WorldWideScience

Sample records for adipose tissue depot

  1. Adipose tissue development in extramuscular and intramuscular depots in meat animals

    The cellular and metabolic aspects of developing intramuscular adipose tissue and other adipose tissue depots have been studied including examination of the expression of a number of genes. Depot dependent or depot “marker” genes such as stearoyl-CoA desaturase and leptin for subcutaneous adipose ti...

  2. Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra; Jensen, Michael D.

    2015-01-01

    Adipose tissue fatty acid storage varies according to sex, adipose tissue depot, and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We examined whether differences in adipose tissue glycerol-3-phosphate acyltransferase (GPAT) might play a role in these variations. We optimized an enzyme activity assay for total GPAT and GPAT1 activity in human adipose tissue and measured GPAT activity. Omental and subcutaneous adipose tissue was collected from...

  3. Differential screening identifies transcripts with depot-dependent expression in white adipose tissues

    Zhou Shengli

    2008-08-01

    Full Text Available Abstract Background The co-morbidities of obesity are tied to location of excess fat in the intra-abdominal as compared to subcutaneous white adipose tissue (WAT depot. Genes distinctly expressed in WAT depots may impart depot-dependent physiological functions. To identify such genes, we prepared subtractive cDNA libraries from murine subcutaneous (SC or intra-abdominal epididymal (EP white adipocytes. Results Differential screening and qPCR validation identified 7 transcripts with 2.5-fold or greater enrichment in EP vs. SC adipocytes. Boc, a component of the hedgehog signaling pathway demonstrated highest enrichment (~12-fold in EP adipocytes. We also identified a dramatic enrichment in SC adipocytes vs. EP adipocytes and in SC WAT vs. EP WAT for transcript(s for the major urinary proteins (Mups, small secreted proteins with pheromone functions that are members of the lipocalin family. Expression of Boc and Mup transcript was further assessed in murine tissues, adipogenesis models, and obesity. qPCR analysis reveals that EP WAT is a major site of expression of Boc transcript. Furthermore, Boc transcript expression decreased in obese EP WAT with a concomitant upregulation of Boc transcript in the obese SC WAT depot. Assessment of the Boc binding partner Cdon in adipose tissue and cell fractions thereof, revealed transcript expression similar to Boc; suggestive of a role for the Boc-Cdon axis in WAT depot function. Mup transcripts were predominantly expressed in liver and in the SC and RP WAT depots and increased several thousand-fold during differentiation of primary murine preadipocytes to adipocytes. Mup transcripts were also markedly reduced in SC WAT and liver of ob/ob genetically obese mice compared to wild type. Conclusion Further assessment of WAT depot-enriched transcripts may uncover distinctions in WAT depot gene expression that illuminate the physiological impact of regional adiposity.

  4. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan;

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal ad......), particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance....... elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs......We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal...

  5. Adipose tissue depot specific differences of PLIN protein content in endurance trained rats.

    Ramos, Sofhia V; Turnbull, Patrick C; MacPherson, Rebecca E K

    2016-01-01

    Adipose tissue is classified as either white (WAT) or brown (BAT) and differs not only by anatomical location but also in function. WAT is the main source of stored energy and releases fatty acids in times of energy demand, whereas BAT plays a role in regulating non-shivering thermogenesis and oxidizes fatty acids released from the lipid droplet. The PLIN family of proteins has recently emerged as being integral in the regulation of fatty acid storage and release in adipose tissue. Previous work has demonstrated that PLIN protein content varies among adipose tissue depots, however an examination of endurance training-induced depot specific changes in PLIN protein expression has yet to be done. Male Sprague-dawley rats (n = 10) underwent 8-weeks of progressive treadmill training (18-25 m/min for 30-60 min at 10% incline) or remained sedentary as control. Following training, under isoflurane induced anesthesia epidydmal (eWAT), inguinal subcutaneous (iWAT) and intrascapular brown adipose tissue (BAT) was excised, and plasma was collected. Endurance training resulted in an increase in BAT PLIN5 and iWAT PLIN3 content, while there was no difference in PLIN protein content in endurance trained eWAT. Interestingly, endurance training resulted in a robust increase in ATGL and CGI-58 in eWAT alone. Together these results suggest the potential of a depot specific function of PLIN3 and PLIN5 in adipose tissue in response to endurance training. PMID:27386161

  6. Adipose Tissue Fatty Acid Storage Factors: Effects of Depot, Sex and Fat Cell Size

    Hames, Kazanna C.; Koutsari, Christina; Santosa, Sylvia; Bush, Nikki C.; Jensen, Michael D.

    2015-01-01

    Background/Objectives Patterns of postabsorptive adipose tissue fatty acid storage correlate with sex-specific body fat distribution. Some proteins and enzymes participating in this pathway include CD36 (facilitated transport), acyl-CoA synthetases (ACS; the first step in fat metabolism), and diacylglycerol acetyl-transferase (DGAT; the final step of triglyceride synthesis). Our goal was to better define CD36, ACS and DGAT in relation to sex, subcutaneous fat depots, and adipocyte size. Subje...

  7. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues.

    Pellegrinelli, Vanessa; Carobbio, Stefania; Vidal-Puig, Antonio

    2016-06-01

    White adipose tissue (WAT) has key metabolic and endocrine functions and plays a role in regulating energy homeostasis and insulin sensitivity. WAT is characterised by its capacity to adapt and expand in response to surplus energy through processes of adipocyte hypertrophy and/or recruitment and proliferation of precursor cells in combination with vascular and extracellular matrix remodelling. However, in the context of sustained obesity, WAT undergoes fibro-inflammation, which compromises its functionality, contributing to increased risk of type 2 diabetes and cardiovascular diseases. Conversely, brown adipose tissue (BAT) and browning of WAT represent potential therapeutic approaches, since dysfunctional white adipocyte-induced lipid overspill can be halted by BAT/browning-mediated oxidative anti-lipotoxic effects. Better understanding of the cellular and molecular pathophysiological mechanisms regulating adipocyte size, number and depot-dependent expansion has become a focus of interest over recent decades. Here, we summarise the mechanisms contributing to adipose tissue (AT) plasticity and function including characteristics and cellular complexity of the various adipose depots and we discuss recent insights into AT origins, identification of adipose precursors, pathophysiological regulation of adipogenesis and its relation to WAT/BAT expandability in obesity and its associated comorbidities. PMID:27039901

  8. Depot- and sex-specific effects of maternal obesity in offspring's adipose tissue.

    Lecoutre, Simon; Deracinois, Barbara; Laborie, Christine; Eberlé, Delphine; Guinez, Céline; Panchenko, Polina E; Lesage, Jean; Vieau, Didier; Junien, Claudine; Gabory, Anne; Breton, Christophe

    2016-07-01

    According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11β-hydroxysteroid dehydrogenase type 1 (11β-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner. PMID:27122310

  9. The localization and differential expression of Serum Amyloid A in bovine liver and adipose tissue depots.

    Ceciliani, Fabrizio; Soler, Laura; Grilli, Guido; Marques, Andreia T; Giudice, Chiara; Lecchi, Cristina

    2015-11-15

    In this article the localization of the acute phase protein Serum Amyloid A (SAA) in different depots of bovine adipose tissue (AT) and liver is reported. Quantitative (Real Time) PCR was paired to immunohistochemistry after the production of a specific polyclonal antibody. SAA's mRNA was found in all analyzed AT depots included in the present study, the AT located in the withers being the major source of SAA mRNA. A polyclonal antibody was raised against bovine SAA and was used to validate gene expression analyses. Western Blotting confirmed that SAA is present in all the seven adipose tissue depots include in the present experiment. Anti-SAA polyclonal antibody also stained diffusely adipocytes. In liver, intracytoplasmic immunolabeling was observed in hepatocytes. Staining was generally mild and not diffuse: negative hepatocytes were intermixed with positive ones. A positive intracytoplasmic immunostaining was occasionally observed in endothelial cells lining small blood vessels within AT septa and liver parenchyma. Our data confirm that bovine AT may provide an important source of SAA in healthy subjects. It remains to be determined which is the contribution of AT in the serum concentration of SAA. PMID:26319890

  10. Tissue/blood partition coefficients for xenon in various adipose tissue depots in man

    Bülow, J; Jelnes, Rolf; Astrup, A; Madsen, J; Vilmann, P

    1987-01-01

    Tissue/blood partition coefficients (lambda) for xenon were calculated for subcutaneous adipose tissue from the abdominal wall and the thigh, and for the perirenal adipose tissue after chemical analysis of the tissues for lipid, water and protein content. The lambda in the perirenal tissue was...... found to correlate linearly to the relative body weight (RBW) in per cent with the regression equation lambda = 0.045 . RBW + 0.99. The subcutaneous lambda on the abdomen correlated linearly to the local skinfold thickness (SFT) with the equation lambda = 0.22 SFT + 2.99. Similarly lambda on the thigh...... correlated to SFT with the equation lambda = 0.20 . SFT + 4.63. It is concluded that the previously accepted lambda value of 10 is generally too high in perirenal as well as in subcutaneous tissue. Thus, by application of the present regression equations, it is possible to obtain more exact estimates of the...

  11. Comparative Transcriptome Analysis of Adipose Tissues Reveals that ECM-Receptor Interaction Is Involved in the Depot-Specific Adipogenesis in Cattle

    Hyun-Jeong Lee; Mi Jang; Hyeongmin (Christian) Kim; Woori Kwak; Woncheoul Park; Jae Yeon Hwang; Chang-Kyu Lee; Gul Won Jang; Mi Na Park; Hyeong-Cheol Kim; Jin Young Jeong; Kang Seok Seo; Heebal Kim; Seoae Cho; Bo-Young Lee

    2013-01-01

    Adipocytes mainly function as energy storage and endocrine cells. Adipose tissues showed the biological and genetic difference based on their depots. The difference of adipocytes between depots might be influenced by the inherent genetic programing for adipogenesis. We used RNA-seq technique to investigate the transcriptomes in 3 adipose tissues of omental (O), subcutaneous (S) and intramuscular (I) fats in cattle. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the bovine ...

  12. Adipose Tissue Endothelial Cells From Obese Human Subjects: Differences Among Depots in Angiogenic, Metabolic, and Inflammatory Gene Expression and Cellular Senescence

    Villaret, A; Galitzky, J; Decaunes, P.; Esteve, D.; Marques, M.-A.; Sengenes, C.; Chiotasso, P.; Tchkonia, T.; Lafontan, M.; Kirkland, J L; Bouloumie, A.

    2010-01-01

    OBJECTIVE Regional differences among adipose depots in capacities for fatty acid storage, susceptibility to hypoxia, and inflammation likely contribute to complications of obesity. We defined the properties of endothelial cells (EC) isolated from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) biopsied in parallel from obese subjects. RESEARCH DESIGN AND METHODS The architecture and properties of the fat tissue capillary network were analyzed using immunohistochemistry and...

  13. Depot-specific effects of treadmill running and rutin on white adipose tissue function in diet-induced obese mice.

    Chen, Neng; Lei, Ting; Xin, Lili; Zhou, Lingmei; Cheng, Jinbo; Qin, Liqiang; Han, Shufen; Wan, Zhongxiao

    2016-09-01

    White adipose tissue (WAT) is a critical organ involved in regulating metabolic homeostasis under obese condition. Strategies that could positively affect WAT function would hold promise for fighting against obesity and its complications. The aim of the present study is to explore the effects of treadmill exercise training and rutin intervention on adipose tissue function from diet-induced obese (DIO) mice and whether fat depot-specific effects existed. In epididymal adipose tissue, high-fat diet (HFD) resulted in reduction in adiponectin mRNA expression, peroxisome proliferator-activated receptors (PPAR)-γ and DsbA-L protein expression, elevation in endoplasmic reticulum (ER) stress markers including 78 kDa glucose-regulated protein (GRP-78), C/EBP homologous protein (CHOP) and p-c-Jun N-terminal kinase (JNK). Isoproterenol-stimulated lipolysis and insulin stimulated Akt phosphorylation ex vivo were blunted from HFD group. The combination of rutin with exercise (HRE) completely restored GRP78 and p-JNK protein expression to normal levels, as well as blunted signaling ex vivo. In inguinal adipose tissue, HFD led to increased adiponectin mRNA expression, PPAR-γ, GRP78, and p-JNK protein expression, and reduction in DsbA-L. HRE is effective for restoring p-JNK, PPAR-γ, and DsbA-L. In conclusion, depot-specific effects may exist in regard to the effects of rutin and exercise on key molecules involved in regulating adipose tissue function (i.e., ER stress markers, PPAR-γ and DsbA-L, adiponectin expression, and secretion, ex vivo catecholamine stimulated lipolysis and insulin stimulated Akt phosphorylation) from DIO mice. PMID:27192989

  14. Comparative Transcriptome Analysis of Adipose Tissues Reveals that ECM-Receptor Interaction Is Involved in the Depot-Specific Adipogenesis in Cattle.

    Hyun-Jeong Lee

    Full Text Available Adipocytes mainly function as energy storage and endocrine cells. Adipose tissues showed the biological and genetic difference based on their depots. The difference of adipocytes between depots might be influenced by the inherent genetic programing for adipogenesis. We used RNA-seq technique to investigate the transcriptomes in 3 adipose tissues of omental (O, subcutaneous (S and intramuscular (I fats in cattle. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the bovine genome using Tophat2. Differentially expressed genes (DEG between adipose tissues were detected by EdgeR. We identified 5797, 2156, and 5455 DEGs in the comparison between OI, OS, and IS respectively and also found 5657 DEGs in the comparison between the intramuscular and the combined omental and subcutaneous fats (C (FDR<0.01. Depot specifically up- and down- regulated DEGs were 853 in S, 48 in I, and 979 in O. The numbers of DEGs and functional annotation studies suggested that I had the different genetic profile compared to other two adipose tissues. In I, DEGs involved in the developmental process (eg. EGR2, FAS, and KLF7 were up-regulated and those in the immune system process were down-regulated. Many DEGs from the adipose tissues were enriched in the various GO terms of developmental process and KEGG pathway analysis showed that the ECM-receptor interaction was one of commonly enriched pathways in all of the 3 adipose tissues and also functioned as a sub-pathway of other enriched pathways. However, genes involved in the ECM-receptor interaction were differentially regulated depending on the depots. Collagens, main ECM constituents, were significantly up-regulated in S and integrins, transmembrane receptors, were up-regulated in I. Different laminins were up-regulated in the different depots. This comparative transcriptome analysis of three adipose tissues suggested that the interactions between ECM components and transmembrane receptors of fat cells

  15. Comparative Transcriptome Analysis of Adipose Tissues Reveals that ECM-Receptor Interaction Is Involved in the Depot-Specific Adipogenesis in Cattle.

    Lee, Hyun-Jeong; Jang, Mi; Kim, Hyeongmin; Kwak, Woori; Park, Woncheoul; Hwang, Jae Yeon; Lee, Chang-Kyu; Jang, Gul Won; Park, Mi Na; Kim, Hyeong-Cheol; Jeong, Jin Young; Seo, Kang Seok; Kim, Heebal; Cho, Seoae; Lee, Bo-Young

    2013-01-01

    Adipocytes mainly function as energy storage and endocrine cells. Adipose tissues showed the biological and genetic difference based on their depots. The difference of adipocytes between depots might be influenced by the inherent genetic programing for adipogenesis. We used RNA-seq technique to investigate the transcriptomes in 3 adipose tissues of omental (O), subcutaneous (S) and intramuscular (I) fats in cattle. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the bovine genome using Tophat2. Differentially expressed genes (DEG) between adipose tissues were detected by EdgeR. We identified 5797, 2156, and 5455 DEGs in the comparison between OI, OS, and IS respectively and also found 5657 DEGs in the comparison between the intramuscular and the combined omental and subcutaneous fats (C) (FDR<0.01). Depot specifically up- and down- regulated DEGs were 853 in S, 48 in I, and 979 in O. The numbers of DEGs and functional annotation studies suggested that I had the different genetic profile compared to other two adipose tissues. In I, DEGs involved in the developmental process (eg. EGR2, FAS, and KLF7) were up-regulated and those in the immune system process were down-regulated. Many DEGs from the adipose tissues were enriched in the various GO terms of developmental process and KEGG pathway analysis showed that the ECM-receptor interaction was one of commonly enriched pathways in all of the 3 adipose tissues and also functioned as a sub-pathway of other enriched pathways. However, genes involved in the ECM-receptor interaction were differentially regulated depending on the depots. Collagens, main ECM constituents, were significantly up-regulated in S and integrins, transmembrane receptors, were up-regulated in I. Different laminins were up-regulated in the different depots. This comparative transcriptome analysis of three adipose tissues suggested that the interactions between ECM components and transmembrane receptors of fat cells depend on the

  16. Enrichment of IFN-γ producing cells in different murine adipose tissue depots upon infection with an apicomplexan parasite

    Teixeira, Luzia; Marques, Raquel M.; Ferreirinha, Pedro; Bezerra, Filipa; Melo, Joana; Moreira, João; Pinto, Ana; Correia, Alexandra; Ferreira, Paula G.; Vilanova, Manuel

    2016-01-01

    Here we report that lean mice infected with the intracellular parasite Neospora caninum show a fast but sustained increase in the frequency of IFN-γ-producing cells noticeable in distinct adipose tissue depots. Moreover, IFN-γ-mediated immune memory could be evoked in vitro in parasite antigen-stimulated adipose tissue stromal vascular fraction cells collected from mice infected one year before. Innate or innate-like cells such as NK, NK T and TCRγδ+ cells, but also CD4+ and CD8+ TCRβ+ lymphocytes contributed to the IFN-γ production observed since day one of infection. This early cytokine production was largely abrogated in IL-12/IL23 p40-deficient mice. Moreover, production of IFN-γ by stromal vascular fraction cells isolated from these mice was markedly lower than that of wild-type counterparts upon stimulation with parasite antigen. In wild-type mice the increased IFN-γ production was concomitant with up-regulated expression of genes encoding interferon-inducible GTPases and nitric oxide synthase, which are important effector molecules in controlling intracellular parasite growth. This increased gene expression was markedly impaired in the p40-deficient mice. Overall, these results show that NK cells but also diverse T cell populations mediate a prompt and widespread production of IFN-γ in the adipose tissue of N. caninum infected mice. PMID:27001522

  17. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues

    Pellegrinelli, Vanessa; Carobbio, Stefania; VIDAL-PUIG, Antonio

    2016-01-01

    White adipose tissue (WAT) has key metabolic and endocrine functions and plays a role in regulating energy homeostasis and insulin sensitivity. WAT is characterised by its capacity to adapt and expand in response to surplus energy through processes of adipocyte hypertrophy and/or recruitment and proliferation of precursor cells in combination with vascular and extracellular matrix remodelling. However, in the context of sustained obesity, WAT undergoes fibro-inflammation, which compromises it...

  18. Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals—Depot differences and dysmetabolism implications

    Background: The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. Objectives: To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. Methods: AT samples (n=189) from obese patients (BMI ≥35) were collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Results: Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (RS=0.310, p<0.01) and duration of obesity (RS=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9±204.2 compared to 155.1±147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (RS=0.277, p<0.01), with relevance for vAT (RS=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Conclusion: Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their metabolic effects and not

  19. Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals—Depot differences and dysmetabolism implications

    Pestana, Diogo, E-mail: diogopestana@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto (Portugal); CINTESIS—Center for Research in Health Technologies and Information Systems, P-4200-450 Porto (Portugal); Faria, Gil [General Surgery Department, S. João Hospital, Faculty of Medicine, University of Porto, P-4200-450 Porto (Portugal); Sá, Carla [Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto (Portugal); Fernandes, Virgínia C. [Chemistry Investigation Centre (CIQ), Department of Chemistry, Faculty of Sciences, University of Porto, P-4169-007 Porto (Portugal); Requimte—Instituto Superior de Engenharia, Instituto Politécnico do Porto, P-4200-072 Porto (Portugal); Teixeira, Diana; Norberto, Sónia [Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto (Portugal); Faria, Ana [Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto (Portugal); Chemistry Investigation Centre (CIQ), Department of Chemistry, Faculty of Sciences, University of Porto, P-4169-007 Porto (Portugal); Faculty of Nutrition and Food Sciences, University of Porto, P-4200-465 Porto (Portugal); and others

    2014-08-15

    Background: The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. Objectives: To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. Methods: AT samples (n=189) from obese patients (BMI ≥35) were collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Results: Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (R{sub S}=0.310, p<0.01) and duration of obesity (R{sub S}=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9±204.2 compared to 155.1±147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (R{sub S}=0.277, p<0.01), with relevance for vAT (R{sub S}=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Conclusion: Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their

  20. Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period.

    De Koster, J; Van den Broeck, W; Hulpio, L; Claeys, E; Van Eetvelde, M; Hermans, K; Hostens, M; Fievez, V; Opsomer, G

    2016-03-01

    The aim of the present research was to describe characteristics of adipose tissue lipolysis in dairy cows with a variable body condition score (BCS). Ten clinically healthy Holstein Friesian cows were selected based on BCS and euthanized 10 to 13 d before the expected parturition date. Immediately after euthanasia, adipose tissue samples were collected from subcutaneous and omental fat depots. In both depots, we observed an increase in adipocyte size with increasing BCS. Using an in vitro explant culture of subcutaneous and omental adipose tissue, we aimed to determine the influence of adipocyte size and localization of adipose depot on the lipolytic activity in basal conditions and after addition of isoproterenol (nonselective β-agonist) and insulin in different concentrations. Glycerol release in the medium was used as a measure for lipolytic activity. We observed that the basal lipolytic activity of subcutaneous and omental adipose tissue increased with adipocyte volume, meaning that larger fat cells have higher basal lipolytic activity independent of the location of the adipose depot. Dose-response curves were created between the concentration of isoproterenol or insulin and the amount of glycerol released. The shape of the dose-response curves is determined by the concentration of isoproterenol and insulin needed to elicit the half-maximal effect and the maximal amount of stimulated glycerol release or the maximal inhibitory effect of insulin. We observed that larger fat cells released more glycerol upon maximal stimulation with isoproterenol and this was more pronounced in subcutaneous adipose tissue. Additionally, larger fat cells had a higher sensitivity toward lipolytic signals. We observed a trend for larger adipocytes to be more resistant to the maximal antilipolytic effect of insulin. The insulin concentration needed to elicit the half-maximal inhibitory effect of insulin was within the physiological range of insulin and was not influenced by adipocyte

  1. Subcutaneous adipose tissue classification

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  2. Development and differentiation of adipose tissue

    Ivković-Lazar Tatjana A.

    2003-01-01

    Introduction For years adipose tissue has been considered inert, serving only as a depot of energy surplus. However, there have been recent changes, undoubtedly due to advancement of methods for studying the morphology and metabolic activities of adipose tissue (microdialysis and adipose tissue catheterization). In normal-weight subjects, adipose tissue makes 10-12% with males and 15-20% with females. About 80 % of adipose tissue is located under the skin, and the rest envelops the internal o...

  3. Co-methylated Genes in Different Adipose Depots of Pig are Associated with Metabolic, Inflammatory and Immune Processes

    Mingzhou Li, Honglong Wu, Tao Wang, Yudong Xia, Long Jin, Anan Jiang, Li Zhu, Lei Chen, Ruiqiang Li, Xuewei Li

    2012-01-01

    Full Text Available It is well established that the metabolic risk factors of obesity and its comorbidities are more attributed to adipose tissue distribution rather than total adipose mass. Since emerging evidence suggests that epigenetic regulation plays an important role in the aetiology of obesity, we conducted a genome-wide methylation analysis on eight different adipose depots of three pig breeds living within comparable environments but displaying distinct fat level using methylated DNA immunoprecipitation sequencing. We aimed to investigate the systematic association between anatomical location-specific DNA methylation status of different adipose depots and obesity-related phenotypes. We show here that compared to subcutaneous adipose tissues which primarily modulate metabolic indicators, visceral adipose tissues and intermuscular adipose tissue, which are the metabolic risk factors of obesity, are primarily associated with impaired inflammatory and immune responses. This study presents epigenetic evidence for functionally relevant methylation differences between different adipose depots.

  4. Examination of adipose depot-specific PPAR moieties

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  5. Examination of adipose depot-specific PPAR moieties

    Dodson, M.V., E-mail: dodson@wsu.edu [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Vierck, J.L. [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Hausman, G.J. [USDA-ARS, Richard B. Russell Agricultural Research Station, Athens, GA 30604 (United States); Guan, L.L. [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5 Canada (Canada); Fernyhough, M.E. [The Hartz Mountain Corporation, Secaucus, NJ 07094 (United States); Poulos, S.P. [The Coca-Cola Company, Research and Technology, Atlanta, GA 30313 (United States); Mir, P.S. [Agriculture and Agri-Food Canada Research Centre, Lethbridge, CA T1J 4B1 (United States); Jiang, Z. [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States)

    2010-04-02

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  6. Bioengineering beige adipose tissue therapeutics

    Kevin eTharp

    2015-10-01

    Full Text Available Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of UCP1-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable brown adipose tissues for human therapeutic purposes at this time.Recent developments in bioengineering, including novel hyaluronic acid based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit WAT derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of beige adipose tissue implants and their potential for the metabolic

  7. Bioengineering Beige Adipose Tissue Therapeutics.

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  8. Methods in Enzymology (MIE): Methods of Adipose Tissue Biology-: Chapter 7: Imaging of Adipose Tissue

    Berry, Ryan; Church, Christopher; Gericke, Martin T; Jeffery, Elise; Colman, Laura; Rodeheffer, Matthew S.

    2014-01-01

    Adipose tissue is an endocrine organ that specializes in lipid metabolism and is distributed throughout the body in distinct white adipose tissue (WAT) and brown adipose tissue (BAT) depots. These tissues have opposing roles in lipid metabolism with WAT storing excessive caloric intake in the form of lipid, and BAT burning lipid through non-shivering thermogenesis. As accumulation of lipid in mature adipocytes of WAT leads to obesity and increased risk of comorbidity (Pi-Sunyer et al., 1998),...

  9. Obesity and adipose tissue endocrine function

    Joshi, Anuradha Rajiv

    2013-01-01

    Many studies have profoundly changed the concept of adipose tissue from being an energy depot to an active endocrine organ. Adipose tissue secretes bioactive peptides, termed as ‘adipokines’.They act through autocrine, paracrine and endocrine pathways. In obesity, increased production of most adipokines affects multiple functions such as appetite and energy balance, immunity, insulin sensitivity, angiogenesis, blood pressure, lipid metabolism and haemostasis. Increased activity of the tumor n...

  10. Adipose tissue fibrosis

    Buechler, Christa; Krautbauer, Sabrina; Eisinger, Kristina

    2015-01-01

    The increasing prevalence of obesity causes a major interest in white adipose tissue biology. Adipose tissue cells are surrounded by extracellular matrix proteins whose composition and remodeling is of crucial importance for cell function. The expansion of adipose tissue in obesity is linked to an inappropriate supply with oxygen and hypoxia development. Subsequent activation of hypoxia inducible factor 1 (HIF-1) inhibits preadipocyte differentiation and initiates adipose tissue fibrosis. The...

  11. Co-methylated Genes in Different Adipose Depots of Pig are Associated with Metabolic, Inflammatory and Immune Processes

    Mingzhou Li, Honglong Wu, Tao Wang, Yudong Xia, Long Jin, Anan Jiang, Li Zhu, Lei Chen, Ruiqiang Li, Xuewei Li

    2012-01-01

    It is well established that the metabolic risk factors of obesity and its comorbidities are more attributed to adipose tissue distribution rather than total adipose mass. Since emerging evidence suggests that epigenetic regulation plays an important role in the aetiology of obesity, we conducted a genome-wide methylation analysis on eight different adipose depots of three pig breeds living within comparable environments but displaying distinct fat level using methylated DNA immunoprecipitatio...

  12. Development and differentiation of adipose tissue

    Ivković-Lazar Tatjana A.

    2003-01-01

    Full Text Available Introduction For years adipose tissue has been considered inert, serving only as a depot of energy surplus. However, there have been recent changes, undoubtedly due to advancement of methods for studying the morphology and metabolic activities of adipose tissue (microdialysis and adipose tissue catheterization. In normal-weight subjects, adipose tissue makes 10-12% with males and 15-20% with females. About 80 % of adipose tissue is located under the skin, and the rest envelops the internal organs. With humans there are white and brown adipose tissues, which is predominant with infants and small children. Histologic characteristics From a histological point of view, it is a special form of reticular connective tissue, which contains adipocytes with netlike structure. Human adipose tissue has four types of adrenergic receptors with different topographic dispositions, which manifest different metabolic activity of adipocytes of particular body organs. Changes in adipose tissue are associated with the process of adipocyte differentiation. Critical moments for this process are last months of pregnancy, the first six months of infancy and then puberty. However, the differentiation process may also begin during maturity. Namely, as size of adipocytes can increase to a certain limit, this process can be activated after reaching a 'critical' adipocyte volume. The differentiation process is affected by a number of hormones (insulin, glucagon, corticosteroids, somatotropin (STH, thyroid gland hormones, prolactin, testosterone, but also by some other substances (fatty acids, prostaglandins, liposoluble vitamins, butyrate, aspirin, indomethacin, metylxanthine, etc..

  13. PAPP-A, IGFBP-4 and IGF-II are secreted from human adipose tissue cultures in a depot-specific manner

    Gude, Mette Faurholdt; Hjortebjerg, Rikke; Oxvig, Claus;

    2016-01-01

    OBJECTIVE: Adipose tissue secretes pregnancy-associated plasma protein-A (PAPP-A), which may increase local IGF-action through cleavage of IGF-binding-protein-4 (IGFBP-4). We tested whether this mechanism was operational in human visceral and subcutaneous adipose tissue (i.e. VAT and SAT). DESIGN......: Explants of VAT and SAT from 26 obese subjects (hereof 17 women, BMI 39.8±1.3 kg/m2) and SAT from 8 lean, age-matched women (BMI 23.2±0.7 kg/m2) were incubated with or without GH (100 µg/l) and media harvested. METHODS: Media were assessed for concentrations of PAPP-A, intact and PAPP-A-cleaved IGFBP-4......, IGF-I and IGF-II, and IGF-I receptor (IGF-IR) activation by bioassay. RESULTS: In obese subjects, VAT media contained elevated concentrations of PAPP-A (4.4-fold) and both PAPP-A generated IGFBP-4 fragments (C-terminal: 3.3-fold, N-terminal: 1.5-fold) (all P

  14. Interleukins 6 and 15 Levels Are Higher in Subcutaneous Adipose Tissue, but Obesity Is Associated with Their Increased Content in Visceral Fat Depots

    Marta Izabela Jonas

    2015-10-01

    Full Text Available Excess adiposity is associated with chronic inflammation, which takes part in the development of obesity-related complications. The aim of this study was to establish whether subcutaneous (SAT or visceral (VAT adipose tissue plays a major role in synthesis of pro-inflammatory cytokines. Concentrations of interleukins (IL: 1β, 6, 8 and 15 were measured at the protein level by an ELISA-based method and on the mRNA level by real-time PCR in VAT and SAT samples obtained from 49 obese (BMI > 40 kg/m2 and 16 normal-weight (BMI 20–24.9 kg/m2 controls. IL-6 and IL-15 protein concentrations were higher in SAT than in VAT for both obese (p = 0.003 and p < 0.0001, respectively and control individuals (p = 0.004 and p = 0.001, respectively, while for IL-1β this was observed only in obese subjects (p = 0.047. What characterized obese individuals was the higher expression of IL-6 and IL-15 at the protein level in VAT compared to normal-weight controls (p = 0.047 and p = 0.016, respectively. Additionally, obese individuals with metabolic syndrome had higher IL-1β levels in VAT than did obese individuals without this syndrome (p = 0.003. In conclusion, concentrations of some pro-inflammatory cytokines were higher in SAT than in VAT, but it was the increased pro-inflammatory activity of VAT that was associated with obesity and metabolic syndrome.

  15. Hypertrophic Obesity and Subcutaneous Adipose Tissue Dysfunction

    Anna Meiliana

    2014-08-01

    Full Text Available BACKGROUND: Over the past 50 years, scientists have recognized that not all adipose tissue is alike, and that health risk is associated with the location as well as the amount of body fat. Different depots are sufficiently distinct with respect to fatty-acid storage and release as to probably play unique roles in human physiology. Whether fat redistribution causes metabolic disease or whether it is a marker of underlying processes that are primarily responsible is an open question. CONTENT: The limited expandability of the subcutaneous adipose tissue leads to inappropriate adipose cell expansion (hypertrophic obesity with local inflammation and a dysregulated and insulin-resistant adipose tissue. The inability to store excess fat in the subcutaneous adipose tissue is a likely key mechanism for promoting ectopic fat accumulation in tissues and areas where fat can be stored, including the intra-abdominal and visceral areas, in the liver, epi/pericardial area, around vessels, in the myocardium, and in the skeletal muscles. Many studies have implicated ectopic fat accumulation and the associated lipotoxicity as the major determinant of the metabolic complications of obesity driving systemic insulin resistance, inflammation, hepatic glucose production, and dyslipidemia. SUMMARY: In summary, hypertrophic obesity is due to an impaired ability to recruit and differentiate available adipose precursor cells in the subcutaneous adipose tissue. Thus, the subcutaneous adipose tissue may be particular in its limited ability in certain individuals to undergo adipogenesis during weight increase. Inability to promote subcutaneous adipogenesis under periods of affluence would favor lipid overlow and ectopic fat accumulation with negative metabolic consequences. KEYWORDS: obesity, adipogenesis, subcutaneous adipose tissue, visceral adipose tissue, adipocyte dysfunction.

  16. Determination of adipose tissue blood flow with local 133Xe clearance. Evaluation of a new labelling technique

    Simonsen, Lene; Enevoldsen, Lotte Hahn; Bülow, Jens

    2003-01-01

    Adipose tissue blood flow was measured in six healthy, non-obese subjects with the xenon wash-out technique after labelling of the tissue by either injection of 133Xe dissolved in isotonic sodium chloride (water depot) or injection of 133Xe in gas form (gas depot). The wash-out rates were...... registered from four depots simultaneously. Two depots were placed above the umbilicus, and two depots were placed below the umbilicus in the abdominal, subcutaneous adipose tissue. A water depot and a gas depot were placed in the two positions, respectively. It was not possible to demonstrate any difference...... between the wash-out rates registered from the two depot types, and it was also not possible to demonstrate any difference between the changes in wash-out rates induced by an oral glucose load. Similarly, the tissue distribution of the water and the gas depots appeared to be similar as registered by a...

  17. Protein kinase A induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health.

    Dickson, Lorna M; Gandhi, Shriya; Layden, Brian T; Cohen, Ronald N; Wicksteed, Barton

    2016-07-01

    Adipose tissue PKA has roles in adipogenesis, lipolysis, and mitochondrial function. PKA transduces the cAMP signal downstream of G protein-coupled receptors, which are being explored for therapeutic manipulation to reduce obesity and improve metabolic health. This study aimed to determine the overall physiological consequences of PKA activation in adipose tissue. Mice expressing an activated PKA catalytic subunit in adipose tissue (Adipoq-caPKA mice) showed increased PKA activity in subcutaneous, epididymal, and mesenteric white adipose tissue (WAT) depots and brown adipose tissue (BAT) compared with controls. Adipoq-caPKA mice weaned onto a high-fat diet (HFD) or switched to the HFD at 26 wk of age were protected from diet-induced weight gain. Metabolic health was improved, with enhanced insulin sensitivity, glucose tolerance, and β-cell function. Adipose tissue health was improved, with smaller adipocyte size and reduced macrophage engulfment of adipocytes. Using metabolic cages, we found that Adipoq-caPKA mice were shown to have increased energy expenditure, but no difference to littermate controls in physical activity or food consumption. Immunoblotting of adipose tissue showed increased expression of uncoupling protein-1 (UCP1) in BAT and dramatic UCP1 induction in subcutaneous WAT, but no induction in the visceral depots. Feeding a HFD increased PKA activity in epididymal WAT of wild-type mice compared with chow, but did not change PKA activity in subcutaneous WAT or BAT. This was associated with changes in PKA regulatory subunit expression. This study shows that adipose tissue PKA activity is sufficient to increase energy expenditure and indicates that PKA is a beneficial target in metabolic health. PMID:27097660

  18. Sympathetic and sensory innervation of brown adipose tissue

    Bartness, TJ; Vaughan, CH; Song, CK

    2010-01-01

    The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade o...

  19. Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity

    Huh, Jin Young; Park, Yoon Jeong; Ham, Mira; Kim, Jae Bum

    2014-01-01

    Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in ...

  20. Brown Adipose Tissue Growth and Development

    Michael E. Symonds

    2013-01-01

    Full Text Available Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  1. Adipose Tissue Metabolism During Hypobaria

    D. P. Chattopadhyay

    1974-10-01

    Full Text Available Possible factors affecting the metabolism of adipose tissue under hypobaric conditions have been reviewed. The hormonal changes brought into play under hypoxic stress generally stress generally increase the adipose tissue lipolysis.

  2. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  3. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  4. Deep subcutaneous adipose tissue is more saturated than superficial subcutaneous adipose tissue.

    Lundbom, J; Hakkarainen, A; Lundbom, N; Taskinen, M-R

    2013-04-01

    Upper body abdominal subcutaneous adipose tissue (SAT) can be divided into deep SAT (DSAT) and superficial SAT (SSAT) depots. Studies on adipose tissue fatty acid (FA) composition have made no distinction between these two depots. The aim of this study is to determine whether DSAT and SSAT differ in FA composition. We studied the FA composition of DSAT and SSAT in 17 male and 13 female volunteers using non-invasive proton magnetic resonance spectroscopy in vivo. Magnetic resonance imaging was used to differentiate between DSAT and SSAT. Adipose tissue spectra were analysed for lipid unsaturation, or double bond (DB) content, and polyunsaturation (PU), according to previously validated methods. The DSAT depot was more saturated than the SSAT depot, in both men (0.833 ± 0.012 vs 0.846 ± 0.009 DB, P<0.002) and women (0.826 ± 0.018 vs 0.850 ± 0.018 DB, P<0.002). In contrast, PU did not differ between DSAT and SSAT in either men (0.449 ± 0.043 vs 0.461 ± 0.044 PU, P=0.125) or women (0.411 ± 0.070 vs 0.442 ± 0.062 PU, P=0.234) and displayed a close correlation between the depots (R=0.908, P<0.001, n=30). The higher saturation in DSAT compared with SSAT can be attributed to a higher ratio of saturated to monounsaturated FAs. These results should be taken into account when determining the FA composition of SAT. PMID:22641063

  5. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation

    Fitzgibbons, Timothy P.; Kogan, Sophia; Aouadi, Myriam; Hendricks, Greg M.; Straubhaar, Juerg; Czech, Michael P.

    2011-01-01

    Thoracic perivascular adipose tissue (PVAT) is a unique adipose depot that likely influences vascular function and susceptibility to pathogenesis in obesity and the metabolic syndrome. Surprisingly, PVAT has been reported to share characteristics of both brown and white adipose, but a detailed direct comparison to interscapular brown adipose tissue (BAT) has not been performed. Here we show by full genome DNA microarray analysis that global gene expression profiles of PVAT are virtually ident...

  6. Significance of adipose tissue characteristics for development of metabolic complications in obesity

    Andersson, Daniel P

    2014-01-01

    Background: Obesity is closely related to development of insulin resistance and dyslipidemia. Intrinsic properties of adipose tissue are also of great importance for obesity related comorbidity. The aim of this thesis was to gain further knowledge of adipose depot specific effects of how fat cell size and lipolysis, as well as removal of a large portion of the visceral fat depot, affect metabolic risk. Methods: All subjects were from a cohort of 81 obese women undergoing gastric bypass ...

  7. Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

    Vaicik, Marcella K; Thyboll Kortesmaa, Jill; Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N; Brey, Eric M; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/-) and compared to wild-type (Lama4+/+) control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion. PMID:25310607

  8. Laminin α4 Deficient Mice Exhibit Decreased Capacity for Adipose Tissue Expansion and Weight Gain

    Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N.; Brey, Eric M.; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4−/−) and compared to wild-type (Lama4+/+) control animals. Lama4−/− mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion. PMID:25310607

  9. Regional Differences of Proteins Expressing in Adipose Depots Isolated from Cows, Steers and Bulls as Identified by a Proteomic Approach.

    Cho, Jin Hyoung; Jeong, Jin Young; Lee, Ra Ham; Park, Mi Na; Kim, Seok-Ho; Park, Seon-Min; Shin, Jae-Cheon; Jeon, Young-Joo; Shim, Jung-Hyun; Choi, Nag-Jin; Seo, Kang Seok; Cho, Young Sik; Kim, MinSeok S; Ko, Sungho; Seo, Jae-Min; Lee, Seung-Youp; Chae, Jung-Il; Lee, Hyun-Jeong

    2016-08-01

    Adipose tissue in the loin muscle area of beef cattle as a marbling factor is directly associated with beef quality. To elucidate whether properties of proteins involved in depot specific adipose tissue were sex-dependent, we analyzed protein expression of intramuscular adipose tissue (IMAT) and omental adipose tissue (OMAT) from Hanwoo cows, steers, and bulls of Korean native beef cattle by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis, quantitative polymerase chain reaction (PCR) and western blot analysis. Two different adipose depots (i.e. intramuscular and omental) were collected from cows (n = 7), steers (n = 7), or bulls (n = 7). LC-MS/MS revealed a total of 55 and 35 proteins in IMAT and OMAT, respectively. Of the 55 proteins identified, 44, 40, and 42 proteins were confirmed to be differentially expressed in IMAT of cows, steers, and bulls, respectively. In OMAT of cows, steers, and bulls, 33, 33, and 22 were confirmed to be differentially expressed, respectively. Tropomyosin (TPM) 1, TPM 2, and TPM3 were subjected to verification by quantitative PCR and western blot analysis in IMAT and OMAT of Hanwoo cows, steers, and bulls as key factors closely associated with muscle development. Both mRNA levels and protein levels of TPM1, TPM2, and TPM3 in IMAT were lower in bulls compared to in cows or steers suggesting that they were positively correlated with marbling score and quality grade. Our results may aid the regulation of marbling development and improvement of meat quality grades in beef cattle. PMID:27165017

  10. Cerenkov Luminescence Imaging of Interscapular Brown Adipose Tissue

    Zhang, Xueli; Kuo, Chaincy; Moore, Anna; Ran, Chongzhao

    2014-01-01

    Brown adipose tissue (BAT), widely known as a “good fat” plays pivotal roles for thermogenesis in mammals. This special tissue is closely related to metabolism and energy expenditure, and its dysfunction is one important contributor for obesity and diabetes. Contrary to previous belief, recent PET/CT imaging studies indicated the BAT depots are still present in human adults. PET imaging clearly shows that BAT has considerably high uptake of 18F-FDG under certain conditions. In this video repo...

