPS caused a consistent systemic inflammatory responses, increased concentrations of the pro-inflammatory cytokines that have an important role in sepsis. Treatment of endotoxemia with hATSCs decreased the level of inflammatory cytokines both in serum and in the lung, reduced inflammatory changes in the lung, prevented apoptosis in the kidney and improved multi-organ injury. In conclusion, our data demonstrates that hATSCs regulate the immue/inflammatory responses and improve multi-organ injury and they could be attractive candidates for cell therapy to treat endotoxemia.

  15. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  16. Mesenchymal markers on human adipose stem/progenitor cells

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described 3 major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+) and supra-adventitial adipose stromal cells (SA-ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here we determine the extent to which this mesenchymal expression pattern is expressed on the 3 adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with 14.3±2.8% (mean ± SEM) having >2N DNA. About half (53.1±7.6%) coexpressed CD73 and CD105, and 71.9±7.4% expressed CD90. Pericytes were less proliferative (8.2±3.4% >2N DNA) with a smaller proportion (29.6±6.9% CD73+/CD105+, 60.5±10.2% CD90+) expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes, were both highly proliferative (15.1±3.6% with >2N DNA) and of uniform mesenchymal phenotype (93.3±3.7% CD73+/CD105+, 97.8±0.7% CD90+), suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative (3.7 ± 0.8%>2N DNA) but were also highly mesenchymal in phenotype (94.4±3.2% CD73+/CD105+, 95.5±1.2% CD90+). These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression. PMID:23184564

  17. Characterization of mesenchymal stem cells derived from equine adipose tissue

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  18. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    Wan Safwani Wan Kamarul Zaman; Makpol Suzana; Sathapan Somasundaram; Chua Kien

    2012-01-01

    Abstract Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study...

  19. Adipose-Derived Stem Cell Collection and Characterization in Bottlenose Dolphins (Tursiops truncatus)

    Johnson, Shawn P.; Catania, Jeffrey M.; Harman, Robert J.; Jensen, Eric D.

    2012-01-01

    To assess the regenerative properties and potential therapeutic value of adipose-derived stem cells (ASCs) in the bottlenose dolphin, there is a need to determine whether an adequate adipose depot exists, in addition to the development of a standardized technique for minimally invasive adipose collection. In this study, an ultrasound-guided liposuction technique for adipose collection was assessed for its safety and efficacy. The ultrasound was utilized to identify and measure the postnuchal ...

  20. Adipose-derived stem cells from the breast

    Jie Yang

    2014-01-01

    Full Text Available Background: The adipose tissue is deemed as an ideal source of adipose-derived stem cells (ADSCs. Previous studies have reported that ADSCs can be isolated from several organs and locations; however, slight attention has been paid to the breast. We would like to report our experiences in isolating breast ADSCs (bADSCs. Materials and Methods: Adipose tissues were harvested from the breasts of seven hypertrophic breast patients. Collagenase I was used to isolate the primary ADSCs. Surface markers were analyzed by flow cytometry. Cellular morphologies were observed. Proliferations of different passages were compared. Viabilities after the cryopreservation were evaluated. Adipogenic and osteogenic differentiation was induced. Results: Primary cultured cells showed morphologies similar to fibroblasts, and expressed surface markers including CD13, CD44, CD90, and CD105. There was no statistical difference of proliferation between different passages (P > 0.05 and between with and without cryopreservation (P > 0.05. Additionally, isolated cells were differentiated into adipocytes and osteoblasts. Conclusion: bADSCs may represent an alternative candidate for tissue engineering. Further studies are needed to obtain more comprehensive understanding on bADSCs.

  1. Case Reports of Adipose-derived Stem Cell Therapy

    Min Su Jung

    2012-01-01

    Full Text Available With the gradual increase of cases using fillers, cases of patients treated by non-medicalprofessionals or inexperienced physicians resulting in complications are also increasing. Weherein report 2 patients who experienced acute complications after receiving filler injectionsand were successfully treated with adipose-derived stem cell (ADSCs therapy. Case 1 wasa 23-year-old female patient who received a filler (Restylane injection in her forehead,glabella, and nose by a non-medical professional. The day after her injection, inflammationwas observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who receiveda filler injection of hyaluronic acid gel (Juvederm on her nasal dorsum and tip at a privateclinic. She developed erythema and swelling in the filler-injected area A solution containingADSCs harvested from each patient’s abdominal subcutaneous tissue was injected intothe lesion at the subcutaneous and dermis levels. The wounds healed without additionaltreatment. With continuous follow-up, both patients experienced only fine linear scars 6months postoperatively. By using adipose-derived stem cells, we successfully treated theacute complications of skin necrosis after the filler injection, resulting in much less scarring,and more satisfactory results were achieved not only in wound healing, but also in esthetics.

  2. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  3. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells.

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2015-12-17

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs. PMID:26858903

  4. Osteogenic Potential of Mouse Adipose-Derived Stem Cells Sorted for CD90 and CD105 In Vitro

    Maiko Yamamoto

    2014-01-01

    Full Text Available Adipose tissue-derived stromal cells, termed ASCs, play an important role in regenerative applications. They resemble mesenchymal stem cells owing to their inexhaustibility, general differentiation potential, and plasticity and display a series of cell-specific and cluster-of-differentiation (CD marker profiles similar to those of other somatic stem cells. Variations in phenotypes or differentiation are intimately associated with CD markers. The purpose of our study was to exhibit distinct populations of ASCs with differing characteristics for osteogenic differentiation. The primary cell batch of murine-derived ASCs was extracted from subcutaneous adipose tissue and the cells were sorted for the expression of the surface protein molecules CD90 and CD105 using flow cytometry. Each cell population sorted for CD90 and CD105 was analyzed for osteogenic potency after cell culture. The results suggested that ASCs exhibit distinct populations with differing characteristics for osteogenic differentiation: unsorted ASCs stimulated comparable mineralized nodule formation as bone marrow stromal cells (BMSCs in osteogenic medium and viral transfection for BMP2 accelerated the formation of mineralized nodules in CD90 and/or CD105 positive ASCs with observation of decrease in CD105 expression after 14 days. Future studies assessing different immunophenotypes of ASCs should be undertaken to develop cell-based tissue engineering.

  5. Therapeutic efficacy of amniotic membrane stem cells and adipose tissue stem cells in rats with chemically induced ovarian failure.

    Fouad, Hanan; Sabry, Dina; Elsetohy, Khaled; Fathy, Naglaa

    2016-03-01

    The present study was conducted to compare between the therapeutic efficacies of human amniotic membrane-derived stem cells (hAM-MSCs) vs. adipose tissue derived stem cells (AD-MSCs) in cyclophosphamide (CTX)-induced ovarian failure in rats. Forty-eight adult female rats were included in the study; 10 rats were used as control group. Thirty-eight rats were injected with CTX to induce ovarian failure and divided into four groups: ovarian failure (IOF) (IOF group), IOF + phosphate buffer saline (PBS group), IOF + hAM-MSCs group and IOF + AD-MSCs group. Serum levels of FSH and estradiol (E2) were assessed. Histopathological examination of the ovarian tissues was performed and quantitative gene expressions of Oct-4, Stra8 and integrin beta-1 genes were conducted by quantitative real time PCR. Results showed that IOF and IOF + PBS rat groups exhibited decreased ovarian follicles, increased interstitial fibrosis with significant decrease of serum E2, significant increase serum FSH level and significant down-regulation of Stra8 and integrin beta-1. In hAM-MSCs and AD-MSCs rat groups, there were increased follicles and corpora with evident the presence of oocytes, significant increase in serum E2, significant decrease in serum FSH levels (in hAM-MSCs treated group only) and significant up-regulation of the three studied genes with higher levels in hAM-MSCs treated rats group when compared to AD-MSCs treated rats group. In Conclusion, administration of either hAM-derived MSCs or AD-MSCs exerts a significant therapeutic efficacy in chemotherapy induced ovarian insult in rats. hAM-MSCs exert higher therapeutic efficacy as compared to AD-MSCs. PMID:26966564

  6. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  7. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was...

  8. Adipose-Derived Stem Cells (ADSC) and Aesthetic Surgery: A Mini Review

    Mehrabani, Davood; Mehrabani, Golshid; Zare, Shahrokh; Manafi, Ali

    2013-01-01

    In cell therapy and regenerative medicine, a reliable source of stem cells together with cytokine growth factors and biomaterial scaffolds seem necessary. As adipose tissue is easy accessible and is abundant source of adult stem cells and can differentiate along multiple lineages, it can be considered as a good candidate in aesthetic medicine. The clinical application of adipose-derived stem cells (ASCs) is reviewed in this article.

  9. Regeneration of articular cartilage using adipose stem cells.

    Im, Gun-Il

    2016-07-01

    Articular cartilage (AC) has limited potential for self-regeneration and damage to AC eventually leads to the development and progression of osteoarthritis (OA). Cell implantation strategies have emerged as a new treatment modality to regenerate AC. Adipose stem cells/adipose-derived stromal cells (ASCs) have gained attention due to their abundance, excellent proliferative potential, and minimal morbidity during harvest. These advantages lower the cost of cell therapy by circumventing time-consuming procedure of culture expansion. ASCs have drawn attention as a potential source for cartilage regeneration since the feasibility of chondrogenesis from ASCs was first reported. After several groups reported inferior chondrogenesis from ASCs, numerous methods were devised to overcome the intrinsic properties. Most in vivo animal studies have reported good results using predifferentiated or undifferentiated, autologous or allogeneic ASCs to regenerate cartilage in osteochondral defects or surgically-induced OA. In this review, we summarize literature on the isolation and in vitro differentiation processes of ASCs, in vivo studies to regenerate AC in osteochondral defects and OA using ASCs, and clinical applications of ASCs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1830-1844, 2016. PMID:26990234

  10. Hair regeneration using adipose-derived stem cells.

    Jin, Su-Eon; Sung, Jong-Hyuk

    2016-03-01

    Adipose-derived stem cells (ASCs) have been used in tissue repair and regeneration. Recently, it was reported that ASC transplantation promotes hair growth in animal experiments, and a conditioned medium of ASCs (ASC-CM) induced the proliferation of hair-compositing cells in vitro. However, ASCs and their conditioned medium have shown limited effectiveness in clinical settings. ASC preconditioning is one strategy that can be used to enhance the efficacy of ASCs and ASC-CM. Therefore, we highlighted the functional role of ASCs in hair cycle progression and also the advantages and disadvantages of their application in hair regeneration. In addition, we introduced novel ASC preconditioning methods to enhance hair regeneration using ASC stimulators, such as vitamin C, platelet-derived growth factor, hypoxia, and ultraviolet B. PMID:26536569

  11. Transplanted adipose-derived stem cells delay D-galactose-induced aging in rats

    Chun Yang; Ou Sha; Jingxing Dai; Lin Yuan; Dongfei Li; Zhongqiu Wen; Huiying Yang; Meichun Yu; Hui Tao; Rongmei Qu; Yikuan Du; Yong Huang

    2011-01-01

    To investigate the effects of allogeneically transplanted, adipose-derived stem cells in aging rats, in the present study, we established a rat model of subacute aging using continuous subcutaneous injections of D-galactose. Two weeks after the adipose-derived stem cells transplantations, serum superoxide dismutase activity was significantly increased, malondialdehyde content was significantly reduced, hippocampal neuronal degeneration was ameliorated, the apoptotic index of hippocampal neurons was decreased, and learning and memory function was significantly improved in the aging rats. These results indicate that allogeneic transplantation of adipose-derived stem cells may effectively delay D-galactose-induced aging.

  12. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus;

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  13. Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

    Mohamadreza Baghaban Eslaminejad

    2011-01-01

    Full Text Available Objective(sSome investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored.Materials and MethodsAdherent cells were isolated from the collagenase digests of adipose tissues excised from rat epicardial and epididymal regions and propagated with several subcultures. The cells were then investigated whether or not they were able to differentiate into bone, cartilage and adipose cell lineages. Studied cells from two adipose tissues were also compared with respect to their in vitro proliferation capacity. The presence of senescent cells in the culture was determined and compared using senescence-associated (SA ß-galactosidase staining method. ResultsSuccessful differentiations of the cells were indicative of their mesenchymal stem cells (MSCs identity. Epicardial adipose-derived cells tended to have a short population doubling time (45±9.6 hr than the epididymal adipose-derived stem cells (69±16 hr, P< 0.05. Colonogenic activity and the growth curve characteristics were all better in the culture of stem cells derived from epicardial compared to epididymal adipose tissue. Comparatively more percentage of senescent cells was present at the cultures derived from epididymal adipose tissue (P< 0.05.ConclusionOur data emphasize on the differences existed between the stem cells derived from adipose depots of different anatomical sites in terms of their proliferative capacity and in vitro aging. Such data can help understand varying results reported by different laboratories involved in adipose stem cell investigations.

  14. Effects of Platelet-Rich Plasma, Adipose-Derived Stem Cells, and Stromal Vascular Fraction on the Survival of Human Transplanted Adipose Tissue

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-01-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back o...

  15. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  16. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    Highlights: ► We administered human CLCs in a swine model of MI via intracoronary artery. ► Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. ► Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. ► Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer’s solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of human specific alpha-cardiac actin. Human alpha cardiac actin-positive cells also expressed cardiac

  17. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    Okura, Hanayuki [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Saga, Ayami; Soeda, Mayumi [Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Miyagawa, Shigeru; Sawa, Yoshiki [Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Daimon, Takashi [Division of Biostatistics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Ichinose, Akihiro [Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); Matsuyama, Akifumi, E-mail: akifumi-matsuyama@umin.ac.jp [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); RIKEN Program for Drug Discovery and Medical Technology Platforms, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer We administered human CLCs in a swine model of MI via intracoronary artery. Black-Right-Pointing-Pointer Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. Black-Right-Pointing-Pointer Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. Black-Right-Pointing-Pointer Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer's solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of

  18. Human adipose-derived stem cells stimulate neuroregeneration.

    Masgutov, Ruslan F; Masgutova, Galina A; Zhuravleva, Margarita N; Salafutdinov, Ilnur I; Mukhametshina, Regina T; Mukhamedshina, Yana O; Lima, Luciana M; Reis, Helton J; Kiyasov, Andrey P; Palotás, András; Rizvanov, Albert A

    2016-08-01

    Traumatic brain injuries and degenerative neurological disorders such as Alzheimer's dementia, Parkinson's disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves. PMID:26047869

  19. Adipose-derived stem cells - Methods and protocols

    Carlo Alberto Redi

    2011-09-01

    Full Text Available This book is pleasing the reader already by the Authors’ preface. It is one in a million case to find a figure or a graph in the foreword presentation of a book. Here, Professors Gimble and Bunnell decided to give a warning to the reader about the increasing relevance that the topics covered by the book is playing in the life sciences researches: they simply decided to show the ISI Web of knowledge annual publications and citations for adipose stem cells. Clear enough, the statistics is impressive: few papers in 2000, nearly 600 in 2009 and 2010. The same pattern is present in the citations per year, quite a few in 2000 – 2001 and something like 12,000 in 2010 ! I think that these numbers justify the idea to have a volume devoted to cover all of the topics related to these intriguing stem cell type, likely originating from a perivascular histological niche within highly vascularized fat tissue. The book is divided in four parts.......

  20. Mesenchymal Stem Cells Isolated from Adipose and Other Tissues: Basic Biological Properties and Clinical Applications

    Hakan Orbay; Morikuni Tobita; Hiroshi Mizuno

    2012-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyoc...

  1. The Comparison of Adipose Stem Cell and Placental Stem Cell in Secretion Characteristics and in Facial Antiaging

    Yan Xu

    2016-01-01

    Full Text Available Background. Mesenchymal stem cells are the most commonly used seed cells in biomedical research and tissue engineering. Their secretory proteins have also been proven to play an important role in tissue healing. Methods. We isolated adipose stem cells and placental stem cells and performed analysis examining characteristics. The secretory proteins were extracted from conditioned medium and analyzed by MALDI-TOF/TOF. The antiaging effect of conditioned mediums was evaluated by the results of facial skin application. Results. Adipose stem cells and placental stem cells were found to be very similar in their surface markers and multipotency. The specific proteins secreted from adipose stem cells were more adept at cell adhesion, migration, wound healing, and tissue remodeling, while the proteins secreted by placental stem cells were more adept at angiogenesis, cell proliferation, differentiation, cell survival, immunomodulation, and collagen degradation. While these two types of conditioned medium could improve the facial index, the improvement of Melanin index after injection of the adipose stem cell conditioned medium was much more significant. Conclusion. The results suggest that the secreted proteins are ideal cell-free substances for regeneration medicine, especially in the antiaging field.

  2. The Comparison of Adipose Stem Cell and Placental Stem Cell in Secretion Characteristics and in Facial Antiaging.

    Xu, Yan; Guo, Shilei; Wei, Cui; Li, Honglan; Chen, Lei; Yin, Chang; Zhang, Chuansen

    2016-01-01

    Background. Mesenchymal stem cells are the most commonly used seed cells in biomedical research and tissue engineering. Their secretory proteins have also been proven to play an important role in tissue healing. Methods. We isolated adipose stem cells and placental stem cells and performed analysis examining characteristics. The secretory proteins were extracted from conditioned medium and analyzed by MALDI-TOF/TOF. The antiaging effect of conditioned mediums was evaluated by the results of facial skin application. Results. Adipose stem cells and placental stem cells were found to be very similar in their surface markers and multipotency. The specific proteins secreted from adipose stem cells were more adept at cell adhesion, migration, wound healing, and tissue remodeling, while the proteins secreted by placental stem cells were more adept at angiogenesis, cell proliferation, differentiation, cell survival, immunomodulation, and collagen degradation. While these two types of conditioned medium could improve the facial index, the improvement of Melanin index after injection of the adipose stem cell conditioned medium was much more significant. Conclusion. The results suggest that the secreted proteins are ideal cell-free substances for regeneration medicine, especially in the antiaging field. PMID:27057176

  3. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  4. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC

  5. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Salamon, Achim; Adam, Stefanie; Herzmann, Nicole [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Taubenheim, Jan [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Peters, Kirsten [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  6. The Comparison of Adipose Stem Cell and Placental Stem Cell in Secretion Characteristics and in Facial Antiaging

    Yan Xu; Shilei Guo; Cui Wei; Honglan Li; Lei Chen; Chang Yin; Chuansen Zhang

    2016-01-01

    Background. Mesenchymal stem cells are the most commonly used seed cells in biomedical research and tissue engineering. Their secretory proteins have also been proven to play an important role in tissue healing. Methods. We isolated adipose stem cells and placental stem cells and performed analysis examining characteristics. The secretory proteins were extracted from conditioned medium and analyzed by MALDI-TOF/TOF. The antiaging effect of conditioned mediums was evaluated by the results of f...

  7. Isolation, amplification and identification of mesenchymal stem cells de-rived from human adipose tissue

    Sanambar Sadighi

    2014-04-01

    Conclusion: Although we have not the results of in vivo tests to support in vivo adipo-genesis either alone or in combination with natural or synthetic matrix, the results showed that stem cells isolation from adipose tissue was successful, and we provided an environment for differentiation of stem cells.

  8. Adipose Derived Mesenchymal Stem Cells In Wound Healing: A Clinical Review

    Gunalp Uzun

    2014-08-01

    Full Text Available The aim of this article is to review clinical studies on the use of adipose derived mesenchymal stem cells in the treatment of chronic wounds. A search on PubMed was performed on April 30th, 2014 to identify the relevant clinical studies. We reviewed 13 articles that reported the use adipose derived stem cells in the treatment of different types of wounds. Adipose derived stem cells have the potential to be used in the treatment of chronic wounds. However, standard methods for isolation, storage and application of these cells are needed. New materials to transfer these stem cells to injured tissues should be investigated. [Dis Mol Med 2014; 2(4.000: 57-64

  9. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    the characterization of MSCs derived from different tissue sources. Collectively, our results suggest that, based on their tri-lineage differentiation potential and immunomodulatory effects, BM-MSCs and adipose tissue-derived MSCs (A-MSCs) represent the optimal stem cell source for tissue engineering and regenerative medicine. PMID:26719857

  10. A review on recent developments in dental tissue-derived stem cells%牙源性干细胞的研究进展

    李琨; 安莹

    2012-01-01

    Recent evidence has shown that a variety of mesenchymal stem cells ( MSC) located in multiple dental - derived tissues such as the periodontal ligament, dental pulp, apical papilla and dental follicle. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have been speculated. It is known that these stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes and adipocytes. These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including dental tissues , nerves and bone regeneration. This review describes new findings in the field of dental stem cell research and on their potential use in tissue regeneration.%目前已证实,牙周膜、牙髓、根尖乳头和牙囊等牙源性组织中存在间充质干细胞(mesenchymal stem cells,MSC),即牙源性干细胞;而且能在一定条件下被成功分离、培养和扩增;并证实其具有多向分化的潜能,且可在体内实现包括牙齿、神经和骨等多种组织的再生.另外,该细胞来源广泛、容易获得,日益成为组织工程学中最具有潜质的间充质干细胞.本文就牙源性干细胞的研究进展及其在组织工程学中的应用等作一综述.

  11. Isolation of adipose derived stem cells and their induction to a chondrogenic phenotype

    Estes, Bradley T.; Diekman, Brian O.; Gimble, Jeffrey M.; Guilak, Farshid

    2010-01-01

    The ability to isolate, expand, and differentiate adult stem cells into a chondrogenic lineage is an important step in the development of tissue engineering approaches for cartilage repair or regeneration for the treatment of joint injury or osteoarthritis, or for application in plastic or reconstructive surgery. Adipose-derived stem cells (ASCs) provide an abundant and easily accessible source of adult stem cells for use in such regenerative approaches. This protocol describes the isolation ...

  12. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    Ru Dai; Zongjie Wang; Roya Samanipour; Kyo-in Koo; Keekyoung Kim

    2016-01-01

    Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs ...

  13. Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

    Mohamadreza Baghaban Eslaminejad; Soura Mardpour; Marzieh Ebrahimi

    2011-01-01

    Objective(s)Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored.Materials and MethodsAdherent cells were isolated from the collagenase digests of adipose tissues excised from rat epicardial and epididymal regions and propagated with several subcultures. The cel...

  14. Increased Adipogenesis of Human Adipose-Derived Stem Cells on Polycaprolactone Fiber Matrices

    Cecilia Brännmark; Alexandra Paul; Diana Ribeiro; Björn Magnusson; Gabriella Brolén; Annika Enejder; Anna Forslöw

    2014-01-01

    With accelerating rates of obesity and type 2 diabetes world-wide, interest in studying the adipocyte and adipose tissue is increasing. Human adipose derived stem cells - differentiated to adipocytes in vitro - are frequently used as a model system for white adipocytes, as most of their pathways and functions resemble mature adipocytes in vivo. However, these cells are not completely like in vivo mature adipocytes. Hosting the cells in a more physiologically relevant environment compared to c...

  15. Tissue Engineering of Injectable Soft tissue Filler: Using Adipose Stem Cells and Micronized Acellular Dermal Matrix

    Yoo, Gyeol; Lim, Jin Soo

    2009-01-01

    In this study of a developed soft tissue filler, adipose tissue equivalents were constructed using adipose stem cells (ASCs) and micronized acellular dermal matrix (Alloderm). After labeling cultured human ASCs with fluorescent green protein and attaching them to micronized Alloderm (5×105 cells/1 mg), ASC-Alloderm complexes were cultured in adipogenic differentiation media for 14 days and then injected into the dorsal cranial region of nude male mice. The viabilities of ASCs in micronized Al...

  16. Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells

    Mohammadi, Zahra; Afshari, Jalil Tavakkol; Keramati, Mohammad Reza; Alamdari, Daryoush Hamidi; Ganjibakhsh, Meysam; Zarmehri, Azam Moradi; Jangjoo, Ali; Sadeghian, Mohammad Hadi; Ameri, Masoumeh Arab; Moinzadeh, Leila

    2015-01-01

    Objective(s): Mesenchymal stem cells (MSC) can be isolated from adult tissues such as adipose tissue and other sources. Among these sources, adipose tissue (because of easy access) and placenta (due to its immunomodulatory properties, in addition to other useful properties), have attracted more attention in terms of research. The isolation and comparison of MSC from these two sources provides a proper source for clinical experimentation. The aim of this study was to compare the characteristic...

  17. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  18. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds.

    Gastaldi, Giulia; Asti, Annalia; Scaffino, Manuela Federica; Visai, Livia; Saino, Enrica; Cometa, Angela Maria; Benazzo, Francesco

    2010-09-01

    The use of stem cells in regenerative medicine is an appealing area of research that has received a great deal of interest in recent years. The population called human adipose tissue-derived stem cells (hASCs) share many of the characteristic of its counterpart of marrow including extensive proliferative potential and the ability to undergo multilineage differentiation along classical mesenchymal lineages: adipogenesis, chondrogenesis, osteogenesis, and myogenesis. The aim of this study was to evaluate with biochemical and morphological methods the adhesion and differentiation of hASCs grown on trabecular titanium scaffolds. The hASCs isolated from subcutaneous adipose tissue after digestion with collagenase were seeded on monolayer and on trabecular titanium scaffolds and incubated at 37 degrees C in 5% CO(2) with osteogenic medium or control medium.The results showed that hASCs were able to adhere to titanium scaffolds, to proliferate, to acquire an osteoblastic-like phenotype, and to produce a calcified extracellular matrix with protein, such as, decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type I collagen. These data suggest that this kind of scaffold/cells construct is effective to regenerate damaged tissue and to restore the function of bone tissue. PMID:20336739

  19. Bioengineering beige adipose tissue therapeutics

    Kevin eTharp

    2015-10-01

    Full Text Available Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of UCP1-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable brown adipose tissues for human therapeutic purposes at this time.Recent developments in bioengineering, including novel hyaluronic acid based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit WAT derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of beige adipose tissue implants and their potential for the metabolic

  20. Bioengineering Beige Adipose Tissue Therapeutics.

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  1. Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis

    Maria Elena Falomo; Letizia Ferroni; Ilaria Tocco; Chiara Gardin; Barbara Zavan

    2015-01-01

    Endometriosis is a degenerative process due to a chronic inflammatory damage leading to extracellular matrix components deposition and glandular fibrosis. It is known that mesenchymal stem cells secrete a wide range of bioactive molecules, some of them modulating the immune inflammatory response, and others providing regeneration and remodeling of injured tissue. We have performed in vitro experiments in order to analyze the capability of allogenic equine adipose-derived stem cells (ADSCs) to...

  2. Allogeneic and Xenogeneic Transplantation of Adipose-Derived Stem Cells in Immunocompetent Recipients Without Immunosuppressants

    Lin, Ching-Shwun; Lin, Guiting; Lue, Tom F.

    2012-01-01

    Mesenchymal stem cells (MSCs) are well known for their immunomodulatory capabilities. In particular, their immunosuppressive property is believed to permit their allogeneic or even xenogeneic transplantation into immunocompetent recipients without the use of immunosuppressants. Adipose-derived stem cell (ADSC), owing to its ease of isolation from an abundant tissue source, is a promising MSC for the treatment of a wide range of diseases. ADSC has been shown to lack major histocompatibility co...

  3. Mesenchymal Stem Cells Isolated from Adipose and Other Tissues: Basic Biological Properties and Clinical Applications

    Hakan Orbay

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyocytes. Isolation and induction of these cells could provide a new therapeutic tool for replacing damaged or lost adult tissues. However, the biological properties and use of stem cells in a clinical setting must be well established before significant clinical benefits are obtained. This paper summarizes data on the biological properties of MSCs and discusses current and potential clinical applications.

  4. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen;

    2009-01-01

    In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent...... adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta...

  5. Hybrid Adipogenic Implants from Adipose Stem Cells for Soft Tissue Reconstruction In Vivo

    MOIOLI, EDUARDO K.; Chen, Mo; Yang, Rujing; Shah, Bhranti; Wu, June; Mao, Jeremy J

    2010-01-01

    A critical barrier in tissue regeneration is scale-up. Bioengineered adipose tissue implants have been limited to ∼10 mm in diameter. Here, we devised a 40-mm hybrid implant with a cellular layer encapsulating an acellular core. Human adipose-derived stem cells (ASCs) were seeded in alginate. Poly(ethylene)glycol-diacrylate (PEGDA) was photopolymerized into 40-mm-diameter dome-shaped gel. Alginate-ASC suspension was painted onto PEGDA surface. Cultivation of hybrid constructs ex vivo in adipo...

  6. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation

    Human adipose-derived stem cells (hADSC) encapsulated in alginate and alginate/gelatin microspheres with adjustable properties were fabricated via an improved microsphere generating device. The mechanism of the device, porous property, swelling behavior of the microspheres and hADSC proliferation as well as adipogenic differentiation were studied extensively. Microspheres with high-ratio evenly distributed adipocytes could be obtained by utilizing the proper matrix material and manufacturing parameters. The adipocyte/hADSC microspheres were a sound in vitro mimicking of a natural fat lobule and therefore a good candidate for adipose tissue engineering and regenerative medicine. (paper)

  7. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation.

    Yao, Rui; Zhang, Renji; Luan, Jie; Lin, Feng

    2012-06-01

    Human adipose-derived stem cells (hADSC) encapsulated in alginate and alginate/gelatin microspheres with adjustable properties were fabricated via an improved microsphere generating device. The mechanism of the device, porous property, swelling behavior of the microspheres and hADSC proliferation as well as adipogenic differentiation were studied extensively. Microspheres with high-ratio evenly distributed adipocytes could be obtained by utilizing the proper matrix material and manufacturing parameters. The adipocyte/hADSC microspheres were a sound in vitro mimicking of a natural fat lobule and therefore a good candidate for adipose tissue engineering and regenerative medicine. PMID:22556122

  8. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O2 tension on their functional properties has not been well determined. In this study, we investigated the effects of O2 tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O2) and hypoxia (2% O2). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O2 tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects

  9. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Noor Azmi, Mat Adenan; Omar, Siti Zawiah [Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Chua, Kien Hui [Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Wan Safwani, Wan Kamarul Zaman, E-mail: wansafwani@um.edu.my [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{sub 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.

  10. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery

    Niada, S; L.M. Ferreira; Arrigoni, E.; Addis, A.; M. Campagnol; E. Broccaioli; Brini, A T

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. Metho...

  11. AN EVALUATION OF THE SAFETY OF ADIPOSE-DERIVED STEM CELLS

    Ngoc Bich Vu

    2015-09-01

    Full Text Available The adipose tissue contains a large numbers of stem cells; adipose-derived stem cells (ADSCs can be em- ployed in regenerative medicine. This study was aimed at isolating ADSCs and evaluating the safety of ADSCs in mouse models. Stromal vascular fraction (SVF was collected from the adipose tissue using collagenase. ADSCs were then isolated from SVFs by in vitro culture. The stemness of the ADSCs was evaluated in vitro based on their self-renewal potential, po- tential to differentiate into osteoblasts, and adipocytes, and the expression of specific markers. Finally, the tumor forma- tion ability of ADSCs was evaluated in vivo in athymic mice. Results showed that 100% of the ADSC samples developed well and maintained homogeneity up to passage 10. The ADSCs were completely sterilized and could not form tumors in athymic mice. These initial results showed that ADSCs were safe for use in stem cell therapy. [Biomed Res Ther 2015; 2(9.000: 359-365

  12. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    2012-01-01

    Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs. Methods The cardiogenic potential of ASCs was analysed by studying the morphological changes after induction, the changes in the cardiogenic genes expression i.e. GATA4, MLC-2v, MLC-2a, NKX2.5, β-MHC, α-MHC, Atrial natriuretic peptide (ANP), Connexin 43, Cardiac Troponin C, Cardiac Troponin I and myocyte enhancer factor (MEF2C) and the changes of embryonic stem cells genes expression at P5 and P10 using quantitative PCR. Results Our results showed that the induced ASCs did not show significant morphological difference compared to the non-induced ASCs. While quantitative PCR data indicated that most cardiogenic genes and stemness genes expression level decreased after induction at P5 and P10. Conclusion 5-azacytidine is insufficient for the cardiogenic induction of the ASCs. PMID:22221649

  13. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    Wan Safwani Wan Kamarul Zaman

    2012-01-01

    Full Text Available Abstract Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs. Methods The cardiogenic potential of ASCs was analysed by studying the morphological changes after induction, the changes in the cardiogenic genes expression i.e. GATA4, MLC-2v, MLC-2a, NKX2.5, β-MHC, α-MHC, Atrial natriuretic peptide (ANP, Connexin 43, Cardiac Troponin C, Cardiac Troponin I and myocyte enhancer factor (MEF2C and the changes of embryonic stem cells genes expression at P5 and P10 using quantitative PCR. Results Our results showed that the induced ASCs did not show significant morphological difference compared to the non-induced ASCs. While quantitative PCR data indicated that most cardiogenic genes and stemness genes expression level decreased after induction at P5 and P10. Conclusion 5-azacytidine is insufficient for the cardiogenic induction of the ASCs.

  14. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  15. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation

    Adila A Hamid

    2012-01-01

    Full Text Available OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adiposederived stem cells was most prominent after one week of chondrogenic induction.

  16. Phenotypic and Functional Characterization of Long-Term Cryopreserved Human Adipose-derived Stem Cells

    Yong, Kar Wey; Pingguan-Murphy, Belinda; Xu, Feng; Abas, Wan Abu Bakar Wan; Choi, Jane Ru; Omar, Siti Zawiah; Azmi, Mat Adenan Noor; Chua, Kien Hui; Safwani, Wan Kamarul Zaman Wan

    2015-01-01

    Cryopreservation represents an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs) and allows pooling of cells via long-term storage for clinical applications, e.g., cell-based therapies. It is crucial to reduce freezing injury during the cryopreservation process by loading the ASCs with the optimum concentration of suitable cryoprotective agents (CPAs). In this study, human ASCs were preserved for 3 months in different combinations of CPAs, in...

  17. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  18. Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function

    Urszula Skalska; Ewa Kontny

    2016-01-01

    Adiponectin and leptin have recently emerged as potential risk factors in rheumatoid arthritis (RA) pathogenesis. In this study we evaluated the effects of adiponectin and leptin on immunomodulatory function of adipose mesenchymal stem cells (ASCs) derived from infrapatellar fat pad of RA patients. ASCs were stimulated with leptin, low molecular weight (LMW) and high/middle molecular weight (HMW/MMW) adiponectin isoforms. The secretory activity of ASCs and their effect on rheumatoid synovial ...

  19. Adipose Mesenchymal Stem Cells Isolated after Manual or Water-jet-Assisted Liposuction Display Similar Properties

    Bony, Claire; Cren, Mailys; Domergue, Sophie; Toupet, Karine; Jorgensen, Christian; Noël, Danièle

    2016-01-01

    Mesenchymal stem or stromal cells (MSC) are under investigation in many clinical trials for their therapeutic potential in a variety of diseases, including autoimmune and inflammatory disorders. One of the main sources of MSCs is the adipose tissue, which is mainly obtained by manual liposuction using a cannula linked to a syringe. However, in the past years, a number of devices for fat liposuction intended for clinical use have been commercialized but few papers have compared these procedure...

  20. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells?

    Bajek, Anna; GURTOWSKA, NATALIA; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz

    2015-01-01

    Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from ...

  1. Tracking Intravenous Adipose-Derived Mesenchymal Stem Cells in a Model of Elastase-Induced Emphysema

    Kim, You-sun; Kim, Ji-Young; Shin, Dong-Myung; Huh, Jin Won; Lee, Sei Won; Oh, Yeon-Mok

    2014-01-01

    Background Mesenchymal stem cells (MSCs) obtained from bone marrow or adipose tissue can successfully repair emphysematous animal lungs, which is a characteristic of chronic obstructive pulmonary disease. Here, we describe the cellular distribution of MSCs that were intravenously injected into mice with elastase-induced emphysema. The distributions were also compared to the distributions in control mice without emphysema. Methods We used fluorescence optical imaging with quantum dots (QDs) to...

