WorldWideScience

Sample records for adicionado ao diesel

  1. Avaliação da demanda por biodiesel em função de um modelo de previsão de demanda por diesel

    Breno Barros Telles do Carmo; Heráclito Lopes Jaguaribe Pontes; Marcos Ronaldo Albertin; Júlio Francisco Barros Neto; Nadja Glheuca da Silva Dutra

    2009-01-01

    Observa-se uma crescente preocupação mundial com a produção de energias mais limpas. Uma destas é o biodiesel, que está sendo adicionado ao diesel para comercialização no Brasil. O presente artigo busca fazer uma análise da demanda por biodiesel em função do consumo de diesel, identificando qual a capacidade de produção para qual o país está se preparando. Para tanto, foi adotado um modelo de previsão de demanda não-paramétrico para a produção de diesel, que serviu de base para fazer a previs...

  2. The effect of the synthetic oviductal fluid medium (SOF supplemented with insulin-like growth factor-I (IGF-I on in vitro maturation of canine oocytes (Canis familiaris/ Influência do fator de crescimento semelhante à insulina I (IGF-I adicionado ao meio fluido sintético de tuba uterina (SOF sobre a maturação in vitro de oócitos caninos (Canis familiaris

    Kellen Oliveira

    2007-08-01

    Full Text Available The follicular growth and oocyte maturation knowledge are very important to the development and improvement ofnew biotechnologies such as in vitro fertilization and somatic cell nuclear transfer. In order to the necessity of clarifythe basic mechanisms related to canine oocyte maturation, this investigation focuses on the evaluation of the effectof insulin-like growth factor-i (IGF-I, added to synthetic oviductal fluid medium (SOF on the in vitro maturation ofdomestic dog oocytes. Thirty-seven bitches undergoing ovariohysterectomy for castration or due to pathologicalconditions of the uterus were selected as oocytes’ donors (n=875. The oocytes were allocated in the followinggroups: M0 (stained in the collection’s time, Control (72h in SOF and Experimental (72h in SOF plus 100 ng IGF-I.After 72 hours of maturation the oocytes’ nuclear status were assessed by Hoechst 33342 dye. The best results interms of oocyte harvest were observed in those juvenile donors, females in estrus, nuliparous and pure breeds. Nosignificant differences were observed between treatments control (SOF or experimental (IGF-I.O conhecimento da regulação do crescimento folicular e da maturação oocitária é de grande importância no desenvolvimento e aperfeiçoamento de novas biotecnologias como a fecundação in vitro e a transferência nuclear. Considerando-se a necessidade de elucidação dos mecanismos básicos envolvidos na maturação oocitária na espécie canina, a presente pesquisa foi desenvolvida com o objetivo de avaliar o efeito do fator de crescimento semelhante à insulina-I (IGF-I, adicionado ao meio fluido sintético de tuba uterina (SOF, sobre a maturação de oócitos caninos. Foram utilizadas 37 cadelas submetidas à ovariohisterectomia, eletivas e terapêuticas, como doadoras dos complexos cumulus oócitos grau 1 (n=875 que foram alocados em três grupos: M0 (coloração no momento da colheita, Controle (72 h no meio SOF e Experimental (72h no

  3. Demonstração do valor adicionado

    Jádson Gonçalves Ricarte

    2005-03-01

    Full Text Available Nos últimos anos, as empresas vêm presenciando um aumento crescente no grau de exigências do mercado consumidor e também no nível de competitividade dos comércios internos e externos. Devido a esses fatores, muitos têm sido os esforços pela sobrevivência no mercado a qual estão inseridas. Como forma de sobrevivência, muitas têm procurado atingir um melhor desempenho global, especialmente no que se refere à qualidade, custo e flexibilidade, procurando dessa forma obter uma vantagem competitiva em relação aos concorrentes e conseqüentemente tornar-se atraente para os consumidores. Assim diversas são as formas de se mensurar o desempenho das entidades. Os caminhos a serem seguidos podem ser de ordem financeira, econômica ou social, não sendo mutuamente excludentes, muito pelo contrário, se complementam na busca de uma maior evidenciação do desempenho gerencial. Neste sentido, temos a Demonstração do Valor Adicionado, que é um importante componente do Balanço Social, pois tem como principal objetivo evidenciar a capacidade da entidade de gerar riqueza bem como a forma de como esta é distribuída para os vários agentes sociais que contribuíram para a sua formação. À medida que uma entidade desenvolve suas atividades empresariais, produz fluxos de natureza econômica, apropriados mediante a confrontação das receitas com as despesas para determinar sua magnitude econômica, ou seja, o excedente produzido durante o período. Tradicionalmente, o resultado contábil (lucro líquido tem sido considerado um dos melhores indicadores para avaliar a gestão. No entanto, esse resultado não significa, fielmente, aumento de riqueza, porque evidencia a riqueza patrimonial sob a perspectiva dos proprietários ou acionistas. A DVA preenche tal lacuna, pois contempla as mesmas informações contidas na Demonstração do Resultado (DRE, introduzindo uma magnitude mais social ao resultado das entidades. Na verdade complementa essa

  4. Dried powders of velvetbean and pine bark added to soil reduce Rhizoctonia solani-induced disease on soybean Pós secos de mucuna e casca de pinus adicionados ao solo reduzem a doença causada por Rhizoctonia solani em soja

    Luiz E. B. Blum

    2006-06-01

    Full Text Available Diseases induced by Rhizoctonia solani, like damping-off and root and stem rot on soybean (Glycine max, are a serious problem around the world. The addition of some organic material to soil is an alternative control for these diseases. In this study, benzaldehyde and dried powders of kudzu (Pueraria lobata, velvetbean or mucuna (Mucuna deeringiana, and pine bark (Pinus spp. were used in an attempt to improve soybean plant growth and to reduce the disease R. solani (AG-4 causes on soybean. Benzaldehyde (0.1-0.4 mL/kg of soil and velvetbean (25-100 g/kg significantly (P As doenças em soja (Glycine max causadas por Rhizoctonia solani são um sério problema ao redor do mundo. A incorporação ao solo de resíduos orgânicos é uma alternativa para o controle destas doenças. Neste estudo, benzaldeido e pós-secos de kudzu (Pueraria lobata, mucuna (Mucuna deeringiana e casca de pinus (Pinus spp. foram usados com o objetivo de melhorar o crescimento de plantas de soja e de diminuir a doença causada por R. solani (AG-4. Benzaldehyde (0,1-0,4 mL/kg de solo e mucuna (25-100 g/kg reduziram significativamente (P < 0.05 o crescimento micelial de R. solani em experimentos de laboratório. Em experimentos conduzidos em casa de vegetação a porcentagem de plantas sobreviventes foi maior em solo com casca de pinus e mucuna (50-100 g/kg. Em solo tratado com kudzu (r²=0,91 ou mucuna (r²=0,94, houve tendência significativa em aumentar a massa fresca das plantas de soja. Em microparcelas de campo solos com mucuna (r²=0,85 ou com casca de pinus (r²=0,61 reduziram significativamente a quantidade de doença. A quantidade de Bacillus megaterium (r²=0,87 e Trichoderma hamatum (r²=0,92 e a hidrólise de diacetato fluoresceina (r²=0,91 foram maiores em solo com doses crescentes de mucuna, indicando uma maior atividade microbiana. Neste estudo conclui-se que pós-secos de mucuna e casca de pinus, incorporados ao solo, podem reduzir a doença causada por R

  5. Avaliação do óleo de girassol adicionado de antioxidantes sob estocagem Evaluation of stored sunflower oil with the addition of antioxidants

    Priscila Milene Angelo; Neuza Jorge

    2008-01-01

    O trabalho teve como objetivo avaliar os efeitos, isolado e sinergista, dos antioxidantes, extrato de coentro e palmitato de ascorbila, em óleo de girassol submetido ao teste acelerado em estufa. Desta forma, o óleo de girassol isolado e adicionado de 1.600 mg.kg-1 de extrato de coentro, 500 mg.kg-1 de palmitato de ascorbila e da mistura destes antioxidantes foi submetido ao teste acelerado em estufa a 60 °C por 10 dias, cujas amostras foram tomadas nos intervalos de tempo de 0, 2, 4, 6, 8 e ...

  6. A eficácia informativa da demonstração do valor adicionado

    José Paulo Cosenza

    2003-10-01

    Full Text Available O cenário mundial contemporâneo vem sendo caracterizado por significativas mudanças nas áreas social, política e econômica, com reflexos diretos no ambiente empresarial, através da imposição de novos padrões de competitividade e uma necessidade de alterações nos processos de trabalho e nas práticas de gestão. Neste contexto, a informação contábil tradicional não responde totalmente às demandas novas dos usuários com interesses diferentes daqueles contemplados nos relatórios contábeis clássicos. A Demonstração do Valor Adicionado é parte integrante deste novo grupo de relatórios desenvolvidos pela contabilidade para assistir melhor essas necessidades emergentes, visando, principalmente, a evidenciar o papel social das empresas, apresentando claramente a riqueza gerada, para que toda a sociedade conheça sua função positiva na criação de valor para a comunidade. Este trabalho apresenta aspectos relacionados ao valor adicionado pela atividade empresarial e analisa a importância deste relatório ao facilitar o entendimento da informação sócio-econômica sobre a companhia e sua relação com o ambiente onde está localizada.Nowadays, the global environment is characterized by significant changes in the social, political and economic areas with direct impacts on managerial activities, through the imposition of new patterns of competitiveness and a need to change work processes and managerial practices. In this context, the traditional accounting information does not totally attend the users' new demands, whose interests are different from those contemplated in the traditional accounting reports. The Value Added Statement is part of this new group of accounting reports created to attend to those emerging needs in a better way, mainly seeking to disclose companies' social activities, clearly presenting the generated wealth so that the whole society knows about the its positive function in the creation of value for the

  7. A inserção insumo-produto da economia brasileira no Mercosul: uma abordagem pelo valor adicionado

    Marco Antonio Montoya

    2001-04-01

    Full Text Available Neste artigo, com base na matriz insumo-produto internacional do Mercosul de 1990, avalia-se, através do valor adicionado, a inserção da economia brasileira no Mercosul. Verificou-se, em termos relativos, que o valor adicionado induzido no Brasil pelas respectivas demandas da Argentina, Chile e Uruguai é o mais alto na região. Isso, associado aos níveis de industrialização alcançados pelo Brasil e às necessidades estruturais por importados que apresentam as indústrias dos países parceiros, mostra a importância relativa da economia brasileira como um supridor de produtos acabados de materiais básicos industriais e de bens de capital para o Mercosul. Contudo, ficou evidente que, para as economias da Argentina, Chile e Uruguai, o maior parceiro da região na geração de valor adicionado é o Brasil. Portanto, conclui-se que os mercados na região são potencialmente complementares e que, em decorrência disso, o processo de integração econômica regional poderá, efetivamente, vir a representar para o Brasil e seus países parceiros uma opção permanente de ampliação do espaço de produção e de circulação de mercadorias.This paper, based on the matrix of the Mercosur international input-output of 1990, evaluates, through added value, the insertion of the Brazilian economy in Mercosur. In relative terms, the added value induced in Brazil by the respective demands of Argentina, Chile and Uruguay are the highest in the region. This, associated with the industrialization levels of the Brazilian economy and with the structural needs for imported products which the industries of the partner countries have, shows the relative importance of the Brazilian economy as a supplier of finished products, basic industrial materials, and capital goods for Mercosur. However, for the economies of Argentina, Chile and Uruguay, the biggest partner in the region in the generation of added value is Brazil. Therefore, the paper concludes that the

  8. Diesel oil

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  9. Avaliação da emissão de co, no e nox na exaustão de motor diesel abastecido com combustível aditivado

    Gilson Rodrigo de Miranda

    2011-01-01

    Full Text Available A poluição atmosférica tem emergido como um dos maiores problemas globais. Na última década, o desenvolvimento de novos motores, o uso de diferentes formas de tratamento dos gases na exaustão e o aumento na qualidade dos combustíveis foram medidas utilizadas na redução de poluentes (regulamentados ou não. Entre os vários desenvolvimentos para reduzir as emissões, a aplicação de aditivos oxigenados e parafínicos ao óleo diesel é uma medida que vem se mostrando efetiva e rápida para a redução dos poluentes emitidos. Neste trabalho estudou-se a influência de compostos oxigenados (Dietil Eter (DEE, 1-Dodecanol (DOD, Acetato de 2-Metoxietila (MEA e Terc-butanol (TERC e parafínicos (Heptano (HEPT e n-Hexadecano (CET adicionados ao óleo diesel com o intuito de melhorar a qualidade das emissões de CO, NO e NOx na exaustão de motor diesel, monocilíndrico. Os combustíveis utilizados nos estudos são formulações do óleo diesel de referência, nomeado aqui S10, que contém baixo teor de enxofre (Abstract Air pollution has emerged as major global problems. In the last decade, the development of new engines, the use of different forms of treatment of exhaust gases and the increase in fuel quality were used to reduce pollutants (regulated or not. Among the various developments to reduce emissions, the use of oxygenated additives to diesel and paraffin is a quick and effective measure to reduce pollutants. In this work we studied the influence of oxygenated compounds (diethyl ether (DEE, 1-dodecanol (DOD, 2-methoxy-acetate (MEA and terc-butanol (TERC and paraffin (heptane (HEPT and n- hexadecane (CET added to diesel in order to improve the quality of CO, NO and NOx in the exhaust of diesel engine, single cylinder. The fuels used in the studies are formulations of diesel reference, here named S10, which contains low sulfur (

  10. Uso da cromatografia gasosa bidimensional abrangente (GC×GC na caracterização de misturas biodiesel/diesel: aplicação ao biodiesel de sebo bovino

    Maria Silvana A Moraes

    2011-01-01

    Full Text Available The growth of biodiesel market and the implementation of regulations related to biodiesel production and biodiesel/diesel blending has encouraged the development of appropriate analytical methods to control the composition of this type of mixture. In this study, an evaluation of the potential of GC×GC for the characterization of samples of beef tallow biodiesel and the composition of blends of biodiesel/diesel is presented. The methodology was applied to beef tallow biodiesel and its mixtures with petrodiesel, ranging from B2 to B50. Results allowed not only the identification and quantification of the biodiesel esters, but also the biodiesel percentage in biodiesel/diesel blends.