  11. 性激素对女性脂肪组织11βHSD mRNA表达的部位特异性调控%The depot-specific regulation of sex hormones on 11βHSD1 mRNA expression in adipose tissue

    王晶; 张丽; 沈宇飞; 韩树萍; 李晓南

    2012-01-01

    Objective; To observe the depot-specific regulation of sex hormones on 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) mRNA expression in adipose tissue in child-bearing and menopausal women. Methods: Subcutaneous(Sc) and omental (Om) adipose tissues were obtained from 6 child-bearing (aged 29.83 ± 3.43 years) and 16 menopausal women (aged 65.19 ± 6.81 years). Pieces of adipose tissue were incubated with estrogen or testosterone for 24h. The expression of 11βHSD1 mRNA in adipose tissues was measured by real time PCR. Results; Estrogen increased 11βHSD1 mRNA expression in Sc adipose tissue (P < 0.05) but decreased 11βHSD1 mRNA expression in Om adipose tissue by 30% among menopausal women. Androgen decreased 11βHSD1 mRNA expression in Sc adipose tissue of child-bearing period women by 40%(P= 0.001),and up-regulated lipHSDl mRNA expression in Om adipose tissue of menopausal women by 1.9 fold(P= 0.005). Conclusion; The sex hormones stimulate 11βHSD1 mRNA expression in adipose tissue in age- and depot-specific pattern,which may be important molecular mechanism of distribution of body fat in child-bearing period and menopausal women.%目的:观察性激素对育龄期和绝经期妇女不同部位脂肪组织11β3羟基类固醇脱氢酶Ⅰ型(11β-hydroxysteroid dehydrogenase type 1,11βHSD1) mRNA表达水平的调控作用.方法:育龄期非妊娠妇女6例,年龄(29.83±3.43)岁及绝经期妇女16例,年龄(65.19±6.81)岁,取其皮下和网膜脂肪组织进行培养,应用雌激素和雄激素刺激脂肪组织24h,实时定量PCR方法测定脂肪组织11βHSD1 mRNA水平.结果:雌激素可使绝经期妇女皮下脂肪组织11βHSD1 mRNA表达明显增加(P<0.05),使网膜脂肪组织11βHSD1 mRNA表达水平下降30%.雄激素刺激可抑制育龄期妇女皮下脂肪组织11β3HSD1 mRNA表达近40%(P=0.001),而使绝经期妇女网膜脂肪组织11βHSD1 mRNA表达增加1.9倍(P=0.005).结论:性激素对脂肪组织11βHSD1 mRNA表达的调

  12. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation. PMID:26678825

  13. Bioengineering Beige Adipose Tissue Therapeutics

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiolog...

  14. Does Adipose Tissue Thermogenesis Play a Role in Metabolic Health?

    Craig Porter

    2013-01-01

    Full Text Available The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers’ attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies.

  15. Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs.

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2013-12-01

    Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P dogs respectively. Of the adipose depot-specific differences in gene expression, 162 were present in both lean and obese dogs, with the majority (85%) expressed in the same direction. Both lean and obese dog gene lists had enrichment of the complement and coagulation cascade and systemic lupus erythematosus pathways. Obese dogs had enrichment of lysosome, extracellular matrix-receptor interaction, renin-angiotensin system and hematopoietic cell lineage pathways. Lean dogs had enrichment of glutathione metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots. PMID:23713485

  16. A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences

    Caesar, R.; Manieri, M.; Kelder, T.; Boekschoten, M.; Evelo, C.; Müller, M.; Kooistra, T.; Cinti, S.; Kleemann, R.; Drevon, C.A.

    2010-01-01

    Depot-dependent differences in adipose tissue physiology may reflect specialized functions and local interactions between adipocytes and surrounding tissues. We combined time-resolved microarray analyses of mesenteric- (MWAT), subcutaneous- (SWAT) and epididymal adipose tissue (EWAT) during high-fat

  17. White adipose tissue resilience to insulin deprivation and replacement.

    Lilas Hadji

    Full Text Available Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin.Using streptozotocin (STZ-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT, epididymal (eWAT and subcutaneous adipose tissues (scWAT. Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter. Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines.The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group.Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues.

  18. Sleep deprivation affects inflammatory marker expression in adipose tissue

    Santos Ronaldo VT

    2010-10-01

    Full Text Available Abstract Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C group and a paradoxical sleep deprivation by 96 h (PSD group. Ten rats were randomly assigned to either the control group (C or the PSD. Mesenteric (MEAT and retroperitoneal (RPAT adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL-6, interleukin (IL-10 and tumour necrosis factor (TNF-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG, VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum.

  19. Adipose tissues and thyroid hormones

    Maria-Jesus eObregon

    2014-12-01

    Full Text Available The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases. The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. Brite or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2 and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that activate UCP1 in WAT and

  20. Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences.

    Meissburger, Bettina; Perdikari, Aliki; Moest, Hansjörg; Müller, Sebastian; Geiger, Matthias; Wolfrum, Christian

    2016-09-01

    Visceral and subcutaneous adipose tissue depots have distinct features and contribute differentially to the development of metabolic dysfunction. We show here that adipocyte differentiation in subcutaneous stromal-vascular fraction (SVF) is increased compared to visceral SVF, however this increased differentiation capacity seems not to be due to changes in the number of adipocyte precursor cells. Rather, we demonstrate that secreted heat-sensitive factors from the SVF can inhibit adipocyte differentiation and that this effect is higher in visceral than in subcutaneous SVF, suggesting that visceral SVF is a source of secreted factors that can inhibit adipocyte formation. In order to explore secreted proteins that potentially inhibit differentiation in visceral preadipocytes we analyzed the secretome of both SVFs which led to the identification of 113 secreted proteins with an overlap of 42%. Further expression analysis in both depots revealed 16 candidates that were subsequently analyzed in a differentiation screen using an adenoviral knockdown system. From this analysis we were able to identify two potential inhibitory candidates, namely decorin (Dcn) and Sparc-like 1 (Sparcl1). We could show that ablation of either candidate enhanced adipogenesis in visceral preadipocytes, while treatment of primary cultures with recombinant Sparcl1 and Dcn blocked adipogenesis in a dose dependent manner. In conclusion, our data suggests that the differences in adipogenesis between depots might be due to paracrine and autocrine feedback mechanisms which could in turn contribute to metabolic homeostasis. PMID:27317982

  1. Adipose tissue macrophages: amicus adipem?

    Odegaard, Justin I.; Ganeshan, Kirthana; Chawla, Ajay

    2013-01-01

    Chronic overnutrition drives complex adaptations within both professional metabolic and bystander tissues that, despite intense investigation, are still poorly understood. Xu et al. (2013) now describe the unexpected ability of adipose tissue macrophages to buffer lipids released from obese adipocytes in a manner independent of inflammatory macrophage activation.

  2. 11Beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Fisker, Sanne;

    2007-01-01

    metabolic syndrome. Our objective was to compare 11beta-HSD1 gene expression in different fat depots (visceral, subcutaneous abdominal, and subcutaneous gluteal) in lean and obese men and women. RESEARCH METHODS AND PROCEDURES: A cross-sectional study design was used for healthy patients undergoing minor...... women had lower 11beta-HSD1 gene expression in subcutaneous adipose tissue compared with men (62% lower, p < 0.01), whereas no significant difference was found between obese men and women. 11Beta-HSD1 mRNA in human adipose tissue was higher in obese subjects compared with lean subjects in both women and...... men and in both subcutaneous and visceral adipose tissue. No difference in mRNA expression of 11beta-HSD1 between visceral and subcutaneous adipose tissue or between subcutaneous adipose tissue from different depots was found. CONCLUSIONS: 11Beta-HSD1 in adipose tissue is increased in obesity in both...

  3. Inhibition of Sam68 triggers adipose tissue browning.

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam M; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A; Tang, Yao-Liang; Zhao, Ting C; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-06-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders. PMID:25934704

  4. Vibrational and structural investigations on adipose tissues

    Giarola, Marco; Guella, G.; Mariotto, G.; Monti, Francesca; Rossi, Barbara; Sanson, Andrea; Sbarbati, Andrea

    2008-01-01

    Abstract Two types of adipose tissue are found in mammals, including humans: the white adipose tissue (WAT) and the brown adipose tissue (BAT). The WAT has a major role in lipid storage and body thermal insulation, while the BAT is a thermogenic tissue that produces heat by oxidizing fatty acids. Both structural characterization and spectroscopic discrimination of these different adipose tissues are matter of current interest, also in view of possible medical and ...

  5. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity

    Mohd. Shahid; Ammar A. Javed; David Chandra; Haley E. Ramsey; Dilip Shah; Khan, Mohammed F.; Liping Zhao; Mei X. Wu

    2016-01-01

    Chronic inflammation plays a crucial role in the pathogenesis of obesity and insulin resistance. However, the primary mediators that affect energy homeostasis remain ill defined. Here, we report an unexpected role for immediate early response gene X-1 (IEX-1), a downstream target of NF-κB, in energy metabolism. We found that IEX-1 expression was highly induced in white adipose tissue (WAT) in both epidydmal and subcutaneous depots but not in interscapular brown adipose tissue (BAT) in mice fe...

  6. Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer?

    Yang, X; Smith, U

    2007-06-01

    The relative effect of visceral and subcutaneous obesity on the risk of chronic metabolic disease has been a matter of long-term dispute. While ample data support either of the fat depots being causative or associative, valid argument for one depot often automatically belittles the other. Paradigms such as the visceral/portal hypothesis and the acquired lipodystrophy/ectopic fat storage and endocrine hypothesis have been proposed. Nevertheless, neither hypothesis alone explains the entire pathophysiological setting. Treatment of diabetes with thiazolidinediones selectively increases fat partitioning to the subcutaneous adipose depot but does not change visceral fat accumulation. This is in contrast to the preferential visceral fat mobilisation by diet and exercise. Surgical removal of visceral or subcutaneous adipose tissue yields relatively long-lasting metabolic improvement only when combined with procedures that ameliorate adipose tissue cell composition. These studies illustrate that human adipose tissue in different anatomic locations does not work in isolation, and that there is a best-fit relationship in terms of volume and function among different fat depots that needs to be met to maintain the systemic energy balance and to prevent the complications related to obesity. PMID:17393135

  7. Lipolysis in human adipose tissue during exercise

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik;

    2002-01-01

    adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest and...

  8. Exercise regulation of adipose tissue.

    Stanford, Kristin I; Goodyear, Laurie J

    2016-01-01

    Exercise training results in adaptations to numerous organ systems and offers protection against metabolic disorders including obesity and type 2 diabetes, and recent reports suggest that adipose tissue may play a role in these beneficial effects of exercise on overall health. Multiple studies have investigated the effects of exercise training on both white adipose tissue (WAT) and brown adipose tissue (BAT), as well as the induction of beige adipocytes. Studies from both rodents and humans show that there are exercise training-induced changes in WAT including decreased cell size and lipid content, and increased mitochondrial activity. In rodents, exercise training causes an increased beiging of WAT. Whether exercise training causes a beiging of human scWAT, as well as which factors contribute to the exercise-induced beiging of WAT are areas of current investigation. Studies investigating the effects of exercise training on BAT mass and function have yielded conflicting data, and hence, is another area of intensive investigation. This review will focus on studies aimed at elucidating the mechanisms regulating exercise training induced-adaptations to adipose tissue. PMID:27386159

  9. Contribution of adipose tissue to health span and longevity.

    Huffman, Derek M; Barzilai, Nir

    2010-01-01

    Adipose tissue accounts for approximately 20% (lean) to >50% (in extreme obesity) of body mass and is biologically active through its secretion of numerous peptides and release and storage of nutrients such as free fatty acids. Studies in rodents and humans have revealed that body fat distribution, including visceral fat (VF), subcutaneous (SC) fat and ectopic fat are critical for determining the risk posed by obesity. Specific depletion or expansion of the VF depot using genetic or surgical strategies in animal models has proven to have direct effects on metabolic characteristics and disease risk. In humans, there is compelling evidence that abdominal obesity most strongly predicts mortality risk, while in rats, surgical removal of VF improves mean and maximum life span. There is also growing evidence that fat deposition in ectopic depots such as skeletal muscle and liver can cause lipotoxicity and impair insulin action. Conversely, expansion of SC adipose tissue may confer protection from metabolic derangements by serving as a 'metabolic sink' to limit both systemic lipids and the accrual of visceral and ectopic fat. Treatments targeting the prevention of fat accrual in these harmful depots should be considered as a primary target for improving human health span and longevity. PMID:20703052

  10. Inflammation- and lipid metabolism-related gene network expression in visceral and subcutaneous adipose depots of Holstein cows.

    Ji, P; Drackley, J K; Khan, M J; Loor, J J

    2014-01-01

    This experiment was conducted to determine the effects of energy overfeeding on gene expression in mesenteric (MAT), omental (OAT), and subcutaneous (SAT) adipose tissue (AT) from nonpregnant and nonlactating Holstein cows. Eighteen cows were randomly assigned to either a controlled energy [LE, net energy for lactation (NE(L)) = 1.35 Mcal/kg of dry matter (DM)] or moderate energy-overfed group (HE, NE(L) = 1.62 Mcal/kg of DM) for 8 wk. Cows were then euthanized and subsamples of MAT, OAT, and SAT were harvested for transcript profiling via quantitative PCR of 34 genes involved in lipogenesis, triacylglycerol (TAG) synthesis, lactate signaling, hepatokine signaling, lipolysis, transcription regulation, and inflammation. The interaction of dietary energy and adipose depot was not significant for any gene analyzed except LPL, which indicated a consistent response to diet. Expression of ACACA and FASN was greater in SAT than MAT, whereas expression of SCD and ADFP were greatest in SAT, intermediate in OAT, and lowest in MAT. However, the 2 visceral depots had greater expression of THRSP, ACLY, LPL, FABP4, GPAM, and LPIN1 compared with SAT. The transcription factor SREBF1 was more highly expressed in MAT and SAT than in OAT. The expression of PNPLA2 was greater in visceral AT sites than in SAT, but other lipolysis-related genes were not differentially expressed among AT depots. Visceral AT depots had greater expression of LEP, ADIPOQ, and SAA3 compared with SAT. Moreover, MAT had greater expression than SAT of proinflammatory cytokines (IL1B and IL6), IL6 receptor (IL6R), and chemokines (CCL2 and CCL5). However, TNF expression was greatest in SAT, lowest in OAT, and intermediate in MAT. Overall, results indicated that visceral AT might be more active in uptake of preformed long-chain fatty acids than SAT, whereas de novo fatty acid synthesis could make a greater contribution to the intracellular pool of fatty acids in SAT than in visceral AT. The visceral AT compared

  11. Quantification of adipose tissue insulin sensitivity

    Søndergaard, Esben; Jensen, Michael D

    2016-01-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute...... to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible...... quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and...

  12. Quantification of adipose tissue insulin sensitivity.

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. PMID:27073214

  13. Heterogeneous response of adipose tissue to cancer cachexia

    P.S. Bertevello

    2001-09-01

    Full Text Available Cancer cachexia causes disruption of lipid metabolism. Since it has been well established that the various adipose tissue depots demonstrate different responses to stimuli, we assessed the effect of cachexia on some biochemical and morphological parameters of adipocytes obtained from the mesenteric (MES, retroperitoneal (RPAT, and epididymal (EAT adipose tissues of rats bearing Walker 256 carcinosarcoma, compared with controls. Relative weight and total fat content of tissues did not differ between tumor-bearing rats and controls, but fatty acid composition was modified by cachexia. Adipocyte dimensions were increased in MES and RPAT from tumor-bearing rats, but not in EAT, in relation to control. Ultrastructural alterations were observed in the adipocytes of tumor-bearing rat RPAT (membrane projections and EAT (nuclear bodies.

  14. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size

  15. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto

    2015-08-07

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.

  16. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    Ribeiro Ricardo

    2012-04-01

    Full Text Available Abstract Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants or stromal vascular fraction (SVF from paired fat samples of periprostatic (PP and pre-peritoneal visceral (VIS anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs 2 and 9 activity. The effects of those conditioned media (CM on growth and migration of hormone-refractory (PC-3 and hormone-sensitive (LNCaP prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration

  17. Changes of Adipose Tissue Morphology and Composition during Late Pregnancy and Early Lactation in Dairy Cows.

    Ákos Kenéz

    Full Text Available Dairy cows mobilize large amounts of body fat during early lactation to overcome negative energy balance which typically arises in this period. As an adaptation process, adipose tissues of cows undergo extensive remodeling during late pregnancy and early lactation. The objective of the present study was to characterize this remodeling to get a better understanding of adaptation processes in adipose tissues, affected by changing metabolic conditions including lipid mobilization and refilling as a function of energy status. This was done by determining adipocyte size in histological sections of subcutaneous and retroperitoneal adipose tissue biopsy samples collected from German Holstein cows at 42 days prepartum, and 1, 21, and 100 days postpartum. Characterization of cell size changes was extended by the analysis of DNA, triacylglycerol, and protein content per gram tissue, and β-actin protein expression in the same samples. In both adipose tissue depots cell size was becoming smaller during the course of the study, suggesting a decrease in cellular triacylglycerol content. Results of DNA, triacylglycerol, and protein content, and β-actin protein expression could only partially explain the observed differences in cell size. The retroperitoneal adipose tissue exhibited a greater extent of time-related differences in cell size, DNA, and protein content, suggesting greater dynamics and metabolic flexibility for this abdominal depot compared to the investigated subcutaneous depot.

  18. 18F-Fluorobenzyl Triphenyl Phosphonium: A Noninvasive Sensor of Brown Adipose Tissue Thermogenesis

    Madar, Igal; Isoda, Takuro; Finley, Paige; Angle, James; Wahl, Richard

    2011-01-01

    Recent studies have proposed activation of brown adipose tissue (BAT) thermogenesis as a new strategy to combat obesity. Currently, there is no effective noninvasive imaging agent to directly detect unstimulated BAT and quantify the core mechanism of mitochondrial thermogenesis. We investigated an approach to detect BAT depots and monitor thermogenesis using the mitochondria-targeting voltage sensor radiolabeled fluorobenzyltriphenyl phosphonium (FBnTP).

  19. Biochemistry of adipose tissue: an endocrine organ

    Coelho, Marisa; Oliveira, Teresa; Fernandes, Rúben

    2013-01-01

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of n...

  20. Interleukin-6 production in human subcutaneous abdominal adipose tissue

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    change was observed during exercise. Post-exercise the IL-6 output began to increase after 30 min. Three hours post-exercise it was 58.6 +/- 22.2 pg (100 g)(-1) min(-1). In the control experiments the IL-6 output also increased, but it only reached a level of 3.5 +/- 0.8 pg (100 g)(-1) min(-1). The...... begin to increase. Thus, we suggest that the enhanced IL-6 production post-exercise in abdominal, subcutaneous adipose tissue may act locally via autocrine/paracrine mechanisms influencing lipolysis and fatty acid mobilization rate from this lipid depot....

  1. Hounsfield unit dynamics of adipose tissue and non-adipose soft tissue in growing pigs

    Mcevoy, Fintan; Madsen, Mads T.; Strathe, Anders Bjerring;

    2008-01-01

    Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs.......Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs....

  2. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita;

    2015-01-01

    Background: Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). Results: We analyzed the postnatal transformation of adipose in sheep with a......, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over...... time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial...

  3. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  4. Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia.

    Tsoli, Maria; Swarbrick, Michael M; Robertson, Graham R

    2016-06-01

    Although muscle wasting is the obvious manifestation of cancer cachexia that impacts on patient quality of life, the loss of lipid reserves and metabolic imbalance in adipose tissue also contribute to the devastating impact of cachexia. Depletion of fat depots in cancer patients is more pronounced than loss of muscle and often precedes, or even occurs in the absence of, reduced lean body mass. Rapid mobilisation of triglycerides stored within adipocytes to supply the body with fatty acids in periods of high-energy demand is normally mediated through a well-defined process of lipolysis involving the lipases ATGL, HSL and MGL. Studies into how these lipases contribute to fat loss in cancer cachexia have revealed the prominent role for ATGL in initiating lipolysis during adipose tissue atrophy, together with links between tumour-derived factors and the signalling pathways that control lipid flux within fat cells. The recent findings of increased thermogenesis in brown fat during cancer cachexia indicate that metabolically active adipose tissue contributes to the imbalance in energy homeostasis involved in catabolic wasting. Such energetically futile use of fatty acids liberated from adipose tissue to generate heat represents a maladaptive response in conjunction with anorexia experienced by cancer patients. As IL-6 release by tumours provokes lipolysis and activates the thermogenic programme in brown fat, this review explores the overlap in dysregulated metabolic processes due to inflammatory mediators in cancer cachexia and other disease states characterised by elevated cytokines such as obesity and diabetes. PMID:26529279

  5. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering

    Wang, Lina; Johnson, Joshua A.; Zhang, Qixu; Elisabeth K. Beahm

    2013-01-01

    Repair of soft-tissue defects resulting from lumpectomy or mastectomy has become an important rehabilitation process for breast cancer patients. This study aimed to provide an adipose tissue engineering platform for soft-tissue defect repair by combining decellularized human adipose tissue extracellular matrix (hDAM) and human adipose-derived stem cells (hASCs). To derive hDAM, incised human adipose tissues underwent a decellularization process. Effective cell removal and lipid removal were p...

  6. Exercise training decreases adipose tissue inflammation in cachectic rats.

    Lira, F S; Yamashita, A S; Rosa, J C; Koyama, C H; Caperuto, E C; Batista, M L; Seelaender, M C L

    2012-02-01

    Bearing in mind that cancer cachexia is associated with chronic systemic inflammation and that endurance training has been adopted as a nonpharmacological anti-inflammatory strategy, we examined the effect of 8 weeks of moderate intensity exercise upon the balance of anti- and pro-inflammatory cytokines in 2 different depots of white adipose tissue in cachectic tumour-bearing (Walker-256 carcinosarcoma) rats. Animals were assigned to a sedentary control (SC), sedentary tumour-bearing (ST), sedentary pair-fed (SPF) or exercise control (EC), exercise tumour-bearing (ET), and exercise pair-fed (EPF) group. Trained rats ran on a treadmill (60% VO(2)max) 60 min/day, 5 days/week, for 8 weeks. The retroperitoneal (RPAT) and mesenteric (MEAT) adipose pads were excised and the mRNA (RT-PCR) and protein (ELISA) expression of IL-1β, IL-6, TNF-α, and IL-10 were evaluated. The number of infiltrating monocytes in the adipose tissue was increased in cachectic rats. TNF-α mRNA in MEAT was increased in the cachectic animals (preduction of the infiltrating monocytes both in MEAT and RPAT (p<0.05), when compared with ST. We conclude that cachexia is associated with inflammation of white adipose tissue and that exercise training prevents this effect in the MEAT, and partially in RPAT. PMID:22266827

  7. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita;

    2015-01-01

    time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial......, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over...

  8. Capillary permeability in adipose tissue

    Paaske, W P; Nielsen, S L

    1976-01-01

    A method for measurement of capillary permeability using external registration of gamma emitting isotopes after close arterial bolus injection was applied to the isolated inguinal fat pad in slightly fasting rabbits. An average extraction of 26 per cent for 51Cr-EDTA was found at a plasma flow of...... about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  9. Transgenic mice overexpressing the beta 1-adrenergic receptor in adipose tissue are resistant to obesity.

    Soloveva, V; Graves, R A; Rasenick, M M; Spiegelman, B M; Ross, S R

    1997-01-01

    The ratio of alpha- to beta-receptors is thought to regulate the lipolytic index of adipose depots. To determine whether increasing the activity of the beta 1-adrenergic receptor (AR) in adipose tissue would affect the lipolytic rate or the development of this tissue, we used the enhancer-promoter region of the adipocyte lipid-binding protein (aP2) gene to direct expression of the human beta 1 AR cDNA to adipose tissue. Expression of the transgene was seen only in brown and white adipose tissue. Adipocytes from transgenic mice were more responsive to beta AR agonists than were adipocytes from nontransgenic mice, both in terms of cAMP production and lipolytic rates. Transgenic animals were partially resistant to diet-induced obesity. They had smaller adipose tissue depots than their nontransgenic littermates, reflecting decreased lipid accumulation in their adipocytes. In addition to increasing the lipolytic rate, overexpression of the beta 1 AR induced the abundant appearance of brown fat cells in subcutaneous white adipose tissue. These results demonstrate that the beta 1 AR is involved in both stimulation of lipolysis and the proliferation of brown fat cells in the context of the whole organism. Moreover, it appears that it is the overall beta AR activity, rather than the particular subtype, that controls these phenomena. PMID:8994185

  10. The Adipose Tissue in Farm Animals

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura;

    2014-01-01

    and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance...... in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal...... and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in farm animal adipose tissue proteomics, mainly in cattle and pigs, but also in poultry, i.e. chicken and in farmed fish. Proteomics...

  11. Regulation of G0/G1 switch gene 2 (G0S2) expression in human adipose tissue.

    Skopp, Alexander; May, Marcus; Janke, Juergen; Kielstein, Heike; Wunder, Ruth; Flade-Kuthe, Ricarda; Kuthe, Andreas; Jordan, Jens; Engeli, Stefan

    2016-05-01

    The G0/G1 switch gene 2 (G0S2) protein attenuated adipose triglyceride lipase (ATGL) activity and decreased lipolysis in rodent and human adipocytes. We hypothesized that G0S2 mRNA expression in human adipose tissue is influenced by depot, adipocyte size, body weight and caloric intake. Adipose tissue samples were obtained during abdominal surgery and by needle biopsy before and 3 h after an extended glucose load in lean subjects. G0S2 mRNA was 7× higher expressed in mature human adipocytes compared to the stromavascular fraction. Cell size inversely correlated with G0S2 mRNA expression in both, subcutaneous and omental adipose depots. G0S2 mRNA expression was 75% higher in subcutaneous compared to omental adipose tissue. Obesity was associated with lower G0S2 mRNA expression in subcutaneous adipose tissue. Acute glucose ingestion after an overnight fast did not significantly increase G0S2 expression in subcutaneous adipose tissue. In conclusion, differences in G0S2 expression may explain depot-specific and obesity-associated differences in lipolysis on the molecular level. PMID:26707160

  12. Perivascular adipose tissue: An unique fat compartment relevant for the cardiometabolic syndrome.

    Siegel-Axel, D I; Häring, H U

    2016-03-01

    Type 2 diabetes and its major risk factor, obesity, are an increasing worldwide health problem. The exact mechanisms that link obesity with insulin resistance, type 2 diabetes, hypertension, cardiovascular complications and renal diseases, are still not clarified sufficiently. Adipose tissue in general is an active endocrine and paracrine organ that may influence the development of these disorders. Excessive body fat in general obesity may also cause quantitative and functional alterations of specific adipose tissue compartments. Beside visceral and subcutaneous fat depots which exert systemic effects by the release of adipokines, cytokines and hormones, there are also locally acting fat depots such as peri- and epicardial fat, perivascular fat, and renal sinus fat. Perivascular adipose tissue is in close contact with the adventitia of large, medium and small diameter arteries, possesses unique features differing from other fat depots and may act also independently of general obesity. An increasing number of studies are dealing with the "good" or "bad" characteristics and functions of normally sized and dramatically increased perivascular fat mass in lean or heavily obese individuals. This review describes the origin of perivascular adipose tissue, its different locations, the dual role of a physiological and unphysiological fat mass and its impact on diabetes, cardiovascular and renal diseases. Clinical studies, new imaging methods, as well as basic research in cell culture experiments in the last decade helped to elucidate the various aspects of the unique fat compartment. PMID:26995737

  13. Adipose Tissue Biology: An Update Review

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  14. Control and Physiological Determinants of Sympathetically Mediated Brown Adipose Tissue Thermogenesis

    DenisRichard; ÉricTurcotte

    2012-01-01

    Brown adipose tissue (BAT) represents a remarkable heat-producing tissue. The thermogenic potential of BAT is conferred by uncoupling protein 1, a protein found uniquely in the brown adipocytes. The physiological control of BAT activity and capacity is ensured by the sympathetic nervous system (SNS), which densely innervates brown fat depots. SNS-mediated BAT thermogenesis is essentially governed by hypothalamic and brainstem neurons. BAT is not only controlled by the brain thermoregulatory c...

  15. Opposing Effects of Omega-3 and Omega-6 Long Chain Polyunsaturated Fatty Acids on the Expression of Lipogenic Genes in Omental and Retroperitoneal Adipose Depots in the Rat

    B. S. Muhlhausler

    2010-01-01

    Full Text Available This study aimed to determine the effect of varying dietary intake of the major n-3 PUFA in human diets, α-linolenic acid (ALA; 18 : 3n-3, on expression of lipogenic genes in adipose tissue. Rats were fed diets containing from 0.095%en to 6.3%en ALA and a constant n-6 PUFA level for 3 weeks. Samples from distinct adipose depots (omental and retroperitoneal were collected and mRNA expression of the pro-lipogenic transcription factors Sterol-Retinoid-Element-Binding-Protein1c (SREBP1c and Peroxisome Proliferator Activated Receptor-γ (PPARγ, lipogenic enzymes Sterol-coenzyme Desaturase1 (SCD-1, Fatty Acid Synthase (FAS, lipoprotein lipase (LPL and glycerol-3-phosphate dehydrogenase (G3PDH and adipokines leptin and adiponectin determined by qRT-PCR. Increasing dietary ALA content resulted in altered expression of SREBP1c, FAS and G3PDH mRNA in both adipose depots. SREBP1c mRNA expression was related directly to n-6 PUFA concentrations (omental, r2=.71; P<.001; Retroperitoneal, r2=.20; P<.002, and inversely to n-3 PUFA concentrations (omental, r2=.59; P<.001; Retroperitoneal, r2=.19; P<.005 independent of diet. The relationship between total n-6 PUFA and SREBP1c mRNA expression persisted when the effects of n-3 PUFA were controlled for. Altering red blood cell concentrations of n-3 PUFA is thus associated with altered expression of lipogenic genes in a depot-specific manner and this effect is modulated by prevailing n-6 PUFA concentrations.

  16. Visceral adipose tissue modulates mammalian longevity

    Muzumdar, Radhika; Allison, David B.; Huffman, Derek M.; Ma, Xiaohui; Atzmon, Gil; Einstein, Francine H.; Fishman, Sigal; Poduval, Aruna D.; McVei, Theresa; Keith, Scott W.; Barzilai, Nir

    2008-01-01

    Caloric restriction (CR) can delay many age-related diseases and extend lifespan, while an increase in adiposity is associated with enhanced disease risk and accelerated aging. Among the various fat depots, the accrual of visceral fat (VF) is a common feature of aging, and has been shown to be the most detrimental on metabolic syndrome of aging in humans. We have previously demonstrated that surgical removal of VF in rats improves insulin action; thus, we set out to determine if VF removal af...

  17. Mechanical homeostasis regulating adipose tissue volume

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  18. Sustainable Three-Dimensional Tissue Model of Human Adipose Tissue

    Bellas, Evangelia; Marra, Kacey G.; Kaplan, David L

    2013-01-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31...

  19. Different Adipose Depots: Their Role in the Development of Metabolic Syndrome and Mitochondrial Response to Hypolipidemic Agents

    Berge, Rolf K; Jon Skorve; Vidar Staalesen; Bodil Bjørndal; Lena Burri

    2011-01-01

    Adipose tissue metabolism is closely linked to insulin resistance, and differential fat distributions are associated with disorders like hypertension, diabetes, and cardiovascular disease. Adipose tissues vary in their impact on metabolic risk due to diverse gene expression profiles, leading to differences in lipolysis and in the production and release of adipokines and cytokines, thereby affecting the function of other tissues. In this paper, the roles of the various adipose tissues in obesi...

  20. Mechanical homeostasis regulating adipose tissue volume

    Svedman Paul

    2007-01-01

    Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by str...

  1. Adipose tissue and vascular inflammation in coronary artery disease

    Enrica; Golia; Giuseppe; Limongelli; Francesco; Natale; Fabio; Fimiani; Valeria; Maddaloni; Pina; Elvira; Russo; Lucia; Riegler; Renatomaria; Bianchi; Mario; Crisci; Gaetano; Di; Palma; Paolo; Golino; Maria; Giovanna; Russo; Raffaele; Calabrò; Paolo; Calabrò

    2014-01-01

    Obesity has become an important public health issue in Western and developing countries,with well known metabolic and cardiovascular complications.In the last decades,evidence have been growing about the active role of adipose tissue as an endocrine organ in determining these pathological consequences.As a consequence of the expansion of fat depots,in obese subjects,adipose tissue cells develope a phenotypic modification,which turns into a change of the secretory output.Adipocytokines produced by both adipocytes and adipose stromal cells are involved in the modulation of glucose and lipid handling,vascular biology and,moreover,participate to the systemic inflammatory response,which characterizes obesity and metabolic syndrome.This might represent an important pathophysiological link with atherosclerotic complications and cardiovascular events.A great number of adipocytokines have been described recently,linking inflammatory mileu and vascular pathology.The understanding of these pathways is crucial not only from a pathophysiological point of view,but also to a better cardiovascular disease risk stratification and to the identification of possible therapeutic targets.The aim of this paper is to review the role of Adipocytokines as a possible link between obesity and vascular disease.

  2. FNDC5 expression and circulating irisin levels are modified by diet and hormonal conditions in hypothalamus, adipose tissue and muscle.

    Varela-Rodríguez, B M; Pena-Bello, L; Juiz-Valiña, P; Vidal-Bretal, B; Cordido, F; Sangiao-Alvarellos, S

    2016-01-01

    Irisin is processed from fibronectin type III domain-containing protein 5 (FNDC5). However, a controversy exists concerning irisin origin, regulation and function. To elucidate the relationship between serum irisin and FNDC5 mRNA expression levels, we evaluated plasma irisin levels and FNDC5 gene expression in the hypothalamus, gastrocnemius muscle and different depots of adipose tissue in models of altered metabolism. In normal rats, blood irisin levels diminished after 48-h fast and with leptin, insulin and alloxan treatments, and serum irisin concentrations increased in diabetic rats after insulin treatment and acute treatments of irisin increased blood insulin levels. No changes were observed during long-term experiments with different diets. We suggested that levels of circulating irisin are the result of the sum of the irisin produced by different depots of adipose tissue and skeletal muscle. This study shows for the first time that there are differences in FNDC5 expression depending on white adipose tissue depots. Moreover, a considerable decrease in visceral and epididymal adipose tissue depots correlated with increased FNDC5 mRNA expression levels, probably in an attempt to compensate the decrease that occurs in their mass. Hypothalamic FNDC5 expression did not change for any of the tested diets but increased with leptin, insulin and metformin treatments suggesting that the regulation of central and peripheral FNDC5/irisin expression and functions are different. PMID:27432282

  3. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    Ribeiro Ricardo

    2012-09-01

    Full Text Available Abstract Background Periprostatic (PP adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia. Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated. Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis, whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH. Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable

  4. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity

    Pang, Can; Gao, Zhanguo; Yin, Jun; Zhang, Jin; Jia, Weiping; Ye, Jianping

    2008-01-01

    The biological role of macrophage infiltration into adipose tissue in obesity remains to be fully understood. We hypothesize that macrophages may act to stimulate angiogenesis in the adipose tissue. This possibility was examined by determining macrophage expression of angiogenic factor PDGF (platelet-derived growth factor) and regulation of tube formation of endothelial cells by PDGF. The data suggest that endothelial cell density was reduced in the adipose tissue of ob/ob mice. Expression of...

  5. CT-demonstration of adipose tissue of the sinus cavernosus

    Adipose bodies of the sinus cavernosus - the only genuine intracranial adipose tissue - can be demonstrated well by CT. They appear as polymorph well defined hypodense objects in unilateral or bilateral manifestation. Adipose bodies most frequently show a size between 4 and 9 mm and densities about -20 to -40 HE. Occasionally the adipose bodies directly lead into the adipose tissue of the orbit. (orig.)

  6. Aetiological factors behind adipose tissue inflammation

    von Scholten, Bernt J; Andresen, Erik N; Sørensen, Thorkild I A;

    2013-01-01

    Despite extensive research into the biological mechanisms behind obesity-related inflammation, knowledge of environmental and genetic factors triggering such mechanisms is limited. In the present narrative review we present potential determinants of adipose tissue inflammation and suggest ways...

  7. White Adipose Tissue Development in Zebrafish Is Regulated by Both Developmental Time and Fish Size

    Imrie, Dru; Sadler, Kirsten C.

    2010-01-01

    Adipocytes are heterogeneous. Whether their differences are attributed to anatomical location or to different developmental origins is unknown. We investigated whether development of different white adipose tissue (WAT) depots in zebrafish occurs simultaneously or whether adipogenesis is influenced by the metabolic demands of growing fish. Like mammals, zebrafish adipocyte morphology is distinctive and adipocytes express cell-specific markers. All adults contain WAT in pancreatic, subcutaneou...

  8. Echocardiographic Assessment of Epicardial Adipose Tissue - A Marker of Visceral Adiposity

    Singh, Navneet; Singh, Harleen; Khanijoun, Harleen K; Iacobellis, Gianluca

    2007-01-01

    Visceral adipose tissue predicts an unfavorable cardiovascular and metabolic risk profile in humans. Existing methods to assess visceral adipose tissue have been limited. Thus, echocardiographic assessment of epicardial adipose tissue as a marker of visceral adiposity was suggested. The technique has been shown to be a very reliable method and an excellent measure of visceral adiposity. In this article, epicardial adipose tissue’s localization on the heart, function, method of assessment and ...

  9. Influencing Factors of Thermogenic Adipose Tissue Activity

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called “brite” or “beig...

  10. Injectable Biomaterials for Adipose Tissue Engineering

    Young, D. Adam; Christman, Karen L.

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect, and thus classifi...

  11. Influencing Factors of Thermogenic Adipose Tissue Activity.

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called "brite" or "beige" adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  12. Adipose tissue, the skeleton and cardiovascular disease

    Wiklund, Peder

    2011-07-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  13. Adipose tissue, the skeleton and cardiovascular disease

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  14. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Harkema Jack R

    2011-07-01

    Full Text Available Abstract Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/- mice inhaled concentrated fine ambient PM (PM 2.5 or filtered air (FA for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT and brown adipose tissues (BAT, while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.

  15. Adipose Tissue - Adequate, Accessible Regenerative Material.

    Kolaparthy, Lakshmi Kanth; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-11-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed. PMID:26634060

  16. Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

    Andrew A. Bremer

    2013-01-01

    Full Text Available The metabolic syndrome (MetS confers an increased risk for both type 2 diabetes mellitus (T2DM and cardiovascular disease (CVD. Moreover, studies on adipose tissue biology in nascent MetS uncomplicated by T2DM and/or CVD are scanty. Recently, we demonstrated that adipose tissue dysregulation and aberrant adipokine secretion contribute towards the syndrome’s low-grade chronic proinflammatory state and insulin resistance. Specifically, we have made the novel observation that subcutaneous adipose tissue (SAT in subjects with nascent MetS has increased macrophage recruitment with cardinal crown-like structures. We have also shown that subjects with nascent MetS have increased the levels of SAT-secreted adipokines (IL-1, IL-6, IL-8, leptin, RBP-4, CRP, SAA, PAI-1, MCP-1, and chemerin and plasma adipokines (IL-1, IL-6, leptin, RBP-4, CRP, SAA, and chemerin, as well as decreased levels of plasma adiponectin and both plasma and SAT omentin-1. The majority of these abnormalities persisted following correction for increased adiposity. Our data, as well as data from other investigators, thus, highlight the importance of subcutaneous adipose tissue dysfunction in subjects with MetS and its contribution to the proinflammatory state and insulin resistance. This adipokine profile may contribute to increased insulin resistance and low-grade inflammation, promoting the increased risk of T2DM and CVD.

  17. Transplantation of Adipose Tissue and Adipose-Derived Stem Cells as a Tool to Study Metabolic Physiology and for Treatment of Disease

    Tran, Thien T.; Kahn, C. Ronald

    2010-01-01

    Humans and other mammals have three main fat depots - visceral white fat, subcutaneous white fat, and brown fat - each possessing unique cell-autonomous properties. In contrast to visceral fat which can induce detrimental metabolic effects, subcutaneous white fat and brown fat have potential beneficial metabolic effects, including improved glucose homeostasis and increased energy consumption, which might be transferred by transplantation of these fat tissues. In addition, fat contains adipose...

  18. Obesity is associated with macrophage accumulation in adipose tissue

    Weisberg, Stuart P.; McCann, Daniel; Desai, Manisha; Rosenbaum, Michael; Leibel, Rudolph L.; Ferrante, Anthony W

    2003-01-01

    Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We fou...

  19. Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue

    Mohamadreza Baghaban Eslaminejad

    2011-01-01

    Full Text Available Objective(sSome investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored.Materials and MethodsAdherent cells were isolated from the collagenase digests of adipose tissues excised from rat epicardial and epididymal regions and propagated with several subcultures. The cells were then investigated whether or not they were able to differentiate into bone, cartilage and adipose cell lineages. Studied cells from two adipose tissues were also compared with respect to their in vitro proliferation capacity. The presence of senescent cells in the culture was determined and compared using senescence-associated (SA ß-galactosidase staining method. ResultsSuccessful differentiations of the cells were indicative of their mesenchymal stem cells (MSCs identity. Epicardial adipose-derived cells tended to have a short population doubling time (45±9.6 hr than the epididymal adipose-derived stem cells (69±16 hr, P< 0.05. Colonogenic activity and the growth curve characteristics were all better in the culture of stem cells derived from epicardial compared to epididymal adipose tissue. Comparatively more percentage of senescent cells was present at the cultures derived from epididymal adipose tissue (P< 0.05.ConclusionOur data emphasize on the differences existed between the stem cells derived from adipose depots of different anatomical sites in terms of their proliferative capacity and in vitro aging. Such data can help understand varying results reported by different laboratories involved in adipose stem cell investigations.

  20. Carotenoids in Adipose Tissue Biology and Obesity.

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition. PMID:27485231

  1. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Harry J. Mersmann; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-01-01

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. ...

  2. Injectable biomaterials for adipose tissue engineering

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers but also promote in vivo adipogenesis is beginning to be realized. This paper will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. (paper)

  3. [White adipose tissue dysfunction observed in obesity].

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects. PMID:27234867

  4. Adipose tissue and fat cell biology

    Kopecký, Jan

    New York: Springer International Publishing, 2015 - (Pappas, A.), s. 201-224 ISBN 978-3-319-09942-2 R&D Projects: GA MŠk(CZ) 7E12073; GA ČR(CZ) GA13-00871S Institutional support: RVO:67985823 Keywords : adipose tissue * endocrine function * lipid mediators Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  5. Adipose tissue plasticity from WAT to BAT and in between

    Lee, Yun-Hee; Mottillo, Emilio P.; Granneman, James G.

    2013-01-01

    Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticit...

  6. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction

    Marco Calogero Amato

    2014-01-01

    Full Text Available The Visceral Adiposity Index (VAI has recently proven to be an indicator of adipose distribution and function that indirectly expresses cardiometabolic risk. In addition, VAI has been proposed as a useful tool for early detection of a condition of cardiometabolic risk before it develops into an overt metabolic syndrome. The application of the VAI in particular populations of patients (women with polycystic ovary syndrome, patients with acromegaly, patients with NAFLD/NASH, patients with HCV hepatitis, patients with type 2 diabetes, and general population has produced interesting results, which have led to the hypothesis that the VAI could be considered a marker of adipose tissue dysfunction. Unfortunately, in some cases, on the same patient population, there is conflicting evidence. We think that this could be mainly due to a lack of knowledge of the application limits of the index, on the part of various authors, and to having applied the VAI in non-Caucasian populations. Future prospective studies could certainly better define the possible usefulness of the VAI as a predictor of cardiometabolic risk.