  2. Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells

    Duscher, Dominik; Luan, Anna; Rennert, Robert C; Atashroo, David; Maan, Zeshaan N; Brett, Elizabeth A.; Whittam, Alexander J.; Ho, Natalie; Lin, Michelle; Hu, Michael S.; Graham G Walmsley; Wenny, Raphael; Schmidt, Manfred; Schilling, Arndt F.; Machens, Hans-Günther

    2016-01-01

    Background Adipose-derived stem cells (ASCs) have been identified as a population of multipotent cells with promising applications in tissue engineering and regenerative medicine. ASCs are abundant in fat tissue, which can be safely harvested through the minimally invasive procedure of liposuction. However, there exist a variety of different harvesting methods, with unclear impact on ASC regenerative potential. The aim of this study was thus to compare the functionality of ASCs derived from t...

  3. Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model

    Zhang, Qi; Liu, Li-Na; Yong, Qi; Deng, Jing-Cheng; Cao, Wei-Gang

    2015-01-01

    Introduction Redundant collagen deposition at sites of healing dermal wounds results in hypertrophic scars. Adipose-derived stem cells (ADSCs) exhibit promise in a variety of anti-fibrosis applications by attenuating collagen deposition. The objective of this study was to explore the influence of an intralesional injection of ADSCs on hypertrophic scar formation by using an established rabbit ear model. Methods Twelve New Zealand albino rabbits were equally divided into three groups, and six ...

  4. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  5. Adipose-Derived Stem Cells Improve Efficacy of Melanocyte Transplantation in Animal Skin

    Lim, Won-Suk; Kim, Chang-Hyun; Kim, Ji-Young; Do, Byung-Rok; Kim, Eo Jin; Lee, Ai-Young

    2014-01-01

    Vitiligo is a pigmentary disorder induced by a loss of melanocytes. In addition to replacement of pure melanocytes, cocultures of melanocytes with keratinocytes have been used to improve the repigmentation outcome in vitiligo treatment. We previously identified by in vitro studies, that adipose-derived stem cells (ADSCs) could be a potential substitute for keratinocytes in cocultures with melanocytes. In this study, the efficacy of pigmentation including durability of grafted melanocytes and ...

  6. Potential of Adipose-derived stem cells in muscular regenerative therapies

    Sonia Forcales

    2015-07-01

    Full Text Available Regenerative capacity of skeletal muscles resides in satellite cells, a self-renewing population of muscle cells. Several studies are investigating epigenetic mechanisms that control myogenic proliferation and differentiation to find new approaches that could boost regeneration of endogenous myogenic progenitor populations. In recent years, a lot of effort has been applied to purify, expand and manipulate adult stem cells from muscle tissue. However, this population of endogenous myogenic progenitors in adults is limited and their access is difficult and invasive. Therefore, other sources of stem cells with potential to regenerate muscles need to be examined. An excellent candidate could be a population of adult stromal cells within fat characterized by mesenchymal properties, which have been termed adipose-derived stem cells (ASCs. These progenitor adult stem cells have been successfully differentiated in vitro to osteogenic, chondrogenic, neurogenic and myogenic lineages. Autologous adipose-derived stem cells are multipotent and can be harvested with low morbidity; thus, they hold promise for a range of therapeutic applications. This review will discuss the use of ASCs in muscle regenerative approaches.

  7. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  8. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    MacIsaac, Zoe Marie, E-mail: zmm4a@virgina.edu [University of Virginia (United States); Shang, Hulan, E-mail: shanghulan@gmail.com [Department of Plastic Surgery, University of Virginia (United States); Agrawal, Hitesh, E-mail: hiteshdos@hotmail.com [Department of Plastic Surgery, University of Virginia (United States); Yang, Ning, E-mail: ny6u@virgina.edu [Department of Plastic Surgery, University of Virginia (United States); Parker, Anna, E-mail: amp4v@virginia.edu [Department of Surgery, University of Virginia (United States); Katz, Adam J., E-mail: ajk2f@virginia.edu [Department of Plastic Surgery, University of Virginia (United States)

    2012-02-15

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non

  9. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: ► Adipose stem cells promise novel clinical therapies. ► Before clinical translation, safety profiles must be further elucidated. ► Subcutaneously injected non-autologous adipose stem cells do not form tumors. ► Subcutaneously injected non-autologous adipose stem cells undergo complete removal by one year.

  10. Differentiation of human adipose-derived stem cells into neuron-like cells by Radix Angelicae Sinensis

    Qiaozhi Wang; Lile Zhou; Yong Guo; Guangyi Liu; Jiyan Cheng; Hong Yu

    2013-01-01

    Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigate the use of Radix Angelicae Sinensis as an inducer of neuronal differentiation. Primary human adipose-derived stem cells were obtained from adult subcutaneous fatty tissue, then pre-induced with 10%Radix Angelicae Sinensis injection for 24 hours, and incubated in serum-free Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12 containing 40% Radix Angelicae Si-nensis to induce its differentiation into neuron-like cells. Butylated hydroxyanisole, a common in-ducer for neuronal differentiation, was used as the control. After human adipose-derived stem cells differentiated into neuron-like cells under the induction of Radix Angelicae Sinensis for 24 hours, the positive expression of neuron-specific enolase was lower than that of the butylated hydroxyani-sole-induced group, and the expression of glial fibril ary acidic protein was negative. After they were induced for 48 hours, the positive expression of neuron specific enolase in human adipose-derived stem cells was significantly higher than that of the butylated hydroxyanisole-induced group. Our experimental findings indicate that Radix Angelicae Sinensis can induce human adipose-derived stem celldifferentiation into neuron-like cells and produce less cytotoxicity.

  11. Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: role of protein kinase C delta (PKCδ) in adipose stem cell niche

    Patel, Rekha S.; Carter, Gay; El Bassit, Ghattas; Patel, Achintya A.; Cooper, Denise R.; Murr, Michel

    2016-01-01

    Background Adipose-derived stem cells (ASC) and its exosomes are gaining utmost importance in the field of regenerative medicine. The ASCs tested for their potential in wound healing are predominantly derived from the subcutaneous depot of lean donors. However, it is important to characterize the ASC derived from different adipose depots as these depots have clinically distinct roles. Methods We characterized the ASC derived from subcutaneous and omental depots from a lean donor (sc-ASCn and om-ASCn) and compared it to the ASC derived from an obese donor (sc-ASCo and om-ASCo) using flow cytometry and real time qPCR. Results We show that stem cell markers Oct4, Sal4, Sox15, KLF4 and BMI1 have distinct expression patterns in each ASC. We evaluated the secretome of the ASC and characterized their secreted exosomes. We show long noncoding RNAs (lncRNAs) are secreted by ASC and their expression varied between the ASC’s derived from different depots. Protein kinase C delta (PKCδ) regulates the mitogenic signals in stem cells. We evaluated the effect of silencing PKCδ in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Using β-galactosidase staining, we evaluated the percentage of senescent cells in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Our results also indicated that silencing PKCδ increases the percentage of senescent cells. Conclusions Our case-specific study demonstrates a role of PKCδ in maintaining the adipose stem cell niche and importantly demonstrates depot-specific differences in adipose stem cells and their exosome content. PMID:27358894

  12. Adipose Stem Cells Used to Reconstruct 13 Cases With Cranio-Maxillofacial Hard-Tissue Defects

    Numminen, Jura; Wolff, Jan; Thesleff, Tuomo; Miettinen, Aimo; Tuovinen, Veikko J.; Mannerström, Bettina; Patrikoski, Mimmi; Seppänen, Riitta; Miettinen, Susanna; Rautiainen, Markus; Öhman, Juha

    2014-01-01

    Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient’s uncontrolled nasal picking habit. PMID:24558162

  13. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration

  14. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice

    Yufang Yan; Tuo Ma; Kai Gong; Qiang Ao; Xiufang Zhang; Yandao Gong

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer’s disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer’s disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer’s disease mice, thereby facilitating functional recovery.

  15. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    Ranera Beatriz; Remacha Ana; Álvarez-Arguedas Samuel; Romero Antonio; Vázquez Francisco; Zaragoza Pilar; Martín-Burriel Inmaculada; Rodellar Clementina

    2012-01-01

    Abstract Background Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of c...

  16. Characterization of 75:25 poly(l-lactide-co-epsilon-caprolactone) thin films for the endoluminal delivery of adipose-derived stem cells to abdominal aortic aneurysms.

    Burks, Chris A; Bundy, Kirk; Fotuhi, Parwis; Alt, Eckhard

    2006-09-01

    Abdominal aortic aneurysms occur in 5-7% of men over the age of 60 and their incidence is rising. Current therapies remove the affected tissue or prevent blood flow through the aneurysm, but do not repair the underlying structural changes of the vascular wall. Adipose tissue derived stem cells (ADSCs) seeded on a biodegradable thin film and delivered endoluminally to the aneurysm site could potentially repair the vessel wall, preventing growth and rupture of the aneurysm. In this study, the mechanical and degradation properties of a novel 75:25 poly(l-lactide-co-epsilon-caprolactone) (PLCL) thin film, as well as, the effects of different surface structures on stem cell adherence and resistance to shear stress was investigated. It was possible to reproducibly create films of consistent physical properties. These films degraded approximately 50% in 6 month, which would be a sufficient time to allow cells to engraft in the aortic wall. Ethylene oxide treatment significantly increased the stiffness and yield stress of the films, which exhibit >700% elongation. Treatment of the films with NaOH and HCl induced the formation of surface texture on the films; however, this texture did not affect stem cell adherence or resistance to delamination by shear stress when compared to nontreated or fibronectin-coated films. These results indicate that PLCL thin films have a sufficient degradation time and mechanical strength to serve as a scaffold in vivo for ADSCs, and that ADSCs seeded on the thin film can withstand a range of physiologic shear stresses. PMID:16995792

  17. Tightly regulated and homogeneous transgene expression in human adipose-derived mesenchymal stem cells by lentivirus with tet-off system.

    Hiroyuki Moriyama

    Full Text Available Genetic modification of human adipose tissue-derived multilineage progenitor cells (hADMPCs is highly valuable for their exploitation in therapeutic applications. Here, we have developed a novel single tet-off lentiviral vector platform. This vector combines (1 a modified tetracycline (tet-response element composite promoter, (2 a multi-cistronic strategy to express an improved version of the tet-controlled transactivator and the blasticidin resistance gene under the control of a ubiquitous promoter, and (3 acceptor sites for easy recombination cloning of the gene of interest. In the present study, we used the cytomegalovirus (CMV or the elongation factor 1 α (EF-1α promoter as the ubiquitous promoter, and EGFP was introduced as the gene of interest. hADMPCs transduced with a lentiviral vector carrying either the CMV promoter or the EF-1α promoter were effectively selected by blasticidin without affecting their stem cell properties, and EGFP expression was strictly regulated by doxycycline (Dox treatment in these cells. However, the single tet-off lentiviral vector carrying the EF-1α promoter provided more homogenous expression of EGFP in hADMPCs. Intriguingly, differentiated cells from these Dox-responsive cell lines constitutively expressed EGFP only in the absence of Dox. This single tet-off lentiviral vector thus provides an important tool for applied research on hADMPCs.

  18. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    Wen, Xiujie; Nie, Xin; Zhang, Li [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China); Liu, Luchuan, E-mail: liuluchuan1957@126.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China); Deng, Manjing, E-mail: iradeng@163.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China)

    2011-06-10

    Highlights: {yields} In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. {yields} We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. {yields} dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. {yields} ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.

  19. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    Highlights: → In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. → We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. → dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. → ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.

  20. Adipose mesenchymal stem cells isolated after manual or water jet-assisted liposuction display similar properties

    Claire eBony

    2016-01-01

    Full Text Available Mesenchymal stem or stromal cells (MSC are under investigation in many clinical trials for their therapeutic potential in a variety of diseases, including autoimmune and inflammatory disorders. One of the main sources of MSCs is the adipose tissue, which is mainly obtained by manual liposuction using a cannula linked to a syringe. However, in the last years, a number of devices for fat liposuction intended for clinical use have been commercialized but few papers have compared these procedures in terms of stromal vascular fraction (SVF or adipose stromal cells (ASC. The objective of the present study was to compare and qualify for clinical use the adipose stromal cells (ASC obtained from fat isolated with the manual or the Bodyjet® waterjet-assisted procedure. Although the initial number of cells after collagenase digestion was higher with the manual procedure, both the percentage of dead cells, the number of CFU-F and the phenotype of cells were identical in the SVF at isolation and in the ASC populations at day 14. We also showed that the osteogenic and adipogenic differentiation potentials of ASCs were identical between preparations while a slight but significant higher in vitro immunosuppressive effect was observed with ASCs isolated from fat removed with a cannula. The difference in the immunomodulatory effect between ASC populations was however not observed in vivo using the delayed-type hypersensitivity model. Our data therefore indicate that the procedure for fat liposuction does not impact the characteristics or the therapeutic function of ASCs.

  1. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A.

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  2. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells

    Han-Tsung; Liao; Chien-Tzung; Chen

    2014-01-01

    Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its’ clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in

  3. Human adipose-derived stromal/stem cell isolation, culture, and osteogenic differentiation.

    Qureshi, Ammar T; Chen, Cong; Shah, Forum; Thomas-Porch, Caasy; Gimble, Jeffrey M; Hayes, Daniel J

    2014-01-01

    Annually, more than 200,000 elective liposuction procedures are performed in the United States and over a million worldwide. The ease of harvest and abundance make human adipose-derived stromal/stem cells (hASCs) isolated from lipoaspirates an attractive, readily available source of adult stem cells that have become increasingly popular for use in many studies. Here, we describe common methods for hASC culture, preservation, and osteogenic differentiation. We introduce methods of ceramic, polymer, and composite scaffold synthesis with a description of morphological, chemical, and mechanical characterization techniques. Techniques for scaffold loading are compared, and methods for determining cell loading efficiency and proliferation are described. Finally, we provide both qualitative and quantitative techniques for in vitro assessment of hASC osteogenic differentiation. PMID:24529434

  4. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, hmax max >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells

  5. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  6. Current progress in use of adipose derived stem cells inperipheral nerve regeneration

    Shomari DL Zack-Williams; Peter E Butler; Deepak M Kalaskar

    2015-01-01

    Unlike central nervous system neurons; those in theperipheral nervous system have the potential for fullregeneration after injury. Following injury, recovery iscontrolled by schwann cells which replicate and modulatethe subsequent immune response. The level of nerverecovery is strongly linked to the severity of the initialinjury despite the significant advancements in imagingand surgical techniques. Multiple experimental modelshave been used with varying successes to augment thenatural regenerative processes which occur following nerveinjury. Stem cell therapy in peripheral nerve injury maybe an important future intervention to improve the bestattainable clinical results. In particular adipose derivedstem cells (ADSCs) are multipotent mesenchymal stemcells similar to bone marrow derived stem cells, which arethought to have neurotrophic properties and the ability todifferentiate into multiple lineages. They are ubiquitouswithin adipose tissue; they can form many structuresresembling the mature adult peripheral nervous system.Following early in vitro work; multiple small and largeanimal in vivo models have been used in conjunction withconduits, autografts and allografts to successfully bridgethe peripheral nerve gap. Some of the ADSC relatedneuroprotective and regenerative properties have beenelucidated however much work remains before a modelcan be used successfully in human peripheral nerve injury(PNI). This review aims to provide a detailed overview ofprogress made in the use of ADSC in PNI, with discussionon the role of a tissue engineered approach for PNI repair.

  7. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  8. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH2), carboxyl (-COOH) and methyl (-CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH2) can absorb more proteins than these modified with more hydrophobic functional group (-CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH2 modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  9. Treatment with adipose stem cells in a patient with moderate Alzheimer's disease: case report

    Tsolaki M

    2015-10-01

    Full Text Available Magda Tsolaki,1,2 Stelios Zygouris,1,3 Vassilis Tsoutsikas,2 Doxakis Anestakis,2,4,5 George Koliakos6,7 1Third Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; 2Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece; 3CND+, 4Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; 5Laboratory of General Biology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; 6Biohellenika Stem Cells Bank, Thessaloniki, Greece; 7Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece Objective: This article presents the case of a female patient with Alzheimer's disease (AD. The patient was treated with cholinesterase inhibitors and also with intravenous administration of autologous adipose stem cells.Methods: The patient was assessed with a neuropsychological battery including measures of general cognition, functional problems, neuropsychiatric issues, memory (verbal, visual and episodic, verbal learning and visuospatial abilities. Magnetic resonance imaging (MRI scans were conducted before and after the treatment with stem cells.Results: A transient and mild improvement of scores in measures of general cognition and neuropsychiatric issues was evident. A rapid deterioration followed the initial improvement. The first MRI scan showed ischemic areas in periventricular white matter of both hemispheres, as well as in both temporal and parietal lobes. The second MRI scan revealed the same picture with no significant changes.Conclusion: This case report indicates that the administration of stem cells is feasible in a clinical setting however its effectiveness in the treatment of AD is uncertain. The improvement of the patient's condition highlights the potential therapeutic action of stem cells, however the rapid deterioration poses

  10. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-01-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes in...

  11. The Effects of Environmental Factors on Smooth Muscle Cells Differentiation from Adipose-Derived Stem Cells and Esophagus Tissues Engineering

    Wang, Fang

    2015-01-01

    Adipose-derived stem cells (ASCs) are increasingly being used for regenerative medicine and tissue engineering. Smooth muscle cells (SMCs) can be differentiated from ASCs. Oxygen is a key factor influencing the stem cell differentiation. Tissue engineered esophagus has been a preferred solution for diseased esophagus replacement. The first part involved the effect of hypoxia on differentiation. The results showed 5% hypoxia to be the optimal condition for differentiation of ASCs into contract...

  12. Awakened by Cellular Stress: Isolation and Characterization of a Novel Population of Pluripotent Stem Cells Derived from Human Adipose Tissue

    Saleh Heneidi; Simerman, Ariel A; Erica Keller; Prapti Singh; Xinmin Li; Daniel A Dumesic; Gregorio Chazenbalk

    2013-01-01

    Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Mul...

  13. Cartilage tissue engineering by collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells in vitro%大鼠脂肪干细胞复合胶原-壳聚糖-硫酸软骨素三维支架构建组织工程软骨

    张涛; 付勤; 于志永

    2009-01-01

    Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in

  14. Transplantation of adipose-derived stem cells with fibrin glue for treatment of acute myocardial infarction in rat

    张雪莲

    2013-01-01

    Objective To investigate the cell survival of the combination of fibrin glue and adiposederived stem cells(ADSCs) in rats when implanted into ischemic myocardium and the improvement of heart function. Methods The rat ADSCs were isolated from the subcutaneous adipose

  15. Human adipose-derived mesenchymal stem cells: a better cell source for nervous system regeneration

    Han Chao; Zhang Liang; Song Lin; Liu Yang; Zou Wei; Piao Hua; Liu Jing

    2014-01-01

    Background In order to suggest an ideal source of adult stem cells for the treatment of nervous system diseases,MSCs from human adipose tissue and bone marrow were isolated and studied to explore the differences with regard to cell morphology,surface markers,neuronal differentiation capacity,especially the synapse structure formation and the secretion of neurotrophic factors.Methods The neuronal differentiation capacity of human mesenchymal stem cells from adipose tissue (hADSCs) and bone marrow (hBMSCs) was determined based on nissl body and synapse structure formation,and neural factor secretion function.hADSCs and hBMSCs were isolated and differentiated into neuron-like cells with rat brain-conditioned medium,a potentially rich source of neuronal differentiation promoting signals.Specific neuronal proteins and neural factors were detected by immunohistochemistry and enzyme-linked immunosorbent assay analysis,respectively.Results Flow cytometric analysis showed that both cell types had similar phenotypes.Cell growth curves showed that hADSCs proliferated more quickly than hBMSCs.Both kinds of cells were capable of osteogenic and adipogenic differentiation.The morphology of hADSCs and hBMSCs changed during neuronal differentiation and displayed neuronlike cell appearance after 14 days' differentiation.Both hADSCs and hBMSCs were able to differentiate into neuron-like cells based on their production of neuron specific proteins including β-tubulin-Ⅲ,neuron-specific enolase (NSE),nissl bodies,and their ability to secrete brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF).Assessment of synaptop hysin and growth-associated protein-43 (GAP-43) suggested synapse structure formation in differentiated hADSCs and hBMSCs.Conclusions Our results demonstrate that hADSCs have neuronal differentiation potential similar to hBMSC,but with a higher proliferation capacity than hBMSC.Adipose tissue is abundant,easily available and would be a potential ideal

  16. Hybrid adipogenic implants from adipose stem cells for soft tissue reconstruction in vivo.

    Moioli, Eduardo K; Chen, Mo; Yang, Rujing; Shah, Bhranti; Wu, June; Mao, Jeremy J

    2010-11-01

    A critical barrier in tissue regeneration is scale-up. Bioengineered adipose tissue implants have been limited to ∼10  mm in diameter. Here, we devised a 40-mm hybrid implant with a cellular layer encapsulating an acellular core. Human adipose-derived stem cells (ASCs) were seeded in alginate. Poly(ethylene)glycol-diacrylate (PEGDA) was photopolymerized into 40-mm-diameter dome-shaped gel. Alginate-ASC suspension was painted onto PEGDA surface. Cultivation of hybrid constructs ex vivo in adipogenic medium for 28 days showed no delamination. Upon 4-week in vivo implantation in athymic rats, hybrid implants well integrated with host subcutaneous tissue and could only be surgically separated. Vascularized adipose tissue regenerated in the thin, painted alginate layer only if ASC-derived adipogenic cells were delivered. Contrastingly, abundant fibrous tissue filled ASC-free alginate layer encapsulating the acellular PEGDA core in control implants. Human-specific peroxisome proliferator-activated receptor-γ (PPAR-γ) was detected in human ASC-seeded implants. Interestingly, rat-specific PPAR-γ was absent in either human ASC-seeded or ASC-free implants. Glycerol content in ASC-delivered implants was significantly greater than that in ASC-free implants. Remarkably, rat-specific platelet/endothelial cell adhesion molecule (PECAM) was detected in both ASC-seeded and ASC-free implants, suggesting anastomosis of vasculature in bioengineered tissue with host blood vessels. Human nuclear staining revealed that a substantial number of adipocytes were of human origin, whereas endothelial cells of vascular wall were of chemaric human and nonhuman (rat host) origins. Together, hybrid implant appears to be a viable scale-up approach with volumetric retention attributable primarily to the acellular biomaterial core, and yet has a biologically viable cellular interface with the host. The present 40-mm soft tissue implant may serve as a biomaterial tissue expander for

  17. Functional characteristics of mesenchymal stem cells derived from the adipose tissue of a patient with achondroplasia.

    Park, Jeong-Ran; Lee, Hanbyeol; Kim, Chung-Hyo; Hong, Seok-Ho; Ha, Kwon-Soo; Yang, Se-Ran

    2016-05-01

    Mesenchymal stem cells (MSCs) can be isolated from various tissues including bone marrow, adipose tissue, skin dermis, and umbilical Wharton's jelly as well as injured tissues. MSCs possess the capacity for self-renewal and the potential for differentiation into adipogenic, osteogenic, and chondrogenic lineages. However, the characteristics of MSCs in injured tissues, such as achondroplasia (ACH), are not well known. In this study, we isolated MSCs from human subcutaneous adipose (ACH-SAMSCs) tissue and circumjacent human adipose tissue of the cartilage (ACH-CAMSCs) from a patient with ACH. We then analyzed the characterization of ACH-SAMSCs and ACH-CAMSCs, compared with normal human dermis-derived MSCs (hDMSCs). In flow cytometry analysis, the isolated ACH-MSCs expressed low levels of CD73, CD90, and CD105, compared with hDMSCs. Moreover, both ACH- SAMSCs and ACH-CAMSCs had constitutionally overactive fibroblast growth factor receptor 3 (FGFR3) and exhibited significantly reduced osteogenic differentiation, compared to enhanced adipogenic differentiation. The activity of extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) was increased in ACH-MSCs. In addition, the efficacy of osteogenic differentiation was slightly restored in osteogenic differentiation medium with MAPKs inhibitors. These results suggest that they play essential roles in MSC differentiation toward adipogenesis in ACH pathology. In conclusion, the identification of the characteristics of ACH-MSCs and the favoring of adipogenic differentiation via the FGFR3/MAPK axis might help to elucidate the pathogenic mechanisms relevant to other skeletal diseases and could provide targets for therapeutic interventions. PMID:27059327

  18. Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance.

    Aleksandra Nowicka

    Full Text Available Adipose tissue contains a population of multipotent adipose stem cells (ASCs that form tumor stroma and can promote tumor progression. Given the high rate of ovarian cancer metastasis to the omental adipose, we hypothesized that omental-derived ASC may contribute to ovarian cancer growth and dissemination.We isolated ASCs from the omentum of three patients with ovarian cancer, with (O-ASC4, O-ASC5 and without (O-ASC1 omental metastasis. BM-MSCs, SQ-ASCs, O-ASCs were characterized with gene expression arrays and metabolic analysis. Stromal cells effects on ovarian cancer cells proliferation, chemoresistance and radiation resistance was evaluated using co-culture assays with luciferase-labeled human ovarian cancer cell lines. Transwell migration assays were performed with conditioned media from O-ASCs and control cell lines. SKOV3 cells were intraperitionally injected with or without O-ASC1 to track in-vivo engraftment.O-ASCs significantly promoted in vitro proliferation, migration chemotherapy and radiation response of ovarian cancer cell lines. O-ASC4 had more marked effects on migration and chemotherapy response on OVCA 429 and OVCA 433 cells than O-ASC1. Analysis of microarray data revealed that O-ASC4 and O-ASC5 have similar gene expression profiles, in contrast to O-ASC1, which was more similar to BM-MSCs and subcutaneous ASCs in hierarchical clustering. Human O-ASCs were detected in the stroma of human ovarian cancer murine xenografts but not uninvolved ovaries.ASCs derived from the human omentum can promote ovarian cancer proliferation, migration, chemoresistance and radiation resistance in-vitro. Furthermore, clinical O-ASCs isolates demonstrate heterogenous effects on ovarian cancer in-vitro.

  19. Applicability of adipose-derived stem cells in type 1 diabetes mellitus.

    Lin, Hui-Ping; Chan, Tzu-Min; Fu, Ru-Huei; Chuu, Chih-Pin; Chiu, Shao-Chih; Tseng, Yu-Hsiung; Liu, Shih-Ping; Lai, Kuang-Chi; Shih, Mu-Chin; Lin, Zung-Sheng; Chen, Hsin-Shui; Yeh, Da-Chuan; Lin, Shinn-Zong

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is a form of early onset diabetes mellitus characterized by the autoimmune destruction of insulin-producing cells (IPCs), resulting in hyperglycemia and abnormal glucose metabolism. There are currently no treatments available capable of completely curing the symptoms associated with the loss or functional defects of IPCs. Nonetheless, stem cell therapy has demonstrated considerable promise in the replacement of IPCs with immunomodulatory functions to overcome the defects caused by T1DM. Adipose-derived stem cells (ADSCs) are particularly suitable for use in cell transplantation therapy, especially when seeking to avoid the ethical issues and tumorigenic complications commonly associated with embryos or induced pluripotent stem cells. Cell-based treatments have demonstrated therapeutic advantages and clinical applicability of ADSCs in T1DM, ensuring their suitability for transplantation therapy. This manuscript focuses on the benefits and possible mechanisms in a T1DM-relevant model and displays positive results from finished or ongoing human clinical trials. We also discuss and hypothesize potential methods to further enhance the therapeutic efficacy of these efforts, such as a humanized rodent model and gene therapies for IPC clusters, to meet the clinical applicability of the standard. PMID:25621468

  20. The Antiaging Gene Klotho Regulates Proliferation and Differentiation of Adipose-Derived Stem Cells.

    Fan, Jun; Sun, Zhongjie

    2016-06-01

    Klotho was originally discovered as an aging-suppressor gene. The purpose of this study was to investigate whether secreted Klotho (SKL) affects the proliferation and differentiation of adipose-derived stem cells (ADSCs). RT-PCR and Western blot analysis showed that short-form Klotho was expressed in mouse ADSCs. The Klotho gene mutation KL(-/-) significantly decreased proliferation of ADSCs and expression of pluripotent transcription factors (Nanog, Sox-2, and Oct-4) in mice. The adipogenic differentiation of ADSCs was also decreased in KL(-/-) mice. Incubation with Klotho-deficient medium decreased ADSC proliferation, pluripotent transcription factor levels, and adipogenic differentiation, which is similar to what was found in KL(-/-) mice. These results indicate that Klotho deficiency suppresses ADSC proliferation and differentiation. Interestingly, treatment with recombinant SKL protein rescued the Klotho deficiency-induced impairment in ADSC proliferation and adipogenic differentiation. SKL also regulated ADSCs' differentiation to other cell lineages (osteoblasts, myofibroblasts), indicating that SKL maintains stemness of ADSCs. It is intriguing that overexpression of SKL significantly increased PPAR-γ expression and lipid formation in ADSCs following adipogenic induction, indicating enhanced adipogenic differentiation. Overexpression of SKL inhibited expression of TGFβ1 and its downstream signaling mediator Smad2/3. This study demonstrates, for the first time, that SKL is essential to the maintenance of normal proliferation and differentiation in ADSCs. Klotho regulates adipogenic differentiation in ADSCs, likely via inhibition of TGFβ1 and activation of PPAR-γ. Stem Cells 2016;34:1615-1625. PMID:26865060

  1. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  2. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    Zhifa Wang

    2016-02-01

    Full Text Available To determine the effect of adipose-derived stem cells (ADSCs added to bone marrow-derived mesenchymal stem cell (MSC sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  3. Chemically Defined and Xeno-Free Cryopreservation of Human Adipose-Derived Stem Cells

    López, Melany; Bollag, Roni J.; Yu, Jack C.; Isales, Carlos M.; Eroglu, Ali

    2016-01-01

    The stromal compartment of adipose tissue harbors multipotent cells known as adipose-derived stem cells (ASCs). These cells can differentiate into various lineages including osteogenic, chrondrogenic, adipogenic, and neurogenic; this cellular fraction may be easily obtained in large quantities through a clinically safe liposuction procedure. Therefore, ASCs offer exceptional opportunities for tissue engineering and regenerative medicine. However, current practices involving ASCs typically use fetal bovine serum (FBS)-based cryopreservation solutions that are associated with risks of immunological reactions and of transmitting infectious diseases and prions. To realize clinical applications of ASCs, serum- and xeno-free defined cryopreservation methods are needed. To this end, an animal product-free chemically defined cryopreservation medium was formulated by adding two antioxidants (reduced glutathione and ascorbic acid 2-phosphate), two polymers (PVA and ficoll), two permeating cryoprotectants (ethylene glycol and dimethylsulfoxide), a disaccharide (trehalose), and a calcium chelator (EGTA) to HEPES-buffered DMEM/F12. To limit the number of experimental groups, the concentration of trehalose, both polymers, and EGTA was fixed while the presence of the permeating CPAs and antioxidants was varied. ASCs suspended either in different versions of the defined medium or in the conventional undefined cryopreservation medium (10% dimethylsulfoxide+10% DMEM/F12+80% serum) were cooled to -70°C at 1°C/min before being plunged into liquid nitrogen. Samples were thawed either in air or in a water bath at 37°C. The presence of antioxidants along with 3.5% concentration of each penetrating cryoprotectant improved the freezing outcome to the level of the undefined cryopreservation medium, but the plating efficiency was still lower than that of unfrozen controls. Subsequently, increasing the concentration of both permeating cryoprotectants to 5% further improved the plating

  4. From bench to bedside: use of human adipose-derived stem cells

    Feisst V

    2015-11-01

    Full Text Available Vaughan Feisst,1 Sarah Meidinger,1 Michelle B Locke2 1Dunbar Laboratory, School of Biological Sciences, 2Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand Abstract: Since the discovery of adipose-derived stem cells (ASC in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation. Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties. Keywords: standardization, bystander effect, stromal cells, mesenchymal stem cells, stromal vascular fraction

  5. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Abdul Rahman, Norizah, E-mail: norizah@science.putra.edu.my [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Department of Chemistry, University of Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan (Malaysia); Feisst, Vaughan [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dickinson, Michelle E. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Malmström, Jenny [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dunbar, P. Rod [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Maurice Wilkins Centre, Private Bag 92019, Auckland (New Zealand); Travas-Sejdic, Jadranka, E-mail: j.travas-sejdic@auckland.ac.nz [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, P.O. Box 600, Wellington 6140 (New Zealand)

    2013-02-15

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, h{sub max} <75 nm) than in the inner fibre core (2–4 GPa, h{sub max} >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells.

  6. The Effect of Secretory Factors of Adipose-Derived Stem Cells on Human Keratinocytes

    Soo-Wan Nam

    2012-01-01

    Full Text Available The beneficial effects of adipose-derived stem cell conditioned medium (ADSC-CM on skin regeneration have been reported. Although the mechanism of how ADSC-CM promotes skin regeneration is unclear, ADSC-CM contained various growth factors and it is an excellent raw material for skin treatment. ADSC-CM produced in a hypoxia condition of ADSC—in other words, Advanced Adipose-Derived Stem cell Protein Extract (AAPE—has great merits for skin regeneration. In this study, human primary keratinocytes (HKs, which play fundamental roles in skin tissue, was used to examine how AAPE affects HK. HK proliferation was significantly higher in the experimental group (1.22 μg/mL than in the control group. DNA gene chip demonstrated that AAPE in keratinocytes (p < 0.05 notably affected expression of 290 identified transcripts, which were associated with cell proliferation, cycle and migration. More keratinocyte wound healing and migration was shown in the experimental group (1.22 μg/mL. AAPE treatment significantly stimulated stress fiber formation, which was linked to the RhoA-ROCK pathway. We identified 48 protein spots in 2-D gel analysis and selected proteins were divided into 64% collagen components and 30% non-collagen components as shown by the MALDI-TOF analysis. Antibody array results contained growth factor/cytokine such as HGF, FGF-1, G-CSF, GM-CSF, IL-6, VEGF, and TGF-β3 differing from that shown by 2-D analysis. Conclusion: AAPE activates HK proliferation and migration. These results highlight the potential of the topical application of AAPE in the treatment of skin regeneration.

  7. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    Tavakolinejad, Alireza [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir [Department of Biomedical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Janmaleki, Mohsen [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  8. Integration of Rabbit Adipose Derived Mesenchymal Stem Cells to Hydroxyapatite Burr Hole Button Device for Bone Interface Regeneration

    Gayathri, Viswanathan; Harikrishnan, Varma; Mohanan, Parayanthala Valappil

    2016-01-01

    Adipose Derived Mesenchymal Stem Cells, multipotent stem cells isolated from adipose tissue, present close resemblance to the natural in vivo milieu and microenvironment of bone tissue and hence widely used for in bone tissue engineering applications. The present study evaluates the compatibility of tissue engineered hydroxyapatite burr hole button device (HAP-BHB) seeded with Rabbit Adipose Derived Mesenchymal Stem Cells (ADMSCs). Cytotoxicity, oxidative stress response, apoptotic behavior, attachment, and adherence of adipose MSC seeded on the device were evaluated by scanning electron and confocal microscopy. The results of the MTT (3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium bromide) assay indicated that powdered device material was noncytotoxic up to 0.5 g/mL on cultured cells. It was also observed that oxidative stress related reactive oxygen species production and apoptosis on cell seeded device were similar to those of control (cells alone) except in 3-day period which showed increased reactive oxygen species generation. Further scanning electron and confocal microscopy indicated a uniform attachment of cells and viability up to 200 μm deep inside the device, respectively. Based on the results, it can be concluded that the in-house developed HAP-BHB device seeded with ADMSCs is nontoxic/safe compatible device for biomedical application and an attractive tissue engineered device for calvarial defect regeneration. PMID:26880922

  9. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  10. Adipose derived mesenchymal stem cells express keratinocyte lineage markers in a co-culture model.