  11. Avaliação do óleo de girassol adicionado de antioxidantes sob estocagem Evaluation of stored sunflower oil with the addition of antioxidants

    Priscila Milene Angelo

    2008-06-01

    Full Text Available O trabalho teve como objetivo avaliar os efeitos, isolado e sinergista, dos antioxidantes, extrato de coentro e palmitato de ascorbila, em óleo de girassol submetido ao teste acelerado em estufa. Desta forma, o óleo de girassol isolado e adicionado de 1.600 mg.kg-1 de extrato de coentro, 500 mg.kg-1 de palmitato de ascorbila e da mistura destes antioxidantes foi submetido ao teste acelerado em estufa a 60 °C por 10 dias, cujas amostras foram tomadas nos intervalos de tempo de 0, 2, 4, 6, 8 e 10 dias e analisadas quanto ao índice de peróxidos e dienos conjugados. Os resultados obtidos das determinações analíticas foram submetidos às análises de variância e aos testes de Tukey para as médias a 5%, em esquema fatorial, no delineamento inteiramente casualizado. A partir dos resultados, verificou-se que os antioxidantes extrato de coentro, palmitato de ascorbila e a mistura dos antioxidantes quando adicionados no óleo de girassol apresentaram capacidade em retardar a formação de peróxidos em 16,4, 77,5 e 84,0% e dienos conjugados em 11,2, 56,9 e 60,9%, respectivamente. A mistura dos antioxidantes adicionada ao óleo de girassol apresentou um poder antioxidante maior que os antioxidantes aplicados isolados, comprovando o efeito sinergístico dos antioxidantes estudados.The objective of this work was to evaluate the isolated and synergistic effects of the antioxidants coriander extract and ascorbyl palmitate in sunflower oil, submitted to an accelerated storage test. Thus, sunflower oil (control and sunflower oil with the addition of 1,600 mg.kg-1 coriander extract, 500 mg.kg-1 ascorbyl palmitate and a mixture of these antioxidants were submitted to an accelerated storage test in an oven at 60 °C for 10 days, where samples were taken at time intervals of 0, 2, 4, 6, 8 and 10 days and analysed for peroxide value and conjugated dienes. The results obtained from the analytical determinations were submitted to analysis of variance and the

  12. Uso da cromatografia gasosa bidimensional abrangente (GC×GC) na caracterização de misturas biodiesel/diesel: aplicação ao biodiesel de sebo bovino

    Maria Silvana A Moraes; Claudia A Zini; Carolina B Gomes; Janaína H Bortoluzzi; Carin von Mühlen; Elina B. CARAMÃO

    2011-01-01

    The growth of biodiesel market and the implementation of regulations related to biodiesel production and biodiesel/diesel blending has encouraged the development of appropriate analytical methods to control the composition of this type of mixture. In this study, an evaluation of the potential of GC×GC for the characterization of samples of beef tallow biodiesel and the composition of blends of biodiesel/diesel is presented. The methodology was applied to beef tallow biodiesel and its mixtures...

  13. Bioremediation of soil contaminated by diesel oil Biorremediação de solos contaminados por óleo diesel

    Fatima Menezes Bento

    2003-11-01

    Full Text Available Were evaluated natural attenuation, biostimulation and bioaugmentation on the degradation of total petroleum hydrocarbons (TPH in soils contaminated with diesel oil. Bioaugmentation showed the greatest degradation in the light (C12 - C23 fractions (72.7% and heavy (C23 - C40 fractions of TPH (75.2% and natural attenuation was more effective than biostimulation. The greatest dehydrogenase activity was observed upon bioaugmentation of the Long Beach soil (3.3-fold and the natural attenuation of the Hong Kong soil sample (4.0-fold. The number of diesel oil degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. The best approach for bioremediation of soil contaminated with diesel oil is the inoculum of microorganisms pre-selected from their own environment.Avaliou-se a degradação de hidrocarbonetos de petróleo (HP em solos contaminados com óleo diesel através da atenuação natural, bioestimulação e bioaumentação. A bioaumentação apresentou a maior degradação da fração leve (72,6% e da fração pesada (75,2% de HP e a atenuação natural foi mais efetiva do que a bioestimulação. A maior atividade da dehidrogenase no solo Long Beach e Hong Kong foi observada nos tratamentos bioaumentação e atenuação natural, respectivamente. O número de microrganismos degradadores de diesel e a população de heterotróficos não foi influenciada pelas técnicas de biorremediação. A melhor performance para a biorremediação do solo contaminado com diesel foi obtida quando foram adicionados microrganismos pré-selecionados do ambiente contaminado.

  14. Comportamento da beta-ciclodextrina adicionada ao leite de cabra submetido ao processo de desidratação por "spray-dryer" Beta-ciclodextrin's behavior added goat's milk submitted to the "spray-dryer" dehydration process

    Adriana C. P. Diniz; Marilde B. Luiz; Luciano V. Gonzaga; Marcia M. Meier; Bruno Szpoganicz; Roseane Fett

    2005-01-01

    Este trabalho avaliou o comportamento do agente encapsulante beta -ciclodextrina ( beta-CD) adicionado ao leite de cabra submetido ao processo de desidratação por "spray-dryer", através de análise termogravimétrica e de cromatografia gasosa. Após a desidratação, a amostra adicionada de beta-CD apresentou um rendimento real de 10,59% com taxa de perda de 0,04% (em relação ao valor teórico esperado 10,6% ); enquanto na amostra sem adição do agente encapsulante o rendimento real foi de 9,57%, co...

  15. Diesel emissions in Vienna

    Horvath, H.; Kreiner, I.; Norek, C.; Preining, O.; Georgi, B.

    The aerosol in a non-industrial town normally is dominated by emissions from vehicles. Whereas gasoline-powered cars normally only emit a small amount of particulates, the emission by diesel-powered cars is considerable. The aerosol particles produced by diesel engines consist of graphitic carbon (GC) with attached hydrocarbons (HCs) including also polyaromatic HCs. Therefore the diesel particles can be carcinogenic. Besides diesel vehicles, all other combustion processes are also a source for GC; thus source apportionment of diesel emissions to the GC in the town is difficult. A direct apportionment of diesel emissions has been made possible by marking all the diesel fuel used by the vehicles in Vienna by a normally not occurring and easily detectable substance. All emitted diesel particles thus were marked with the tracer and by analyzing the atmospheric samples for the marking substance we found that the mass concentrations of diesel particles in the atmosphere varied between 5 and 23 μg m -3. Busy streets and calm residential areas show less difference in mass concentration than expected. The deposition of diesel particles on the ground has been determined by collecting samples from the road surface. The concentration of the marking substance was below the detection limit before the marking period and a year after the period. During the period when marked diesel fuel was used, the concentrations of the diesel particles settling to the ground was 0.012-0.07 g g -1 of collected dust. A positive correlation between the diesel vehicle density and the sampled mass of diesel vehicles exists. In Vienna we have a background diesel particle concentration of 11 μg m -3. This value increases by 5.5 μg m -3 per 500 diesel vehicles h -1 passing near the sampling location. The mass fraction of diesel particles of the total aerosol mass varied between 12.2 and 33%; the higher values were found in more remote areas, since diesel particles apparently diffuse easily

  16. Dieselization in Sweden

    In Sweden the market share of diesel cars grew from below 10 per cent in 2005 to 62 per cent in 2011 despite a closing gap between pump prices on diesel oil and gasoline, and diesel cars being less favored than ethanol and biogas cars in terms of tax cuts and other subsidies offered to “environment cars”. The most important factor behind the dieselization was probably the market entrance of a number of low-consuming models. Towards the end of the period a growing number of diesel models were able to meet the 120 g CO2 threshold applicable to “environment cars” that cannot use ethanol or biogas. This helped such models increase their share of the diesel car market from zero to 41 per cent. Dieselization appears to have had only a minor effect on annual distances driven. The higher average annual mileage of diesel cars is probably to a large extent a result of a self-selection bias. However, the Swedish diesel car fleet is young, and the direct rebound effect stemming from a lower variable driving cost may show up more clearly as the fleet gets older based on the assumption that second owners are more fuel price sensitive than first owners. - Highlights: ► This paper tries to explain the fast dieselization of the new Swedish car fleet. ► It identifies changes in supply and the impact of tax benefits. ► Finally it studies the impact on the annual average mileage

  17. Processamento de biscoitos adicionados de óleo de buriti (Mauritia flexuosa L.): uma alternativa para o consumo de alimentos fontes de vitamina A na merenda escolar

    Jailane de Souza Aquino; Débora Catarine Nepomuceno de Pontes Pessoa; Carlos Eduardo Vasconcelos de Oliveira; José Marcelino Oliveira Cavalheiro; Tânia Lúcia Montenegro Stamford

    2012-01-01

    OBJETIVO: Este trabalho teve como objetivo desenvolver biscoitos tipo cookie adicionado de óleo de buriti a fim de se analisarem sua aceitação sensorial e seu valor nutricional, visando a sua utilização na merenda escolar, bem como avaliar o consumo de alimentos fontes de vitamina A por escolares. MÉTODOS: Uma formulação-controle (15% de óleo de soja) e duas formulações experimentais (7,5% e 15% de óleo de buriti) foram produzidas e avaliadas quanto à composição centesimal, conteúdo de vitami...

  18. Efeitos do processamento térmico e da radiação gama na conservação de caldo de cana puro e adicionado de suco de frutas Effects of heat treatment and gamma radiation on the characteristics of pure sugarcane juice and mixed with fruit juices

    Aline Cristine Garcia de Oliveira

    2007-12-01

    Full Text Available O caldo de cana apresenta grande aceitação popular e, se devidamente explorado, é um produto com elevado potencial mercadológico. O presente trabalho teve como objetivos realizar a caracterização físico-química, microbiológica e sensorial do caldo de cana puro e adicionado de suco de limão e de suco de abacaxi submetido ao tratamento térmico (70 °C/25 minutos e/ou à radiação gama (2,5 kGy, acondicionado em garrafas de polietileno de alta densidade. Os resultados foram avaliados através da análise de variância e comparação das médias pelo teste de Tukey. Os processamentos aplicados reduziram as quantificações microbianas e não alteraram significativamente o aroma e sabor das bebidas em relação ao controle. A luminosidade foi maior no produto submetido ao tratamento térmico combinado com a radiação gama do que nos demais tratamentos. A atividade da polifenoloxidase nas bebidas processadas foi significativamente menor em relação ao controle. A adição de suco de frutas ao caldo de cana não alterou sua composição físico-química. No entanto, a adição de suco de abacaxi ao caldo de cana incrementou significativamente o teor de manganês e o de açúcares redutores quando comparado ao caldo de cana puro e adicionado de suco de limão.Sugarcane juice is a very well-known and popular beverage in Brazil, and provided it is properly exploited, it has a high market potential. The aim of this research was to evaluate the physicochemical, microbiological and sensory stability of pure sugarcane juice and mixed with fresh lemon and pineapple juice, subjected to a heat treatment (70 °C/25 min and/or gamma radiation (2.5 kGy and stored in high density polyethylene bottles. The data were evaluated by variance analysis and their mean values compared by Tukey's test. Processing of the sugarcane juice reduced the microorganism load without significantly altering the physicochemical composition, aroma and flavor of the beverages

  19. Desempenho comparativo de um motor de ciclo diesel utilizando diesel e misturas de biodiesel Comparative performance of a cycle diesel engine using diesel and biodiesel mixtures

    Ronald Leite Barbosa

    2008-10-01

    Full Text Available Os atuais elevados preços do barril de petróleo no mercado internacional, a possibilidade de geração de postos de trabalho e renda com a conseqüente fixação do homem no campo, as excelentes e variadas condições climáticas e os tipos de relevo fazem com que o Brasil, com suas extensas áreas agricultáveis, destaque-se no cenário mundial em relação à sua grande potencialidade de geração de combustíveis alternativos. A situação ambiental faz com que o ser humano trabalhe no desenvolvimento de alternativas energéticas, destacando-se aquelas oriundas de fontes renováveis e biodegradáveis de caráter eminentemente sustentável. Assim, objetivou-se com este trabalho avaliar o desempenho de um motor ciclo diesel, funcionando em momentos distintos com diesel mineral e misturas deste com biodiesel nas proporções equivalentes a B2 (98% de diesel mineral e 2% de biodiesel, B5 (95% de diesel mineral e 5% de biodiesel, B20 (80% de diesel mineral e 20% de biodiesel e B100 (100% de biodiesel. Para a realização dos ensaios, foi utilizado um motor ciclo diesel de um trator VALMET 85 id, de 58,2kW (78 cv, de acordo com metodologia estabelecida pela norma NBR 5484 da ABNT (1985 que se refere ao ensaio dinamométrico de motores de ciclo Otto e Diesel. Concluiu-se que a potência do motor ao se utilizar biodiesel foi inferior àquela quando se utilizou diesel mineral. Observou-se que, em algumas rotações, as misturas B5 e B20 apresentaram potência igual ou até superior, em algumas situações, àquela quando se utilizou diesel mineral. A melhor eficiência térmica do motor foi verificada na rotação de 540 rpm da TDP equivalente a 1720 rpm do motor.It is considered that, in a close future, the petroleum reservations economically viable will tend to the shortage. Besides it, the exacerbated current price levels of the petroleum barrel in the international market, the possibility of employment generation and income with the consequent

  20. Bio diesel- the Clean, Green Fuel for Diesel Engines

    Natural, renewable resources such as vegetable oils, animal fats and recycled restaurant greases can be chemically transformed into clean burning bio diesel fuels (1). Just like petroleum diesel, bio diesel operates in combustion-ignition engines. Blends of up to 20% bio diesel (mixed with petroleum diesel fuels) can be used in nearly all diesel equipment and are compatible with most storage and distribution equipment. Using bio diesel in a conventional diesel engine substantially reduces emissions of unburned hydrocarbons, carbon monoxide, sulphates, polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons, and particulate matter. The use of bio diesel has grown dramatically during the last few years. Egypt has a promising experiment in promoting forestation by cultivation of Jatropha plant especially in luxor and many other sites of the country. The first production of the Egyptian Jatropha seeds oil is now under evaluation to produce a cost-competitive bio diesel fuel

  1. Diesel fuel filtration system

    The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel's hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system

  2. Avaliação da viscosidade durante a fabricação do doce de leite tradicional adicionado de amido de milho nativo.

    Monique Colombo

    2009-10-01

    Full Text Available O doce de leite é o principal produto concentrado produzido no Brasil. Minas Gerais responde por 50% da produção brasileira de doce de leite tendo, por este motivo, o maior parque industrial. O objetivo deste trabalho foi estudar a variação da viscosidade durante a fabricação do doce de leite tradicional adicionado de amido de milho nativo. Os resultados encontrados mostram a elevação da viscosidade do doce durante a fabricação e um aumento pronunciado após 60 minutos de fervura, o que, baseado nas imagens microscópicas, pode ser atribuído à exposição da amilose por rompimento da estrutura do amido nativo.

  3. A demonstração do valor adicionado como instrumento de mensuração da distribuição da riqueza

    Jacqueline Veneroso Alves da Cunha; Maisa de Souza Ribeiro; Ariovaldo dos Santos

    2005-01-01

    A contabilidade, como veículo de informação, tem como um de seus grandes desafios colocar à disposição de seus usuários informações que retratem as relações das empresas com a sociedade. O Balanço Social, no todo, e a Demonstração do Valor Adicionado - DVA - como uma de suas vertentes, se apresentam como os instrumentos capazes de evidenciar tanto os aspectos econômicos, quanto os sociais, inovando o enfoque utilizado até então, e se constituindo nas mais ricas demonstrações para aferição des...