  7. Inflammatory cytokine gene expression in mesenteric adipose tissue during acute experimental colitis.

    W Conan Mustain

    Full Text Available BACKGROUND: Production of inflammatory cytokines by mesenteric adipose tissue (MAT has been implicated in the pathogenesis of inflammatory bowel disease (IBD. Animal models of colitis have demonstrated inflammatory changes within MAT, but it is unclear if these changes occur in isolation or as part of a systemic adipose tissue response. It is also unknown what cell types are responsible for cytokine production within MAT. The present study was designed to determine whether cytokine production by MAT during experimental colitis is depot-specific, and also to identify the source of cytokine production within MAT. METHODS: Experimental colitis was induced in 6-month-old C57BL/6 mice by administration of dextran sulfate sodium (2% in drinking water for up to 5 days. The induction of cytokine mRNA within various adipose tissues, including mesenteric, epididymal, and subcutaneous, was analyzed by qRT-PCR. These adipose tissues were also examined for histological evidence of inflammation. The level of cytokine mRNA during acute colitis was compared between mature mesenteric adipocytes, mesenteric stromal vascular fraction (SVF, and mesenteric lymph nodes. RESULTS: During acute colitis, MAT exhibited an increased presence of infiltrating mononuclear cells and fibrotic structures, as well as decreased adipocyte size. The mRNA levels of TNF-α, IL-1β, and IL-6 were significantly increased in MAT but not other adipose tissue depots. Within the MAT, induction of these cytokines was observed mainly in the SVF. CONCLUSIONS: Acute experimental colitis causes a strong site-specific inflammatory response within MAT, which is mediated by cells of the SVF, rather than mature adipocytes or mesenteric lymph nodes.

  8. Advances in our understanding of adipose tissue homeostasis

    Stern, Jennifer H.; Scherer, Philipp E.

    2014-01-01

    In 2014, numerous noteworthy papers focusing on adipose tissue physiology were published. Many of these articles showed the promise of adipose-tissue-targeted approaches for therapeutic intervention in obesity and type 2 diabetes mellitus. Here, we highlight advances in the development and maintenance of brown and/or beige adipocytes and the metabolic implications of infammation in adipose tissues.

  9. Orexin modulates brown adipose tissue thermogenesis

    Madden, Christopher J.; Tupone, Domenico; Morrison, Shaun F.

    2012-01-01

    Non-shivering thermogenesis in brown adipose tissue (BAT) plays an important role in thermoregulation. In addition, activations of BAT have important implications for energy homeostasis due to the metabolic consumption of energy reserves entailed in the production of heat in this tissue. In this conceptual overview we describe the role of orexins/hypocretins within the central nervous system in the modulation of thermogenesis in BAT under several physiological conditions. Within this framewor...

  10. Sex differences in human adipose tissues – the biology of pear shape

    Karastergiou Kalypso

    2012-05-01

    Full Text Available Abstract Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men and women, significant research attention has focused on comparing adipocyte morphological and metabolic properties, as well as the capacity of preadipocytes derived from different depots for proliferation and differentiation. Available evidence points to possible intrinsic, cell autonomous differences in preadipocytes and adipocytes, as well as modulatory roles for sex steroids, the microenvironment within each adipose tissue, and developmental factors. Gluteal-femoral adipose tissues of women may simply provide a safe lipid reservoir for excess energy, or they may directly regulate systemic metabolism via release of metabolic products or adipokines. We provide a brief overview of the relationship of fat distribution to metabolic health in men and women, and then focus on mechanisms underlying sex differences in adipose tissue biology.

  11. Clinical pilot study for the automatic segmentation and recognition of abdominal adipose tissue compartments from MRI data

    Purpose: In the diagnosis and risk assessment of obesity, both the amount and distribution of adipose tissue compartments are critical factors. We present a hybrid method for the quantitative measurement of human body fat compartments. Materials and Methods: MRI imaging was performed on a 1.5 T scanner. In a pre-processing step, the images were corrected for bias field inhomogeneity. For segmentation and recognition a hybrid algorithm was developed to automatically differentiate between different adipose tissue compartments. The presented algorithm is designed with a combination of shape and intensity-based techniques. To incorporate the presented algorithm into the clinical routine, we developed a graphical user interface. Results from our methods were compared with the known volume of an adipose tissue phantom. To evaluate our method, we analyzed 40 clinical MRI scans of the abdominal region. Results: Relatively low segmentation errors were found for subcutaneous adipose tissue (3.56 %) and visceral adipose tissue (0.29 %) in phantom studies. The clinical results indicated high correlations between the distribution of adipose tissue compartments and obesity. Conclusion: We present an approach that rapidly identifies and quantifies adipose tissue depots of interest. With this method examination and analysis can be performed in a clinically feasible timeframe. (orig.)

  12. Visceral adipose tissue modulates mammalian longevity.

    Muzumdar, Radhika; Allison, David B; Huffman, Derek M; Ma, Xiaohui; Atzmon, Gil; Einstein, Francine H; Fishman, Sigal; Poduval, Aruna D; McVei, Theresa; Keith, Scott W; Barzilai, Nir

    2008-06-01

    Caloric restriction (CR) can delay many age-related diseases and extend lifespan, while an increase in adiposity is associated with enhanced disease risk and accelerated aging. Among the various fat depots, the accrual of visceral fat (VF) is a common feature of aging, and has been shown to be the most detrimental on metabolic syndrome of aging in humans. We have previously demonstrated that surgical removal of VF in rats improves insulin action; thus, we set out to determine if VF removal affects longevity. We prospectively studied lifespan in three groups of rats: ad libitum-fed (AL-fed), CR (Fed 60% of AL) and a group of AL-fed rats with selective removal of VF at 5 months of age (VF-removed rats). We demonstrate that compared to AL-fed rats, VF-removed rats had a significant increase in mean (p fat mass, specifically VF, may be one of the possible underlying mechanisms of the anti-aging effect of CR. PMID:18363902

  13. Subcutaneous Adipose Tissue Transplantation in Diet-Induced Obese Mice Attenuates Metabolic Dysregulation While Removal Exacerbates It.

    Foster, M T; Softic, S; Caldwell, J; Kohli, R; de Kloet, A D; Seeley, R J

    2013-08-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)-induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2 mice received control surgery, subcutaneous fat removal or hetero-transplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks post-surgery. Adipose mass and portal adipokines, cytokines, lipids and insulin were measured from samples collected at 5 weeks post-surgery. Auto- and hetero- transplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration and reduced portal lipids and hepatic triglycerides compared with HFD controls. Hetero-transplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity-induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation-induced improvements do not occur via enhanced storage of lipid in

  14. Adipose Tissue Engineering for Soft Tissue Regeneration

    Choi, Jennifer H.; Gimble, Jeffrey M.; Lee, Kyongbum; Marra, Kacey G.; Rubin, J. Peter; Yoo, James J; Vunjak-Novakovic, Gordana; Kaplan, David L.

    2010-01-01

    Current treatment modalities for soft tissue defects caused by various pathologies and trauma include autologous grafting and commercially available fillers. However, these treatment methods present a number of challenges and limitations, such as donor-site morbidity and volume loss over time. As such, improved therapeutic modalities need to be developed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerat...

  15. Post-Mortem Stability of RNA in Skeletal Muscle and Adipose Tissue and the Tissue-Specific Expression of Myostatin, Perilipin and Associated Factors in the Horse

    Morrison, Philippa K.; Bing, Chen; Harris, Patricia A.; Maltin, Charlotte A.; Grove-White, Dai; Argo, Caroline McG.

    2014-01-01

    Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a) the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b) the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB), follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a) samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b) Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots). The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs, adipose tissue

  16. The regulation of subcutaneous adipose tissue blood flow in the ischaemic forefoot during 24 hours. Studies using the 133-xenon wash-out technique continuously over 24 hours

    Jelnes, R

    1988-01-01

    A method for continuous measurement of subcutaneous adipose tissue blood flow in the forefoot during 24 hours (SBF) is described. The method is based on the radioisotope wash-out principle using 133-Xenon. A portable semiconductor detector is placed just above a local depot of 1-2 microCi 133-Xenon...

  17. Adipose Tissue Angiogenesis: Impact on Obesity and Type-2 Diabetes

    Corvera, Silvia; Gealekman, Olga

    2013-01-01

    The growth and function of tissues is critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in t...

  18. Determinants of human adipose tissue gene expression

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José;

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification ...... controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases....

  19. Peptides from adipose tissue in mental disorders

    Wędrychowicz, Andrzej; Zając, Andrzej; Pilecki, Maciej; Kościelniak, Barbara; Tomasik, Przemysław J

    2014-01-01

    Adipose tissue is a dynamic endocrine organ that is essential to regulation of metabolism in humans. A new approach to mental disorders led to research on involvement of adipokines in the etiology of mental disorders and mood states and their impact on the health status of psychiatric patients, as well as the effects of treatment for mental health disorders on plasma levels of adipokines. There is evidence that disturbances in adipokine secretion are important in the pathogenesis, clinical pr...

  20. Central Control of Brown Adipose Tissue Thermogenesis

    ShaunF.Morrison

    2012-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally-regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the c...

  1. Hypothalamic Control of Brown Adipose Tissue Thermogenesis

    Alexandre Caron; Bartness, Timothy J.

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system, which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The charac...

  2. Hypothalamic control of brown adipose tissue thermogenesis

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The ...

  3. Relationship of Abdominal Visceral and Subcutaneous Adipose Tissue With Lipoprotein Particle Number and Size in Type 2 Diabetes

    Sam, Susan; Haffner, Steven,; Davidson, Michael H; D'Agostino, Ralph B.; Feinstein, Steven; Kondos, George; Perez, Alfonso; Mazzone, Theodore

    2008-01-01

    OBJECTIVE—Insulin resistance and type 2 diabetes are associated with an atherogenic lipoprotein profile. We examined the role of visceral and subcutaneous fat depots, independent of BMI, on the dyslipidemia associated with type 2 diabetes. RESEARCH DESIGN AND METHODS— A total of 382 subjects with type 2 diabetes underwent abdominal computed tomography to evaluate subcutaneous (SAT) and visceral adipose tissue (VAT) distribution and had anthropometric measurements to determine BMI and waist an...

  4. Loss of vitamin D receptor signaling from the mammary epithelium or adipose tissue alters pubertal glandular development

    Johnson, Abby L.; Zinser, Glendon M.; Waltz, Susan E.

    2014-01-01

    Vitamin D3 receptor (VDR) signaling within the mammary gland regulates various postnatal stages of glandular development, including puberty, pregnancy, involution, and tumorigenesis. Previous studies have shown that vitamin D3 treatment induces cell-autonomous growth inhibition and differentiation of mammary epithelial cells in culture. Furthermore, mammary adipose tissue serves as a depot for vitamin D3 storage, and both epithelial cells and adipocytes are capable of bioactivating vitamin D3...

  5. Epicardial adipose tissue and atrial fibrillation.

    Hatem, Stéphane N; Sanders, Prashanthan

    2014-05-01

    Atrial fibrillation (AF) is the most frequent cardiac arrhythmia in clinical practice. AF is often associated with profound functional and structural alterations of the atrial myocardium that compose its substrate. Recently, a relationship between the thickness of epicardial adipose tissue (EAT) and the incidence and severity of AF has been reported. Adipose tissue is a biologically active organ regulating the metabolism of neighbouring organs. It is also a major source of cytokines. In the heart, EAT is contiguous with the myocardium without fascia boundaries resulting in paracrine effects through the release of adipokines. Indeed, Activin A, which is produced in abundance by EAT during heart failure or diabetes, shows a marked fibrotic effect on the atrial myocardium. The infiltration of adipocytes into the atrial myocardium could also disorganize the depolarization wave front favouring micro re-entry circuits and local conduction block. Finally, EAT contains progenitor cells in abundance and therefore could be a source of myofibroblasts producing extracellular matrix. The study on the role played by adipose tissue in the pathogenesis of AF is just starting and is highly likely to uncover new biomarkers and therapeutic targets for AF. PMID:24648445

  6. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues

    Zhang, Jing; Jing, Jiong-Jie; Jia, Xia-Li; Qiao, Li-Ying; Liu, Jian-Hua; Liang, Chen; Liu, Wen-Zhong

    2016-01-01

    Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism. PMID:26954186

  7. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues.

    Zhang, Jing; Jing, Jiong-Jie; Jia, Xia-Li; Qiao, Li-Ying; Liu, Jian-Hua; Liang, Chen; Liu, Wen-Zhong

    2016-05-01

    Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism. PMID:26954186

  8. Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: role of protein kinase C delta (PKCδ) in adipose stem cell niche

    Patel, Rekha S.; Carter, Gay; El Bassit, Ghattas; Patel, Achintya A.; Cooper, Denise R.; Murr, Michel

    2016-01-01

    Background Adipose-derived stem cells (ASC) and its exosomes are gaining utmost importance in the field of regenerative medicine. The ASCs tested for their potential in wound healing are predominantly derived from the subcutaneous depot of lean donors. However, it is important to characterize the ASC derived from different adipose depots as these depots have clinically distinct roles. Methods We characterized the ASC derived from subcutaneous and omental depots from a lean donor (sc-ASCn and om-ASCn) and compared it to the ASC derived from an obese donor (sc-ASCo and om-ASCo) using flow cytometry and real time qPCR. Results We show that stem cell markers Oct4, Sal4, Sox15, KLF4 and BMI1 have distinct expression patterns in each ASC. We evaluated the secretome of the ASC and characterized their secreted exosomes. We show long noncoding RNAs (lncRNAs) are secreted by ASC and their expression varied between the ASC’s derived from different depots. Protein kinase C delta (PKCδ) regulates the mitogenic signals in stem cells. We evaluated the effect of silencing PKCδ in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Using β-galactosidase staining, we evaluated the percentage of senescent cells in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Our results also indicated that silencing PKCδ increases the percentage of senescent cells. Conclusions Our case-specific study demonstrates a role of PKCδ in maintaining the adipose stem cell niche and importantly demonstrates depot-specific differences in adipose stem cells and their exosome content. PMID:27358894

  9. Insulin degradation by adipose tissue is increased in human obesity

    Rafecas Jorba, Immaculada; Fernández López, José Antonio; Salinas, Isabel; X. Formiguera Sala; Remesar Betlloch, Xavier; Foz Sala, M. (Màrius); Alemany, Marià

    1995-01-01

    White adipose tissue samples from obese and lean patients were used for the estimation ofinsulin protease and insulin:glutathione transhydrogenase using 1251-labeled insulin. There was no activity detected in the absence of reduced glutathione, which indicates that insulin is cleaved in human adipose "tissue through reduction of the disulfide bridge between the chains. O bese patients showed higher transhydrogenase activity (per U tissue protein wt, per U tissue wt, and in the total adipose t...

  10. Microbiota depletion promotes browning of white adipose tissue and reduces obesity.

    Suárez-Zamorano, Nicolas; Fabbiano, Salvatore; Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease. PMID:26569380

  11. Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity

    Kwon Eun-Young

    2012-09-01

    Full Text Available Abstract Background Visceral white adipose tissue (WAT hypertrophy, adipokine production, inflammation and fibrosis are strongly associated with obesity, but the time-course of these changes in-vivo are not fully understood. Therefore, the aim of this study was to establish the time-course of changes in adipocyte morphology, adipokines and the global transcriptional landscape in visceral WAT during the development of diet-induced obesity. Results C57BL/6 J mice were fed a high-fat diet (HFD or normal diet (ND and sacrificed at 8 time-points over 24 weeks. Excessive fat accumulation was evident in visceral WAT depots (Epidydimal, Perirenal, Retroperitoneum, Mesentery after 2–4 weeks. Fibrillar collagen accumulation was evident in epidydimal adipocytes at 24 weeks. Plasma adipokines, leptin, resistin and adipsin, increased early and time-dependently, while adiponectin decreased late after 20 weeks. Only plasma leptin and adiponectin levels were associated with their respective mRNA levels in visceral WAT. Time-course microarrays revealed early and sustained activation of the immune transcriptome in epididymal and mesenteric depots. Up-regulated inflammatory genes included pro-inflammatory cytokines, chemokines (Tnf, Il1rn, Saa3, Emr1, Adam8, Itgam, Ccl2, 3, 4, 6, 7 and 9 and their upstream signalling pathway genes (multiple Toll-like receptors, Irf5 and Cd14. Early changes also occurred in fibrosis, extracellular matrix, collagen and cathepsin related-genes, but histological fibrosis was only visible in the later stages. Conclusions In diet-induced obesity, early activation of TLR-mediated inflammatory signalling cascades by CD antigen genes, leads to increased expression of pro-inflammatory cytokines and chemokines, resulting in chronic low-grade inflammation. Early changes in collagen genes may trigger the accumulation of ECM components, promoting fibrosis in the later stages of diet-induced obesity. New therapeutic approaches

  12. Differential fatty acid profile in adipose and non-adipose tissues in obese mice

    Li, Mengting; Fu, Weisi; Li, Xiang-An

    2010-01-01

    Obesity is a metabolic disease characterized by chronic inflammation. Early studies indicated that adipose tissue from obese mice contains more saturated fatty acids and that the saturated fatty acids activate TLR4-mediated inflammatory signaling, which contributes to inflammation in adipose tissue. In this study, we determined fatty acid profile in non-adipose tissues from obese (db/db) mice and compared with that from lean mice. Unexpectedly, in contrast to a significant increase in saturat...

  13. Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction.

    Pfeiffer, Susanne; Krüger, Jacqueline; Maierhofer, Anna; Böttcher, Yvonne; Klöting, Nora; El Hajj, Nady; Schleinitz, Dorit; Schön, Michael R; Dietrich, Arne; Fasshauer, Mathias; Lohmann, Tobias; Dreßler, Miriam; Stumvoll, Michael; Haaf, Thomas; Blüher, Matthias; Kovacs, Peter

    2016-01-01

    Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity. PMID:27346320

  14. Adipose-derived stem cells: Implications in tissue regeneration

    Tsuji, Wakako; Rubin, J. Peter; Marra, Kacey G.

    2014-01-01

    Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differentiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs damaged by injury and dise...

  15. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    Ribeiro Ricardo; Monteiro Cátia; Cunha Virgínia; Oliveira Maria; Freitas Mariana; Fraga Avelino; Príncipe Paulo; Lobato Carlos; Lobo Francisco; Morais António; Silva Vítor; Sanches-Magalhães José; Oliveira Jorge; Pina Francisco; Mota-Pinto Anabela

    2012-01-01

    Abstract Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants) or stromal vascular fraction (SVF) from paired fat samples of periprostatic (PP) ...

  16. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    Hochberg, Irit; Tran, Quynh T; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several...

  17. Control and physiological determinants of sympathetically-mediated brown adipose tissue thermogenesis

    Denis eRichard

    2012-02-01

    Full Text Available Brown adipose tissue (BAT represents a remarkable heat-producing tissue. The thermogenic potential of BAT is conferred by uncoupling protein 1, a protein found uniquely in the brown adipocytes. The physiological control of BAT activity and capacity is ensured by the sympathetic nervous system (SNS, which densely innervates brown fat depots. SNS-mediated BAT thermogenesis is essentially governed by hypothalamic and brainstem neurons. BAT is not only controlled by the brain thermoregulatory circuits but also by brain energy balance pathways including the very significant brain melanocortin system, which speaks in favor of the genuine involvement of SNS-mediated BAT thermogenesis in energy homeostasis. The use of positron emission tomography/computed tomography (PET/CT scanning has further revealed the presence of well-defined BAT depots in the cervical, clavicular, and paraspinal areas in adult humans. The prevalence of these depots was reported to be higher in subjects exposed to low temperature and was also higher in women than men. Moreover, the prevalence of BAT was shown to decrease with age and body fat mass, which suggests that BAT could not only be involved in cold-induced non shivering thermogenesis but also in the energy balance regulation and obesity in humans. This short review summarizes recent progress made in our understanding of the control of SNS-mediated BAT thermogenesis and of the determinants of BAT prevalence or detection in humans.

  18. Rapid Cellular Turnover in Adipose Tissue

    Alessandra Rigamonti; Kristen Brennand; Frank Lau; Cowan, Chad A.

    2011-01-01

    It was recently shown that cellular turnover occurs within the human adipocyte population. Through three independent experimental approaches — dilution of an inducible histone 2B-green fluorescent protein (H2BGFP), labeling with the cell cycle marker Ki67 and incorporation of BrdU — we characterized the degree of cellular turnover in murine adipose tissue. We observed rapid turnover of the adipocyte population, finding that 4.8% of preadipocytes are replicating at any time and that between 1–...

  19. A mircroarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice

    A sexual dimorphism exists in body fat distribution; females deposit relatively more fat in subcutaneous/inguinal depots whereas males deposit more fat in the intra-abdominal/gonadal depot. Our objective was to systematically document depot- and sex-related differences in the accumulation of adipose...

  20. Interplay between hormones, nutrients and adipose depots in the regulation of insulin sensitivity : an experimental study in rat and human adipocytes

    Lundgren, Magdalena

    2006-01-01

    Obesity and specifically central obesity is related to insulin resistance, type 2 diabetes and other components of the so-called metabolic syndrome. The aim of this study was to elucidate the interplay between hormones, nutrients and adipose depots in normal and insulin-resistant fat cell metabolism. High levels of free fatty acids (FFAs) induce insulin resistance in muscle and liver in vivo. In the present study, rat adipocytes were treated with high physiological levels of oleic or palmitic...

  1. Irbesartan increased PPARγ activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Research highlights: → Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. → Irbesartan decreased white adipose tissue weight without affecting body weight. → DNA-binding for PPARγ was increased in white adipose tissue in vivo by irbesartan. → Irbesartan increased adipocyte number in white adipose tissue. → Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPARγ agonistic action of an AT1 receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPARγ in white adipose tissue and the DNA-binding activity of PPARγ in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPARγ and improved adipose tissue dysfunction including insulin resistance.

  2. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  3. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity.

    Shahid, Mohd; Javed, Ammar A; Chandra, David; Ramsey, Haley E; Shah, Dilip; Khan, Mohammed F; Zhao, Liping; Wu, Mei X

    2016-01-01

    Chronic inflammation plays a crucial role in the pathogenesis of obesity and insulin resistance. However, the primary mediators that affect energy homeostasis remain ill defined. Here, we report an unexpected role for immediate early response gene X-1 (IEX-1), a downstream target of NF-κB, in energy metabolism. We found that IEX-1 expression was highly induced in white adipose tissue (WAT) in both epidydmal and subcutaneous depots but not in interscapular brown adipose tissue (BAT) in mice fed a high fat diet (HFD). Null mutation of IEX-1 protected mice against HFD-induced adipose and hepatic inflammation, hepatic steatosis, and insulin resistance. Unexpectedly, IEX-1 knockout (IEX-1(-/-)) mice gained markedly less weight on HFD for 20 weeks as compared to wild-type (WT) littermates (37 ± 3 versus 48 ± 2 gm) due to increased energy expenditure. Mechanistically, we showed that IEX-1 deficiency induced browning and activated thermogenic genes program in WAT but not in BAT by promoting alternative activation of adipose macrophages. Consequently, IEX-1(-/-) mice exhibited enhanced thermogenesis (24 ± 0.1 versus 22 ± 0.1 kcal/hour/kg in WT mice) explaining increased energy expenditure and lean phenotype in these mice. In conclusion, the present study suggests that IEX-1 is a novel physiological regulator of energy homeostasis via its action in WAT. PMID:27063893

  4. EFFECT OF SOME MEDICINAL PLANT PREPARATIONS OF ADIPOSE TISSUE METABOLISM

    Bambhole, V. D.

    1988-01-01

    Powder in fine suspension, water and alcoholic extract preparations of Cyperus Rotundus (Mustak), Iris versicolor (Haimavati) and Holoptelai integrifolia (Chirubilva) were used in adipose cell suspension and also administered orally to evaluate the effect of these plant preparations on adipose tissue metabolism in rats. The result, showed that the preparations from these medicinal plants exhibited lipolytic action to mobilize fat from adipose tissues in rats and consequently helped in the red...

  5. Biomarkers of Habitual Fish Intake in Adipose-Tissue

    Marckmann, P.; Lassen, Anne Dahl; Haraldsdottir, H.; Sandström, B.

    1995-01-01

    significantly associated with adipose tissue docosahexaenoic acid content (DHA; r = 0.55 and 0.58, respectively, P <0.001), but not with eicosapentaenoic and docosapentaenoic acid contents. Our study indicates that the adipose tissue DHA content is the biomarker of choice for the assessment of long...

  6. Identification of progesterone receptor in human subcutaneous adipose tissue.

    O'Brien, S N; Welter, B H; Mantzke, K A; Price, T M

    1998-02-01

    Sex steroids are postulated to play a role in adipose tissue regulation and distribution, because the amount and location of adipose tissue changes during puberty and menopause. Because of the nature of adipose tissue, receptors for the female sex steroids have been difficult to demonstrate. To date, estrogen receptor messenger RNA and protein have been identified in human subcutaneous adipose tissue, but the presence of progesterone receptor (PR) has not been reported. In this study, we demonstrate PR message by Northern blot analysis in RNA isolated from the abdominal subcutaneous adipose tissue of premenopausal women. These preliminary studies revealed that PR messenger RNA levels are higher in the stromal-vascular fraction as opposed to the adipocyte fraction. Western blot analysis demonstrates both PR protein isoforms (human PR-A and human PR-B) in human subcutaneous adipose tissue. Using an enzyme-linked immunosorbent assay, total PR could be quantitated. These studies substantiate that sex steroid receptors are present in human adipose tissue, thereby providing a direct route for regulation of adipose tissue by female sex steroids. PMID:9467566

  7. Altered autophagy in human adipose tissues in obesity

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  8. Characterization of the human visceral adipose tissue secretome

    Alvarez Llamas, Gloria; Szalowska, Ewa; de Vries, Marcel P.; Weening, Desiree; Landman, Karloes; Hoek, Annemieke; Wolffenbuttel, Bruce H. R.; Roelofsen, Johan; Vonk, Roel J.

    2007-01-01

    Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and t

  9. Cell supermarket: Adipose tissue as a source of stem cells

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  10. Albumin induced cytokine expression in porcine adipose tissue explants

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  11. Automatic Segmentation of Abdominal Adipose Tissue in MRI

    Mosbech, Thomas Hammershaimb; Pilgaard, Kasper; Vaag, Allan; Larsen, Rasmus

    This paper presents a method for automatically segmenting abdominal adipose tissue from 3-dimensional magnetic resonance images. We distinguish between three types of adipose tissue; visceral, deep subcutaneous and superficial subcutaneous. Images are pre-processed to remove the bias field effect...... of intensity in-homogeneities. This effect is estimated by a thin plate spline extended to fit two classes of automatically sampled intensity points in 3D. Adipose tissue pixels are labelled with fuzzy c-means clustering and locally determined thresholds. The visceral and subcutaneous adipose tissue...... are separated using deformable models, incorporating information from the clustering. The subcutaneous adipose tissue is subdivided into a deep and superficial part by means of dynamic programming applied to a spatial transformation of the image data. Regression analysis shows good correspondences...

  12. Epicardial adipose tissue and coronary artery disease: an article review

    Sareh Mousavi

    2014-12-01

    Full Text Available Adipose tissue surrounding the heart may contribute in the progression of coronary atherosclerosis due to its proximity to the coronary arteries. In addition, epicardial adipose tissue has paracrine and endocrine functions. It can secrete numerous bioactive molecules. Most previous studies examined the relation between coronary artery disease and epicardial adipose tissue have used echocardiography and have reported controversial results, probably due to differences in measurement techniques and study populations. This study aimed to give a brief review on the value of echocardiographic assessment of epicardial adipose tissue in the prediction of coronary artery disease severity.Epicardial adipose tissue, easily and non-invasively evaluated by transthoracic echocardiography, can be considered as an adjunctive marker to classical risk factors despite all the limitations. Moreover, it might be recommended as a useful quantitative screening examination for the prediction of the presence and the severity of coronary artery disease and the extent of atherosclerosis.

  13. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  14. Cardio-adipose tissue cross-talk

    Lindberg, Søren; Jensen, Jan Skov; Bjerre, Mette;

    2014-01-01

    increases adiponectin secretion, indicating that NPs may improve adipose tissue function and in this way function as a cardio-protective agent in HF. Accordingly we investigated the interplay between plasma adiponectin, plasma proBNP, and development of HF. METHODS AND RESULTS: We prospectively followed...... 5574 randomly selected men and women from the community without ischaemic heart disease or HF. Plasma adiponectin and proBNP were measured at study entry. Median follow-up time was 8.5 years (interquartile range 8.0-9.1 years). During follow-up 271 participants developed symptomatic HF. Plasma...... and diastolic blood pressure, lipid profile, high sensitivity C-reactive protein, estimated glomerular filtration rate, and physical activity) by Cox regression analysis, adiponectin remained an independent predictor of HF: the hazard ratio (HR) per 1 standard deviation (SD) increase in adiponectin...

  15. Pref-1 and adipokine expression in adipose tissues of GK and Zucker rats.

    Barbu, Andreea; Hedlund, Gabriella Persdotter; Lind, Jenny; Carlsson, Carina

    2009-02-27

    In view of the central role of preadipocyte factor-1, adiponectin and leptin in white adipose tissue function, the aim of the present study was to analyze the mRNA expression of these proteins and of the inflammatory markers interleukin-6 and tumor necrosis factor-alpha in visceral and subcutaneous fat pads of rats with different metabolic disorders. We demonstrated highly divergent expression of preadipocyte factor-1, upregulated expression of adiponectin, interleukin-6 and TNF-alpha mRNA in adipose tissues of the diabetic Goto Kakizaki rat compared to the obese Zucker rat. This was correlated to an increased number of large adipocytes and serum levels of adiponectin. Furthermore, in all four strains studied (as above plus Wistar Furth and Zucker Lean), significant heterogeneity was evident in adipokine expression within specific adipose tissues previously defined as belonging to the visceral or subcutaneous fat depots. These results suggest that significantly increased levels of inflammation and redistribution of adipocyte size are mechanisms contributing to the development of type 2 diabetes in the GK rat. PMID:19084046

  16. Short-term Cold Acclimation Recruits Brown Adipose Tissue in Obese Humans.

    Hanssen, Mark J W; van der Lans, Anouk A J J; Brans, Boudewijn; Hoeks, Joris; Jardon, Kelly M C; Schaart, Gert; Mottaghy, Felix M; Schrauwen, Patrick; van Marken Lichtenbelt, Wouter D

    2016-05-01

    Recruitment of brown adipose tissue (BAT) has emerged as a potential tool to combat obesity and associated metabolic complications. Short-term cold acclimation has been shown not only to enhance the presence and activity of BAT in lean humans but also to improve the metabolic profile of skeletal muscle to benefit glucose uptake in patients with type 2 diabetes. Here we examined whether short-term cold acclimation also induced such adaptations in 10 metabolically healthy obese male subjects. A 10-day cold acclimation period resulted in increased cold-induced glucose uptake in BAT, as assessed by [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography. BAT activity was negatively related to age, with a similar trend for body fat percentage. In addition, cold-induced glucose uptake in BAT was positively related to glucose uptake in visceral white adipose tissue, although glucose uptake in visceral and subcutaneous white adipose tissue depots was unchanged upon cold acclimation. Cold-induced skeletal muscle glucose uptake tended to increase upon cold acclimation, which was paralleled by increased basal GLUT4 localization in the sarcolemma, as assessed through muscle biopsies. Proximal skin temperature was increased and subjective responses to cold were slightly improved at the end of the acclimation period. These metabolic adaptations to prolonged exposure to mild cold may lead to improved glucose metabolism or prevent the development of obesity-associated insulin resistance and hyperglycemia. PMID:26718499

  17. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value. PMID:26124828

  18. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue

    Miroslav Šram

    2015-01-01

    Full Text Available Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT and visceral adipose tissue (VAT, the latter being highly associated with coronary artery disease (CAD. Expansion of epicardial adipose tissue (EAT is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1 the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2 determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  19. 0Adipose-derived stem cells: Implications in tissue regeneration

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  20. Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice.

    Zou, Liangqiang; Wang, Weiyi; Liu, Shangxin; Zhao, Xiaojing; Lyv, Ying; Du, Congkuo; Su, Xueying; Geng, Bin; Xu, Guoheng

    2016-02-01

    Perilipin-1 (Plin1) coats lipid droplets exclusively in adipocytes and regulates two principle functions of adipose tissue, triglyceride storage and hydrolysis, which are disrupted upon Plin1 deficiency. In the present study, we investigated the alterations in systemic metabolites and hormones, vascular function and adipose function in spontaneous hypertensive mice lacking perilipin-1 (Plin1-/-). Plin1-/- mice developed spontaneous hypertension without obvious alterations in systemic metabolites and hormones. Plin1 expressed only in adipose cells but not in vascular cells, so its ablation would have no direct effect in situ on blood vessels. Instead, Plin1-/- mice showed dysfunctions of perivascular adipose tissue (PVAT), a fat depot that anatomically surrounds systemic arteries and has an anticontractile effect. In Plin1-/- mice, aortic and mesenteric PVAT were reduced in mass and adipocyte derived relaxing factor secretion, but increased in basal lipolysis, angiotensin II secretion, macrophage infiltration and oxidative stress. Such multiple culprits impaired the anticontractile effect of PVAT to promote vasoconstriction of aortic and mesenteric arteries of Plin1-/- mice. Furthermore, arterial vessels of Plin1-/- mice showed increasing angiotensin II receptor type 1, monocyte chemotactic protein-1 and interlukin-6 expression, structural damage of endothelial and smooth muscle cells, along with impaired endothelium-dependent relaxation. Hypertension in Plin1-/- mice might occur as a deleterious consequence of PVAT dysfunction. This finding provides the direct evidence that links dysfunctional PVAT to vascular dysfunction and hypertension, particularly in pathophysiological states. This hypertensive mouse model might mimic and explain the hypertension occurring in patients with adipose tissue dysfunction, particularly with Plin1 mutations. PMID:26521150

  1. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    Toda, Shuji; Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate...

  2. Adipose tissue and skeletal muscle blood flow during mental stress

    Mental stress [a modified Stroop color word conflict test (CWT)] increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation

  3. Adipose tissue and skeletal muscle blood flow during mental stress

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  4. A retrospective analysis of thyroid lesions containing mature adipose tissue

    Recep Bedir

    2014-06-01

    Full Text Available Objectives: The aim of this retrospective study was to investigate the lesions containing mature adipose tissues in surgical materials of the patients who underwent thyroidectomy operation owing to the diagnosis of nodular goiter. Methods: A total of 2800 pathologic specimens of thyroidectomies stained with hematoxylin-eosin were collected between January 2010 and November 2013 in Recep Tayyip Erdogan University School of Medicine. Pathologic sections were selected from pathology archive and re-examined. Upon examination, we determined 10 lesions with mature adipose tissue within thyroid parenchyma. Results: Thyroid lesions containing mature adipose tissue were observed in 10 (0.004 % of 2800 thyroidectomy materials. Eight of the patients were female and two of them were male. Minimum, maximum and median age of the patients were found to be 31, 74 and 52 years respectively. All of the cases had underwent a bilateral total thyroidectomy operation. In macroscopic examination of the only one cases, a homogenous yellow-gray color was observed. In other cases a large number of colloid-rich nodules of various sizes were observed. On microscopic examination, five adipose tissues in the nodules (adenolipoma-thyrolipoma, four scattered foci of mature adipose tissues (heterotopic adiposis and one diffuse infiltrating mature adipose tissue on entire thyroid gland (diffuse thyrolipomatosis were determined among mature adipose tissue containing lesions. A follicular variant of papillary microcarcinoma was found in two of thyrolipoma cases. Conclusion: Nodular thyroid lesions containing mature adipose tissue, as a result of particularly on the outer surface of the gland and parathyroid glands containining mature adipose tissue may mimic parathyroid gland lesion. Therefore, to prevent from inappropriate treatments, pathologists should be aware of these kinds of lesions, especially when they are investigating the lesions of parathyroid glands during an

  5. Enhanced biglycan gene expression in the adipose tissues of obese women and its association with obesity-related genes and metabolic parameters.

    Kim, Jimin; Lee, Seul Ki; Shin, Ji-Min; Jeoun, Un-Woo; Jang, Yeon Jin; Park, Hye Soon; Kim, Jong-Hyeok; Gong, Gyung-Yub; Lee, Taik Jong; Hong, Joon Pio; Lee, Yeon Ji; Heo, Yoon-Suk

    2016-01-01

    Extracellular matrix (ECM) remodeling dynamically occurs to accommodate adipose tissue expansion during obesity. One non-fibrillar component of ECM, biglycan, is released from the matrix in response to tissue stress; the soluble form of biglycan binds to toll-like receptor 2/4 on macrophages, causing proinflammatory cytokine secretion. To investigate the pattern and regulatory properties of biglycan expression in human adipose tissues in the context of obesity and its related diseases, we recruited 21 non-diabetic obese women, 11 type 2 diabetic obese women, and 59 normal-weight women. Regardless of the presence of diabetes, obese patients had significantly higher biglycan mRNA in both visceral and subcutaneous adipose tissue. Biglycan mRNA was noticeably higher in non-adipocytes than adipocytes and significantly decreased during adipogenesis. Adipose tissue biglycan mRNA positively correlated with adiposity indices and insulin resistance parameters; however, this relationship disappeared after adjusting for BMI. In both fat depots, biglycan mRNA strongly correlated with the expression of genes related to inflammation and endoplasmic reticulum stress. In addition, culture of human preadipocytes and differentiated adipocytes under conditions mimicking the local microenvironments of obese adipose tissues significantly increased biglycan mRNA expression. Our data indicate that biglycan gene expression is increased in obese adipose tissues by altered local conditions. PMID:27465988

  6. Biomarkers of Habitual Fish Intake in Adipose-Tissue

    Marckmann, P.; Lassen, Anne Dahl; Haraldsdottir, H.; Sandström, B.

    1995-01-01

    8-mo study period. The adipose tissue fatty acid composition of each individual was determined by gas chromatography as the mean of two gluteal biopsies, obtained in the first and the last month of the study. The daily consumption of fish and of marine n-3 PUFAs in absolute terms (g/d) was...... significantly associated with adipose tissue docosahexaenoic acid content (DHA; r = 0.55 and 0.58, respectively, P <0.001), but not with eicosapentaenoic and docosapentaenoic acid contents. Our study indicates that the adipose tissue DHA content is the biomarker of choice for the assessment of long...

  7. Telomere length differences between subcutaneous and visceral adipose tissue in humans

    Lakowa, Nicole; Trieu, Nhu; Flehmig, Gesine [Department of Medicine, University of Leipzig, Leipzig (Germany); Lohmann, Tobias [Municipal Clinic Dresden-Neustadt, Dresden (Germany); Schön, Michael R. [Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe (Germany); Dietrich, Arne [Department of Surgery, University of Leipzig, Leipzig (Germany); IFB AdiposityDiseases, University of Leipzig, Leipzig (Germany); Zeplin, Philip Helge; Langer, Stefan [Department of Orthopaedics, Traumatology and Plastic Surgery, University of Leipzig, Leipzig (Germany); Stumvoll, Michael; Blüher, Matthias [Department of Medicine, University of Leipzig, Leipzig (Germany); Klöting, Nora, E-mail: nora.kloeting@medizin.uni-leipzig.de [IFB AdiposityDiseases, Junior Research Group 2 “Animal Models of Obesity”, University of Leipzig, Leipzig (Germany)

    2015-02-13

    Adipocyte hypertrophy and hyperplasia have been shown to be associated with shorter telomere length, which may reflect aging, altered cell proliferation and adipose tissue (AT) dysfunction. In individuals with obesity, differences in fat distribution and AT cellular composition may contribute to obesity related metabolic diseases. Here, we tested the hypotheses that telomere lengths (TL) are different between: (1) abdominal subcutaneous and omental fat depots, (2) superficial and deep abdominal subcutaneous AT (SAT), and (3) adipocytes and cells of the stromal vascular fraction (SVF). We further asked whether AT TL is related to age, anthropometric and metabolic traits. TL was analyzed by quantitative PCR in total human genomic DNA isolated from paired subcutaneous and visceral AT of 47 lean and 50 obese individuals. In subgroups, we analyzed TL in isolated small and large adipocytes and SVF cells. We find significantly shorter TL in subcutaneous compared to visceral AT (P < 0.001) which is consistent in men and subgroups of lean and obese, and individuals with or without type 2 diabetes (T2D). Shorter TL in SAT is entirely due to shorter TL in the SVF compared to visceral AT (P < 0.01). SAT TL is most strongly correlated with age (r = −0.205, P < 0.05) and independently of age with HbA1c (r = −0.5, P < 0.05). We found significant TL differences between superficial SAT of lean and obese as well as between individuals with our without T2D, but not between the two layers of SAT. Our data indicate that fat depot differences in TL mainly reflect shorter TL of SVF cells. In addition, we found an age and BMI-independent relationship between shorter TL and HbA1c suggesting that chronic hyperglycemia may impair the regenerative capacity of AT more strongly than obesity alone. - Highlights: • Telomere lengths (TL) differ between fat depots mainly due to different lengths in SVF. • TL is not associated with gender, BMI and T2D. • The tendency for

  8. Telomere length differences between subcutaneous and visceral adipose tissue in humans

    Adipocyte hypertrophy and hyperplasia have been shown to be associated with shorter telomere length, which may reflect aging, altered cell proliferation and adipose tissue (AT) dysfunction. In individuals with obesity, differences in fat distribution and AT cellular composition may contribute to obesity related metabolic diseases. Here, we tested the hypotheses that telomere lengths (TL) are different between: (1) abdominal subcutaneous and omental fat depots, (2) superficial and deep abdominal subcutaneous AT (SAT), and (3) adipocytes and cells of the stromal vascular fraction (SVF). We further asked whether AT TL is related to age, anthropometric and metabolic traits. TL was analyzed by quantitative PCR in total human genomic DNA isolated from paired subcutaneous and visceral AT of 47 lean and 50 obese individuals. In subgroups, we analyzed TL in isolated small and large adipocytes and SVF cells. We find significantly shorter TL in subcutaneous compared to visceral AT (P < 0.001) which is consistent in men and subgroups of lean and obese, and individuals with or without type 2 diabetes (T2D). Shorter TL in SAT is entirely due to shorter TL in the SVF compared to visceral AT (P < 0.01). SAT TL is most strongly correlated with age (r = −0.205, P < 0.05) and independently of age with HbA1c (r = −0.5, P < 0.05). We found significant TL differences between superficial SAT of lean and obese as well as between individuals with our without T2D, but not between the two layers of SAT. Our data indicate that fat depot differences in TL mainly reflect shorter TL of SVF cells. In addition, we found an age and BMI-independent relationship between shorter TL and HbA1c suggesting that chronic hyperglycemia may impair the regenerative capacity of AT more strongly than obesity alone. - Highlights: • Telomere lengths (TL) differ between fat depots mainly due to different lengths in SVF. • TL is not associated with gender, BMI and T2D. • The tendency for

  9. Brown adipose tissue quantification in human neonates using water-fat separated MRI.

    Jerod M Rasmussen

    Full Text Available There is a major resurgence of interest in brown adipose tissue (BAT biology, particularly regarding its determinants and consequences in newborns and infants. Reliable methods for non-invasive BAT measurement in human infants have yet to be demonstrated. The current study first validates methods for quantitative BAT imaging of rodents post mortem followed by BAT excision and re-imaging of excised tissues. Identical methods are then employed in a cohort of in vivo infants to establish the reliability of these measures and provide normative statistics for BAT depot volume and fat fraction. Using multi-echo water-fat MRI, fat- and water-based images of rodents and neonates were acquired and ratios of fat to the combined signal from fat and water (fat signal fraction were calculated. Neonatal scans (n = 22 were acquired during natural sleep to quantify BAT and WAT deposits for depot volume and fat fraction. Acquisition repeatability was assessed based on multiple scans from the same neonate. Intra- and inter-rater measures of reliability in regional BAT depot volume and fat fraction quantification were determined based on multiple segmentations by two raters. Rodent BAT was characterized as having significantly higher water content than WAT in both in situ as well as ex vivo imaging assessments. Human neonate deposits indicative of bilateral BAT in spinal, supraclavicular and axillary regions were observed. Pairwise, WAT fat fraction was significantly greater than BAT fat fraction throughout the sample (ΔWAT-BAT = 38 %, p<10(-4. Repeated scans demonstrated a high voxelwise correlation for fat fraction (Rall = 0.99. BAT depot volume and fat fraction measurements showed high intra-rater (ICCBAT,VOL = 0.93, ICCBAT,FF = 0.93 and inter-rater reliability (ICCBAT,VOL = 0.86, ICCBAT,FF = 0.93. This study demonstrates the reliability of using multi-echo water-fat MRI in human neonates for quantification throughout the torso of BAT depot volume and fat

  10. New concepts in white adipose tissue physiology

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT

  11. Salsalate activates brown adipose tissue in mice.

    van Dam, Andrea D; Nahon, Kimberly J; Kooijman, Sander; van den Berg, Susan M; Kanhai, Anish A; Kikuchi, Takuya; Heemskerk, Mattijs M; van Harmelen, Vanessa; Lombès, Marc; van den Hoek, Anita M; de Winther, Menno P J; Lutgens, Esther; Guigas, Bruno; Rensen, Patrick C N; Boon, Mariëtte R

    2015-05-01

    Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mechanism is still unknown. The aim of the current study was to unravel the molecular mechanisms involved in these beneficial metabolic effects of salsalate by treating mice with salsalate during and after development of high-fat diet-induced obesity. We found that salsalate attenuated and reversed high-fat diet-induced weight gain, in particular fat mass accumulation, improved glucose tolerance, and lowered plasma triglyceride levels. Mechanistically, salsalate selectively promoted the uptake of fatty acids from glycerol tri[(3)H]oleate-labeled lipoprotein-like emulsion particles by brown adipose tissue (BAT), decreased the intracellular lipid content in BAT, and increased rectal temperature, all pointing to more active BAT. The treatment of differentiated T37i brown adipocytes with salsalate increased uncoupled respiration. Moreover, salsalate upregulated Ucp1 expression and enhanced glycerol release, a dual effect that was abolished by the inhibition of cAMP-dependent protein kinase (PKA). In conclusion, salsalate activates BAT, presumably by directly activating brown adipocytes via the PKA pathway, suggesting a novel mechanism that may explain its beneficial metabolic effects in type 2 diabetes patients. PMID:25475439

  12. New concepts in white adipose tissue physiology

    Proença, A.R.G. [Universidade Estadual de Campinas, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Limeira, SP, Brasil, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Sertié, R.A.L. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Oliveira, A.C. [Universidade Estadual do Ceará, Instituto Superior de Ciências Biomédicas, Fortaleza, CE, Brasil, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE (Brazil); Campaãa, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-03-03

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.