    Irfan-Maqsood, M; Matin, M M; Heirani-Tabasi, A; Bahrami, M; Naderi-Meshkin, H; Mirahmadi, M; Hassanzadeh, H; Sanjar Moussavi, N; Raza-Shah, H; Raeesolmohaddeseen, M; Bidkhori, H; Bahrami, A R

    2016-01-01

    Cutaneous wound healing is a complex type of biological event involving proliferation, differentiation, reprograming, trans/de-differentiation, recruitment, migration, and apoptosis of a number of cells (keratinocytes, fibroblasts, endothelial cells, nerve cells and stem cells) to regenerate a multi-layered tissue that is damaged by either internal or external factors. The exact regeneration mechanism of damaged skin is still unknown but the epithelial and other kinds of stem cells located in skin play crucial roles in the healing process. In this work, a co-culture model composed of adipose derived mesenchymal stem cells and keratinocytes was developed to understand the cellular differentiation behaviour in wound healing. Human mesenchymal stem cells were isolated from waste lipoaspirates. Keratinocytes were isolated from neonatal rats skin as well from human adult skin. Both types of cells were cultured and their culturing behaviour was observed microscopically under regular intervals of time. The identity of both cells was confirmed by flow cytometry and qRT-PCR. Cells were co-cultured under the proposed co-culturing model and the model was observed for 7, 14 and 21 days. The cellular behaviour was studied based on change in morphology, colonization, stratification, migration and expression of molecular markers. Expression of molecular markers was studied at transcriptional level and change in cellular morphology and migration capabilities was observed under the invert microscope regularly. Successfully isolated and characterized mesenchymal stem cells were found to express keratinocyte lineage markers i.e. K5, K10, K14, K18, K19 and Involucrin when co-cultured with keratinocytes after 14 and 21 days. Their expression was found to increase by increasing the time span of cell culturing. The keratinocyte colonies started to disappear after 10 days of culturing which might be due to stratification process initiated by possibly transdifferentiated stem cells. It can

  11. Characterization of human adipose-derived stem cells Caracterização de células-tronco do tecido adiposo humano

    Silvana Gaiba; Lucimar Pereira de França; Jerônimo Pereira de França; Lydia Masako Ferreira

    2012-01-01

    PURPOSE: There is a growing scientific interest in the plasticity and therapeutic potential of adipose-derived stem cells (ASCs), which are multipotent and abundant in adipose tissue and can differentiate in vitro into multiple lineages, including adipocytes, chondrocytes, osteoblasts, neural cells, endothelial cells and cardiomyocytes. The aim of this study was to isolate, cultivate and identify ASCs. METHODS: Human adipose precursor cells were obtained from subcutaneous abdominal tissue. Re...

  12. Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells.

    Riis, Simone; Nielsen, Frederik Mølgaard; Pennisi, Cristian Pablo; Zachar, Vladimir; Fink, Trine

    2016-03-01

    Adipose-derived stem cells (ASCs) are being tested in clinical trials related to cell-based regenerative therapies. Although most of the current expansion protocols for ASCs use fetal calf serum (FCS), xenogeneic-free medium supplements are greatly desired. This study aims to compare the effect of FCS, human platelet lysate (hPL), and a fully defined medium on the initiation and maintenance of ASC cultures. ASCs obtained from five donors were cultured in five different media: StemPro, Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% hPL, or α-minimum essential medium (A-MEM) supplemented with 5% hPL, 10% hPL, or 10% FCS. The effect of media on proliferation, colony-forming units (CFUs), attachment, and morphology was assessed along with cell size, granularity, and immunophenotype. StemPro greatly compromised the initiation of ASC cultures, which could not survive more than a few passages. Cells cultured in A-MEM proliferated at a faster rate than in DMEM, and hPL significantly enhanced cell size, granularity, and proliferation compared with FCS. All media except StemPro supported CFUs equally well. Analysis of surface markers revealed higher levels of CD73 and CD105 in FCS-cultured ASCs, whereas increased levels of CD146 were found in hPL-cultured cells. Multiparametric flow cytometric analysis performed after seven passages revealed the existence of four distinct ASC subpopulations, all positive for CD73, CD90, and CD105, which mainly differed by their expression of CD146 and CD271. Analysis of the different subpopulations might represent an important biological measure when assessing different medium formulations for a particular clinical application. PMID:26838270

  13. Multilineage co-culture of adipose-derived stem cells for tissue engineering.

    Zhao, Yimu; Waldman, Stephen D; Flynn, Lauren E

    2015-07-01

    Stem cell interactions through paracrine cell signalling can regulate a range of cell responses, including metabolic activity, proliferation and differentiation. Moving towards the development of optimized tissue-engineering strategies with adipose-derived stem cells (ASCs), the focus of this study was on developing indirect co-culture models to study the effects of mature adipocytes, chondrocytes and osteoblasts on bovine ASC multilineage differentiation. For each lineage, ASC differentiation was characterized by histology, gene expression and protein expression, in the absence of key inductive differentiation factors for the ASCs. Co-culture with each of the mature cell populations was shown to successfully induce or enhance lineage-specific differentiation of the ASCs. In general, a more homogeneous but lower-level differentiation response was observed in co-culture as compared to stimulating the bovine ASCs with inductive differentiation media. To explore the role of the Wnt canonical and non-canonical signalling pathways within the model systems, the effects of the Wnt inhibitors WIF-1 and DKK-1 on multilineage differentiation in co-culture were assessed. The data indicated that Wnt signalling may play a role in mediating ASC differentiation in co-culture with the mature cell populations. PMID:23135884

  14. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. PMID:26731614

  15. New insight on obesity and adipose-derived stem cells using comprehensive metabolomics.

    Mastrangelo, Annalaura; Panadero, María I; Pérez, Laura M; Gálvez, Beatriz G; García, Antonia; Barbas, Coral; Rupérez, Francisco J

    2016-07-15

    Obesity affects the functional capability of adipose-derived stem cells (ASCs) and their effective use in regenerative medicine through mechanisms that are still poorly understood. In the present study we used a multiplatform [LC/MS, GC/MS and capillary electrophoresis/MS (CE/MS)], metabolomics, untargeted approach to investigate the metabolic alteration underlying the inequalities observed in obesity-derived ASCs. The metabolic fingerprint (metabolites within the cells) and footprint (metabolites secreted in the culture medium), from obesity- and non-obesity-derived ASCs of humans or mice, were characterized to provide valuable information. Metabolites associated with glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and the polyol pathway were increased in the footprint of obesity-derived human ASCs, indicating alterations in carbohydrate metabolism, whereas, from the murine model, deep differences in lipid and amino acid catabolism were highlighted. Therefore, new insights on the ASCs' metabolome were provided that enhance our understanding of the processes underlying ASCs' stemness capacity and its relationship with obesity, in different cell models. PMID:27208167

  16. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.

    Ko, Eunkyung; Alberti, Kyle; Lee, Jong Seung; Yang, Kisuk; Jin, Yoonhee; Shin, Jisoo; Yang, Hee Seok; Xu, Qiaobing; Cho, Seung-Woo

    2016-09-01

    Decellularized matrix-based scaffolds can induce enhanced tissue regeneration due to their biochemical, biophysical, and mechanical similarity to native tissues. In this study, we report a nanostructured decellularized tendon scaffold with aligned, nanofibrous structures to enhance osteogenic differentiation and in vivo bone formation of human adipose-derived stem cells (hADSCs). Using a bioskiving method, we prepared decellularized tendon scaffolds from tissue slices of bovine Achilles and neck tendons with or without fixation, and investigated the effects on physical and mechanical properties of decellularized tendon scaffolds, based on the types and concentrations of cross-linking agents. In general, we found that decellularized tendon scaffolds without fixative treatments were more effective in inducing osteogenic differentiation and mineralization of hADSCs in vitro. When non-cross-linked decellularized tendon scaffolds were applied together with hydroxyapatite for hADSC transplantation in critical-sized bone defects, they promoted bone-specific collagen deposition and mineralized bone formation 4 and 8 weeks after hADSC transplantation, compared to conventional collagen type I scaffolds. Interestingly, stacking of decellularized tendon scaffolds cultured with osteogenically committed hADSCs and those containing human cord blood-derived endothelial progenitor cells (hEPCs) induced vascularized bone regeneration in the defects 8 weeks after transplantation. Our study suggests that biomimetic nanostructured scaffolds made of decellularized tissue matrices can serve as functional tissue-engineering scaffolds for enhanced osteogenesis of stem cells. PMID:27502160

  17. Osteogenic differentiation of human adipose-derived mesenchymal stem cells on gum tragacanth hydrogel.

    Haeri, Seyed Mohammad Jafar; Sadeghi, Yousef; Salehi, Mohammad; Farahani, Reza Masteri; Mohsen, Nourozian

    2016-05-01

    Currently, natural polymer based hydrogels has attracted great attention of orthopedic surgeons for application in bone tissue engineering. With this aim, osteoinductive capacity of Gum Tragacanth (GT) based hydrogel was compared to collagen hydrogel and tissue culture plate (TCPS). For this purpose, adipose-derived mesenchymal stem cells (AT-MSCs) was cultured on the hydrogels and TCPS and after investigating the biocompatibility of hydrogels using MTT assay, osteoinductivity of hydrogels were evaluated using pan osteogenic markers such as Alizarin red staining, alkaline phosphatase (ALP) activity, calcium content and osteo-related genes. Increasing proliferation trend of AT-MSCs on GT hydrogel demonstrated that TG has no-cytotoxicity and can even be better than the other groups i.e., highest proliferation at day 5. GT hydrogel displayed highest ALP activity and mineralization when compared to the collagen hydrogel and TCPS. Relative gene expression levels have demonstrated that highest expression of Runx2, osteonectin and osteocalcin in the cells cultured GT hydrogel but the expression of collagen type-1 remains constant in hydrogels. Above results demonstrate that GT hydrogel could be an appropriate scaffold for accelerating and supporting the adhesion, proliferation and osteogenic differentiation of stem cells which further can be used for orthopedic applications. PMID:27055599

  18. Surgical sutures filled with adipose-derived stem cells promote wound healing.

    Ann Katharin Reckhenrich

    Full Text Available Delayed wound healing and scar formation are among the most frequent complications after surgical interventions. Although biodegradable surgical sutures present an excellent drug delivery opportunity, their primary function is tissue fixation. Mesenchymal stem cells (MSC act as trophic mediators and are successful in activating biomaterials. Here biodegradable sutures were filled with adipose-derived mesenchymal stem cells (ASC to provide a pro-regenerative environment at the injured site. Results showed that after filling, ASCs attach to the suture material, distribute equally throughout the filaments, and remain viable in the suture. Among a broad panel of cytokines, cell-filled sutures constantly release vascular endothelial growth factor to supernatants. Such conditioned media was evaluated in an in vitro wound healing assay and showed a significant decrease in the open wound area compared to controls. After suturing in an ex vivo wound model, cells remained in the suture and maintained their metabolic activity. Furthermore, cell-filled sutures can be cryopreserved without losing their viability. This study presents an innovative approach to equip surgical sutures with pro-regenerative features and allows the treatment and fixation of wounds in one step, therefore representing a promising tool to promote wound healing after injury.

  19. Local transplantation of osteogenic pre-differentiated autologous adipose-derived mesenchymal stem cells may accelerate non-union fracture healing with limited pro-metastatic potency.

    Han, Duanyang; Han, Na; Zhang, Peixun; Jiang, Baoguo

    2015-01-01

    Fracture non-union is a serious complication in orthopedic clinical practice. Mesenchymal stem cells are believed to play a vital role in fracture healing process. Among various origins of mesenchymal stem cell, adipose derived stem cells hold great promise especially in clinical milieu. However, the wide spread application of mesenchymal stem cell based therapy is impeded by the pro-metastasis nature of the mesenchymal stem cell itself. Based on the findings from previous studies, we hypothesize that local transplanted osteogenic pre-differentiatiated adipose stem cell may promote the non-union fracture healing. Moreover, the pre-differnetiation stem cells by down-regulating the expression of CCL5 and CCL2. This novel osteogenic pre-differnetiation technique may help clinical orthopedists to resolve the refractory non-union cases and shed new light on other stem cell based therapies to counteract to avoid the pro-metastasis nature of the mesenchymal stem cells. PMID:25785146

  20. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine.

    Ogura, Fumitaka; Wakao, Shohei; Kuroda, Yasumasa; Tsuchiyama, Kenichiro; Bagheri, Mozhdeh; Heneidi, Saleh; Chazenbalk, Gregorio; Aiba, Setsuya; Dezawa, Mari

    2014-04-01

    In this study, we demonstrate that a small population of pluripotent stem cells, termed adipose multilineage-differentiating stress-enduring (adipose-Muse) cells, exist in adult human adipose tissue and adipose-derived mesenchymal stem cells (adipose-MSCs). They can be identified as cells positive for both MSC markers (CD105 and CD90) and human pluripotent stem cell marker SSEA-3. They intrinsically retain lineage plasticity and the ability to self-renew. They spontaneously generate cells representative of all three germ layers from a single cell and successfully differentiate into targeted cells by cytokine induction. Cells other than adipose-Muse cells exist in adipose-MSCs, however, do not exhibit these properties and are unable to cross the boundaries from mesodermal to ectodermal or endodermal lineages even under cytokine inductions. Importantly, adipose-Muse cells demonstrate low telomerase activity and transplants do not promote teratogenesis in vivo. When compared with bone marrow (BM)- and dermal-Muse cells, adipose-Muse cells have the tendency to exhibit higher expression in mesodermal lineage markers, while BM- and dermal-Muse cells were generally higher in those of ectodermal and endodermal lineages. Adipose-Muse cells distinguish themselves as both easily obtainable and versatile in their capacity for differentiation, while low telomerase activity and lack of teratoma formation make these cells a practical cell source for potential stem cell therapies. Further, they will promote the effectiveness of currently performed adipose-MSC transplantation, particularly for ectodermal and endodermal tissues where transplanted cells need to differentiate across the lineage from mesodermal to ectodermal or endodermal in order to replenish lost cells for tissue repair. PMID:24256547

  1. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project.

    Shapiro, Allison L B; Boyle, Kristen E; Dabelea, Dana; Patinkin, Zachary W; De la Houssaye, Becky; Ringham, Brandy M; Glueck, Deborah H; Barbour, Linda A; Norris, Jill M; Friedman, Jacob E

    2016-01-01

    The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs) through a SIRT1 and PPARγ pathway; 2) lipid potentiates the NAM-enhanced adipogenic response; and 3) the adipogenic response to NAM is associated with increased percent fat mass (%FM) among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod) shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM)/-lipid (200 μM oleate/palmitate mix), +NAM/+lipid, -NAM/+lipid, and vehicle-control (-NAM/-lipid). Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01-0.06, p human MSCs in-vitro, and that this process involves PPARγ and SIRT1. PMID:27414406

  2. Projection Stereolithographic Fabrication of Human Adipose Stem Cell-incorporated Biodegradable Scaffolds for Cartilage Tissue Engineering

    Aaron X Sun

    2015-08-01

    Full Text Available Poor self-healing ability of cartilage necessitates the development of methods for cartilage regeneration. Scaffold construction with live stem cell incorporation and subsequent differentiation presents a promising route. Projection stereolithography (PSL offers high resolution and processing speed as well as the ability to fabricate scaffolds that precisely fit the anatomy of cartilage defects using medical imaging as the design template. We report here the use of a visible-light based PSL (VL-PSL system to encapsulate human adipose-derived stem cells (hASCs into a biodegradable polymer (poly-D,L-lactic acid/polyethylene glycol/ poly-D,L-lactic acid (PDLLA-PEG/hyaluronic acid (HA matrix to produce live cell constructs with customized architectures. After fabrication, hASCs showed high viability (84% and were uniformly distributed throughout the constructs, which possessed high mechanical property with a compressive modulus of 780 kPa. The hASC-seeded constructs were then cultured in Control or TGF-β3-containing chondrogenic medium for up to 28 days. In chondrogenic medium treated group (TGF-β3 group hASCs maintained 77% viability and expressed chondrogenic genes Sox9, collagen type II, and aggrecan at 11, 232, and 2.29 x 10(5 fold increases, respectively, compared to levels at day 0 in non-chondrogenic medium. The TGF-β3 group also produced a collagen type II and glycosaminoglycan (GAG-rich extracellular matrix, detected by immunohistochemistry, and Alcian blue and Safranin O staining suggesting robust chondrogenesis within the scaffold. Without chondroinductive addition (Control group, cell viability decreased with time (65% at 28 days and showed poor cartilage matrix deposition. After 28 days, mechanical strength of the TGF-β3 group remained high at 240 kPa. Thus, the PSL- and PLLA-PEG/HA based fabrication method using adult stem cells is a promising approach in producing mechanically competent engineered cartilage for joint cartilage

  3. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    Jian-Huang Wu; Miao Li; Yan Liang; Tao Lu; Chun-Yue Duan

    2016-01-01

    Background:Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI).Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI,allowing stem cells to penetrate through the scar and promote recovery of nerve function.This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro.Methods:ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion.Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation.After successful culture,ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained.Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method,ChABC expression was verified using Western blotting,and the migration of ChABC-ADSCs was analyzed using the transwell assay.Results:Secondary collagenase digestion increased the isolation efficiency of primary ADSCs.Following transfection using lentiviral vectors,the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05).And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05).Moreover,ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05).Conclusions:Secondary collagenase digestion can be used to effectively isolate ADSCs.ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC,and ChABC expression significantly enhances the migratory capacity of ADSCs.

  4. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    Wu, Jian-Huang; Li, Miao; Liang, Yan; Lu, Tao; Duan, Chun-Yue

    2016-01-01

    Background: Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI). Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI, allowing stem cells to penetrate through the scar and promote recovery of nerve function. This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro. Methods: ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion. Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation. After successful culture, ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained. Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method, ChABC expression was verified using Western blotting, and the migration of ChABC-ADSCs was analyzed using the transwell assay. Results: Secondary collagenase digestion increased the isolation efficiency of primary ADSCs. Following transfection using lentiviral vectors, the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05). And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05). Moreover, ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05). Conclusions: Secondary collagenase digestion can be used to effectively isolate ADSCs. ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC, and ChABC expression significantly enhances the migratory capacity of ADSCs. PMID:27364797

  5. Allogeneic adipose-derived stem cells promote survival of fat grafts in immunocompetent diabetic rats.

    Zhang, Jun; Bai, Xiaozhi; Zhao, Bin; Wang, Yunchuan; Su, Linlin; Chang, Peng; Wang, Xujie; Han, Shichao; Gao, Jianxin; Hu, Xiaolong; Hu, Dahai; Liu, Xiaoyan

    2016-05-01

    Autologous adipose-derived stem cells (ADSCs) can protect fat grafts in cell-assisted lipotransfer (CAL). However, diabetes alters the intrinsic properties of ADSCs and impairs their function so that they lack these protective effects. We investigate whether allogeneic ADSCs from healthy donors could protect fat grafts in immunocompetent diabetic rats. Syngeniec adipose tissues and ADSCs were derived from diabetic Lewis (LEW) rats, whereas allogeneic ADSCs were from healthy brown-Norway rats. A grafted mixture containing 0.7 ml granule fat and 0.3 ml 6 × 10(6) allogeneic/syngeneic ADSCs was injected subcutaneously on the skulls of diabetic LEW rats. Fat samples were harvested to evaluate the levels of injury and vascularization as shown by perilipin A, CD34 and VEGF at 14 days. The immune response was evaluated with a lymphocytotoxicity test and the CD4/CD8 ratio in peripheral blood at 14 days. The volume retention of fat grafts was measured at 3 months. Healthy allogeneic ADSCs increased the expression levels of perilipin A, CD34 and VEGF at 14 days. The volume retention of fat grafts was improved by allogeneic ADSCs at 3 months. ADSCs were demonstrated to have low immunogenicity by the lymphocyte proliferation test and immunophenotype including MHC and co-stimulatory markers. The lymphocytotoxicity test and CD4/CD8 ratio indicated no obvious immune response elicited by allogeneic ADSCs. Thus, healthy allogeneic ADSCs can promote the survival of fat grafts in this immunocompetent diabetic rat model, with little or no obvious immune rejection. PMID:26662284

  6. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells

    Gruene, M; Deiwick, A; Koch, L; Schlie, S; Unger, C; Chichkov, B N [Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Pflaum, M; Wilhelmi, M; Haverich, A, E-mail: m.gruene@lzh.de [Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover (Germany)

    2011-03-15

    Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation ability nor the differentiation behaviour of the stem cells was affected by the LaBP procedure. Furthermore, the 3D grafts were differentiated down the adipogenic lineage pathway for 10 days. We verify by quantitative assessments of adipogenic markers that the 3D grafts resemble cell lineages present in natural adipose tissue. Additionally, we provide the proof that even pre-differentiated hASCs could be utilized for the generation of 3D tissue grafts. These results indicate that the biofabrication of living grafts resembling their complex native origin is within reach.

  7. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells

    Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation ability nor the differentiation behaviour of the stem cells was affected by the LaBP procedure. Furthermore, the 3D grafts were differentiated down the adipogenic lineage pathway for 10 days. We verify by quantitative assessments of adipogenic markers that the 3D grafts resemble cell lineages present in natural adipose tissue. Additionally, we provide the proof that even pre-differentiated hASCs could be utilized for the generation of 3D tissue grafts. These results indicate that the biofabrication of living grafts resembling their complex native origin is within reach.

  8. Cell-Assisted Lipotransfer for Cosmetic Breast Augmentation: Supportive Use of Adipose-Derived Stem/Stromal Cells

    Yoshimura, Kotaro; Sato, Katsujiro; Aoi, Noriyuki; Kurita, Masakazu; Hirohi, Toshitsugu; Harii, Kiyonori

    2007-01-01

    Background Lipoinjection is a promising treatment but has some problems, such as unpredictability and a low rate of graft survival due to partial necrosis. Methods To overcome the problems with lipoinjection, the authors developed a novel strategy known as cell-assisted lipotransfer (CAL). In CAL, autologous adipose-derived stem (stromal) cells (ASCs) are used in combination with lipoinjection. A stromal vascular fraction (SVF) containing ASCs is freshly isolated from half of the aspirated fa...

  9. Human Adipose-Derived Mesenchymal Stem Cells in Cell Therapy: Safety and Feasibility in Different "Hospital Exemption" Clinical Applications

    Vériter, Sophie; André, Wivine; Aouassar, Najima; Poirel, Hélène Antoine; Lafosse, Aurore; Docquier, Pierre-Louis; Dufrane, Denis

    2015-01-01

    Based on immunomodulatory, osteogenic, and pro-angiogenic properties of adipose-derived stem cells (ASCs), this study aims to assess the safety and efficacy of ASC-derived cell therapies for clinical indications. Two autologous ASC-derived products were proposed to 17 patients who had not experienced any success with conventional therapies: (1) a scaffold-free osteogenic three-dimensional graft for the treatment of bone non-union and (2) a biological dressing for dermal reconstruction of non-...

  10. Human Adipose-Derived Mesenchymal Stem Cells in Cell Therapy: Safety and Feasibility in Different "Hospital Exemption" Clinical Applications.

    Veriter, Sophie; André, Wivine; Aouassar, Najima; Poirel, Hélène; Lafosse, Aurore; Docquier, Pierre-Louis; Dufrane, Denis

    2015-01-01

    Based on immunomodulatory, osteogenic, and pro-angiogenic properties of adipose-derived stem cells (ASCs), this study aims to assess the safety and efficacy of ASC-derived cell therapies for clinical indications. Two autologous ASC-derived products were proposed to 17 patients who had not experienced any success with conventional therapies: (1) a scaffold-free osteogenic three-dimensional graft for the treatment of bone non-union and (2) a biological dressing for dermal reconstruction of non-...

  11. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential

    Barberini, Danielle Jaqueta; Freitas, Natália Pereira Paiva; Magnoni, Mariana Sartori; Maia, Leandro; Listoni, Amanda Jerônimo; Heckler, Marta Cristina; Sudano, Mateus Jose; Golim, Marjorie Assis; da Cruz Landim-Alvarenga, Fernanda; Amorim, Rogério Martins

    2014-01-01

    Introduction Studies with mesenchymal stem cells (MSCs) are increasing due to their immunomodulatory, anti-inflammatory and tissue regenerative properties. However, there is still no agreement about the best source of equine MSCs for a bank for allogeneic therapy. The aim of this study was to evaluate the cell culture and immunophenotypic characteristics and differentiation potential of equine MSCs from bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and umbilical cord (UC-MSCs) under identic...

  12. Update on Controls for Isolation and Quantification Methodology of Extracellular Vesicles Derived from Adipose Tissue Mesenchymal Stem Cells

    Franquesa, Marcella; Hoogduijn, Martin J.; Ripoll, Elia; Luk, Franka; Salih, Mahdi; Betjes, Michiel G. H.; Torras, Juan; Baan, Carla C.; Grinyó, Josep M.; Merino, Ana Maria

    2014-01-01

    The research field on extracellular vesicles (EV) has rapidly expanded in recent years due to the therapeutic potential of EV. Adipose tissue human mesenchymal stem cells (ASC) may be a suitable source for therapeutic EV. A major limitation in the field is the lack of standardization of the challenging techniques to isolate and characterize EV. The aim of our study was to incorporate new controls for the detection and quantification of EV derived from ASC and to analyze the applicability and ...

  13. Single-Center Study of 83 Horses with Suspensory Injuries Treated with Adipose-Derived Stem and Regenerative Cells

    F. Ross Rich

    2014-01-01

    Adipose-derived stem and regenerative cells (ADRCs), concentrated from autologous fat tissue, have the ability to differentiate into various specific cell types including tenocytes. In this retrospective study, clinical data are presented from 83 horses with 176 suspensory ligament injuries, treated with ADRCs, given a strictly enforced standardized rehabilitation program, and followed up for at least one year after returning to work. Assessment for a successful outcome...

  14. Adipose-Derived Stem Cells Ameliorate Allergic Airway Inflammation by Inducing Regulatory T Cells in a Mouse Model of Asthma

    Kyu-Sup Cho; Mi-Kyung Park; Shin-Ae Kang; Hee-Young Park; Sung-Lyong Hong; Hye-Kyung Park; Hak-Sun Yu; Hwan-Jung Roh

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allerg...

  15. MicroRNA-27b Enhances the Hepatic Regenerative Properties of Adipose-Derived Mesenchymal Stem Cells

    Chen, Kuang-Den; Huang, Kuang-Tzu; Lin, Chih-Che; Weng, Wei-Teng; Hsu, Li-Wen; Goto, Shigeru; Nakano, Toshiaki; Lai, Chia-Yun; Kung, Chao-Pin; Chiu, King-Wah; Wang, Chih-Chi; Cheng, Yu-Fan; Ma, Yen-Ying; Chen, Chao-Long

    2016-01-01

    Adipose-derived mesenchymal stem cells (ASCs) are readily available multipotent mesenchymal progenitor cells and have become an attractive therapeutic tool for regenerative medicine. We herein investigated the mechanistic role of how miR-27b modulated regenerative capacities of ASCs. Intravenous administration of miR-27b-transfected ASCs (ASCs-miR-27b) was conducted after 70% partial hepatectomy (PH). After PH, rats injected with ASCs-miR-27b had decreased inflammatory cytokines and increased...

  16. Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage

    Pham, Phuc Van; Bui, Khanh Hong-Thien; Ngo, Dat Quoc; Vu, Ngoc Bich; Truong, Nhung Hai; Phan, Nhan Lu-Chinh; Le, Dung Minh; Duong, Triet Dinh; Nguyen, Thanh Duc; Le, Vien Tuong; Phan, Ngoc Kim

    2013-01-01

    Introduction Adipose-derived stem cells (ADSCs) have been isolated, expanded, and applied in the treatment of many diseases. ADSCs have also been used to treat injured articular cartilage. However, there is controversy regarding the treatment efficiency. We considered that ADSC transplantation with activated platelet-rich plasma (PRP) may improve injured articular cartilage compared with that of ADSC transplantation alone. In this study, we determined the role of PRP in ADSC transplantation t...

  17. Insights from a Chimpanzee Adipose Stromal Cell Population: Opportunities for Adult Stem Cells to Expand Primate Functional Genomics

    Pfefferle, Lisa W.; Wray, Gregory A.

    2013-01-01

    Comparisons between humans and chimpanzees are essential for understanding traits unique to each species. However, linking important phenotypic differences to underlying molecular changes is often challenging. The ability to generate, differentiate, and profile adult stem cells provides a powerful but underutilized opportunity to investigate the molecular basis for trait differences between species within specific cell types and in a controlled environment. Here, we characterize adipose strom...

  18. Biological characteristics of human adipose-derived stem cells and their response to periostin in vitro

    LI Ying; YANG Xin; NIE Fang-fei; ZHAO Xia; QIN Ze-lian; LI Jian-ning

    2013-01-01

    Background Many studies on periostin have focused on its role in tumors and vascular reconstruction.However,the effect of periostin on stem cell function remains unclear.The aim of this study was to enhance vitality in adipose-derived stem cells (ADSCs),the effect of periostin on the function of ADSCs was observed.Methods Human ADSCs (hADSCs) were isolated from human adipose tissue by collagenase I digestion and collected in multi-periods for in vitro culture.CD29,CD34,CD44,CD45 and CD105 were detected by flow cytometry.In addition,directed differentiation of hADSCs was induced using adipogenic,osteogenic and chondrogenic induction mediums.The induced morphological changes were observed using oil red O,Alizarin red and alcian blue staining.Periostin was administered to hADSCs in an acidic environment.The treatments of cells were divided into three groups:a periostin group (P); an acidic control group (A); a normal group (N).Then the resulting cell proliferation and migration were detected using a Cell Counting Kit-8 (CCK-8) and a transwell chamber assay,respectively.Results The detection rates of CD29,CD44,CD105,CD34 and CD45 were 98.89%,93.73%,8699%,0.19% and 0.16%.The specific staining of cells was positive after induction culture.The mean absorbance of the cells in group P and A at 12 hours were 16.67% and 22.22% greater than group N,respectively (P <0.01).The mean absorbance of cells from group P was 20.00% greater than that of group A at 48 hours (P <0.05).The mean number of migratory cells per visual field in group A was 50.38% lower than that in group N (P <0.05).The migratory cell number in group P was 119.98% greater than that in group A (P <0.05).Conclusions The acidic environment impacted hADSC proliferation and inhibited cell migration.However,periostin was able to promote the proliferation and migration of hADSCs despite the acidic environment.

  19. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar

    Angelou Valerie

    2016-01-01

    Full Text Available Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group. We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments.

  20. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter.

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  1. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Jin Li

    Full Text Available Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf. Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  2. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models.

    Meyerrose, Todd E; De Ugarte, Daniel A; Hofling, A Alex; Herrbrich, Phillip E; Cordonnier, Taylor D; Shultz, Leonard D; Eagon, J Chris; Wirthlin, Louisa; Sands, Mark S; Hedrick, Marc A; Nolta, Jan A

    2007-01-01

    The potential for human adipose-derived mesenchymal stem cells (AMSC) to traffic into various tissue compartments was examined using three murine xenotransplantation models: nonobese diabetic/severe combined immunodeficient (NOD/SCID), nude/NOD/SCID, and NOD/SCID/MPSVII mice. Enhanced green fluorescent protein was introduced into purified AMSC via retroviral vectors to assist in identification of cells after transplantation. Transduced cells were administered to sublethally irradiated immune-deficient mice through i.v., intraperitoneal, or subcutaneous injection. Up to 75 days after transplantation, tissues were harvested and DNA polymerase chain reaction (PCR) was performed for specific vector sequences as well as for human Alu repeat sequences. Duplex quantitative PCR using human beta-globin and murine rapsyn primers assessed the contribution of human cells to each tissue. The use of the novel NOD/SCID/MPSVII mouse as a recipient allowed rapid identification of human cells in the murine tissues, using an enzyme reaction that was independent of surface protein expression or transduction with an exogenous transgene. For up to 75 days after transplantation, donor-derived cells were observed in multiple tissues, consistently across the various administration routes and independent of transduction parameters. Tissue localization studies showed that the primary MSC did not proliferate extensively at the sites of lodgement. We conclude that human AMSC represent a population of stem cells with a ubiquitous pattern of tissue distribution after administration. AMSC are easily obtained and highly amenable to current transduction protocols for retroviral transduction, making them an excellent avenue for cell-based therapies that involve a wide range of end tissue targets. PMID:16960135

  3. Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function

    Skalska, Urszula; Kontny, Ewa

    2016-01-01

    Adiponectin and leptin have recently emerged as potential risk factors in rheumatoid arthritis (RA) pathogenesis. In this study we evaluated the effects of adiponectin and leptin on immunomodulatory function of adipose mesenchymal stem cells (ASCs) derived from infrapatellar fat pad of RA patients. ASCs were stimulated with leptin, low molecular weight (LMW) and high/middle molecular weight (HMW/MMW) adiponectin isoforms. The secretory activity of ASCs and their effect on rheumatoid synovial fibroblasts (RA-FLS) and peripheral blood mononuclear cells (PBMCs) from healthy donors have been analysed. RA-ASCs secreted spontaneously TGFβ, IL-6, IL-1Ra, PGE2, IL-8, and VEGF. Secretion of all these factors was considerably upregulated by HMW/MMW adiponectin, but not by LMW adiponectin and leptin. Stimulation with HMW/MMW adiponectin partially abolished proproliferative effect of ASC-derived soluble factors on RA-FLS but did not affect IL-6 secretion in FLS cultures. ASCs pretreated with HMW/MMW adiponectin maintained their anti-inflammatory function towards PBMCs, which was manifested by moderate PBMCs proliferation inhibition and IL-10 secretion induction. We have proved that HMW/MMW adiponectin stimulates secretory potential of rheumatoid ASCs but does not exert strong impact on ASCs function towards RA-FLS and PBMCs. PMID:26681953

  4. Vitronectin-Based, Biomimetic Encapsulating Hydrogel Scaffolds Support Adipogenesis of Adipose Stem Cells.

    Clevenger, Tracy N; Hinman, Cassidy R; Ashley Rubin, Rebekah K; Smither, Kate; Burke, Daniel J; Hawker, Craig J; Messina, Darin; Van Epps, Dennis; Clegg, Dennis O

    2016-04-01

    Soft tissue defects are relatively common, yet currently used reconstructive treatments have varying success rates, and serious potential complications such as unpredictable volume loss and reabsorption. Human adipose-derived stem cells (ASCs), isolated from liposuction aspirate have great potential for use in soft tissue regeneration, especially when combined with a supportive scaffold. To design scaffolds that promote differentiation of these cells down an adipogenic lineage, we characterized changes in the surrounding extracellular environment during adipogenic differentiation. We found expression changes in both extracellular matrix proteins, including increases in expression of collagen-IV and vitronectin, as well as changes in the integrin expression profile, with an increase in expression of integrins such as αVβ5 and α1β1. These integrins are known to specifically interact with vitronectin and collagen-IV, respectively, through binding to an Arg-Gly-Asp (RGD) sequence. When three different short RGD-containing peptides were incorporated into three-dimensional (3D) hydrogel cultures, it was found that an RGD-containing peptide derived from vitronectin provided strong initial attachment, maintained the desired morphology, and created optimal conditions for in vitro 3D adipogenic differentiation of ASCs. These results describe a simple, nontoxic encapsulating scaffold, capable of supporting the survival and desired differentiation of ASCs for the treatment of soft tissue defects. PMID:26956095

  5. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes

    Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger; Emmersen, Jeppe; Fink, Trine; Zachar, Vladimir; Pennisi, Cristian Pablo, E-mail: cpennisi@hst.aau.dk

    2014-07-25

    Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

  6. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    Bo Kyung Sun

    2015-07-01

    Full Text Available Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA, significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  7. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  8. The Biomolecular Basis of Adipogenic Differentiation of Adipose-Derived Stem Cells

    Maria Giovanna Scioli

    2014-04-01

    Full Text Available There is considerable attention regarding the role of receptor signaling and downstream-regulated mediators in the homeostasis of adipocytes, but less information is available concerning adipose-derived stem cell (ASC biology. Recent studies revealed that the pathways regulating ASC differentiation involve the activity of receptor tyrosine kinases (RTKs, including fibroblast growth factor, vascular endothelial growth factor, ErbB receptors and the downstream-regulated serine/threonine protein kinase B (Akt and phosphatase and tensin homolog (PTEN activity. RTKs are cell surface receptors that represent key regulators of cellular homeostasis but also play a critical role in the progression of cancer. Many of the metabolic effects and other consequences of activated RTKs are mediated by the modulation of Akt and extracellular signal-regulated protein kinases 1 (Erk-1 signaling. Akt activity sustains survival and the adipogenic differentiation of ASCs, whereas Erk-1 appears downregulated. The inhibition of FGFR-1, EGFR and ErbB2 reduced proliferation, but only FGFR-1 inihibition reduced Akt activity and adipogenesis. Adipogenesis and neovascularization are also chronologically and spatially coupled processes and RTK activation and downstream targets are also involved in ASC-mediated angiogenesis. The potentiality of ASCs and the possibility to modulate specific molecular pathways underlying ASC biological processes and, in particular, those shared with cancer cells, offer new exciting strategies in the field of regenerative medicine.