  4. DESENVOLVIMENTO DE LEITE DE CABRA FERMENTADO PREBIÓTICO COM BAIXO TEOR DE LACTOSE ADICIONADO DE β- CICLODEXTRINA

    Danielle Barros Cenachi

    2012-10-01

    Full Text Available Os consumidores, atualmente, estão interessados em alimentos que, além de nutrir, possam trazer benefícios à saúde. O leite de cabra e seus derivados apresentam um importante papel como fonte de cálcio, gordura de elevada digestibilidade, proteína de alto valor biológico e hipoalergenicidade. Atendendo à demanda por derivados láteos saudáveis, um laticínio de pequeno porte de Coronel Pacheco tem fabricado leite de cabra fermentado natural, enfrentando, contudo, sérias dificuldades na coagulação do leite de seu rebanho: o produto formava uma coalhada muito tênue e fluida; outra dificuldade enfrentada era o sabor "caprino" característico do leite de cabra que diminuía a aceitabilidade do leite fermentado entre seus consumidores. Desse modo, visando solucionar a dificuldade de coagulação desse derivado lácteo, o presente trabalho teve como objetivo otimizar o processo de fabricação de leite de cabra fermentado natural para esse laticínio. Foram testados diferentes tratamentos a fim de tornar a coalhada formada pela coagulação do leite de cabra mais consistente e melhorar a aceitabilidade sensorial do produto obtido. A partir de testes preliminares e da caracterização físico-química e microbiológica da matéria-prima, foram desenvolvidas duas formulações de leite de cabra fermentado concentrado: uma adicionada apenas de inulina, e outra de inulina, β-ciclodextrina e lactase; também foi realizada caracterização físico-química e microbiológica das formulações desenvolvidas e avaliada a aceitabilidade sensorial dessas formulações em relação ao sabor, aroma, textura e impressão global empregando escala hedônica de nove pontos. A pós-acidificação e a contagem de bactérias láticas viáveis das formulações foram acompanhadas por 30 dias. Observou-se que o processo de concentração por evaporação e adição de inulina foi eficiente para tornar mais consistente a coalhada produzida. Verificou-se tamb

  5. The diesel challenge

    This article is focused on the challenges being faced by the diesel producer and these include a number of interesting developments which illustrate the highly competitive world of the European refiner. These include: The tightening quality requirements being legislated coupled with the availability of the ''city diesel'' from Scandinavia and elsewhere which is already being sold into the market. For a time there will be a clear means of product differentiation. One of the key questions is whether the consumer will value the quality difference; a growing demand for diesel which is outstripping the growth in gasoline demand and causing refiners headaches when it comes to balancing their supply/demand barrels; the emergence of alternative fuels which are challenging the traditional markets of the refiner and in particular, the niche markets for the higher quality diesel fuels. All of this at a time of poor margins and over-capacity in the industry with further major challenges ahead such as fuel oil disposal, tighter environmental standards and the likelihood of heavier, higher sulphur crude oils in the future. Clearly, in such a difficult and highly-competitive business environment it will be important to find low-cost solutions to the challenges of the diesel quality changes. An innovative approach will be required to identify the cheapest and best route to enable the manufacture of the new quality diesel. (Author)

  6. do parasita ao ecossistema

    Balazeiro, Clementina Furtado

    2011-01-01

    A triquinose é uma zoonose parasitária, cujo agente causal, um nemátode, pertence ao género Trichinella. Foram já identificadas e caracterizadas várias espécies pertencentes a este género, como T. spiralis, T. nativa, T. britovi, T. nelsoni, T. murreli, T. pseudospiralis, T. papuae e T. zimbabwensis bem como alguns genótipos, T6, T8, T9, e T12. A triquinose é uma doença transmitida por carnivorismo entre os seus hospedeiros. No Homem, a principal fonte de infecção é o consumo de carne infecta...

  7. Do conhecimento ao saber

    Almeida, Maria Cristina Pereira dos Santos

    2013-01-01

    O relatório surge como documento final do percurso iniciado aquando do ingresso no 4º Curso de Pós – Licenciatura em Enfermagem Médico-Cirúrgica da Universidade Católica do Porto, no ano letivo 2010/2011. No decurso deste trabalho pretendemos fazer uma súmula das experiências que este período de formação nos proporcionou, dando visibilidade à unidade curricular estágio, pela sua importância na aquisição de competências na área da Enfermagem Médico-Cirúrgica, na abordagem ao ...

  8. Adição de ferro ao leite e sua retenção na coalhada dessorada

    Mangueira Tiane Franco Barros; Travassos Antonio Eustaquio Resende; Fioreze Romeu; Medeiros Rosália Severo de

    2002-01-01

    Além do ferro ser muito pouco absorvido pelo organismo poucos alimentos contêm ferro em quantidade considerável. Assim, faz-se necessário estudar meios de enriquecimento estratégico de alguns alimentos. O aumento do teor de ferro no leite mediante um processo de coagulação poderia ser de utilidade visando obter um produto nutricionalmente mais completo. O ferro, na forma de Fe(NH4)2(SO4) 2.6H2O, foi adicionado ao leite de vaca em dosagens de 15, 20 e 25mg de Fe/100ml e sua concentração determ...

  9. Efeito das informações e características da embalagem na expectativa e aceitação de café solúvel adicionado de café torrado micronizado

    Julyene Silva Francisco; Ana Carolina Forgati dos Santos; Marta de Toledo Benassi

    2014-01-01

    Foi recentemente lançado, no Brasil, um café solúvel adicionado de café torrado e moído micronizado (finamente moído), mas não se observaram na literatura trabalhos que avaliem a reação do consumidor brasileiro frente a esse novo conceito de produto. Assim, o objetivo do estudo foi verificar o impacto das informações e das características da embalagem sobre a expectativa e aceitação de um café solúvel adicionado de café torrado micronizado. Dois cafés solúveis comerciais da mesma marca, um co...

  10. Diesel Engine Technician

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  11. Diesel Engine Idling Test

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  12. Diesel sisustab / Jenni Juurinen

    Juurinen, Jenni

    2007-01-01

    Renzo Rosso poolt 1978. a. Itaalias asutatud rõivafirma Diesel sisustas 2007. a. kevadel Stay Inn-projekti raames katusekorteri Helsingi kesklinnas. Diesili kujundaja Vesa Kemppainen. Sisustuses on kasutatud peamiselt soome mööblit ja seintel eksponeeritud soome noorte kunstnike taieseid. Autoreid: Harri Koskinen (voodi), Thomas Pedersen (Stingrey kiiktool), Jenni Hiltunen (maalid)

  13. Health, environmental, and economic costs from the use of a stabilized diesel/ethanol mixture in the city of São Paulo, Brazil Avaliação dos custos econômicos, ambientais e de saúde pública devido ao uso de mistura diesel/etanol estabilizada por um aditivo comercial na cidade de São Paulo, Brasil

    Simone Georges El Khouri Miraglia

    2007-01-01

    Full Text Available In Greater Metropolitan São Paulo, Brazil, fossil fuel combustion in the transportation system is a major cause of outdoor air pollution. Air quality improvement requires additional policies and technological upgrades in fuels and vehicle engines. The current study thus simulated the environmental and social impacts resulting from the use of a stabilized diesel/ethanol mixture in the bus and truck fleet in Greater Metropolitan São Paulo. The evaluation showed reductions in air pollutants, mainly PM10, which would help avert a number of disease events and deaths, as estimated through dose-response functions of epidemiological studies on respiratory and cardiovascular diseases. Valuation of the impacts using an environmental cost-benefit analysis considered operational installation, job generation, potential carbon credits, and health costs, with an overall positive balance of US$ 2.851 million. Adding the estimated qualitative benefits to the quantitative ones, the project's benefits far outweigh the measured costs. Greater Metropolitan São Paulo would benefit from any form of biodiesel use, producing environmental, health and socioeconomic gains, the three pillars of sustainability.A poluição atmosférica na Região Metropolitana de São Paulo, Brasil, é devida principalmente à queima de combustíveis fósseis utilizados no sistema de transportes. A fim de melhorar a qualidade do ar, são necessárias políticas e melhorias tecnológicas em combustíveis e motores veiculares. Neste sentido, foi realizada uma avaliação dos impactos ambientais e sociais da mistura estabilizada do uso de diesel/etanol na frota de ônibus e caminhões na Região Metropolitana de São Paulo. Essa avaliação mostrou reduções nos poluentes atmosféricos, especialmente o MP10, o que contribuiu para um número de eventos de morbidade e mortalidade evitáveis estimados por meio de funções dose-resposta de estudos epidemiológicos em termos de doen

  14. IOGURTES DESNATADOS PROBIÓTICOS ADICIONADOS DE CONCENTRADO PROTÉICO DO SORO DE LEITE: PERFIL DE TEXTURA, SINÉRESE E ANÁLISE SENSORIAL

    A. E. C. ANTUNES

    2008-09-01

    Full Text Available

    Iogurtes desnatados apresentam textura frágil e intensa dessoragem. O sabor e o aroma de iogurtes fermentados por culturas probióticas podem ser diferentes do convencional. Estes motivos podem prejudicar a aceitação de iogurtes desnatados probióticos pelo consumidor. A adição de concentrado protéico do soro de leite (CPS melhora as características de textura e retenção de soro do iogurte. No entanto, também pode proporcionar sabor atípico. Objetivou-se com esse trabalho avaliar a influência da adição de concentrado protéico do soro de leite (CPS no perfil de textura e dessoragem durante o armazenamento de iogurtes desnatados, bem como analisar sensorialmente os produtos. O CPS proporcionou iogurtes mais firmes e gomosos, com menores valores de sinérese; características essas potencializadas durante o armazenamento. O iogurte com fermento probiótico L. acidophilus apresentou maior dessoragem, no entanto, a adição de CPS compensou essa tendência. Os provadores não identificaram diferenças estatisticamente significativas (p<0,05 nas características globais dos iogurtes em função da presença de culturas probióticas, mas, identificaram leve diferença em função do CPS adicionado.

  15. A tale of two diesels.

    Arey, Janet

    2004-01-01

    Two different samples of diesel exhaust particles (DEP) have been used by toxicologists interested primarily in cancer/genotoxicity or noncancer--such as pulmonary inflammation and asthma exacerbation--health end points. These are, respectively, a standard reference material, SRM 2975, from a heavy-duty diesel engine, and a sample collected by researchers at the Japanese National Institute for Environmental Studies from an automobile diesel engine. In this issue of Environmental Health Perspe...

  16. Seasonality of Diesel Fuel Prices

    Ibendahl, Gregg

    2012-01-01

    Diesel fuel is a major expense for most farmers. Diesel fuel prices do exhibit some seasonality so farmers can try to lower their fuel expenses by buying their fuel in months when prices are lower. However, purchasing fuel before it is needed results in a carrying charge to the farmer. This paper examines the optimal purchase month for diesel fuel for both spring planting and fall harvest. Both risk neutral and risk-averse farmers are considered. Higher interest rates discourage advance purch...

  17. STRATEGY DETERMINATION FOR DIESEL INJECTION USING AVL ESE DIESEL

    Vrublevskiy, A.

    2012-06-01

    Full Text Available Based on the design of research AVL FIRE ESE DIESEL environment they proposed to reduce noise and NOx emissions in the exhaust gases of the automobile diesel engine using two-stage injection. The parameters of the fuel for idling are determined.

  18. Of the clean development mechanism to the program of activities: an analysis of the bio diesel and wind energy uses in Brazil; Do mecanismo de desenvolvimento limpo ao programa de atividades: uma analise do uso do biodiesel e da energia eolica no Brasil

    Rocha, Mayra Jupyara Braga

    2009-05-15

    The current actions of economic and industrial activities have resulted in increase of the concentration of greenhouse gases in the atmosphere since 1750. According to IPCC (2007) this alteration can increase the average temperature in the planet between 1,8 and 4,0 deg C up to 2100. The climate changes and the global warming are the most complicated environmental questions of our time and the actions took now will have effect on the future generations. In this context, a series of world-wide conferences and diverse scientific quarrels had occurred throughout the last decade, which culminated in the most important multilateral agreement firmed on climate changes, the Kyoto Protocol, signed in 1997. The Protocol is a landmark in the attempts of mitigation of the climate changes, since it established the commitment of the industrialized countries with emissions reduction targets of 5,2% to the level of 1990 emissions. To achieve such targets these countries count on three flexibilization mechanisms provided by the Kyoto Protocol: Joint implementation, Emission Trading and the Clean Development Mechanism (CDM) that it will be object of this study. The objective of this thesis is to carry through an evaluation of the CDM since its conception until the current days, searching to identify its dynamics and the main inherent gaps of this instrument and finally present two case studies of the bio diesel and wind energy uses in Brazil. (author)

  19. Evaluation of Emissions Bio diesel

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs

  20. Evaluation of Emissions Bio diesel

    Rodriguez Maroto, J. J.; Dorronsoro Arenal, J. L.; Rojas Garcia, E.; Perez Pastor, R.; Garcia Alonso, S.

    2007-09-27

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs.

  1. Bio diesel production from algae

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  2. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  3. MEMS AO for Planet Finding

    Rao, Shanti; Wallace, J. Kent; Shao, Mike; Schmidtlin, Edouard; Levine, B. Martin; Samuele, Rocco; Lane, Benjamin; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul

    2008-01-01

    This slide presentation reviews a method for planet finding using microelectromechanical systems (MEMS) Adaptive Optics (AO). The use of a deformable mirror (DM) is described as a part of the instrument that was designed with a nulling interferometer. The strategy that is used is described in detail.

  4. Diesel engine management systems and components

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  5. Cometas: Das Lendas aos Fatos

    Voelzke, M. R.

    O descobrimento de cometas, devido ao seu aparecimento espetacular, tem registro nas mais antigas culturas humanas. A primeira referência situa-se no ano de 1095 antes de Cristo [a.C.; HO; HO, 1962]. A quantidade de registros de descobrimentos cometários, principalmente provenientes do território chinês em particular e do oriente em geral, aumentou gradualmente a partir do quarto século depois de Cristo (d.C.). É de origem chinesa a primeira referência ao cometa P/Halley no ano de 240 a.C. [VOELZKE, 1993]. Com o desenvolvimento da astronomia relativamente às técnicas observacionais os descobrimentos bem como as observações cometárias aumentaram sensivelmente a partir do século XVII, sendo que a partir do século XIX um novo incremento ocorreu devido ao emprego da fotografia e a resultante melhora de sensibilidade na observação.

  6. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    Rationale: Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  7. Advanced automotive diesel assessment program

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  8. Catalytic treatment of diesel engines, NOx emissions

    Some aspects of the operation of diesel engines are revised together with the pollutant emissions they produce, as well as the available catalytic technologies for the treatment of diesel emissions. Furthermore the performance of a catalyst developed in the environmental catalysis group for NOx reduction using synthetic gas mixtures simulating the emissions from diesel engines is presented

  9. Cleaning the Diesel Engine Emissions

    Christensen, Thomas Budde

    This paper examines how technologies for cleaning of diesel emission from road vehicles can be supported by facilitating a technology push in the Danish automotive emission control industry. The European commission is at present preparing legislation for the euro 5 emission standard (to be enforced...... in 2010). The standard is expected to include an 80% reduction of the maximum particulate emissions from diesel cars. The fulfillment of this requirement entails development and production of particulate filters for diesel cars and trucks. Theoretically the paper suggests a rethinking of public...... industry policy based on Michael Porters cluster theory. The paper however suggest that the narrow focus on productivity and economic growth in Porters theory should be qualified and integrated with a broader scope of societal policy aims including social and environmental issues. This suggestion also...