  13. Metabolic syndrome pathophysiology: the role of adipose tissue

    Several physiopathological explanations for the metabolic syndrome have been proposed involving insulin resistance, chronic inflammation and ectopic fat accumulation following adipose tissue saturation. However, current concepts create several paradoxes, including limited cardiovascular risk reducti...

  14. Effect of 8 Weeks of Overfeeding on Ectopic Fat Deposition and Insulin Sensitivity: Testing the “Adipose Tissue Expandability” Hypothesis

    Johannsen, Darcy L.; Tchoukalova, Yourka; Tam, Charmaine S; Covington, Jeffrey D.; Xie, Wenting; Schwarz, Jean-Marc; Bajpeyi, Sudip; Ravussin, Eric

    2014-01-01

    OBJECTIVE The presence of large subcutaneous adipocytes in obesity has been proposed to be linked with insulin resistance and type 2 diabetes through the “adipose tissue expandability” hypothesis, which holds that large adipocytes have a limited capacity for expansion, forcing lipids to be stored in nonadipose ectopic depots (skeletal muscle, liver), where they interfere with insulin signaling. This hypothesis has, however, been largely formulated by cross-sectional findings and to date has n...

  15. Activation of natriuretic peptides and the sympathetic nervous system following Roux-en-Y gastric bypass is associated with gonadal adipose tissues browning

    Neinast, Michael D.; Frank, Aaron P.; Zechner, Juliet F.; Quanlin Li; Lavanya Vishvanath; Palmer, Biff F.; Vincent Aguirre; Gupta, Rana K.; Clegg, Deborah J.

    2015-01-01

    Objective: Roux-en-Y gastric bypass (RYGB) is an effective method of weight loss and remediation of type-2 diabetes; however, the mechanisms leading to these improvements are unclear. Additionally, adipocytes within white adipose tissue (WAT) depots can manifest characteristics of brown adipocytes. These ‘BRITE/beige’ adipocytes express uncoupling protein 1 (UCP1) and are associated with improvements in glucose homeostasis and protection from obesity. Interestingly, atrial and B-type natriure...

  16. Inflammation and adipose tissue: effects of progressive load training in rats

    Oyama Lila M

    2010-10-01

    Full Text Available Abstract Introduction Cytokines (IL-6, IL-10 and TNF-α are increased after exhaustive exercise in the rat retroperitoneal (RPAT and mesenteric adipose tissue (MEAT pads. On the other hand, these cytokines show decreased expression in these depots in response to a chronic exercise protocol. However, the effect of exercise with overload combined with a short recovery period on pro- and anti-inflammatory cytokine expression is unknown. In the present study, we investigated the regulation of cytokine production in the adipose tissue of rats after an overtraining-inducing exercise protocol. Methods Male Wistar rats were divided into four groups: Control (C, Trained (Tr, Overtrained (OT and recovered overtrained (R. Cytokines (IL-6, TNF-α and IL-10 levels and Toll Like Receptor 4 (TLR4, Nuclear Factor kBp65 (NF-kBp65, Hormone Sensitive Lipase (HSL and, Perilipin protein expression were assessed in the adipose tissue. Furthermore, we analysed plasma lipid profile, insulin, testosterone, corticosterone and endotoxin levels, and liver triacylglycerol, cytokine content, as well as apolipoprotein B (apoB and TLR4 expression in the liver. Results OT and R groups exhibited reduced performance accompanied by lower testosterone and increased corticosterone and endotoxin levels when compared with the control and trained groups. IL-6 and IL-10 protein levels were increased in the adipose tissue of the group allowed to recover, in comparison with all the other studied groups. TLR-4 and NF-kBp65 were increased in this same group when compared with both control and trained groups. The protein expression of HSL was increased and that of Perilipin, decreased in the adipose in R in relation to the control. In addition, we found increased liver and serum TAG, along with reduced apoB protein expression and IL-6 and IL-10 levels in the of R in relation to the control and trained groups. Conclusion In conclusion, we have shown that increases in pro

  17. Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology

    Arner, Erik; Westermark, Pål O.; Spalding, Kirsty L.; Britton, Tom; Rydén, Mikael; Frisén, Jonas; Bernard, Samuel; Arner, Peter

    2009-01-01

    OBJECTIVE Adipose tissue may contain few large adipocytes (hypertrophy) or many small adipocytes (hyperplasia). We investigated factors of putative importance for adipose tissue morphology. RESEARCH DESIGN AND METHODS Subcutaneous adipocyte size and total fat mass were compared in 764 subjects with BMI 18–60 kg/m2. A morphology value was defined as the difference between the measured adipocyte volume and the expected volume given by a curved-line fit for a given body fat mass and was related ...

  18. Cytomegalovirus infection of adipose tissues induces steatitis in adult mice.

    Price, P; Eddy, K. S.; Papadimitriou, J M; Robertson, T. A.; Shellam, G R

    1990-01-01

    Young adult mice infected with MCMV were shown to develop inflammatory lesions in the peripancreatic and salivary gland adipose tissues. MCMV replication was detected by immunoperoxidase staining and electron microscopy in adipocytes, fibroblasts, endothelial cells and pericytes in brown and white adipose tissues. More infected cells were detected in C3H mice than in BALB/c, BALB.B, BALB.K or C57BL/6 mice. Peripancreatic steatitis consisted of a monocytic infiltrate surrounding focal necrosis...

  19. Browning of white adipose tissue: role of hypothalamic signaling

    Bi, Sheng; Li, Lin

    2013-01-01

    Two types of fat, white adipose tissue (WAT) and brown adipose tissue (BAT), exist in mammals including adult humans. While WAT stores excess calories and an excessive accumulation of fat causes obesity, BAT dissipates energy to produce heat through non-shivering thermogenesis for protection against cold environments and provides the potential for the development of novel anti-obesity treatments. The hypothalamus plays a central role in the control of energy balance. Specifically, recent obse...

  20. Hypothalamic Regulation of Brown Adipose Tissue Thermogenesis and Energy Homeostasis

    Zhang, Wei; Bi, Sheng

    2015-01-01

    Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT) is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT) or beige cells have been found and they also exhibit the thermogenic a...

  1. Profiling of chicken adipose tissue gene expression by genome array

    Wang Shou-Zhi

    2007-06-01

    Full Text Available Abstract Background Excessive accumulation of lipids in the adipose tissue is a major problem in the present-day broiler industry. However, few studies have analyzed the expression of adipose tissue genes that are involved in pathways and mechanisms leading to adiposity in chickens. Gene expression profiling of chicken adipose tissue could provide key information about the ontogenesis of fatness and clarify the molecular mechanisms underlying obesity. In this study, Chicken Genome Arrays were used to construct an adipose tissue gene expression profile of 7-week-old broilers, and to screen adipose tissue genes that are differentially expressed in lean and fat lines divergently selected over eight generations for high and low abdominal fat weight. Results The gene expression profiles detected 13,234–16,858 probe sets in chicken adipose tissue at 7 weeks, and genes involved in lipid metabolism and immunity such as fatty acid binding protein (FABP, thyroid hormone-responsive protein (Spot14, lipoprotein lipase(LPL, insulin-like growth factor binding protein 7(IGFBP7 and major histocompatibility complex (MHC, were highly expressed. In contrast, some genes related to lipogenesis, such as leptin receptor, sterol regulatory element binding proteins1 (SREBP1, apolipoprotein B(ApoB and insulin-like growth factor 2(IGF2, were not detected. Moreover, 230 genes that were differentially expressed between the two lines were screened out; these were mainly involved in lipid metabolism, signal transduction, energy metabolism, tumorigenesis and immunity. Subsequently, real-time RT-PCR was performed to validate fifteen differentially expressed genes screened out by the microarray approach and high consistency was observed between the two methods. Conclusion Our results establish the groundwork for further studies of the basic genetic control of growth and development of chicken adipose tissue, and will be beneficial in clarifying the molecular mechanism of

  2. Epicardial adipose tissue: the accomplice implicated in the genesis and maintenance of atrial fibrillation

    Fang Mingcheng; Chen Yangxin; Wang Jingfeng

    2014-01-01

    Objective The purpose of this review was to delineate our current knowledge of the close relationship between the abundance of epicardial adipose tissue (EAT) and the risk of all major cardiovascular disease,especially atrial fibrillation (AF).Data sources The data analyzed in this review were mainly from articles reported in PubMed published from 1972 to 2014.Study selection Original articles and critical reviews relevant to EAT and AF were selected.Results EAT,a particular form of metabolically active visceral fat deposited around the heart,is being regarded as an important independent predictor of cardio-metabolic diseases.EAT is composed of smaller adipocytes than other visceral fat depots and functioned like brown adipose tissue (BAT) to protect adjacent tissues.Improving the understanding of EAT in AF genesis and maintenance may contribute to prevent AF and reduce the complications associated with AF.Conclusion The findings suggest that EAT associates with AF severity and the recurrence of AF after catheter ablation even after adjustment forAF risk factors,but the precise mechanisms are not fully elucidated.

  3. Insulin action in muscle and adipose tissue in type 2diabetes: The significance of blood flow

    2015-01-01

    Under normal metabolic conditions insulin stimulatesmicrovascular perfusion (capillary recruitment) ofskeletal muscle and subcutaneous adipose tissue andthus increases blood flow mainly after meal ingestionor physical exercise. This helps the delivery of insulinitself but also that of substrates and of other signallingmolecules to multiple tissues beds and facilitatesglucose disposal and lipid kinetics. This effect is impairedin insulin resistance and type 2 diabetes early in thedevelopment of metabolic dysregulation and reflectsearly-onset endothelial dysfunction. Failure of insulinto increase muscle and adipose tissue blood flowresults in decreased glucose handling. In fat depots, ablunted postprandial blood flow response will result inan insufficient suppression of lipolysis and an increasedspill over of fatty acids in the circulation, leading toa more pronounced insulin resistant state in skeletalmuscle. This defect in blood flow response is apparenteven in the prediabetic state, implying that it is afacet of insulin resistance and exists long before overthyperglycaemia develops. The following review intendsto summarize the contribution of blood flow impairmentto the development of the atherogenic dysglycemia anddyslipidaemia.

  4. Recruitment of Brown Adipose Tissue as a Therapy for Obesity-Associated Diseases.

    STEPHENROBERTFARMER

    2012-02-01

    Full Text Available Brown adipose tissue (BAT has been recognized for more than 20 years to play a key role in cold-induced non-shivering thermogenesis (CIT, NST, and body weight homeostasis in animals. BAT is a flexible tissue that can be recruited by stimuli (including small molecules in animals, and atrophies in the absence of a stimulus. In fact, the contribution of BAT (and UCP1 to resting metabolic rate and healthy body weight homeostasis in animals (rodents is now well established. Many investigations have shown that resistance to obesity and associated disorders in various rodent models is due to increased BAT mass and the number of brown adipocytes or UCP1 expression in various depots. The recent discovery of active BAT in adult humans has rekindled the notion that BAT is a therapeutic target for combating obesity-related metabolic disorders. In this review, we highlight investigations performed in rodents that support the contention that activation of BAT formation and/or function in obese individuals is therapeutically powerful. We also propose that enhancement of brown adipocyte functions in white adipose tissue (WAT will also regulate energy balance as well as reduce insulin resistance in obesity-associated inflammation in WAT.

  5. Interleukin-15 and soluble interleukin-15 receptor α in coronary artery disease patients: association with epicardial fat and indices of adipose tissue distribution.

    Elena Dozio

    Full Text Available Interleukin-15 (IL-15 is a pro-inflammatory cytokine which signals via a specific alpha receptor subunit (IL-15Rα. Increased IL-15 level has been observed in cardiovascular patients and IL-15 immunoreactivity has been detected at vulnerable atherosclerotic plaques. Due to the association between adipose tissue distribution, inflammation and coronary artery disease (CAD, we quantified IL-15 and IL-15Rα in CAD patients with different adiposity and adipose tissue distribution and we evaluated whether epicardial adipose tissue (EAT, a visceral fat depot surrounding and infiltrating myocardium, may be a source of both molecules. IL-15 and IL-15Rα proteins were quantified by enzyme-linked immunosorbent assays. Gene expression of IL-15 and IL-15Rα in EAT depots was evaluated by one colour microarray platform. EAT thickness was measured by echocardiography. Plasmatic IL-15 and IL-15Rα levels were higher in CAD than non-CAD patients. After classification according to adipose tissue distribution, IL-15 was higher in CAD patients with increased abdominal adiposity. Increased level of IL-15Rα was observed both in CAD and non-CAD patients with increased abdominal fat. EAT was a source of IL-15 and IL-15Rα and their expression was higher in CAD patients with increased EAT thickness. In conclusion, our data suggest that circulating levels of IL-15 and IL-15Rα seem to reflect visceral distribution of adipose tissue and that EAT may be a potential source of both IL-15 and IL-15Rα. Future studies on the relationship between IL-15, visceral fat and characteristics of atherosclerotic plaques could help to better understand the complex biology of this cytokine.

  6. Adipose Tissue Regeneration: A State of the Art

    Alessandro Casadei

    2012-01-01

    Full Text Available Adipose tissue pathologies and defects have always represented a reconstructive challenge for plastic surgeons. In more recent years, several allogenic and alloplastic materials have been developed and used as fillers for soft tissue defects. However, their clinical use has been limited by further documented complications, such as foreign-body reactions potentially affecting function, degradation over time, and the risk for immunogenicity. Tissue-engineering strategies are thus being investigated to develop methods for generating adipose tissue. This paper will discuss the current state of the art in adipose tissue engineering techniques, exploring the biomaterials used, stem cells application, culture strategies, and current regulatory framework that are in use are here described and discussed.

  7. Gene expression profiling in adipose tissue from growing broiler chickens

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  8. High intensity interval training improves liver and adipose tissue insulin sensitivity

    Katarina Marcinko

    2015-12-01

    Conclusions: These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  9. Epicardial adipose tissue and its role in cardiac physiology and disease 

    Kacper Toczyłowski

    2013-06-01

    Full Text Available Adipose tissue secretes a number of cytokines, referred to as adipokines. Intensive studies conducted over the last two decades showed that adipokines exert broad effects on cardiac metabolism and function. In addition, the available data strongly suggests that these cytokines play an important role in development of cardiovascular diseases. Epicardial adipose tissue (EAT has special properties that distinguish it from other deposits of visceral fat. Overall, there appears to be a close functional and anatomic relationship between the EAT and the cardiac muscle. They share the same coronary blood supply, and there is no structure separating the adipose tissue from the myocardium or coronary arteries. The role of EAT in osierdziocardiac physiology remains unclear. Its putative functions include buffering coronary arteries against the torsion induced by the arterial pulse wave and cardiac contraction, regulating fatty acid homeostasis in the coronary microcirculation, thermogenesis, and neuroprotection of the cardiac autonomic ganglia and nerves. Obesity (particularly the abdominal phenotype leads to elevated EAT content, and the available data suggests that high amount of this fat depot is associated with increased risk of ischemic heart disease, cardiac hypertrophy and diastolic dysfunction. The mass of EAT is small compared to other fat deposits in the body. Nevertheless, its close anatomic relationship to the heart suggests that this organ is highly exposed to EAT-derived adipokines which makes this tissue a very promising area of research. In this paper we review the current knowledge on the role of EAT in cardiac physiology and development of heart disease.

  10. Control of adipose tissue lipolysis in ectotherm vertebrates.

    Migliorini, R H; Lima-Verde, J S; Machado, C R; Cardona, G M; Garofalo, M A; Kettelhut, I C

    1992-10-01

    Lipolytic activity of fish (Hoplias malabaricus), toad (Bufo paracnemis), and snake (Philodryas patagoniensis) adipose tissue was investigated in vivo and in vitro. Catecholamines or glucagon did not affect the release of free fatty acids (FFA) by incubated fish and toad adipose tissue. Catecholamines also failed to activate snake adipose tissue lipolysis, which even decreased in the presence of epinephrine. However, glucagon stimulated both the lipolytic activity of reptilian tissue in vitro and the mobilization of FFA to plasma when administered to snakes in vivo. The release of FFA from incubated fish, amphibian, and reptilian adipose tissue increased markedly in the presence of cAMP or xanthine derivatives, inhibitors of phosphodiesterase. Forskolin or fluoride, activators of specific components of the adenylate cyclase system, strongly stimulated toad adipose tissue lipolysis. The data suggest that adipocyte triacylglycerol lipase of ectotherm vertebrates is activated by a cAMP-mediated phosphorylation and that the organization of the membrane-bound adenylate cyclase system is similar to that of mammals. PMID:1329567

  11. Adipose tissue macrophages induce PPARγ-high FOXP3+ regulatory T cells

    Toshiharu Onodera; Atsunori Fukuhara; Myoung Ho Jang; Jihoon Shin; Keita Aoi; Junichi Kikuta; Michio Otsuki; Masaru Ishii; Iichiro Shimomura

    2015-01-01

    Numerous regulatory T cells (Tregs) are present in adipose tissues compared with other lymphoid or non-lymphoid tissues. Adipose Tregs regulate inflammatory state and insulin sensitivity. However, the mechanism that maintains Tregs in adipose tissue remains unclear. Here, we revealed the contribution of adipose tissue macrophages (ATMs) to the induction and proliferation of adipose Tregs. ATMs isolated from mice under steady state conditions induced Tregs with high expression of PPARγ compare...

  12. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by [3-3H]glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake

  13. White adipose tissue resilience to insulin deprivation and replacement

    Lilas Hadji; Emmanuelle Berger; Hédi Soula; Hubert Vidal; Alain Géloën

    2014-01-01

    Introduction: Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Methods: Using streptozotocin (STZ)-induced diabetes, we induced rapi...

  14. MECHANISMS IN ENDOCRINOLOGY: Brown adipose tissue in humans: regulation and metabolic significance.

    Thuzar, Moe; Ho, Ken K Y

    2016-07-01

    The recent discovery that functional brown adipose tissue (BAT) persists in adult humans has enkindled a renaissance in metabolic research, with a view of harnessing its thermogenic capacity to combat obesity. This review focuses on the advances in the regulation and the metabolic significance of BAT in humans. BAT activity in humans is stimulated by cold exposure and by several factors such as diet and metabolic hormones. BAT function is regulated at two levels: an acute process involving the stimulation of the intrinsic thermogenic activity of brown adipocytes and a chronic process of growth involving the proliferation of pre-existing brown adipocytes or differentiation to brown adipocytes of adipocytes from specific white adipose tissue depots. BAT activity is reduced in the obese, and its stimulation by cold exposure increases insulin sensitivity and reduces body fat. These observations provide strong evidence that BAT plays a significant role in energy balance in humans and has the potential to be harnessed as a therapeutic target for the management of obesity. PMID:27220620

  15. The regulation of subcutaneous adipose tissue blood flow in the ischaemic forefoot during 24 hours

    A method for continuous measurement of subcutaneous adipose tissue blood flow in the forefoot during 24 hours (SBF) is described. The method is based on the radioisotope wash-out principle using 133-Xenon. A portable semiconductor detector is placed just above a local depot of 1-2 μCi 133-Xenon in 0.1 ml isotonic saline injected into the subcutaneous adipose tissue in the forefoot. The detector is connected to a memory unit allowing for storage of data. Due to the short distance, the recorded elimination rate constant must be corrected for combined convection and diffusion of the radioactive indicator. After reconstructive vascular surgery, the 24-hour blood flow pattern normalized although the ankle/arm systolic blood pressure index did not come within normal range. SBF during day-time activities decreased by up to 50% postoperatively. This is caused by the reappearance of the local, sympathetic, veno-arteriolar vasoconstrictor response. During sleep SBF increased by 71%. The term postreconstructuve hyperamia seems improper, at least in a long-term context, normalization of preoperative ischaemia is a more correct notation. The coefficient of variation of nocturnal SBF was calculated to 10%. The method thus seems apt as a monitor in medical therapy for occlusive arterial disease. Changes of λ has, however, to be considered in each study. 94 refs. (EG)

  16. Unequivocal Identification of Brown Adipose Tissue in a Human Infant

    Hu, Houchun H.; Tovar, Jason; Pavlova, Zdena; Smith, Michelle L; Gilsanz, Vicente

    2011-01-01

    We report the unique depiction of brown adipose tissue (BAT) by MRI and computed tomography (CT) in a human three month-old infant. Based on cellular differences between BAT and more lipid-rich white adipose tissue (WAT), chemical-shift MRI and CT were both capable of generating distinct signal contrasts between the two tissues and against surrounding anatomy, utilizing fat-signal fraction metrics in the former and X-ray attenuation values in the latter. While numerous BAT imaging experiments...

  17. Polychlorinated naphthalenes in human adipose tissue from New York, USA

    Kunisue, Tatsuya; Johnson-Restrepo, Boris; Hilker, David R.; Aldous, Kenneth M. [Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509 (United States); Kannan, Kurunthachalam [Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: kkannan@wadsworth.org

    2009-03-15

    Polychlorinated naphthalenes (PCNs) are persistent, bioaccumulative, and toxic contaminants. Prior to this study, the occurrence of PCNs in human adipose tissues from the USA has not been analyzed. Here, we have measured concentrations of PCNs in human adipose tissue samples collected in New York City during 2003-2005. Concentrations of PCNs were in the range of 61-2500 pg/g lipid wt. in males and 21-910 pg/g lipid wt. in females. PCN congeners 52/60 (1,2,3,5,7/1,2,4,6,7) and 66/67 (1,2,3,4,6,7/1,2,3,5,6,7) were predominant, collectively accounting for 66% of the total PCN concentrations. Concentrations of PCNs in human adipose tissues were 2-3 orders of magnitude lower than the previously reported concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Concentrations of PCNs were not correlated with PCB concentrations. The contribution of PCNs to dioxin-like toxic equivalents (TEQs) in human adipose tissues was estimated to be <1% of the polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F)-TEQs. - Polychlorinated naphthalenes have been measured in human adipose tissues from the USA for the first time.

  18. Polychlorinated naphthalenes in human adipose tissue from New York, USA

    Polychlorinated naphthalenes (PCNs) are persistent, bioaccumulative, and toxic contaminants. Prior to this study, the occurrence of PCNs in human adipose tissues from the USA has not been analyzed. Here, we have measured concentrations of PCNs in human adipose tissue samples collected in New York City during 2003-2005. Concentrations of PCNs were in the range of 61-2500 pg/g lipid wt. in males and 21-910 pg/g lipid wt. in females. PCN congeners 52/60 (1,2,3,5,7/1,2,4,6,7) and 66/67 (1,2,3,4,6,7/1,2,3,5,6,7) were predominant, collectively accounting for 66% of the total PCN concentrations. Concentrations of PCNs in human adipose tissues were 2-3 orders of magnitude lower than the previously reported concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Concentrations of PCNs were not correlated with PCB concentrations. The contribution of PCNs to dioxin-like toxic equivalents (TEQs) in human adipose tissues was estimated to be <1% of the polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F)-TEQs. - Polychlorinated naphthalenes have been measured in human adipose tissues from the USA for the first time

  19. Epikardiales Fett als Biomarker? // Epicardial Adipose Tissue as a Biomarker?

    Tscharre M

    2016-01-01

    Full Text Available Epicardial adipose tissue as the “visceral” adipose tissue of the heart is arousing more and more scientific interest, as it has numerous local and systemic effects. There is no fascia separating the epicardial adipose tissue and the myocardium and they both share its blood supply via the coronary arteries, thus allowing a possible interaction. Under normal physiological conditions, epicardial adipose tissue has mainly anti-atherogenic, thermogenic and mechanical characteristics. Under pathological conditions it becomes harmful to the myocardium and the coronary arteries. Important features in the clinical setting are correlations with coronary artery disease, heart failure, atrial fibrillation and visceral adipose tissue, thus acting as a possible biomarker of cardiovascular risk. p bKurzfassung:/b Das epikardiale Fettgewebe erweckt als „viszerales“ Fettdepot des Herzens mit zahlreichen lokalen und systemischen Effekten immer mehr wissenschaftliches Interesse. Das Fehlen einer trennenden Faszie zwischen epikardialem Fettgewebe und Myokard und die gemeinsame Blutversorgung durch die Koronararterien erlauben eine potenzielle Interaktion. Unter normalen physiologischen Verhältnissen hat das epikardiale Fettgewebe hauptsächlich anti-atherogene, thermogenetische und mechanische Funktionen. Unter pathologischen Verhältnissen schädigt es das Myokard und die Koronararterien. Einen klinischen Stellenwert hat es aufgrund von Korrelationen mit koronarer Herzerkrankung, Herzinsuffizienz, Vorhofflimmern und viszeralem Fettgewebe. Dadurch könnte es als neuer Biomarker für das kardiovaskuläre Risiko dienen.

  20. Galectin-3 inhibition prevents adipose tissue remodelling in obesity.

    Martínez-Martínez, E; Calvier, L; Rossignol, P; Rousseau, E; Fernández-Celis, A; Jurado-López, R; Laville, M; Cachofeiro, V; López-Andrés, N

    2016-06-01

    Extracellular matrix remodelling of the adipose tissue has a pivotal role in the pathophysiology of obesity. Galectin-3 (Gal-3) is increased in obesity and mediates inflammation and fibrosis in the cardiovascular system. However, the effects of Gal-3 on adipose tissue remodelling associated with obesity remain unclear. Male Wistar rats were fed either a high-fat diet (33.5% fat) or a standard diet (3.5% fat) for 6 weeks. Half of the animals of each group were treated with the pharmacological inhibitor of Gal-3, modified citrus pectin (MCP; 100 mg kg(-1) per day) in the drinking water. In adipose tissue, obese animals presented an increase in Gal-3 levels that were accompanied by an increase in pericellular collagen. Obese rats exhibited higher adipose tissue inflammation, as well as enhanced differentiation degree of the adipocytes. Treatment with MCP prevented all the above effects. In mature 3T3-L1 adipocytes, Gal-3 (10(-8 )m) treatment increased fibrosis, inflammatory and differentiation markers. In conclusion, Gal-3 emerges as a potential therapeutic target in adipose tissue remodelling associated with obesity and could have an important role in the development of metabolic alterations associated with obesity. PMID:26853916

  1. Intrinsic regulation of blood flow in adipose tissue

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue...

  2. Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice.

    Rachid, Tamiris Lima; Penna-de-Carvalho, Aline; Bringhenti, Isabele; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A; Souza-Mello, Vanessa

    2015-02-15

    Browning is characterized by the formation of beige/brite fat depots in subcutaneous white adipose tissue (sWAT). This study aimed to examine whether the chronic activation of PPARalpha by fenofibrate could induce beige cell depots in the sWAT of diet-induced obese mice. High-fat fed animals presented overweight, insulin resistance and displayed adverse sWAT remodeling. Fenofibrate significantly attenuated these parameters. Treated groups demonstrated active UCP-1 beige cell clusters within sWAT, confirmed through higher gene expression of PPARalpha, PPARbeta, PGC1alpha, BMP8B, UCP-1, PRDM16 and irisin in treated groups. PPARalpha activation seems to be pivotal to trigger browning through irisin induction and UCP-1 transcription, indicating that fenofibrate increased the expression of genes typical of brown adipose tissue (BAT) in the sWAT, characterizing the formation of beige cells. These findings put forward a possible role of PPARalpha as a promising therapeutic for metabolic diseases via beige cell induction. PMID:25576856

  3. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes

    Eun Young Kim

    2015-02-01

    Full Text Available Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases.

  4. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects

    Arngrim, N; Simonsen, L; Holst, Jens Juul;

    2012-01-01

    The aim of this study was to investigate subcutaneous adipose tissue lymphatic drainage (ATLD) of macromolecules in lean and obese subjects and, furthermore, to evaluate whether ATLD may change in parallel with adipose tissue blood flow. Lean and obese male subjects were studied before and after an...... increase in ATLD was seen after the glucose load in the lean subjects. In the obese subjects, ATLD remained constant throughout the study and was significantly lower compared to the lean subjects. These results indicate a reduced ability to remove macromolecules from the interstitial space through the...... lymphatic system in obese subjects. Furthermore, they suggest that postprandial changes in ATLD taking place in lean subjects are not observed in obese subjects. This may have a role in the development of obesity-related inflammation in hypertrophic adipose tissue.International Journal of Obesity advance...

  5. The effect of hypokinesia on lipid metabolism in adipose tissue

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  6. Expression of Resistin Protein in Normal Human Subcutaneous Adipose Tissue and Pregnant Women Subcutaneous Adipose Tissue and Placenta

    ZHOU Yongming; GUO Tiecheng; ZHANG Muxun; GUO Wei; YU Meixia; XUE Keying; HUANG Shiang; CHEN Yanhong; ZHU Huanli; XU Lijun

    2006-01-01

    The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta and the relationship between obesity, type 2 diabetes mellitus (T2DM), pregnant physiological insulin resistance (IR) and gestational diabetes mellitus (GDM) was investigated. The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta was detected by using Western blotting method.Fasting serum glucose concentration was measured by glucose oxidase assay. Serum cholesterol (CHOL), serum triglycerides (TG), serum HDL cholesterol (HDL-C) and serum LDL cholesterol (LDL-C) were determined by full automatic biochemical instrument. Fasting insulin was measured by enzyme immunoassay to calculate insulin resistance index (IRI). Height, weight, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured to calculate body mass index (BMI) and body fat percentage (BF %). Resistin protein expression in pregnant women placental tissue (67 905±8441) (arbitrary A values) was much higher than that in subcutaneous adipose tissue in pregnant women abdomen (40 718 ± 3818, P < 0.01), non-pregnant women abdomen (38 288±2084, P<0.01), normal human abdomen (39 421±6087, P<0.01)and thigh (14 942 ±6706, P<0. 001) respectively. The resistin expression in abdominal subcutaneous adipose tissue showed no significant difference among pregnant, non-pregnant women and normal human, but much higher than that in thigh subcutaneous adipose tissue (P<0. 001). Pearson analysis revealed that resistin protein was correlated with BMI (r=0.42), fasting insulin concentration (r=0.38),IRI (r=0. 34), BF % (r=0.43) and fasting glucose (r=0. 39), but not with blood pressure,CHOL, TG, HDL-C and LDL-C. It was suggested that resistin protein expression in human abdominal subcutaneous adipose tissue was much higher

  7. New tissue substitutes representing cortical bone and adipose tissue in quantitative radiology

    To employ quantitative radiology more accurately, we examined phantom materials for cortical bone and adipose tissue as calibration standards and as experimental phantoms. New tissue substitutes for cortical bone and adipose tissue composed of liquid phantom were verified by computing their attenuation coefficients and observing their chemical properties. We showed that a potassium pyrophosphate (K4P2O7) solution for cortical bone was comparable to a dipotassium hydrogen phosphate (K2HPO4) solution. Also, the use of methyl alcohol for adipose tissue was more suitable than ethyl alcohol as a phantom material because of its physical and chemical properties. (author)

  8. Direct effects of leptin on brown and white adipose tissue.

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase...

  9. A role of active brown adipose tissue in cancer cachexia?

    Emiel Beijer; Janna Schoenmakers; Guy Vijgen; Fons Kessels; Anne-Marie Dingemans; Patrick Schrauwen; Miel Wouters; Wouter van Marken Lichtenbelt; Jaap Teule; Boudewijn Brans

    2012-01-01

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activ...

  10. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction

    Sun, Kai; Park, Jiyoung; Gupta, Olga T;

    2014-01-01

    We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model to demonst......We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model...

  11. Adipose Tissue Promotes a Serum Cytokine Profile Related to Lower Insulin Sensitivity after Chronic Central Leptin Infusion

    Burgos-Ramos, Emma; Canelles, Sandra; Perianes-Cachero, Arancha; Arilla-Ferreiro, Eduardo; Argente, Jesús; Barrios, Vicente

    2012-01-01

    Obesity is an inflammatory state characterized by an augment in circulating inflammatory factors. Leptin may modulate the synthesis of these factors by white adipose tissue decreasing insulin sensitivity. We have examined the effect of chronic central administration of leptin on circulating levels of cytokines and the possible relationship with cytokine expression and protein content as well as with leptin and insulin signaling in subcutaneous and visceral adipose tissues. In addition, we analyzed the possible correlation between circulating levels of cytokines and peripheral insulin resistance. We studied 18 male Wistar rats divided into controls (C), those treated icv for 14 days with a daily dose of 12 μg of leptin (L) and a pair-fed group (PF) that received the same food amount consumed by the leptin group. Serum leptin and insulin were measured by ELISA, mRNA levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-10 and tumor necrosis factor-α (TNF-α) by real time PCR and serum and adipose tissue levels of these cytokines by multiplexed bead immunoassay. Serum leptin, IL-2, IL-4, IFN-γ and HOMA-IR were increased in L and TNF-α was decreased in PF and L. Serum leptin and IL-2 levels correlate positively with HOMA-IR index and negatively with serum glucose levels during an ip insulin tolerance test. In L, an increase in mRNA levels of IL-2 was found in both adipose depots and IFN-γ only in visceral tissue. Activation of leptin signaling was increased and insulin signaling decreased in subcutaneous fat of L. In conclusion, leptin mediates the production of inflammatory cytokines by adipose tissue independent of its effects on food intake, decreasing insulin sensitivity. PMID:23056516

  12. Quantifying Size and Number of Adipocytes in Adipose Tissue

    Parlee, Sebastian D.; Lentz, Stephen I.; Mori, Hiroyuki; MacDougald, Ormond A.

    2014-01-01

    White adipose tissue (WAT) is a dynamic and modifiable tissue that develops late during gestation in humans and through early postnatal development in rodents. WAT is unique in that it can account for as little as 3% of total body weight in elite athletes or as much as 70% in the morbidly obese. With the development of obesity, WAT undergoes a process of tissue remodeling in which adipocytes increase in both number (hyperplasia) and size (hypertrophy). Metabolic derangements associated with o...

  13. Alterations in Adipose Tissue during Critical Illness: An Adaptive and Protective Response?

    Langouche, Lies; Vander Perre, Sarah; Thiessen, Steven; Gunst, Jan; Hermans, Greet; D'Hoore, André; Kola, Blerina; Korbonits, Márta; Van den Berghe, Greet

    2010-01-01

    Rationale: Critical illness is characterized by lean tissue wasting, whereas adipose tissue is preserved. Overweight and obese critically ill patients may have a lower risk of death than lean patients, suggestive of a protective role for adipose tissue during illness. Objectives: To investigate whether adipose tissue could protectively respond to critical illness by storing potentially toxic metabolites, such as excess circulating glucose and triglycerides. Methods: We studied adipose tissue ...

  14. Adiponectin induces A20 expression in adipose tissue to confer metabolic benefit.

    Hand, Laura E; Usan, Paola; Cooper, Garth J S; Xu, Lance Y; Ammori, Basil; Cunningham, Peter S; Aghamohammadzadeh, Reza; Soran, Handrean; Greenstein, Adam; Loudon, Andrew S I; Bechtold, David A; Ray, David W

    2015-01-01

    Obesity is a major risk factor for metabolic disease, with white adipose tissue (WAT) inflammation emerging as a key underlying pathology. We detail that mice lacking Reverbα exhibit enhanced fat storage without the predicted increased WAT inflammation or loss of insulin sensitivity. In contrast to most animal models of obesity and obese human patients, Reverbα(-/-) mice exhibit elevated serum adiponectin levels and increased adiponectin secretion from WAT explants in vitro, highlighting a potential anti-inflammatory role of this adipokine in hypertrophic WAT. Indeed, adiponectin was found to suppress primary macrophage responses to lipopolysaccharide and proinflammatory fatty acids, and this suppression depended on glycogen synthase kinase 3β activation and induction of A20. Attenuated inflammatory responses in Reverbα(-/-) WAT depots were associated with tonic elevation of A20 protein and ex vivo shown to depend on A20. We also demonstrate that adipose A20 expression in obese human subjects exhibits a negative correlation with measures of insulin sensitivity. Furthermore, bariatric surgery-induced weight loss was accompanied by enhanced WAT A20 expression, which is positively correlated with increased serum adiponectin and improved metabolic and inflammatory markers, including C-reactive protein. The findings identify A20 as a mediator of adiponectin anti-inflammatory action in WAT and a potential target for mitigating obesity-related pathology. PMID:25190567

  15. Natural compounds involved in adipose tissue mass control in in vitro studies

    Katarzyna Kowalska

    2011-08-01

    Full Text Available The World Health Organization (WHO has recognized obesity as an epidemic of the 21st century. Obesity is pathological fat accumulation in the body influenced by many factors: metabolic, endocrine, genetic, environmental, psychological and behavioral. The quality and quantity of food intake to a considerable degree determine excessive fat accumulation in the body. The strategy in obesity prevention includes, among other things, a proper diet. It is widely known that a diet rich in fruits and vegetables reduces body weight. Adipocytes are not only cells serving as storage depots for “energy”, but are also specialized cells influenced by various hormones, cytokines and nutrients, which have pleiotropic effects on the body. Knowledge of adipocyte biology is crucial for our understanding of the pathophysiological basis of obesity and metabolic diseases, such as type 2 diabetes. Furthermore, rational manipulation of adipose physiology is a promising avenue for therapy of these conditions. Adipose tissue mass can be reduced through elimination of adipocytes by apoptosis, inhibition of adipogenesis and increased lipolysis in adipocytes. Natural products have a potential to induce apoptosis, inhibit adipogenesis and stimulate lipolysis in adipocytes. Various dietary bioactive compounds target different stages of the adipocyte life cycle and may be useful as natural therapeutic agents in obesity prevention.

  16. Vitamin D and adipose tissue - more than storage

    Shivaprakash Jagalur Mutt

    2014-06-01

    Full Text Available The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OHD, no evidence was obtained for a BMI lowering effect by higher 25(OHD. Some of the physiological functions of 1,25(OH2D3 (1,25-dihydroxycholecalciferol or calcitriol via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g. in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH2D3, vitamin D binding proteins (VDBPs and nuclear vitamin D receptor (VDR after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR -/- and CYP27B1 knock out (CYP27B1 -/- mouse models: Both VDR -/- and CYP27B1 -/- models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH2D3. Experimental studies demonstrate that 1,25(OH2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.

  17. Myocardial regeneration potential of adipose tissue-derived stem cells

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  18. Myocardial regeneration potential of adipose tissue-derived stem cells

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  19. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  20. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  1. A Role of the Inflammasome in the Low Storage Capacity of the Abdominal Subcutaneous Adipose Tissue in Obese Adolescents.

    Kursawe, Romy; Dixit, Vishwa D; Scherer, Philipp E; Santoro, Nicola; Narayan, Deepak; Gordillo, Ruth; Giannini, Cosimo; Lopez, Ximena; Pierpont, Bridget; Nouws, Jessica; Shulman, Gerald I; Caprio, Sonia

    2016-03-01

    The innate immune cell sensor leucine-rich-containing family, pyrin domain containing 3 (NLRP3) inflammasome controls the activation of caspase-1, and the release of proinflammatory cytokines interleukin (IL)-1β and IL-18. The NLRP3 inflammasome is implicated in adipose tissue inflammation and the pathogenesis of insulin resistance. Herein, we tested the hypothesis that adipose tissue inflammation and NLRP3 inflammasome are linked to the downregulation of subcutaneous adipose tissue (SAT) adipogenesis/lipogenesis in obese adolescents with altered abdominal fat partitioning. We performed abdominal SAT biopsies on 58 obese adolescents and grouped them by MRI-derived visceral fat to visceral adipose tissue (VAT) plus SAT (VAT/VAT+SAT) ratio (cutoff 0.11). Adolescents with a high VAT/VAT+SAT ratio showed higher SAT macrophage infiltration and higher expression of the NLRP3 inflammasome-related genes (i.e., TLR4, NLRP3, IL1B, and CASP1). The increase in inflammation markers was paralleled by a decrease in genes related to insulin sensitivity (ADIPOQ, GLUT4, PPARG2, and SIRT1) and lipogenesis (SREBP1c, ACC, LPL, and FASN). Furthermore, SAT ceramide concentrations correlated with the expression of CASP1 and IL1B. Infiltration of macrophages and upregulation of the NLRP3 inflammasome together with the associated high ceramide content in the plasma and SAT of obese adolescents with a high VAT/VAT+SAT may contribute to the limited expansion of the subcutaneous abdominal adipose depot and the development of insulin resistance. PMID:26718495

  2. Impact of runting on adipokine gene expression in neonatal pig adipose tissue

    This study examined the effects of runting on adipokines in neonatal adipose tissue. Pigs were selected as runts (R) by birth weight adipose tissues were collected at d1 (n = 5), d7 (n = 7) or d21 (n...