  9. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model.

    Lee, Mijung; Liu, Tian; Im, Wooseok; Kim, Manho

    2016-08-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the aggregation of mutant Huntingtin (mHtt). Adipose-derived stem cells (ASCs) have a potential for use in the treatment of incurable disorders, including HD. ASCs secrete various neurotrophic factors and microvesicles, and modulate hostile microenvironments affected by disease through paracrine mechanisms. Exosomes are small vesicles that transport nucleic acid and protein between cells. Here, we investigated the therapeutic role of exosomes from ASCs (ASC-exo) using in vitro HD model by examining pathological phenotypes of this model. Immunocytochemistry result showed that ASC-exo significantly decreases mHtt aggregates in R6/2 mice-derived neuronal cells. Western blot result further confirmed the reduction in mHtt aggregates level by ASC-exo treatment. ASC-exo up-regulates PGC-1, phospho-CREB and ameliorates abnormal apoptotic protein level in an in vitro HD model. In addition, MitoSOX Red, JC-1 and cell viability assay showed that ASC-exo reduces mitochondrial dysfunction and cell apoptosis of in vitro HD model. These findings suggest that ASC-exo has a therapeutic potential for treating HD by modulating representative cellular phenotypes of HD. PMID:27177616

  10. Comparison of chondroitin sulfate and hyaluronic Acid doped conductive polypyrrole films for adipose stem cells.

    Björninen, Miina; Siljander, Aliisa; Pelto, Jani; Hyttinen, Jari; Kellomäki, Minna; Miettinen, Susanna; Seppänen, Riitta; Haimi, Suvi

    2014-09-01

    Polypyrrole (PPy) is a conductive polymer that has aroused interest due to its biocompatibility with several cell types and high tailorability as an electroconductive scaffold coating. This study compares the effect of hyaluronic acid (HA) and chondroitin sulfate (CS) doped PPy films on human adipose stem cells (hASCs) under electrical stimulation. The PPy films were synthetized electrochemically. The surface morphology of PPy-HA and PPy-CS was characterized by an atomic force microscope. A pulsed biphasic electric current (BEC) was applied via PPy films non-stimulated samples acting as controls. Viability, attachment, proliferation and osteogenic differentiation of hASCs were evaluated by live/dead staining, DNA content, Alkaline phosphatase activity and mineralization assays. Human ASCs grew as a homogenous cell sheet on PPy-CS surfaces, whereas on PPy-HA cells clustered into small spherical structures. PPy-CS supported hASC proliferation significantly better than PPy-HA at the 7 day time point. Both substrates equally triggered early osteogenic differentiation of hASCs, although mineralization was significantly induced on PPy-CS compared to PPy-HA under BEC. These differences may be due to different surface morphologies originating from the CS and HA dopants. Our results suggest that PPy-CS in particular is a potential osteogenic scaffold coating for bone tissue engineering. PMID:24823653

  11. Melatonin Protects Human Adipose-Derived Stem Cells from Oxidative Stress and Cell Death

    Han, Xiaolian; Sivakumaran, Priyadharshini; Lim, Shiang Y.; Morrison, Wayne A.

    2016-01-01

    Background Adipose-derived stem cells (ASCs) have applications in regenerative medicine based on their therapeutic potential to repair and regenerate diseased and damaged tissue. They are commonly subject to oxidative stress during harvest and transplantation, which has detrimental effects on their subsequent viability. By functioning as an antioxidant against free radicals, melatonin may exert cytoprotective effects on ASCs. Methods We cultured human ASCs in the presence of varying dosages of hydrogen peroxide and/or melatonin for a period of 3 hours. Cell viability and apoptosis were determined with propidium iodide and Hoechst 33342 staining under fluorescence microscopy. Results Hydrogen peroxide (1–2.5 mM) treatment resulted in an incremental increase in cell death. 2 mM hydrogen peroxide was thereafter selected as the dose for co-treatment with melatonin. Melatonin alone had no adverse effects on ASCs. Co-treatment of ASCs with melatonin in the presence of hydrogen peroxide protected ASCs from cell death in a dose-dependent manner, and afforded maximal protection at 100 µM (n=4, one-way analysis of variance P<0.001). Melatonin co-treated ASCs displayed significantly fewer apoptotic cells, as demonstrated by condensed and fragmented nuclei under fluorescence microscopy. Conclusions Melatonin possesses cytoprotective properties against oxidative stress in human ASCs and might be a useful adjunct in fat grafting and cell-assisted lipotransfer. PMID:27218020

  12. Antioxidative fullerol promotes osteogenesis of human adipose-derived stem cells

    Yang XL

    2014-08-01

    Full Text Available Xinlin Yang, Ching-Ju Li, Yueping Wan, Pinar Smith, Guowei Shang, Quanjun Cui Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA Abstract: Antioxidants were implicated as potential reagents to enhance osteogenesis, and nano-fullerenes have been demonstrated to have a great antioxidative capacity by both in vitro and in vivo experiments. In this study, we assessed the impact of a polyhydroxylated fullerene, fullerol, on the osteogenic differentiation of human adipose-derived stem cells (ADSCs. Fullerol was not toxic against human ADSCs at concentrations up to 10 µM. At a concentration of 1 µM, fullerol reduced cellular reactive oxygen species after a 5-day incubation either in the presence or in the absence of osteogenic media. Pretreatment of fullerol for 7 days increased the osteogenic potential of human ADSCs. Furthermore, when incubated together with osteogenic medium, fullerol promoted osteogenic differentiation in a dose-dependent manner. Finally, fullerol proved to promote expression of FoxO1, a major functional isoform of forkhead box O transcription factors that defend against reactive oxygen species in bone. Although further clarification of related mechanisms is required, the findings may help further development of a novel approach for bone repair, using combined treatment of nano-fullerol with ADSCs. Keywords: polyhydroxylated fullerene, bone repair, reactive oxygen species, forkhead box protein O1

  13. Characterization of Senescence of Culture-expanded Human Adipose-derived Mesenchymal Stem Cells

    Legzdina, Diana; Romanauska, Anete; Nikulshin, Sergey; Kozlovska, Tatjana; Berzins, Uldis

    2016-01-01

    Background and Objectives Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates in regenerative medicine. The need for in vitro propagation to obtain therapeutic quantities of the cells imposes a risk of impaired functionality due to cellular senescence. The aim of the study was to analyze in vitro senescence of previously cryopreserved human ADSCs subjected to serial passages in cell culture. Methods and Results ADSC cultures from 8 donors were cultivated until proliferation arrest was reached. A gradual decline of ADSC fitness was observed by altered cell morphology, loss of proliferative, clonogenic and differentiation abilities and increased β-galactosidase expression all of which occurred in a donor-specific manner. Relative telomere length (RTL) analysis revealed that only three tested cultures encountered replicative senescence. The presence of two ADSC subsets with significantly different RTL and cell size was discovered. The heterogeneity of ADSC cultures was supported by the intermittent nature of aging seen in tested samples. Conclusions We conclude that the onset of in vitro senescence of ADSCs is a strongly donor-specific process which is complicated by the intricate dynamics of cell subsets present in ADSC population. This complexity needs to be carefully considered when elaborating protocols for personalized cellular therapy. PMID:27426094

  14. Role of Notch Signaling in the Maintenance of Human Mesenchymal Stem Cells Under Hypoxic Conditions

    MORIYAMA, Hiroyuki; Moriyama, Mariko; Isshi, Haruki; Ishihara, Shin; Okura, Hanayuki; Ichinose, Akihiro; Ozawa, Toshiyuki; Matsuyama, Akifumi; Hayakawa, Takao

    2014-01-01

    Human adipose tissue-derived multilineage progenitor cells (hADMPCs) are attractive for cell therapy and tissue engineering because of their multipotency and ease of isolation without serial ethical issues. However, their limited in vitro lifespan in culture systems hinders their therapeutic application. Some somatic stem cells, including hADMPCs, are known to be localized in hypoxic regions; thus, hypoxia may be beneficial for ex vivo culture of these stem cells. These cells exhibit a high l...

  15. Concentrated Hypoxia-Preconditioned Adipose Mesenchymal Stem Cell-Conditioned Medium Improves Wounds Healing in Full-Thickness Skin Defect Model.

    Sun, Biao; Guo, Shilei; Xu, Fei; Wang, Bin; Liu, Xiujuan; Zhang, Yuanyuan; Xu, Yan

    2014-01-01

    In recent years, the bioactive factors were utilized in exercise and athletic skin injuries. In this research, the concentrated conditioned medium of hypoxia-preconditioned adipose mesenchymal stem cells, which is rich in bioactive factor, is applied in full-thickness skin defect model to evaluate the therapeutic efficacy. Adipose mesenchymal stem cells were harvested from the abdominal subcutaneous adipose tissues. The surface markers and the potential of differentiation were analyzed. The conditioned medium of hypoxia-preconditioned stem cells was collected and freeze-dried and then applied on the rat full-thickness skin defect model, and the healing time of each group was recorded. Haematoxylin and eosin staining of skin was assessed by microscope. The characteristics of adipose mesenchymal stem cells were similar to those of other mesenchymal stem cells. The concentration of protein in freeze-dried conditioned medium in 1 mL water was about 15 times higher than in the normal condition medium. In vivo, the concentrated hypoxia-preconditioned conditioned medium can reduce the wound size and accelerate the skin wound healing. The concentrated hypoxia-preconditioned adipose mesenchymal stem cell-conditioned medium has great effect on rat model of wound healing, and it would be an ideal agent for wound care in clinical application. PMID:27433483

  16. Amniotic membrane seeded with mesenchymal adipose-derived stem cell for coverage of wound in third degree burn: An experimental study

    Mohammad Javad Fatemi

    2014-09-01

    Conclusion: Acellular amnion seeded with adipose-derived stem cell can result in faster wound healing and better histopathology characteristic. The amnion as a scaffold and the fat derived stem cells as healing accelerator are recommended for coverage of the 3rd degree burn wounds after excision and it may reduce the need for skin graft.

  17. Hyaluronan and Fibrin Biomaterial as Scaffolds for Neuronal Differentiation of Adult Stem Cells Derived from Adipose Tissue and Skin

    Chiara Gardin

    2011-10-01

    Full Text Available Recently, we have described a simple protocol to obtain an enriched culture of adult stem cells organized in neurospheres from two post-natal tissues: skin and adipose tissue. Due to their possible application in neuronal tissue regeneration, here we tested two kinds of scaffold well known in tissue engineering application: hyaluronan based membranes and fibrin-glue meshes. Neurospheres from skin and adipose tissue were seeded onto two scaffold types: hyaluronan based membrane and fibrin-glue meshes. Neurospheres were then induced to acquire a glial and neuronal-like phenotype. Gene expression, morphological feature and chromosomal imbalance (kariotype were analyzed and compared. Adipose and skin derived neurospheres are able to grow well and to differentiate into glial/neuron cells without any chromosomal imbalance in both scaffolds. Adult cells are able to express typical cell surface markers such as S100; GFAP; nestin; βIII tubulin; CNPase. In summary, we have demonstrated that neurospheres isolated from skin and adipose tissues are able to differentiate in glial/neuron-like cells, without any chromosomal imbalance in two scaffold types, useful for tissue engineering application: hyaluronan based membrane and fibrin-glue meshes.

  18. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia;

    2013-01-01

    Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow...... human skin (human adult skin stromal cells, (hASSCs) and human new-born skin stromal cells (hNSSCs)) grew readily in culture and the growth rate was highest in hNSSCs and lowest in hATSCs. Compared with phenotype of hBM-MSC, all cell populations were CD34(-), CD45(-), CD14(-), CD31(-), HLA-DR(-), CD13......, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and...

  19. Pdcd4 restrains the self-renewal and white-to-beige transdifferentiation of adipose-derived stem cells.

    Bai, Y; Shang, Q; Zhao, H; Pan, Z; Guo, C; Zhang, L; Wang, Q

    2016-01-01

    The stemness maintenance of adipose-derived stem cells (ADSCs) is important for adipose homeostasis and energy balance. Programmed cell death 4 (Pdcd4) has been demonstrated to be involved in the development of obesity, but its possible roles in ADSC function and adipogenic capacity remain unclear. In this study, we demonstrate that Pdcd4 is a key controller that limits the self-renewal and white-to-beige transdifferentiation of ADSCs. Pdcd4 deficiency in mice caused stemness enhancement of ADSCs as evidenced by increased expression of CD105, CD90, Nanog and Oct4 on ADSCs, together with enhanced in situ proliferation in adipose tissues. Pdcd4 deficiency promoted proliferation, colony formation of ADSCs and drove more ADSCs entering the S phase accompanied by AKT activation and cyclinD1 upregulation. Blockade of AKT signaling in Pdcd4-deficient ADSCs led to a marked decline in cyclinD1, S-phase entry and cell proliferation, revealing AKT as a target for repressing ADSC self-renewal by Pdcd4. Intriguingly, depletion of Pdcd4 promoted the transdifferentiation of ADSCs into beige adipocytes. A reduction in lipid contents and expression levels of white adipocyte markers including C/EBPα, PPAR-γ, adiponectin and αP2 was detected in Pdcd4-deficient ADSCs during white adipogenic differentiation, substituted by typical beige adipocyte characteristics including small, multilocular lipid droplets and UCP1 expression. More lactate produced by Pdcd4-deficient ADSCs might be an important contributor to the expression of UCP1 and white-to-beige transdifferentiation. In addition, an elevation of UCP1 expression was confirmed in white adipose tissues from Pdcd4-deficient mice upon high-fat diet, which displayed increased energy expenditure and resistance to obesity as compared with wild-type obese mice. These findings provide evidences that Pdcd4 produces unfavorable influences on ADSC stemness, which contribute to adipose dysfunction, obesity and metabolic syndromes, thereby

  20. Human Adipose-Derived Stem Cells on Rapid Prototyped Three-Dimensional Hydroxyapatite/Beta-Tricalcium Phosphate Scaffold.

    Canciani, Elena; Dellavia, Claudia; Ferreira, Lorena Maria; Giannasi, Chiara; Carmagnola, Daniela; Carrassi, Antonio; Brini, Anna Teresa

    2016-05-01

    In the study, we assess a rapid prototyped scaffold composed of 30/70 hydroxyapatite (HA) and beta-tricalcium-phosphate (β-TCP) loaded with human adipose-derived stem cells (hASCs) to determine cell proliferation, differentiation toward osteogenic lineage, adhesion and penetration on/into the scaffold.In this in vitro study, hASCs isolated from fat tissue discarded after plastic surgery were expanded, characterized, and then loaded onto the scaffold. Cells were tested for: viability assay (Alamar Blue at days 3, 7 and Live/Dead at day 32), differentiation index (alkaline phosphatase activity at day 14), scaffold adhesion (standard error of the mean analysis at days 5 and 18), and penetration (ground sections at day 32).All the hASC populations displayed stemness markers and the ability to differentiate toward adipogenic and osteogenic lineages.Cellular vitality increased between 3 and 7 days, and no inhibitory effect by HA/β-TCP was observed. Under osteogenic stimuli, scaffold increased alkaline phosphatase activity of +243% compared with undifferentiated samples. Human adipose-derived stem cells adhered on HA/β-TCP surface through citoplasmatic extensions that occupied the macropores and built networks among them. Human adipose derived stem cells were observed in the core of HA/β-TCP. The current combination of hASCs and HA/β-TCP scaffold provided encouraging results. If authors' data will be confirmed in preclinical models, the present engineering approach could represent an interesting tool in treating large bone defects. PMID:27092915

  1. Novel pathway of adipogenesis through cross-talk between adipose tissue macrophages, adipose stem cells and adipocytes: evidence of cell plasticity.

    Gregorio Chazenbalk

    Full Text Available INTRODUCTION: Previous studies highlight a complex relationship between lineage and phenotype for adipose tissue macrophages (ATMs, adipose stem cells (ASCs, and adipocytes, suggesting a high degree of plasticity of these cells. In the present study, using a novel co-culture system, we further characterized the interaction between ATMs, ASCs and adipocytes. RESEARCH DESIGN AND METHODS: Human adipocytes and the stromal vascular fraction containing ATMs and ASCs were isolated from human adipose tissue and co-cultured for 24 hours. FACS was used to characterize ATMs and ASCs before and after co-culture. Preadipocytes generated after co-culture were characterized by immunostaining for DLK (preadipocytes, CD14 and CD68 (ATMs, CD34 (ASCs, and Nile Red staining for lipid drops. qRT-PCR was used to quantify adipogenic markers such as C/EBPα and PPARγ. A novel fluorescent nanobead lineage tracing method was utilized before co-culture where fluorescent nanobeads were internalized by CD68 (+ ATMs. RESULTS: Co-culture of adipocytes with ATMs and ASCs increased the formation of new preadipocytes, thereby increasing lipid accumulation and C/EBPα and PPARγ gene expression. Preadipocytes originating after co-culture were positive for markers of preadipocytes, ATMs and ASCs. Moreover, fluorescent nanobeads were internalized by ATMs before co-culture and the new preadipocytes formed after co-culture also contained fluorescent nanobeads, suggesting that new preadipocytes originated in part from ATMs. The formation of CD34(+/CD68(+/DLK (+ cell spheres supported the interaction of ATMs, ASCs and preadipocytes. CONCLUSIONS: Cross-talk between adipocytes, ATMs and ASCs promotes preadipocyte formation. The regulation of this novel adipogenic pathway involves differentiation of ATMs to preadipocytes. The presence of CD34(+/CD68(+/DLK(+ cells grouped in spheres suggest that paracrine interactions between these cell types plays an important role in the generation and

  2. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.

    Thomas A Mendel

    Full Text Available BACKGROUND: Retinal vasculopathies, including diabetic retinopathy (DR, threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy. METHODOLOGY/PRINCIPAL FINDINGS: We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR, ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area. ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction. Treatment of ASCs with transforming growth factor beta (TGF-β1 enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection. CONCLUSIONS/SIGNIFICANCE: ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple

  3. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh

    Meng Deng

    2015-01-01

    Full Text Available Adipose-derived stem cell (ADSC is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34− when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.

  4. Effects of melatonin on the proliferation and differentiation of rat adipose-derived stem cells

    Zaminy Arash

    2008-01-01

    Full Text Available Background: Osteogenesis driven by adipose-derived stem cells (ADSCs is regulated by physiological and pathological factors. Accumulating evidence from in vitro and in vivo experiments suggests that melatonin may have an influence on bone formation. However, little is known about the effects of melatonin on osteogenesis, which thus remains to be elucidated. This study was performed to determine whether melatonin at physiological concentrations (0.01-10 nM could affect the in vitro proliferation and osteogenic differentiation of rat ADSCs. Materials and Methods: ADSCs were isolated from the fat of adult rats. After cell expansion in culture media and through three passages, osteogenesis was induced in a monolayer culture using osteogenic medium with or without melatonin at physiological concentrations (0.01-10 nM. After four weeks, the cultures were examined for mineralization by Alizarin Red S and von Kossa staining and for alkaline phosphatase (ALP activity using an ALP kit. Cell viability and apoptosis were also assayed by 3-(4, 5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTT assay and flow cytometry, respectively. Results: The results indicated that at physiological concentrations, melatonin suppressed proliferation and differentiation of ADSCs. These data indicate that ADSCs exposed to melatonin, had a lower ALP activity in contrast to the cells exposed to osteogenic medium alone. Similarly, mineral deposition (calcium level also decreased in the presence of melatonin. Flow cytometry confirmed that cell growth had decreased and that the numbers of apoptotic cells had increased. Conclusion: These results suggest that the physiological concentration of melatonin has a negative effect on ADSC osteogenesis.

  5. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice

    Aso, Kazuyoshi; Tsuruhara, Akitoshi; Takagaki, Kentaro; Oki, Katsuyuki; Ota, Megumi; Nose, Yasuhiro; Tanemura, Hideki; Urushihata, Naoki; Sasanuma, Jinichi; Sano, Masayuki; Hirano, Atsuyuki; Aso, Rio; McGhee, Jerry R.; Fujihashi, Kohtaro

    2016-01-01

    It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer’s patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice. PMID:26840058

  6. Adipose-derived stem cells retain their regenerative potential after methotrexate treatment

    Beane, Olivia S. [Center for Biomedical Engineering, Brown University, Providence, RI (United States); Fonseca, Vera C. [Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI (United States); Darling, Eric M., E-mail: Eric_Darling@brown.edu [Center for Biomedical Engineering, Brown University, Providence, RI (United States); Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI (United States); Department of Orthopaedics, Brown University, Providence, RI (United States); School of Engineering, Brown University, Providence, RI (United States)

    2014-10-01

    In musculoskeletal tissues like bone, chemotherapy can impair progenitor cell differentiation and proliferation, resulting in decreased bone growth and mineralization throughout a patient's lifetime. In the current study, we investigated the effects of chemotherapeutics on adipose-derived stem cell (ASC) function to determine whether this cell source could be a candidate for repairing, or even preventing, chemotherapy-induced tissue damage. Dose-dependent proliferation rates of ASCs and normal human fibroblasts (NHFs) were quantified after treatment with cytarabine (CY), etoposide (ETO), methotrexate (MTX), and vincristine (VIN) using a fluorescence-based assay. The influence of MTX on the multipotency of ASCs and freshly isolated stromal vascular fraction (SVF) cells was also evaluated using lineage-specific stains and spectrophotometry. ASC and NHF proliferation were equally inhibited by exposure to CY and ETO; however, when treated with MTX and VIN, ASCs exhibited greater resistance. This was especially apparent for MTX-treated samples, with ASC proliferation showing no inhibition for clinically relevant MTX doses ranging from 0.1 to 50 μM. Additional experiments revealed that the differentiation potential of ASCs was not affected by MTX treatment and that upregulation of dihydrofolate reductase possibly contributed to this response. Moreover, SVF cells, which include ASCs, exhibited similar resistance to MTX impairment, with respect to cellular proliferation, clonogenicity, and differentiation capability. Therefore, we have shown that the regenerative properties of ASCs resist the cytotoxicity of MTX, identifying these cells as a potential key for repairing musculoskeletal damage in patients undergoing chemotherapy. - Highlights: • Long-term effects of chemotherapeutics can include musculoskeletal dysfunction. • A screen of common drugs showed disparate effects on ASCs and fibroblasts. • One drug, methotrexate, did not impair ASC growth

  7. Adipose-derived stem cells retain their regenerative potential after methotrexate treatment

    In musculoskeletal tissues like bone, chemotherapy can impair progenitor cell differentiation and proliferation, resulting in decreased bone growth and mineralization throughout a patient's lifetime. In the current study, we investigated the effects of chemotherapeutics on adipose-derived stem cell (ASC) function to determine whether this cell source could be a candidate for repairing, or even preventing, chemotherapy-induced tissue damage. Dose-dependent proliferation rates of ASCs and normal human fibroblasts (NHFs) were quantified after treatment with cytarabine (CY), etoposide (ETO), methotrexate (MTX), and vincristine (VIN) using a fluorescence-based assay. The influence of MTX on the multipotency of ASCs and freshly isolated stromal vascular fraction (SVF) cells was also evaluated using lineage-specific stains and spectrophotometry. ASC and NHF proliferation were equally inhibited by exposure to CY and ETO; however, when treated with MTX and VIN, ASCs exhibited greater resistance. This was especially apparent for MTX-treated samples, with ASC proliferation showing no inhibition for clinically relevant MTX doses ranging from 0.1 to 50 μM. Additional experiments revealed that the differentiation potential of ASCs was not affected by MTX treatment and that upregulation of dihydrofolate reductase possibly contributed to this response. Moreover, SVF cells, which include ASCs, exhibited similar resistance to MTX impairment, with respect to cellular proliferation, clonogenicity, and differentiation capability. Therefore, we have shown that the regenerative properties of ASCs resist the cytotoxicity of MTX, identifying these cells as a potential key for repairing musculoskeletal damage in patients undergoing chemotherapy. - Highlights: • Long-term effects of chemotherapeutics can include musculoskeletal dysfunction. • A screen of common drugs showed disparate effects on ASCs and fibroblasts. • One drug, methotrexate, did not impair ASC growth

  8. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells

    Trabecular bone has an interconnected porous structure, which influences cellular responses, biochemical transport and mechanical strength. Appropriately mimicking this structural organization in biomaterial scaffolds can facilitate more robust bone tissue regeneration and integration by providing a native microenvironment to the cells. This study examined the effect of pore size on human adipose-derived stem/stromal cell (ASC) osteogenesis within poly(ε-caprolactone) (PCL) scaffolds. Scaffold pore size was controlled by porogen leaching of custom-made paraffin particles with three different size ranges: P200 (< 500 µm), P500 (500–1000 µm), and P1000 (1000–1500 µm). Scaffolds produced by leaching these particles exhibited highly interconnected pores and rough surface structures that were favorable for cell attachment and ingrowth. The osteogenic response of ASCs was evaluated following 3 weeks of in vitro culture using biochemical (ALP, Ca2+/DNA content), mechanical (compression test) and histological (H and E and von Kossa staining) analyses. It was observed that while the total number of cells was similar for all scaffolds, the cell distributions and osteogenic properties were affected by the scaffold pore size. ASCs were able to bridge smaller pores and grow uniformly within these scaffolds (P200) while they grew as a layer along the periphery of the largest pores (P1000). The cell-biomaterial interactions specific to the latter case led to enhanced osteogenic responses. The ALP activity and Ca2+ deposition were doubled in P1000 scaffolds as compared to P200 scaffolds. A significant difference was observed between the compressive strength of unseeded and seeded P1000 scaffolds. Therefore, we demonstrated that the use of scaffolds with pores that are in the range of 1 mm enhances in vitro ASC osteogenesis, which may improve their performance in engineered bone substitutes. (paper)

  9. The Use Of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation And Differentiation For Use In Autologous Grafts

    Abrahamse, Heidi

    2009-09-01

    Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and

  10. Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis.

    Josephine C Bodle

    Full Text Available Adipose-derived stem cells (ASC are multipotent stem cells that show great potential as a cell source for osteogenic tissue replacements and it is critical to understand the underlying mechanisms of lineage specification. Here we explore the role of primary cilia in human ASC (hASC differentiation. This study focuses on the chemosensitivity of the primary cilium and the action of its associated proteins: polycystin-1 (PC1, polycystin-2 (PC2 and intraflagellar transport protein-88 (IFT88, in hASC osteogenesis. To elucidate cilia-mediated mechanisms of hASC differentiation, siRNA knockdown of PC1, PC2 and IFT88 was performed to disrupt cilia-associated protein function. Immunostaining of the primary cilium structure indicated phenotypic-dependent changes in cilia morphology. hASC cultured in osteogenic differentiation media yielded cilia of a more elongated conformation than those cultured in expansion media, indicating cilia-sensitivity to the chemical environment and a relationship between the cilium structure and phenotypic determination. Abrogation of PC1, PC2 and IFT88 effected changes in both hASC proliferation and differentiation activity, as measured through proliferative activity, expression of osteogenic gene markers, calcium accretion and endogenous alkaline phosphatase activity. Results indicated that IFT88 may be an early mediator of the hASC differentiation process with its knockdown increasing hASC proliferation and decreasing Runx2, alkaline phosphatase and BMP-2 mRNA expression. PC1 and PC2 knockdown affected later osteogenic gene and end-product expression. PC1 knockdown resulted in downregulation of alkaline phosphatase and osteocalcin gene expression, diminished calcium accretion and reduced alkaline phosphatase enzymatic activity. Taken together our results indicate that the structure of the primary cilium is intimately associated with the process of hASC osteogenic differentiation and that its associated proteins are critical

  11. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  12. Anti-Aging Effect of Adipose-Derived Stem Cells in a Mouse Model of Skin Aging Induced by D-Galactose

    Zhang, Shengchang; Dong, Ziqing; Peng, Zhangsong; Lu, Feng

    2014-01-01

    Introduction Glycation products accumulate during aging of slowly renewing tissue, including skin, and are suggested as an important mechanism underlying the skin aging process. Adipose-derived cells are widely used in the clinic to treat ischemic diseases and enhance wound healing. Interestingly, adipose-derived stem cells (ASCs) are also effective in anti-aging therapy, although the mechanism underlying their effects remains unknown. The purpose of the present study was to examine the anti-...

  13. Cognitive improvement following transvenous adipose-derived mesenchymal stem cell transplantation in a rat model of traumatic brain injury

    Dongfei Li; Chun Yang; Rongmei Qu; Huiying Yang; Meichun Yu; Hui Tao; Jingxing Dai; Lin Yuan

    2011-01-01

    The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein.Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.

  14. 脂肪间充质干细胞移植治疗1型糖尿病%Transplantation of adipose derived mesenchymal stem cells for treatment of type 1 diabetes mellitus

    许评; 刘建安

    2015-01-01

    1型糖尿病严重威胁人类健康,胰岛细胞移植可为机体提供正常的胰岛组织细胞,替代体内已被疾病破坏的胰岛细胞,从而维持正常的血糖水平,达到阻止或延缓并发症的发生,为胰岛素依赖的糖尿病带来新的治疗方案。随着干细胞研究的深入,间充质干细胞诱导后移植治疗1型糖尿病取得了进一步的发展,当然随着研究的深入发现了许多亟待解决的问题,即便如此,脂肪间充质干细胞诱导后移植为临床治疗1型糖尿病带来了新的希望,并指明了方向。%The diabetes mellitus of type 1 severely threats human health. Transplantation of cells from pancreatic islet can provide normal pancreatic islet cells for human body. At the same time, it can replace cells from pancreatic islet which are destroyed by type 1 diabetes mellitus. As a result, normal blood glucose levels can be achieved, and in order to prevent and delay the development of various diabetic complications. As the research of stem cell continues, after induced mesenchymal stem cells were transplanted to type 1 diabetes mellitus patients, we have got better results. Of course, many problems are found. Even so, the transplantion of induced adipose tissue-derived mesenchymal stem cells for clinical treatment of type 1 diabetes has brought new hope, and pointed out the direction.

  15. Cellular and molecular basis of adipose tissue development: from stem cells to adipocyte physiology

    Louveau, Isabelle; Perruchot, Marie-Hélène; Gondret, Florence

    2014-01-01

    White adipose tissue plays a key role in the regulation of energy balance in vertebrates. Its primary function is to store and release energy. It is also recognized to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Unlike other tissues, adipose tissue mass has large capacity to expand and can be seen as a dynamic tissue able to adapt to a variety of environmental and genetic factors. The aim of this review...

  16. Adipose tissue stem cells meet preadipocyte commitment: going back to the future[S

    Cawthorn, William P; Erica L. Scheller; MacDougald, Ormond A.

    2012-01-01

    White adipose tissue (WAT) is perhaps the most plastic organ in the body, capable of regeneration following surgical removal and massive expansion or contraction in response to altered energy balance. Research conducted for over 70 years has investigated adipose tissue plasticity on a cellular level, spurred on by the increasing burden that obesity and associated diseases are placing on public health globally. This work has identified committed preadipocytes in the stromal vascular fraction o...

  17. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project

    Shapiro, Allison L. B.; Boyle, Kristen E.; Dabelea, Dana; Patinkin, Zachary W.; De la Houssaye, Becky; Ringham, Brandy M.; Glueck, Deborah H.; Barbour, Linda A.; Norris, Jill M.; Friedman, Jacob E.

    2016-01-01

    The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs) through a SIRT1 and PPARγ pathway; 2) lipid potentiates the NAM-enhanced adipogenic response; and 3) the adipogenic response to NAM is associated with increased percent fat mass (%FM) among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod) shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM)/–lipid (200 μM oleate/palmitate mix), +NAM/+lipid, –NAM/+lipid, and vehicle-control (–NAM/–lipid). Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01), FABP4 protein (+57%, p <0.01), and intracellular lipid content (+51%, p <0.01). Lipid did not significantly increase either PPARγ protein (p = 0.98) or FABP4 protein content (p = 0.82). There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09). In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05) in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01–0.06, p <0.001). These are the first data to support that chronic NAM

  18. [Adipose-derived stem cells promote the polarization from M1 macrophages to M2 macrophages].