  10. Clean Coal Diesel Demonstration Project

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  11. Hidrofilicidade de filmes de amido/poli(butileno adipato co-tereftalato (Pbat adicionados de tween 80 e óleo de soja Hydrophilicity of starch and poly(butylene adipate-co-terephthalate (Pbat films containing tween 80 and soybean oil

    Renata P. Herrera Brandelero

    2013-01-01

    Full Text Available A incorporação de amido ao polímero poli (butilenoadipatoco-tereftalato (PBAT através de blendas com alto teor de amido pode ser uma alternativa para obter embalagens biodegradáveis, minimizar custos e o uso de recursos não renováveis. No entanto, a adição de amido aumenta a permeabilidade ao vapor de água (PVA. A incorporação em filmes com amido de substâncias como óleos vegetais e surfactantes pode diminuir a hidrofilicidade, favorecendo as aplicações destes como embalagens. A hidrofilicidade dos filmes elaborados por blendas de amido/PBAT adicionados de óleo de soja (OS e tween 80 (TW foi avaliada considerando o efeito do OS e TW nas isotermas de sorção dos filmes, na PVA e nos coeficientes de difusão (Dw e solubilidade (β do vapor de água. Filmes com OS com ou sem TW apresentaram menor quantidade de água de sorção, sendo os filmes com menores quantidades de OS e sem TW menos hidrofílicos e menos permeáveis aos vapores de água. A adição de OS reduziu os valores de β e Dw dos filmes de amido/PBAT. O efeito foi relacionado com o aumento das porções hidrofóbicas e da compatibilidade entre o amido e PBAT na presença de OS.Incorporating starch into the poly(butylene adipate-co-terephthalate (PBAT polymer by means of blends with high starch contents is a possible option for producing biodegradable packaging using renewable resources and reducing costs. However, the addition of starch increases the water vapour permeability (WVP. The incorporation of substances as lipids and surfactants can reduce the hydrophilicity of films containing starch, favouring their use as packaging. The hydrophilicity of films produced from blends of starch/PBAT with added soybean oil (SO and tween 80 (TW was studied. The effects of these substances on the sorption isotherm, on the WVP and on the water vapour diffusion (Dw and solubility (β coefficients of the films were evaluated. The water sorption in films with SO, with or without TW

  12. Massagem ao bebé

    Figueiredo, Bárbara

    2007-01-01

    Apresenta-se uma revisão da investigação desenvolvida no âmbito da massagem e da estimulação táctil-cinestésica ao bebé. Descrevem-se os estudos empíricos conduzidos no sentido de avaliar os efeitos no desenvolvimento, no bem-estar e em problemas específicos do bebé de termo e prematuro. Conclui-se a respeito do impacto positivo da massagem sobre a criança, os pais e na interacção entre ambos; nomeadamente porque beneficia dois objectivos primordiais dos cuidados de ...

  13. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends

    Nabi, M.N.; Akhter, M.S.; Shahadat, M.M.Z. [Rajshahi Univ. of Engineering and Technology (Bangladesh). Dept. of Mechanical Engineering

    2006-02-15

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NO{sub x}) emission. However, compared with the diesel fuel, NO{sub x} emission with diesel-biodiesel blends was slightly reduced when EGR was applied. (author)

  14. Adição de ferro ao leite e sua retenção na coalhada dessorada Addition of iron to the milk and its retention in the curd

    Tiane Franco Barros Mangueira; Antonio Eustaquio Resende Travassos; Romeu Fioreze; Rosália Severo de Medeiros

    2002-01-01

    Além do ferro ser muito pouco absorvido pelo organismo poucos alimentos contêm ferro em quantidade considerável. Assim, faz-se necessário estudar meios de enriquecimento estratégico de alguns alimentos. O aumento do teor de ferro no leite mediante um processo de coagulação poderia ser de utilidade visando obter um produto nutricionalmente mais completo. O ferro, na forma de Fe(NH4)2(SO4) 2.6H2O, foi adicionado ao leite de vaca em dosagens de 15, 20 e 25mg de Fe/100ml e sua concentração determ...

  15. Coal-fired diesel generator

    NONE

    1997-05-01

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  16. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  17. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Jacek Caban; Agata Gniecka; Lukáš Holeša

    2013-01-01

    This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  18. Aerosol Observing System (AOS) Handbook

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  19. Motor gerador ciclo diesel sob cinco proporções de biodiesel com óleo diesel Engine-generator diesel cycle under five proportions of biodiesel and diesel

    Marcelo J. da Silva

    2012-01-01

    Full Text Available O estudo de fontes alternativas de energia ao óleo diesel mineral, como o biodiesel, com origem renovável, é importante para o meio-ambiente e diversificação da matriz energética. Neste estudo foram levantados o consumo específico de combustível, o valor calórico do combustível e a eficiência do conjunto motor gerador da marca BRANCO em função de cargas resistivas, sob as seguintes proporções volumétricas entre o óleo diesel mineral com biodiesel: 0% (B0, 20% (B20, 40% (B40, 60% (B60 e 100% de biodiesel (B100. Para o ensaio utilizou-se motor de 7,36 kW, com gerador elétrico acoplado de 5,5 kW. As cargas utilizadas, 0,5 kW; 1,0 kW; 1,5 kW e 2,0 kW foram elevadas até 5,0 kW, oriundas de um dinamômetro de cargas resistentes. Assim, o desempenho do conjunto para cargas abaixo de 1,5 kW mostrou-se menor, pelo maior consumo específico de combustível (CEC, e redução na eficiência do conjunto motor gerador para a faixa de potência. Para as proporções de biodiesel B40, B60 e B100 os resultados descreveram redução no valor calórico e aumento do CEC. Portanto, realizando comparação das proporções de biodiesel com o óleo diesel, a proporção B20 substitui parcialmente o óleo diesel, sem perdas significativas do desempenho do motor gerador.The study of mineral diesel alternatives, such as biodiesel, a renewable fuel, is important for the environment and to diversify energy sources. This study evaluated an engine-generator BRANCO brand. Specific fuel consumption, calorific value and the overall efficiency as a function of the system load was measured, using diesel oil and biodiesel blends. The biodiesel proportions in the composition were 0% (B0, 20% (B20, 40% (B40, 60% (B60, and 100% (B100. The engine that was used during the test has a power of 7.36 kW, and the electric generator was 5.5 kW. The group was submitted to resistive loading, in the range: 0.5 kW, 1.0 kW, 1.5 kW; growing up to 5.0 kW. The results have shown

  20. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    Ekkachai Sutheerasak

    2014-06-01

    Full Text Available Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree of spray angle and decrease 13.90 % of fuel injection pressure to compare with non-preheated oil. As engine preformance testing results, preheated diesel oil increase 26.20% of thermal efficiency and decrease 4.30 % of BSFC, as preheated bio-diesel oil increase 30% of thermal efficiency and decrease 29.90 % of BSFC to compare with non-preheated oil.

  1. Estabilidade de géis de amido de milho normal, ceroso e com alto teor de amilose adicionados de gomas guar e xantana durante os processos de congelamento e descongelamento Freeze-thaw stability of normal, waxy and high amylose corn starch gels with added guar and xanthan gums

    Fernanda Hart Weber

    2008-06-01

    Full Text Available O objetivo do presente trabalho foi estudar os efeitos das gomas guar e xantana sobre a estabilidade dos géis de amido de milho normal, ceroso e com alto teor de amilose submetidos aos processos de congelamento e descongelamento. Os géis desses amidos, com concentração total de sólidos de 10% e adicionados das gomas (0,15; 0,50; 0,85 e 1%, foram submetidos a 5 ciclos de congelamento (20 horas a -18 °C e descongelamento (4 horas a 25 °C, com exceção dos géis com alto teor de amilose, que foram submetidos a apenas 1 ciclo, devido à perda da estrutura de gel. A determinação da sinérese (porcentagem de água liberada foi realizada pela diferença entre a massa inicial e a massa final das amostras. O gel de amido de milho normal liberou 74,45% de água, sendo que a adição de 1% da goma xantana reduziu significativamente a sinérese para 66,43%. A adição de 0,85 e 1% da goma xantana também reduziu a sinérese dos géis de amido ceroso. O menor teor de sinérese foi obtido com a utilização de 1% de goma xantana ao gel de amido de milho com alto teor de amilose, evidenciando a ação crioprotetora desta goma.The objective of the present work was to study the effects of guar and xanthan gums on the stability of normal, waxy and high amylose corn starch gels, submitted to freeze-thaw processes. The gels of these starches with a total solids content of 10% and added gums (0.15;0.50;0.85and1%, were submitted to 5 freezing (20 hours, -18 °C and thawing (4 hours, 25 °C cycles, with exception of the high amylose gels that were submitted to only 1 cycle. Syneresis (% water released was determined by the difference between the initial and final masses of the samples. The normal corn starch gel released 74.45% water and the addition of 1% xanthan gum significantly reduced syneresis to 66.43%. The incorporation of 0.85 and 1% xanthan gum also reduced syneresis of waxy starch gels. The lowest level of syneresis was reached with the use of 1

  2. Issues concerning the light-duty diesel

    Clusen, Ruth C.

    1979-09-01

    The current reasons for concern about the diesel engine for light-duty vehicles are explained, and an overview of the major issues impacting upon future diesel-related policy considerations is presented. Light-duty diesels are of immediate concern because proposed environmental legislation could impact upon their market future as early as model year 1981. The environmental issues affecting these vehicles also have implications for other categories of diesels (heavy-duty mobile and stationary application). Part I presents background and overview information on the reasons for the diesel's emergence as a major concern in the regulatory area and Part II summarizes the issues surrounding the diesel in three major areas: protecting health and the environment; fuel conservation; and broad economic and programmaic trade-offs arising from the previous two areas.

  3. Diesel cars in the United States

    1978-06-01

    The purpose of this study was to develop a better understanding of the causes of the recent increased interest in diesel cars, thereby providing insight into the related behavior of institutions and individuals. This knowledge may improve the formulation of federal policies for diesel, electric, and other more energy-efficient car systems. The study describes developments in the diesel car field over the past few years, and discusses the present status of diesel cars. Historical data were assembled on diesel car sales and on parameters that might have affected the sales. Information is included on the following items related to diesel cars: buyers preferences and why; fuel economy and availability; energy conservation potential; and exhaust emissions, their control and air pollution effects. (LCL)

  4. Pyrolysis oil as diesel fuel

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  5. Diesel Engine Light Truck Application

    None

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  6. Experimental investigation of the performance and emissions of diesel engines by a novel emulsified diesel fuel

    Highlights: • A novel bio-fuel, glucose solution emulsified diesel fuel, is evaluated. • Emulsified diesel has comparable brake thermal efficiency. • NOX emissions decrease with emulsified fuel at all loads. • Soot emissions decrease with emulsified fuel except at a few operating points. - Abstract: The subject of this paper was to study the performance and emissions of two typical diesel engines using glucose solution emulsified diesel fuel. Emulsified diesel with a 15% glucose solution by mass fraction was used in diesel engines and compared with pure diesel. For the agricultural diesel engine, performance and emission characteristics were measured under various engine loads. The results showed that the brake thermal efficiencies were improved using emulsified diesel fuel. Emulsified fuel decreased NOx and soot emissions except at a few specific operating conditions. HydroCarbon (HC) and CO emissions were increased. For the automotive diesel engine, performance and emissions were measured using the 13-mode European Stationary Cycle (ESC). It was found that brake thermal efficiencies of emulsified diesel and pure diesel were comparable at 75% and 100% load. Soot emissions decreased significantly while NOx emissions decreased slightly. HC emissions increased while CO emissions decreased at some operating conditions

  7. Efeito da estocagem de massas congeladas nos parâmetros colorimétricos de pães tipo forma adicionados de ingredientes funcionais

    Rafael Audino Zambelli

    2015-03-01

    Full Text Available O presente teve como objetivo estudar o efeito da estocagem congelada de massas por até 60 dias nos parâmetros colorimétricos de pães tipo forma. Foram desenvolvidas 7 formulações de pães tipo forma, uma padrão, sema adição de ingredientes funcionais e as  contendo as combinações dos ingredientes açaí em pó/polidextrose, brócolis em pó/polidextrose e tomate em pó/polidextrose nas proporções de 5% e 10% cada. Através de análise de cor instrumental foram avaliados os parâmetros de luminosidade (L, cromaticidades a* e b*, o croma (C* e o ângulo de tonalidade (h° do miolo dos pães nos tempos 0, 15, 30, 45 e 60 dias. Para a formulação padrão, a luminosidade apresentou redução de  77,38 a 69,43, houve redução na cromaticidade a* e ângulo de tonalidade, já a cromaticidade b* e croma apresentaram elevação em função do tempo de estocagem. Para as formulações contendo ingredientes funcionais, o comportamento foi semelhante, os pães tiveram menor luminosidade quando comparada à padrão, à medida do tempo de estocagem, pela degradação dos pigmentos houve elevação deste parâmetro. A cromaticidade a* e o ângulo de tonalidade foram reduzidos ao longo da estocagem, com exceção das formulações incorporadas com brócolis em pó, onde o ângulo de tonalidade aumentou. A cromaticidade b* e o croma apresentaram aumento durante o período estudado. Concluiu-se que o tempo de estocagem congelada das massas promoveu variações nos parâmetros colorimétricos do miolo de pães tipo forma. 

  8. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic). PMID:16193170

  9. Impact of using automotive diesel fuel adulterated with heating diesel on the performance of a stationary diesel engine

    Kalligeros, S. [Elinoil S.A., Athens (Greece). Research and Development Dept.; Zannikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G. [National Technical University of Athens (Greece). School of Chemical Engineering

    2005-03-01

    Air quality improvement, especially in urban areas, is one of the major concerns. For this reason, car and equipment manufacturers and refiners have been exploring various avenues to comply with the increasingly severe anti-pollution requirements. Adulteration of fuels stands as a roadblock to this improvement. In this paper, fuel consumption, particulate matter and exhaust emission measurements from a single cylinder, stationary Diesel engine are presented. The engine was fuelled with automotive Diesel fuel, which was adulterated with domestic heating Diesel in proportions up to 100%. The four types of adulterated Diesel fuel investigated increased all types of emissions compared to automotive Diesel fuel. The only positive result was a slight decrease of the volumetric fuel consumption in some loads. (author)

  10. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-03-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  11. City Diesel raises its profile in Finland

    As of the beginning of July 1993, Neste Oil's virtually sulphur- free City Diesel will become available throughout southern Finland. Up until now, the fuel has been in trial use only. Thanks to a favourable tax break, City Diesel will cost drivers the same as normal grades

  12. Biodiesel and Renewable Diesel: A Critical Comparison

    Several types of fuels can be obtained from lipid feedstocks. These include biodiesel and what is termed renewable diesel. While biodiesel retains the ester moiety occurring in triacylglycerols in converted form as mono-alkyl esters, the composition of renewable diesel, hydrocarbons, emulates that ...

  13. Hydrogenation Technology for Producing Clean Diesel Fuel

    Chen Shuiyin; Xiong Zhenlin; Gao Xiaodong; Nie Hong

    2004-01-01

    With the standard of environmental protection becoming increasingly strict, it is required to remove sulfur and aromatics in diesel deeply. RIPP has developed several new hydrogenation catalysts and flexible processes, by means of which clean diesel fuel with low sulfur and low aromatic contents can be produced. From SRGO (Straight Run Gas Oil), which has an aromatic content of less than 30m%, a low sulfur and low aromatic diesel fuel or ultra-low sulfur diesel can be obtained by adopting a new process operating on highly active RN-series catalysts. From a feed with higher aromatic content (A=30~80m%),such as FCC-LCO, a low sulfur and low aromatic diesel fuel can be obtained by the SSHT, MHUG and DDA processes.