  3. Impact of Age on the Relationships of Brown Adipose Tissue With Sex and Adiposity in Humans

    Pfannenberg, Christina; Werner, Matthias K.; Ripkens, Sabine; Stef, Irina; Deckert, Annette; Schmadl, Maria; Reimold, Matthias; Häring, Hans-Ulrich; Claussen, Claus D.; Stefan, Norbert

    2010-01-01

    OBJECTIVE Brown adipose tissue (BAT) regulates energy homeostasis and fat mass in mammals and newborns and, most likely, in adult humans. Because BAT activity and BAT mass decline with age in humans, the impact of BAT on adiposity may decrease with aging. In the present study we addressed this hypothesis and further investigated the effect of age on the sex differences in BAT activity and BAT mass. RESEARCH DESIGN AND METHODS Data from 260 subjects (98 with BAT and 162 study date–matched cont...

  4. Adipose tissue fatty acid patterns and changes in anthropometry

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre;

    2011-01-01

    Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissue...

  5. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism

    Herman, Mark Andrew; Peroni, Odile Daniele; Villoria, Jorge; Schön, Michael R; Abumrad, Nada A.; Blüher, Matthias; Klein, Samuel; Kahn, Barbara

    2012-01-01

    Summary The prevalence of obesity and type 2-diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the Glut4-glucose transporter and alterations in adipose-Glut4 expression or function regulate systemic insulin sensitivity. Downregulation of adipose tissue-Glut4 occurs early in diabetes development. Here we report that adipose tissue-Glut4 regul...

  6. Natural Killer T Cells in Adipose Tissue Are Activated in Lean Mice

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or ...

  7. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in ...

  8. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity. PMID:27207538

  9. Fat cell size and adipokine expression in relation to gender, depot and metabolic risk factors in morbidly obese adolescents

    Zhang, Yiying; Zitsman, Jeffrey L.; Hou, Jue; Fennoy, Ilene; Guo, Kaiying; Feinberg, Joshua; Leibel, Rudolph L

    2013-01-01

    Objective To understand the regulation of adipocyte size and adipokine expression in relation to gender, anatomic location, adiposity, and metabolic risk factors in adolescents with morbid obesity. Design and Methods Adipocyte size and adipokine expression in paired abdominal subcutaneous (SAT) and omental (VAT) surgical adipose tissues were related to gender, anatomic location, adiposity, and metabolic risk factors in a group of morbidly obese adolescents. Results Significant depot- and/or g...

  10. Contribution of skeletal muscle and adipose tissue to adrenaline-induced thermogenesis in man

    Simonsen, L; Stallknecht, Bente; Bülow, J

    subcutaneous adipose tissue metabolism was investigated. In both series Fick's principle was applied. Intravenous infusion increased blood flow, glucose uptake and oxygen uptake in both skeletal muscle and adipose tissue. It is concluded that skeletal muscle contributes about 40% and adipose tissue about 5% of...

  11. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: ALL.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue.bed ...

  13. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: NoD.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue.bed ...

  15. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: ALL.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue.bed ...

  20. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: NoD.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue.bed ...

  7. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: ALL.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue.bed ...

  9. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: NoD.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue.bed ...

  12. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  19. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  20. Surrogate Markers of Visceral Adiposity in Young Adults: Waist Circumference and Body Mass Index Are More Accurate than Waist Hip Ratio, Model of Adipose Distribution and Visceral Adiposity Index

    Susana Borruel; Moltó, José F.; Macarena Alpañés; Elena Fernández-Durán; Francisco Álvarez-Blasco; Manuel Luque-Ramírez; Héctor F Escobar-Morreale

    2014-01-01

    Surrogate indexes of visceral adiposity, a major risk factor for metabolic and cardiovascular disorders, are routinely used in clinical practice because objective measurements of visceral adiposity are expensive, may involve exposure to radiation, and their availability is limited. We compared several surrogate indexes of visceral adiposity with ultrasound assessment of subcutaneous and visceral adipose tissue depots in 99 young Caucasian adults, including 20 women without androgen excess, 53...

  1. Tissue Engineering of Injectable Soft tissue Filler: Using Adipose Stem Cells and Micronized Acellular Dermal Matrix

    Yoo, Gyeol; Lim, Jin Soo

    2009-01-01

    In this study of a developed soft tissue filler, adipose tissue equivalents were constructed using adipose stem cells (ASCs) and micronized acellular dermal matrix (Alloderm). After labeling cultured human ASCs with fluorescent green protein and attaching them to micronized Alloderm (5×105 cells/1 mg), ASC-Alloderm complexes were cultured in adipogenic differentiation media for 14 days and then injected into the dorsal cranial region of nude male mice. The viabilities of ASCs in micronized Al...

  2. Effect of exercise training on in vivo insulin-stimulated glucose uptake in intra-abdominal adipose tissue in rats

    Enevoldsen, L H; Stallknecht, B; Fluckey, J D;

    2000-01-01

    Intra-abdominal obesity may be crucial in the pathogenesis of the insulin-resistance syndrome, and training may alleviate this condition. We compared insulin-mediated glucose uptake in vivo in three intra-abdominal adipose tissues (ATs; retroperitoneal, parametrial, and mesenteric) and in...... conclusion, differences between ATs in insulin sensitivity with respect to glucose uptake do not explain that insulin resistance is associated with intra-abdominal rather than subcutaneous obesity. Furthermore, training may be beneficial by enhancing insulin sensitivity in intra-abdominal fat depots.......]glucose and microdialysis techniques. Blood flow was measured by microspheres. Upon insulin stimulation, blood flow generally decreased in AT. Flow was higher in mesenteric tissue than in other ATs, whereas insulin-mediated glucose uptake did not differ between ATs. Training doubled the glucose infusion rate...

  3. Endocrine and Metabolic Effects of Adipose Tissue in Children and Adolescents

    Kotnik Primož; Fischer Posovszky Pamela; Wabitsch Martin

    2015-01-01

    Adipose tissue is implicated in many endocrine and metabolic processes. Leptin was among the first identified adipose-secreted factors, which act in an auto-, para- and endocrine manner. Since leptin, many other adipose tissue factors were determined, some primarily secreted from the adipocytes, some from other cells of the adipose tissue. So-called adipokines are not only involved in obesity and its complications, as are insulin resistance, type 2 diabetes and other components of the metabol...

  4. Perinatal overnutrition exacerbates adipose tissue inflammation caused by high-fat feeding in C57BL/6J mice.

    Brandon D Kayser

    Full Text Available Obesity causes white adipose tissue (WAT inflammation and insulin resistance in some, but not all individuals. Here, we used a mouse model of early postnatal overfeeding to determine the role of neonatal nutrition in lifelong WAT inflammation and metabolic dysfunction. C57BL/6J mice were reared in small litters of 3 (SL or normal litters of 7 pups (NL and fed either regular chow or a 60% high fat diet (HFD from 5 to 17 weeks. At weaning, SL mice did not develop WAT inflammation despite increased fat mass, although there was an up-regulation of WAT Arg1 and Tlr4 expression. On HFD, adult SL mice had greater inguinal fat mass compared to NL mice, however both groups showed similar increases in visceral fat depots and adipocyte hypertrophy. Despite the similar levels of visceral adiposity, SL-HFD mice displayed greater impairments in glucose homeostasis and more pronounced hepatic steatosis compared to NL-HFD mice. In addition, WAT from SL mice fed a HFD displayed greater crown-like structure formation, increased M1 macrophages, and higher cytokine gene expression. Together, these data suggest that early postnatal overnutrition may be a critical determinant of fatty liver and insulin resistance in obese adults by programming the inflammatory capacity of adipose tissue.

  5. Brown adipose tissue development and metabolism in ruminants.

    Smith, S B; Carstens, G E; Randel, R D; Mersmann, H J; Lunt, D K

    2004-03-01

    We conducted several experiments to better understand the relationship between brown adipose tissue (BAT) metabolism and thermogenesis. In Exp. 1, we examined perirenal (brown) and sternum s.c. adipose tissue in 14 Wagyu x Angus neonates infused with norepinephrine (NE). Perirenal adipocytes contained numerous large mitochondria with well-differentiated cristae; sternum s.c. adipocytes contained a few, small mitochondria, with poorly developed cristae. Lipogenesis from acetate was high in BAT but barely detectable in sternum s.c. adipose tissue. In Exp. 2, we compared perirenal and tailhead adipose tissues between NE-infused Angus (n = 6) and Brahman (n = 7) newborn calves. Brahman BAT contained two-to-three times as many total beta-receptors as Angus BAT. The mitochondrial UCP1:28S rRNA ratio was greater in Brahman BAT than in BAT from Angus calves. Lipogenesis from acetate and glucose again was high, but lipogenesis from palmitate was barely detectable. Tail-head s.c. adipose tissue from both breed types contained adipocytes with distinct brown adipocyte morphology. In Exp. 3, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types, whereas the UCP1 gene expression tripled during gestation in both breed types. At birth, palmitate esterification was twice as high in Angus than in Brahman BAT and was at least 100-fold higher than in BAT from NE-infused calves from Exp. 2. Uncoupling protein-1 mRNA was readily detectable in tailhead s.c. adipose tissue in all fetal samples. In Exp. 4, male Brahman and Angus calves (n = 5 to 7 per group) were assigned to 1) newborn treatment (15 h of age), 2) 48 h of warm exposure (22 degrees C) starting at 15 h of age, or 3) 48 h of cold exposure (4 degrees C) starting at 15 h of age. Brahman BAT adipocytes shrank with cold exposure, whereas Angus BAT

  6. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  7. Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries.

    Verlohren, Stefan; Dubrovska, Galyna; Tsang, Suk-Ying; Essin, Kirill; Luft, Friedrich C; Huang, Yu; Gollasch, Maik

    2004-09-01

    Periadventitial adipose tissue produces vasoactive substances that influence vascular contraction. Earlier studies addressed this issue in aorta, a vessel that does not contribute to peripheral vascular resistance. We tested the hypothesis that periadventitial adipose tissue modulates contraction of smaller arteries more relevant to blood pressure regulation. We studied mesenteric artery rings surrounded by periadventitial adipose tissue from adult male Sprague-Dawley rats. The contractile response to serotonin, phenylephrine, and endothelin I was markedly reduced in intact vessels compared with vessels without periadventitial fat. The contractile response to U46619 or depolarizing high K+-containing solutions (60 mmol/L) was similar in vessels with and without periadventitial fat. The K+ channel opener cromakalim induced relaxation of vessels precontracted by serotonin but not by U46619 or high K+-containing solutions (60 mmol/L), suggesting that K+ channels are involved. The intracellular membrane potential of smooth muscle cells was more hyperpolarized in intact vessels than in vessels without periadventitial fat. Both the anticontractile effect and membrane hyperpolarization of periadventitial fat were abolished by inhibition of delayed-rectifier K+ (K(v)) channels with 4-aminopyridine (2 mmol/L) or 3,4-diaminopyridine (1 mmol/L). Blocking other K+ channels with glibenclamide (3 micromol/L), apamin (1 micromol/L), iberiotoxin (100 nmol/L), tetraethylammonium ions (1 mmol/L), tetrapentylammonium ions (10 micromol/L), or Ba2+ (3 micromol/L) had no effect. Longitudinal removal of half the perivascular tissue reduced the anticontractile effect of fat by almost 50%, whereas removal of the endothelium had no effect. We suggest that visceral periadventitial adipose tissue controls mesenteric arterial tone by inducing vasorelaxation via K(v) channel activation in vascular smooth muscle cells. PMID:15302842

  8. Thermoluminescent dosimetry system equivalent to adipose tissue

    The dosimetric system is a fine-dispersed (size of particles 2B4O7 (0.03% Mn) and the non-luminophor [NH(C2H5)3]2B12H12 in equal quantities. The process and the results are presented measuring phantom doses absorbed by fat tissue in gamma and roentgen short-distance irradiation. A substance consisting of 55% paraffin and of 45% Li2Co3 is recommended to imitate fat tissue in phantom measurements. (author)

  9. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis.

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21. PMID:27301791

  10. ADCY5 gene expression in adipose tissue is related to obesity in men and mice.

    Anja Knigge

    Full Text Available Genome wide association studies revealed an association of the single nucleotide polymorphism rs11708067 within the ADCY5 gene--encoding adenylate cyclase 5--with increased type 2 diabetes (T2D risk and higher fasting glucose. However, it remains unclear whether the association between ADCY5 variants and glycemic traits may involve adipose tissue (AT related mechanisms. We therefore tested the hypothesis that ADCY5 mRNA expression in human and mouse AT is related to obesity, fat distribution, T2D in humans and high fat diet (HFD in mice. We measured ADCY5 mRNA expression in paired samples of visceral and subcutaneous adipose tissue from 244 individuals with a wide range of body weight and parameters of hyperglycemia, which have been genotyped for rs11708067. In addition, AT ADCY5 mRNA was assessed in C57BL/6NTac which underwent a 10 weeks standard chow (n = 6 or high fat diet (HFD, n = 6. In humans, visceral ADCY5 expression is significantly higher in obese compared to lean individuals. ADCY5 expression correlates with BMI, body fat mass, circulating leptin, fat distribution, waist and hip circumference, but not with fasting plasma glucose and HbA1c. Adcy5 expression in mouse AT is significantly higher after a HFD compared to chow (p<0.05. Importantly, rs11708067 is not associated with ADCY5 mRNA expression levels in either fat depot in any of the genetic models tested. Our results suggest that changes in AT ADCY5 expression are related to obesity and fat distribution, but not with impaired glucose metabolism and T2D. However, altered ADCY5 expression in AT does not seem to be the mechanism underlying the association between rs11708067 and increased T2D risk.

  11. Fatty acid composition of muscle and adipose tissues of organic and conventional Blanca Andaluza suckling kids

    F. De la Vega

    2013-01-01

    Full Text Available Interest in the preservation of autochthonous breeds such as the Blanca Andaluza goat (meat breed, raised under grazing-based management, has recently increased among Spanish farmers. A study of the possibilities of transformation to organic production needs to analyze the quality of their products. The aim of this study was to evaluate the fatty acid (FA composition of muscle and adipose tissues of Blanca Andaluza goat kids under organic and conventional grazing–based management system. Twenty-four twin kids (12 males, 12 females were selected from each system. The FA profile was determined in the longissimus thoracis muscle, kidney and pelvic fat. The percentages of C17:0, C17:1, C20:1, C20:4 n-6, C22:2 and several n-3 FAs were higher in organic meat; C12:0, C18:1 trans-11, CLA and C20:5 n-3 were lower in organic meat. The fat depots from the conventional kids showed lower percentages of C12:0, C14:0, C15:0, C17:0, C17:1, C18:3 n-3 and atherogenicity index, and higher percentage of C18:0. In the pelvic fat, the conventional kids displayed lower percentages of C16:0, C18:2 n-6 cis, PUFA, n-3 and n-6 FAs, and greater percentages of C18:1 n-9 cis and MUFA. The conventional kids displayed a major n6:n3 ratio in the kidney fat. No gender differences were observed. Significant differences were found only in some FA percentages of muscle and adipose tissues of suckling kids raised in organic and conventional livestock production systems, and due to this reason conventional grazing–based management farms could easily be transformed into organic production.

  12. Intermuscular adipose tissue and thigh muscle area dynamics during an 18-month randomized weight loss trial.

    Yaskolka Meir, Anat; Shelef, Ilan; Schwarzfuchs, Dan; Gepner, Yftach; Tene, Lilac; Zelicha, Hila; Tsaban, Gal; Bilitzky, Avital; Komy, Oded; Cohen, Noa; Bril, Nitzan; Rein, Michal; Serfaty, Dana; Kenigsbuch, Shira; Chassidim, Yoash; Zeller, Lior; Ceglarek, Uta; Stumvoll, Michael; Blüher, Matthias; Thiery, Joachim; Stampfer, Meir J; Rudich, Assaf; Shai, Iris

    2016-08-01

    It remains unclear whether intermuscular adipose tissue (IMAT) has any metabolic influence or whether it is merely a marker of abnormalities, as well as what are the effects of specific lifestyle strategies for weight loss on the dynamics of both IMAT and thigh muscle area (TMA). We followed the trajectory of IMAT and TMA during 18-mo lifestyle intervention among 278 sedentary participants with abdominal obesity, using magnetic resonance imaging. We measured the resting metabolic rate (RMR) by an indirect calorimeter. Among 273 eligible participants (47.8 ± 9.3 yr of age), the mean IMAT was 9.6 ± 4.6 cm(2) Baseline IMAT levels were directly correlated with waist circumference, abdominal subdepots, C-reactive protein, and leptin and inversely correlated with baseline TMA and creatinine (P < 0.05 for all). After 18 mo (86.3% adherence), both IMAT (-1.6%) and TMA (-3.3%) significantly decreased (P < 0.01 vs. baseline). The changes in both IMAT and TMA were similar across the lifestyle intervention groups and directly corresponded with moderate weight loss (P < 0.001). IMAT change did not remain independently associated with decreased abdominal subdepots or improved cardiometabolic parameters after adjustments for age, sex, and 18-mo weight loss. In similar models, 18-mo TMA loss remained associated with decreased RMR, decreased activity, and with increased fasting glucose levels and IMAT (P < 0.05 for all). Unlike other fat depots, IMAT may not represent a unique or specific adipose tissue, instead largely reflecting body weight change per se. Moderate weight loss induced a significant decrease in thigh muscle area, suggesting the importance of resistance training to accompany weight loss programs. PMID:27402560

  13. PACAP is essential for the adaptive thermogenic response of brown adipose tissue to cold exposure.

    Diané, Abdoulaye; Nikolic, Nikolina; Rudecki, Alexander P; King, Shannon M; Bowie, Drew J; Gray, Sarah L

    2014-09-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widely distributed neuropeptide that acts as a neurotransmitter, neuromodulator, neurotropic factor, neuroprotectant, secretagogue, and neurohormone. Owing to its pleiotropic biological actions, knockout of Pacap (Adcyap1) has been shown to induce several abnormalities in mice such as impaired thermoregulation. However, the underlying physiological and molecular mechanisms remain unclear. A previous report has shown that cold-exposed Pacap null mice cannot supply appropriate levels of norepinephrine (NE) to brown adipocytes. Therefore, we hypothesized that exogenous NE would rescue the impaired thermogenic response of Pacap null mice during cold exposure. We compared the adaptive thermogenic capacity of Pacap(-/-) to Pacap(+/+) mice in response to NE when housed at room temperature (24 °C) and after a 3.5-week cold exposure (4 °C). Biochemical parameters, expression of thermogenic genes, and morphological properties of brown adipose tissue (BAT) and white adipose tissue (WAT) were also characterized. Results showed that there was a significant effect of temperature, but no effect of genotype, on the resting metabolic rate in conscious, unrestrained mice. However, the normal cold-induced increase in the basal metabolic rate and NE-induced increase in thermogenesis were severely blunted in cold-exposed Pacap(-/-) mice. These changes were associated with altered substrate utilization, reduced β3-adrenergic receptor (β3-Ar (Adrb3)) and hormone-sensitive lipase (Hsl (Lipe)) gene expression, and increased fibroblast growth factor 2 (Fgf2) gene expression in BAT. Interestingly, Pacap(-/-) mice had depleted WAT depots, associated with upregulated uncoupling protein 1 expression in inguinal WATs. These results suggest that the impairment of adaptive thermogenesis in Pacap null mice cannot be rescued by exogenous NE perhaps in part due to decreased β3-Ar-mediated BAT activation. PMID:25056115

  14. Levels of chlordane, oxychlordane, and nonachlor in human adipose tissues

    Hirai, Yukio; Tomokuni, Katsumaro (Saga Medical School (Japan))

    1991-08-01

    Chlordane was used as a termiticide for more than twenty years in Japan. Chlordane is stable in the environment such as sediment and its bioaccumulation in some species of bacteria, freshwater invertebrates, and marine fish is large. Many researches were done to elucidate the levels of chlordane and/or its metabolite oxychlordane in human adipose tissues. A comprehensive review concerning chlordane was recently provided by USEPA. On the other hand, Japan authorities banned the use of chlordane in September 1986. In the last paper, the authors reported that both water and sediment of the rivers around Saga city were slightly contaminated with chlordane. In the present study, they investigated the levels of chlordane, oxychlordane and nonachlor in human adipose tissues.

  15. Fully automated adipose tissue measurement on abdominal CT

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  16. Adipose tissue is a regulated source of interleukin-10.

    Juge-Aubry, Cristiana E; Somm, Emmanuel; Pernin, Agnès; Alizadeh, Navid; Giusti, Vittorio; Dayer, Jean-Michel; Meier, Christoph A

    2005-03-21

    White adipose tissue (WAT) is the source of pro- and anti-inflammatory cytokines and we have recently shown that this tissue is a major source of the anti-inflammatory interleukin (IL)-1 receptor antagonist (IL-1Ra). We now aimed at identifying additional adipose-derived cytokines, which might serve as regulators of IL-1Ra. We demonstrate here for the first time that the antiinflammatory cytokine IL-10 is secreted by human WAT explants and that it is up-regulated by LPS and TNF-alpha in vitro, as well as in obesity in humans (2- and 6-fold increase in subcutaneous and visceral WAT, respectively) and rodents (4-fold increase). PMID:15749027

  17. A role of active brown adipose tissue in cancer cachexia?

    Emiel Beijer

    2012-06-01

    Full Text Available Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT. Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluorodeoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  18. Regulation of Triglyceride Metabolism. IV. Hormonal regulation of lipolysis in adipose tissue

    Jaworski, Kathy; Sarkadi-Nagy, Eszter; Duncan, Robin E.; Ahmadian, Maryam; Sul, Hei Sook

    2007-01-01

    Triacylglycerol (TAG) stored in adipose tissue can be rapidly mobilized by the hydrolytic action of lipases, with the release of fatty acids (FA) that are used by other tissues during times of energy deprivation. Unlike synthesis of TAG, which occurs not only in adipose tissue but also in other tissues such as liver for very-low-density lipoprotein formation, hydrolysis of TAG, lipolysis, predominantly occurs in adipose tissue. Until recently, hormone-sensitive lipase was considered to be the...

  19. Longitudinal profiling of the tissue-specific expression of genes related with insulin sensitivity in dairy cows during lactation focusing on different fat depots.

    Behnam Saremi

    Full Text Available In dairy cows the milk associated energy output in early lactation exceeds the input via voluntary feed intake. To spare glucose for mammary lactose synthesis, peripheral insulin sensitivity (IS is reduced and fat mobilization is stimulated. For these processes a link between IS and the endocrine functions of adipose tissue (AT is likely; we thus aimed to characterise the mRNA expression from bovine AT derived proteins and receptors that are related to IS according to the literature in metabolically active tissues plus systemic IS throughout lactation. Conjugated linoleic acids (CLA reduce milk fat thus decreasing the milk drain of energy and potentially dampening lipolysis, but may also affect IS. Subcutaneous (s.c. AT and liver from pluriparous cows receiving either control fat or CLA supplement (100 g/day from 1 to 182 days in milk each were biopsied covering week -3 to 36 relative to parturition. In an additional trial with primiparous cows treated analogously and slaughtered on days in milk 1, 42 or 105, samples from liver, udder, skeletal muscle and 3 visceral and 3 s.c. AT were obtained and assayed for mRNA abundance of adiponectin, its receptors, leptin, leptin receptor, PPARγ, PPARγ2, IL-6, and TNF-α. In pluriparous animals, the mRNA abundance of most of the target genes decreased after parturition in s.c. AT but increased in liver. In primiparous cows, AT depot specific differences were mostly related to retroperitoneal AT; adiponectin receptor 1 and TNF-α were affected predominantly. CLA effects in primiparous cows were largely limited to decreased PPARγ2 mRNA abundance in udder tissue. In pluriparous cows, insulin secretion was increased by CLA resulting in decreased systemic IS but without consistent changes in tissue target mRNA abundance. The temporal gene expression profiles from the adipokines and related receptors support their coactive function in adapting to the needs of lactation.

  20. Adipose Tissue - Adequate, Accessible Regenerative Material

    Kolaparthy, Lakshmi Kanth.; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-01-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cell...

  1. Configuration of Fibrous and Adipose Tissues in the Cavernous Sinus

    Liang, Liang; Gao, Fei; Xu, Qunyuan; Zhang, Ming

    2014-01-01

    Objective Three-dimensional anatomical appreciation of the matrix of the cavernous sinus is one of the crucial necessities for a better understanding of tissue patterning and various disorders in the sinus. The purpose of this study was to reveal configuration of fibrous and adipose components in the cavernous sinus and their relationship with the cranial nerves and vessels in the sinus and meningeal sinus wall. Materials and Methods Nineteen cadavers (8 females and 11 males; age range, 54–89...

  2. Fluorescence Imaging of Interscapular Brown Adipose Tissue in Living Mice†

    Rice, Douglas R.; White, Alexander G.; Leevy, W. Matthew; Smith, Bradley D.

    2015-01-01

    Brown adipose tissue (BAT) plays a key role in energy expenditure and heat generation and is a promising target for diagnosing and treating obesity, diabetes and related metabolism disorders. While several nuclear and magnetic resonance imaging methods are established for detecting human BAT, there are no convenient protocols for high throughput imaging of BAT in small animal models. Here we disclose a simple but effective method for non-invasive optical imaging of interscapular BAT in mice u...

  3. Insulin Regulates the Unfolded Protein Response in Human Adipose Tissue

    Boden, Guenther; Cheung, Peter; Salehi, Sajad; Homko, Carol; Loveland-Jones, Catherine; Jayarajan, Senthil; Stein, T Peter; Williams, Kevin Jon; Liu, Ming-Lin; Barrero, Carlos A.; Merali, Salim

    2014-01-01

    Endoplasmic reticulum (ER) stress is increased in obesity and is postulated to be a major contributor to many obesity-related pathologies. Little is known about what causes ER stress in obese people. Here, we show that insulin upregulated the unfolded protein response (UPR), an adaptive reaction to ER stress, in vitro in 3T3-L1 adipocytes and in vivo, in subcutaneous (sc) adipose tissue of nondiabetic subjects, where it increased the UPR dose dependently over the entire physiologic insulin ra...

  4. Insulin action in human adipose tissue in acromegaly.

    Bolinder, J.; Ostman, J; Werner, S.; Arner, P.

    1986-01-01

    The mechanisms underlying insulin resistance in acromegaly were investigated. Adipose tissue was obtained from nine patients with acromegaly who had in vivo insulin resistance and from 14 matched healthy control subjects. Receptor binding and the antilipolytic effect of insulin were determined in isolated fat cells. Insulin-induced glucose oxidation at a physiological hexose concentration was investigated in fat segments. In fat cells obtained from acromegaly patients after an overnight fast,...

  5. Effects of immunosuppressive drugs on human adipose tissue metabolism

    Pereira, Maria J

    2012-01-01

    The immunosuppressive agents (IAs) rapamycin, cyclosporin A and tacrolimus, as well as glucocorticoids are used to prevent rejection of transplanted organs and to treat autoimmune disorders. Despite their desired action on the immune system, these agents have serious longterm metabolic side-effects, including dyslipidemia and new onset diabetes mellitus after transplantation. The overall aim is to study the effects of IAs on human adipose tissue glucose and lipid metabolism, and to incr...

  6. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues

    Ren Zhang

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fas...

  7. Seeking the source of adipocytes in adult white adipose tissues

    Lee, Yun-Hee; Granneman, James G.

    2012-01-01

    Adipocyte progenitors are thought to play a fundamental role in white adipose tissue (WAT) plasticity, which enables dynamic modulation of WAT metabolic and cellular characteristics in response to various stimuli. In general, two main strategies have been used to identify adipocyte progenitor cells: fluorescence-activated cell sorting (FACS)-based prospective analysis and lineage tracing. Although FACS-isolation is highly useful in defining multipotential stem cell populations for in vitro an...

  8. Brown Adipose Tissue: A New Target for Antiobesity Therapy

    Anna Meiliana; Andi Wijaya

    2010-01-01

    BACKGROUND: Human fat consist of white and brown adipose tissue (WAT and BAT). Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. CONTENT: Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT) imaging, immunohistochemistry and gene and protein expression assays to prove conc...

  9. Adipose tissue and sustainable development: a connection that needs protection

    Tremblay, Angelo; Picard-Deland, Éliane; Panahi, Shirin; Marette, André

    2015-01-01

    Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic, and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsu...

  10. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity

    Stanford, Kristin I.; Middelbeek, Roeland J.W.; Townsend, Kristy L.; An, Ding; Nygaard, Eva B.; Hitchcox, Kristen M.; Markan, Kathleen R.; Nakano, Kazuhiro; Hirshman, Michael F.; Tseng, Yu-Hua; Goodyear, Laurie J.

    2012-01-01

    Brown adipose tissue (BAT) is known to function in the dissipation of chemical energy in response to cold or excess feeding, and also has the capacity to modulate energy balance. To test the hypothesis that BAT is fundamental to the regulation of glucose homeostasis, we transplanted BAT from male donor mice into the visceral cavity of age- and sex-matched recipient mice. By 8–12 weeks following transplantation, recipient mice had improved glucose tolerance, increased insulin sensitivity, lowe...

  11. Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK

    Martínez de Morentin, Pablo B.; González-García, Ismael; Martins, Luís; Lage, Ricardo; Fernández-Mallo, Diana; Martínez-Sánchez, Noelia; Ruíz-Pino, Francisco; Liu, Ji; Morgan, Donald A.; Pinilla, Leonor; Gallego, Rosalía; Saha, Asish K.; Kalsbeek, Andries; Fliers, Eric; Bisschop, Peter H.

    2014-01-01

    Summary Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in...

  12. Negative Regulators of Brown Adipose Tissue (BAT)-Mediated Thermogenesis

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-01-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence therm...

  13. Obesity, adipose tissue function and the role of vitamin D

    Koszowska, Aneta U.; Nowak, Justyna; Dittfeld, Anna; Brończyk-Puzoń, Anna; Kulpok, Agata; Zubelewicz-Szkodzińska, Barbara

    2014-01-01

    Introduction Obesity is not just a cosmetic problem. Pathological accumulation of body fat can cause many health problems: insulin resistance, impaired glucose tolerance, and diabetes mellitus type 2. It may also increase morbidity and mortality. Adipose tissue plays an important role in body homeostasis by producing and secreting several bioactive proteins known as adipokines: adiponectin, leptin, resistin, visfatin, and apelin, which are involved in the regulation of food intake, glucose an...

  14. Brominated dioxins and dibenzofurans in human adipose tissue. Final report

    Cramer, P.H.; Stanley, J.S.; Bauer, K.; Ayling, R.E.; Thornburg, K.R.

    1990-04-11

    The report describes the analytical efforts for the determination of polybrominated dioxins (PBDDs) and furans (PBDFs) in human adipose tissues. Data on the precision and accuracy of the method for three tetra- through hexabrominated dioxins and three tetra- through hexabrominated furans (specific 2,3,7,8-substituted isomers) were generated from the analysis of 5 unspiked and 10 spiked (5 replicates at 2 spike levels) adipose tissue samples that were included with the analysis of the FY 1987 samples. In addition, data are presented on the results of the analysis of 48 composite samples for the six specific PBDD and PBDF compounds. The targeted 2,3,7,8-substituted PBDDs and PBDFs were not detected in any of the samples except those prepared as spiked QC materials. The detection limits calculated for the tetrabromo congeners in the samples ranged from 0.46 to 8.9 pg/g (lipid basis). The detection limits for the higher brominated congeners were typically greater than that observed for the tetrabrominated compounds. There is some evidence for the presence of other brominated compounds in the adipose tissue samples. Specifically, responses were noted that correspond to the qualitative criteria for polybrominated diphenyl ethers (hexa through octabromo).

  15. Brown Adipose Tissue: A New Target for Antiobesity Therapy

    Anna Meiliana

    2010-08-01

    Full Text Available BACKGROUND: Human fat consist of white and brown adipose tissue (WAT and BAT. Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. CONTENT: Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT imaging, immunohistochemistry and gene and protein expression assays to prove conclusively that adult humans have functional BAT. BAT is important for thermogenesis and energy balance in small mammals and its induction in mice promotes energy expenditure, reduces adiposity and protects mice from diet-induced obesity. The thermogenic capacity of BAT is impressive. In humans, it has been estimated that as little as 50g of BAT could utilize up to 20% of basal caloric needs if maximally stimulated. SUMMARY: The obesity pandemic requires new and novel treatments. The past few years have witnessed multiple studies conclusively showing that adult humans have functional BAT, a tissue that has a tremendous capacity for obesity-reducing thermogenesis. Novel therapies targeting BAT thermogenesis may be available in the near future as therapeutic options for obesity and diabetes. Thermogenic ingredients may be considered as functional agents that could help in preventing a positive energy balance and obesity. KEYWORDS: brown adipose tissue, thermogenesis, energy expenditure, antiobesity therapy.

  16. Food consumption and adipose tissue DDT levels in Mexican women

    Marcia Galván-Portillo

    2002-04-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  17. Food consumption and adipose tissue DDT levels in Mexican women

    Galván-Portillo Marcia

    2002-01-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  18. Adipose tissue-derived stromal cells express neuronal phenotypes

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  19. Adipose tissue-liver axis in alcoholic liver disease

    2016-01-01

    Alcoholic liver disease (ALD) remains an important healthproblem worldwide. The disease spectrum is featuredby early steatosis, steatohepatitis (steatosis with inflammatorycells infiltration and necrosis), with someindividuals ultimately progressing to fibrosis/cirrhosis.Although the disease progression is well characterized,no effective therapies are currently available for thetreatment in humans. The mechanisms underlying theinitiation and progression of ALD are multifactorial andcomplex. Emerging evidence supports that adiposetissue dysfunction contributes to the pathogenesis ofALD. In the first part of this review, we discuss themechanisms whereby chronic alcohol exposure contributedto adipose tissue dysfunction, including cell death,inflammation and insulin resistance. It has been longknown that aberrant hepatic methionine metabolismis a major metabolic abnormality induced by chronicalcohol exposure and plays an etiological role in thepathogenesis of ALD. The recent studies in our groupdocumented the similar metabolic effect of chronicalcohol drinking on methionine in adipose tissue. Inthe second part of this review, we also briefly discussthe recent research progress in the field with a focuson how abnormal methionine metabolism in adiposetissue contributes to adipose tissue dysfunction and liverdamage.

  20. Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures

    Werner, Katharina Julia

    2014-01-01

    Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the ap...

  1. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated the...... basic and postprandial microvascular volume in adipose tissue using real-time contrast-enhanced ultrasound (CEU) imaging in healthy normal weight subjects. In nine subjects, CEU was performed in abdominal subcutaneous adipose tissue and in the underlying skeletal muscle after a bolus injection of...... ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain...

  2. Adipose tissue in imaging of the pelvis

    Fat is a fundamental contrast agent in pelvic imaging. The features of fat are typical on CT and MRI but vary on ultrasonography according to the physical caracteristics and histology. The study of pelvic fat is of great importance in pelvic exploration because fat outlines both the normal structures and their borders. Involvement or masking of the pelvic fat is a good marker of carcinologic spread. Changes in pelvic fat may also be observe in inflammatory diseases. Specific diseases of fatty pelvic connective tissue such as lipomatosis and liposarcomas, are classically described. Teratomas with a fatty component derived from pelvic structures (ovaries) are easily diagnosed using imaging methods

  3. Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: role of hepatic triglyceride storage.

    Foster, Michelle T; Shi, Haifei; Seeley, Randy J; Woods, Stephen C

    2011-10-24

    Epidemiological studies have demonstrated a strong link between increased visceral fat and metabolic syndrome. In rodents, removal of intra-abdominal but non-visceral fat improves insulin sensitivity and glucose homeostasis, though previous studies make an imprecise comparison to human physiology because actual visceral fat was not removed. We hypothesize that nutrient release from visceral adipose tissue may have greater consequences on metabolic regulation than nutrient release from non-visceral adipose depots since the latter drains into systemic but not portal circulation. To assess this we surgically decreased visceral white adipose tissue (~0.5 g VWATx) and compared the effects to removal of non-visceral epididymal fat (~4 g; EWATx), combination removal of visceral and non-visceral fat (~4.5 g; EWATx/VWATx) and sham-operated controls, in chow-fed rats. At 8 weeks after surgery, only the groups with visceral fat removed had a significantly improved glucose tolerance, although 8 times more fat was removed in EWATx compared with VWATx. This suggests that mechanisms controlling glucose metabolism are relatively more sensitive to reductions in visceral adipose tissue mass. Groups with visceral fat removed also had significantly decreased hepatic lipoprotein lipase (LPL) and triglyceride content compared with controls, while carnitine palmitoyltransferase (CPT-1A) was decreased in all fat-removal groups. In a preliminary experiment, we assessed the opposite hypothesis; i.e., we transplanted excess visceral fat from a donor rat to the visceral cavity (omentum and mesentery), which drains into the hepatic portal vein, of a recipient rat but observed no major metabolic effect. Overall, our results indicate surgical removal of intra-abdominal fat improves glucose tolerance through mechanism that may be mediated by reductions in liver triglyceride. PMID:21683727

  4. Independent Stem Cell Lineages Regulate Adipose Organogenesis and Adipose Homeostasis

    Yuwei Jiang

    2014-11-01

    Full Text Available Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult progenitors are specified during the developmental period and express PPARγ, they have distinct microanatomical, functional, morphogenetic, and molecular profiles. Furthermore, the two compartments derive from different lineages; whereas adult adipose progenitors fate-map from an SMA+ mural lineage, developmental progenitors do not. Remarkably, the adult progenitor compartment appears to be specified earlier than the developmental cells and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide a discrete therapeutic target for childhood and adult obesity.

  5. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  6. Effect of PUFA at sn-2 position in dietary triacylglycerols on fatty acid composition of adipose tissue in growing-finishing pigs

    Scheeder Martin R.L.

    2001-01-01

    Full Text Available A potential effect of the specific composition of plant oil triacylglycerols, with PUFAs predominantly esterified at the sn-2 position, on the fatty acid composition of adipose tissues of pigs was investigated. Two blends with a ratio of 1/3 and 3/1 of soybean oil and beef tallow were randomised or left unmodified and fed at 4% of a conventional diet to 4 * 12 pigs. The randomisation of fatty acids at sn-1, 2 and 3 positions did not affect the fatty acid composition of pig adipose tissues. It is concluded that the position of PUFA in dietary triacylglycerols is of minor relevance for the composition of depot fat in growing-finishing pigs

  7. Transketolase Haploinsufficiency Reduces Adipose Tissue and Female Fertility in Mice

    Xu, Zheng-Ping; Wawrousek, Eric F.; Piatigorsky, Joram

    2002-01-01

    Transketolase (TKT) is a ubiquitous enzyme used in multiple metabolic pathways. We show here by gene targeting that TKT-null mouse embryos are not viable and that disruption of one TKT allele can cause growth retardation (≈35%) and preferential reduction of adipose tissue (≈77%). Other TKT+/− tissues had moderate (≈33%; liver, gonads) or relatively little (≈7 to 18%; eye, kidney, heart, brain) reductions in mass. These mice expressed a normal level of growth hormone and reduced leptin levels....

  8. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity.

    Heinonen, Sini; Buzkova, Jana; Muniandy, Maheswary; Kaksonen, Risto; Ollikainen, Miina; Ismail, Khadeeja; Hakkarainen, Antti; Lundbom, Jesse; Lundbom, Nina; Vuolteenaho, Katriina; Moilanen, Eeva; Kaprio, Jaakko; Rissanen, Aila; Suomalainen, Anu; Pietiläinen, Kirsi H

    2015-09-01

    Low mitochondrial number and activity have been suggested as underlying factors in obesity, type 2 diabetes, and metabolic syndrome. However, the stage at which mitochondrial dysfunction manifests in adipose tissue after the onset of obesity remains unknown. Here we examined subcutaneous adipose tissue (SAT) samples from healthy monozygotic twin pairs, 22.8-36.2 years of age, who were discordant (ΔBMI >3 kg/m(2), mean length of discordance 6.3 ± 0.3 years, n = 26) and concordant (ΔBMI <3 kg/m(2), n = 14) for body weight, and assessed their detailed mitochondrial metabolic characteristics: mitochondrial-related transcriptomes with dysregulated pathways, mitochondrial DNA (mtDNA) amount, mtDNA-encoded transcripts, and mitochondrial oxidative phosphorylation (OXPHOS) protein levels. We report global expressional downregulation of mitochondrial oxidative pathways with concomitant downregulation of mtDNA amount, mtDNA-dependent translation system, and protein levels of the OXPHOS machinery in the obese compared with the lean co-twins. Pathway analysis indicated downshifting of fatty acid oxidation, ketone body production and breakdown, and the tricarboxylic acid cycle, which inversely correlated with adiposity, insulin resistance, and inflammatory cytokines. Our results suggest that mitochondrial biogenesis, oxidative metabolic pathways, and OXPHOS proteins in SAT are downregulated in acquired obesity, and are associated with metabolic disturbances already at the preclinical stage. PMID:25972572

  9. White adipose tissue re-growth after partial lipectomy in high fat diet induced obese wistar rats.

    Bueno, Allain Amador; Habitante, Carlos Alexandre; Oyama, Lila Missae; Estadella, Débora; Ribeiro, Eliane Beraldi; Oller do Nascimento, Cláudia Maria

    2011-01-01

    The effects of partial removal of epididymal (EPI) and retroperitoneal (RET) adipose tissues (partial lipectomy) on the triacylglycerol deposition of high fat diet induced obese rats were analyzed, aiming to challenge the hypothesized body fat regulatory system. Male 28-day-old wistar rats received a diet enriched with peanuts, milk chocolate and sweet biscuits during the experimental period. At the 90th day of life, rats were submitted to either lipectomy (L) or sham surgery. After 7 or 30 days, RET, EPI, liver, brown adipose tissue (BAT), blood and carcass were obtained and analyzed. Seven days following surgery, liver lipogenesis rate and EPI relative weight were increased in L. After 30 days, L, RET and EPI presented increased lipogenesis, lipolysis and percentage of small area adipocytes. L rats also presented increased liver malic enzyme activity, BAT lipogenesis, and triacylglycerol and corticosterone serum levels. The partial removal of visceral fat pads affected the metabolism of high fat diet obese rats, which leads to excised tissue re-growth and possibly compensatory growth of non-excised depots at a later time. PMID:21140253

  10. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat. PMID:26894003

  11. Adverse Fat Depots and Marrow Adiposity Are Associated With Skeletal Deficits and Insulin Resistance in Long-Term Survivors of Pediatric Hematopoietic Stem Cell Transplantation.