    Yin, Xuehong; Pang, Chunyan; Bai, Li; Zhang, Ying; Geng, Lixia

    2016-03-01

    Objective To investigate the effects of adipose-derived stem cells (ADSCs) on M1/M2 macrophages and whether ADSCs are able to promote the polarization from M1 macrophages to M2 macrophages. Methods M1 macrophages were induced from J774.1 macrophages by 24-hour stimulation of lipopolysaccharide (LPS) and interferon γ (IFN-γ), and M2 macrophages were induced from J774.1 macrophages by interleukin 4 (IL-4) for another 24 hours. Then M1/M2 macrophages were separately cultured in the presence of ADSCs for 24 hours. The M1/M2 macrophages and their corresponding supernatants were collected for further analysis. The expressions of IL-6, tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS), CC chemokine ligand 2 (CCL2), CD86, arginase 1 (Arg1), mannose receptors/CD206 (MR/CD206), IL-10, found in inflammatory zone 1 (FIZZ1), chitinase 3-like 3 (Ym-1) were detected by real-time PCR and ELISA. Results ADSCs significantly decreased the levels of IL-6, TNF-α, iNOS, CCL2 and CD86, and increased the levels of Arg1, CD206 and IL-10 in M1 macrophages. In the supernatant of M1 macrophages, the expressions of IL-6 and TNF-α were reduced, while those of CD206 were enhanced. In M2 macrophages, ADSCs resulted in down-regulation of IL-6, TNF-α, iNOS, CD86 and up-regulation of Arg1, CD206, FIZZ-1, Ym-1 and IL-10. In the supernatant of M2 macrophages, the expression levels of IL-6 and TNF-α were down-regulated and those of CD206 were up-regulated. Conclusion ADSCs can inhibit the gene expression of M1 macrophages and promote the gene expression of M2 macrophages, as well as mediate the polarization from M1 macrophages to M2 macrophages. PMID:26927552

  19. Production of islet-like insulin-producing cell clusters in vitro from adipose-derived stem cells

    Loan Thi-Tung Dang

    2015-01-01

    Full Text Available Diabetes mellitus is a high incidence disease that has increased rapidly in recent years. Many new therapies are being studied and developed in order to find an effective treatment. An ideal candidate is stem cell therapy. In this study, we investigated the differentiation of adipose derived stem cells (ADSCs into pseudo-islets in defined medium in vitro, to produce large quantities of insulin-producing cells (IPCs for transplantation. ADSCs isolated from adipose tissue were induced to differentiate into islet-like insulin-producing cell clusters in vitro by inducing medium DMEM/F12 containing nicotinamide, N2, B27, bFGF, and insulin-transferrin-selenite (ITS. Differentiated cells were analyzed for properties of IPCs, including storage of Zn2+ by dithizone staining, insulin production by ELISA and immunochemistry, and beta cell-related gene expression by reverse transcriptase PCR. The results showed that after 2 weeks of differentiation, the ADSCs aggregated into cell clusters, and after 4 weeks they formed islets, 50 and ndash;400 micrometers in diameter. These islet cells exhibited characteristics of pancreatic beta cells as they were positive for dithizone staining, expressed insulin in vitro and C-peptide in the cytoplasm, and expressed pancreatic beta cell-specific genes, including Pdx-1, NeuroD, and Ngn3. These results demonstrate that ADSCs can be used to produce a large number of functional islets for research as well as application. [Biomed Res Ther 2015; 2(1.000: 184-192

  20. Acupoint Injection of Autologous Stromal Vascular Fraction and Allogeneic Adipose-Derived Stem Cells to Treat Hip Dysplasia in Dogs

    Camila Marx

    2014-01-01

    Full Text Available Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF, n=4 or allogeneic cultured adipose-derived stem cells (ASCs, n=5 injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases.

  1. Neurogenic differentiation from adipose-derived stem cells and application for autologous transplantation in spinal cord injury.

    Zhao, Yong; Jiang, Hui; Liu, Xin-wei; Chen, Jian-Ting; Xiang, Liang-Bi; Zhou, Da-Peng

    2015-09-01

    Mesenchymal stem cells derived from adipose tissue have the capacity to differentiate into endodermal, mesoderm and ectodermal cell lineages in vitro, which are an ideal engraft in tissue-engineered repair. In this study, mouse adipose-derived stem cells (ADSCs) were isolated from subcutaneous fat. The markers of ADSCs, CD13, CD29, CD44, CD71, CD73, CD90, CD105, CD166, Nestin, GFAP and MAP-2 were detected by immunofluorescence assays. The ADSCs were cultured in cocktail factors (including ATRA, GGF-2, bFGF, PDGF and forskolin) for neurogenic differentiation. The neurogenic cells markers, Nestin, GFAP and MAP-2 were analyzed using immunofluorescence and real-time PCR after dramatic changes in morphology. Neurogenic cells from ADSCs were autologous transplanted into the mouse of spinal cord injury for observation neurogenic cells colonization in spinal cord. The result demonstrated that the mouse ADSCs were positive for the CD13, CD29, CD44, CD71, CD73, CD90, CD105 and CD166 but negative for neurogenic cell markers, MAP-2, GFAP and Nestin. After neurogenic differentiation, the neurogenic cells were positive for neurogenic cell special markers, gene expression level showed a time-lapse increase, and the cells were successful colonized into spinal cord. In conclusion, our research shows that a population of neuronal cells can be specifically generated from ADSCs and that induced cells may allow for participation in tissue-repair. PMID:25330756

  2. Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs.

    Marx, Camila; Silveira, Maiele Dornelles; Selbach, Isabel; da Silva, Ariel Silveira; Braga, Luisa Maria Gomes de Macedo; Camassola, Melissa; Nardi, Nance Beyer

    2014-01-01

    Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF, n = 4) or allogeneic cultured adipose-derived stem cells (ASCs, n = 5) injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases. PMID:25180040

  3. A xenogeneic-free protocol for isolation and expansion of human adipose stem cells for clinical uses.

    Carmen Escobedo-Lucea

    Full Text Available Human adipose stem cells (HASCS play a crucial role in the fields of regenerative medicine and tissue engineering for different reasons: the abundance of adipose tissue, their easy harvesting, the ability to multipotent differentiation and the fact that they do not trigger allogeneic blood response or secrete cytokines that act as immunosuppressants. The vast majority of protocols use animal origin reagents, with the underlying risk of transmitting infections by non-human pathogens. We have designed a protocol to isolate and maintain the properties of hASCs avoiding xenogeneic reagents. These changes not only preserve hASCs morphology, but also increase cell proliferation and maintain their stem cell marker profile. On the other hand, human serum albumin (HSA, Tryple® and human Serum (HS, do not affect hASCs multipotent differentiation ability. The amendments introduced do not trigger modifications in the transcriptional profile of hASCs, alterations in key biochemical pathways or malignization. Thus, we have proven that it is possible to isolate and maintain hASCs avoiding animal reagents and, at the same time, preserving crucial culture parameters during long term culture. Thereby we have revealed a novel and effective tool for the improvement of clinical, cell-based therapies.

  4. Prevalence of Endogenous CD34+ Adipose Stem Cells Predicts Human Fat Graft Retention in a Xenograft Model

    Philips, Brian J.; Grahovac, Tara L.; Valentin, Jolene E.; Chung, Christopher W.; Bliley, Jacqueline M.; Pfeifer, Melanie E.; Roy, Sohini B.; Dreifuss, Stephanie; Kelmendi-Doko, Arta; Kling, Russell E.; Ravuri, Sudheer K.; Marra, Kacey G.; Donnenberg, Vera S.; Donnenberg, Albert D.; Rubin, J. Peter

    2014-01-01

    Background Fat grafting is a promising technique for soft-tissue augmentation, although graft retention is highly unpredictable and factors that affect graft survival have not been well defined. Because of their capacity for differentiation and growth factor release, adipose-derived stem cells may have a key role in graft healing. The authors’ objective was to determine whether biological properties of adipose-derived stem cells present within human fat would correlate with in vivo outcomes of graft volume retention. Methods Lipoaspirate from eight human subjects was processed using a standardized centrifugation technique and then injected subcutaneously into the flanks of 6-week-old athymic nude mice. Graft masses and volumes were measured, and histologic evaluation, including CD31+ staining for vessels, was performed 8 weeks after transplantation. Stromal vascular fraction isolated at the time of harvest from each subject was analyzed for surface markers by multi-parameter flow cytometry, and also assessed for proliferation, differentiation capacity, and normoxic/hypoxic vascular endothelial growth factor secretion. Results Wide variation in percentage of CD34+ progenitors within the stromal vascular fraction was noted among subjects and averaged 21.3 ± 15 percent (mean ± SD). Proliferation rates and adipogenic potential among stromal vascular fraction cells demonstrated moderate interpatient variability. In mouse xenograft studies, retention volumes ranged from approximately 36 to 68 percent after 8 weeks, with an overall average of 52 ± 11 percent. A strong correlation (r = 0.78, slope = 0.76, p < 0.05) existed between stromal vascular fraction percentage of CD34+ progenitors and high graft retention. Conclusion Inherent biological differences in adipose tissue exist between patients. In particular, concentration of CD34+ progenitor cells within the stromal vascular fraction may be one of the factors used to predict human fat graft retention. (Plast

  5. Extracts of adipose derived stem cells slows progression in the R6/2 model of Huntington's disease.

    Wooseok Im

    Full Text Available Stem cell therapy is a promising treatment for incurable disorders including Huntington's disease (HD. Adipose-derived stem cell (ASC is an easily available source of stem cells. Since ASCs can be differentiated into nervous stem cells, it has clinically feasible potential for neurodegenerative disease. In addition, ASCs secrete various anti-apoptotic growth factors, which improve the symptoms of disease from transplanted ASCs. Thus, cell-free extracts of ASCs (ASCs-E could be a potential candidate for treatment of HD. Here, we investigated effects of ASCs-E on R6/2 HD mouse model and neuronal cells. In R6/2 HD model, injection of ASCs-E improved the performance in Rotarod test. ASCs-E also ameliorated striatal atrophy and mutant huntingtin aggregation in the striatum. In Western blot increased expressions of p-Akt, p-CREB and PGC1α were noted by injection of ASCs-E, when comparing to the R6/2 HD model. Neuro2A neuroblastoma cells treated with ASCs-E showed increased expression of p-CREB and PGC1α. In conclusion, ASCs-E delayed disease progression in animal model of HD by restoring of CREB-PGC1α pathway and could be a potential resource for treatment of HD.

  6. Insights from a chimpanzee adipose stromal cell population: opportunities for adult stem cells to expand primate functional genomics.

    Pfefferle, Lisa W; Wray, Gregory A

    2013-01-01

    Comparisons between humans and chimpanzees are essential for understanding traits unique to each species. However, linking important phenotypic differences to underlying molecular changes is often challenging. The ability to generate, differentiate, and profile adult stem cells provides a powerful but underutilized opportunity to investigate the molecular basis for trait differences between species within specific cell types and in a controlled environment. Here, we characterize adipose stromal cells (ASCs) from Clint, the chimpanzee whose genome was first sequenced. Using imaging and RNA-Seq, we compare the chimpanzee ASCs with three comparable human cell lines. Consistent with previous studies on ASCs in humans, the chimpanzee cells have fibroblast-like morphology and express genes encoding components of the extracellular matrix at high levels. Differentially expressed genes are enriched for distinct functional classes between species: immunity and protein processing are higher in chimpanzees, whereas cell cycle and DNA processing are higher in humans. Although hesitant to draw definitive conclusions from these data given the limited sample size, we wish to stress the opportunities that adult stem cells offer for studying primate evolution. In particular, adult stem cells provide a powerful means to investigate the profound disease susceptibilities unique to humans and a promising tool for conservation efforts with nonhuman primates. By allowing for experimental perturbations in relevant cell types, adult stem cells promise to complement classic comparative primate genomics based on in vivo sampling. PMID:24092797

  7. New Therapy of Skin Repair Combining Adipose-Derived Mesenchymal Stem Cells with Sodium Carboxymethylcellulose Scaffold in a Pre-Clinical Rat Model

    Cristiano Rodrigues; de Assis, Adriano M.; Moura, Dinara J.; Graziele Halmenschlager; Jenifer Saffi; Léder Leal Xavier; Marilda da Cruz Fernandes; Márcia Rosângela Wink

    2014-01-01

    Lesions with great loss of skin and extensive burns are usually treated with heterologous skin grafts, which may lead rejection. Cell therapy with mesenchymal stem cells is arising as a new proposal to accelerate the healing process. We tested a new therapy consisting of sodium carboxymethylcellulose (CMC) as a biomaterial, in combination with adipose-derived stem cells (ADSCs), to treat skin lesions in an in vivo rat model. This biomaterial did not affect membrane viability and induced a sma...

  8. Evaluation of Methylcellulose and Dimethyl Sulfoxide as the Cryoprotectants in a Serum-Free Freezing Media for Cryopreservation of Adipose-Derived Adult Stem Cells

    Thirumala, Sreedhar; Gimble, Jeffrey M.; Devireddy, Ram V.

    2010-01-01

    Developing effective techniques for the cryopreservation of human adipose-derived adult stem cells (ASCs) could increase the usefulness of these cells in tissue engineering and regenerative medicine. To this end, we investigated the post-freeze/thaw viability and apoptotic behavior of Passage 1 (P1) adult stem cells (ASCs) in 11 different media: (i) the traditional media containing Dulbecco’s modified Eagle’s medium (DMEM) with 80% fetal calf serum (FCS) and 10% dimethyl sulfoxide (DMSO), (ii...

  9. Long Term Study of Protective Mechanisms of Human Adipose Derived Mesenchymal Stem Cells on Cisplatin Induced Kidney injury in Sprague-Dawley Rats

    Elhusseini, Fatma M; Saad, Mohamed-Ahdy A.A; Anber, Nahla; Elghannam, Doaa; Sobh, Mohamed-Ahmed; ALSAYED, AZIZA; El-dusoky, Sara; SHEASHAA, HUSSEIN; Abdel-Ghaffar, Hassan; Sobh, Mohamed

    2016-01-01

    Background/Aims: Long-term evaluation of cisplatin induced nephrotoxicity and the probable renal protective activities of stem cells are lacking up until now. We evaluated the early and long-term role of human adipose derived mesenchymal stem cells (ADMSCs) in prevention or amelioration of cisplatin induced acute kidney injury (AKI) in Sprague-Dawley rats. For this, we determined the kidney tissue level of oxidative stress markers in conjugation with a renal histopathological scoring system o...

  10. Adverse Fat Depots and Marrow Adiposity Are Associated with Skeletal Deficits and Insulin Resistance in Long-Term Survivors of Pediatric Hematopoietic Stem Cell Transplantation

    MOSTOUFI-MOAB, SOGOL; Magland, Jeremy; Isaacoff, Elizabeth J.; Sun, Wenli; Rajapakse, Chamith S.; Zemel, Babette; Wehrli, Felix; Shekdar, Karuna; Baker, Joshua; Long, Jin; Leonard, Mary B.

    2015-01-01

    Allogeneic hematopoietic stem-cell transplantation (alloHSCT) survivors treated with total body irradiation (TBI) exhibit bone deficits and excess adiposity, potentially related to altered mesenchymal stem cell differentiation into osteoblasts or adipocytes. We examined associations among fat distribution, bone microarchitecture, and insulin resistance in alloHSCT survivors after TBI. This was a cross-sectional observational study of 25 alloHSCT survivors (aged 12–25 years) a median of 9.7 (4...

  11. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture

    2007-01-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell’s replication activity and the donor’s age factor, and to assess the stem cells as a new source for tissue engineering. hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: <20 years old, 21―40 years old, 41―60 years old and >61 years old groups). The protein markers (CD29, CD34, CD44, CD45, CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell, and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro. The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula “ log2T D = t logN t ? logN 0” was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the <20 years old group was lower than that of the >61 years old group (statistical analysis of variance (ANOVA), P=0.002, P<0.05). These find- ings suggested that a higher level of hADAS cells replication activity was found in the younger dona- tors, and they represent novel and valuable seed cells for studies of tissue engineering.

  12. Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury

    Qin JB

    2012-10-01

    Full Text Available Jin-Bao Qin,1,5,* Kang-An Li,2,* Xiang-Xiang Li,1,5 Qing-Song Xie,3 Jia-Ying Lin,4 Kai-Chuang Ye,1,5 Mi-Er Jiang,1,5 Gui-Xiang Zhang,2 Xin-Wu Lu1,51Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Department of Radiology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 3Department of Neurosurgery, Cixi Municipal People's Hospital, Zhejiang Province, China; 4Clinic for Gynecology, Charite-Universitatsmedizin Berlin, Berlin, Germany; 5Vascular Center, Shanghai Jiao Tong University, Shanghai, China*These two authors contributed equally to this workBackground: Stem cell therapy has shown great promise for regenerative repair of injured or diseased tissues. Adipose-derived stem cells (ADSCs have become increasingly attractive candidates for cellular therapy. Magnetic resonance imaging has been proven to be effective in tracking magnetic-labeled cells and evaluating their clinical relevance after cell transplantation. This study investigated the feasibility of imaging green fluorescent protein-expressing ADSCs (GFP-ADSCs labeled with superparamagnetic iron oxide particles, and tracked them in vivo with noninvasive magnetic resonance imaging after cell transplantation in a model of mouse carotid artery injury.Methods: GFP-ADSCs were isolated from the adipose tissues of GFP mice and labeled with superparamagnetic iron oxide particles. Intracellular stability, proliferation, and viability of the labeled cells were evaluated in vitro. Next, the cells were transplanted into a mouse carotid artery injury model. Clinical 3 T magnetic resonance imaging was performed immediately before and 1, 3, 7, 14, 21, and 30 days after cell transplantation. Prussian blue staining and histological analysis were performed 7 and 30 days after transplantation.Results: GFP-ADSCs were found to be efficiently labeled with superparamagnetic iron oxide

  13. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Saleh Heneidi

    Full Text Available Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal. When compared to adipose stem cells (ASCs, microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell

  14. Human adipose-derived mesenchymal stem cells as a new model of spinal and bulbar muscular atrophy.

    Marta Dossena

    Full Text Available Spinal and bulbar muscular atrophy (SBMA or Kennedy's disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ in the N-terminal androgen receptor (ARpolyQ confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy's patients, ADSCK and three control volunteers (ADSCs. We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes, whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.

  15. Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue.

    González-Fernández, Maria L; Pérez-Castrillo, Saúl; Sánchez-Lázaro, Jaime A; Prieto-Fernández, Julio G; López-González, Maria E; Lobato-Pérez, Sandra; Colaço, Bruno J; Olivera, Elías R; Villar-Suárez, Vega

    2016-07-01

    OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture. In vivo assessment involved use of a meniscus defect and implantation on a scaffold. Horses were allocated into 2 groups. In one group, defects in the medial meniscus were treated with MSCs derived from BM, whereas in the other group, defects were treated with MSCs derived from AT. Defects were created in the contralateral stifle joint but were not treated (control samples). RESULTS Both types of MSCs had universal stem cell characteristics. For in vivo testing, at 12 months after treatment, treated defects were regenerated with fibrocartilaginous tissue, whereas untreated defects were partially repaired or not repaired. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSCs derived from AT could be a good alternative to MSCs derived from BM for use in regenerative treatments. Results also were promising for a stem cell-based implant for use in regeneration in meniscal lesions. IMPACT FOR HUMAN MEDICINE Because of similarities in joint disease between horses and humans, these results could have applications in humans. PMID:27347833

  16. A Comparative Study of Non-Viral Gene Delivery Techniques to Human Adipose-Derived Mesenchymal Stem Cell

    Nur Shuhaidatul Sarmiza Abdul Halim

    2014-08-01

    Full Text Available Mesenchymal stem cells (MSCs hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1 and enhanced green fluorescent protein (eGFP into human adipose-derived MSCs (hAD-MSCs. The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.

  17. Sericin Enhances the Bioperformance of Collagen-Based Matrices Preseeded with Human-Adipose Derived Stem Cells (hADSCs

    Marieta Costache

    2013-01-01

    Full Text Available Current clinical strategies for adipose tissue engineering (ATE, including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications.

  18. Sericin Enhances the Bioperformance of Collagen-Based Matrices Preseeded with Human-Adipose Derived Stem Cells (hADSCs)

    Dinescu, Sorina; Galateanu, Bianca; Albu, Madalina; Cimpean, Anisoara; Dinischiotu, Anca; Costache, Marieta

    2013-01-01

    Current clinical strategies for adipose tissue engineering (ATE), including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs) in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications. PMID:23325052

  19. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    Jan-Philipp Stromps

    2014-01-01

    Full Text Available According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs and provides an outlook on promising future strategies.

  20. Adipose-Derived Mesenchymal Stem Cell Protects Kidneys against Ischemia-Reperfusion Injury through Suppressing Oxidative Stress and Inflammatory Reaction

    Chua Sarah

    2011-05-01

    Full Text Available Abstract Background Reactive oxygen species are important mediators exerting toxic effects on various organs during ischemia-reperfusion (IR injury. We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs protect the kidney against oxidative stress and inflammatory stimuli in rat during renal IR injury. Methods Adult male Sprague-Dawley (SD rats (n = 24 were equally randomized into group 1 (sham control, group 2 (IR plus culture medium only, and group 3 (IR plus immediate intra-renal administration of 1.0 × 106 autologous ADMSCs, followed by intravenous ADMSCs at 6 h and 24 h after IR. The duration of ischemia was 1 h, followed by 72 hours of reperfusion before the animals were sacrificed. Results Serum creatinine and blood urea nitrogen levels and the degree of histological abnormalities were markedly lower in group 3 than in group 2 (all p Conclusion ADMSC therapy minimized kidney damage after IR injury through suppressing oxidative stress and inflammatory response.

  1. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats

    Sun Cheuk-Kwan

    2010-06-01

    Full Text Available Abstract Background The therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs on brain infarction area (BIA and neurological status in a rat model of acute ischemic stroke (IS was investigated. Methods Adult male Sprague-Dawley (SD rats (n = 30 were divided into IS plus intra-venous 1 mL saline (at 0, 12 and 24 h after IS induction (control group and IS plus intra-venous ADMSCs (2.0 × 106 (treated interval as controls (treatment group after occlusion of distal left internal carotid artery. The rats were sacrificed and brain tissues were harvested on day 21 after the procedure. Results The results showed that BIA was larger in control group than in treatment group (p Conclusions ADMSC therapy significantly limited BIA and improved sensorimotor dysfunction after acute IS.

  2. Multifunctional nanocrystalline calcium phosphates loaded with Tetracycline antibiotic combined with human adipose derived mesenchymal stromal stem cells (hASCs).

    Marycz, K; Pazik, R; Zawisza, K; Wiglusz, K; Maredziak, M; Sobierajska, P; Wiglusz, R J

    2016-12-01

    Osteoconductive drug delivery system composed of nanocrystalline calcium phosphates (Ca10(PO4)6(OH)2/β-Ca3(PO4)2) co-doped with Yb(3+)/Er(3+) ions loaded with Tetracycline antibiotic (TC) was developed. Their effect on human adipose derived mesenchymal stromal stem cells (hASCs) as a potential reconstructive biomaterial for bone tissue regeneration was studied. The XRD and TEM measurements were used in order to determine the crystal structure and morphology of the final products. The characteristics of nanocomposites with the TC and hASCs as potential regenerative materials as well as the antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 25923 as a model of the Gram-positive bacteria, Escherichia coli ATCC 8739 of the Gram-negative bacteria, were shown. These combinations can be a promising material for theranostic due to its regenerative, antimicrobial and fluorescent properties. PMID:27612684

  3. Early combined treatment with sildenafil and adipose-derived mesenchymal stem cells preserves heart function in rat dilated cardiomyopathy

    Fu Morgan

    2010-09-01

    Full Text Available Abstract Background We investigated whether early combined autologous adipose-derived mesenchymal stem cell (ADMSC and sildenafil therapy offers an additive benefit in preserving heart function in rat dilated cardiomyopathy (DCM. Methods Adult Lewis rats (n = 8 per group were divided into group 1 (normal control, group 2 (saline-treated DCM rats, group 3 [2.0 × 106 ADMSC implanted into left ventricular (LV myocardium of DCM rats], group 4 (DCM rats with sildenafil 30 mg/kg/day, orally, and group 5 (DCM rats with combined ADMSC-sildenafil. Treatment was started 1 week after DCM induction and the rats were sacrificed on day 90. Results The results showed that mitochondrial protein expressions of connexin43 and cytochrome-C were lowest in group 2, and lower in groups 3 and 4 than in group 5 (p Conclusion Early combined ADMSC/sildenafil is superior to either treatment alone in preserving LV function.

  4. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    Sung, Min Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Mun, Ji-Young [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kwon, Ohsuk [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kwon, Ki-Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Oh, Doo-Byoung, E-mail: dboh@kribb.re.kr [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.

  5. Effects of external radiation in a co-culture model of endothelial cells and adipose-derived stem cells

    The inflammatory response clinically observed after radiation has been described to correlate with elevated expression of cytokines and adhesion molecules by endothelial cells. Therapeutic compensation for this microvascular compromise could be an important approach in the treatment of irradiated wounds. Clinical reports describe the potential of adipose-derived stem cells to enhance wound healing, but the underlying cellular mechanisms remain largely unclear. Human dermal microvascular endothelial cells (HDMEC) and human adipose-derived stem cells (ASC) were cultured in a co-culture setting and irradiated with sequential doses of 2 to 12 Gy. Cell count was determined 48 h after radiation using a semi-automated cell counting system. Levels of interleukin-6 (IL-6), basic fibroblast growth factor (FGF), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the supernatants using enzyme-linked immunosorbent assay (ELISA). Irradiated HDMEC and ASC as well as non-irradiated co-cultures, HDMEC or ASC respectively were used as controls. Cell count was significantly reduced in irradiated co-cultures of HDMEC and ASC compared to non-irradiated controls. Levels of IL-6, FGF, ICAM-1 and VCAM-1 in the supernatants of the co-cultures were significantly less affected by external radiation in comparison to HDMEC. The increased expression of cytokines and adhesion molecules by HDMEC after external radiation is mitigated in the co-culture setting with ASC. These in vitro changes seem to support the clinical observation that ASC may have a stabilizing effect when injected into irradiated wounds

  6. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method

  7. Isolation, amplification and identification of mesenchymal stem cells de-rived from human adipose tissue

    Sanambar Sadighi; Ahad Khoshzban; Amir Hossein Tavakoli; Ramin Khatib Semnani; Zahra Sobhani; Nayer Dadashpur Majidabad

    2014-01-01

    Background: Currently, autologous and allogeneic adipose tissues represent a ubiqui-tous source of material for fat reconstructive therapies. However, these approaches are limited, and often accompanied by a 40-60% reduction in graft volume following transplantation, limited proliferative capacity of mature adipocytes for ex vivo expansion, and extensive adipocyte damage encountered when harvested with conventional liposuction techniques. Recently, cell-based approaches utilizing adipogenic p...

  8. PUMILIO-2 is involved in the positive regulation of cellular proliferation in human adipose-derived stem cells.

    Shigunov, Patrícia; Sotelo-Silveira, Jose; Kuligovski, Crisciele; de Aguiar, Alessandra Melo; Rebelatto, Carmen K; Moutinho, José A; Brofman, Paulo S; Krieger, Marco A; Goldenberg, Samuel; Munroe, David; Correa, Alejandro; Dallagiovanna, Bruno

    2012-01-20

    Stem cells can either differentiate into more specialized cells or undergo self-renewal. Several lines of evidence from different organisms suggest that these processes depend on the post-transcriptional regulation of gene expression. The presence of the PUF [Pumilio/FBF (fem-3 binding factor)] domain defines a conserved family of RNA binding proteins involved in repressing gene expression. It has been suggested that a conserved function of PUF proteins is to repress differentiation and sustain the mitotic proliferation of stem cells. In humans, Pumilio-2 (PUM2) is expressed in embryonic stem cells and adult germ cells. Here we show that PUM2 is expressed in a subpopulation of adipose-derived stem cell (ASC) cultures, with a granular pattern of staining in the cytoplasm. Protein levels of PUM2 showed no changes during the differentiation of ASCs into adipocytes. Moreover, RNAi knockdown of pum2 did not alter the rate of adipogenic differentiation compared with wild-type control cells. A ribonomic approach was used to identify PUM2-associated mRNAs. Microarray analysis showed that PUM2-bound mRNAs are part of gene networks involved in cell proliferation and gene expression control. We studied pum2 expression in cell cultures with low or very high levels of proliferation and found that changes in pum2 production were dependent on the proliferation status of the cell. Transient knockdown of pum2 expression by RNAi impaired proliferation of ASCs in vitro. Our results suggest that PUM2 does not repress differentiation of ASCs but rather is involved in the positive control of ASCs division and proliferation. PMID:21649561

  9. Quantification of early adipose-derived stem cell survival: comparison between sodium iodide symporter and enhanced green fluorescence protein imaging

    Objective: Strategies to overcome the problem of extensive early stem cell loss following transplantation requires a method to quantitatively assess their efficacy. This study compared the ability of sodium/iodide symporter (NIS) and enhanced green fluorescent protein (EGFP) imaging to monitor the effectiveness of treatments to enhance early stem cell survival. Methods: Human adipose-derived stem cells (ADSCs) transduced with an adenoviral vector to express both NIS and EGFP were mixed with culture media (control), matrigel (matrigel group) or pro-survival cocktail (PSC group), and 5 × 106 cells were injected into thigh muscles of C57BL/6 mice. Animals underwent serial optical imaging and 99mTcO4- scintigraphy. Image-based EGFP fluorescence and 99mTcO4- uptake was measured by region-of-interest analysis, and extracted tissues were measured for 99mTc activity. Fluorescent intensity measured from homogenized muscle tissue was used as reference for actual amount of viable ADSCs. Results: ADSCs were efficiently transduced to express EGFP and NIS without affecting proliferative capacity. The absence of significant apoptosis was confirmed by annexin V FACS analysis and Western blots for activated caspase-3. Both fluorescence optical imaging and 99mTcO4- scintigraphy visualized implanted cells in living mice for up to 5 days. However, optical imaging displayed large variations in fluorescence intensity, and thus failed to detect difference in cell survival between groups or its change over time. In comparison, 99mTcO4- scintigraphy provided more reliable assessment of within-in group donor cell content as well as its temporal change. As a result, NIS imaging was able to discern beneficial effects of matrigel and pro-survival cocktail treatment on early ADSC survival, and provided quantitative measurements that correlated to actual donor cell content within implanted tissue. Conclusion: NIS reporter imaging may be useful for noninvasively assessing the efficacies of

  10. Development of Hydrogel with Anti-Inflammatory Properties Permissive for the Growth of Human Adipose Mesenchymal Stem Cells

    R. Sánchez-Sánchez

    2016-01-01

    Full Text Available Skin wound repair requires the development of different kinds of biomaterials that must be capable of restoring the damaged tissue. Type I collagen and chitosan have been widely used to develop scaffolds for skin engineering because of their cell-related signaling properties such as proliferation, migration, and survival. Collagen is the major component of the skin extracellular matrix (ECM, while chitosan mimics the structure of the native polysaccharides and glycosaminoglycans in the ECM. Chitosan and its derivatives are also widely used as drug delivery vehicles since they are biodegradable and noncytotoxic. Regulation of the inflammatory response is crucial for wound healing and tissue regeneration processes; and, consequently, the development of biomaterials such as hydrogels with anti-inflammatory properties is very important and permissive for the growth of cells. In the last years, it has been shown that mesenchymal stem cells have clinical importance in the treatment of different pathologies, for example, skin injuries. In this paper, we describe the anti-inflammatory activity of collagen type 1/chitosan/dexamethasone hydrogel, which is permissive for the culture of human adipose-derived mesenchymal stem cells (hADMSC. Our results show that hADMSC cultured in the hydrogel are viable, proliferate, and secrete the anti-inflammatory cytokine interleukin-10 (IL-10 but not the inflammatory cytokine Tumor Necrosis Factor-alpha (TNF-α.

  11. A comparison of the chemical and liver extract-induced hepatic differentiation of adipose derived stem cells.

    Nhung, Truong Hai; Nam, Nguyen Hai; Nguyen, Nguyen Thi Kim; Nghia, Huynh; Van Thanh, Nguyen; Ngoc, Phan Kim; Van Pham, Phuc

    2015-11-01

    Adipose-derived stem cells (ADSCs) have been put forward as promising therapeutics for end-stage liver disease (ESLD). In the present study, we compared the effects of defined chemicals and liver extract on the hepatic differentiation of ADSCs. ADSCs were isolated according to the method described in our previously published study. Subsequently, the differentiation of ADSCs was induced separately by chemicals (including hepatic growth factor (HGF), fibroblast growth factor (FGF), and oncostatin M (OSM)) and liver extract (30 μg/ml) in a total period of 21 d. The efficiency of hepatic differentiation was evaluated by changes in the cell morphology, gene expression, and cellular function. The results showed that the liver extract promoted the hepatic differentiation of ADSCs to a significantly greater extent than the chemicals. In the group of ADSCs treated with liver extract, changes in the cell morphology began sooner, and the expression of alpha-FP and albumin genes was higher than that in the chemically treated group. The ADSCs in both the groups stained positive for anti-alpha trypsin (AAT) and albumin markers. The cells also exhibited glycogen storage capacity. Therefore, we concluded that the liver extract could efficiently induce the differentiation of ADSCs into hepatocyte-like cells. This study reveals the potential of mesenchymal stem cell differentiation in the liver extract, which supports further preclinical and clinical research on the application of ADSCs in ESLD treatment. PMID:26275888

  12. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro

    Shan Yanchang

    2008-02-01

    Full Text Available Abstract Background Schwann cells (SC which are myelin-forming cells in peripheral nervous system are very useful for the treatment of diseases of peripheral nervous system and central nervous system. However, it is difficult to obtain sufficient large number of SC for clinical use, so alternative cell systems are desired. Results Using a procedure similar to the one used for propagation of neural stem cells, we could induce rat adipose-derived stem cells (ADSC into floating neurospheres. In addition to being able to differentiate into neuronal- and glial-like cells, neurospheres could be induced to differentiate into SC-like cells. SC-like cells were bi- or tri-polar in shape and immunopositive for nestin and SC markers p75, GFAP and S-100, identical to genuine SC. We also found that SC-like cells could induce the differentiation of SH-SY5Y neuroblastoma cells efficiently, perhaps through secretion of soluble substances. We showed further that SC-like cells could form myelin structures with PC12 cell neurites in vitro. Conclusion These findings indicated that ADSC could differentiate into SC-like cells in terms of morphology, phenotype and functional capacities. SC-like cells induced from ADSC may be useful for the treatment of neurological diseases.

  13. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  14. The Efficacy and Safety of Platelet-Rich Plasma and Adipose-Derived Stem Cells: An Update

    Jaehoon Choi

    2012-11-01

    Full Text Available During the past decade, many studies using platelet-rich plasma (PRP or adipose-derivedstem cells (ASCs have been conducted in various medical fields, from cardiovascular researchto applications for corneal diseases. Nonetheless, there are several limitations of practicalapplications of PRP and ASCs. Most reports of PRP are anecdotal and few include controlsto determine the specific role of PRP. There is little consensus regarding PRP production andcharacterization. Some have reported the development of an antibody to bovine thrombin,which was the initiator of platelet activation. In the case of ASCs, good manufacturing practicesare needed for the production of clinical-grade human stem cells, and in vitro expansion ofASCs requires approval of the Korea Food and Drug Administration, such that considerableexpense and time are required. Additionally, some have reported that ASCs could have apotential risk of transformation to malignant cells. Therefore, the authors tried to investigatethe latest research on the efficacy and safety of PRP and ASCs and report on the current stateand regulation of these stem cell-based therapies.

  15. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  16. Transplantation of Human Adipose Mesenchymal Stem Cells in Non-Immunosuppressed GRMD Dogs is a Safe Procedure.

    Pelatti, M V; Gomes, J P A; Vieira, N M S; Cangussu, E; Landini, V; Andrade, T; Sartori, M; Petrus, L; Zatz, Mayana

    2016-08-01

    The possibility to treat Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, through cell therapy with mesenchymal stromal cells (MSCs) has been widely investigated in different animal models. However, some crucial questions need to be addressed before starting human therapeutic trials, particularly regarding its use for genetic disorders. How safe is the procedure? Are there any side effects following mesenchymal stem cell transplantation? To address these questions for DMD the best model is the golden retriever muscular dystrophy dog (GRMD), which is the closest model to the human condition displaying a much longer lifespan than other models. Here we report the follow-up of 5 GRMD dogs, which were repeatedly transplanted with human adipose-derived mesenchymal stromal cells (hASC), derived from different donors. Xenogeneic cell transplantation, which was done without immunosuppression, was well tolerated in all animals with no apparent long-term adverse effect. In the present study, we show that repeated heterologous stem-cell injection is a safe procedure, which is fundamental before starting human clinical trials. PMID:27193781

  17. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    Aji, Kaisaier; Maimaijiang, Munila; Aimaiti, Abudusaimi; Rexiati, Mulati; Azhati, Baihetiya; Tusong, Hamulati

    2016-01-01

    The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to participate in maintenance and switches of smooth muscle cell (SMC) phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs) into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC), while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs. PMID:27493668

  18. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells.