  14. Predicting emergency diesel starting performance

    The US Department of Energy effort to extend the operational lives of commercial nuclear power plants has examined methods for predicting the performance of specific equipment. This effort focuses on performance prediction as a means for reducing equipment surveillance, maintenance, and outages. Realizing these goals will result in nuclear plants that are more reliable, have lower maintenance costs, and have longer lives. This paper describes a monitoring system that has been developed to predict starting performance in emergency diesels. A prototype system has been built and tested on an engine at Sandia National Laboratories. 2 refs

  15. Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel

    HUANG Yongcheng; ZHOU Longbao; PAN Keyu

    2007-01-01

    Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder directinjection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation.

  16. 30 CFR 72.520 - Diesel equipment inventory.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel equipment inventory. 72.520 Section 72... Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment underground, shall prepare and submit in writing to the District Manager, an inventory of diesel...

  17. Series 190 Diesel Engines Used in China's Oil Drilling

    Liu Qimin

    1996-01-01

    @@ Jinan Diesel Engine Works, located in Jinan,Shandong Province, was established more than 70 years ago. Now it produces series 190 diesel engines and diesel generating sets. Over 95 percent of land drilling power engines used in China are from Jinan Diesel Engine Works.

  18. Performance of cycle diesel engine using Biodiesel of olive oil (B100 Desempenho de motor diesel quatro tempos alimentado com biodiesel de óleo de oliva (B100

    Carlos Eduardo Silva Volpato

    2012-06-01

    Full Text Available Biodiesel is a renewable fuel derived from vegetable oils used in diesel engines, in any proportion with petroleum diesel, or pure. It is produced by chemical processes, usually by transesterification, in which the glycerin is removed. The objective of this study was to compare the performance of a four stroke, four cylinder diesel cycle engines using either olive (B100 biodiesel oil or diesel oil. The following parameters were analyzed: effective and reduced power, torque, specific and hourly fuel consumption, thermo-mechanical and volumetric efficiency. Analysis of variance was performed on a completely randomized design with treatments in factorial and the Tukey test applied at the level of 5%. Five rotation speeds were researched in four replications (650, 570, 490, 410, 320 and 240 rpm. The engine fed with biodiesel presented more satisfactory results for torque, reduced power and specific and hourly consumptions than that fed with fossil diesel.Biodiesel é um combustível renovável derivado de óleos vegetais, usado em motores de ciclo diesel, em qualquer proporção com o diesel mineral, ou puro. É produzido por meio de processos químicos, normalmente por transesterificação, no qual é removida a glicerina. Este trabalho foi realizado com o objetivo de avaliar o desempenho de um motor de ciclo diesel quatro tempos e quatro cilindros, utilizando biodiesel de óleo de oliva (B100, em comparação ao óleo diesel. Foram analisados os parâmetros: potência efetiva e reduzida, torque, consumo específico e energético de combustível, eficiência termomecânica e volumétrica. Foi instalado um ensaio com delineamento inteiramente casualizado (DIC em esquema fatorial, realizada análise de variância e aplicado teste de Tukey, a 5%. Foram pesquisados cinco níveis de rotação em quatro repetições (650, 570, 490, 410, 320 e 240 rpm. O motor alimentado com biodiesel de oliva apresentou torque, potencia reduzida e consumos especifico e

  19. AoB PLANTS: origins and features

    Jackson, Michael B.

    2009-01-01

    Introduction AoB PLANTS is a peer reviewed, Open Access (OA) journal owned and run by plant biologists and published by Oxford University Press. The journal publishes research papers, reviews and opinion papers on all aspects of land based plant biology. They are made available rapidly online and can be accessed without the need for subscriptions or payment. Background Several difficulties in conventional publishing of peer-reviewed manuscripts encouraged AoB PLANTS to adopt OA. Open Access h...

  20. Standard Triaxial Ellipsoid Asteroids from AO Observations

    Drummond, Jack D.; Merline, W. J.; Conrad, A.; Dumas, C.; Carry, B.

    2008-09-01

    As part of our study of resolved asteroids using adaptive optics (AO) on large telescopes (>8; m), we have identified several that can serve as Standard Triaxial Ellipsoid Asteroids (STEAs), suitable for radar and thermo-physical calibration. These objects are modeled well as triaxial ellipsoids, having: 1) small uncertainties on their three dimensions as determined with AO; 2) rotational poles well determined from both lightcurves and AO; and 3) good sidereal periods from lightcurves. Although AO allows the opportunity to find an asteroid's dimensions and rotational pole in one night, we have developed a method to combine AO observations from different oppositions to pool into a global solution. The apparent orientation and sizes of STEAs can be predicted to within a few degrees and a few km over decades. Currently, we consider 511 Davida, 52 Europa, 2 Pallas, and 15 Eunomia as STEAs. Asteroids that are not well modeled as ellipsoids, clearly showing departures from ellipsoid figures in AO images, include 129 Antigone and 41 Daphne. We will show movies of images and models of these asteroids.

  1. Combustion and emissions of the diesel engine using bio-diesel fuel

    2008-01-01

    The combustion and heat release of engines using diesel fuel and bio-diesel fuel have been investigated.The results illustrate that the combustion happens in advance and the ignition delay period is shortened.The initial heat release peak declines a little,the corresponding crankshaft angle changes in advance,and the combustion duration is prolonged.The economic performance and emission features of diesel engines using diesel fuel and bio-diesel fuel are compared.The results also show that the specific fuel consumption of bio-diesel increases by about 12% .The emissions,such as CO,HC,and particulate matter decrease remarkably whereas NOx increases a little.

  2. Poly-Acrylic Acid Derivatives as Diesel Flow Improver for Paraffin-Based Daqing Diesel

    Cuiyu Jiang; Ming Xu; Xiaoli Xi; Panlun Qi; Hongyan Shang

    2006-01-01

    Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic acid derivatives (PADE) with-COOR,-COOH,-CONHR, and -COO-NH3+R groups by molecular design on the mechanics of diesel; PPDs were synthesized and evaluated as cold flow improver for Daqing 0# diesel in this paper. The pure PADE was superior to the commercial PPDs and displayed a substantial ability of wax crystals dispersion. There was a synergistic effect among the PADE and T1804 and secondary amine. The synergism clearly improved the low temperature performance of Daqing diesel products and could reduce the cold filter plugging point of 0# diesel by 6-7 ℃.

  3. Effect of Diesel Sulfur on the Regeneration of Catalyst based Diesel Particulate Filters

    Pruthviraj S Balekai

    2013-08-01

    Full Text Available Diesel particulate filters are used in diesel engines to clean the particulate matter, which is released into the atmosphere. These particulate filters have a mechanism, which is affected by diesel sulfur level. My study refers to the effect with which the sulfur in diesel affects the regeneration rate of the diesel particulate filters. Two filters with different coatings were taken. Diesel Sulfur with different concentrations was tested. It was observed that there was linear relation between sulfur level and balance point temperature. Also, it was observed that this was the cause for not using full-blend biodiesel, as the emission standards could not be met due to high sulfur levels in the biodiesel.

  4. Impact of fuels on diesel exhaust emissions

    This report presents an investigation of the emissions from eight diesel fuels with different sulphur and aromatic content. A bus and a truck were used in the investigation. Chemical analysis and biological testing have been performed. The aim of this project was to find a 'good' diesel fuel which can be used in urban areas. Seven of the fuels were meant to be such fuels. It has been confirmed in this study that there exists a quantifiable relationship between the variables of the diesel fuel blends and the variables of the chemical emissions and their biological effects. 119 figs., 12 tabs., approx. 100 refs

  5. EXPERIMENTAL EVALUATION OF A DIESEL ENGINE WITH BLENDS OF DIESEL-PLASTIC PYROLYSIS OIL

    Mr. Rajesh Guntur,; Dr. M.L.S. Deva Kumar,; Dr.K.Vijaya Kumar Reddy

    2011-01-01

    Environmental degradation and depletion of oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on crude oil import of about 125 Mt per annum (7:1diesel/gasoline). Diesel being the main transportation fuel in India, finding a suitable fuel alternative to diesel is an urgent need. In this context, pyrolysis of waste plastic solid is currently receiving renewed interest. Waste plastic pyrolysis oil is suitable for compression ignition engine...

  6. Combustion and emission characteristics of a diesel engine fuelled with jatropha and diesel oil blends

    Elango Thangavelu; Senthilkumar Thamilkolundhu

    2011-01-01

    The depletion of oil resources as well as the stringent environmental regulations has led to the development of alternate energy sources. In this work the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with blends of jatropha and diesel oil are evaluated. Experiments were conducted with different blends of jatropha oil and diesel at various loads. The peak pressures of all the blends at full load are slightly lower than the base dies...

  7. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil

    Palanisamy, Nandhini; Ramya, Jayaprakash; Kumar, Srilakshman; Vasanthi, NS; Chandran, Preethy; Khan, Sudheer

    2014-01-01

    Petroleum based products are the major source of energy for industries and daily life. Leaks and accidental spills occur regularly during the exploration, production, refining, transport, and storage of petroleum and petroleum products. In the present study we isolated the bacteria from diesel contaminated soil and screened them for diesel biodegradation capacity. One monoculture isolate identified by 16S rRNA gene sequence analysis to be Acinetobacter baumannii was further studied for diesel...

  8. [Emission characteristics of a diesel car fueled with coal based Fischer-Tropsch (F-T) diesel and fossil diesel blends].

    Hu, Zhi-Yuan; Cheng, Liang; Tan, Pi-Qiang; Lou, Di-Ming

    2012-11-01

    According to the first type test cycle of China national standard GB 18352.3-2005, the CO, NO(x), HC, PM and CO2 emission characteristics of a PASSAT diesel car fueled with Shanghai local IV diesel, coal based Fischer-Tropsch (F-T) diesel, and the blends of coal based F-T diesel and Shanghai local IV diesel up to 10% and 50% by volume were analyzed respectively. And the environmental impacts such as decreased air quality, health impact, photochemical ozone, global warming, and acidification that could be caused by CO, NO(x), HC, PM and CO2 emission of the diesel car were also assessed. The results showed that under GB 18352.3-2005 No. 1 test driving cycle, which consisted of four urban driving cycles and one extra urban driving cycle, the CO, HC, PM and CO2 emissions were released mainly in the urban driving cycles whereas the NO(x) emissions occurred mainly in the extra urban driving cycle. Compared with Shanghai local IV diesel, all of the CO, NO(x), HC, PM and CO2 emissions of the diesel car decreased to different extents when fueled with coal based F-T diesel blends. Moreover, the aerosol generation potential, global warming potential and acidification potential of F-T diesel fueled diesel car were also reduced. To sum up, coal based F-T diesel would be one of the alternative fuels to diesel in China. PMID:23323400

  9. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  10. Emission testing of jatropha and pongamia mixed bio diesel fuel in a diesel engine

    The present investigation is based on the emission characteristics of mixed bio diesel fuel in a four stroke single cylinder compression ignition engine at constant speed. Refined oils of jatropha and pongamia are converted into bio diesel by acid catalyzed esterification and base catalyzed transesterification reactions. The jatropha and pongamia bio diesel were mixed in equal proportions with conventional mineral diesel fuel. Four samples of fuel were tested namely, diesel fuel, B10, B20 and B40. The emission analysis showed B20 mixed bio diesel fuel blend having better results as compared to other samples. There is 60% and 35% lower emission of carbon monoxide and in sulphur dioxide observed while consuming B20 blended fuel respectively. The test result showed NOx emissions were 10% higher from bio diesel fuel, as compared to conventional diesel fuel. However, these emissions may be reduced by EGR (Exhaust Gas Recirculation) technology. Present research also revealed that that B20 mixed bio diesel fuel can be used, without any modification in a CI engine. (author)

  11. Investigation of the DI Diesel Engine Performance using Ethanol-Diesel Fuel Blends

    Suntikunaporn Malee; Echaroj Snunkhaem; Asavatesanupap Channarong

    2016-01-01

    Ethanol-diesel blend is a promising candidate as a fuel for direct injection (DI) diesel engine. In this research, solubility of different compositions of ethanol-diesel blends from 2 to 15% (v/v) ethanol were tested for 20 days. Significant increases in solubility of the blends were observed after addition of 1% (v/v) n-butanol. The Kubota’s RT140 diesel engine was operated using E7B1D92 blend at several engine speeds (1,000 to 1,600 rpm). The obtained results demonstrated that, when using E...

  12. Influence of FAME addition to diesel fuel on exhaust fumes opacity of diesel engine

    G. Zając

    2008-06-01

    Full Text Available The work presents the results of research on the influence of the addition of rapeseed oil fatty acid methyl esters (FAME to diesel oil, in the quantity of 1-5% by volume, on exhaust fumes opacity of a diesel engine powered by such fuel. The research employed rapeseed oil FAME the additive. The results obtained proved that the use of FAME and methyl esters as an additive to diesel fuel (DF in the quantity of 5% causes a reduction of exhaust fumes opacity of diesel engine.

  13. Biodiesel de mamona no diesel interior e metropolitano em trator agrícola Mamona biodiesel in interior and metropolitan diesel in agricultural tractor

    Rubens A. Tabile

    2009-09-01

    Full Text Available A demanda de recursos energéticos pelos sistemas de produção, aliada à escassez dos combustíveis fósseis, tem motivado a produção do Biodiesel, que é um combustível obtido de fontes renováveis. O objetivo deste trabalho foi realizar dois ensaios: o primeiro dinâmico, para avaliar o desempenho operacional utilizando como parâmetro o consumo de combustível, e o segundo, estático, para mensurar a opacidade da fumaça (material particulado do motor de um trator agrícola, operando com diesel metropolitano e interior misturados ao Biodiesel de mamona, em sete proporções. O trabalho foi conduzido no Departamento de Engenharia Rural da UNESP/Jaboticabal - SP. Os resultados mostraram que o tipo de diesel influenciou no consumo de combustível e na opacidade da fumaça, sendo o diesel metropolitano de melhor qualidade; observou-se, também, que à medida que a proporção de Biodiesel aumentou, o mesmo ocorreu para o consumo de combustível; entretanto, a opacidade da fumaça reduziu com o acréscimo de Biodiesel até B75.The demand for energy resources by production systems allied to scarcity of fossil fuels has driven the production of Biodiesel, a fuel produced from renewable sources. The purpose of this study was realize two tests, the first dynamics to assess the operational performance as a parameter of consumption of fuel, the second static to measure the smoke opacity (particulate material from an engine of a farm tractor, operating with interior and metropolitan diesel mixed with castor beans Biodiesel in seven proportions. The tests were conducted in the Rural Engineering Department of UNESP/Jaboticabal - SP. The results showed that the kind of diesel influenced the consumption of fuel and smoke opacity, and the metropolitan diesel showed better quality, it was observed as well that as biodiesel proportion increased, consumption of fuel increased too, however, the opacity of smoke decreased with an increase of Biodiesel by B75.

  14. Thermogravimetric analysis of diesel particulate matter

    Lapuerta, M.; Ballesteros, R.; Rodríguez-Fernández, J.

    2007-03-01

    The regulated level of diesel particulate mass for 2008 light-duty diesel on-road engines will be 0.005 g km-1 in Europe. Measurements by weighing and analysis of this low level of particulate mass based on chemical extraction are costly, time consuming and hazardous because of the use of organic solvents, potentially carcinogenic. An alternative to this analysis is proposed here: a thermal mass analyser that measures the volatile fraction (VOF) as well as the soot fraction of the particulate matter (PM) collected on a cleaned fibre glass filter. This paper evaluates this new thermal mass measurement (TGA) as a possible alternative to the conventional chemical extraction method, and presents the results obtained with both methods when testing a diesel engine fuelled with a reference diesel fuel (REF), a pure biodiesel fuel (B100) and two blends with 30% and 70% v/v biodiesel (B30 and B70, respectively).