    Mostoufi-Moab, Sogol; Magland, Jeremy; Isaacoff, Elizabeth J; Sun, Wenli; Rajapakse, Chamith S; Zemel, Babette; Wehrli, Felix; Shekdar, Karuna; Baker, Joshua; Long, Jin; Leonard, Mary B

    2015-09-01

    Allogeneic hematopoietic stem-cell transplantation (alloHSCT) survivors treated with total body irradiation (TBI) exhibit bone deficits and excess adiposity, potentially related to altered mesenchymal stem cell differentiation into osteoblasts or adipocytes. We examined associations among fat distribution, bone microarchitecture, and insulin resistance in alloHSCT survivors after TBI. This was a cross-sectional observational study of 25 alloHSCT survivors (aged 12 to 25 years) a median of 9.7 (4.3 to 19.3) years after alloHSCT compared to 25 age-, race-, and sex-matched healthy controls. Vertebral MR spectroscopic imaging and tibia micro-MRI were used to quantify marrow adipose tissue (MAT) and trabecular microarchitecture. Additional measures included DXA whole-body fat mass (WB-FM), leg lean mass (Leg-LM), trunk visceral adipose tissue (VAT), and CT calf muscle density. Insulin resistance in alloHSCT survivors was estimated by HOMA-IR. AlloHSCT survivors had lower Leg-LM (p treatment-related morbidity and mortality in alloHSCT recipients after TBI. Trabecular deterioration was associated with marrow and visceral adiposity. Furthermore, long-term survivors demonstrated sarcopenic obesity, insulin resistance, and vertebral deformities. Future studies are needed to identify strategies to prevent and treat metabolic and skeletal complications in this growing population of childhood alloHSCT survivors. PMID:25801428

  12. Mest and Sfrp5 are biomarkers for healthy adipose tissue.

    Jura, Magdalena; Jarosławska, Julia; Chu, Dinh Toi; Kozak, Leslie P

    2016-05-01

    Obesity depends on a close interplay between genetic and environmental factors. However, it is unknown how these factors interact to cause changes in the obese condition during the progression of obesity from the neonatal to the aged individual. We have utilized Mest and Sfrp5 genes, two genes highly correlated with adipose tissue expansion in diet-induced obesity, to characterize the obese condition during development of 2 genetic models of obesity. A model for the early onset of obesity was presented by leptin-deficient mice (ob/ob), whereas late onset of obesity was induced with high-fat diet (HFD) consumption in C57BL/6J mice with inherent risk of obesity (DIO). We correlated obese and diabetic phenotypes with Mest and Sfrp5 gene expression profiles in subcutaneous fat during pre-weaning, pre-adulthood and adulthood. A rapid development of obesity began in ob/ob mice immediately after weaning at 21 days of age, whereas the obesity of DIO mice was not evident until after 2 months of age. Even after 5 months of HFD treatment, the adiposity index of DIO mice was lower than in ob/ob mice at 2 months of age. In both obesity models, the expression of Mest and Sfrp5 genes increased in parallel with fat mass expansion; however, gene expression proceeded to decrease when the adiposity reached a plateau. The reduction in the expression of genes of caveolae structure and glucose metabolism were also suppressed in the aging adipose tissue. The analysis of fat mass and adipocyte size suggests that reduction in Mest and Sfrp5 is more sensitive to the age of the fat than its morphology. The balance of factors controlling fat deposition can be evaluated in part by the differential expression profiles of Mest and Sfrp5 genes with functions linked to fat deposition as long as there is an active accumulation of fat mass. PMID:26001362

  13. Weight cycling enhances adipose tissue inflammatory responses in male mice.

    Sandra Barbosa-da-Silva

    Full Text Available BACKGROUND: Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC. METHODS: In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF diet with standard chow (SC. RESULTS: The body mass (BM grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months, more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. CONCLUSION: In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.

  14. Adipose Triglyceride Lipase (ATGL) and Hormone-Sensitive Lipase (HSL) Deficiencies Affect Expression of Lipolytic Activities in Mouse Adipose Tissues*

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N.; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-01-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patters of brown and white adipose tissue from ATGL (−/−) and HSL (−/−) mice using differential activity-based gel electrophoresis. This method is based on activity-r...

  15. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was...

  16. SUBCUTANEOUS ADIPOSE TISSUE INSULIN RESISTANCE IS ASSOCIATED WITH VISCERAL ADIPOSITY IN POSTMENOPAUSAL WOMEN

    Casey, Beret A.; Kohrt, Wendy M.; Schwartz, Robert S.; Van Pelt, Rachael E.

    2014-01-01

    Objective We determined whether whole body and subcutaneous adipose tissue (SAT) insulin resistance was proportional to regional fat mass (FM). Design and Methods We studied postmenopausal women (Mean±SD; age 56±4 y, n=25) who were overweight or obese (BMI 29.9±5.1 kg/m2). Whole body and regional FM were measured by dual-energy x-ray absorptiometry (DXA) and computed tomography (CT). Women were studied during basal and insulin-stimulated (3-stage euglycemic clamp) conditions. Whole-body lipol...

  17. Determination of the tissue-to-blood partition coefficient for 131iodo-antipyrine in human subcutaneous adipose tissue

    Jelnes, R; Astrup, A

    1985-01-01

    131Iodo-antipyrine (131I-AP) is commonly used for blood flow measurements in adipose tissue. These estimations have been based on the assumption of the tissue-to-blood partition coefficient being 1 ml g-1. No exact determination of the tissue-to-blood partition coefficient for 131I-AP in adipose...

  18. Effects of a physiological GH pulse on interstitial glycerol in abdominal and femoral adipose tissue

    Gravhølt, C H; Schmitz, Ole; Simonsen, L; Bülow, J; Christiansen, J S; Møller, N

    concentrations in adipose tissue, and whether there would be regional differences between femoral and abdominal subcutaneous fat, by employing microdialysis for 6 h after administration of GH (200 microgram) or saline intravenously. Subcutaneous adipose tissue blood flow (ATBF) was measured by the local Xenon...... washout method. Baseline of interstitial glycerol was higher in adipose tissue than in blood [220 +/- 12 (abdominal) vs. 38 +/- 2 (blood) micromol/l, P <0.0005; 149 +/- 9 (femoral) vs. 38 +/- 2 (blood) micromol/l, P <0.0005] and higher in abdominal adipose tissue compared with femoral adipose tissue (P <0.......0005). Administration of GH induced an increase in interstitial glycerol in both abdominal and femoral adipose tissue (ANOVA: abdominal, P = 0. 04; femoral, P = 0.03). There was no overall difference in the response to GH in the two regions during the study period as a whole (ANOVA: P = 0.5), but during peak...

  19. GLUT4 defects in adipose tissue are early signs of metabolic alterations in Alms1GT/GT, a mouse model for obesity and insulin resistance.

    Favaretto, Francesca; Milan, Gabriella; Collin, Gayle B; Marshall, Jan D; Stasi, Fabio; Maffei, Pietro; Vettor, Roberto; Naggert, Jürgen K

    2014-01-01

    Dysregulation of signaling pathways in adipose tissue leading to insulin resistance can contribute to the development of obesity-related metabolic disorders. Alström Syndrome, a recessive ciliopathy, caused by mutations in ALMS1, is characterized by progressive metabolic alterations such as childhood obesity, hyperinsulinemia, and type 2 diabetes. Here we investigated the role of Alms1 disruption in AT expansion and insulin responsiveness in a murine model for Alström Syndrome. A gene trap insertion in Alms1 on the insulin sensitive C57BL6/Ei genetic background leads to early hyperinsulinemia and a progressive increase in body weight. At 6 weeks of age, before the onset of the metabolic disease, the mutant mice had enlarged fat depots with hypertrophic adipocytes, but without signs of inflammation. Expression of lipogenic enzymes was increased. Pre-adipocytes isolated from mutant animals demonstrated normal adipogenic differentiation but gave rise to mature adipocytes with reduced insulin-stimulated glucose uptake. Assessment of whole body glucose homeostasis revealed glucose intolerance. Insulin stimulation resulted in proper AKT phosphorylation in adipose tissue. However, the total amount of glucose transporter 4 (SLC4A2) and its translocation to the plasma membrane were reduced in mutant adipose depots compared to wildtype littermates. Alterations in insulin stimulated trafficking of glucose transporter 4 are an early sign of metabolic dysfunction in Alström mutant mice, providing a possible explanation for the reduced glucose uptake and the compensatory hyperinsulinemia. The metabolic signaling deficits either reside downstream or are independent of AKT activation and suggest a role for ALMS1 in GLUT4 trafficking. Alström mutant mice represent an interesting model for the development of metabolic disease in which adipose tissue with a reduced glucose uptake can expand by de novo lipogenesis to an obese state. PMID:25299671

  20. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Methods: Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×105 cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). Results: We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Conclusion: Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering. PMID:27123425

  1. Elucidation of molecular mechanisms of physiological variations between bovine subcutaneous and visceral fat depots under different nutritional regimes.

    Josue Moura Romao

    Full Text Available Adipose tissue plays a critical role in energy homeostasis and metabolism. There is sparse understanding of the molecular regulation at the protein level of bovine adipose tissues, especially within different fat depots under different nutritional regimes. The objective of this study was to analyze the differences in protein expression between bovine subcutaneous and visceral fat depots in steers fed different diets and to identify the potential regulatory molecular mechanisms of protein expression. Subcutaneous and visceral fat tissues were collected from 16 British-continental steers (15.5 month old fed a high-fat diet (7.1% fat, n=8 or a control diet (2.7% fat, n=8. Protein expression was profiled using label free quantification LC-MS/MS and expression of selected transcripts was evaluated using qRT-PCR. A total of 682 proteins were characterized and quantified with fat depot having more impact on protein expression, altering the level of 51.0% of the detected proteins, whereas diet affected only 5.3%. Functional analysis revealed that energy production and lipid metabolism were among the main functions associated with differentially expressed proteins between fat depots, with visceral fat being more metabolically active than subcutaneous fat as proteins associated with lipid and energy metabolism were upregulated. The expression of several proteins was significantly correlated to subcutaneous fat thickness and adipocyte size, indicating their potential as adiposity markers. A poor correlation (r=0.245 was observed between mRNA and protein levels for 9 genes, indicating that many proteins may be subjected to post-transcriptional regulation. A total of 8 miRNAs were predicted to regulate more than 20% of lipid metabolism proteins differentially expressed between fat depots, suggesting that miRNAs play a role in adipose tissue regulation. Our results show that proteomic changes support the distinct metabolic and physiological characteristics

  2. Effects of Platelet-Rich Plasma, Adipose-Derived Stem Cells, and Stromal Vascular Fraction on the Survival of Human Transplanted Adipose Tissue

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-01-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back o...

  3. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a lo...

  4. Roles of FGFs as adipokines in adipose tissue development, remodeling, and metabolism

    NobuyukiItoh

    2014-01-01

    White and brown adipose tissues, which store and burn lipids, respectively, play critical roles in energy homeostasis. Fibroblast growth factors (FGFs) are signaling proteins with diverse functions in development, metabolism, and neural function. Among twenty-two FGFs, FGF1, FGF10, and FGF21 play roles as adipokines, adipocyte-secreted proteins, in the development and function of white and brown adipose tissues. FGF1 is a critical transducer in white adipose tissue remodeling. The PPARγ–F...

  5. Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients

    Mracek, T.; Stephens, N. A.; Gao, D.; Bao, Y.; Ross, J A; Rydén, M; Arner, P; Trayhurn, P.; Fearon, K C H; Bing, C

    2011-01-01

    Background: Profound loss of adipose tissue is a hallmark of cancer cachexia. Zinc-α2-glycoprotein (ZAG), a recently identified adipokine, is suggested as a candidate in lipid catabolism. Methods: In the first study, eight weight-stable and 17 cachectic cancer patients (weight loss ⩾5% in previous 6 months) were recruited. Zinc-α2-glycoprotein mRNA and protein expression were assessed in subcutaneous adipose tissue (SAT), subcutaneous adipose tissue morphology was examined and serum ZAG conce...

  6. Placental restriction of fetal growth decreases IGF1 and leptin mRNA expression in the perirenal adipose tissue of late gestation fetal sheep.

    Duffield, Jaime A; Vuocolo, Tony; Tellam, Ross; Yuen, Bernard S; Muhlhausler, Beverly S; McMillen, I Caroline

    2008-05-01

    Placental restriction (PR) of fetal growth results in a low birth weight and an increased visceral fat mass in postnatal life. We investigated whether PR alters expression of genes that regulate adipogenesis [IGF1, IGF1 receptor (IGF1R), IGF2, IGF2R, proliferator-activated receptor-gamma, retinoid-X-receptor-alpha], adipocyte metabolism (lipoprotein lipase, G3PDH, GAPDH) and adipokine signaling (leptin, adiponectin) in visceral adipose tissue before birth. PR was induced by removal of the majority of endometrial caruncles in nonpregnant ewes before mating. Fetal blood samples were collected from 116 days gestation, and perirenal visceral adipose tissue (PAT) was collected from PR and control fetuses at 145 days. PAT gene expression was measured by quantitative RT-PCR. PR fetuses had a lower weight (PR 2.90 +/- 0.32 kg; control, 5.12 +/- 0.24 kg; P visceral adipose tissue, which may alter the functional development of the perirenal fat depot and contribute to altered leptin signaling in the growth-restricted newborn and the subsequent emergence of an increased visceral adiposity. PMID:18272661

  7. Configuration of Fibrous and Adipose Tissues in the Cavernous Sinus

    Liang, Liang; Gao, Fei; Xu, Qunyuan; Zhang, Ming

    2014-01-01

    Objective Three-dimensional anatomical appreciation of the matrix of the cavernous sinus is one of the crucial necessities for a better understanding of tissue patterning and various disorders in the sinus. The purpose of this study was to reveal configuration of fibrous and adipose components in the cavernous sinus and their relationship with the cranial nerves and vessels in the sinus and meningeal sinus wall. Materials and Methods Nineteen cadavers (8 females and 11 males; age range, 54–89 years; mean age, 75 years) were prepared as transverse (6 sets), coronal (3 sets) and sagittal (10 sets) plastinated sections that were examined at both macroscopic and microscopic levels. Results Two types of the web-like fibrous networks were identified and localized in the cavernous sinus. A dural trabecular network constituted a skeleton-frame in the sinus and contributed to the sleeves of intracavernous cranial nerves III, IV, V1, V2 and VI. A fine trabecular network, or adipose tissue, was the matrix of the sinus and was mainly distributed along the medial side of the intracavernous cranial nerves, forming a dumbbell-shaped adipose zone in the sinus. Conclusions This study revealed the nature, fine architecture and localization of the fine and dural trabecular networks in the cavernous sinus and their relationship with intracavernous cranial nerves and vessels. The results may be valuable for better understanding of tissue patterning in the cranial base and better evaluation of intracavernous disorders, e.g. the growth direction and extent of intracavernous tumors. PMID:24586578

  8. Stromal vascular progenitors in adult human adipose tissue

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Pfeifer, Melanie E.; Meyer, E. Michael; Péault, Bruno; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    Background The in vivo progenitor of culture-expanded mesenchymal-like adipose-derived stem cells (ADSC) remains elusive, owing in part to the complex organization of stromal cells surrounding the small vessels, and the rapidity with which adipose stromal vascular cells adopt a mesenchymal phenotype in vitro. Methods Immunohistostaining of intact adipose tissue was used to identify 3 markers (CD31, CD34, CD146) which together unambiguously discriminate histologically distinct inner and outer rings of vessel-associated stromal cells, as well as capillary and small vessel endothelial cells. These markers were used in multiparameter flow cytometry in conjunction with stem/progenitor markers (CD90, CD117) to further characterize stromal vascular fraction (SVF) subpopulations. Two mesenchymal and two endothelial populations were isolated by high speed flow cytometric sorting, expanded in short term culture and tested for adipogenesis. Results The inner layer of stromal cells in contact with small vessel endothelium (pericytes) was CD146+/α-SMA+/CD90±/CD34−/CD31−; the outer adventitial stromal ring (designated supra adventitial-adipose stromal cells, SA-ASC) was CD146−/α-SMA−/CD90+/CD34+/CD31−. Capillary endothelial cells were CD31+/CD34+/CD90+ (endothelial progenitor), while small vessel endothelium was CD31+/CD34−/CD90− (endothelial mature). Flow cytometry confirmed these expression patterns and revealed a CD146+/CD90+/CD34+/CD31− pericyte subset that may be transitional between pericytes and SA-ASC. Pericytes had the most potent adipogenic potential, followed by the more numerous SA-ASC. Endothelial populations had significantly reduced adipogenic potential compared to unsorted expanded SVF cells. Conclusions In adipose tissue perivascular stromal cells are organized in two discrete layers, the innermost consisting of CD146+/CD34− pericytes, and the outermost of CD146−/CD34+ SA-ASC, both of which have adipogenic potential in culture. A CD146+/CD

  9. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss.

    Giles, Erin D; Steig, Amy J; Jackman, Matthew R; Higgins, Janine A; Johnson, Ginger C; Lindstrom, Rachel C; MacLean, Paul S

    2016-01-01

    Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using (14)C palmitate/oleate and (3)H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  10. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  11. Direct effects of leptin on brown and white adipose tissue.

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin

  12. Have we entered the brown adipose tissue renaissance?

    Ravussin, E.; Kozak, L P

    2009-01-01

    In the 1970s and 1980s, it was observed that rodents could offset excess calories ingested when they were fed a human-like `cafeteria diet'. Although it was erroneously concluded that this so-called diet-induced thermogenesis was because of brown adipose tissue (BAT), it led to efforts to test whether variations in brown fat in humans may explain the susceptibility to obesity. However, from evidence on the inability of ephedrine or beta-3 adrenergic agonists to induce BAT thermogenesis, it wa...

  13. n-3 PUFA: bioavailability and modulation of adipose tissue function

    Kopecký, Jan; Rossmeisl, Martin; Flachs, Pavel; Kuda, Ondřej; Brauner, Petr; Jílková, Zuzana; Staňková, B.; Tvrzická, E.; Bryhn, M.

    2009-01-01

    Roč. 68, č. 4 (2009), s. 361-369. ISSN 0029-6651. [Meeting of the Nutrition Society. Edinburgh, 07.04.2009-08.04.2009] R&D Projects: GA ČR(CZ) GA303/08/0664; GA ČR(CZ) GD305/08/H037 Grant ostatní: EC(XE) LSHM-CT-2004-005272 Institutional research plan: CEZ:AV0Z50110509 Keywords : n-3 PUFA * DHA * adipose tissue Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.321, year: 2009

  14. ß-carotene conversion products and their effects on adipose tissue

    Tourniaire, F.; Gouranton, E.; Lintig, von J.; Keijer, J.; Bonet, M.L.; Amengual, J.; Lietz, G.; Landrier, J.F.

    2009-01-01

    Recent epidemiological data suggest that ß-carotene may be protective against metabolic diseases in which adipose tissue plays a key role. Adipose tissue constitutes the major ß-carotene storage tissue and its functions have been shown to be modulated in response to ß-carotene breakdown products, es

  15. Targeting adipose tissue in the treatment of obesity-associated diabetes.

    Kusminski, Christine M; Bickel, Perry E; Scherer, Philipp E

    2016-09-01

    Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis. PMID:27256476

  16. Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B.

    Digby, J E; Chen, J; Tang, J Y; Lehnert, H; Matthews, R N; Randeva, H S

    2006-10-01

    Orexin-A and orexin-B, via their receptors orexin-1 receptor (OX1R) and orexin-2 receptor (OX2R) have been shown to play a role in the regulation of feeding, body weight, and energy expenditure. Adipose tissue also contributes significantly to the maintenance of body weight by interacting with a complex array of bioactive peptides; however, there are no data as yet on the expression of orexin components in adipose tissue. We, therefore, analyzed the expression of OX1R and OX2R in human adipose tissue and determined functional responses to orexin-A and orexin-B. OX1R and OX2R mRNA expression was detected in subcutaneous (s.c.) and omental adipose tissue and in isolated adipocytes. Protein for OX1R and OX2R was also detected in whole adipose tissue sections and lysates. Treatment with orexin-A, and orexin-B (100 nM, 24 h) resulted in a significant increase in peroxisome proliferator-activated receptors gamma-2 mRNA expression in s.c. adipose tissue (P B treatment (P < 0.05). Glycerol release from omental adipose tissue was also significantly reduced with orexin-A treatment (P < 0.05). These findings demonstrate for the first time the presence of functional orexin receptors in human adipose tissue and suggest a role for orexins in adipose tissue metabolism and adipogenesis. PMID:17065396

  17. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats.

    Tinkov, Alexey A; Popova, Elizaveta V; Polyakova, Valentina S; Kwan, Olga V; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines' levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (prats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity. PMID:25194956

  18. Role of the sympathoadrenergic system in adipose tissue metabolism during exercise in humans

    Stallknecht, Bente; Lorentsen, J; Enevoldsen, L H;

    2001-01-01

    lipolysis. In SCI subjects, the exercise-induced increase in subcutaneous adipose tissue lipolysis was not lower in decentralized than in sympathetically innervated adipose tissue. During exercise the interstitial noradrenaline and adrenaline concentrations were lower in SCI compared with healthy subjects...... clavicular (Cl) and in umbilical (Um) (sympathetically decentralized in SCI) subcutaneous adipose tissue during 1 h of arm cycling exercise at approximately 60 % of the peak rate of oxygen uptake. 3. During exercise, adipose tissue blood flow (ATBF) and interstitial glycerol, lactate and noradrenaline...

  19. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development

    Basarab John A; Moore Stephen S; Dodson Michael V; Jin Weiwu; Guan Le Luo

    2010-01-01

    Abstract Background MicroRNAs (miRNAs), a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis). However, no miRNA to date has been reported to modulate adipogenesis and lipid deposition in beef cattle. Results The expression patterns of 89 miRNAs including four bovine specific miRNAs in subcutaneous adipose tissues from three groups of crossbred steers differing in backfat thi...

  20. Algorithms for muscle oxygenation monitoring corrected for adipose tissue thickness

    Geraskin, Dmitri; Platen, Petra; Franke, Julia; Kohl-Bareis, Matthias

    2007-07-01

    The measurement of skeletal muscle oxygenation by NIRS methods is obstructed by the subcutaneous adipose tissue which might vary between muscle haemoglobin / myoglobin concentrations. First, we demonstrate by comparison with ultrasound imaging that the optical lipid signal peaking at 930 nm is a good predictor of the adipose tissue thickness (ATT). Second, the algorithm is based on measurements of the wavelength dependence of the slope ΔA/Δρ of attenuation A with respect to source detector distance ρ and Monte Carlo simulations which estimate the muscle absorption coefficient based on this slope and the additional information of the ATT. Third, we illustrate the influence of the wavelength dependent transport scattering coefficient of the new algorithm by using the solution of the diffusion equation for a two-layered turbid medium. This method is tested on experimental data measured on the vastus lateralis muscle of volunteers during an incremental cycling exercise under normal and hypoxic conditions (corresponding to 0, 2000 and 4000 m altitude). The experimental setup uses broad band detection between 700 and 1000 nm at six source-detector distances. We demonstrate that the description of the experimental data as judged by the residual spectrum is significantly improved and the calculated changes in oxygen saturation are markedly different when the ATT correction is included.

  1. Changes in lipolysis in rat adipose tissue during continuous irradiation

    Changes in lipolysis were monitored by measuring the release of non-esterified fatty acids (NEFA) and glycerol under basal conditions and after stimulation with L-noradrenaline in rat adipose tissue in the course of continuous irradiation with daily gamma doses of 0.57 Gy (60 R) for 50 days. As compared with the control animals, lipolysis in the irradiated rats was lower on days 3 to 14, and higher on days 21 to 25 to 32 and at the end of the screening period (day 50) of continuous irradiation. The changes in lipolysis in the course of irradiation reflected individual stages of the general adaptation syndrome. Many changes were modified by the effect of non-specific factors due to the experimental field and the starvation prior to the analysis. Changes in lipolysis were connected with changes in the mobilization of fatty acids and the concentrations of NEFA in white adipose tissue with changes in serum lipids predominantly in the period of 21 to 25 days of continuous irradiation. (author)

  2. Characterization of mesenchymal stem cells derived from equine adipose tissue

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  3. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice.

    Bing, C; Russell, S; Becket, E; Pope, M; Tisdale, M J; Trayhurn, P; Jenkins, J R

    2006-10-23

    Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of 'slimmed' adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPalpha), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPalpha and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia. PMID:17047651

  4. Overfeeding energy upregulates peroxisome proliferator-activated receptor (PPAR)γ-controlled adipogenic and lipolytic gene networks but does not affect proinflammatory markers in visceral and subcutaneous adipose depots of Holstein cows.

    Ji, P; Drackley, J K; Khan, M J; Loor, J J

    2014-01-01

    Our objective was to determine the effects of overfeeding energy on gene expression in mesenteric (MAT), omental (OAT), and subcutaneous (SAT) adipose tissue (AT) from nonpregnant and nonlactating Holstein cows. Eighteen cows were randomly assigned to either a low energy [LE, net energy for lactation (NE(L)) = 1.35 Mcal/kg of dry matter (DM)] or high energy (HE, NE(L) = 1.62 Mcal/kg of DM) diets for 8 wk. Cows were then euthanized and subsamples of MAT, OAT, and SAT were harvested for transcript profiling via quantitative PCR of 34 genes involved in lipogenesis, triacylglycerol (TAG) synthesis, lipolysis, lactate signaling, transcription regulation, and inflammation. The interaction of dietary energy and AT depot was only significant for LPL, which indicated a consistent response among the 3 sites. The expression of key genes related to de novo fatty acid synthesis (FASN) and desaturation (SCD) was upregulated by HE compared with LE. Other genes associated with those processes, such as ACLY, ACACA, ELOVL6, FABP4, GPAM, and LPIN1, were numerically upregulated by HE. The expression of lipolytic (PNPLA2 and ABHD5) genes was upregulated and the antilypolytic lactate receptor HCAR1 was downregulated with HE compared with LE. The putative transcription regulator THRSP was upregulated and the transcription regulator PPARG tended to be upregulated by HE, whereas SREBF1 was downregulated. Among adipocytokines, HE tended to upregulate the expression of CCL2, whereas IL6R was downregulated. Overall, results indicated that overfeeding energy may increase AT mass at least in part by stimulating transcription of the network encompassing key genes associated with de novo synthesis. In response to energy overfeeding, the expression of PPARG rather than SREBF1 was closely associated with most adipogenic or lipogenic genes. However, the transcriptional activity of these regulators needs to be verified to confirm their role in the regulation of adipogenesis or lipogenesis in bovine

  5. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  6. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Wojciechowicz, K.; Gledhill, K; Ambler, C.A.; Manning, C B; Jahoda, C.A.B.

    2013-01-01

    The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before bir...

  7. Identification of the Avian RBP7 Gene as a New Adipose-Specific Gene and RBP7 Promoter-Driven GFP Expression in Adipose Tissue of Transgenic Quail

    Ahn, Jinsoo; Shin, Sangsu; Suh, Yeunsu; Park, Ju Yeon; Hwang, Seongsoo; Lee, Kichoon

    2015-01-01

    The discovery of an increasing number of new adipose-specific genes has significantly contributed to our understanding of adipose tissue biology and the etiology of obesity and its related diseases. In the present study, comparison of gene expression profiles among various tissues was performed by analysis of chicken microarray data, leading to identification of RBP7 as a novel adipose-specific gene in chicken. Adipose-specific expression of RBP7 in the avian species was further confirmed at ...

  8. Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity

    Arner, Erik; Mejhert, Niklas; Kulyté, Agné; Balwierz, Piotr J.; Pachkov, Mikhail; Cormont, Mireille; Lorente-Cebrián, Silvia; Ehrlund, Anna; Laurencikiene, Jurga; Hedén, Per; Dahlman-Wright, Karin; Tanti, Jean-François; Hayashizaki, Yoshihide; Rydén, Mikael; Dahlman, Ingrid

    2012-01-01

    In obesity, white adipose tissue (WAT) inflammation is linked to insulin resistance. Increased adipocyte chemokine (C-C motif) ligand 2 (CCL2) secretion may initiate adipose inflammation by attracting the migration of inflammatory cells into the tissue. Using an unbiased approach, we identified adipose microRNAs (miRNAs) that are dysregulated in human obesity and assessed their possible role in controlling CCL2 production. In subcutaneous WAT obtained from 56 subjects, 11 miRNAs were present ...

  9. A New Approach for Adipose Tissue Treatment and Body Contouring Using Radiofrequency-Assisted Liposuction

    Paul, Malcolm; Mulholland, Robert Stephen

    2009-01-01

    A new liposuction technology for adipocyte lipolysis and uniform three-dimensional tissue heating and contraction is presented. The technology is based on bipolar radiofrequency energy applied to the subcutaneous adipose tissue and subdermal skin surface. Preliminary clinical results, thermal monitoring, and histologic biopsies of the treated tissue demonstrate rapid preaspiration liquefaction of adipose tissue, coagulation of subcutaneous blood vessels, and uniform sustained heating of tissue.

  10. Exhaustive exercise increases inflammatory response via Toll like receptor-4 and NF-κBp65 pathway in rat adipose tissue.

    Rosa, José C; Lira, Fábio S; Eguchi, Ricardo; Pimentel, Gustavo D; Venâncio, Daniel P; Cunha, Cláudio A; Oyama, Lila M; De Mello, Marco T; Seelaender, Marília; do Nascimento, Cláudia M Oller

    2011-06-01

    Cytokines (IL-6, IL-10, and TNF-α) are increased after exhaustive exercise in the retroperitoneal adipose tissue (RPAT) and mesenteric adipose tissue (MEAT). An exhaustive acute exercise protocol induces inflammation in adipose tissue that lasts 6 h after the exercise has ended. It is well-established that this protocol increases circulating plasma levels of non-esterified fatty acids (NEFAs) and lipopolysaccharides (LPS), compounds that are important in stimulating signaling via toll like receptor-4 (TLR-4) in different type cells. In the present study, we investigated the regulation of TLR-4 and DNA-binding of nuclear factor-κBp65 (NF-κBp65) in different depots of adipose tissue in rats after exhaustive exercise. Rats were killed by decapitation immediately (E0 group, n=6), 2 (E2 group, n=6), and 6 h (E6 group, n=6) after the exhaustive exercise, which consisted of running on a treadmill (approximately 70% V(O2max) ) for 50 min and then running at an elevated rate that increased at 1 m/min, until exhaustion. The control group (C group, n=6) was not subjected to exercise. In RPAT, TLR-4, MYD-88, and IkBα increased in the E2 group after exercise. MYD-88 and TRAF6 remained increased in the E6 group in comparison with the control group. DNA-binding of NF-κBp65 was not altered. In MEAT, TLR-4, MYD-88, TRAF6, and DNA-binding of NF-κBp65 were increased only in the E6 group. In conclusion, we have shown that increases in pro-inflammatory cytokines in adipose tissue pads after exhaustive exercise may be mediated via TLR-4 signaling, leading to increases in NF-κBp65 binding to DNA in MEAT. PMID:20945364

  11. Effect of training on epinephrine-stimulated lipolysis determined by microdialysis in human adipose tissue

    Stallknecht, Bente; Simonsen, L; Bülow, J; Vinten, Jørgen; Galbo, H

    Trained humans (Tr) have a higher fat oxidation during submaximal physical work than sedentary humans (Sed). To investigate whether this reflects a higher adipose tissue lipolytic sensitivity to catecholamines, we infused epinephrine (0.3 nmol.kg-1.min-1) for 65 min in six athletes and six...... sedentary young men. Glycerol was measured in arterial blood, and intercellular glycerol concentrations in abdominal subcutaneous adipose tissue were measured by microdialysis. Adipose tissue blood flow was measured by 133Xe-washout technique. From these measurements adipose tissue lipolysis was calculated....... During epinephrine infusion intercellular glycerol concentrations were lower, but adipose tissue blood flow was higher in trained compared with sedentary subjects (P <0.05). Glycerol output from subcutaneous tissue (Tr: 604 +/- 322 nmol.100 g-1.min-1; Sed: 689 +/- 203; mean +/- SD) as well as arterial...

  12. Metabolic effects of interleukin-6 in human splanchnic and adipose tissue

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    Interleukin-6 (IL-6) was infused intravenously for 2.5 h in seven healthy human volunteers at a dose giving rise to a circulating IL-6 concentration of approximately 35 ng l(-1). The metabolic effects of this infusion were studied in subcutaneous adipose tissue on the anterior abdominal wall and in...... the IL-6 infusion. It is concluded that IL-6 elicits lipolytic effects in human adipose tissue in vivo, and that IL-6 also has effects on the splanchnic lipid and carbohydrate metabolism....... the splanchnic tissues by the Fick principle after catheterizations of an artery, a subcutaneous vein draining adipose tissue, and a hepatic vein, and measurements of regional adipose tissue and splanchnic blood flows. In control studies without IL-6 infusion subcutaneous adipose tissue metabolism was...

  13. Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity

    Kraunsøe, Regitze; Boushel, Robert Christopher; Hansen, Christina Neigaard;

    2010-01-01

    Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human...... abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples.......05) higher in visceral (0.95 +/- 0.05 and 1.15 +/- 0.06 pmol O(2) s(1) mg(1), respectively) compared with subcutaneous (0.76 +/- 0.04 and 0.98 +/- 0.05 pmol O(2) s(1) mg(1), respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P <0.05) lower mitochondrial respiration...

  14. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development

    Basarab John A

    2010-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs, a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis. However, no miRNA to date has been reported to modulate adipogenesis and lipid deposition in beef cattle. Results The expression patterns of 89 miRNAs including four bovine specific miRNAs in subcutaneous adipose tissues from three groups of crossbred steers differing in backfat thickness were compared using qRT-PCR analysis. Eighty-six miRNAs were detectable in all samples, with 42 miRNAs differing among crossbreds (P Conclusions MiRNA expression patterns differed significantly in response to host genetic components. Approximately 20% of the miRNAs in this study were identified as being correlated with backfat thickness. This result suggests that miRNAs may play a regulatory role in white adipose tissue development in beef animals.

  15. Leucine Deprivation Decreases Fat Mass by Stimulation of Lipolysis in White Adipose Tissue and Upregulation of Uncoupling Protein 1 (UCP1) in Brown Adipose Tissue

    Ying CHENG; Meng, Qingshu; Wang, Chunxia; Li, Houkai; Huang, Zhiying; Chen, Shanghai; Xiao, Fei; Guo, Feifan

    2009-01-01

    OBJECTIVE White adipose tissue (WAT) and brown adipose tissue (BAT) play distinct roles in adaptation to changes in nutrient availability, with WAT serving as an energy store and BAT regulating thermogenesis. We previously showed that mice maintained on a leucine-deficient diet unexpectedly experienced a dramatic reduction in abdominal fat mass. The cellular mechanisms responsible for this loss, however, are unclear. The goal of current study is to investigate possible mechanisms. RESEARCH DE...

  16. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Byung Young Park

    Full Text Available It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2 and MMPs (MMP-2 and MMP-9, whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2 in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  17. Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function.

    Moreno-Indias, Isabel; Oliva-Olivera, Wilfredo; Omiste, Antonio; Castellano-Castillo, Daniel; Lhamyani, Said; Camargo, Antonio; Tinahones, Francisco J

    2016-06-01

    Discordant phenotypes, metabolically healthy obese and unhealthy normal-weight individuals, are always interesting to provide important insights into the mechanistic link between adipose tissue dysfunction and associated metabolic alterations. Macrophages can release factors that impair the proper activity of the adipose tissue. Thus, studying subcutaneous and visceral adipose tissues, we investigated for the first time the differences in monocyte/macrophage infiltration, inflammation, and adipogenesis of normal-weight subjects who differed in their degree of metabolic syndrome. The study included 92 normal-weight subjects who differed in their degree of metabolic syndrome. Their anthropometric and biochemical parameters were measured. RNA from subcutaneous and visceral adipose tissues was isolated, and mRNA expression of monocyte/macrophage infiltration (CD68, CD33, ITGAM, CD163, EMR-1, CD206, MerTK, CD64, ITGAX), inflammation (IL-6, tumor necrosis factor alpha [TNFα], IL-10, IL-1b, CCL2, CCL3), and adipogenic and lipogenic capacity markers (PPARgamma, FABP4) were measured. Taken together, our data provide evidence of a different degree of macrophage infiltration between the adipose tissues, with a higher monocyte/macrophage infiltration in subcutaneous adipose tissue in metabolically unhealthy normal-weight subjects, whereas visceral adipose tissue remained almost unaffected. An increased macrophage infiltration of adipose tissue and its consequences, such as a decrease in adipogenesis function, may explain why both the obese and normal-weight subjects can develop metabolic diseases or remain healthy. PMID:26829067

  18. Contact with existing adipose tissue is inductive for adipogenesis in matrigel.

    Kelly, John L

    2006-07-01

    The effect of adipose tissue on inductive adipogenesis within Matrigel (BD Biosciences) was assessed by using a murine chamber model containing a vascular pedicle. Three-chamber configurations that varied in the access to an adipose tissue source were used, including sealed- and open-chamber groups that had no access and limited access, respectively, to the surrounding adipose tissue, and a sealed-chamber group in which adipose tissue was placed as an autograft. All groups showed neovascularization, but varied in the amount of adipogenesis seen in direct relation to their access to preexisting adipose tissue: open chambers showed strong adipogenesis, whereas the sealed chambers had little or no adipose tissue; adipogenesis was restored in the autograft chamber group that contained 2- to 5-mg fat autografts. These showed significantly more adipogenesis than the sealed chambers with no autograft ( p < 0.01). Autografts with 1mg of fat were capable of producing adipogenesis but did so less consistently than the larger autografts. These findings have important implications for adipose tissue engineering strategies and for understanding de novo production of adipose tissue.

  19. In vivo human lipolytic activity in preperitoneal and subdivisions of subcutaneous abdominal adipose tissue

    Enevoldsen, L H; Simonsen, L; Stallknecht, Bente;

    2001-01-01

    We studied eight normal-weight male subjects to examine whether the lipolytic rate of deep subcutaneous and preperitoneal adipose tissues differs from that of superficial abdominal subcutaneous adipose tissue. The lipolytic rates in the superficial anterior and deep posterior subcutaneous abdomin...

  20. A pilot study of sampling subcutaneous adipose tissue to examine biomarkers of cancer risk

    Campbell, Kristin L.; Makar, Karen W.; Kratz, Mario; Foster-Schubert, Karen E.; McTiernan, Anne; Ulrich, Cornelia M.

    2009-01-01

    Examination of adipose tissue biology may provide important insight into mechanistic links for the observed association between higher body fat and risk of several types of cancer, in particular colorectal and breast cancer. We tested two different methods of obtaining adipose tissue from healthy individuals.

  1. Desensitization of human adipose tissue to adrenaline stimulation studied by microdialysis

    Stallknecht, Bente; Bülow, J; Frandsen, E;

    1997-01-01

    1. Desensitization of fat cell lipolysis to catecholamine exposure has been studied extensively in vitro but only to a small extent in human adipose tissue in vivo. 2. We measured interstitial glycerol concentrations by microdialysis in subcutaneous, abdominal adipose tissue in healthy humans...

  2. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Aimee L. Dordevic

    2015-07-01

    Full Text Available Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD; body mass index (BMI 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water, carbohydrate (maltodextrin or lipid (dairy-cream. Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h, as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1, interleukin 6 (IL-6 and tumor necrosis factor-α (TNF-α increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03 and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001 decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  3. Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans

    Mulla, N A; Simonsen, L; Bülow, J

    2000-01-01

    One purpose of the present experiments was to examine whether the relative workload or the absolute work performed is the major determinant of the lipid mobilization from adipose tissue during exercise. A second purpose was to determine the co-ordination of skeletal muscle and adipose tissue lipid...

  4. Brown adipose tissue. III. Effect of ethanol, nicotine and caffeine exposure.

    Sidlo, J; Zaviacic, M; Trutzová, H

    1996-05-01

    Brown adipose tissue is known to be the most important organ for generating heat in non-shivering thermogenesis. Process of thermogenesis and thermoregulation may be affected by many drugs. The paper deals with actual literary data of effect of ethanol, nicotine and caffeine on brown adipose tissue, heat production and its regulation in experimental animals and in human. PMID:9560910

  5. Adipose tissue lipolysis is increased during a repeated bout of aerobic exercise

    Stich, V; de Glisezinski, I; Berlan, M;

    2000-01-01

    The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate...

  6. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    A. Grefhorst (Aldo); J.C. van den Beukel (Johanna); A.F. van Houten (A.); J. Steenbergen (Jacobie); J.A. Visser (Jenny); A.P.N. Themmen (Axel)

    2015-01-01

    textabstractBackground: In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed

  7. The role of active brown adipose tissue in human metabolism

    Ozguven, Salih; Turoglu, H.T. [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Ones, Tunc [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Kozyatagi/Kadikoy, Istanbul (Turkey); Yilmaz, Yusuf; Imeryuz, Nese [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Internal Medicine, Division of Gastroenterology, Istanbul (Turkey)

    2016-02-15

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing {sup 18}F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the {sup 18}F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  8. The role of active brown adipose tissue in human metabolism

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing 18F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the 18F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  9. Insulin action in adipose tissue in type 1 diabetes

    F Arrieta-Blanco

    2011-02-01

    Full Text Available F Arrieta-Blanco1, JI Botella-Carretero1, P Iglesias1, JA Balsa1, I Zamarrón1, C De la Puerta1, JJ Arrieta2, F Ramos3, C Vázquez1, A Rovira21Unit of Clinical Nutrition and Dietetics, Department of Endocrinology and Nutrition, Hospital Ramóny, Cajal, Madrid, Spain, Irycis, Ciberobn; 2Fundación Jimenez Díaz. Madrid, Spain; 3Hospital Sureste de ArgandaBackground: Insulin action has been reported to be normal in type 1 diabetic patients. However, some studies have reported an insulin resistance state in these patients. The aim of this study was to investigate insulin resistance in a group of type 1 diabetic patients. We studied the insulin action in adipose tissue and analyzed the effects of duration of disease, body mass index (BMI, and glycosylated hemoglobin on insulin action at the receptor and postreceptor levels in adipocytes.Methods: Nine female type 1 diabetic patients with different durations of disease and eight nondiabetic female patients of comparable age and BMI were studied. 125I-insulin binding and U-[14C]-D-glucose transport was measured in a sample of subcutaneous gluteus adipose tissue obtained by open surgical biopsy from each subject.Results: The duration of disease was negatively correlated with both 125I-insulin binding capacity (r = -0.70, P < 0.05 and basal and maximum insulin-stimulated glucose transport (r = -0.87, P < 0.01, and r = -0.88, P < 0.01, respectively. Maximum specific 125I-insulin binding to the receptors in adipocytes was higher in the group of patients with a shorter duration of disease (P < 0.01. Basal and maximum insulin-stimulated glucose transport was significantly higher in the group with less than 5 years of disease (P < 0.01. No correlation was found between BMI and insulin action.Conclusion: Female type 1 diabetic patients have normal insulin action. There is a high glucose uptake in the early phase of the disease, although a longer duration of disease appears to be a contributing factor to a

  10. Vascular and metabolic effects of adrenaline in adipose tissue in type 2 diabetes

    Tobin, L; Simonsen, L; Galbo, H; Bülow, Jens

    2012-01-01

    Objective:The aim was to investigate adipose tissue vascular and metabolic effects of an adrenaline infusion in vivo in subjects with and without type 2 diabetes mellitus (T2DM).Design:Clinical intervention study with 1-h intravenous adrenaline infusion.Subjects:Eight male overweight T2DM subjects...... and eight male weight-matched, non-T2DM subjects were studied before, during and after an 1-h intravenous adrenaline infusion. Adipose tissue blood flow (ATBF) was determined by Xenon wash-out technique, and microvascular volume in the adipose tissue was studied by contrast-enhanced ultrasound imaging....... Adipose tissue fluxes of glycerol, non-esterified fatty acids (NEFA), triacylglycerol and glucose were measured by Fick's principle after catherisation of a radial artery and a vein draining the abdominal, subcutaneous adipose tissue.Results:ATBF increased similarly in both groups during the adrenaline...