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-05-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine. PMID:26869524

  19. Labeling Adipose-Derived Stem Cells with Hoechst 33342: Usability and Effects on Differentiation Potential and DNA Damage

    P. Schendzielorz

    2016-01-01

    Full Text Available Adipose-derived stem cells (ASCs have been extensively studied in the field of stem cell research and possess numerous clinical applications. Cell labeling is an essential component of various experimental protocols and Hoechst 33342 (H33342 represents a cost-effective and easy methodology for live staining. The purpose of this study was to evaluate the labeling of rat ASCs with two different concentrations of H33342 (0.5 μg/mL and 5 μg/mL, with particular regard to usability, interference with cell properties, and potential DNA damage. Hoechst 33342 used at a low concentration of 0.5 μg/mL did not significantly affect cell proliferation, viability, or differentiation potential of the ASCs, nor did it cause any significant DNA damage as measured by the olive tail moment. High concentrations of 5 μg/mL H33342, however, impaired the proliferation and viability of the ASCs, and considerable DNA damage was observed. Undesirable colabeling of unlabeled cocultivated cells was seen in particular with higher concentrations of H33342, independent of varying washing procedures. Hence, H33342 labeling with lower concentrations represents a usable method, which does not affect the tested cell properties. However, the colabeling of adjacent cells is a drawback of the technique.

  20. Labeling Adipose-Derived Stem Cells with Hoechst 33342: Usability and Effects on Differentiation Potential and DNA Damage

    Schendzielorz, P.; Froelich, K.; Rak, K.; Gehrke, T.; Scherzad, A.; Hagen, R.; Radeloff, A.

    2016-01-01

    Adipose-derived stem cells (ASCs) have been extensively studied in the field of stem cell research and possess numerous clinical applications. Cell labeling is an essential component of various experimental protocols and Hoechst 33342 (H33342) represents a cost-effective and easy methodology for live staining. The purpose of this study was to evaluate the labeling of rat ASCs with two different concentrations of H33342 (0.5 μg/mL and 5 μg/mL), with particular regard to usability, interference with cell properties, and potential DNA damage. Hoechst 33342 used at a low concentration of 0.5 μg/mL did not significantly affect cell proliferation, viability, or differentiation potential of the ASCs, nor did it cause any significant DNA damage as measured by the olive tail moment. High concentrations of 5 μg/mL H33342, however, impaired the proliferation and viability of the ASCs, and considerable DNA damage was observed. Undesirable colabeling of unlabeled cocultivated cells was seen in particular with higher concentrations of H33342, independent of varying washing procedures. Hence, H33342 labeling with lower concentrations represents a usable method, which does not affect the tested cell properties. However, the colabeling of adjacent cells is a drawback of the technique. PMID:27375746

  1. A fat option for the pig: Hepatocytic differentiated mesenchymal stem cells for translational research

    Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de [University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103 (Germany); Tautenhahn, Hans-Michael, E-mail: hans-michael.tautenhahn@medizin.uni-leipzig.de [University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103 (Germany); TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103 (Germany); Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de [University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103 (Germany); Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de [University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103 (Germany); Dollinger, Matthias, E-mail: matthias.dollinger@uniklinik-ulm.de [University Hospital Ulm, First Department of Medicine, Albert-Einstein-Allee 23, Ulm D-89081 (Germany); Christ, Bruno, E-mail: bruno.christ@medizin.uni-leipzig.de [University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103 (Germany); TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103 (Germany)

    2014-02-15

    Study background: Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention in the pig model. Methods: Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. Results: MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. Conclusion: The hepatocyte

  2. A fat option for the pig: Hepatocytic differentiated mesenchymal stem cells for translational research

    Study background: Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention in the pig model. Methods: Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. Results: MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. Conclusion: The hepatocyte

  3. Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells

    Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo

    2016-04-01

    The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c

  4. Hypoxia-induced secretion of IL-10 from adipose-derived mesenchymal stem cell promotes growth and cancer stem cell properties of Burkitt lymphoma.

    Xu, Lihua; Wang, Xu; Wang, Jiani; Liu, Dan; Wang, Yaya; Huang, Zhenqian; Tan, Huo

    2016-06-01

    In this study, we explored how the altered paracrine of adipose mesenchymal stem cells (ADSCs) contributed to the growth and cancer stem cell (CSC) properties of the Burkitt lymphoma cells. Condition mediums from normoxia or hypoxia cultured ADSC (CM-ADSC-N or CM-ADSC-H) were collected, and their effects on growth, colony formation, and apoptosis of Burkitt's lymphoma cells were investigated. Differentially expressed cytokines and inflammatory factors were compared between CM-ADSC-N and CM-ADSC-H. The involvement of differentially expressed IL-10 in growth and CSC properties of Burkitt lymphoma was investigated using both in vitro and in vivo models. Findings of this study showed that hypoxia increased IL-10 secretion from ADSCs, through which the growth and CSC properties of BL2 cells were enhanced. Intratumoral injection of CM-ADSC-H or IL-10 enhanced in vivo Burkitt lymphoma growth in nude mice model at least partly via the JAK2/STAT3 signaling pathway. PMID:26695151

  5. Human Mesenchymal Stem Cells Resolve Airway Inflammation, Hyperreactivity, and Histopathology in a Mouse Model of Occupational Asthma

    Martínez-González, Itziar; Cruz, Maria-Jesús; Moreno, Rafael; Morell, Ferran; Muñoz, Xavier; Aran, Josep M.

    2014-01-01

    Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2...

  6. Stem cells sources for intervertebral disc regeneration.

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-05-26

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  7. Adverse Fat Depots and Marrow Adiposity Are Associated With Skeletal Deficits and Insulin Resistance in Long-Term Survivors of Pediatric Hematopoietic Stem Cell Transplantation.

    Mostoufi-Moab, Sogol; Magland, Jeremy; Isaacoff, Elizabeth J; Sun, Wenli; Rajapakse, Chamith S; Zemel, Babette; Wehrli, Felix; Shekdar, Karuna; Baker, Joshua; Long, Jin; Leonard, Mary B

    2015-09-01

    Allogeneic hematopoietic stem-cell transplantation (alloHSCT) survivors treated with total body irradiation (TBI) exhibit bone deficits and excess adiposity, potentially related to altered mesenchymal stem cell differentiation into osteoblasts or adipocytes. We examined associations among fat distribution, bone microarchitecture, and insulin resistance in alloHSCT survivors after TBI. This was a cross-sectional observational study of 25 alloHSCT survivors (aged 12 to 25 years) a median of 9.7 (4.3 to 19.3) years after alloHSCT compared to 25 age-, race-, and sex-matched healthy controls. Vertebral MR spectroscopic imaging and tibia micro-MRI were used to quantify marrow adipose tissue (MAT) and trabecular microarchitecture. Additional measures included DXA whole-body fat mass (WB-FM), leg lean mass (Leg-LM), trunk visceral adipose tissue (VAT), and CT calf muscle density. Insulin resistance in alloHSCT survivors was estimated by HOMA-IR. AlloHSCT survivors had lower Leg-LM (p treatment-related morbidity and mortality in alloHSCT recipients after TBI. Trabecular deterioration was associated with marrow and visceral adiposity. Furthermore, long-term survivors demonstrated sarcopenic obesity, insulin resistance, and vertebral deformities. Future studies are needed to identify strategies to prevent and treat metabolic and skeletal complications in this growing population of childhood alloHSCT survivors. PMID:25801428

  8. hBMP-7 induces the differentiation of adipose-derived mesenchymal stem cells into osteoblast-like cells.

    Ren, Y; Han, C; Wang, J; Jia, Y; Kong, L; Eerdun, T; Wu, L; Jiang, D

    2016-01-01

    The aim of this study was to investigate the differentiation potential of adipose-derived mesenchymal stem cells (ADMSCs) into osteoblasts by human bone morphogenetic protein-7 (hBMP-7) induction. ADMSCs were isolated from the subcutaneous adipose tissue of a rabbit, and then transfected with the pcDNA3.1 vector alone and pcDNA3.1-hBMP-7 (hBMP-7), respectively. Untransfected ADMSCs were used as the control group. After transfection, the morphology and green fluorescent protein (GFP) fluorescence intensity of ADMSCs were observed by fluorescent microscopy. The 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the growth of ADMSCs at 1, 3, and 5 days, respectively. Transmission electron microscopy was performed to observe the ultrastructural morphology of ADMSCs. In addition, ADMSCs were stained with quinalizarin and toluidine blue to reflect the content of osteoblasts and chondrocytes, respectively. Finally, the expression of collagen I and osteocalcin in ADMSCs was detected by western blot. ADMSCs were successfully isolated. Obvious GFP fluorescence and high expression of hBMP-7 demonstrated the successful transfection of hBMP-7. Specific morphological characters with a metabolically active ultrastructure were exhibited on the ADMSCs transfected with hBMP- 7. In addition, the growth rate of ADMSCs transfected with hBMP-7 was significantly higher than that of the cells in the vector and control groups. Successfully induced osteoblast-like cells were identified by an obvious erythrine area and high expression of collagen I and osteocalcin in ADMSCs transfected with hBMP-7. Thus, ADMSCs can be successfully differentiated into osteoblast-like cells by hBMP-7 induction in vitro. PMID:27525862

  9. The Application of Adipose Stem Cells in Regenerative Medicine%脂肪干细胞在再生医学中的应用

    张爽; 郑冬; 马月辉

    2015-01-01

    Regenerative medicine is a new-rising subject that focus on how to promote trauma and tissue regeneration and functional reconstruction of emerging disciplines, mainly through the study of stem cells, the body and other normal tissue trauma repair and regeneration mechanism to maintain, repair, regeneration or improve the function of damaged tissues and organs. Adipose stem cells ( ASCs) , isolated from adipose tissue in recent years, has a multi-directional differentiation potential of stem cells. ASCs is enough, can be used in actual, have certain appeal from somatic cells instead of donor resources and can be widely used for tissue repair and regeneration, developmental plasticity and cell therapy research. This paper expounded the action mode of the adipose stem cells in bone marrow mesenchymal stem cells, progenitor cells, mesenchymal stem cells for adipose stem cells in paracrine, soft tissue reconstruction and wound repair, reconstruction of skeletal muscle reconstruction, cardiovascular remodeling, nervous system and cancer metastasis and invasion. The paper also summarized the current use of adipose stem cells participate in clinical treatment, which was expected to provide reference for the application of adipose stem cells in regenerative medicine research.%再生医学是一门研究如何促进创伤与组织再生及功能重建的新兴学科,主要通过研究干细胞分化、机体等正常组织创伤修复与再生等机制来维持、修复、再生或改善损伤组织和器官功能。脂肪干细胞( adipose-derived stem cells, ASCs)是近年来从脂肪组织中分离得到的一种具有多向分化潜能的干细胞,是一种足量的、可用于实际的、有一定吸引力的自体细胞代替的供体资源,并能够广泛的用于组织修复、再生、发育的可塑性及细胞治疗等研究中。阐述了脂肪干细胞在旁分泌、软组织重建及损伤修复、骨骼肌重建、心血管重建、神经系统重建

  10. Radioresistance of granulation tissue-derived cells from skin wounds combined with total body irradiation.

    Dai, Tingyu; Chen, Zelin; Tan, Li; Shi, Chunmeng

    2016-04-01

    Combined radiation and wound injury (CRWI) occurs following nuclear explosions and accidents, radiological or nuclear terrorism, and radiation therapy combined with surgery. CRWI is complicated and more difficult to heal than single injuries. Stem cell‑based therapy is a promising treatment strategy for CRWI, however, sourcing stem cells remains a challenge. In the present study, the granulation tissue-derived cells (GTCs) from the skin wounds (SWs) of CRWI mice (C‑GTCs) demonstrated a higher radioresistance to the damage caused by combined injury, and were easier to isolate and harvest when compared with bone marrow‑derived mesenchymal stromal cells (BMSCs). Furthermore, the C-GTCs exhibited similar stem cell-associated properties, such as self-renewal and multilineage differentiation capacity, when compared with neonatal dermal stromal cells (DSCs) and GTCs from unirradiated SWs. Granulation tissue, which is easy to access, may present as an optimal autologous source of stem/progenitor cells for therapeutic applications in CRWI. PMID:26936439

  11. Clinical studies on the ex-vivo expansion of autologous adipose derived stem cells for the functional reconstruction of mucous membrane in empty nose syndrome

    Liang LI

    2014-10-01

    Full Text Available Objective To analyze and evaluate the feasibility and effectiveness of using autologous adipose derived stem cells (ASCs for rebuilding the function of nasal mucosa in patients with empty nose syndrome (ENS. Methods Autologous adipose tissue 15-20ml were obtained from each of 5 ENS patients admitted from Aug. 2013 to Feb. 2014, and from which stem cells were isolated, cultured and expanded in vitro. The phenotype, differentiation, and genetic stability of the third generation of amplified stem cells were identified. For the patients with rudimental turbinate (n=3, ASCs were injected into the damaged nasal mucosa for 4 times (once every 10 days. For the patients with no rudimental turbinate (n=2, autologous pure fat granules 1-5ml were extracted after 3 times of ASCs injection into the damaged nasal mucosa, and mixed with the 3rd-6th generation of ASCs for inferior or middle nasal turbinate angioplasty. Nasal endoscopic examination was performed before treatment and 3, 6 and 9 months after treatment for comparison, and the data of SNOT-20 questionnaire, nasality resistance and nasal mucociliary clearance action were statistically analyzed. Results With injection transplantation of the 3rd-6th generation of ASCs in 2 patients with no rudimental turbinate, and 3, 6 and 9 months after the combined ASCs and fat granules transplantation in 3 patients with rudimental turbinate, nasal endoscopy showed that no obvious absorption in conchoplasty, nasal mucosa was improved significantly, and same as SNOT-20 scores, with statistically significant difference (P0.05. Conclusions The reconstruction of mucosa function by nasal turbinate angioplasty combined with adipose derived stem cells and autologous adipose transplantation may significantly improve the symptoms in patients with ENS with lasting effects. It is a new procedure which is helpful for the mucosal repair in patients with ENS. DOI: 10.11855/j.issn.0577-7402.2014.10.11

  12. Undifferentiated Human Adipose-derived Stromal/Stem Cells loaded onto Wet-Spun Starch-polycaprolactone Scaffolds Enhance Bone Regeneration: Nude Mice Calvarial Defect in vivo Study

    Carvalho, Pedro P.; Leonor, Isabel B.; Smith, Brenda J.; Dias, Isabel R.; Reis, Rui L.; Jeffrey M Gimble; Gomes, Manuela E.

    2013-01-01

    The repair of large bony defects remains challenging in the clinical setting. Human adipose-derived stromal/stem cells (hASCs) have been reported to differentiate along different cell lineages, including the osteogenic. The objective of the present study was to assess the bone regeneration potential of undifferentiated hASCs loaded in starch-polycaprolactone (SPCL) scaffolds, in a critical-sized nude mice calvarial defect.

  13. Bone Tissue Engineering with Adipose-Derived Stem Cells in Bioactive Composites of Laser-Sintered Porous Polycaprolactone Scaffolds and Platelet-Rich Plasma

    Han-Tsung Liao; Jyh-Ping Chen; Ming-Yih Lee

    2013-01-01

    Three-dimensional porous polycaprolactone (PCL) scaffolds with consistent inter-pore channels, 83% porosity and 300–400 μm pore size were fabricated via selective laser sintering. The PCL scaffold was combined with platelet-rich plasma (PRP) to form a bioactive composite and studied for potential application in bone tissue engineering using porcine adipose-derived stem cells (PASCs). The PCL/PRP/PASCs construct showed enhanced cell seeding efficiency and synergistically increased the differen...

  14. Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a guinea pig model of acoustic trauma

    Wanda Lattanzi

    2014-01-01

    Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Several evidences indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This...

  15. Grafting and Early Expression of Growth Factors from Adipose-Derived Stem Cells Transplanted into the Cochlea, in a Guinea Pig Model of Acoustic Trauma

    Fetoni, Anna Rita; Lattanzi, Wanda; Eramo, Sara Letizia Maria; Barba, Marta; Paciello, Fabiola; Moriconi, Chiara; Rolesi, Rolando; Michetti, Fabrizio; Troiani, Diana; Paludetti, Gaetano

    2014-01-01

    Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Loads of evidence indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This st...

  16. Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton’s jelly of umbilical cord on PBMCs

    Ayatollahi, Maryam; Talaei-khozani, Tahereh; Razmkhah, Mahboobeh

    2016-01-01

    Objective(s): Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton’s jelly (WJ) of human umbilical cord. The current study has compared immunomodulatory properties of human BM, AT, and WJ-MSCs. Materials and Methods: Three different types of hum...

  17. Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton's jelly of umbilical cord on PBMCs

    Maryam Ayatollahi; Tahereh Talaei-Khozani; Mahboobeh Razmkhah

    2016-01-01

    Objective(s):Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of human MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton's jelly (WJ) of human umbilical cord. The current study has compared immunomodulatory properties of human BM, AT, and WJ-MSCs. Materials and Methods: Three different types o...

  18. Adipose-derived stem cells cooperate with fractional carbon dioxide laser in antagonizing photoaging: a potential role of Wnt and β-catenin signaling

    Xu, Xiao; Wang, Hong-yi; Zhang, Yu; Liu, Yang; Li, Yan-qi; Tao, Kai; Wu, Chu-Tse; Jin, Ji-De; Liu, Xiao-Yan

    2014-01-01

    Background It is well established that adipose-derived stem cells (ADSCs) produce and secrete cytokines/growth factors that antagonize UV-induced photoaging of skin. However, the exact molecular basis underlying the anti-photoaging effects exerted by ADSCs is not well understood, and whether ADSCs cooperate with fractional carbon dioxide (CO2) laser to facilitate photoaging skin healing process has not been explored. Here, we investigated the impacts of ADSCs on photoaging in a photoaging ani...

  19. Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL1-AMPK signaling pathway

    Chen, Tong; Wu, Yu-wei; Lu, Hui; Guo, Yuan [Second Dental Center, Peking University School and Hospital of Stomatology, Beijing (China); National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing (China); Tang, Zhi-hui, E-mail: tang_zhihui@live.cn [Second Dental Center, Peking University School and Hospital of Stomatology, Beijing (China); National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing (China)

    2015-05-29

    Human adipose-derived stem cells (hASCs) are multipotent progenitor cells with multi-lineage differentiation potential including osteogenesis and adipogenesis. While significant progress has been made in understanding the transcriptional control of hASC fate, little is known about how hASC differentiation is regulated by the autocrine loop. The most abundant adipocytokine secreted by adipocytes, adiponectin (APN) plays a pivotal role in glucose metabolism and energy homeostasis. Growing evidence suggests a positive association between APN and bone formation yet little is known regarding the direct effects of APN on hASC osteogenesis. Therefore, this study was designed to investigate the varied osteogenic effects and regulatory mechanisms of APN in the osteogenic commitment of hASCs. We found that APN enhanced the expression of osteoblast-related genes in hASCs, such as osteocalcin, alkaline phosphatase, and runt-related transcription factor-2 (Runx2, also known as CBFa1), in a dose- and time-dependent manner. This was further confirmed by the higher expression levels of alkaline phosphatase and increased formation of mineralization nodules, along with the absence of inhibition of cell proliferation. Importantly, APN at 1 μg/ml was the optimal concentration, resulting in maximum deposition of calcium nodules, and was significant superior to bone morphogenetic protein 2. Mechanistically, we found for the first time that APN increased nuclear translocation of the leucine zipper motif (APPL)-1 as well as AMP-activated protein kinase (AMPK) phosphorylation, which were reversed by pretreatment with APPL1 siRNA. Our results indicate that APN promotes the osteogenic differentiation of hASCs by activating APPL1-AMPK signaling, suggesting that manipulation of APN is a novel therapeutic target for controlling hASC fate. - Highlights: • Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells. • The knock-down of APPL1 block the enhancement of

  20. Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL1-AMPK signaling pathway

    Human adipose-derived stem cells (hASCs) are multipotent progenitor cells with multi-lineage differentiation potential including osteogenesis and adipogenesis. While significant progress has been made in understanding the transcriptional control of hASC fate, little is known about how hASC differentiation is regulated by the autocrine loop. The most abundant adipocytokine secreted by adipocytes, adiponectin (APN) plays a pivotal role in glucose metabolism and energy homeostasis. Growing evidence suggests a positive association between APN and bone formation yet little is known regarding the direct effects of APN on hASC osteogenesis. Therefore, this study was designed to investigate the varied osteogenic effects and regulatory mechanisms of APN in the osteogenic commitment of hASCs. We found that APN enhanced the expression of osteoblast-related genes in hASCs, such as osteocalcin, alkaline phosphatase, and runt-related transcription factor-2 (Runx2, also known as CBFa1), in a dose- and time-dependent manner. This was further confirmed by the higher expression levels of alkaline phosphatase and increased formation of mineralization nodules, along with the absence of inhibition of cell proliferation. Importantly, APN at 1 μg/ml was the optimal concentration, resulting in maximum deposition of calcium nodules, and was significant superior to bone morphogenetic protein 2. Mechanistically, we found for the first time that APN increased nuclear translocation of the leucine zipper motif (APPL)-1 as well as AMP-activated protein kinase (AMPK) phosphorylation, which were reversed by pretreatment with APPL1 siRNA. Our results indicate that APN promotes the osteogenic differentiation of hASCs by activating APPL1-AMPK signaling, suggesting that manipulation of APN is a novel therapeutic target for controlling hASC fate. - Highlights: • Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells. • The knock-down of APPL1 block the enhancement of

  1. In vivo tracking of human adipose-derived stem cells labeled with ferumoxytol in rats with middle cerebral artery occlusion by magnetic resonance imaging

    Yan Yin

    2015-01-01

    Full Text Available Ferumoxytol, an iron replacement product, is a new type of superparamagnetic iron oxide approved by the US Food and Drug Administration. Herein, we assessed the feasibility of tracking transplanted human adipose-derived stem cells labeled with ferumoxytol in middle cerebral artery occlusion-injured rats by 3.0 T MRI in vivo. 1 × 10 4 human adipose-derived stem cells labeled with ferumoxytol-heparin-protamine were transplanted into the brains of rats with middle cerebral artery occlusion. Neurologic impairment was scored at 1, 7, 14, and 28 days after transplantation. T2-weighted imaging and enhanced susceptibility-weighted angiography were used to observe transplanted cells. Results of imaging tests were compared with results of Prussian blue staining. The modified neurologic impairment scores were significantly lower in rats transplanted with cells at all time points except 1 day post-transplantation compared with rats without transplantation. Regions with hypointense signals on T2-weighted and enhanced susceptibility-weighted angiography images corresponded with areas stained by Prussian blue, suggesting the presence of superparamagnetic iron oxide particles within the engrafted cells. Enhanced susceptibility-weighted angiography image exhibited better sensitivity and contrast in tracing ferumoxytol-heparin-protamine-labeled human adipose-derived stem cells compared with T2-weighted imaging in routine MRI.

  2. Study of adipose tissue engineering with human adipose-derived stem cells and collagen type I scaffold%人脂肪来源干细胞复合I型胶原支架构建工程化脂肪组织的实验研究

    张云松; 高建华; 鲁峰; 朱茗; 廖云君; 李华

    2008-01-01

    Objective To explore the possibility of building tissue-engineered adipose tissue and looking for a new approach for the repair of soft tissue defects.Methods The ceils using enzymatic digestion from human liposuction part of the lipid extract were used as adipose tissue-derived cells and labeled with Dil fluorescent marker.theinduced group using I collagen scaffold material as a carrier.the induced cell were planted into left back subcutaneously in nude mice at 1×107/ml cell density.in the uninduced group cells were not induced by any.in the game cell density and type Ⅰ collagen scaffold composite inoculated in nude right mouse back skin,the blank control group Ⅰ collagen scaffold gaps in nude mice inoculated subcutaneously center of the neck,eachof the six mice;Remove implants after 12 weeks and judge the adipogenic capacity through general and fluorescence microscopy,wet-determination,histological detection and oil red O staining qualitative.Results The primmT source of fat cultured stem cells,similar to the fibroblast morphology,and has a strong proliferative capacity.In the role of adipose differentiation medium,it can be the mature fat cells in which cytoplasmic lipid droplets gather,oil red O staaining wsa positive.In the induced group,newborn tissue were found in the experimental groups of nude mice and its average weight is about 0.020 g.Conventional pathological glices and oil red O staining confirmed it is mature adipose tissue.the fluorescence smining positive cerium them are exogenous.Unindnced group newborn tissue are found in the experimental groups of nude mice and its average weight is about 0.014 g.Conventional pathological slices and oil red O staining confirmed it include some mature adipose tissue,the fluorescence staining positive confirm them are exogenous.Two groups of the new wet weight with have statistical significance (P<0.01);gaps in the control group no new organization formed.Conclusions The cells using enzymatic digestion from

  3. 脂肪干细胞诱导分化的现状及前景%Induced differentiation of adipose-derived stem cells

    赵娜

    2015-01-01

    背景:脂肪干细胞是由中胚层发育而来的多能干细胞,在特殊的生长因子和环境等诱导培养条件下,可以向不同的谱系分化。目的:详细阐述脂肪干细胞诱导分化的条件及鉴定方法。方法:应用计算机检索万方数据库及PubMed数据库2005至2014年10年间的文献,中文检索词为“脂肪干细胞,诱导,分化”;英文检索词为“adipose derived stem cels,differentiation”。依据纳入排除标准选择37篇文献进行归纳总结。结果与结论:脂肪干细胞在抗坏血酸、胰岛素、地塞米松、转化生长因子β作用下可向软骨细胞分化;成脂诱导液的配方包括3-异丁基-1-甲基黄嘌呤(IBMX)、胰岛素、地塞米松、吲哚美辛;成骨分化常用的诱导剂包含地塞米松或维生素 D3、抗坏血酸,β-甘油磷酸钠;碱性成纤维细胞生长因子、表皮生长因子及维生素B27可联合应用诱导脂肪干细胞成神经分化;向心肌细胞分化普遍应用的诱导因子是5-氮杂胞苷;血管内皮生长因子和碱性成纤维细胞生长因子共同作用可以诱导脂肪干细胞向血管内皮细胞分化。随着分子生物学和细胞生物学的迅速发展,脂肪干细胞的分化研究也会更加深入,在目前对脂肪干细胞诱导分化现象观察的基础上,应加强对其内在的分子机制及调控脂肪干细胞可塑性的基因和蛋白的研究。%BACKGROUND:Adipose-derived stem cels are pluripotent stem cels developed from the mesoderm, which can differentiate into different lineages induced by specific growth factors and under certain environmental conditions. OBJECTIVE: To describe the induced differentiation and identification of adipose-derived stem cels in detail. METHODS:A computer-based search of Wanfang and PubMed databases was performed for relevant articles published from 2005 to 2014 using the keywords of “adipose derived stem cels, induced

  4. Autologous adipose tissue‑derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy.

    Liu, Tao; Mu, Hong; Shen, Zhongyang; Song, Zhuolun; Chen, Xiaobo; Wang, Yuliang

    2016-03-01

    Adipose tissue‑derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70% partial hepatectomy (PH) group; repeat PH (R‑PH) group and R‑PH/ADSC group, subjected to R‑PH and treated with autologous ADSCs via portal vein injection. In each group, the rats were sacrificed at different time points postoperatively in order to evaluate the changes in liver function and to estimate the liver regenerative response. The expression of proliferating cell nuclear antigen (PCNA) labeling index in the liver was measured using immunohistochemistry. The expression levels of hepatocyte growth factor (HGF) mRNA were measured using reverse transcription polymerase chain reaction. The results showed that regeneration of the remaining liver following R‑PH was significantly promoted by ADSC transplantation, as shown by a significant increase in liver to body weight ratio and the PCNA labeling index at 24 h post‑hepatectomy. Additionally, ADSC transplantation markedly inhibited the elevation of serum levels of alanine aminotransferase, aspartate aminotransferase and total bilirubin, increased HGF content and also attenuated hepatic vacuolar degeneration 24 h postoperatively. Furthermore, the liver was found to almost fully recover from hepatocellular damage due to hepatectomy among the three groups at 168 h postoperatively. These results indicated that autologous ADSC transplantation enhanced the regenerative capacity of the remnant liver tissues in the early phase following R‑PH. PMID:26783183

  5. Adipose-Derived Stem Cell-Seeded Hydrogels Increase Endogenous Progenitor Cell Recruitment and Neovascularization in Wounds.

    Kosaraju, Revanth; Rennert, Robert C; Maan, Zeshaan N; Duscher, Dominik; Barrera, Janos; Whittam, Alexander J; Januszyk, Michael; Rajadas, Jayakumar; Rodrigues, Melanie; Gurtner, Geoffrey C

    2016-02-01

    Adipose-derived mesenchymal stem cells (ASCs) are appealing for cell-based wound therapies because of their accessibility and ease of harvest, but their utility is limited by poor cell survival within the harsh wound microenvironment. In prior work, our laboratory has demonstrated that seeding ASCs within a soft pullulan-collagen hydrogel enhances ASC survival and improves wound healing. To more fully understand the mechanism of this therapy, we examined whether ASC-seeded hydrogels were able to modulate the recruitment and/or functionality of endogenous progenitor cells. Employing a parabiosis model and fluorescence-activated cell sorting analysis, we demonstrate that application of ASC-seeded hydrogels to wounds, when compared with injected ASCs or a noncell control, increased the recruitment of provascular circulating bone marrow-derived mesenchymal progenitor cells (BM-MPCs). BM-MPCs comprised 23.0% of recruited circulating progenitor cells in wounds treated with ASC-seeded hydrogels versus 8.4% and 2.1% in those treated with controls, p functional modulation of BM-MPCs, we demonstrate a statistically significant increase in BM-MPC migration, proliferation, and tubulization when exposed to hydrogel-seeded ASC-conditioned medium versus control ASC-conditioned medium (73.8% vs. 51.4% scratch assay closure; 9.1% vs. 1.4% proliferation rate; 10.2 vs. 5.5 tubules/HPF; p assays). BM-MPC expression of genes related to cell stemness and angiogenesis was also significantly increased following exposure to hydrogel-seeded ASC-conditioned medium (p functionality to effect greater neovascularization. PMID:26871860

  6. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    Kevin Dzobo

    2016-08-01

    Full Text Available Mesenchymal stromal/stem cells (MSCs represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4, SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.

  7. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro.

    Dzobo, Kevin; Turnley, Taegyn; Wishart, Andrew; Rowe, Arielle; Kallmeyer, Karlien; van Vollenstee, Fiona A; Thomford, Nicholas E; Dandara, Collet; Chopera, Denis; Pepper, Michael S; Parker, M Iqbal

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell-matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs) in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM) did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4), SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures. PMID:27527147

  8. Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival.

    Mangraviti, Antonella; Tzeng, Stephany Y; Gullotti, David; Kozielski, Kristen L; Kim, Jennifer E; Seng, Michael; Abbadi, Sara; Schiapparelli, Paula; Sarabia-Estrada, Rachel; Vescovi, Angelo; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Green, Jordan J; Quinones-Hinojosa, Alfredo

    2016-09-01

    There is a need for enabling non-viral nanobiotechnology to allow safe and effective gene therapy and cell therapy, which can be utilized to treat devastating diseases such as brain cancer. Human adipose-derived mesenchymal stem cells (hAMSCs) display high anti-glioma tropism and represent a promising delivery vehicle for targeted brain tumor therapy. In this study, we demonstrate that non-viral, biodegradable polymeric nanoparticles (NPs) can be used to engineer hAMSCs with higher efficacy (75% of cells) than leading commercially available reagents and high cell viability. To accomplish this, we engineered a poly(beta-amino ester) (PBAE) polymer structure to transfect hAMSCs with significantly higher efficacy than Lipofectamine™ 2000. We then assessed the ability of NP-engineered hAMSCs to deliver bone morphogenetic protein 4 (BMP4), which has been shown to have a novel therapeutic effect by targeting human brain tumor initiating cells (BTIC), a source of cancer recurrence, in a human primary malignant glioma model. We demonstrated that hAMSCs genetically engineered with polymeric nanoparticles containing BMP4 plasmid DNA (BMP4/NP-hAMSCs) secrete BMP4 growth factor while maintaining their multipotency and preserving their migration and invasion capacities. We also showed that this approach can overcome a central challenge for brain therapeutics, overcoming the blood brain barrier, by demonstrating that NP-engineered hAMSCs can migrate to the brain and penetrate the brain tumor after both intranasal and systemic intravenous administration. Critically, athymic rats bearing human primary BTIC-derived tumors and treated intranasally with BMP4/NP-hAMSCs showed significantly improved survival compared to those treated with control GFP/NP-hAMCSs. This study demonstrates that synthetic polymeric nanoparticles are a safe and effective approach for stem cell-based cancer-targeting therapies. PMID:27240162

  9. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation.

    Yan, Xueying; Ehnert, Sabrina; Culmes, Mihaela; Bachmann, Anastasia; Seeliger, Claudine; Schyschka, Lilianna; Wang, Zhiyong; Rahmanian-Schwarz, Afshin; Stöckle, Ulrich; De Sousa, Paul A; Pelisek, Jaroslav; Nussler, Andreas K

    2014-01-01

    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors. PMID:24603866

  10. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation.

    Xueying Yan

    Full Text Available The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a as compared to Ad-MSCs isolated from younger donors (<45 a. 5-hydroxymethylcytosine (5 hmC and 5-methylcytonsine (5 mC distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors.

  11. 5-Azacytidine Improves the Osteogenic Differentiation Potential of Aged Human Adipose-Derived Mesenchymal Stem Cells by DNA Demethylation

    Culmes, Mihaela; Bachmann, Anastasia; Seeliger, Claudine; Schyschka, Lilianna; Wang, Zhiyong; Rahmanian-Schwarz, Afshin; Stöckle, Ulrich; De Sousa, Paul A.; Pelisek, Jaroslav; Nussler, Andreas K.

    2014-01-01

    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors. PMID:24603866

  12. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway.