  15. Desulfurization of oxidized diesel using ionic liquids

    Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul

    2014-10-01

    The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.

  16. Diesel engines: environmental impact and control.

    Lloyd, A C; Cackette, T A

    2001-06-01

    The diesel engine is the most efficient prime mover commonly available today. Diesel engines move a large portion of the world's goods, power much of the world's equipment, and generate electricity more economically than any other device in their size range. But the diesel is one of the largest contributors to environmental pollution problems worldwide, and will remain so, with large increases expected in vehicle population and vehicle miles traveled (VMT) causing ever-increasing global emissions. Diesel emissions contribute to the development of cancer; cardiovascular and respiratory health effects; pollution of air, water, and soil; soiling; reductions in visibility; and global climate change. Where instituted, control programs have been effective in reducing diesel fleet emissions. Fuel changes, such as reduced sulfur and aromatics content, have resulted in immediate improvements across the entire diesel on- and off-road fleet, and promise more improvements with future control. In the United States, for example, 49-state (non-California) off-road diesel fuel sulfur content is 10 times higher than that of national on-road diesel fuel. Significantly reducing this sulfur content would reduce secondary particulate matter (PM) formation and allow the use of control technologies that have proven effective in the on-road arena. The use of essentially zero-sulfur fuels, such as natural gas, in heavy-duty applications is also expected to continue. Technology changes, such as engine modifications, exhaust gas recirculation, and catalytic aftertreatment, take longer to fully implement, due to slow fleet turnover. However, they eventually result in significant emission reductions and will be continued on an ever-widening basis in the United States and worldwide. New technologies, such as hybrids and fuel cells, show significant promise in reducing emissions from sources currently dominated by diesel use. Lastly, the turnover of trucks and especially off-road equipment is

  17. Analysis of noise emitted from diesel engines

    Narayan, S.

    2015-12-01

    In this work combustion noise produced in diesel engines has been investigated. In order to reduce the exhaust emissions various injection parameters need to be studied and optimized. The noise has been investigated by mean of data obtained from cylinder pressure measurements using piezo electric transducers and microphones on a dual cylinder diesel engine test rig. The engine was run under various operating conditions varying various injection parameters to investigate the effects of noise emissions under various testing conditions.

  18. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. PMID:19913283

  19. Diesel fuel in the United States

    In the 1970's, Diesel technology had a poor image in the United States owing to the inadequate performance and reliability observed in certain models. The 1990's brought increased awareness of greenhouse effect issues. Greater Diesel penetration of the American automobile market could represent a short-term solution for reducing CO2 emissions, along with the use of hybrid vehicles, but the impact on American refining plant would be substantial. (author)

  20. Dimethyl Ether in Diesel Fuel Injection Systems

    Sorenson, Spencer C.; Glensvig, M.; Abata, D. L.

    1998-01-01

    A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates......A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates...

  1. Investigation and Modelling of Diesel Hydrotreating Reactions

    Boesen, Rasmus Risum; von Solms, Nicolas; Michelsen, Michael Locht; Knudsen, Kim

    2011-01-01

    This project consists of a series of studies, that are related to hydrotreating of diesel. Hy- drotreating is an important refinery process, in which the oil stream is upgraded to meet the required environmental specifications and physical properties. Although hydrotreating is a ma- ture technology it has received increased attention within the last decade due to tightened legislations regarding the sulfur content, e.g. the demand for Ultra Low Sulfur Diesel (ULSD) with a maximum sulfur conte...

  2. Effects of MTBE blended diesel fuel on diesel combustion and emissions; MTBE kongo keiyu ga diesel nensho haiki ni oyobosu eikyo

    Shundo, S.; Yokota, H.; Kakegawa, T. [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    The effects of MTBE (Methyl-t-butyl ether) blended diesel fuel on diesel combustion and emissions were studied. In conventional diesel combustion, the testing mode was carried out in conformity with the Japanese 13 mode. Furthermore, this fuel was applied to a new combustion system (Homogeneous Charge Intelligent Multiple Injection). MTBE blended diesel fuel is more effective in the case of new combustion system and very low NOx, PM capability is suggested. 6 refs., 6 figs., 2 tabs.

  3. Performance and emission characteristics of double biodiesel blends with diesel

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  4. Revis\\~ao da Constru\\c{c}\\~ao de Modelos Supersim\\'etricos

    Rodríguez, M C

    2001-01-01

    Foi com base neste estudo que fizemos a constru\\c{c}\\~ao da vers\\~ao supersim\\'etrica dos modelos de simetria $SU(3)_{C} \\otimes SU(3)_{L} \\otimes U(1)_{N}$ \\cite{susy331}, apresentado no final da minha tese de doutorado \\cite{mcr1}. Bem como dos estudos fenomenol\\'ogicos subsequente \\cite{mcr}.

  5. Into the Blue: AO Science with MagAO in the Visible

    Close, Laird M; Follette, Katherine B; Hinz, Phil; Morzinski, Katie M; Wu, Ya-Lin; Kopon, Derek; Riccardi, Armando; Esposito, Simone; Puglisi, Alfio; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Quiros-Pacheco, Fernando

    2014-01-01

    We review astronomical results in the visible ({\\lambda}<1{\\mu}m) with adaptive optics. Other than a brief period in the early 1990s, there has been little astronomical science done in the visible with AO until recently. The most productive visible AO system to date is our 6.5m Magellan telescope AO system (MagAO). MagAO is an advanced Adaptive Secondary system at the Magellan 6.5m in Chile. This secondary has 585 actuators with < 1 msec response times (0.7 ms typically). We use a pyramid wavefront sensor. The relatively small actuator pitch (~23 cm/subap) allows moderate Strehls to be obtained in the visible (0.63-1.05 microns). We use a CCD AO science camera called "VisAO". On-sky long exposures (60s) achieve <30mas resolutions, 30% Strehls at 0.62 microns (r') with the VisAO camera in 0.5" seeing with bright R < 8 mag stars. These relatively high visible wavelength Strehls are made possible by our powerful combination of a next generation ASM and a Pyramid WFS with 378 controlled modes and 1000...

  6. Diesel Consumption of Agriculture in China

    Shusen Gui

    2012-12-01

    Full Text Available As agricultural mechanization accelerates the development of agriculture in China, to control the growth of the resulting energy consumption of mechanized agriculture without negatively affecting economic development has become a major challenge. A systematic analysis of the factors (total power, unit diesel consumption, etc. influencing diesel consumption using the SECA model, combined with simulations on agricultural diesel flows in China between 1996 and 2010 is performed in this work. Seven agricultural subsectors, fifteen categories of agricultural machinery and five farm operations are considered. The results show that farming and transportation are the two largest diesel consumers, accounting for 86.23% of the total diesel consumption in agriculture in 2010. Technological progress has led to a decrease in the unit diesel consumption and an increase in the unit productivity of all machinery, and there is still much potential for future progress. Additionally, the annual average working hours have decreased rapidly for most agricultural machinery, thereby influencing the development of mechanized agriculture.

  7. Characterization of Water in Diesel Emulsion

    Abdul Karim Z. A.

    2014-07-01

    Full Text Available Water in diesel emulsion, as an option fuel, has potential to simultaneously reduce the formation of both nitrogen oxides and particulate matters in diesel engine. However, the capability of this fuel strongly dependent on the type of emulsion, stability of the emulsified fuel and the physio-chemical properties. In this study, water in diesel emulsion fuels of 5%, 10%, 20%, water by volume was prepared by a mechanical homogenizer. Physical and chemical properties of the emulsion were examined as these properties could influence the spray characteristics of the emulsions which significantly affect the ignition delay and flame propagation. Density and viscosity was found to be higher for all of the water in diesel emulsion than pure diesel at all measured temperatures whereas the carbon contents for water in diesel emulsion with 10% and 20% water were low. Droplet size of the emulsion was found to be less than 2μm. The actual water content in the emulsified fuel was found to be lesser than the mixed amount.

  8. Ao encontro do equilíbrio

    Freitas, Licínia Marisa Oliveira

    2013-01-01

    O presente Relatório apresenta as atividades desenvolvidas ao longo de todo o período de estágio referentes ao módulo I e II. O módulo I teve por base a primeira e segunda fase do Planeamento em Saúde, que se refere ao Diagnóstico de Situação de Saúde da população com patologia de Diabetes Mellitus e Priorização das Necessidades. No módulo II surgiram os projetos de intervenção nas necessidades detetadas e avaliação das mesmas com a verificação dos ganhos em saúde observados. Numa primeira...

  9. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    Elsner, N. B. [Hi-Z Technology, Inc., San Diego, CA (United States); Bass, J. C. [Hi-Z Technology, Inc., San Diego, CA (United States); Ghamaty, S. [Hi-Z Technology, Inc., San Diego, CA (United States); Krommenhoek, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Kushch, A. [Hi-Z Technology, Inc., San Diego, CA (United States); Snowden, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Marchetti, S. [Hi-Z Technology, Inc., San Diego, CA (United States)

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  10. Into the blue: AO science with MagAO in the visible

    Close, Laird M.; Males, Jared R.; Follette, Katherine B.; Hinz, Phil; Morzinski, Katie; Wu, Ya-Lin; Kopon, Derek; Riccardi, Armando; Esposito, Simone; Puglisi, Alfio; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Quiros-Pacheco, Fernando

    2014-08-01

    We review astronomical results in the visible (λresponse times (0.7 ms typically). We use a pyramid wavefront sensor. The relatively small actuator pitch (~23 cm/subap) allows moderate Strehls to be obtained in the visible (0.63-1.05 microns). We use a CCD AO science camera called "VisAO". On-sky long exposures (60s) achieve Pyramid WFS with 378 controlled modes and 1000 Hz loop frequency. We'll review the key steps to having good performance in the visible and review the exciting new AO visible science opportunities and refereed publications in both broad-band (r,i,z,Y) and at Halpha for exoplanets, protoplanetary disks, young stars, and emission line jets. These examples highlight the power of visible AO to probe circumstellar regions/spatial resolutions that would otherwise require much larger diameter telescopes with classical infrared AO cameras.

  11. Mistura de biodiesel de sebo bovino em motor diesel durante 600 horas Blend of biodiesel from beef tallow in a diesel engine during 600 hours of tests

    Ila Maria Corrêa

    2011-07-01

    Full Text Available O biodiesel de sebo bovino é considerado uma alternativa de baixo custo e de grande disponibilidade por ser resíduo da produção agropecuária brasileira, que é uma das maiores do mundo. Raros são os trabalhos que mostram a utilização do biodiesel de sebo bovino em motores diesel. Assim, o objetivo deste trabalho foi verificar o efeito da mistura de biodiesel bovino na proporção de 5% ao óleo diesel comercial no desempenho do motor, possíveis consequências internas no motor e nas características do óleo lubrificante após o uso prolongado em motor diesel. Foram realizados ensaios em bancada dinamométrica utilizando um trator agrícola. O desempenho do motor foi determinado através da tomada de potência (TDP. O motor foi operado por 600h durante as quais foi determinada a potência, o consumo de combustível e analisadas as amostras de óleo lubrificante a cada 100h. Ao final do ensaio, o motor foi aberto e inspecionado. A análise do óleo lubrificante mostrou nível de contaminação crítico a partir das 400h, mas a inspeção visual do motor não detectou nenhum desgaste interno. O motor funcionou normalmente, embora tenha ocorrido tendência de redução na potência e aumento de consumo de combustível ao longo das 600h.Biodiesel from beef tallow has been considered a low-cost and high availability alternative due to be residue from the Brazilian livestock production, one of the world's largest. Papers that show the use of biodiesel from beef tallow in diesel engine are rare. The aim of this study was to investigate the effect of blend of biodiesel from beef tallow (B5 in commercial diesel oil on engine performance, analyzing possible internal consequences and characteristics of lubricating oil after the prolonged use in a diesel engine. Engine performance was evaluated through tractor power take off (PTO tests. The engine was operated for 600 hours. Power and fuel consumption were measured. Samples of lubricating oil were

  12. Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine

    Highlights: • Emulsified diesel fuels with water content of range 0–30% by volume were prepared. • Effect emulsified diesel fuel on diesel engine performance and pollutant emissions. • Using emulsified fuel improves the diesel engine performance and reduces emissions. - Abstract: This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (ηth) are found to have maximum values under these conditions. The emission CO2 was found to increase with engine speed and to decrease with water content. NOx produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  14. Combustion and emission characteristics of a diesel engine fuelled with jatropha and diesel oil blends

    Elango Thangavelu

    2011-01-01

    Full Text Available The depletion of oil resources as well as the stringent environmental regulations has led to the development of alternate energy sources. In this work the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with blends of jatropha and diesel oil are evaluated. Experiments were conducted with different blends of jatropha oil and diesel at various loads. The peak pressures of all the blends at full load are slightly lower than the base diesel. There is an increase in the ignition delay with biodiesel because of its high viscosity and density. The results show that the brake thermal efficiency of diesel is higher at all loads followed by blends of jatropha oil and diesel. The maximum brake thermal efficiency and minimum specific fuel consumption were found for blends up to B20. The specific fuel consumption, exhaust gas temperature, smoke opacity and NOx were comparatively higher. However there is an appreciable decrease in HC and CO2 emissions while the decrease in CO emission is marginal. It was observed that the combustion characteristics of the blends of esterified jatropha oil with diesel followed closely with that of the base line diesel.