  11. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  12. Protein turnover in adipose tissue from fasted or diabetic rats

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  13. Adipose tissue resistin gene expression in DIO and DR rats

    Yuanyuan Zhao; Yuhui Ni; Xirong Guo; Haixia Gong; Xia Chi; Ronghua Chen

    2006-01-01

    Objective: To investigate the expression of resistin gene in diet-induced obesity (DIO) and diet resistance (DR)rats. Methods: DIO and DR models were prepared with male SD rats after 6 weeks feeding by a diet of relatively high fat, sucrose, and caloric content (HE diet). Body-weight, fat mass, and the concentration of serum insulin were measured, and the expression of resistin and Peroxisome proliferator-activated receptory-γ(PPAR-γ) gene in whit adipose tissue (WAT) was also detected by RT-PCR. Results: ①Body weight, fat mass and the concentration of serum insulin were significantly increased in DIO rats and decreased in DR rats. ② The expression of resistin and PPARγ gene was upregulated in DIO group and supressed in DR group, but the expression of resistin was not detectable in all samples within three groups. Conclusion: Resistin may serve as a link between obesity and insulin resistance, but the individual difference is enormous.

  14. Leptin receptor in peripheral adipose tissues of obesity subjects

    To investigate the relationship between leptin receptor and obesity by studying the leptin receptor density Bmax and dissociation constant Kd value in peripheral adipose tissues with different body weight mass index (BMI), leptin receptor density Bmax and Kd value were assayed via radioligand competition method from 71 cases, including 32 classified as obesity, 19 weight excess and 20 normal controls. With the elevation of BMI, the leptin receptor density was significantly higher in obese and weight excess group than that in normal controls (both Pd value, there were no differences among all three groups, suggesting no correlation between the binding ability of leptin to its receptor and BMI. There was negative correlation between BMI and Bmax (r=- 0.76, P<0.01). Conclusion: Leptin receptor density correlated with the BMI in obese cases and it suggested that the down-regulation of leptin receptor may contribute to occurrence of leptin resistance and obesity afterwards

  15. Activation of brown adipose tissue mitochondrial GDP binding sites

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of [3H]-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time

  16. Activation of brown adipose tissue mitochondrial GDP binding sites

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  17. Cellular and molecular basis of adipose tissue development: from stem cells to adipocyte physiology

    Louveau, Isabelle; Perruchot, Marie-Hélène; Gondret, Florence

    2014-01-01

    White adipose tissue plays a key role in the regulation of energy balance in vertebrates. Its primary function is to store and release energy. It is also recognized to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Unlike other tissues, adipose tissue mass has large capacity to expand and can be seen as a dynamic tissue able to adapt to a variety of environmental and genetic factors. The aim of this review...

  18. Adipose tissue gene expression and metabolic health of obese adults.

    Das, S K; Ma, L; Sharma, N K

    2015-05-01

    Obese subjects with a similar body mass index (BMI) exhibit substantial heterogeneity in gluco- and cardiometabolic heath phenotypes. However, defining genes that underlie the heterogeneity of metabolic features among obese individuals and determining metabolically healthy and unhealthy phenotypes remain challenging. We conducted unsupervised hierarchical clustering analysis of subcutaneous adipose tissue transcripts from 30 obese men and women ⩾40 years old. Despite similar BMIs in all subjects, we found two distinct subgroups, one metabolically healthy (group 1) and one metabolically unhealthy (group 2). Subjects in group 2 showed significantly higher total cholesterol (P=0.005), low-density lipoprotein cholesterol (P=0.006), 2-h insulin during oral glucose tolerance test (P=0.015) and lower insulin sensitivity (SI, P=0.029) compared with group 1. We identified significant upregulation of 141 genes (for example, MMP9 and SPP1) and downregulation of 17 genes (for example, NDRG4 and GINS3) in group 2 subjects. Intriguingly, these differentially expressed transcripts were enriched for genes involved in cardiovascular disease-related processes (P=2.81 × 10(-11)-3.74 × 10(-02)) and pathways involved in immune and inflammatory response (P=8.32 × 10(-5)-0.04). Two downregulated genes, NDRG4 and GINS3, have been located in a genomic interval associated with cardiac repolarization in published GWASs and zebra fish knockout models. Our study provides evidence that perturbations in the adipose tissue gene expression network are important in defining metabolic health in obese subjects. PMID:25520251

  19. Adipocyte Hypertrophy, Inflammation and Fibrosis Characterize Subcutaneous Adipose Tissue of Healthy, Non-Obese Subjects Predisposed to Type 2 Diabetes

    A M Josefin Henninger; Björn Eliasson; Jenndahl, Lachmi E.; Ann Hammarstedt

    2014-01-01

    BACKGROUND: The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes. ...

  20. Quantitative Analysis of Lower Leg Adipose Tissue Distribution in Youth with Myelomeningocele.

    Lorenzana, Daniel J; Mueske, Nicole M; Ryan, Deirdre D; Van Speybroeck, Alexander L; Wren, Tishya A L

    2016-07-01

    Children with myelomeningocele have a high prevalence of obesity and excess fat accumulation in their lower extremities. However, it is not known if this is subcutaneous or intramuscular fat, the latter of which has been associated with insulin resistance and metabolic disorders. This study quantified lower leg bone, muscle, and adipose tissue volume in children with myelomeningocele, classifying adipose as subcutaneous or muscle-associated. Eighty-eight children with myelomeningocele and 113 children without myelomeningocele underwent lower leg computed tomographic scans. Subcutaneous and muscle-associated adipose were classified based on location relative to the crural fascia. No differences were seen in subcutaneous adipose. Higher level disease severity was associated with increased muscle-associated adipose volume and decreased muscle volume. Bone volume tended to decrease with higher levels of involvement. Increases in lower leg adiposity in children with myelomeningocele are primarily attributable to accumulation of muscle-associated adipose, which may signify increased risk for metabolic disorders. PMID:26961265

  1. Interleukin-1β regulates fat-liver crosstalk in obesity by auto-paracrine modulation of adipose tissue inflammation and expandability.

    Ori Nov

    Full Text Available The inflammasome has been recently implicated in obesity-associated dys-metabolism. However, of its products, the specific role of IL-1β was clinically demonstrated to mediate only the pancreatic beta-cell demise, and in mice mainly the intra-hepatic manifestations of obesity. Yet, it remains largely unknown if IL-1β, a cytokine believed to mainly function locally, could regulate dysfunctional inter-organ crosstalk in obesity. Here we show that High-fat-fed (HFF mice exhibited a preferential increase of IL-1β in portal compared to systemic blood. Moreover, portally-drained mesenteric fat transplantation from IL-1βKO donors resulted in lower pyruvate-glucose flux compared to mice receiving wild-type (WT transplant. These results raised a putative endocrine function for visceral fat-derived IL-1β in regulating hepatic gluconeogenic flux. IL-1βKO mice on HFF exhibited only a minor or no increase in adipose expression of pro-inflammatory genes (including macrophage M1 markers, Mac2-positive crown-like structures and CD11b-F4/80-double-positive macrophages, all of which were markedly increased in WT-HFF mice. Further consistent with autocrine/paracrine functions of IL-1β within adipose tissue, adipose tissue macrophage lipid content was increased in WT-HFF mice, but significantly less in IL-1βKO mice. Ex-vivo, adipose explants co-cultured with primary hepatocytes from WT or IL-1-receptor (IL-1RI-KO mice suggested only a minor direct effect of adipose-derived IL-1β on hepatocyte insulin resistance. Importantly, although IL-1βKOs gained weight similarly to WT-HFF, they had larger fat depots with similar degree of adipocyte hypertrophy. Furthermore, adipogenesis genes and markers (pparg, cepba, fabp4, glut4 that were decreased by HFF in WT, were paradoxically elevated in IL-1βKO-HFF mice. These local alterations in adipose tissue inflammation and expansion correlated with a lower liver size, less hepatic steatosis, and preserved insulin

  2. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  3. Increased adipose tissue in male and female estrogen receptor-α knockout mice

    Heine, P. A.; Taylor, J.A.; Iwamoto, G. A.; Lubahn, D.B.; Cooke, P S

    2000-01-01

    Estrogen regulates the amount of white adipose tissue (WAT) in females, but its role in males and whether WAT effects involve estrogen receptor-α (ERα) or ERβ were unclear. We analyzed the role of ERα in WAT and brown adipose tissue by comparing these tissues in wild-type (WT) and ERα-knockout (αERKO) male and female mice. Brown adipose tissue weight was similar in αERKO and WT males at all ages. Progressive increases in WAT were seen in αERKO males with advancing ...

  4. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  5. File list: InP.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available InP.Adp.10.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: NoD.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: InP.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available InP.Adp.20.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: NoD.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: InP.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available InP.Adp.50.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: NoD.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  11. The adipose organ at a glance

    Saverio Cinti

    2012-09-01

    Full Text Available The main parenchymal cells of the adipose organ are adipocytes. White adipocytes store energy, whereas brown adipocytes dissipate energy for thermogenesis. These two cell types with opposing functions can both originate from endothelial cells, and co-exist in the multiple fat depots of the adipose organ – a feature that I propose is crucial for this organ’s plasticity. This poster review provides an overview of the adipose organ, describing its anatomy, cytology, physiological function and histopathology in obesity. It also highlights the remarkable plasticity of the adipose organ, explaining theories of adipocyte transdifferentiation during chronic cold exposure, physical exercise or lactation, as well as in obesity. White-to-brown adipocyte transdifferentiation is of particular medical relevance, because animal data indicate that higher amounts of brown adipose tissue are positively associated with resistance to obesity and its co-morbidities, and that ‘browning’ of the adipose organ curbs these disorders.

  12. CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity.

    Morris, David L; Oatmen, Kelsie E; Mergian, Taleen A; Cho, Kae Won; DelProposto, Jennifer L; Singer, Kanakadurga; Evans-Molina, Carmella; O'Rourke, Robert W; Lumeng, Carey N

    2016-06-01

    Obesity activates both innate and adaptive immune responses in adipose tissue, but the mechanisms critical for regulating these responses remain unknown. CD40/CD40L signaling provides bidirectional costimulatory signals between antigen-presenting cells and CD4(+) T cells, and CD40L expression is increased in obese humans. Therefore, we examined the contribution of CD40 to the progression of obesity-induced inflammation in mice. CD40 was highly expressed on adipose tissue macrophages in mice, and CD40/CD40L signaling promoted the expression of antigen-presenting cell markers in adipose tissue macrophages. When fed a high fat diet, Cd40-deficient mice had reduced accumulation of conventional CD4(+) T cells (Tconv: CD3(+)CD4(+)Foxp3(-)) in visceral fat compared with wild-type mice. By contrast, the number of regulatory CD4(+) T cells (Treg: CD3(+)CD4(+)Foxp3(+)) in lean and obese fat was similar between wild-type and knockout mice. Adipose tissue macrophage content and inflammatory gene expression in fat did not differ between obese wild-type and knockout mice; however, major histocompatibility complex class II and CD86 expression on adipose tissue macrophages was reduced in visceral fat from knockout mice. Similar results were observed in chimeric mice with hematopoietic Cd40-deficiency. Nonetheless, neither whole body nor hematopoietic disruption of CD40 ameliorated obesity-induced insulin resistance in mice. In human adipose tissue, CD40 expression was positively correlated with CD80 and CD86 expression in obese patients with type 2 diabetes. These findings indicate that CD40 signaling in adipose tissue macrophages regulates major histocompatibility complex class II and CD86 expression to control the expansion of CD4(+) T cells; however, this is largely dispensable for the development of obesity-induced inflammation and insulin resistance in mice. PMID:26658005

  13. Disruption of Inducible 6-Phosphofructo-2-kinase Ameliorates Diet-induced Adiposity but Exacerbates Systemic Insulin Resistance and Adipose Tissue Inflammatory Response*

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y. Eugene; Ye, Jianping; Chapkin, Robert S.; Wu, Chaodong

    2009-01-01

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3+/− mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high...

  14. Estimating adipose tissue in the chest wall using ultrasonic and alternate 40K and biometric measurements

    The percentage of adipose (fat) tissue in the chest wall must be known to accurately measure Pu in the human lung. Correction factors of 100% or more in x-ray detection efficiency are common. Methods using simple 40K and biometric measurement techniques were investigated to determine the adipose content in the human chest wall. These methods predict adipose content to within 15% of the absolute ultrasonic value. These new methods are discussed and compared with conventional ultrasonic measurement techniques

  15. Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging.

    Gifford, Aliya; Towse, Theodore F; Walker, Ronald C; Avison, Malcolm J; Welch, E Brian

    2016-07-01

    Activated brown adipose tissue (BAT) plays an important role in thermogenesis and whole body metabolism in mammals. Positron emission tomography (PET)-computed tomography (CT) imaging has identified depots of BAT in adult humans, igniting scientific interest. The purpose of this study is to characterize both active and inactive supraclavicular BAT in adults and compare the values to those of subcutaneous white adipose tissue (WAT). We obtained [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET-CT and magnetic resonance imaging (MRI) scans of 25 healthy adults. Unlike [(18)F]FDG PET, which can detect only active BAT, MRI is capable of detecting both active and inactive BAT. The MRI-derived fat signal fraction (FSF) of active BAT was significantly lower than that of inactive BAT (means ± SD; 60.2 ± 7.6 vs. 62.4 ± 6.8%, respectively). This change in tissue morphology was also reflected as a significant increase in Hounsfield units (HU; -69.4 ± 11.5 vs. -74.5 ± 9.7 HU, respectively). Additionally, the CT HU, MRI FSF, and MRI R2* values are significantly different between BAT and WAT, regardless of the activation status of BAT. To the best of our knowledge, this is the first study to quantify PET-CT and MRI FSF measurements and utilize a semiautomated algorithm to identify inactive and active BAT in the same adult subjects. Our findings support the use of these metrics to characterize and distinguish between BAT and WAT and lay the foundation for future MRI analysis with the hope that some day MRI-based delineation of BAT can stand on its own. PMID:27166284

  16. Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    Toh, Shen Yon; Gong, Jingyi; Du, Guoli; Li, John Zhong; Yang, Shuqun; Ye, Jing; Yao, Huilan; Zhang, Yinxin; Xue, Bofu; Li, Qing; Yang, Hongyuan; Wen, Zilong; Li, Peng

    2008-01-01

    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27 −/− mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse st...

  17. Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    Shen Yon Toh; Jingyi Gong; Guoli Du; John Zhong Li; Shuqun Yang; Jing Ye; Huilan Yao; Yinxin Zhang; Bofu Xue; Qing Li; Hongyuan Yang; Zilong Wen; Peng Li

    2008-01-01

    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/-) mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse s...

  18. Microarray Evidences the Role of Pathologic Adipose Tissue in Insulin Resistance and Their Clinical Implications

    Prashant Mathur; Priyanka Jain; Sandeep Kumar Mathur

    2011-01-01

    Clustering of insulin resistance and dysmetabolism with obesity is attributed to pathologic adipose tissue. The morphologic hallmarks of this pathology are adipocye hypertrophy and heightened inflammation. However, it's underlying molecular mechanisms remains unknown. Study of gene function in metabolically active tissues like adipose tissue, skeletal muscle and liver is a promising strategy. Microarray is a powerful technique of assessment of gene function by measuring transcription of large...

  19. Penetration of Moxifloxacin into Healthy and Inflamed Subcutaneous Adipose Tissues in Humans

    Joukhadar, Christian; Stass, Heino; Müller-Zellenberg, Ulrike; Lackner, Edith; Kovar, Florian; Minar, Erich; Müller, Markus

    2003-01-01

    The present study addressed the ability of moxifloxacin to penetrate into healthy and inflamed subcutaneous adipose tissues in 12 patients with soft tissue infections (STIs). Penetration of moxifloxacin into the interstitial space fluid of healthy and inflamed subcutaneous adipose tissues was measured by use of in vivo microdialysis following administration of a single intravenous dosage of 400 mg in six diabetic and six nondiabetic patients with STIs. For the entire study population, the mea...

  20. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?

    Damous, Luciana L.; Nakamuta, Juliana S.; Saturi de Carvalho, Ana ET; Carvalho, Katia Candido; Soares-Jr, José Maria; Simões, Manuel Jesus; Krieger, José Eduardo; Baracat, Edmund Chada

    2015-01-01

    Background A major concern in ovarian transplants is substantial follicle loss during the initial period of hypoxia. Adipose tissue-derived stem cells (ASCs) have been employed to improve angiogenesis when injected into ischemic tissue. This study evaluated the safety and efficacy of adipose tissue-derived stem cells (ASCs) therapy in the freshly grafted ovaries 30 days after injection. Methods Rat ASCs (rASCs) obtained from transgenic rats expressing green fluorescent protein (GFP)-(5 × 104 ...

  1. Activation of prostaglandin E2-EP4 signaling reduces chemokine production in adipose tissue.

    Tang, Eva H C; Cai, Yin; Wong, Chi Kin; Rocha, Viviane Z; Sukhova, Galina K; Shimizu, Koichi; Xuan, Ge; Vanhoutte, Paul M; Libby, Peter; Xu, Aimin

    2015-02-01

    Inflammation of adipose tissue induces metabolic derangements associated with obesity. Thus, determining ways to control or inhibit inflammation in adipose tissue is of clinical interest. The present study tested the hypothesis that in mouse adipose tissue, endogenous prostaglandin E2 (PGE2) negatively regulates inflammation via activation of prostaglandin E receptor 4 (EP4). PGE2 (5-500 nM) attenuated lipopolysaccharide-induced mRNA and protein expression of chemokines, including interferon-γ-inducible protein 10 and macrophage-inflammatory protein-1α in mouse adipose tissue. A selective EP4 antagonist (L161,982) reversed, and two structurally different selective EP4 agonists [CAY10580 and CAY10598] mimicked these actions of PGE2. Adipose tissue derived from EP4-deficient mice did not display this response. These findings establish the involvement of EP4 receptors in this anti-inflammatory response. Experiments performed on adipose tissue from high-fat-fed mice demonstrated EP4-dependent attenuation of chemokine production during diet-induced obesity. The anti-inflammatory actions of EP4 became more important on a high-fat diet, in that EP4 activation suppressed a greater variety of chemokines. Furthermore, adipose tissue and systemic inflammation was enhanced in high-fat-fed EP4-deficient mice compared with wild-type littermates, and in high-fat-fed untreated C57BL/6 mice compared with mice treated with EP4 agonist. These findings provide in vivo evidence that PGE2-EP4 signaling limits inflammation. In conclusion, PGE2, via activation of EP4 receptors, functions as an endogenous anti-inflammatory mediator in mouse adipose tissue, and targeting EP4 may mitigate adipose tissue inflammation. PMID:25510249

  2. Molecular imaging of brown adipose tissue in health and disease

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, 18F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to 18F-FDG, other radiopharmaceuticals such as 99mTc-sestamibi, 123I-metaiodobenzylguanidine (MIBG), 18F-fluorodopa and 18F-14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  3. Organochlorine pesticides and PCBs in human adipose tissues in Poland

    Ludwicki, J.K.; Goralczyk, K. (National Institute of Hygiene, Warsaw (Poland))

    1994-03-01

    Most of the persistent organochlorine (OC) pesticides, excluding lindane, were banned in Poland in 1975/76. The first restrictions concerning the use and marketing of lindane (gamma-HCH) became effective in 1980 and were gradually extended until it's agricultural use was ultimately banned in 1989. Unfortunately, there are no detailed data on the use and release of PCBs to the environment in Poland. The former studies showed that in the late seventies the concentrations of OC pesticides and their metabolites in men reached considerable high levels. Despite of the restrictions or bans of these pesticides in most of the countries of the temperate climate, they still circulate in various food chains and eventually concentrate in man. Many authors claim an uneven distribution of the OC compounds in the population and report different levels in men and women and also some relations between OC compounds levels in fat tissues and age. Environmental contamination also plays an important role in the magnitude of OC compounds levels in man. The aim of this paper is to present the actual concentrations of HCB, p,p[prime]-DDT, p,p[prime]-DDE, isomers of HCH (alpha, beta, gamma), and PCBs in human adipose tissues particularly regarding age and sex as possible factors influencing the levels of these compounds and to contribute to the general discussion on the distribution patterns of the organochlorine compounds in the population. 12 refs., 3 tabs.

  4. Quantum dots for labeling adipose tissue-derived stem cells.

    Yukawa, Hiroshi; Mizufune, Shogo; Mamori, Chiharu; Kagami, Yukimasa; Oishi, Koichi; Kaji, Noritada; Okamoto, Yukihiro; Takeshi, Manabu; Noguchi, Hirofumi; Baba, Yoshinobu; Hamaguchi, Michinari; Hamajima, Nobuyuki; Hayashi, Shuji

    2009-01-01

    Adipose tissue-derived stem cells (ASCs) have a self-renewing ability and can be induced to differentiate into various types of mesenchymal tissue. Because of their potential for clinical application, it has become desirable to label the cells for tracing transplanted cells and for in vivo imaging. Quantum dots (QDs) are novel inorganic probes that consist of CdSe/ZnS-core/shell semiconductor nanocrystals and have recently been explored as fluorescent probes for stem cell labeling. In this study, negatively charged QDs655 were applied for ASCs labeling, with the cationic liposome, Lipofectamine. The cytotoxicity of QDs655-Lipofectamine was assessed for ASCs. Although some cytotoxicity was observed in ASCs transfected with more than 2.0 nM of QDs655, none was observed with less than 0.8 nM. To evaluate the time dependency, the fluorescent intensity with QDs655 was observed until 24 h after transfection. The fluorescent intensity gradually increased until 2 h at the concentrations of 0.2 and 0.4 nM, while the intensity increased until 4 h at 0.8 nM. The ASCs were differentiated into both adipogenic and osteogenic cells with red fluorescence after transfection with QDs655, thus suggesting that the cells retain their potential for differentiation even after transfected with QDs655. These data suggest that QDs could be utilized for the labeling of ASCs. PMID:19775521

  5. Molecular imaging of brown adipose tissue in health and disease

    Bauwens, Matthias [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Maastricht University, Research School NUTRIM, Maastricht (Netherlands); Wierts, Roel; Brans, Boudewijn [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Royen, Bart van; Backes, Walter [MUMC, Department of Medical Imaging, Division of Radiology, Maastricht (Netherlands); Bucerius, Jan [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany); Maastricht University, Research School CARIM, Maastricht (Netherlands); Mottaghy, Felix [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany)

    2014-04-15

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, {sup 18}F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to {sup 18}F-FDG, other radiopharmaceuticals such as {sup 99m}Tc-sestamibi, {sup 123}I-metaiodobenzylguanidine (MIBG), {sup 18}F-fluorodopa and {sup 18}F-14(R,S)-[{sup 18}F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  6. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it

    Foster, Michelle T.; Softic, Samir; Caldwell, Jody; Kohli, Rohit; deKloet, Annette D; Seeley, Randy J.

    2013-01-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance, and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the...

  7. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells

    Hammarstedt Ann

    2012-09-01

    Full Text Available Abstract Background Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver; these include reduced insulin-stimulated glucose transport, reduced expression of GLUT4, altered expression of adipokines, and adipocyte hypertrophy. Animal studies have shown that expansion of adipose tissue alone is not sufficient to cause systemic insulin resistance in the absence of adipose tissue metabolic dysfunction. To determine if this holds true for humans, we studied the relationship between insulin resistance and markers of adipose tissue dysfunction in non-obese individuals. Method 32 non-obese first-degree relatives of Type 2 diabetic patients were recruited. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was measured with the hyperinsulinaemic-euglycaemic clamp. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene/protein expression and adipocyte cell size measurements. Results Our findings show that also in non-obese individuals low insulin sensitivity is associated with signs of adipose tissue metabolic dysfunction characterized by low expression of GLUT4, altered adipokine profile and enlarged adipocyte cell size. In this group, insulin sensitivity is positively correlated to GLUT4 mRNA (R = 0.49, p = 0.011 and protein (R = 0.51, p = 0.004 expression, as well as with circulating adiponectin levels (R = 0.46, 0 = 0.009. In addition, insulin sensitivity is inversely correlated to circulating RBP4 (R = −0.61, 0 = 0.003 and adipocyte cell size (R = −0.40, p = 0.022. Furthermore, these features are inter-correlated and also associated with other clinical features of the metabolic syndrome in the absence of obesity. No association could be found

  8. Mapping, expression and regulation of the TRα gene in porcine adipose tissue.

    Cai, Z-W; Sheng, Y-F; Zhang, L-F; Wang, Y; Jiang, X-L; Lv, Z-Z; Xu, N-Y

    2011-01-01

    Thyroid hormone receptors (TR) are members of the nuclear receptor superfamily. There are at least two TR isoforms, TRα and TRβ. The TRα isoform plays a critical role in mediating the action of thyroid hormone in adipose tissue. We mapped the porcine TRα gene to chromosome 12 p11-p13, by using the ImpRH panel. We examined tissue-localization of TRα and determined expression patterns of TRα in porcine adipose tissue with quantitative real-time PCR. TRα was expressed in all tissues, including heart, liver, spleen, stomach, pancreas, brain, small intestine, skeletal muscle, and subcutaneous adipose tissue. In the adipose tissue, the expression of TRα decreased postnatally. Compared to Yorkshire pigs, Jinhua pigs had significantly lower expression levels of TRα gene in the subcutaneous fat tissue. The expression levels of β2-AR, HSL and ATGL were also significantly lower in Jinhua pigs than in Yorkshire pigs. However, no significant differences in PPARγ and SREBP-1C expression levels were found between Jinhua and Yorkshire pigs. Incubation of porcine adipose tissue explants with high doses of isoproterenol (100 and 1000 nM) significantly increased the expression levels of TRα. We conclude that there is considerable evidence that TRα plays an important role in fat deposition in porcine adipose tissue. PMID:21751158

  9. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis?

    Enrichot, Elvire; Juge-Aubry, Cristiana E; Pernin, Agnès; Pache, Jean-Claude; Velebit, Valdimir; Dayer, Jean-Michel; Meda, Paolo; Chizzolini, Carlo; Meier, Christoph A

    2005-01-01

    Obesity is associated with an increased risk for cardiovascular disease. Although it is known that white adipose tissue (WAT) produces numerous proinflammatory and proatherogenic cytokines and chemokines, it is unclear whether adipose-derived chemotactic signals affect the chronic inflammation in atherosclerosis.

  10. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Aimee L. Dordevic; Pendergast, Felicity J.; Han Morgan; Silas Villas-Boas; Caldow, Marissa K.; Larsen, Amy E.; Andrew J. Sinclair; David Cameron-Smith

    2015-01-01

    Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage ...

  11. IL-6 regulates exercise and training-induced adaptations in subcutaneous adipose tissue in mice

    Brandt, Claus; Jakobsen, Anne Hviid; Hassing, Helle Adser;

    2012-01-01

    Aim: The aim of this study was to test the hypothesis that IL-6 regulates exercise-induced gene responses in subcutaneous adipose tissue in mice. Methods: Four months old male IL-6 whole body knockout (KO) mice and C57B wild-type (WT) mice performed 1h of treadmill exercise, where subcutaneous ad...... regulating exercise and training-induced leptin and PPAR¿ expression in adipose tissue. In addition, while IL-6 is required for TNF-a mRNA reduction in response to acute exercise, IL-6 does not appear to be mandatory for anti-inflammatory effects of exercise training in adipose tissue....

  12. Contribution of skeletal muscle and adipose tissue to adrenaline-induced thermogenesis in man

    Simonsen, L; Stallknecht, B; Bülow, J

    1993-01-01

    Elevated plasma adrenaline is known to increase whole body energy expenditure. We studied the thermogenic effect and the effects on substrate utilization in man during infusion of adrenaline. Two series were performed: in one series skeletal muscle metabolism was investigated and in another series...... subcutaneous adipose tissue metabolism was investigated. In both series Fick's principle was applied. Intravenous infusion increased blood flow, glucose uptake and oxygen uptake in both skeletal muscle and adipose tissue. It is concluded that skeletal muscle contributes about 40% and adipose tissue about 5...

  13. Waves of adipose tissue growth in the genetically obese Zucker fatty rat.

    Jennifer MacKellar

    Full Text Available BACKGROUND: In mammals, calories ingested in excess of those used are stored primarily as fat in adipose tissue; consistent ingestion of excess calories requires an enlargement of the adipose tissue mass. Thus, a dysfunction in adipose tissue growth may be a key factor in insulin resistance due to imbalanced fat storage and disrupted insulin action. Adipose tissue growth requires the recruitment and then the development of adipose precursor cells, but little is known about these processes in vivo. METHODOLOGY: In this study, adipose cell-size probability distributions were measured in two Zucker fa/fa rats over a period of 151 and 163 days, from four weeks of age, using micro-biopsies to obtain subcutaneous (inguinal fat tissue from the animals. These longitudinal probability distributions were analyzed to assess the probability of periodic phenomena. CONCLUSIONS: Adipose tissue growth in this strain of rat exhibits a striking temporal periodicity of approximately days. A simple model is proposed for the periodicity, with PPAR signaling driven by a deficit in lipid uptake capacity leading to the periodic recruitment of new adipocytes. This model predicts that the observed period will be diet-dependent.

  14. Developmental programming, adiposity, and reproduction in ruminants.

    Symonds, M E; Dellschaft, N; Pope, M; Birtwistle, M; Alagal, R; Keisler, D; Budge, H

    2016-07-01

    Although sheep have been widely adopted as an animal model for examining the timing of nutritional interventions through pregnancy on the short- and long-term outcomes, only modest programming effects have been seen. This is due in part to the mismatch in numbers of twins and singletons between study groups as well as unequal numbers of males and females. Placental growth differs between singleton and twin pregnancies which can result in different body composition in the offspring. One tissue that is especially affected is adipose tissue which in the sheep fetus is primarily located around the kidneys and heart plus the sternal/neck region. Its main role is the rapid generation of heat due to activation of the brown adipose tissue-specific uncoupling protein 1 at birth. The fetal adipose tissue response to suboptimal maternal food intake at defined stages of development differs between the perirenal abdominal and pericardial depots, with the latter being more sensitive. Fetal adipose tissue growth may be mediated in part by changes in leptin status of the mother which are paralleled in the fetus. Then, over the first month of life plasma leptin is higher in females than males despite similar adiposity, when fat is the fastest growing tissue with the sternal/neck depot retaining uncoupling protein 1, whereas other depots do not. Future studies should take into account the respective effects of fetal number and sex to provide more detailed insights into the mechanisms by which adipose and related tissues can be programmed in utero. PMID:27173959

  15. Feeding feedlot steers fish oil alters the fatty acid composition of adipose and muscle tissue.

    Wistuba, T J; Kegley, E B; Apple, J K; Rule, D C

    2007-10-01

    Sixteen steers (441±31.7kg initial body weight) consumed two high concentrate diets with either 0 or 3% fish oil to determine the impact of fish oil, an omega-3 fatty acid source, on the fatty acid composition of beef carcasses. Collected tissue samples included the Longissimus thoracis from the 6th to 7th rib section, ground 10th to 12th rib, liver, subcutaneous adipose tissue adjacent to the 12th rib, intramuscular adipose tissue in the 6th to 7th rib sections, perirenal adipose tissue, and brisket adipose tissue. Including fish oil in the diet increased most of the saturated fatty acids (Pniche marketing if there are no deleterious effects on consumer satisfaction. PMID:22061591

  16. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease.

    Fuster, José J; Ouchi, Noriyuki; Gokce, Noyan; Walsh, Kenneth

    2016-05-27

    Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines. PMID:27230642

  17. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α

    Kim Aubin; Meryem Safoine; Maryse Proulx; Marie-Alice Audet-Casgrain; Jean-François Côté; Félix-André Têtu; Alphonse Roy; Julie Fradette

    2015-01-01

    Representative modelling of human adipose tissue functions is central to metabolic research. Tridimensional models able to recreate human adipogenesis in a physiological tissue-like context in vitro are still scarce. We describe the engineering of white adipose tissues reconstructed from their cultured adipose-derived stromal precursor cells. We hypothesize that these reconstructed tissues can recapitulate key functions of AT under basal and pro-inflammatory conditions. These tissues, featuri...

  18. Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats.

    Bai Xue

    Full Text Available Type 2 diabetes (T2DM is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic

  19. Treatment of Rats with a Self-Selected Hyperlipidic Diet, Increases the Lipid Content of the Main Adipose Tissue Sites in a Proportion Similar to That of the Lipids in the Rest of Organs and Tissues

    Romero, María del Mar; Roy, Stéphanie; Pouillot, Karl; Feito, Marisol; Esteve, Montserrat; Grasa, María del Mar; Fernández-López, José-Antonio; Alemany, Marià; Remesar, Xavier

    2014-01-01

    Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1–1.4%, four white AT sites lipid 28–63% of body lipid, and the rest of the body (including muscle) 38–44%. There was a good correlation between AT lipid and body lipid, but lipid in “other organs” was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the ”rest” of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed. PMID:24603584

  20. Depot-specific differences in perilipin and hormone-sensitive lipase expression in lean and obese

    Beylot Michel

    2009-12-01

    Full Text Available Abstract Background Mainly dependent on hormone-sensitive lipase, lipolysis is differently impaired between fat depots in human obesity. Perilipin A expression is a critical element in adipocyte lipolysis. The present study aimed at comparing expression and subcellular distribution of perilipin and hormone-sensitive lipase in two abdominal adipose tissues of lean and obese women. We examined whether regional differences in perilipin expression contribute to impaired lipolytic rates. Methods Abdominal subcutaneous and omental adipose tissues were obtained from six lean and ten obese women. We measured total protein content and relative distribution of hormone-sensitive lipase and perilipin proteins between lipid and non-lipid fractions in tissue homogenates. Hormone-sensitive lipase and perilipin mRNA levels, adipocyte size, basal (non-stimulated and noradrenaline-stimulated lipolysis in isolated adipocytes were determined. Results Adipocytes were significantly larger in the obese versus the lean women and in subcutaneous versus omental fat. Expressed as a function of cell number, basal lipolysis and noradrenaline responsiveness were higher in subcutaneous versus omental adipocytes from the obese women (P Conclusion In both fat depots, a reduced perilipin protein expression was observed in women obesity. Perilipin protein level may contribute to differences in basal lipolysis and in adipocyte size between fat depots and may regulate lipid accumulation in adipocytes. Differences in hormone-sensitive lipase subcellular distribution were reported between fat depots in the obese women.

  1. Adipose tissue and sustainable development: a connection that needs protection

    Angelo eTremblay

    2015-05-01

    Full Text Available Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants (POPs. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health and well-being or global ecological protection.

  2. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome.

    Yuan, Xiaoxue; Hu, Tao; Zhao, Han; Huang, Yuanyuan; Ye, Rongcai; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Zhou, Huiqiao; Dong, Meng; Zhao, Jun; Wang, Haibin; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu; Chen, Zi-Jiang

    2016-03-01

    Polycystic ovary syndrome (PCOS), which is characterized by anovulation, hyperandrogenism, and polycystic ovaries, is a complex endocrinopathy. Because the cause of PCOS at the molecular level is largely unknown, there is no cure or specific treatment for PCOS. Here, we show that transplantation of brown adipose tissue (BAT) reversed anovulation, hyperandrogenism, and polycystic ovaries in a dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplantation into a PCOS rat significantly stabilized menstrual irregularity and improved systemic insulin sensitivity up to a normal level, which was not shown in a sham-operated or muscle-transplanted PCOS rat. Moreover, BAT transplantation, not sham operation or muscle transplantation, surprisingly improved fertility in PCOS rats. Interestingly, BAT transplantation activated endogenous BAT and thereby increased the circulating level of adiponectin, which plays a prominent role in whole-body energy metabolism and ovarian physiology. Consistent with BAT transplantation, administration of adiponectin protein dramatically rescued DHEA-induced PCOS phenotypes. These results highlight that endogenous BAT activity is closely related to the development of PCOS phenotypes and that BAT activation might be a promising therapeutic option for the treatment of PCOS. PMID:26903641

  3. Molecular clock integration of brown adipose tissue formation and function

    Nam, Deokhwa; Yechoor, Vijay K.; Ma, Ke

    2016-01-01

    Abstract The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation.

  4. Measurement of subcutaneous adipose tissue thickness by near-infrared

    Obesity is strongly associated with the risks of diabetes and cardiovascular disease, and there is a need to measure the subcutaneous adipose tissue (SAT) layer thickness and to understand the distribution of body fat. A device was designed to illuminate the body parts by near-infrared (NIR), measure the backscattered light, and predict the SAT layer thickness. The device was controlled by a single-chip microcontroller (SCM), and the thickness value was presented on a liquid crystal display (LCD). There were 30 subjects in this study, and the measurements were performed on 14 body parts for each subject. The paper investigated the impacts of pressure and skin colour on the measurement. Combining with principal component analysis (PCA) and support vector regression (SVR), the measurement accuracy of SAT layer thickness was 89.1 % with a mechanical caliper as reference. The measuring range was 5–11 mm. The study provides a non-invasive and low-cost technique to detect subcutaneous fat thickness, which is more accessible and affordable compared to other conventional techniques. The designed device can be used at home and in community.

  5. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre;

    2011-01-01

    Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in...... women, respectively. Fatty acid patterns with high levels of TFA tended to be positively associated with changes in weight and WC for both sexes. Patterns with high levels of n-6 LC-PUFA tended to be negatively associated with changes in weight and WC in men, and positively associated in women....... Associations with patterns with high levels of n-3 LC-PUFA were dependent on the context of the rest of the fatty acid pattern. Conclusions Adipose tissue fatty acid patterns with high levels of TFA may be linked to weight gain, but patterns with high n-3 LC-PUFA did not appear to be linked to weight loss...

  6. Leptin receptor in peripheral adipose tissues of obese subjects

    Objective: To investigate the relationship between leptin receptor and obesity by studying the leptin receptor density Bmax and dissociation constant Kd in peripheral adipose tissue in subjects with different body weight mass (BMI). Methods: Leptin receptor density Bmax and Kd were assayed via radioligand method in 71 cases, including 32 classified as obese, 19 over-weight and 20 normal control. Results: With the escalating of BMI, the leptin receptor density significantly decreased in obese and over-weight group compared with that in normal control (both Pd values were of no differences among all three groups suggesting no correlation between the binding ability of leptin to its receptor and BMI. A negative correlation between BMI and Bmax (r=-0.76, P<0.01) displayed after all. Conclusion: Leptin receptor density correlates with the BMI in obese cases and it suggests that the down-regulation of leptin receptor may contribute to the occurrence of leptin resistance and obesity after-wards

  7. Central neural control of thermoregulation and brown adipose tissue.

    Morrison, Shaun F

    2016-04-01

    Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. PMID:26924538

  8. Collagen-hyaluronic acid scaffolds for adipose tissue engineering.

    Davidenko, N; Campbell, J J; Thian, E S; Watson, C J; Cameron, R E

    2010-10-01

    Three-dimensional (3-D) in vitro models of the mammary gland require a scaffold matrix that supports the development of adipose stroma within a robust freely permeable matrix. 3-D porous collagen-hyaluronic acid (HA: 7.5% and 15%) scaffolds were produced by controlled freeze-drying technique and crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. All scaffolds displayed uniform, interconnected pore structure (total porosity approximately 85%). Physical and chemical analysis showed no signs of collagen denaturation during the formation process. The values of thermal characteristics indicated that crosslinking occurred and that its efficiency was enhanced by the presence of HA. Although the crosslinking reduced the swelling of the strut material in water, the collagen-HA matrix as a whole tended to swell more and show higher dissolution resistance than pure collagen samples. The compressive modulus and elastic collapse stress were higher for collagen-HA composites. All the scaffolds were shown to support the proliferation and differentiation 3T3-L1 preadipocytes while collagen-HA samples maintained a significantly increased proportion of cycling cells (Ki-67+). Furthermore, collagen-HA composites displayed significantly raised Adipsin gene expression with adipogenic culture supplementation for 8 days vs. control conditions. These results indicate that collagen-HA scaffolds may offer robust, freely permeable 3-D matrices that enhance mammary stromal tissue development in vitro. PMID:20466086

  9. Physiological adaptations in adipose tissue of Brahman vs Angus heifers.

    Sprinkle, J E; Hansard, H S; Warrington, B G; Holloway, J W; Wu, G; Smith, S B

    1998-03-01

    Nonpregnant yearling Brahman (n = 12) and Angus (n = 12) heifers were equally allocated to two dietary treatments in a replicated study to examine responses in lipid metabolism to nutritional treatments consisting of a moderate energy diet (2.0 Mcal ME/kg) fed at maintenance and a 2.5 x maintenance high-energy diet (2.4 Mcal ME/kg) fed for 30 d. In vitro lipogenesis and the activities of lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) were determined in perianal subcutaneous adipose tissue biopsies at the start and end of the trial. At the start of the trial, breeds had similar (P > .10) rates of lipogenesis and LPL activity. Brahman had greater (P Angus at the start of the trial and tended (P .10) HSL activity. Heifers on the high-energy, higher-intake diet had greater lipogenesis (P .10) rates of lipogenesis at the end of the trial. When adjusted for BCS nested within breed, Brahman had greater (P Angus. PMID:9535333

  10. Clinical Evaluation of Extracellular ADMA Concentrations in Human Blood and Adipose Tissue

    Marcus May

    2014-01-01

    Full Text Available Circulating asymmetrical dimethylarginine (ADMA, an endogenous inhibitor of nitric oxide synthesis, has been proposed as a biomarker for clinical outcome. Dimethylarginine dimethylaminohydrolase (DDAH is the main enzyme responsible for ADMA metabolism and elimination. Adipose tissue ADMA concentrations and DDAH activity and their role in diabetes and obesity have not yet been investigated. In this study, we evaluated clinical microdialysis in combination with a sensitive analytical method (GC-MS/MS to measure ADMA concentrations in extracellular fluid. Adipose tissue ADMA concentrations were assessed before and during an oral glucose tolerance test in lean healthy subjects and subjects with diabetes (n = 4 each, and in morbidly obese subjects before and after weight loss of 30 kg (n = 7. DDAH activity was determined in subcutaneous and visceral adipose tissue obtained during laparoscopic surgery (n = 5 paired samples. Mean interstitial ADMA concentrations did not differ between study populations (healthy 0.17 ± 0.03 µM; diabetic 0.21 ± 0.03 µM; morbidly obese 0.16 ± 0.01 and 0.17 ± 0.01 µM before and after weight loss, respectively. We did not observe any response of interstitial ADMA concentrations to the oral glucose challenge. Adipose tissue DDAH activity was negligible compared to liver tissue. Thus, adipose tissue ADMA plays a minor role in NO-dependent regulation of adipose tissue blood flow and metabolism.

  11. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

    Stallknecht, B; Larsen, J J; Mikines, K J; Simonsen, L; Bülow, J; Galbo, H

    2000-01-01

    Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men...... [insulin infusion rates: 10,000 (step I), 20,000 (step II), and 150,000 (step III) microU x min(-1) x m(-2)]. Glucose and glycerol concentrations were measured in arterial blood and also by microdialysis in interstitial fluid in periumbilical, subcutaneous adipose tissue and in quadriceps femoris muscle...... (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration...

  12. IMPROVED RECOVERY OF HEXACHLOROBENZENE IN ADIPOSE TISSUE WITH A MODIFIED MICRO MULTIRESIDUE PROCEDURE

    Using the described methodology the recovery of hexachlorobenzene from adipose tissue was significantly increased over that normally obtained with other multiresidue procedures. The recovery of other commonly encountered chlorinated hydrocarbon pesticides was not affected nor was...