    Han, Dong; Huang, Wei; Li, Xiang; Gao, Lei; Su, Tao; Li, Xiujuan; Ma, Sai; Liu, Tong; Li, Congye; Chen, Jiangwei; Gao, Erhe; Cao, Feng

    2016-03-01

    Mesenchymal stem cells (MSCs)-based therapy provides a promising therapy for the ischemic heart disease (IHD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment, characterized by excessive inflammation and oxidative stress in the host's infarcted myocardium. Melatonin, an indole, which is produced by many organs including pineal gland, has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Using a murine model of myocardial infarction (MI), this study was designed to evaluate the impact of melatonin on adipose-derived mesenchymal stem cells (AD-MSCs)-based therapy for MI and the underlying mechanism involved with a focus on silent information regulator 1(SIRT1) signaling. Our results demonstrated that melatonin promoted functional survival of AD-MSCs in infarcted heart and provoked a synergetic effect with AD-MSCs to restore heart function. This in vivo effect of melatonin was associated with alleviated inflammation, apoptosis, and oxidative stress in infarcted heart. In vitro studies revealed that melatonin exert cytoprotective effects on AD-MSCs against hypoxia/serum deprivation (H/SD) injury via attenuating inflammation, apoptosis, and oxidative stress. Mechanistically, melatonin enhanced SIRT1 signaling, which was accompanied with the increased expression of anti-apoptotic protein Bcl2, and decreased the expression of Ac-FoxO1, Ac-p53, Ac-NF-ΚB, and Bax. Taken together, our findings indicated that melatonin facilitated AD-MSCs-based therapy in MI, possibly through promoting survival of AD-MSCs via SIRT1 signaling. Our data support the promise of melatonin as a novel strategy to improve MSC-based therapy for IHD, possibly through SIRT1 signaling evocation. PMID:26607398

  13. Dual Inhibition of Activin/Nodal/TGF-β and BMP Signaling Pathways by SB431542 and Dorsomorphin Induces Neuronal Differentiation of Human Adipose Derived Stem Cells

    Vedavathi Madhu

    2016-01-01

    Full Text Available Damage to the nervous system can cause devastating diseases or musculoskeletal dysfunctions and transplantation of progenitor stem cells can be an excellent treatment option in this regard. Preclinical studies demonstrate that untreated stem cells, unlike stem cells activated to differentiate into neuronal lineage, do not survive in the neuronal tissues. Conventional methods of inducing neuronal differentiation of stem cells are complex and expensive. We therefore sought to determine if a simple, one-step, and cost effective method, previously reported to induce neuronal differentiation of embryonic stem cells and induced-pluripotent stem cells, can be applied to adult stem cells. Indeed, dual inhibition of activin/nodal/TGF-β and BMP pathways using SB431542 and dorsomorphin, respectively, induced neuronal differentiation of human adipose derived stem cells (hADSCs as evidenced by formation of neurite extensions, protein expression of neuron-specific gamma enolase, and mRNA expression of neuron-specific transcription factors Sox1 and Pax6 and matured neuronal marker NF200. This process correlated with enhanced phosphorylation of p38, Erk1/2, PI3K, and Akt1/3. Additionally, in vitro subcutaneous implants of SB431542 and dorsomorphin treated hADSCs displayed significantly higher expression of active-axonal-growth-specific marker GAP43. Our data offers novel insights into cell-based therapies for the nervous system repair.

  14. Titanium nanotubes stimulate osteoblast differentiation of stem cells from pulp and adipose tissue

    Alfonso Pozio; Annalisa Palmieri; Ambra Girardi; Francesca Cura; Francesco Carinci

    2012-01-01

    Background: Titanium is the gold standard among materials used for prosthetic devices because of its good mechanical and chemical properties. When exposed to oxygen, titanium becomes an oxide, anatase that is biocompatible and able to induce osseointegration. Materials and Methods: In this study we compared the expression profiling of stem cells cultivated on two types of surface: Pure titanium disk and nanotube titanium disk in order to detect if nanotube titanium instead (NTD) surface s...

  15. Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets

    Electrospun fiber sheets with various orientations (random, partially aligned, and aligned) and smooth and roughened casted membranes were prepared. Hydroxyapatite (HA) crystals were in situ formed on these material surfaces via immersion in 10 × simulated body fluid solution. The size and morphology of the resulting fibers were examined using scanning electron microscopy. The average diameter of the fibers ranged from 225 ± 25 to 1050 ± 150 nm depending on the electrospinning parameters. Biological experiment results show that human adipose-derived stem cells exhibit different adhesion and osteogenic differentiation on the three types of fiber. The cell proliferation and osteogenic differentiation were best on the aligned fibers. Similar results were found for phosphorylated focal adhesion kinase expression. Electrospun poly(lactic acid) aligned fibers mineralized with HA crystals provide a good environment for cell growth and osteogenic differentiation and thus have great potential in the tissue engineering field. - Highlights: • hADSCs show higher adhesion and proliferation on HA-precipitate electrospun fiber sheets than those of the control membranes. • HA-mineralized fiber groups greatly improve cell growth and increase FAK and p-FAK expressions. • HA-precipitate electrospun fiber sheets present higher ALP and OC activity through the study periods. • Electrospun PLA fiber mineralized with HA provides a good environment for cell growth and osteogenic differentiation. • A simple immersion of electrospun fibers in 10 × SBF are a potential matrix for bone tissue engineering

  16. Differential osteogenic potential of human adipose-derived stem cells co-cultured with human osteoblasts on polymeric microfiber scaffolds.

    Rozila, Ismail; Azari, Pedram; Munirah, Sha'ban; Wan Safwani, Wan Kamarul Zaman; Gan, Seng Neon; Nur Azurah, Abdul Ghani; Jahendran, Jeevanan; Pingguan-Murphy, Belinda; Chua, Kien Hui

    2016-02-01

    The osteogenic potential of human adipose-derived stem cells (HADSCs) co-cultured with human osteoblasts (HOBs) using selected HADSCs/HOBs ratios of 1:1, 2:1, and 1:2, respectively, is evaluated. The HADSCs/HOBs were seeded on electrospun three-dimensional poly[(R)-3-hydroxybutyric acid] (PHB) blended with bovine-derived hydroxyapatite (BHA). Monocultures of HADSCs and HOBs were used as control groups. The effects of PHB-BHA scaffold on cell proliferation and cell morphology were assessed by AlamarBlue assay and field emission scanning electron microscopy. Cell differentiation, cell mineralization, and osteogenic-related gene expression of co-culture HADSCs/HOBs were examined by alkaline phosphatase (ALP) assay, alizarin Red S assay, and quantitative real time PCR, respectively. The results showed that co-culture of HADSCs/HOBs, 1:1 grown into PHB-BHA promoted better cell adhesion, displayed a significant higher cell proliferation, higher production of ALP, extracellular mineralization and osteogenic-related gene expression of run-related transcription factor, bone sialoprotein, osteopontin, and osteocalcin compared to other co-culture groups. This result also suggests that the use of electrospun PHB-BHA in a co-culture HADSCs/HOBs system may serve as promising approach to facilitate osteogenic differentiation activity of HADSCs through direct cell-to-cell contact with HOBs. PMID:26414782

  17. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Carriel, Víctor; Garrido-Gómez, Juan; Hernández-Cortés, Pedro; Garzón, Ingrid; García-García, Salomé; Sáez-Moreno, José Antonio; Sánchez-Quevedo, María del Carmen; Campos, Antonio; Alaminos, Miguel

    2013-04-01

    Objective. The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. Approach. A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. Main results. Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. Significance. Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.

  18. Human adipose stem cells maintain proliferative, synthetic and multipotential properties when suspension cultured as self-assembling spheroids

    Adipose-derived stromal/stem cells (ASCs) have been gaining recognition as an extremely versatile cell source for tissue engineering. The usefulness of ASCs in biofabrication is further enhanced by our demonstration of the unique properties of these cells when they are cultured as three-dimensional cellular aggregates or spheroids. As described herein, three-dimensional formulations, or self-assembling ASC spheroids develop their own extracellular matrix that serves to increase the robustness of the cells to mechanical stresses. The composition of the extracellular matrix can be altered based on the external environment of the spheroids and these constructs can be grown in a reproducible manner and to a consistent size. The spheroid formulation helps preserve the viability and developmental plasticity of ASCs even under defined, serum-free media conditions. For the first time, we show that multiple generations of adherent ASCs produced from these spheroids retain their ability to differentiate into multiple cell/tissue types. These demonstrated properties support the idea that culture-expanded ASCs are an excellent candidate cellular material for ‘organ printing’—the approach of developing complex tissue structures from a standardized cell ‘ink’ or cell formulation. (paper)

  19. Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site.

    O'Connell, Cathal D; Di Bella, Claudia; Thompson, Fletcher; Augustine, Cheryl; Beirne, Stephen; Cornock, Rhys; Richards, Christopher J; Chung, Johnson; Gambhir, Sanjeev; Yue, Zhilian; Bourke, Justin; Zhang, Binbin; Taylor, Adam; Quigley, Anita; Kapsa, Robert; Choong, Peter; Wallace, Gordon G

    2016-03-01

    We present a new approach which aims to translate freeform biofabrication into the surgical field, while staying true to the practical constraints of the operating theatre. Herein we describe the development of a handheld biofabrication tool, dubbed the 'biopen', which enables the deposition of living cells and biomaterials in a manual, direct-write fashion. A gelatin-methacrylamide/hyaluronic acid-methacrylate (GelMa/HAMa) hydrogel was printed and UV crosslinked during the deposition process to generate surgically sculpted 3D structures. Custom titanium nozzles were fabricated to allow printing of multiple ink formulations in a collinear (side-by-side) geometry. Independently applied extrusion pressure for both chambers allows for geometric control of the printed structure and for the creation of compositional gradients. In vitro experiments demonstrated that human adipose stem cells maintain high viability (>97%) one week after biopen printing in GelMa/HAMa hydrogels. The biopen described in this study paves the way for the use of 3D bioprinting during the surgical process. The ability to directly control the deposition of regenerative scaffolds with or without the presence of live cells during the surgical process presents an exciting advance not only in the fields of cartilage and bone regeneration but also in other fields where tissue regeneration and replacement are critical. PMID:27004561

  20. Hip Osteoarthritis in Dogs: A Randomized Study Using Mesenchymal Stem Cells from Adipose Tissue and Plasma Rich in Growth Factors

    Belen Cuervo

    2014-07-01

    Full Text Available Purpose: The aim of this study was to compare the efficacy and safety of a single intra-articular injection of adipose mesenchymal stem cells (aMSCs versus plasma rich in growth factors (PRGF as a treatment for reducing symptoms in dogs with hip osteoarthritis (OA. Methods: This was a randomized, multicenter, blinded, parallel group. Thirty-nine dogs with symptomatic hip OA were assigned to one of the two groups, to receive aMSCs or PRGF. The primary outcome measures were pain and function subscales, including radiologic assessment, functional limitation and joint mobility. The secondary outcome measures were owners’ satisfaction questionnaire, rescue analgesic requirement and overall safety. Data was collected at baseline, then, 1, 3 and 6 months post-treatment. Results: OA degree did not vary within groups. Functional limitation, range of motion (ROM, owner’s and veterinary investigator visual analogue scale (VAS, and patient’s quality of life improved from the first month up to six months. The aMSCs group obtained better results at 6 months. There were no adverse effects during the study. Our findings show that aMSCs and PRGF are safe and effective in the functional analysis at 1, 3 and 6 months; provide a significant improvement, reducing dog’s pain, and improving physical function. With respect to basal levels for every parameter in patients with hip OA, aMSCs showed better results at 6 months.

  1. The effect of low static magnetic field on osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells

    Marędziak, Monika; Śmieszek, Agnieszka; Tomaszewski, Krzysztof A.; Lewandowski, Daniel; Marycz, Krzysztof

    2016-01-01

    The aim of this work was to investigate the effects of static magnetic field (SMF) on the osteogenic properties of human adipose derived mesenchymal stem cells (hASCs). In this study in seven days viability assay we examined the impact of SMF on cells proliferation rate, population doubling time, and ability to form single-cell derived colonies. We have also examined cells' morphology, ultrastructure and osteogenic properties on the protein as well as mRNA level. We established a complex approach, which enabled us to obtain information about SMF and hASCs potential in the context of differentiation into osteogenic and adipogenic lineages. We demonstrated that SMF enhances both viability and osteogenic properties of hASCs through higher proliferation factor and shorter population doubling time. We have also observed asymmetrically positioned nuclei and organelles after SMF exposition. With regards to osteogenic properties we observed increased levels of osteogenic markers i.e. osteopontin, osteocalcin and increased ability to form osteonodules with positive reaction to Alizarin Red dye. We have also shown that SMF besides enhancing osteogenic properties of hASCs, simultaneously decreases their ability to differentiate into adipogenic lineage. Our results clearly show a direct influence of SMF on the osteogenic potential of hASCs. These results provide key insights into the role of SMF on their cellular fate and properties.

  2. Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity.

    Hafner, Anne-Laure; Contet, Julian; Ravaud, Christophe; Yao, Xi; Villageois, Phi; Suknuntha, Kran; Annab, Karima; Peraldi, Pascal; Binetruy, Bernard; Slukvin, Igor I; Ladoux, Annie; Dani, Christian

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) show great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). However, hiPSC-BAPs display a low adipogenic capacity compared to adult-BAPs when maintained in a traditional adipogenic cocktail. The reasons of this feature are unknown and hamper their use both in cell-based therapy and basic research. Here we show that treatment with TGFβ pathway inhibitor SB431542 together with ascorbic acid and EGF were required to promote hiPSCs-BAP differentiation at a level similar to adult-BAP differentiation. hiPSC-BAPs expressed the molecular identity of adult-UCP1 expressing cells (PAX3, CIDEA, DIO2) with both brown (ZIC1) and brite (CD137) adipocyte markers. Altogether, these data highlighted the critical role of TGFβ pathway in switching off hiPSC-brown adipogenesis and revealed novel factors to unlock their differentiation. As hiPSC-BAPs display similarities with adult-BAPs, it opens new opportunities to develop alternative strategies to counteract obesity. PMID:27577850

  3. Adipose-Derived Stem Cells Alleviate Radiation-Induced Muscular Fibrosis by Suppressing the Expression of TGF-β1

    Wei Sun

    2016-01-01

    Full Text Available We aim to investigate the effects of adipose-derived stem cells (ASCs transplantation on irradiation-induced skeletal muscle fibrosis. Sixty-four rabbits were randomly divided into ASCs group and PBS group followed by irradiation at unilateral hip with a single dose of 80 Gy. Nonirradiated side with normal skeletal muscle served as normal control. Skeletal muscle tissues were collected from eight rabbits in each group at 1 w, 4 w, 8 w, and 26 w after irradiation. Migration of ASCs was observed in the peripheral tissues along the needle passage in the injured muscle. The proportion of the area of collagen fibers to the total area in sections of ASCs group was lower than those of PBS groups at 4 w, 8 w, and 26 w after irradiation. Significant decrease was noted in the integrated optimal density of the transforming growth factor β1 (TGF-β1 in the ASCs group compared with those of PBS group at 4 w, 8 w, and 26 w after irradiation. Moreover, the expression of TGF-β1 was lower in the ASCs group compared to those of the PBS group at each time point determined by Western blot analysis. ASCs transplantation could alleviate irradiation fibrosis by suppressing the level of TGF-β1 in the irradiated skeletal muscle.

  4. Tissue Inhibitor of Matrix Metalloproteinases-1 Knockdown Suppresses the Proliferation of Human Adipose-Derived Stem Cells

    Zhang, Peihua; Li, Jin; Qi, Yawei; Tang, Xudong; Duan, Jianfeng; Liu, Li; Wu, Zeyong; Liang, Jie; Li, Jiangfeng; Wang, Xian; Zeng, Guofang; Liu, Hongwei

    2016-01-01

    Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional matrix metalloproteinase, and it is involved in the regulation of cell proliferation and apoptosis in various cell types. However, little is known about the effect of TIMP-1 expression on the proliferation of adipose-derived stem cells (ADSCs). Therefore, TIMP-1 expression in the ADSCs was firstly detected by western blotting, and TIMP-1 gene was knocked down by lentivirus-mediated shRNA. Cell proliferation was then evaluated by MTT assay and Ki67 staining, respectively. Cell cycle progression was determined by flow cytometry. The changes of p51, p21, cyclin E, cyclin-dependent kinase 2 (CDK2), and P-CDK2 caused by TIMP-1 knockdown were detected by western blotting. The results indicated that ADSCs highly expressed TIMP-1 protein, and the knockdown of TIMP-1 inhibited cell proliferation and arrested cell cycle progression at G1 phase in the ADSCs possibly through the upregulation of p53, p21, and P-CDK2 protein levels and concurrent downregulation of cyclin E and CDK2 protein levels. These findings suggest that TIMP-1 works as a positive regulator of cell proliferation in ADSCs. PMID:27239203

  5. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  6. The effect of progesterone and 17-β estradiol on membrane-bound HLA-G in adipose derived stem cells.

    Moslehi, Akram; Hashemi-Beni, Batool; Moslehi, Azam; Akbari, Maryam Ali; Adib, Minoo

    2016-07-01

    Membrane-bound HLA-G (mHLA-G) discovery on adipose derived stem cells (ADSCs) as a tolerogenic and immunosuppressive molecule was very important. Many documents have shown that HLA-G expression can be controlled via some hormones such as progesterone (P4) and estradiol (E2). Therefore, this study was designed to evaluate progesterone and estradiol effects on mHLA-G in ADSCs at restricted and combination concentrations. Three independent cell lines were cultured in complete free phenol red DMEM and subcultured to achieve suffi cient cells. These cells were treated with P4, E2 and P4 plus E2 at physiologic and pregnancy concentrations for 3 days in cell culture conditions. The HLA-G positive ADSCs was measured via monoclonal anti HLA-G-FITC/MEMG-09 by means of flow cytometry in nine groups. Data were analyzed by one way ANOVA and Tukey's post hoc tests. There were no signifi cant values of the mean percentage of HLA-G positive cells in E2-treated and the combination of P4 plus E2-treated ADSCs compared to control cells (p value>0.05) but P4 had a signifi cant increase on mHLA-G in ADSCs (p value<0.05). High P4 concentration increased mHLA-G but E2 and the combination of P4 plus E2 could not change mHLA-G on ADSCs. PMID:27382350

  7. Adipose-Derived Stem Cells Ameliorate Allergic Airway Inflammation by Inducing Regulatory T Cells in a Mouse Model of Asthma

    Kyu-Sup Cho

    2014-01-01

    Full Text Available Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13 and enhanced Th1 cytokine (IFN-γ and regulatory cytokines (IL-10 and TGF-β in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production.

  8. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma.

    Cho, Kyu-Sup; Park, Mi-Kyung; Kang, Shin-Ae; Park, Hee-Young; Hong, Sung-Lyong; Park, Hye-Kyung; Yu, Hak-Sun; Roh, Hwan-Jung

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13) and enhanced Th1 cytokine (IFN-γ) and regulatory cytokines (IL-10 and TGF-β) in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production. PMID:25246732

  9. Repair of osteochondral defects with adipose stem cells and a dual growth factor-releasing scaffold in rabbits.

    Im, Gun-Il; Lee, Jin Ho

    2010-02-01

    The purpose of this work was to evaluate the in vivo effectiveness of a TGF-beta(2) and bone morphogenetic protein (BMP)-7-immobilized porous polycaprolactone (PCL)/F127 scaffold to enhance the healing of cartilage defect. An osteochondral defect was created on the patellar groove of the right distal femur of 12 rabbits and managed by one of the following methods: filling it with the scaffold only (Group I); the scaffold seeded with adipose stem cells (ASCs) (Group II); a TGF-beta(2) and BMP-7-immobilized scaffold (Group III); and a TGF-beta(2) and BMP-7-immobilized scaffold seeded with ASCs (Group IV). Each group had three rabbits. Nine weeks after the implantation, the implanted scaffolds were filled with yellowish, dense tissue, and had distinct margins with adjacent normal cartilage. The histological findings showed infiltration of foreign-body giant cells and blood vessel, more prominently in Groups III and IV. The presence of growth factor significantly increased the ICRS Macroscopic Score (p = 0.045) while the presence of ASC did not. The ICRS Visual Histological Score was not significantly affected by the presence of either growth factors or ASCs, showing similar values in all groups. In conclusion, the use of TGF-beta(2) and BMP-7-immobilized PCL/F127 scaffolds improved gross appearances of the osteochondral defects while not actually leading to better histological results and induced a greater degree of foreign body reaction. PMID:19957354

  10. Effects of γ-secretase inhibition on the proliferation and vitamin D3 induced osteogenesis in adipose derived stem cells

    As a γ-secretase inhibitor, DAPT has been widely used to evaluate the biological behaviors and Notch signaling pathway in various cells. This study was aimed to examine the effects of DAPT on the growth and vitamin D3 induced osteogenesis in adipose derived stem cells (ASCs). The cells were treated with or without DAPT and induced to osteoblastic lineage in the presence of vitamin D3. Alizarin red staining and real-time PCR results indicated that the addition of DAPT to vitamin D3 treatments enhanced osteogenesis in ASCs. According to the fold increase and colony-forming unit assay results, the cells cultured in DAPT exhibited lower proliferation rate than those cultured in control medium. Hey1, expressed in the nucleus of ASCs to act as a transcriptional repressor, was downregulated when Notch signaling was inhibited by DAPT. Whereas the expression of Runx2 increased in the nucleus of osteogenic induced ASCs after DAPT treatment. This study demonstrated that DAPT reduced the proliferation and enhanced the osteogenesis in ASCs via regulation of Notch and Runx2 expression.

  11. Induction and differentiation of adipose-derived stem cells from human buccal fat pads into salivary gland cells.

    Kawakami, Miyuki; Ishikawa, Hiroshi; Tanaka, Akira; Mataga, Izumi

    2016-07-01

    Atrophy or hypofunction of the salivary gland because of aging or disease leads to hyposalivation that affects patient quality of life by causing dry mouth, deterioration of mastication/deglutition, and poor oral hygiene status. Current therapy for atrophy or hypofunction of the salivary gland in clinical practice focuses on symptom relief using drugs and artificial saliva; therefore, there is still a need to develop new therapies. To investigate potential novel therapeutic targets, we induced the differentiation of salivary gland cells by co-culturing human adipose-derived stem cells isolated from buccal fat pads (hBFP-ASCs) with human salivary-gland-derived fibroblasts (hSG-fibros). We examined their potential for transplantation and tissue neogenesis. Following the culture of hBFP-ASCs and hSG-fibros, differentiated cells were transplanted into the submandibular glands of SCID mice, and their degree of differentiation in tissues was determined. We also examined their potential for functional tissue reconstitution using a three-dimensional (3D) culture system. Co-cultured cells expressed salivary-glandrelated markers and generated new tissues following transplantation in vivo. Moreover, cell reconstituted glandular structures in the 3D culture system. In conclusion, coculture of hSG-fibros with hBFP-ASCs led to successful differentiation into salivary gland cells that could be transplanted to generate new tissues. PMID:26842556

  12. Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets

    Kung, Fu-Chen [Department of Health Developing and Health Marketing, Kainan University, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@thu.edu.tw [Department of Chemical and Materials Engineering, Tunghai University, Taiwan (China); Lai, Wen-Fu T., E-mail: Laitw@tmu.edu.tw [Graduate Institute of Clinical Medicine, Taipei Medical University, Taiwan (China)

    2014-12-01

    Electrospun fiber sheets with various orientations (random, partially aligned, and aligned) and smooth and roughened casted membranes were prepared. Hydroxyapatite (HA) crystals were in situ formed on these material surfaces via immersion in 10 × simulated body fluid solution. The size and morphology of the resulting fibers were examined using scanning electron microscopy. The average diameter of the fibers ranged from 225 ± 25 to 1050 ± 150 nm depending on the electrospinning parameters. Biological experiment results show that human adipose-derived stem cells exhibit different adhesion and osteogenic differentiation on the three types of fiber. The cell proliferation and osteogenic differentiation were best on the aligned fibers. Similar results were found for phosphorylated focal adhesion kinase expression. Electrospun poly(lactic acid) aligned fibers mineralized with HA crystals provide a good environment for cell growth and osteogenic differentiation and thus have great potential in the tissue engineering field. - Highlights: • hADSCs show higher adhesion and proliferation on HA-precipitate electrospun fiber sheets than those of the control membranes. • HA-mineralized fiber groups greatly improve cell growth and increase FAK and p-FAK expressions. • HA-precipitate electrospun fiber sheets present higher ALP and OC activity through the study periods. • Electrospun PLA fiber mineralized with HA provides a good environment for cell growth and osteogenic differentiation. • A simple immersion of electrospun fibers in 10 × SBF are a potential matrix for bone tissue engineering.

  13. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    Wenyue Li

    Full Text Available Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7 that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1 onto the surface of poly-lactic-co-glycolic acid (PLGA substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs, being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP, osteocalcin (OC, and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications.

  14. Comparative Analysis of Human Mesenchymal Stem Cells Derived From Bone Marrow, Placenta, and Adipose Tissue as Sources of Cell Therapy.

    Jeon, Young-Joo; Kim, Jumi; Cho, Jin Hyoung; Chung, Hyung-Min; Chae, Jung-Il

    2016-05-01

    Various source-derived mesenchymal stem cells (MSCs) with multipotent capabilities were considered for cell therapeutics of incurable diseases. The applicability of MSCs depends on the cellular source and on their different in vivo functions, despite having similar phenotypic and cytological characteristics. We characterized MSCs from different sources, including human bone marrow (BM), placenta (PL), and adipose tissue (AT), in terms of the phenotype, surface antigen expression, differentiation ability, proteome reference map, and blood flow recovery in a hindlimb ischemic disease model. The MSCs exhibit different differentiation potentials depending on the cellular source despite having similar phenotypic and surface antigen expression. We identified approximately 90 differentially regulated proteins. Most up- or down-regulated proteins show cytoskeletal or oxidative stress, peroxiredoxin, and apoptosis roles according to their functional involvement. In addition, the PL-MSCs retained a higher therapeutic efficacy than the BM- and AT-MSCs in the hindlimb ischemic disease model. In summary, we examined differentially expressed key regulatory factors for MSCs that were obtained from several cellular sources and demonstrated their differentially expressed proteome profiles. Our results indicate that primitive PL-MSCs have biological advantages relative to those from other sources, making PL-MSCs a useful model for clinical applications of cell therapy. J. Cell. Biochem. 117: 1112-1125, 2016. © 2015 Wiley Periodicals, Inc. PMID:26448537

  15. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats.

    Lin, Chi-Chang; Fu, Shu-Juan

    2016-01-01

    Electrospinning is a versatile technique to generate large quantities of micro- or nano-fibers from a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized electrospun nano-fibers and use a mussel-inspired surface coating to regulate adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared poly(lactic acid) (PLA) fibers coated with polydopamine (PDA). The morphology, chemical composition, and surface properties of PDA/PLA were characterized by SEM and XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. Increased focal adhesion kinase (FAK) and collagen I levels and enhanced cell attachment and cell cycle progression were observed upon an increase in PDA content. In addition, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on a pure PLA mat. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenesis differentiation. Our results demonstrate that the bio-inspired coating synthetic degradable PLA polymer can be used as a simple technique to render the surfaces of synthetic biodegradable fibers, thus enabling them to direct the specific responses of hADSCs. PMID:26478309

  16. Use of Adipose-Derived Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in a Canine Model

    Villatoro, Antonio J.; Fernández, Viviana; Rico-Llanos, Gustavo A.; Becerra, José; Andrades, José A.

    2015-01-01

    Keratoconjunctivitis sicca (KCS) or dry eye disease (DED) is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs) implanted around the lacrimal glands in 12 dogs (24 eyes) with KCS, which is refractory to current available treatments. Schirmer tear test (STT) and ocular surface integrity were assessed at 0 (before treatment), 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P < 0.001) during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human. PMID:25802852

  17. The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration.

    Xie, Qing; Wang, Zi; Zhou, Huifang; Yu, Zhang; Huang, Yazhuo; Sun, Hao; Bi, Xiaoping; Wang, Yefei; Shi, Wodong; Gu, Ping; Fan, Xianqun

    2016-01-01

    Tissue-engineering technology employing genetically-modified mesenchymal stem cells combined with proper scaffolds represents a promising strategy for bone regeneration. Elucidating the underlying mechanisms that govern the osteogenesis of mesenchymal stem cells will give deeper insights into the regulatory patterns, as well as provide more effective methods to enhance bone regeneration. In this study, miR-135 was identified as an osteogenesis-related microRNA that was up-regulated during the osteogenesis of rat adipose-derived stem cells (ADSCs). Gain- and loss-of-function experiments using a lentiviral expression system showed that Homeobox A2 (Hoxa2) was negatively regulated by miR-135, and luciferase reporter assay further indicated that miR-135 repressed Hoxa2 expression through binding to the 3'-untranslated region (3'-UTR) of the Hoxa2 mRNA. In vitro analyses showed that the overexpression of miR-135 significantly enhanced the expression of bone markers and extracellular matrix calcium deposition, whereas the knockdown of miR-135 suppressed these processes. Transduced ADSCs were then combined with poly(sebacoyl diglyceride) (PSeD) scaffold to repair a critical-sized calvarial defects in rats. The results showed that the overexpression of miR-135 significantly promoted new bone formation with higher bone mineral density (BMD) and number of trabeculae (Tb.N), as well as larger areas of newly formed bone and mineralization labeled by tetracycline, calcein and alizarin red. In contrast, the knockdown of miR-135 attenuated these processes. Additionally, immunohistochemical analyses showed that transduced ADSCs participated in new bone formation and a miR-135/Hoxa2/Runx2 pathway might contribute to the regulation of ADSC osteogenesis and bone regeneration. Taken together, our data suggested that miR-135 positively regulated the osteogenesis and bone regeneration of ADSCs both in vitro and in vivo. Thus, the combination of miR-135-modified ADSCs and the PSe

  18. RESEARCH AND APPLICATION PROGRESS OF ADIPOSE-DERIVED STEM CELLS%脂肪源性干细胞研究及其应用进展

    聂绪强; 陈怀红; 唐宁; 卞卡

    2011-01-01

    目的 对脂肪源性干细胞(adipose-derived stem cells,ADSCs)的生化特征、应用进展及前景等进行综述.方法 广泛查阅近年关于ADSCs的实验研究及临床研究文献,并进行整理、综合与分析.结果 ADSCs取材方便,易于培养,分化潜能巨大,可在体外稳定增殖传代.ADSCs在动物实验和临床应用中均取得重大进步,已广泛应用于临床进行心血管疾病、代谢性疾病、脑病的治疗及组织工程修复.结论 ADSCs逐渐取代了BMSCs,已成为干细胞研究的重点和热点.%Objective To review the biochemical characteristics, application progress, and prospects of the adipose-derived stem cells (ADSCs). Methods The recent original experimental and clinical literature about ADSCs was extensively-reviewed and analyzed. Results ADSCs can be readily harvested in large numbers from adipose tissue with properties of stable proliferation and potential differentiation in vitro. Significant progress of ADSCs is made in the animal experiment and the clinical application. It has been widely used in the clinical treatment of cardiovascular disease, metabolic disease, encephalopathy, and tissue engineering repair. Conclusion ADSCs have gradually replaced bone marrow mesenchymal stem cells and become the focused hot spot of regenerative medicine and stem cells.

  19. Transplantation of Adipose Tissue and Adipose-Derived Stem Cells as a Tool to Study Metabolic Physiology and for Treatment of Disease

    Tran, Thien T.; Kahn, C. Ronald

    2010-01-01

    Humans and other mammals have three main fat depots - visceral white fat, subcutaneous white fat, and brown fat - each possessing unique cell-autonomous properties. In contrast to visceral fat which can induce detrimental metabolic effects, subcutaneous white fat and brown fat have potential beneficial metabolic effects, including improved glucose homeostasis and increased energy consumption, which might be transferred by transplantation of these fat tissues. In addition, fat contains adipose...

  20. Characterization and Multilineage Differentiation of Domestic and Black-Footed Cat Mesenchymal Stromal/Stem Cells from Abdominal and Subcutaneous Adipose Tissue.

    Gómez, Martha C; Qin, Qian; Biancardi, Monica N; Galiguis, Jason; Dumas, Cherie; MacLean, Robert A; Wang, Guoshun; Pope, C Earle

    2015-10-01

    Transplantation of mesenchymal stem cells (MSCs) isolated from bone marrow or adipose tissue is emerging as a promising tool for cell replacement therapy and regenerative medicine in domestic and endangered animal species. Defining the differentiation capability of adipose-derived mesenchymal stromal/stem cells (AMSCs) collected from different depot sites of adipose tissue will be essential for developing strategies for cell replacement therapy. In the present study, we compared the biological characteristics of domestic cat AMSCs isolated from visceral fat of the abdominal cavity (AB) with AMSCs from subcutaneous (SQ) tissue, and the functional capability of domestic and black-footed cat (Felis nigripes) AMSCs to differentiate into other cell types. Our results showed that both domestic and black-footed cat adipose-derived stromal vascular fractions contained AMSCs. Both domestic cat AB- and SQ-AMSCs showed important clonogenic ability and the minimal MSC immunophenotype as defined by the International Society for Cellular Therapy in humans. However, domestic cat AB-AMSCs had higher percentages of cells positive for MSCs-associated cluster of differentiation (CD) markers CD90(+) and CD105(+) (92% and 80%, respectively) than those of SQ-AMSCs (77% and 58%, respectively). Although these results may suggest that AB-AMSCs may be more multipotent than SQ-AMSCs, both types of cells showed similar expression of pluripotent genes Oct-4 and Klf4, except for higher expression of Nanog than in AB-AMSCs, and equivalent in vitro multilineage differentiation. Under appropriate stimuli, the black-footed cat and both domestic cat AB- and SQ-AMSCs differentiated not only toward mesoderm cell lineages but also toward ectoderm cell lineage, such as neuron cell-like cells. Black-footed cat AMSCs had more capability to differentiate toward chondrocytes. These results suggest that the defined AMSC population (regardless of site of collection) could potentially be employed as a

  1. Evaluation of β1-integrin expression on chondrogenically differentiating human adipose-derived stem cells using atomic force microscopy.

    Quisenberry, Chrystal R; Nazempour, Arshan; Van Wie, Bernard J; Abu-Lail, Nehal I

    2016-06-01

    The expression of β1-integrin on human adipose-derived stem cells, differentiating toward a chondrogenic lineage, is hypothesized to decrease when cells are grown under in vivo-like environments due to sufficient extracellular matrix (ECM) buildup in the engineered tissues. The opposite is true when cells are grown in static cultures such as in pellet or micromass. To probe β1-integrin distribution on cellular surfaces, atomic force microscopy cantilevers modified with anti-β1-integrin antibodies were used. Specific antibody-antigen adhesion forces were identified and indicated the locations of β1-integrins on cells. ECM properties were assessed by estimating the Young's modulus of the matrix. Specific single antibody-antigen interactions averaged 78 ± 10 pN with multiple bindings occurring at approximate multiples of 78 pN. The author's results show that upregulated β1-integrin expression coincided with a less robust ECM as assessed by mechanical properties of tissues. In micromass and pellet cultures, transforming growth factor β3(TGF-β3) elicited a decrease in Young's modulus by 3.7- and 4.4-fold while eliciting an increase in β1-integrin count by 1.1- and 1.3-fold, respectively. β1-integrin counts on cells grown in the presence of TGF-β3 with oscillating hydrostatic pressure decreased by a 1.1-fold while the Young's modulus increased by a 1.9-fold. Collectively, our results suggest that cells in insufficiently robust ECM express more integrin perhaps to facilitate cell-ECM adhesion and compensate for a looser less robust ECM. PMID:27106564

  2. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(dl-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL-1 GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  3. Small activating RNA induces myogenic differentiation of rat adipose-derived stem cells by upregulating MyoD

    Chenghe Wang

    2015-08-01

    Full Text Available ABSTRACTPurpose:RNA activation (RNAa is a mechanism of gene activation triggered by promoter-targeted small double stranded RNAs (dsRNAs, also known as small activating RNAs (saRNAs. Myogenic regulatory factor MyoD is regarded as the master activator of myogenic differentiation cascade by binding to enhancer of muscle specific genes. Stress urinary incontinence (SUI is a condition primarily resulted from urethral sphincter deficiency. It is thus expected that by promoting differentiation of adipose-derived stem cells (ADSCs into myoblasts by activating MyoD gene through RNAa may offer benefits to SUI.Materials and Methods:Rats ADSCs were isolated, proliferated in vitro, and identified by flow cytometry. Purified ADSCs were then transfected with a MyoD saRNA or control transfected. Real-time polymerase chain reaction (RT-PCR and western blotting were used to detect MyoD mRNA and protein expression, respectively. Immunocytochemical staining was applied to determine the expression of desmin protein in transfected cells. Cell viability was measured by using CellTiter 96® AQueous One Solution Cell Proliferation Assay kit.Results:Transfection of a MyoD saRNA (dsMyoD into ADSCs significantly induced the expression of MyoD at both the mRNA and protein levels, and inhibited cell proliferation. Desmin protein expression was detected in dsMyoD treated ADSCs 2 weeks later.Conclusion:Our findings show that RNAa mediated overexpression of MyoD can promote transdifferentiation of ADSCs into myoblasts and may help treat stress urinary incontinence (SUI–a condition primarily resulted from urethral sphincter deficiency.