  15. Atmospheric transformation of diesel emissions.

    Zielinska, Barbara; Samy, Shar; McDonald, Jacob D; Seagrave, JeanClare

    2010-04-01

    The hypothesis of this study was that exposing diesel exhaust (DE*) to the atmosphere transforms its composition and toxicity. Our specific aims were (1) to characterize the gas- and particle-phase products of atmospheric transformations of DE under the influence of daylight, ozone (O3), hydroxyl (OH) radicals, and nitrate (NO3) radicals; and (2) to explore the biologic activity of DE before and after the transformations took place. The study was executed with the aid of the EUPHORE (European Photoreactor) outdoor simulation chamber facility in Valencia, Spain. EUPHORE is one of the largest and best-equipped facilities of its kind in the world, allowing investigation of atmospheric transformation processes under realistic ambient conditions (with dilutions in the range of 1:300). DE was generated on-site using a modern light-duty diesel engine and a dynamometer system equipped with a continuous emission-gas analyzer. The engine (a turbocharged, intercooled model with common-rail direct injection) was obtained from the Ford Motor Company. A first series of experiments was carried out in January 2005 (the winter 2005 campaign), a second in May 2005 (the summer 2005 campaign), and a third in May and June 2006 (the summer 2006 campaign). The diesel fuel that was used closely matched the one currently in use in most of the United States (containing 47 ppm sulfur and 15% aromatic compounds). Our experiments examined the effects on the composition of DE aged in the dark with added NO3 radicals and of DE aged in daylight with added OH radicals both with and without added volatile organic compounds (VOCs). In order to remove excess nitrogen oxides (NO(x)), a NO(x) denuder was devised and used to conduct experiments in realistic low-NO(x) conditions in both summer campaigns. A scanning mobility particle sizer was used to determine the particle size and the number and volume concentrations of particulate matter (PM) in the DE. O3, NO(x), and reactive nitrogen oxides (NO

  16. Propriedades reológicas de sucos mistos de manga, goiaba e acerola adicionados de fitoquímicos Rheological properties of mixed juices of mango, guava and acerola with added phytochemicals

    Aurélia Santos Faraoni

    2013-03-01

    Full Text Available O objetivo deste trabalho foi estudar o comportamento reológico dos sucos mistos de manga, goiaba e acerola, adicionados de fitoquímicos, em sete temperaturas (10, 20, 30, 40, 50, 60 e 70 ºC, e o efeito da temperatura na viscosidade aparente. As análises reológicas foram conduzidas em um reômetro de cilindros concêntricos, marca Brookfield, modelo R/S plus SST 2000. Os valores experimentais de tensão de cisalhamento versus taxa de deformação foram ajustados pelos modelos de Ostwald-de-Waele (Lei da Potência, Casson e Herschel-Bulkley. Observou-se que os três modelos apresentaram altos coeficientes de determinação (R² > 0,978, indicando que qualquer um destes pode ser utilizado para descrever o comportamento reológico dos sucos, caracterizados como fluidos não newtonianos com características pseudoplásticas. O efeito da temperatura no comportamento reológico dos sucos foi descrito pela Equação de Arrhenius e foi possível observar um decréscimo no valor da viscosidade aparente com o aumento da temperatura.The aim of this work was to study the rheological behaviour of mixed juices of mango, guava and acerola with added phytochemicals at seven temperatures (10, 20, 30, 40, 50, 60 and 70 ºC, and the effect of temperature on the apparent viscosity. The rheological analyses were carried out using a Brookfield R/S plus SST 2000 rheometer with concentric cylinders. The experimental data for shear stress versus shear rate were fitted to the following models: Ostwald-de-Waele (Power Law, Casson and Herschel-Bulkley. The three models presented high determination coefficient values (R² > 0.978, indicating that any of them could be used to describe the rheological behaviour of the juices. The juices presented non-Newtonian behaviour and pseudoplastic characteristics. The effect of temperature on the rheological behaviour of the juices was described by the Arrhenius equation. The values for apparent viscosity decreased with increase

  17. ECOPERSONALISMO E DIREITO AO MEIO AMBIENTE

    2008-01-01

    O objetivo do presente artigo consiste em refletir brevemente sobre as conseqüências, no âmbito do direito ao meio ambiente, das diferentes concepções sobre a relação entre o ser humano e a natureza, isto é, o modelo tecnocrático, o biologista e o ecológico-personalista

  18. Into the Blue: AO Science in the Visible with MagAO

    Close, Laird; Males, Jared; Morzinski, Katie; Kopon, Derek; Follette, Kate; Rodigas, Timothy; Hinz, Philip; Wu, Ya-Lin; Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Uomoto, Alan; Hare, Tison

    2013-12-01

    The Magellan Clay telescope is a 6.5m Gregorian telescope located in Chile at Las Campanas Observatory. We have fabricated an 85 cm diameter aspheric adaptive secondary with our subcontractors and partners, MagAO passed acceptance tests in spring 2012, and the entire System was commissioned from Nov 17 to Dec 7, 2012. This secondary has 585 actuators with response times (0.7 ms typically). We fabricated a high order (585 mode) pyramid wavefront sensor (similar to that of LBT's FLAO). The relatively high actuator count allows moderate Strehls to be obtained in the visible (0.63-1.05 microns). We have built an CCD science camera called "jVisAO". On-sky long exposures (60s) achieve 30% Strehls at 0.62 microns (r') with the VisAO camera in 0.5" seeing with bright R Pyramid WFS with 200-400 controlled modes and 1000 Hz loop frequencies. To minimize non-common path errors and enable visible AO the VisAO science camera is fed by an advanced triplet ADC and is piggy-backed on the WFS optical board itself. Despite the ability to make 25 mas images we still have ~4 mas of resolution loss to residual vibrations. We will discuss what the most difficult aspects are for visible AO on ELTs scaling from our experience with MagAO.

  19. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  20. Characterization of an AO-OCT system

    Evans, J W; Zawadzki, R J; Jones, S; Olivier, S; Werner, J S

    2007-07-26

    Adaptive optics (AO) and optical coherence tomography (OCT) are powerful imaging modalities that, when combined, can provide high-volumetric-resolution, images of the retina. The AO-OCT system at UC Davis has been under development for 2 years and has demonstrated the utility of this technology for microscopic, volumetric, in vivo retinal imaging [1]. The current system uses an AOptix bimorph deformable mirror (DM) for low-order, high-stroke correction [2] and a 140-actuator Boston Micromachines DM for high-order correction [3]. We are beginning to investigate the potential for increasing the image contrast in this system using higher-order wavefront correction. The first step in this analysis is to quantify the residual wavefront error (WFE) in the current system. Developing an error budget is a common tool for improved performance and system design in astronomical AO systems [4, 5]. The process for vision science systems is also discussed in several texts e.g. [6], but results from this type of analysis have rarely been included in journal articles on AO for vision science. Careful characterization of the AO system will lead to improved performance and inform the design of a future high-contrast system. In general, an AO system error budget must include an analysis of three categories of residual WFE: errors in measuring the phase, errors caused by limitations of the DM(s), and errors introduced by temporal variation. Understanding the mechanisms and relative size of these errors is critical to improving system performance. In this paper we discuss the techniques for characterizing these error sources in the AO-OCT system. It is useful to first calculate an error budget for the simpler case using a model eye, and then add the additional errors introduced for the case of a human subject. Measurement error includes calibration error, wavefront sensor (WFS) CCD noise, and sampling errors. Calibration errors must be measured by an external system. Typically this

  1. Bio-diesel: uncertain future

    Biodiesel in a renewable source of energy. It is also less polluting in terms of emission of pollutants like CO2, CO, NO and particulate matter than the standard diesel. As it contains no sulfur, it emits no SO2. However its claim for environmental protection is disputed and its high production cost makes it economically unattractive. Present status of biodiesel production and research studies going on to cut the cost and to improve the quality of biodiesel are reviewed. Increasing yield of vegetable oils, using animal fats and frying oil wastes and improving the esterification process used for producing biodiesel from vegetable oils are some of the ways to cut the cost. To improve the quality of biodiesel, attempts are being made to produce biodiesel with a lower glycerin content so that clogging of injection nozzles during combustion is reduced and performance of biodiesel is improved. Biotechnological developments are in the direction of generically modifying oil plants to produce new types of oil to specifications. Controversy in the European Economic Community regarding giving subsidies to biofuel and exemption from fossil fuel taxes is described. (M.G.B.)

  2. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  3. Performance, emission and economic assessment of clove stem oil-diesel blended fuels as alternative fuels for diesel engines

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2008-05-15

    In this study the performance, emission and economic evaluation of using the clove stem oil (CSO)-diesel blended fuels as alternative fuels for diesel engine have been carried out. Experiments were performed to evaluate the impact of the CSO-diesel blended fuels on the engine performance and emissions. The societal life cycle cost (LCC) was chosen as an important indicator for comparing alternative fuel operating modes. The LCC using the pure diesel fuel, 25% CSO and 50% CSO-diesel blended fuels in diesel engine are analysed. These costs include the vehicle first cost, fuel cost and exhaust emissions cost. A complete macroeconomic assessment of the effect of introducing the CSO-diesel blended fuels to the diesel engine is not included in the study. Engine tests show that performance parameters of the CSO-diesel blended fuels do not differ greatly from those of the pure diesel fuel. Slight power losses, combined with an increase in fuel consumption, were experienced with the CSO-diesel blended fuels. This is due to the low heating value of the CSO-diesel blended fuels. Emissions of CO and HC are low for the CSO-diesel blended fuels. NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel operation mode. A remarkable reduction in the exhaust smoke emissions can be achieved when operating on the CSO-diesel blended fuels. Based on the LCC analysis, the CSO-diesel blended fuels would not be competitive with the pure diesel fuel, even though the environmental impact of emission is valued monetarily. This is due to the high price of the CSO. (author)

  4. Diesel exhaust exposures in port workers.

    Debia, Maximilien; Neesham-Grenon, Eve; Mudaheranwa, Oliver C; Ragettli, Martina S

    2016-07-01

    Exposure to diesel engine exhaust has been linked to increased cancer risk and cardiopulmonary diseases. Diesel exhaust is a complex mixture of chemical substances, including a particulate fraction mainly composed of ultrafine particles, resulting from the incomplete combustion of fuel. Diesel trucks are known to be an important source of diesel-related air pollution, and areas with heavy truck traffic are associated with higher air pollution levels and increased public health problems. Several indicators have been proposed as surrogates for estimating exposures to diesel exhaust but very few studies have focused specifically on monitoring the ultrafine fraction through the measurement of particle number concentrations. The aim of this study is to assess occupational exposures of gate controllers at the port of Montreal, Canada, to diesel engine emissions from container trucks by measuring several surrogates through a multimetric approach which includes the assessment of both mass and number concentrations and the use of direct reading devices. A 10-day measurement campaign was carried out at two terminal checkpoints at the port of Montreal. Respirable elemental and organic carbon, PM1, PM2.5, PMresp (PM4), PM10, PMtot (inhalable fraction), particle number concentrations, particle size distributions, and gas concentrations (NO2, NO, CO) were monitored. Gate controllers were exposed to concentrations of contaminants associated with diesel engine exhaust (elemental carbon GM = 1.6 µg/m(3); GSD = 1.6) well below recommended occupational exposure limits. Average daily particle number concentrations ranged from 16,544-67,314 particles/cm³ (GM = 32,710 particles/cm³; GSD = 1.6). Significant Pearson correlation coefficients were found between daily elemental carbon, PM fractions and particle number concentrations, as well as between total carbon, PM fractions and particle number concentrations. Significant correlation coefficients were found between particle number

  5. 30 CFR 75.1905 - Dispensing of diesel fuel.

    2010-07-01

    ... from other than safety cans must be dispensed by means of— (1) Gravity feed with a hose equipped with a...) An anti-siphoning device. (c) Diesel fuel must not be dispensed using compressed gas. (d) Diesel...

  6. Construction of classification function in Diesel engine fault diagnosis

    Using multi statistical analysis of the pattern recognition, we construct a classification function in the study of diesel engine fault diagnosis. The technique reported in this paper makes it precise and easy to diagnose the diesel engine fault

  7. Investigation about the efficiency of the bioaugmentation technique when applied to diesel oil contaminated soils

    Adriano Pinto Mariano

    2009-10-01

    Full Text Available This work investigated the efficiency of the bioaugmentation technique when applied to diesel oil contaminated soils collected at three service stations. Batch biodegradation experiments were carried out in Bartha biometer flasks (250 mL used to measure the microbial CO2 production. Biodegradation efficiency was also measured by quantifying the concentration of hydrocarbons. In addition to the biodegradation experiments, the capability of the studied cultures and the native microorganisms to biodegrade the diesel oil purchased from a local service station, was verified using a technique based on the redox indicator 2,6 -dichlorophenol indophenol (DCPIP. Results obtained with this test showed that the inocula used in the biodegradation experiments were able to degrade the diesel oil and the tests carried out with the native microorganisms indicated that these soils had a microbiota adapted to degrade the hydrocarbons. In general, no gain was obtained with the addition of microorganisms or even negative effects were observed in the biodegradation experiments.Este trabalho investigou a eficiência da técnica do bioaumento quando aplicada a solos contaminados com óleo diesel coletados em três postos de combustíveis. Experimentos de biodegradação foram realizados em frascos de Bartha (250 mL, usados para medir a produção microbiana de CO2. A eficiência de biodegradação também foi quantificada pela concentração de hidrocarbonetos. Conjuntamente aos experimentos de biodegradação, a capacidade das culturas estudadas e dos microrganismos nativos em biodegradar óleo diesel comprado de um posto de combustíveis local, foi verificada utilizando-se a técnica baseada no indicador redox 2,6 - diclorofenol indofenol (DCPIP. Resultados obtidos com esse teste mostraram que os inóculos empregados nos experimentos de biodegradação foram capazes de biodegradar óleo diesel e os testes com os microrganismos nativos indicaram que estes solos

  8. Electrifying the construction process : Replacing diesel engines with electric motors

    Willerström, Jakob; Linde, Adam; Fagrell, Johannes

    2015-01-01

    Diesel engines are commonly used in construction machines, for example excavators. In a diesel engine, the combustion of diesel is a process with a considerable environmental impact, with high amounts of emitted greenhouse gases. The bachelor thesis creates a model that investigates the potential of decreasing the environmental impact when replacing diesel engines with electric motors in the construction phase of the construction process of buildings. The model was made in three steps. In the...

  9. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    Saddam H. Al-lwayzy; Talal Yusaf

    2015-01-01

    Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD). Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10%) and ethanol (10%) have been mixed and added to (80%) diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel...

  10. The market for gasoline cars and diesel cars

    In Europe the tax tariff is much lower for diesel fuel than for gasoline. This benefit is used by manufacturers to increase the price of diesel-fueled cars, which limits the possibility to control the use of diesel cars by means of a fiscal policy (tax incidence). Attention is paid to the impact of fiscal advantages for diesel cars on the purchasing behavior of the consumer and the pricing policy (price discrimination) of the car manufacturers. 1 ref

  11. Diesel spray penetration studied by simultaneous Mie and shadowgraphy measurements

    Bougie, B.; Tulej, M.; Beaud, P.; Knopp, G.; Radi, P.; Gerber, T.

    2003-03-01

    The influence of gas density and vaporization on penetration and dispersion of Diesel sprays were investigated in a High Temperature High Pressure Cell (HTDZ) within the range of typical Diesel engine injection parameters. The temporal evolution of cold and vaporizing Diesel sprays were probed simultaneously by laser elastic scattering- and shadowgraphy-techniques. The experimental results were used to verify recently proposed Diesel spray models. (author)

  12. Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

    Yongcheng HUANG; Shangxue WANG; Longbao ZHOU

    2008-01-01

    Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experi-mental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than con-ventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shor-tened; the peak values of premixed burning rate, the com-bustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation, Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

  13. EXPERIMENTAL EVALUATION OF A DIESEL ENGINE WITH BLENDS OF DIESEL-PLASTIC PYROLYSIS OIL

    Mr. Rajesh Guntur,

    2011-06-01

    Full Text Available Environmental degradation and depletion of oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on crude oil import of about 125 Mt per annum (7:1diesel/gasoline. Diesel being the main transportation fuel in India, finding a suitable fuel alternative to diesel is an urgent need. In this context, pyrolysis of waste plastic solid is currently receiving renewed interest. Waste plastic pyrolysis oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. In the present work the performance and emission characteristics of a single cylinder, constant speed, and direct injection diesel engine using waste plastic pyrolysis oil blends as an alternate fuel were evaluated and the results are compared with the standard diesel fuel operation. Results indicated that the brake thermal efficiency was highercompared to diesel at part load condition. Carbon monoxide, Carbon dioxide and hydrocarbon emissions were higher and oxygen emission was lower compared to diesel operation.

  14. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil.