  13. Investigation of the mechanisms that influence the accretion of bovine intramuscular and subcutaneous adipose tissue

    The understanding of the mechanisms that differ between breeds of cattle and their ability to deposit intramuscular adipose tissue is imperative to profitable beef production. Thus, the interactions among breeds, metabolic substrates and specific hormones in bovine intramuscular and subcutaneous adipose tissue were investigated. Subcutaneous and intramuscular adipose tissues were obtained from 10 Angus and 9 Santa Gertrudis steers immediately postmortem. The adipose tissues were incubated for 2 h and 48 h with and without 1 mU/ml insulin and 30 mg/ml bovine serum albumin (BSA) to measure the incorporation of 14C-labeled acetate and glucose into lipid fractions. At the same chronological age, Angus steers had a more youthful lean maturity score, higher USDA marbling scores and higher USDA quality grades than carcasses from Santa Gertrudis steers

  14. Long-term allergen exposure induces adipose tissue inflammation and circulatory system injury.

    Jung, Chien-Cheng; Su, Huey-Jen

    2016-05-01

    The purpose of this study was to study whether allergen exposure can induce inflammation and lower the anti-inflammation levels in serum and in adipose tissues, and further develop cardiovascular injury. Our data showed that heart rate was significantly higher in the OVA-challenged mice compared to control mice. Moreover, there were higher expressions of pro-inflammation genes in the OVA-challenged mice in adipose tissues, and the expressions of anti-inflammation genes were lower. The levels of inflammation mediators were associated in serum and adipose tissues. The level of circulatory injury lactate dehydrogenase was significantly associated with the levels of E-selectin, resistin and adiponectin in the serum. The hematoxylin and eosin and immunohistochemistry stains indicated the OVA-challenged mice had higher levels of inflammation. In summary, the current study demonstrated allergen exposure can cause cardiovascular injury, and inflammatory mediators in adipose tissues play an important role in the pathogenesis of cardiovascular injury. PMID:27004794

  15. Prolactin suppresses malonyl-CoA concentration in human adipose tissue

    Nilsson, L. A.; Roepstorff, Carsten; Kiens, Bente;

    2009-01-01

    Prolactin is best known for its involvement in lactation, where it regulates mechanisms that supply nutrients for milk production. In individuals with pathological hyperprolactinemia, glucose and fat homeostasis have been reported to be negatively influenced. It is not previously known, however, ...... lipogenesis could contribute to an insulin resistant state with consequences for the health......., whether prolactin regulates lipogenesis in human adipose tissue. The aim of this study was to investigate the effect of prolactin on lipogenesis in human adipose tissue in vitro. Prolactin decreased the concentration of malonyl-CoA, the product of the first committed step in lipogenesis, to 77......+/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue as a...

  16. Interstitial concentrations of adipokines in subcutaneous abdominal and femoral adipose tissue

    Nielsen, Ninna Bo; Højbjerre, Lise; Sonne, Mette P;

    2009-01-01

    Adipokines play important regulatory roles in the pathophysiology of obesity and insulin resistance. We measured plasma and interstitial concentrations of the adipokines adiponectin, resistin, leptin, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and interleukin-8 (IL-8) in...... subcutaneous, abdominal and femoral adipose tissue using calibrated, large-pore microdialysis technique in 8 healthy, lean men on 2 experimental days. The interstitial leptin concentration was 2.5-fold higher in subcutaneous, femoral than abdominal adipose tissue (P<0.05), but no regional differences were...... found for the remaining adipokines (P>0.05). Adiponectin and leptin concentrations were higher in plasma than subcutaneous adipose tissue (approximately 25-fold and approximately 2-fold, respectively, P<0.05), whereas MCP-1, IL-6 and IL-8 concentrations were higher in subcutaneous adipose tissue than...

  17. The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance

    Chmelař, Jindřich; Chung, K.-J.; Chavakis, T.

    2013-01-01

    Roč. 109, č. 3 (2013), s. 399-406. ISSN 0340-6245 Institutional support: RVO:60077344 Keywords : Obesity * adipose tissue * inflammation * review * leukocytes Subject RIV: EC - Immunology Impact factor: 5.760, year: 2013

  18. The expression of testosterone converting enzymes in adipose tissue of polycystic ovary syndrome rat mode

    王丽华

    2013-01-01

    Objective To establish a polycystic ovary syndrome(PCOS) rat model and compare the expression of testosterone converting enzymes in adipose tissue of PCOS rat with that of controls.Methods 21-day-old female SD

  19. Investigation of the mechanisms that influence the accretion of bovine intramuscular and subcutaneous adipose tissue

    Miller, M.F.

    1987-01-01

    The understanding of the mechanisms that differ between breeds of cattle and their ability to deposit intramuscular adipose tissue is imperative to profitable beef production. Thus, the interactions among breeds, metabolic substrates and specific hormones in bovine intramuscular and subcutaneous adipose tissue were investigated. Subcutaneous and intramuscular adipose tissues were obtained from 10 Angus and 9 Santa Gertrudis steers immediately postmortem. The adipose tissues were incubated for 2 h and 48 h with and without 1 mU/ml insulin and 30 mg/ml bovine serum albumin (BSA) to measure the incorporation of /sup 14/C-labeled acetate and glucose into lipid fractions. At the same chronological age, Angus steers had a more youthful lean maturity score, higher USDA marbling scores and higher USDA quality grades than carcasses from Santa Gertrudis steers.

  20. Loss of subcutaneous adipose tissue in HIV-associated lipodystrophy is not due to accelerated apoptosis.

    Mynarcik, Dennis; Wei, Lin-Xiang; Komaroff, Eugene; Ferris, Robert; McNurlan, Margaret; Gelato, Marie

    2005-01-01

    HIV-associated lipodystrophy is characterized by a loss of adipose tissue from the subcutaneous compartment. Previously reported data suggested that this loss of adipose tissue was the result of an increased rate of apoptosis in subcutaneous adipose tissue. The present study examined the rate of apoptosis in subcutaneous adipose tissue with a sensitive ligase-mediated polymerase chain reaction technique to amplify DNA ladders. Individuals with HIV lipodystrophy were compared with HIV-infected subjects without lipodystrophy and subjects without HIV disease. Although apoptosis was observed in subjects with HIV lipodystrophy, there was no difference in the frequency of individuals with apoptosis among those with HIV lipodystrophy (10/22), those with HIV but no lipodystrophy (13/25), and subjects without HIV disease (13/27). PMID:15608525

  1. Different modulation by dietary restriction of adipokine expression in white adipose tissue sites in the rat

    Esteve Montserrat

    2009-07-01

    Full Text Available Abstract Background White adipose tissue (WAT is a disperse organ acting as energy storage depot and endocrine/paracrine controlling factor in the management of energy availability and inflammation. WAT sites response under energy-related stress is not uniform. In the present study we have analyzed how different WAT sites respond to limited food restriction as a way to better understand the role of WAT in the pathogenesis of the metabolic syndrome. Methods Overweight male rats had their food intake reduced a 40% compared with free-feeding controls. On day ten, the rats were killed; circulating glucose, insulin, leptin, adiponectin, triacylglycerols and other parameters were measured. The main WAT sites were dissected: mesenteric, retroperitoneal, epididymal and subcutaneous inguinal, which were weighed and frozen. Later all subcutaneous WAT was also dissected and weighed. Samples were used for DNA (cellularity analysis and mRNA extraction and semiquantitarive RT-PCR analysis of specific cytokine gene expressions. Results There was a good correlation between serum leptin and cumulative WAT leptin gene mRNA, but not for adiponectin. Food restriction reduced WAT size, but not its DNA content (except for epididymal WAT. Most cytokines were correlated to WAT site weight, but not to DNA. There was WAT site specialization in the differential expression (and probably secretion of adipokines: subcutaneous WAT showed the highest concentration for leptin, CD68 and MCP-1, mesenteric WAT for TNFα (and both tissues for the interleukins 1β and 6; resistin was highly expressed in subcutaneous and retroperitoneal WAT. Conclusion Food restriction induced different patterns for mesenteric and the other WAT sites, which may be directly related to both the response to intestine-derived energy availability, and an inflammatory-related response. However, retroperitoneal WAT, and to a lower extent, subcutaneous and epididymal, reacted decreasing the expression of

  2. Adipocyte macrophage colony-stimulating factor is a mediator of adipose tissue growth.

    Levine, J. A.; Jensen, M.D.; Eberhardt, N L; O'Brien, T.

    1998-01-01

    Adipose tissue growth results from de novo adipocyte recruitment (hyperplasia) and increased size of preexisting adipocytes. Adipocyte hyperplasia accounts for the severalfold increase in adipose tissue mass that occurs throughout life, yet the mechanism of adipocyte hyperplasia is unknown. We studied the potential of macrophage colony-stimulating factor (MCSF) to mediate adipocyte hyperplasia because of the profound effects MCSF exerts on pluripotent cell recruitment and differentiation in o...

  3. Differential co-expression analysis of obesity-associated networks in human subcutaneous adipose tissue

    Walley, A J; Jacobson, P.; Falchi, M.; Bottolo, L.; Andersson, J.C.; Petretto, E; Bonnefond, A.; Vaillant, E; Lecoeur, C; Vatin, V.; Jernas, M; Balding, D; Petteni, M.; Park, Y S; Aitman, T

    2011-01-01

    Objective To use a unique obesity-discordant sib-pair study design to combine differential expression analysis, expression quantitative trait loci (eQTLs) mapping, and a co-expression regulatory network approach in subcutaneous human adipose tissue to identify genes relevant to the obese state. Study design Genome-wide transcript expression in subcutaneous human adipose tissue was measured using Affymetrix U133+2.0 microarrays and genomewide genotyping data was obtained using an Applied Biosy...

  4. Proteome differences associated with fat accumulation in bovine subcutaneous adipose tissues

    Basarb John A; Dodson Michael V; Basu Urmila; Zhao Yong; Guan Le

    2010-01-01

    Abstract Background The fat components of red meat products have been of interest to researchers due to the health aspects of excess fat consumption by humans. We hypothesized that differences in protein expression have an impact on adipose tissue formation during beef cattle development and growth. Therefore, in this study we evaluated the differences in the discernable proteome of subcutaneous adipose tissues of 35 beef crossbred steers [Charolais × Red Angus (CHAR) (n = 13) and Hereford × ...

  5. Influence of different dietary fats on triacylglycerol deposition in rat adipose tissue

    Perona, Javier S.; Portillo, María Puy; Macarulla, M. Teresa; Tueros, Ana I.; Ruiz-Gutiérrez, Valentina

    2000-01-01

    It has been demonstrated that triacylglycerol (TAG) mobilization from adipose tissue is selective and depends on fatty acid (FA) chain length, unsaturation and positional isomerism. The present study was performed to determine the influence of dietary fat on the composition of TAG stored in rat perirenal and subcutaneous adipose tissues. These results may provide information on the susceptibility of stored TAG to hydrolysis and further mobilization, and may help to establish an interrelations...

  6. Gene expression profiling reveals distinct features of various porcine adipose tissues

    Zhou, Chaowei; Zhang, Jie; Ma, Jideng; Jiang, Anan; Tang, Guoqing; Mai, Miaomiao; Zhu, Li; Bai, Lin; Li, Mingzhou; Li, Xuewei

    2013-01-01

    Background The excessive accumulation of body fat is a major risk factor to develop a variety of metabolic diseases. To investigate the systematic association between the differences in gene expression profiling and adipose deposition, we used pig as a model, and measured the gene expression profiling of six variant adipose tissues in male and females from three pig breeds which display distinct fat level. Results We identified various differential expressed genes among breeds, tissues and be...

  7. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol

    Mehmet Bilgehan Pektas; Halit Bugra Koca; Gokhan Sadi; Fatma Akar

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin ...

  8. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus

    Azeez, Odunayo Ibraheem; Meintjes, Roy; Chamunorwa, Joseph Panashe

    2014-01-01

    The fat body in invertebrates was shown to participate in energy storage and homeostasis, apart from its other roles in immune mediation and protein synthesis to mention a few. Thus, sharing similar characteristics with the liver and adipose tissues in vertebrates. However, vertebrate adipose tissue or fat has been incriminated in the pathophysiology of metabolic disorders due to its role in production of pro-inflammatory cytokines. This has not been reported in the insect fat body. The link ...

  9. Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells

    Sarasa Bharati Arumugam; Omana A Trentz; Devi Arikketh; Vijayalakshmi Senthinathan; Barry Rosario; P. V. A Mohandas

    2011-01-01

    Background: Bone marrow transplantation is already an established therapy, which is now widely used in medicine to treat leukemia, lymphoma, and several inherited blood disorders. The culture of multilineage cells from easily available adipose tissue is another source of multipotent mesenchymal stem cells, and is referred to as adipose tissue-derived stem cells (ADSCs). While ADSCs are being used to treat various conditions, some lacuna exists regarding the specific proteins in these. It was ...

  10. Isolation, culturing and characterization of rat adipose tissue-derived mesenchymal stem cells: a simple technique

    NİYAZ, Mehmet; Özer Aylin GÜRPINAR; GÜNAYDIN, Serdar; Onur, Mehmet Ali

    2012-01-01

    In this study, our aim was to develop a new simple technique for isolation of mesenchymal stem cells from adipose tissue. For this purpose, mesenchymal stem cells were isolated from rat adipose tissue by using the primary explant culture technique. When the cells became confluent, they were passaged 4 times by using the standard trypsinization method with trypsin/EDTA solution. Cells at second passage were characterized by using immunofluorescence staining against CD13 and CD29 markers. The r...

  11. Adipose tissue stem cells meet preadipocyte commitment: going back to the future[S

    Cawthorn, William P; Erica L. Scheller; MacDougald, Ormond A.

    2012-01-01

    White adipose tissue (WAT) is perhaps the most plastic organ in the body, capable of regeneration following surgical removal and massive expansion or contraction in response to altered energy balance. Research conducted for over 70 years has investigated adipose tissue plasticity on a cellular level, spurred on by the increasing burden that obesity and associated diseases are placing on public health globally. This work has identified committed preadipocytes in the stromal vascular fraction o...

  12. Adipose tissue dysfunction and cardiometabolic risk. Ex vitro, in vivo and clinical studies

    Kranendonk, M.E.G.

    2014-01-01

    While the obesity epidemic develops at an alarming rate, scientifically we are still far behind with regard to diagnostic and therapeutic actions. In this thesis, we aimed to explore current and novel pathways in adipose tissue dysfunction, as a result of obesity, and investigated how they might contribute to metabolic and cardiovascular disease. In chapter 2, current knowledge of pathophysiological mechanisms linking abdominal adipose tissue to obesity-related metabolic dysfunction is review...

  13. Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue

    Hoffmann, Linda S.; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W.C.; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander

    2015-01-01

    Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimu...

  14. Evidence for the ectopic synthesis of melanin in human adipose tissue

    Randhawa, Manpreet; Huff, Tom; Valencia, Julio C.; Younossi, Zobair; Chandhoke, Vikas; Hearing, Vincent J.; Baranova, Ancha

    2009-01-01

    Melanin is a common pigment in animals. In humans, melanin is produced in melanocytes, in retinal pigment epithelium (RPE) cells, in the inner ear, and in the central nervous system. Previously, we noted that human adipose tissue expresses several melanogenesis-related genes. In the current study, we confirmed the expression of melanogenesis-related mRNAs and proteins in human adipose tissue using real-time polymerase chain reaction and immunohistochemical staining. TYR mRNA signals were also...

  15. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    Grefhorst, Aldo; van den Beukel, Johanna C; van Houten, E Leonie AF; Steenbergen, Jacobie; Visser, Jenny A.; Themmen, Axel PN

    2015-01-01

    Background In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed in BAT and are involved in BAT activity. We hypothesized that differential expression of BMPs and FGFs might contribute to sex differences in BAT activity. Methods We investigated the expression of BMPs and FG...

  16. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis

    Fisher, ffolliott M.; Kleiner, Sandra; Douris, Nicholas; Fox, Elliott C.; Mepani, Rina J.; Verdeguer, Francisco; Wu, Jun; Kharitonenkov, Alexei; Flier, Jeffrey S.; Maratos-Flier, Eleftheria; Spiegelman, Bruce M.

    2012-01-01

    Brown adipose tissue (BAT) can protect against hypothermia and obesity by using lipids to produce heat. In this study, Spiegelman and colleagues studied FGF21 control of thermogenesis in mice. The authors used gain- and loss-of-function experiments to demonstrate that FGF21 induces a brown fat phenotype in white adipose tissues. In addition, they found that FGF21 is required for the adaptive thermogenic response of mice by increasing PGC-1α protein levels, independent of its transcription. Th...

  17. Exercise protects against obesity-induced endothelial dysfunction via promoting perivascular adipose tissue browning

    Zhong, Cheng

    2015-01-01

    Overweight and obesity have reached epidemics worldwide. Obesity represents the independent risk factor for a serious of diseases including cardiovascular diseases. Exercise is one of the most efficient ways to prevent or delay the onset of cardiovascular diseases. But the detailed mechanism is still poorly understood. Perivascular adipose tissue (PVAT) is the adipose tissue surrounding the blood vessels. Emerging evidence has shown that PVAT plays an active role in modulating vascular functi...

  18. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue

    Yin, Jun; Gao, Zhanguo; He, Qing; Zhou, Dequan; Guo, ZengKui; Ye, Jianping

    2008-01-01

    Recent studies suggest that adipose tissue hypoxia (ATH) may contribute to endocrine dysfunction in adipose tissue of obese mice. In this study, we examined hypoxia's effects on metabolism in adipocytes. We determined the dynamic relationship of ATH and adiposity in ob/ob mice. The interstitial oxygen pressure (Po2) was monitored in the epididymal fat pads for ATH. During weight gain from 39.5 to 55.5 g, Po2 declined from 34.8 to 20.1 mmHg, which are 40–60% lower than those in the lean mice. ...

  19. Monitoring of temperature-mediated adipose tissue phase transitions by refractive-index measurements

    Yanina, I. Yu.; Popov, A. P.; Bykov, A. V.; Tuchin, V. V.

    2014-10-01

    Monitoring of temperature-mediated adipose tissue phase transitions were studied in vitro using an Abbe refractometer. The 1-2-mm thick porcine fat tissues slices were used in the experiments. The observed change in the tissue was associated with several phase transitions of lipid components of the adipose tissue. It was found that overall heating of a sample from the room to higher temperature led to more pronounced and tissue changes in refractive index if other experimental conditions were kept constant. We observed an abrupt change in the refractive index in the temperature range of 37-60 °C.

  20. Characterization and Multilineage Differentiation of Domestic and Black-Footed Cat Mesenchymal Stromal/Stem Cells from Abdominal and Subcutaneous Adipose Tissue.

    Gómez, Martha C; Qin, Qian; Biancardi, Monica N; Galiguis, Jason; Dumas, Cherie; MacLean, Robert A; Wang, Guoshun; Pope, C Earle

    2015-10-01

    Transplantation of mesenchymal stem cells (MSCs) isolated from bone marrow or adipose tissue is emerging as a promising tool for cell replacement therapy and regenerative medicine in domestic and endangered animal species. Defining the differentiation capability of adipose-derived mesenchymal stromal/stem cells (AMSCs) collected from different depot sites of adipose tissue will be essential for developing strategies for cell replacement therapy. In the present study, we compared the biological characteristics of domestic cat AMSCs isolated from visceral fat of the abdominal cavity (AB) with AMSCs from subcutaneous (SQ) tissue, and the functional capability of domestic and black-footed cat (Felis nigripes) AMSCs to differentiate into other cell types. Our results showed that both domestic and black-footed cat adipose-derived stromal vascular fractions contained AMSCs. Both domestic cat AB- and SQ-AMSCs showed important clonogenic ability and the minimal MSC immunophenotype as defined by the International Society for Cellular Therapy in humans. However, domestic cat AB-AMSCs had higher percentages of cells positive for MSCs-associated cluster of differentiation (CD) markers CD90(+) and CD105(+) (92% and 80%, respectively) than those of SQ-AMSCs (77% and 58%, respectively). Although these results may suggest that AB-AMSCs may be more multipotent than SQ-AMSCs, both types of cells showed similar expression of pluripotent genes Oct-4 and Klf4, except for higher expression of Nanog than in AB-AMSCs, and equivalent in vitro multilineage differentiation. Under appropriate stimuli, the black-footed cat and both domestic cat AB- and SQ-AMSCs differentiated not only toward mesoderm cell lineages but also toward ectoderm cell lineage, such as neuron cell-like cells. Black-footed cat AMSCs had more capability to differentiate toward chondrocytes. These results suggest that the defined AMSC population (regardless of site of collection) could potentially be employed as a

  1. Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance

    Jones, Julie R.; Barrick, Cordelia; Kim, Kyoung-Ah; Lindner, Jill; Blondeau, Bertrand; FUJIMOTO, Yuka; Shiota, Masakazu; Kesterson, Robert A.; Kahn, Barbara B.; Magnuson, Mark A.

    2005-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) plays a crucial role in adipocyte differentiation, glucose metabolism, and other physiological processes. To further explore the role of PPARγ in adipose tissues, we used a Cre/loxP strategy to generate adipose-specific PPARγ knockout mice. These animals exhibited marked abnormalities in the formation and function of both brown and white adipose tissues. When fed a high-fat diet, adipose-specific PPARγ knockout mice displayed diminished wei...

  2. Adipogenic differentiation of scaffold-bound human adipose tissue-derived stem cells (hASC) for soft tissue engineering

    Adipose tissue engineering, instead of tissue substitution, often uses autologous adipose tissue-derived stem cells (hASC). These cells are known to improve graft integration and to support neovascularization of scaffolds when seeded onto biomaterials. In this study we thought to engineer adipose tissue using scaffold-bound hASC, since they can be differentiated into the adipocyte cell lineage and used for soft tissue regeneration. We show here by microscopy and gene expression of the peroxysome proliferator-activated receptor gene (PPARγ2) that hASC growing on polypropylene fibrous scaffolds as well as on three-dimensional nonwoven scaffolds can be turned into adipose tissue within 19 days. Freshly isolated hASC displayed a higher differentiation potential than hASC cultured for eight passages. In addition, we proved a modified alginate microcapsule to directly induce adipogenic differentiation of incorporated hASC. The results may help to improve long-term success of adipose tissue regeneration, especially for large-scale soft tissue defects, and support the development of cell–scaffold combinations which can be shaped individually and directly induce the adipogenic differentiation of incorporated hASC at the site of implantation. (paper)

  3. Adiposity, lipogenesis, and fatty acid composition of subcutaneous and intramuscular adipose tissues of Brahman and Angus crossbred cattle.

    Campbell, E M G; Sanders, J O; Lunt, D K; Gill, C A; Taylor, J F; Davis, S K; Riley, D G; Smith, S B

    2016-04-01

    The objective of this study was to demonstrate differences in aspects of adipose tissue cellularity, lipid metabolism, and fatty and cholesterol composition in Angus and Brahman crossbred cattle. We hypothesized that in vitro measures of lipogenesis would be greater in three-fourths Angus progeny than in three-fourths Brahman progeny, especially in intramuscular (i.m.) adipose tissue. Progeny ( = 227) were fed a standard, corn-based diet for approximately 150 d before slaughter. Breed was considered to be the effect of interest and was forced into the model. There were 9 breed groups including all 4 kinds of three-fourths Angus calves: Angus bulls Angus-sired F cows ( = 32), Angus bulls Brahman-sired F cows ( = 20), Brahman-sired F bulls Angus cows ( = 24), and Angus-sired F bulls Angus cows ( = 20). There were all 4 kinds of three-fourths Brahman calves: Brahman bulls Brahman-sired F cows ( = 21), Brahman bulls Angus-sired F cows ( = 43), Brahman-sired F bulls Brahman cows ( = 26), and Angus-sired F bulls Brahman cows ( = 13). Additionally, F calves (one-half Brahman and one-half Angus) were produced only from Brahman-sired F bulls Angus-sired F cows ( = 28). Contrasts were calculated when breed was an important fixed effect, using the random effect family(breed) as the error term. Most contrasts were nonsignificant ( > 0.10). Those that were significant ( F, three-fourths Brahman > F, and three-fourths crossbred progeny combined > F), s.c. adipocyte volume (three-fourths Angus > F and three-fourths bloods combined > F), lipogenesis from acetate in s.c. adipose tissue (three-fourths Brahman calves from Brahman dams > three-fourths Brahman calves from F dams), and percentage 18:3-3 in s.c. adipose tissue (three-fourths Brahman calves from Brahman-sired F dams Brahman calves from Angus-sired F dams). Intramuscular adipocyte volume ( Brahman cattle than in three-fourths Angus cattle. Additionally, several differences were observed in i.m. adipose tissue that were

  4. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. PMID:26220361

  5. Antipsychotics-induced metabolic alterations: focus on adipose tissue and molecular mechanisms.

    Gonçalves, Pedro; Araújo, João Ricardo; Martel, Fátima

    2015-01-01

    The use of antipsychotic drugs for the treatment of mood disorders and psychosis has increased dramatically over the last decade. Despite its consumption being associated with beneficial neuropsychiatric effects in patients, atypical antipsychotics (which are the most frequently prescribed antipsychotics) use is accompanied by some secondary adverse metabolic effects such as weight gain, dyslipidemia and glucose intolerance. The molecular mechanisms underlying these adverse effects are not fully understood but have been suggested to involve a dysregulation of adipose tissue homeostasis. As such, the aim of this paper is to review and discuss the role of adipose tissue in the development of secondary adverse metabolic effects induced by atypical antipsychotics. Data analyzed in this article suggest that atypical antipsychotics may increase adipose tissue (particularly visceral adipose tissue) lipogenesis, differentiation/hyperplasia, pro-inflammatory mediator secretion and insulin resistance and decrease adipose tissue lipolysis. Consequently, patients receiving antipsychotic medication could be at risk of developing obesity, type 2 diabetes and cardiovascular disease. A better knowledge of the impact of these drugs on adipose tissue homeostasis may unveil strategies to develop novel antipsychotic drugs with less adverse metabolic effects and to develop adjuvant therapies (e.g. behavioral and nutritional therapies) to neuropsychiatric patients receiving antipsychotic medication. PMID:25523882

  6. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles.

    Xue, Yuan; Xu, Xiaoyang; Zhang, Xue-Qing; Farokhzad, Omid C; Langer, Robert

    2016-05-17

    The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. PMID:27140638

  7. Lipocalin 2, a Regulator of Retinoid Homeostasis and Retinoid-mediated Thermogenic Activation in Adipose Tissue.

    Guo, Hong; Foncea, Rocio; O'Byrne, Sheila M; Jiang, Hongfeng; Zhang, Yuanyuan; Deis, Jessica A; Blaner, William S; Bernlohr, David A; Chen, Xiaoli

    2016-05-20

    We have recently characterized the role of lipocalin 2 (Lcn2) as a new adipose-derived cytokine in the regulation of adaptive thermogenesis via a non-adrenergic pathway. Herein, we explored a potential non-adrenergic mechanism by which Lcn2 regulates thermogenesis and lipid metabolism. We found that Lcn2 is a retinoic acid target gene, and retinoic acid concurrently stimulated UCP1 and Lcn2 expression in adipocytes. Lcn2 KO mice exhibited a blunted effect of all-trans-retinoic acid (ATRA) on body weight and fat mass, lipid metabolism, and retinoic acid signaling pathway activation in adipose tissue under the high fat diet-induced obese condition. We further demonstrated that Lcn2 is required for the full action of ATRA on the induction of UCP1 and PGC-1α expression in brown adipocytes and the restoration of cold intolerance in Lcn2 KO mice. Interestingly, we discovered that Lcn2 KO mice have decreased levels of retinoic acid and retinol in adipose tissue. The protein levels of STRA6 responsible for retinol uptake were significantly decreased in adipose tissue. The retinol transporter RBP4 was increased in adipose tissue but decreased in the circulation, suggesting the impairment of RBP4 secretion in Lcn2 KO adipose tissue. Moreover, Lcn2 deficiency abolished the ATRA effect on RBP4 expression in adipocytes. All the data suggest that the decreased retinoid level and action are associated with impaired retinol transport and storage in adipose tissue in Lcn2 KO mice. We conclude that Lcn2 plays a critical role in regulating metabolic homeostasis of retinoids and retinoid-mediated thermogenesis in adipose tissue. PMID:27008859

  8. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery

    Niada, S; L.M. Ferreira; Arrigoni, E.; Addis, A.; M. Campagnol; E. Broccaioli; Brini, A T

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. Metho...

  9. Fatty acid composition of ostrich (Struthio camelus abdominal adipose tissue

    Daniela Belichovska

    2015-03-01

    Full Text Available Fatty acid composition of foods has a great impact on nutrition and health. Therefore, thе determination and knowledge of the fatty acid composition of food is very important for nutrition. Due to the high nutritional characteristics of ostrich meat and its products, the research determining their quality is of topical interest. The aim of the present investigation was the determination of fatty acid composition of ostrich adipose tissue. The content of fatty acids was determined according to AOAC Official Methods of Analysis and determination was performed using a gas chromatograph with a flame-ionization detector (GC-FID. The results are expressed as a percentage of the total content of fatty acids. The method was validated and whereupon the following parameters were determined: linearity, precision, recovery, limit of detection and limit of quantification. The repeatability was within of 0.99 to 2.15%, reproducibility from 2.01 to 4.57%, while recovery ranged from 94.89 to 101.03%. According to these results, this method is accurate and precise and can be used for analysis of fatty acids in foods. It was concluded that the content of saturated fatty acids (SFA accounted 34.75%, of monounsaturated fatty acids (MUFA 38.37%, of polyunsaturated fatty acids (PUFA 26.88%, of total unsaturated fatty acids (UFA 65.25% and of desirable fatty acids (DFA (total unsaturated + stearic acid 70.37% of the analysed samples. The ratio polyunsaturated/saturated fatty acids accounted 0.77. The most present fatty acid is the oleic (C18:1n9c with 28.31%, followed by palmitic (C16:0 with 27.12% and linoleic (C18:2n6c acid with 25.08%. Other fatty acids are contained in significantly lower quantities.

  10. Epicardial adipose tissue in patients with heart failure

    Michaely Henrik

    2010-07-01

    Full Text Available Abstract Purpose The aim of this study was to evaluate the extent of epicardial adipose tissue (EAT and its relationship with left ventricular (LV parameters assessed by cardiovascular magnetic resonance (CMR in patients with congestive heart failure (CHF and healthy controls. Background EAT is the true visceral fat deposited around the heart which generates various bioactive molecules. Previous studies found that EAT is related to left ventricular mass (LVM in healthy subjects. Further studies showed a constant EAT to myocardial mass ratio in normal, ischemic and hypertrophied hearts. Methods CMR was performed in 66 patients with CHF due to ischemic cardiomyopathy (ICM, or dilated cardiomyopathy (DCM and 32 healthy controls. Ventricular volumes, dimensions and LV function were assessed. The amount of EAT was determined volumetrically and expressed as mass indexed to body surface area. Additionally, the EAT/LVM and the EAT/left ventricular remodelling index (LVRI ratios were calculated. Results Patients with CHF had less indexed EAT mass than controls (22 ± 5 g/m2 versus 34 ± 4 g/m2, p 2 versus 23 ± 6 g/m2, p = 0.14. Linear regression analysis showed that with increasing LV end-diastolic diameter (LV-EDD (r = 0.42, p = 0.0004 and LV end-diastolic mass (LV-EDM (r = 0.59, p Conclusion Patients with CHF revealed significantly reduced amounts of EAT. An increase in LVM is significantly related to an increase in EAT in both patients with CHF and controls. However, different from previous reports the EAT/LVEDM-ratio in patients with CHF was significantly reduced compared to healthy controls. Furthermore, the LV function correlated best with the indexed EAT/LVRI ratio in CHF patients. Metabolic abnormalities and/or anatomic alterations due to disturbed cardiac function and geometry seem to play a key role and are a possible explanation for these findings.

  11. Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats

    Alexey A. Tinkov

    2016-03-01

    Full Text Available Background. Limited data on adipose tissue zinc content in obesity exist. At the same time, the association between adipose tissue zinc content and metabolic parameters in dietary-induced obesity is poorly studied. Therefore, the primary objective of this study is to assess adipose tissue zinc content and its association  with morphometric parameters, adipokine spectrum, proinflammatory cytokines, and apolipoprotein profile in high fat fed Wistar rats. Material and methods. A total of 48 adult female Wistar rats were used in the present study. Rats were fed either control (10% of fat or high fat diet (31.6% of fat. Adipose tissue zinc content was assessed using inductively coupled plasma mass spectrometry. Rats’ serum was examined for adiponectin, leptin, insulin, interleukin-6, and tumor necrosis factor-α using enzyme-linked immunosorbent assay kits. Serum glucose and apolipoprotein spectrum were also evaluated. Results. High fat feeding resulted in a significant 34% decrease in adipose tissue zinc content in comparison to the control values. Fat pad zinc levels were significantly inversely associated with morphometric param- eters, circulating leptin, insulin, tumor necrosis factor-α levels and HOMA-IR values. At the same time,      a significant correlation with apolipoprotein A1 concentration was observed. Conclusion. Generally, the obtained data indicate that (1 high fat feeding results in decreased adipose tis- sue zinc content; (2 adipose tissue zinc content is tightly associated with excessive adiposity, inflammation, insulin resistance and potentially atherogenic changes.

  12. α-Tocopherol adipose tissue stores are depleted after burn injury in pediatric patients123

    Leonard, Scott W; Traber, Daniel L; Traber, Lillian D; Gallagher, James; Bobe, Gerd; Jeschke, Marc G; Finnerty, Celeste C; Herndon, David

    2010-01-01

    Background: We previously showed that thermal injury depletes plasma vitamin E in pediatric burn patients; however, plasma changes may reflect immediate alterations in vitamin E nutriture. Adipose tissue α-tocopherol concentrations are generally accepted to reflect long-term vitamin E status. Objective: To test the hypothesis that thermal injury depletes body stores of vitamin E, α-tocopherol concentrations were measured in adipose tissue samples. Design: Pediatric patients (n = 8) were followed up to 1 y after burn injury. Surgically obtained samples were collected at various intervals and stored at −80°C in a biorepository. α- and γ-Tocopherols, cholesterol, and triglycerides were measured in the same tissue aliquot. Results: During the first week after injury, adipose tissue α-tocopherol concentrations were within the expected normal range of 199 ± 40 nmol/g adipose tissue but were substantially lower at weeks 2 and 3 (133 ± 13 and 109 ± 8 nmol/g adipose tissue, respectively). Individual rates of decrease, estimated by linear regression, showed that adipose tissue α-tocopherol decreased by an average of 6.1 ± 0.6 nmol/g daily. During the first month after injury, adipose tissue triglyceride concentrations also decreased, whereas no changes in cholesterol concentrations occurred. Conclusions: These data emphasize that the burn injury experienced by these pediatric patients altered their metabolism such that vitamin E status diminished during the month after injury. Further studies are needed to evaluate the mechanism and consequences of the observed vitamin E depletion. This trial was registered at clinicaltrials.gov as NCT00675714. PMID:20881067

  13. Impaired adipose tissue expandability and lipogenic capacities as ones of the main causes of metabolic disorders.

    Moreno-Indias, Isabel; Tinahones, Francisco José

    2015-01-01

    Obesity is considered a major health problem. However, mechanisms involved and its comorbidities are not elucidated. Recent theories concerning the causes of obesity have focused on a limit to the functional capacity of adipose tissue, comparing it with other vital organs. This assumption has been the central point of interest in our laboratory. We proposed that the failure of adipose tissue is initiated by the difficulty of this tissue to increase its cellularity due to excess in fat contribution, owing to genetic or environmental factors. Nevertheless, why the adipose tissue reduces its capacity to make new adipocytes via mesenchymal cells of the stroma has not yet been elucidated. Thus, we suggest that this tissue ceases fulfilling its main function, the storage of excess fat, thereby affecting some of the key factors involved in lipogenesis, some of which are reviewed in this paper (PPARγ, ROR1, FASN, SCD1, Rab18, BrCa1, ZAG, and FABP4). On the other hand, mechanisms involved in adipose tissue expandability are also impaired, predominating hypertrophy via an increase in apoptosis and a decrease in adipogenesis and angiogenesis. However, adipose tissue failure is only part of this great orchestra, only a chapter of this nightmare. PMID:25922847

  14. Adipose tissue metabolism in humans determined by vein catheterization and microdialysis techniques

    Simonsen, L; Bülow, J; Madsen, J

    A technique for catheterization of a vein draining abdominal subcutaneous tissue and a microdialysis technique that allows measurements of intercellular water concentrations in adipose tissue in humans have recently been described. In the present study, we compare the two techniques during an oral...... glucose load. In addition a technique using microdialysis for measurement of tissue oxygen and carbon dioxide tensions is described. Microdialysis and vein catheterization were performed in the same region on the abdomen, and the subcutaneous adipose tissue blood flow was measured by the local 133Xe...... washout method. The results show that subcutaneous adipose tissue gas tensions are on level with gas tensions measured in abdominal venous blood. Comparison of metabolite concentrations measured in the venous blood and venous blood concentrations calculated from microdialysis data shows that there is good...

  15. Association of total and computed tomographic measures of regional adiposity with incident cancer risk: a prospective population-based study of older adults

    Murphy, Rachel A.; Bureyko, Taylor F.; Miljkovic, Iva; Cauley, Jane A.; Satterfield, Suzanne; Hue, Trisha F; Klepin, Heidi D.; Cummings, Steven R.; Newman, Anne B.; Harris, Tamara B

    2013-01-01

    Obesity is associated with increased risk of many types of cancer. Less is known regarding associations between adipose depots and cancer risk. We aimed to explore relationships between adipose depots, risk of cancer and obesity-related cancer (per NCI definition) in participants initially aged 70–79 without prevalent cancer (1,179 men, 1,340 women), and followed for incident cancer for 13 years. Measures included body mass index (BMI), total adipose tissue from dual-energy X-ray absorptiomet...

  16. Adipose tissue partitioning of limit-fed beef cattle and beef cattle with ad libitum access to feed differing in adaptation to heat.

    Sprinkle, J E; Ferrell, C L; Holloway, J W; Warrington, B G; Greene, L W; Wu, G; Stuth, J W

    1998-03-01

    We compared fat distribution and lipoprotein lipase (LPL) activity in steers differing in adaptability to the subtropics. Steers were fed a grain diet (3.13 Mcal ME/kg DM) at limited (150 kcal ME x kg[-.75] x d[-1]; .23 kg ADG) or ad libitum levels for 140 d, then slaughtered. Sixteen British- (8 Angus, 8 Hereford; S), 16 Boran- (R), 16 Brahman- (B), and 16 Tuli- (T) cross steers from MARC III composite cows were used. Adipose tissue samples from perirenal, omental, and subcutaneous depots were analyzed for LPL activity. Carcass measurements including omental, external, and seam fat trim from 1/ 2 of the carcass were measured. Subcutaneous fat had greater (P .05) in fat distribution for steers fed at limited levels. Means for ADG, slaughter weights, carcass weights, yield grades, and carcass lipid weights for S and B fed for ad libitum intake were greater (P .05) for the other breeds with ad libitum intake. Factor analysis of fat depots for animals with ad libitum intake indicated that Bos taurus cattle differing in adaptation to heat deposited fat differently; S deposited greater (P < .05) proportions of carcass fat and T deposited greater (P < .05) proportions of internal fat. It seems that accumulation of internal fat is detrimental for ADG for Bos taurus cattle. PMID:9535321

  17. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Serena, Carolina; Duran, Xavier; Montori-Grau, Marta; Rodríguez, Miguel Angel; Yanes, Oscar; Núñez-Roa, Catalina; Roche, Kelly; Puthanveetil, Prasanth; Garrido-Sánchez, Lourdes; Saez, Enrique; Tinahones, Francisco J.; Garcia-Roves, Pablo M.; Gómez-Foix, Anna Ma; Saltiel, Alan R.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. Methods We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. Results We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated

  18. The contribution of IL-6 to beta 3 adrenergic receptor mediated adipose tissue remodeling.

    Buzelle, Samyra L; MacPherson, Rebecca E K; Peppler, Willem T; Castellani, Laura; Wright, David C

    2015-02-01

    The chronic activation of beta 3 adrenergic receptors results in marked alterations in adipose tissue morphology and metabolism, including increases in mitochondrial content and the expression of enzymes involved in lipogenesis and glyceroneogenesis. Acute treatment with CL 316,243, a beta 3 adrenergic agonist, induces the expression of interleukin 6. Interestingly, IL-6 has been shown to induce mitochondrial genes in cultured adipocytes. Therefore, the purpose of this paper was to examine the role of interleukin 6 in mediating the in vivo effects of CL 316,243 in white adipose tissue. Circulating IL-6, and markers of IL-6 signaling in white adipose tissue were increased 4 h following a single injection of CL 316,243 in C57BL6/J mice. Once daily injections of CL 316,243 for 5 days increased the protein content of a number of mitochondrial proteins including CORE1, Cytochrome C, PDH, MCAD, and Citrate Synthase to a similar extent in adipose tissue from WT and IL-6(-/-) mice. Conversely, CL 316,243-induced increases in COXIV and phosphorylated AMPK were attenuated in IL-6(-/-) mice. Likewise, the slight, but significant, CL 316,243-induced increases in ATGL, PEPCK, and PPARγ, were reduced or absent in adipose tissue IL-6(-/-) mice. The attenuated response to CL 316,243 in white adipose tissue in IL-6(-/-) mice was associated with reductions in whole-body oxygen consumption and energy expenditure in the light phase. Our findings suggest that IL-6 plays a limited role in CL 316,243-mediated adipose tissue remodeling. PMID:25713332

  19. The effect of exercise training on hormone-sensitive lipase in rat intra-abdominal adipose tissue and muscle

    Enevoldsen, L H; Stallknecht, B; Langfort, J;

    2001-01-01

    1. Adrenaline-stimulated lipolysis in adipose tissue may increase with training. The rate-limiting step in adipose tissue lipolysis is catalysed by the enzyme hormone-sensitive lipase (HSL). We studied the effect of exercise training on the activity of the total and the activated form of HSL......, referred to as HSL (DG) and HSL (TG), respectively, and on the concentration of HSL protein in retroperitoneal (RE) and mesenteric (ME) adipose tissue, and in the extensor digitorum longus (EDL) and soleus muscles in rats. 2. Rats (weighing 96 +/- 1 g, mean +/- S.E.M.) were either swim trained (T, 18 weeks......, n = 12) or sedentary (S, n = 12). Then RE and ME adipose tissue and the EDL and soleus muscles were incubated for 20 min with 4.4 microM adrenaline. 3. HSL enzyme activities in adipose tissue were higher in T compared with S rats. Furthermore, in RE adipose tissue, training also doubled HSL protein...

  20. Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance

    Kunešová, M; Hlavatý, P; Tvrzická, E;

    2012-01-01

    Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. Objective was to assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants...... of the DIOGENES dietary intervention study. After an 8-week low calorie diet (LCD) subjects with > 8 % weight loss were randomized to 5 ad libitum weight maintenance diets for 6 months: low protein (P)/low glycemic index (GI) (LP/LGI), low P/high GI (LP/HGI), high P/low GI (HP/LGI), high P/high GI...... (HP/HGI), and a control diet. Fatty acid composition in adipose tissue triglycerides was determined by gas chromatography in 195 subjects before the LCD (baseline), after LCD and weight maintenance. Weight change after the maintenance phase was positively correlated with baseline adipose palmitoleic...