  4. Transplanted Adipose-Derived Stem Cells Ameliorate Testicular Dysfunction In A D-Galactose-Induced Aging Rat Model.

    Yang, Chun; Du, Yi-Kuan; Wang, Jun; Luan, Ping; Yang, Qin-Lao; Huang, Wen-Hua; Yuan, Lin

    2015-10-01

    Glycation product accumulation during aging of slowly renewing tissues may be an important mechanism underlying aging of the testis. Adipose-derived stem cells (ADSCs) have shown promise in a novel tissue regenerative technique and may have utility in treating sexual dysfunction. ADSCs have also been found to be effective in antiaging therapy, although the mechanism underlying their effects remains unknown. This study was designed to investigate the anti-aging effect of ADSCs in a D-galactose (D-gal)-induced aging animal model and to clarify the underlying mechanism. Randomly selected 6-week-old male Sprague-Dawley rats were subcutaneously injected with D-gal daily for 8 weeks. Two weeks after completion of treatment, D-gal-induced aging rats were randomized to receive caudal vein injections of 3 × 10(6) 5-bromo 2'deoxy-uridine-labeled ADSCs or an equal volume of phosphate-buffered saline. Serum testosterone level, steroidogenic enzymes (3-β-hydroxysteroid dehydrogenase), and superoxide dismutase (SOD) activity decreased significantly in aging rats compared with the control group; serum lipid peroxidation, spermatogenic cell apoptosis, and methane dicarboxylic aldehyde (MDA) expression increased significantly. ADSCs increased the SOD level and reduced the MDA level in the aging animal model and restored levels of serum testosterone, steroidogenic enzymes, and spermatogenic cell apoptosis. These results demonstrate that ADSCs can contribute to testicular regeneration during aging. ADSCs also provide functional benefits through glycation suppression and antioxidant effects in a rat model of aging. Although some ADSCs differentiated into Leydig cells, the paracrine pathway seems to play a main role in this process, resulting in the reduction of apoptosis. PMID:25728126

  5. Study of Carbon Nano-Tubes Effects on the Chondrogenesis of Human Adipose Derived Stem Cells in Alginate Scaffold

    Ali Valiani

    2014-01-01

    Full Text Available Background: Osteoarthritis is one of the most common diseases in middle-aged populations in the World and could become the fourth principal cause of disability by the year 2020. One of the critical properties for cartilage tissue engineering (TE is the ability of scaffolds to closely mimic the extracellular matrix and bond to the host tissue. Therefore, TE has been presented as a technique to introduce the best combination of cells and biomaterial scaffold and to stimulate growth factors to produce a cartilage tissue resembling natural articular cartilage. The aim of study is to improve differentiation of adipose derived stem cells (ADSCs into chondrocytes in order to provide a safe and modern treatment for patients suffering from cartilage damages. Methods: After functionalization, dispersions and sterilizing carbon nano-tubes (CNTs, a new type of nanocomposite gel was prepared from water-soluble CNTs and alginate. ADSCs seeded in 1.5% alginate scaffold and cultured in chondrogenic media with and without transforming growth factor-β1 (TGF-β1 for 7 and 14 days. The genes expression of sex determining region Y-box 9 (SOX9, types II and X collagens was assessed by real-time polymerase chain reaction and the amount of aggrecan (AGC and type I collagen was measured by ELISA. Results: Our findings showed that the expression of essential cartilage markers, SOX9, type II collagen and AGC, in differentiated ADSCs at the concentration of 1 μg/ml CNTs in the presence of TGF-β1 were significantly increased in comparison with the control group (P < 0.001. Meanwhile, type X collagen expression and also type I collagen production were significantly decreased (P < 0.001. Conclusions: The results showed that utilized three-dimensional scaffold had a brilliant effect in promoting gene expression of chondrogenesis.

  6. Comparative characteristics of mesenchymal stem cells derived from reamer-irrigator-aspirator, iliac crest bone marrow, and adipose tissue.

    Toosi, S; Naderi-Meshkin, H; Kalalinia, F; Peivandi, M T; Hossein Khani, H; Bahrami, A R; Heirani-Tabasi, A; Mirahmadi, M; Behravan, J

    2016-01-01

    Mesenchymal stem cells (MSCs) have been considered promising tools for new clinical concepts in supporting cellular therapy and regenerative medicine. More recently, Ream/Irrigator/Aspirator (RIA) was introduced as a source of MSCs. In this study we compared MSCs derived from three different sources (iliac crest bone marrow (ICBM), adipose tissue (AT), and (RIA)) regarding the morphology, the success rate of isolating MSCs, colony frequency, expansion potential, osteogenic and chondrogenic differentiation capacity. MSCs were isolated from three different sources and flow cytometric analyses were performed for cell characterization. Colony-forming unit-fibroblast (CFU-F) assay and population doubling time (PDT) were evaluated for MSCs derived from three different sources and differentiation potential of RIA, ICBM-, and AT-MSCs were determined by staining. Additionally, gene expression profiles for tissue specific markers corresponding to osteogenesis and chondrogenesis were analyzed using real time polymerase chain reaction (RT-PCR). Cultured with the appropriate condition, osteogenic and chondrogenic differentiation could be confirmed in all MSC preparations. Flow cytometry analysis indicated that RIA- and AT-derived MSCs have more homogenous populations than ICBM-MSCs. A comparison of the colonogenic ability in different tissues by CFU-F assay after 10 days showed that more colonies are formed from RIA-MSCs than from ICBM-MSCs, and AT-MSCs. AT-MSCs, were dispersed with no obvious colonies. The RIA-MSCs underwent osteogenesis and chondrogenesis at a faster rate than ICBM and AT-MSCs. Direct comparisons of RIA- to ICBM- and AT-MSCs have shown the RIA-MSCs have higher differentiation toward osteoblast and chondrocytes compared to other sources of MSCs. Hence, RIA-MSCs may be recommended as a more suitable source for treating orthopedic disorders. PMID:27609477

  7. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  8. Sustained presentation of BMP-2 enhances osteogenic differentiation of human adipose-derived stem cells in gelatin hydrogels.

    Samorezov, Julia E; Headley, Emma B; Everett, Christopher R; Alsberg, Eben

    2016-06-01

    Human adipose-derived stem cells (hASCs) show great potential for healing bone defects. Bone morphogenetic protein-2 (BMP-2) has been reported to stimulate their osteogenic differentiation both in vitro and in vivo. Here, methacrylated gelatin (GelMA) hydrogels were evaluated as a system to deliver BMP-2 to encapsulated hASCs from two different donors, and BMP-2 delivered from the hydrogels was compared to BMP-2 presented exogenously in culture media. GelMA hydrogels were shown to provide sustained, localized presentation of BMP-2 due to electrostatic interactions between the growth factor and biomaterial after an initial burst release. Both donors exhibited similar responses to the loaded and exogenous growth factor; BMP-2 from the hydrogels had a statistically significant effect on hASC osteogenic differentiation compared to exogenous BMP-2. Expression of alkaline phosphatase was accelerated, and cells in hydrogels with loaded BMP-2 deposited more calcium at one, two, and four weeks than cells without BMP-2 or with the growth factor presented in the media. There were no statistically significant differences in calcium content between groups with 25, 50, or 100 µg/mL loaded BMP-2, suggesting that using a lower growth factor dose may be as effective as a higher loading amount in this system. Taken together, these findings suggest that controlled delivery of BMP-2 from the GelMA enhances its osteogenic bioactivity compared to free growth factor presented in the media. Thus, the GelMA system is a promising biomaterial for BMP-2-mediated hASC osteogenesis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1387-1397, 2016. PMID:26822338

  9. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation.

    Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min

    2015-12-01

    Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. PMID:26482937

  10. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair.

    Dezhong Yang

    Full Text Available BACKGROUND: Recent studies have demonstrated that transplantation of adipose-derived stem cell (ADSC can improve cardiac function in animal models of myocardial infarction (MI. However, the mechanisms underlying the beneficial effect are not fully understood. In this study, we characterized the paracrine effect of transplanted ADSC and investigated its relative importance versus direct differentiation in ADSC transplantation mediated cardiac repair. METHODOLOGY/PRINCIPAL FINDINGS: MI was experimentally induced in mice by ligation of the left anterior descending coronary artery. Either human ADSC, conditioned medium (CM collected from the same amount of ADSC or control medium was injected into the peri-infarct region immediately after MI. Compared with the control group, both ADSC and ADSC-CM significantly reduced myocardial infarct size and improved cardiac function. The therapeutic efficacy of ADSC was moderately superior to ADSC-CM. ADSC-CM significantly reduced cardiomyocyte apoptosis in the infarct border zone, to a similar degree with ADSC treatment. ADSC enhanced angiogenesis in the infarct border zone, but to a stronger degree than that seen in the ADSC-CM treatment. ADSC was able to differentiate to endothelial cell and smooth muscle cell in post-MI heart; these ADSC-derived vascular cells amount to about 9% of the enhanced angiogenesis. No cardiomyocyte differentiated from ADSC was found. CONCLUSIONS: ADSC-CM is sufficient to improve cardiac function of infarcted hearts. The therapeutic function of ADSC transplantation is mainly induced by paracrine-mediated cardioprotection and angiogenesis, while ADSC differentiation contributes a minor benefit by being involved in angiogenesis. Highlights 1 ADSC-CM is sufficient to exert a therapeutic potential. 2. ADSC was able to differentiate to vascular cells but not cardiomyocyte. 3. ADSC derived vascular cells amount to about 9% of the enhanced angiogenesis. 4. Paracrine effect is the major

  11. The influence of sol-gel-derived silica coatings functionalized with betamethasone on adipose-derived stem cells (ASCs).

    Donesz-Sikorska, Anna; Grzesiak, Jakub; Smieszeka, Agnieszk; Krzak, Justyna; Marycz, Krzysztof

    2014-09-01

    Silica-based sol-gel coatings have gained attention in bone therapies and orthopedic applications, due to the biocompatibility and bioactivity, including a high potential for the controlled release both in vitro and in vivo. Bioactive materials are created to facilitate the biocompatibility of orthopedic implants. One of the promising alternatives is biomaterials with immobilized drugs. In this study we demonstrated for the first time novel sol-gel-derived silica coatings with active amino groups (SiO2(NH2)) functionalized with a steroid drug-betamethasone, applied to a substrate 316 L using dip coating technique. The presence of betamethasone in functionalized coatings was directly confirmed by Raman spectroscopy and energy-dispersive X-ray spectroscopic analysis. The wettability was evaluated by the sessile drop method, while the surface free energy was estimated based on the contact angles measured. Our results showed a shift in surface properties from hydrophobic to hydrophilic after application of the coatings. We have investigated the morphology, proliferation factor, and the population doubling time of adipose-derived stem cells for biological purposes. Moreover, the analysis of the distribution and localization of cellular microvesicles was performed to evaluate the influence of functionalized surfaces on cellular cytophysiological activity. Increased proliferation and activation of cells, determined by the observations of microvesicles shedding processes, provided evidence of the availability of the drug. Therefore, we conclude that the sol-gel synthesis proposed here allows to improve the metal substrates and can be successfully used for immobilization of betamethasone. This in turn enables the direct delivery of the drug with implanted material into the wound site, and to stimulate the activity of cells to enhance tissue regeneration. PMID:24825759

  12. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice - including relationship of sex differences

    We have previously demonstrated that adipose-derived stromal cells (ASCs) as well as bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. Both types are considered to include mesenchymal stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have also previously reported the plasticity of BSCs and ASCs. In this study, we focused on adipogenic differentiation in vitro by ASCs harvested from GFP transgenic mice. Moreover, preadipocytes and mature adipocytes were harvested at the same time, and the cells were cultured to compare them with ASCs. Inguinal fat pads from GFP transgenic mice were used for the isolation of ASCs, preadipocytes, and mature adipocytes. After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks. Adipogenic differentiation of ASCs was assessed by Oil Red O staining and the expression of the adipocyte specific peroxisome proliferative activated receptor γ2 (PPAR-γ2) gene. These ASCs stained positively, and expression of PPAR-γ2 was detected. Moreover, we also tried to characterize the influence of sex differences on the adipogenic differentiation of ASCs harvested from both male and female mice. This was assessed by the expression levels of the PPAR-γ2 gene using real-time PCR. The results showed that the expression levels of ASCs harvested from female mice were a maximum of 2.89 times greater than those harvested from male mice. This suggests that the adipogenic differentiation of ASCs is closely related to sex differences

  13. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway

    Choi SY

    2015-07-01

    Full Text Available Seon Young Choi,1 Min Seok Song,1 Pan Dong Ryu,1 Anh Thu Ngoc Lam,2 Sang-Woo Joo,2 So Yeong Lee1 1Laboratory of Veterinary Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 2Department of Chemistry, Soongsil University, Seoul, South Korea Abstract: Gold nanoparticles (AuNPs are attractive materials for use in biomedicine due to their physical properties. Increasing evidence suggests that several nanoparticles induce the differentiation of human mesenchymal stem cells into osteoblasts and adipocytes. In this study, we hypothesized that chitosan-conjugated AuNPs promote the osteogenic differentiation of human adipose-derived mesenchymal stem cells. For the evaluation of osteogenic differentiation, alizarin red staining, an alamarBlue® assay, and a quantitative real-time polymerase chain reaction analysis were performed. In order to examine specific signaling pathways, immunofluorescence and a western blotting assay were performed. Our results demonstrate that chitosan-conjugated AuNPs increase the deposition of calcium content and the expression of marker genes related to osteogenic differentiation in human adipose-derived mesenchymal stem cells at nontoxic concentrations. These results indicate that chitosan-conjugated AuNPs promote osteogenesis through the Wnt/β-catenin signaling pathway. Therefore, chitosan-conjugated AuNPs can be used as a reagent for promoting bone formation. Keywords: chitosan-conjugated gold nanoparticle, mineralization, nonphosphorylated beta-catenin

  14. Neuroprotective Effects of Adipose-Derived Stem Cells Are Maintained for 3 Weeks against Ischemic Damage in the Rabbit Spinal Cord

    Seung Myung Moon; Woosuk Kim; Jin Young Chung; Wooseok Im; Dae Young Yoo; Hyo Young Jung; Moo-Ho Won; Jung Hoon Choi; In Koo Hwang

    2014-01-01

    In the previous study, we demonstrated that adipose-derived stem cells (ASCs) have neuroprotective effects against ischemic damage in the ventral horn of L5-6 levels at 3 days after ischemia/reperfusion. In the present study, we expanded our observations for 3 weeks after ischemia/reperfusion to rule out the possibility of delayed neuronal death in several days after ischemia/reperfusion. Transient spinal cord ischemia was induced by a 15 min aortic artery occlusion in the subrenal region and...

  15. Isolation, culture and identification of adipose-derived stem cells from mouse epididymis%小鼠附睾脂肪干细胞的分离培养及鉴定

    张鉴清; 季佳霖; 崔新明; 张祺; 李艳茹

    2014-01-01

    BACKGROUND:As a new kind of adult stem cells, adipose-derived stem cells get more and more attention, because of rich source, drawing materials easily and powerful proliferation. OBJECTIVE:To isolate and culture adipose-derived stem cells from the epididymal adipose tissue in mice, and to identify their biological characteristics. METHODS:Adipose tissue was obtained from epididymis in mice by aseptical y cutting. The tissue was digested using col agenase. Adipose-derived stem cells were separated and purified by using one digestion, multiple col ection method and differential adhesion method. The morphology of adipose-derived stem cells was observed using inverted microscopy and transmission electron microscopy. Growth curve of adipose-derived stem cells was drawn. Immunophenotype of adipose-derived stem cells was identified by flow cytometry. Adipose-derived stem cells were induced to differentiate into adipocytes and osteocytes using cellinductors. Compatibility of adipose-derived stem cells and col agen scaffold material was observed using scanning electron microscope. RESULTS AND CONCLUSION:Adipose-derived stem cells exhibited long spindle-like or fibroblast-like appearance, grew intensively and arranged in scrol and fascicular shape. In vitro, adipose-derived stem cells could be passaged to passage 9 under the inverted microscope. Under the transmission electron microscope, adipose-derived stem cells showed abundant microvil i on the cellsurface. The nuclei were big in size. Some organel es were seen in cytoplasma, such as mitochondria and rough endoplasmic reticulum. Adipose-derived stem cells expressed CD44 and CD29, did not express CD34. After inducing by inductor, many smal lipid droplets were seen in the cytoplasm of adipose-derived stem cells. The smal lipid droplets were dyed red with oil red O. After induction of osteogenic inductor, the boundary line among adipose-derived stem cells was not clear and the structure of cells was fuzzy in the growth

  16. 脂肪干细胞与碱性成纤维细胞生长因子在颗粒脂肪移植中应用的研究进展%Research Progress of Application of Adipose-derived Stem Cells and Basic Fibroblast Growth Factor in Pearl Fat Transplantation

    孙哲

    2012-01-01

    The survival rate of autologous graft pearl fats are influenced by revascularization and the shortage of tissue cell differentiation,the study of adipose tissue derived stem cells( ASCs )and basic fibroblast growth factor( bFGF )in the application of autologous fat transplantation found that both factors can improve the survival rate of autologous graft pearl fats obviously. Here is to extensively collect and comprehensively analyse the relevant literature of the roles of ASCs and bFGF in pearl fat graft transplantation recently, to discuss the progress of ASCs and bFGF in the research of pearl fat grafts.%自体移植颗粒脂肪的成活率受到再血管化及组织细胞分化不足等问题的影响,对脂肪组织来源干细胞(ASCs)及碱性成纤维细胞生长因子(bFGF)在自体颗粒脂肪移植中应用的研究中发现,两者能明显提高自体颗粒脂肪移植后的成活率.现广泛查阅近年ASCs和bFGF在颗粒脂肪移植中作用的相关文献,并进行综合分析,探讨ASCs和bFGF在颗粒脂肪移植中的研究进展.

  17. A Comparative Evaluation of the Mechanical Properties of Two Calcium Phosphate/Collagen Composite Materials and Their Osteogenic Effects on Adipose-Derived Stem Cells

    Qing Li

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are ideal seed cells for use in bone tissue engineering and they have many advantages over other stem cells. In this study, two kinds of calcium phosphate/collagen composite scaffolds were prepared and their effects on the proliferation and osteogenic differentiation of ADSCs were investigated. The hydroxyapatite/β-tricalcium phosphate (HA/β-TCP composite scaffolds (HTPSs, which have an additional β-tricalcium phosphate, resulted in better proliferation of ADSCs and showed osteogenesis-promoting effects. Therefore, such composite scaffolds, in combination with ADSCs or on their own, would be promising for use in bone regeneration and potential clinical therapy for bone defects.

  18. Precise and long-term tracking of adipose-derived stem cells and their regenerative capacity via superb bright and stable organic nanodots.

    Ding, Dan; Mao, Duo; Li, Kai; Wang, Xiaomin; Qin, Wei; Liu, Rongrong; Chiam, David Shunzhong; Tomczak, Nikodem; Yang, Zhimou; Tang, Ben Zhong; Kong, Deling; Liu, Bin

    2014-12-23

    Monitoring and understanding long-term fate and regenerative therapy of administrated stem cells in vivo is of great importance. Herein we report organic nanodots with aggregation-induced emission characteristics (AIE dots) for long-term tracking of adipose-derived stem cells (ADSCs) and their regenerative capacity in living mice. The AIE dots possess high fluorescence (with a high quantum yield of 25±1%), excellent biological and photophysical stabilities, low in vivo toxicity, and superb retention in living ADSCs with negligible interference on their pluripotency and secretome. These AIE dots also exhibit superior in vitro cell tracking capability compared to the most popular commercial cell trackers, PKH26 and Qtracker 655. In vivo quantitative studies with bioluminescence and GFP labeling as the controls reveal that the AIE dots can precisely and quantitatively report the fate of ADSCs and their regenerative capacity for 42 days in an ischemic hind limb bearing mouse model. PMID:25427294

  19. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    Zhang, Feng [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Deng, Bing [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Wen, Jianghui [Wu Han University of Technology, Wuhan 430074 (China); Chen, Kun [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Liu, Wu; Ye, Shengqiang; Huang, Haijun [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Jiang, Siwen, E-mail: jiangsiwen@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Xiong, Yuanzhu, E-mail: xiongyzhu@163.com [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China)

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.

  20. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs

  1. Electrospun poly(ester-Urethane- and poly(ester-Urethane-Urea fleeces as promising tissue engineering scaffolds for adipose-derived stem cells.

    Alfred Gugerell

    Full Text Available An irreversible loss of subcutaneous adipose tissue in patients after tumor removal or deep dermal burns makes soft tissue engineering one of the most important challenges in biomedical research. The ideal scaffold for adipose tissue engineering has yet not been identified though biodegradable polymers gained an increasing interest during the last years. In the present study we synthesized two novel biodegradable polymers, poly(ε-caprolactone-co-urethane-co-urea (PEUU and poly[(L-lactide-co-ε-caprolactone-co-(L-lysine ethyl ester diisocyanate-block-oligo(ethylene glycol-urethane] (PEU, containing different types of hydrolytically cleavable bondings. Solutions of the polymers at appropriate concentrations were used to fabricate fleeces by electrospinning. Ultrastructure, tensile properties, and degradation of the produced fleeces were evaluated. Adipose-derived stem cells (ASCs were seeded on fleeces and morphology, viability, proliferation and differentiation were assessed. The biomaterials show fine micro- and nanostructures composed of fibers with diameters of about 0.5 to 1.3 µm. PEUU fleeces were more elastic, which might be favourable in soft tissue engineering, and degraded significantly slower compared to PEU. ASCs were able to adhere, proliferate and differentiate on both scaffolds. Morphology of the cells was slightly better on PEUU than on PEU showing a more physiological appearance. ASCs differentiated into the adipogenic lineage. Gene analysis of differentiated ASCs showed typical expression of adipogenetic markers such as PPARgamma and FABP4. Based on these results, PEUU and PEU meshes show a promising potential as scaffold materials in adipose tissue engineering.

  2. Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-124I-iodobenzoate in rat myocardial infarction model

    Highlights: • We developed a safe, simple and appropriate stem cell labeling method with 124I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with 124I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by 124I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via the hexadecyl-4-124I-iodobenzoate (124I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with 124I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of 124I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by 124I-HIB labeling. In vivo tracking of the 124I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, 124I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials

  3. Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-{sup 124}I-iodobenzoate in rat myocardial infarction model

    Kim, Min Hwan [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Woo, Sang-Keun; Lee, Kyo Chul; An, Gwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Pandya, Darpan [Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu (Korea, Republic of); Park, Noh Won; Nahm, Sang-Soep; Eom, Ki Dong [College of Veterinary Medicine, Konkuk University, Seoul (Korea, Republic of); Kim, Kwang Il; Lee, Tae Sup [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Chan Wha [School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Kang, Joo Hyun [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoo, Jeongsoo, E-mail: yooj@knu.ac.kr [Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu (Korea, Republic of); Lee, Yong Jin, E-mail: yjlee@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2015-01-02

    Highlights: • We developed a safe, simple and appropriate stem cell labeling method with {sup 124}I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with {sup 124}I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via the hexadecyl-4-{sup 124}I-iodobenzoate ({sup 124}I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with {sup 124}I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of {sup 124}I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. In vivo tracking of the {sup 124}I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, {sup 124}I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials.

  4. Site-specific differences of insulin action in adipose tissue derived from normal prepubertal children

    Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNFα exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h(3) versus 69 h(4); P = 0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P = 0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P = 0.014) and further elevated by acute exposure to TNFα (+230(52)%; P = 0.019 versus +123(24)%; P = 0.025, respectively). TNFα also significantly increased basal glucose transport rates (+44(14)%; P = 0.006 versus +34(11)%; P = 0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNFα exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation

  5. Stem cells in bone tissue engineering

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  6. Stem cells in bone tissue engineering

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  7. 脂肪组织来源干细胞的分化潜能和应用%DIFFERENTIATION POTENTIAL AND APPLICATION OF STEM CELLS FROM ADIPOSE TISSUE

    史琳丽; 杨向群

    2012-01-01

    目的 介绍脂肪组织来源的干细胞种类、分化潜能及在再生医学中的应用和优势. 方法 广泛查阅近年关于BMSCs、脂肪来源干细胞(adipose-derived stem cells,ADSCs)和去分化脂肪(dedifferentiated fat,DFAT)细胞的实验研究及临床研究文献,并进行整理、综合与分析. 结果 从脂肪基质成分可以分离得到ADSCs,ADSCs具有多向分化潜能,可分化为脂肪、骨、软骨、内皮、肌以及神经细胞等,并已较成功地应用于再生医学各领域.成熟脂肪细胞经过天花板培养法可以去分化为成纤维样细胞,即DFAT细胞,获得了多向分化潜能,也可以像ADSCs一样分化为脂肪、骨、软骨、内皮、肌以及神经细胞等.相比较目前常用的成体干细胞BMSCs,ADSCs、DFAT细胞来源广泛、取材更容易;而相对于ADSCs,DFAT细胞均一性高,增殖能力强. 结论 脂肪组织作为人体干细胞的重要来源,可能会给临床组织缺损的修复与再生带来新希望.%Objective To introduce types and differentiation potentials of stem cells from adipose tissue, and its applications on regenerative medicine and advantages. Methods The literature of original experimental study and clinical research about bone marrow mesenchymal stem cells (BMSCs), adipose-derived stem cells (ADSCs), and dedifferentiated fat (DFAT) cells was extensively reviewed and analyzed. Results ADSCs can be isolated from stromal vascular fraction. As ADSCs have multi-lineage potentials, such as adipogenesis, osteogenesis, chondrogenesis, angiogenesis, myogenesis, and neurogenesis, they have already been successfully used in regenerative medicine areas. Dramatically, mature fat cells can be dedifferentiated and changed into fibroblast-like cells, named DFAT cells, via ceiling culture method. DFAT cells also had the same multi-lineage potentials as ADSCs, differentiating into adipocytes, osteocytes, chondrocytes, endothelial cells, muscle cells, and nerve cells. Compared

  8. Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix

    Tapp, Hazel; Deepe, Ray; Ingram, Jane A; Kuremsky, Marshall; Hanley, Edward N; Gruber, Helen E.

    2008-01-01

    Introduction Adult mesenchymal stem cell therapy has a potential application in the biological treatment of disc degeneration. Our objectives were: to direct adipose-derived mesenchymal stem cells (AD-MSC) from the sand rat to produce a proteoglycan and collagen type I extracellular matrix (ECM) rich in known ECM components of the annulus fibrosis of disc; and to stimulate proteoglycan production by co-culture of human annulus cells with AD-MSC. Methods AD-MSC were isolated and characterised ...

  9. Co-culture of adipose-derived stem cells and endothelial cells in fibrin induces angiogenesis and vasculogenesis in a chorioallantoic membrane model.

    Strassburg, Sandra; Nienhueser, Henrik; Björn Stark, G; Finkenzeller, Günter; Torio-Padron, Nestor

    2016-06-01

    Neovascularization of adipose tissue equivalents is a crucial step in successful adipose tissue engineering, since insufficient vascularization results in graft resorption in an in vivo situation. A possible cellular approach to overcome this limitation is the co-implantation of adipose-derived stem cells (ASCs) with endothelial cells to stimulate the formation of a vascular network. We investigated the potential of ASCs derived from human abdominal fat tissue co-cultured with endothelial progenitor cells (EPCs) from human peripheral blood to stimulate neovascularization of fibrin constructs on the chorioallantoic membrane (CAM) of fertilized chicken eggs, in direct comparison to human umbilical vein endothelial cells (HUVECs). After 9 days of incubation, cell-fibrin constructs were explanted and histologically evaluated with respect to ingrowth of avian blood vessels into the construct and formation of human blood vessels by co-implanted endothelial cells. When administered on the CAM, ASCs successfully guided host vasculature into the construct (angiogenesis) and guided formation of capillary-like structures by co-implanted human endothelial cells (vasculogenesis), with HUVECs being superior to EPCs, leading to a perfused avian and human capillary network within the fibrin construct. However, the results also showed that perfused human blood vessels were only observed near the CAM compared to unperfused capillary-like structures near the top of the construct, indicating that perfusion of the cell-fibrin construct takes longer than 9 days. In conclusion, as blood vessel formation is an essential step during adipogenic differentiation, the data support our hypothesis that cellular communication between transplanted ASCs and endothelial cells is beneficial for vasculogenesis. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23712963

  10. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells

    Arai, Yoshie; Park, Sunghyun; Choi, Bogyu; Ko, Kyoung-Won; Choi, Won Chul; Lee, Joong-Myung; Han, Dong-Wook; Park, Hun-Kuk; Han, Inbo; Lee, Jong Hun; Lee, Soo-Hong

    2016-01-01

    Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs. PMID:27322256

  11. Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity.

    Jyun-Yi Wu

    Full Text Available Mesenchymal stem cell (MSC-based tissue regeneration is a promising therapeutic strategy for treating damaged tissues. However, the inflammatory microenvironment that exists at a local injury site might restrict reconstruction. Low-power laser irradiation (LPLI has been widely applied to retard the inflammatory reaction. The purpose of this study was to investigate the anti-inflammatory effect of LPLI on human adipose-derived stem cells (hADSCs in an inflammatory environment. We showed that the hADSCs expressed Toll-like Receptors (TLR 1, TLR2, TLR3, TLR4, and TLR6 and that lipopolysaccharide (LPS significantly induced the production of pro-inflammatory cytokines (Cyclooxygenase-2 (Cox-2, Interleukin-1β (IL-1β, Interleukin-6 (IL-6, and Interleukin-8 (IL-8. LPLI markedly inhibited LPS-induced, pro-inflammatory cytokine expression at an optimal dose of 8 J/cm². The inhibitory effect triggered by LPLI might occur through an increase in the intracellular level of cyclic AMP (cAMP, which acts to down-regulate nuclear factor kappa B (NF-κB transcriptional activity. These data collectively provide insight for further investigations of the potential application of anti-inflammatory treatment followed by stem cell therapy.

  12. MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue: Perspectives on miRNA biogenesis and cellular transcriptome.

    Martin, E C; Qureshi, A T; Dasa, V; Freitas, M A; Gimble, J M; Davis, T A

    2016-05-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through targeting and suppression of mRNAs. miRNAs have been under investigation for the past twenty years and there is a large breadth of information on miRNAs in diseases such as cancer and immunology. Only more recently have miRNAs shown promise as a mechanism for intervention with respect to diseases of the bone and adipose tissue. In mesenchymal stem cell (MSC) differentiation, alterations in miRNA expression patterns can differentially promote an osteogenic, adipogenic, or myogenic phenotype. This manuscript reviews the current literature with respect to miRNAs in the context of MSC function with a particular focus on novel avenues for the examination of miRNA associated with bone and adipose tissue biology and disease. Specifically we highlight the need for a greater depth of investigation on MSCs with respect to miRNA biogenesis, processing, strand selection, and heterogeneity. We discuss how these mechanisms facilitate both altered miRNA expression and function. PMID:25726914

  13. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice

    Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation

  14. In vitro and in vivo biocompatibility, bioavailability and tolerance of an injectable vehicle for adipose-derived stem/stromal cells for plastic surgery indications.

    Lequeux, Charlotte; Rodriguez, Jonathan; Boucher, Fabien; Rouyer, Ondine; Damour, Odile; Mojallal, Ali; Auxenfans, Céline

    2015-11-01

    Soft tissue reconstruction is a challenge in plastic surgery, when replacing lost materials and correcting contour defects. Many permanent and temporary fillers have been used to restore the volume of these lesions, but often with poor results and even complications. Adipose-derived stem/stromal cells (ASCs) and adipose tissue engineering have been suggested as valuable alternatives. In order to inject these cultured cells, it was essential to find a suitable vehicle. The purpose of this study was to evaluate Cytocare(®), an injectable medical device, composed of hyaluronic acid plus amino acids, vitamins and mineral salts. First, ASC viability and bioavailability in the 3 different available Cytocare(®) formulations using the MTT test were assessed; then an animal experiment, testing the tolerance after intradermal injections of both Cytocare(®) alone and with ASCs was carried out. Our in vitro results demonstrate a high biocompatibility of Cytocare(®) resulting in a better viability of ASCs when cultured in Cytocare(®) compared to culture medium (p < 0.05, Mann and Whitney). Cytocare(®) also permits their bioavailability and proliferation, making it a potential transfer vehicle that can retain the cells before their integration around the recipient site. Finally, our animal experiment shows that the ASC + Cytocare(®) combination is well tolerated. In conclusion, Cytocare(®) can be used as a biocompatible scaffold for cultured ASCs in therapeutic treatments, ensuring ASC bioavailability, as well as evidence of excellent tolerance in nude mice. PMID:26282247

  15. Characterization of a PLGA sandwiched cell/fibrin tubular construct and induction of the adipose derived stem cells into smooth muscle cells

    A poly(DL-lactic-co-glycolic acid) (PLGA) sandwiched adipose derived stem cell (ADSC)/fibrin tubular construct, fabricated using a step-by-step mold/extraction method, was characterized in this work. The ADSCs were also induced into smooth-muscle-like cells using growth factors such as hepatocyte growth factor (HGF), platelet-derived growth factor BB (PDGF-BB), transforming growth factor β1 (TGFβ1), and basic fibroblast growth factor (b-FGF). Compared with the non-induced cells, the proliferation ability of induced cells was much smaller. The PLGA sandwiched cell/hydrogel construct was shown to be useful for controlling the cellular microenvironment and cellular behaviors such as growth, migration, proliferation and differentiation. This strategy seems promising in tissue engineering and organ manufacturing.

  16. The effects of progestrone on the in-vitro expression of P0, S100 and Krox20 genes in adipose-derived stem cells

    Khanlarkhani N

    2011-05-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Adipose-derived stem cells (ADSCs have noticeable self-renewal ability and can differentiate into several cell lines such as adipocytes, osteoblasts, chondrocytes, and myocytes. Progesterone plays a significant role in the myelination of peripheral nerves. Regarding the role of progesterone on the myelination of peripheral nervous system, we evaluated its effects on the in-vitro expression of P0, S100 and Krox20 mRNA in adipose-derived stem cells."n"nMethods : In this experimental study, rat adipose-derived stem cells were isolated from the inguinal region of the animals and were evaluated by flow cytometry before culture. In preinduction phase, the cells were sequentially treated with various factors such as β-mercaptoethanol and all-trans-retinoic acid, followed by different induction mixtures.  The cells were divided into four groups including two control groups (receiving either fibroblast and platelet derived-growth factors, or fibroblast growth factor, platelet derived-growth factor, forskolin and heregulin and two experimental groups (receiving either fibroblast growth factor, platelet derived-growth factor, forskolin and progesterone, or fibroblast growth factor, platelet derived-growth factor

  17. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study

    Phuc Van Pham; Khanh Hong-Thien Bui; Triet Dinh Duong; Nhan Thanh Nguyen; Thanh Duc Nguyen; Vien Tuong Le; Viet Thanh Mai; Nhan Lu-Chinh Phan