    Palanisamy, Nandhini; Ramya, Jayaprakash; Kumar, Srilakshman; Vasanthi, Ns; Chandran, Preethy; Khan, Sudheer

    2014-01-01

    Petroleum based products are the major source of energy for industries and daily life. Leaks and accidental spills occur regularly during the exploration, production, refining, transport, and storage of petroleum and petroleum products. In the present study we isolated the bacteria from diesel contaminated soil and screened them for diesel biodegradation capacity. One monoculture isolate identified by 16S rRNA gene sequence analysis to be Acinetobacter baumannii was further studied for diesel oil biodegradation. The effects of various culture parameters (pH, temperature, NaCl concentrations, initial hydrocarbon concentration, initial inoculum size, role of chemical surfactant, and role of carbon and nitrogen sources) on biodegradation of diesel oil were evaluated. Optimal diesel oil biodegradation by A. baumanii occurred at initial pH 7, 35°C and initial hydrocarbon concentration at 4%. The biodegradation products under optimal cultural conditions were analyzed by GC-MS. The present study suggests that A. baumannii can be used for effective degradation of diesel oil from industrial effluents contaminated with diesel oil. PMID:25530870

  15. FATORES ASSOCIADOS AO BAIXO PESO AO NASCER NO ESTADO DE GOIÁS

    Ruth Minamisava

    2004-12-01

    Full Text Available Recém-nascidos de baixo peso ao nascer (RNBP são considerados problemas de saúde pública pela associação com altas taxas de mortalidade e morbidade. Nenhum estudo prévio sobre fatores associados ao RNBP na região central do Brasil foi encontrado na literatura. Assim, este estudo teve como objetivo identificar as prevalências e os fatores associados ao baixo peso ao nascer entre nascidos vivos no Estado de Goiás, Brasil. Foi realizado um estudo transversal tendo como fonte de dados o Sistema de Informações de Nascidos Vivos ligado ao Ministério da Saúde. Examinou-se todos os 92.745 recém-nascidos de gestação única residentes no estado de Goiás, no ano 2000. Usou-se análise de regressão logística para identificar os fatores associados ao RNBP (< 2500 g. Em Goiás, os RNBP apresentaram uma prevalência de 5,96% e os fatores associados ao baixo peso ao nascer foram: prematuridade, baixa e avançada idade materna, mulheres não casadas, menos de sete consultas de pré-natal, parto não hospitalar e neonatos do sexo feminino. Ações intersetoriais são necessárias para reduzir as desigualdades da saúde materna e infantil.

  16. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  17. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Highlights: → Effect of ethylene glycol ethers on diesel fuel properties. → Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. → Blends with ≤4 wt.% of oxygen do not change substantially diesel fuel quality. → Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NOx, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of ≥4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures (≤0 oC). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NOx, both its behaviour and the sequence are opposite to that of CO.

  18. Experimental comparison of Wide Field AO control schemes using the Homer AO bench.

    Parisot, Amélie; Petit, Cyril; Fusco, Thierry

    2011-09-01

    Wide Field Adaptive Optics (WFAO) concepts, such as Laser Tomography AO (LTAO) or Multi-Conjugate AO (MCAO) have been developed in order to overcome the anisoplanatism limit of classical AO. Most of the future AO-assisted instruments of ELTs rely on such concepts which have raised critical challenges such as tomographic estimation and from laser and natural guide star combined with efficient DM(s) control. In that context, the experimental validation of the various clever control solutions proposed by several teams in the past years is now essential to reach a level of maturity compatible with their implementation in future WFAO developments for ELT. The ONERA wide field AO facility (HOMER bench) has been developed for these very issues. Gathering a 3D turbulence generator, laser and natural guide stars, two deformable mirrors with variable altitude positions and a PC-based flexible and user-friendly RTC , HOMER allows the implementation and comparison of control schemes from the simplest least-square to the optimal Linear Quadratic Gaussian solutions including Virtual DM and Pseudo-closed loop approaches. After a description of the bench internal calibrations and ultimate performance, all the control schemes are compared experimentally. Their evolutions as a function of wavefront sensors SNR as well as their robustness to calibration / model errors are particularly emphasised. Finally, we derive from the previous works some specific calibrations and identifications procedures ensuring both robustness and efficiency of WFAO systems and we extrapolate their applications to the future ELT AO systems.

  19. 30 CFR 57.4561 - Stationary diesel equipment underground.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary diesel equipment underground. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and...

  20. EDR electronic diesel governor for engines in commercial vehicles

    Mischke, A.; Heinrich, R.

    1983-10-01

    The possibilities of mechanic injection pump control for diesel engines are fully exhausted today. For further optimation of diesel engines one had to find new ways of injection pump control. As electronics are widely used in cars today it seemed logical to let diesel engines benefit as well. Daimler-Benz developed an electronic injection pump control EDR in cooperation with the Bosch company.

  1. 40 CFR 79.33 - Motor vehicle diesel fuel.

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  2. Screw expander for light duty diesel engines

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  3. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Marcio Castellanelli; Samuel N. M. de Souza; Suedêmio L. Silva; Euro K. Kailer

    2008-01-01

    Diante da previsão de escassez do petróleo, o éster etílico (biodiesel) tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas ...

  4. Tertiary fatty amides as diesel fuel substitutes

    Serdari, Aikaterini; Lois, Euripides; Stournas, Stamoulis [National Technical Univ. of Athens, Dept. of Chemical Engineering, Athens (Greece)

    2000-07-01

    This paper presents experimental results regarding the impact of adding different tertiary amides of fatty acids to mineral diesel fuel; an assessment of the behaviour of these compounds as possible diesel fuel extenders is also included. Measurements of cetane number, cold flow properties (cloud point, pour point and CFPP), density, kinematic viscosity, flash point and distillation temperatures are reported, while initial experiments concerning the effects on particulate emissions are also described. Most of the examined tertiary fatty amides esters have very good performance and they can be easily prepared from fatty acids (biomass). Such compounds or their blends could be used as mineral diesel fuel or even fatty acid methylesters (FAME, biodiesel) substitutes or extenders. (Author)

  5. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  6. Incorporação ao solo de substrato contendo micélio e conídios de Pochonia chlamydosporia para o manejo de Meloidogyne javanica

    Rosangela Dallemole-Giaretta

    2014-04-01

    Full Text Available Os clamidósporos são os principais propágulos utilizados como fonte de inóculo de Pochonia chlamydosporia em experimentos envolvendo o biocontrole do nematoide das galhas. O presente trabalho teve por objetivo avaliar o controle de Meloidogyne javanica em tomateiro por meio da aplicação ao solo de grãos de arroz colonizados pelo fungo contendo apenas micélio e conídio, sem a presença de clamidósporos. O isolado de P. chlamydosporia Pc-10 foi cultivado por 15 dias a 26°C em arroz previamente esterilizado em forno microondas. Dois experimentos foram conduzidos simultaneamente em casa de vegetação. No experimento 1, vasos de 2L de capacidade foram preenchidos com mistura solo:areia (1:1, v:v, contendo 3g kg-1 de solo de grãos de arroz colonizados pelo antagonista. No experimento 2, o fungo foi adicionado ao solo de vasos de 0,5L nas doses de 1, 5, 10, 15, 20, 25 ou 30g kg-1 de solo. Em seguida, o substrato de cada vaso foi infestado com 4.000 ovos de M. javanica e, após 15 dias, uma plântula de tomate foi transplantada. No experimento 1, a aplicação do fungo ao solo reduziu o número de galhas e de ovos do nematoide em 40% e 72,83%, respectivamente. No experimento 2, houve redução do número de ovos a partir de doses de 5g kg 1 de solo e no número de galhas, principalmente, nas doses de 25 e 30g kg-1 de solo. Conclui-se que P. chlamydosporia Pc-10 controlou M. javanica em tomateiro, mesmo quando aplicado ao solo na forma de grãos de arroz colonizados e sem a presença de clamidósporos.

  7. Generation and characterization of radiolabeled diesel exhaust

    To evaluate the potential health risks associated with increased use of diesel engines, information is needed on the biological fate of inhaled diesel exhaust components. The purpose of this study was to characterize different radiolabeled diesel exhausts with respect to their potential use in studies of the biological fate of exhaust carbon particles and particle-associated organic compounds (particle extracts). A single-cylinder diesel engine was used to burn diesel fuel containing trace amounts of 14C-labeled hexadecane, dotriacontane, benzene, phenanthrene or benzo(a)pyrene. Greater than 98% of the 14C in all additives was converted to volatile materials upon combustion. The remainder was distributed in varying amounts between the carbon particles and particle extracts. Aromatic additives labeled carbon particles more efficiently than aliphatic additives. Column chromatography of the particle extracts showed that, in most cases, the majority of the radioactivity eluted in fractions identical to the specific fuel additive employed, suggesting that a large amount of the particle-associated organic compounds consisted of uncombusted fuel constituents. Applying an electrical load to the engine-electrical generator increased carbon particle radioactivity, but had variable effects on the amount of radioactivity in the particle extracts. 67Ga-tetramethylheptanedione was also studied as a fuel additive to label carbon particles. 67Ga was incorporated into the exhaust particles and lung deposition of particles in rats was found to be approximately 10%. However, the 67Ga-radiolabel was found to separate from the particles in vivo, making it an unsuitable radiolabel for studying the long-term lung retention of diesel exhaust carbonaceous particles. 27 references, 2 figures, 5 tables

  8. Performance and Emission Characteristics of Low Heat Rejection Diesel Engine Fueled with Biodiesel and High Speed Diesel

    T. Gopinathan

    2014-10-01

    Full Text Available Depleting petroleum reserves on the earth and increasing concerns about the environment leads to the question for fuels which are eco-friendly safer for human beings. The objective of present study was to investigate the effect of coating on cylinder head of a Diesel engine on the performance and emission characteristics of exhaust gases using Bio Diesel and High Speed Diesel (HSD as a fuel. In this study the effect of Tin and Hard Chrome coating on the performance and emission characteristics of diesel engine was investigated using Bio Diesel and High Speed Diesel as a fuel. For this purpose the cylinder head of the test engine were coated with a Tin and Hard Chrome of 100 µ thick by the Electroplating method. For comparing the performance of the engine with coated components with the base engine, readings were taken before and after coating. To make the diesel engine to work with Bio Diesel and High Speed Diesel a modification was done. The engine’s performance was studied for both Bio Diesel and High Speed Diesel with and without Tin, Hard Chrome coating. Also the emissions values are recorded to study the engine’s behavior on emissions. Satisfactory performance was obtained with Tin and Hard Chrome coating compared with a standard diesel engine. The brake thermal efficiency was increased up to 2.08% for High Speed Diesel with Tin coating and there was a significant reduction in the specific fuel consumption. The CO emission in the engine exhaust decreases with coating. Using Bio Diesel and High Speed Diesel fuel for a LHR diesel engine causes an improvement in the performance characteristics and significant reduction in exhaust emissions.

  9. Neutron Imaging of Diesel Particulate Filters

    This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique

  10. Cummins Light Truck Diesel Engine Progress Report

    The Automotive Market in the United States is moving in the direction of more Light Trucks and fewer Small Cars. The customers for these vehicles have not changed, only their purchase decisions. Cummins has studied the requirements of this emerging market. Design and development of an engine system that will meet these customer needs has started. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of early testing are presented which show that the diesel is possibly a good solution

  11. Soft start technique for diesel generator sets

    A diesel motor in a nuclear power plant should be of a well-proven design. It is designed for long periods of trouble-free duty, but not for the frequent and rapid test starts called for by the technical specifications. In order to decrease the dynamic forces and thermal stresses, a soft-start scheme has been implemented. By limiting the fuel injection the diesel generator will reach full speed in appr. 30 seconds. The fuel limiter is a pneumatic cylinder which mechanically limits the travel of the terminal shaft of the governor. (author)

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  13. Experience with emergency diesels at the Swiss NPP Goesgen (KKG)

    The Goesgen nuclear power plant, a 970 MWe KWU pressurized water reactor, is fitted with 4 x 50 X emergency diesels and 2 x 100 % special emergency (Notstand) diesel units. Since the start-up tests of the diesels in 1977 several severe incidents occurred. As a consequence, different back-fitting actions were taken on the diesels and the emergency electrical System. The presentation will treat the following subjects: - lay-out of the onsite electrical power sources, - experiences and problems, - back-fitting measures, - periodic testing of the diesels. (author)

  14. Study on biogas premixed charge diesel dual fuelled engine

    This paper presents an experimental investigation of a small IDI biogas premixed charge diesel dual fuelled CI engine used in agricultural applications. Engine performance, diesel fuel substitution, energy consumption and long term use have been concerned. The attained results show that biogas-diesel dual fuelling of this engine revealed almost no deterioration in engine performance but lower energy conversion efficiency which was offset by the reduced fuel cost of biogas over diesel. The long term use of this engine with biogas-diesel dual fuelling is feasible with some considerations

  15. Performance investigations of a diesel engine using ethyl levulinate-diesel blends

    Zhi-wei Wang

    2012-11-01

    Full Text Available Ethyl levulinate (EL can be produced from bio-based levulinic acid (LA and ethanol. Experimental investigations were conducted to evaluate and compare the performances and exhaust emission levels of ethyl levulinate as an additive to conventional diesel fuel, with EL percentages of 5%, 10%, 15% (with 2% n-butanol, and 20% (with 5% n-butanol, in a horizontal single-cylinder four stroke diesel engine. Brake-specific fuel consumptions of the EL-diesel blends were about 10% higher than for pure diesel because of the lower heating value of EL. NOx and CO2 emissions increased with engine power with greater fuel injections, but varied with changing EL content of the blends. CO emissions were similar for all of the fuel formulations. Smoke emissions decreased with increasing EL content.

  16. Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine

    Florian Zurbriggen

    2016-01-01

    Full Text Available This paper investigates the combustion phasing control of natural gas-diesel engines. In this study, the combustion phasing is influenced by manipulating the start and the duration of the diesel injection. Instead of using both degrees of freedom to control the center of combustion only, we propose a method that simultaneously controls the combustion phasing and minimizes the amount of diesel used. Minimizing the amount of diesel while keeping the center of combustion at a constant value is formulated as an optimization problem with an equality constraint. A combination of feedback control and extremum seeking is used to solve this optimization problem online. The necessity to separate the different time scales is discussed and a structure is proposed that facilitates this separation for this specific example. The proposed method is validated by experiments on a test bench.

  17. Diesel engine emissions and performance from blends of karanja methyl ester and diesel

    This paper presents the results of investigations carried out in studying the fuel properties of karanja methyl ester (KME) and its blend with diesel from 20% to 80% by volume and in running a diesel engine with these fuels. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke density and NOx to evaluate and compute the behaviour of the diesel engine running on the above-mentioned fuels. The reduction in exhaust emissions together with increase in torque, brake power, brake thermal efficiency and reduction in brake-specific fuel consumption made the blends of karanja esterified oil (B20 and B40) a suitable alternative fuel for diesel and could help in controlling air pollution. (author)

  18. Optimisation of engine operating parameters for turpentine mixed diesel fueled DI diesel engine Using Taguchi Method

    R.Karthikeyan,

    2010-10-01

    Full Text Available In the present investigation a volatile fraction of pinus resin called Turpentine has been tried as an alternative fuel for diesel fuel. As turpentine possess moderate cetane number, the complete replacement of diesel fuel by turpentine oil is not possible. However, blending of turpentine with diesel fuel in large proportion helps to reduce the application of diesel fuel. Hence, the objective of present investigation focused on the maximum possible diesel replacement by turpentine oil. Also, the investigation fixed the optimum level of engine operating parameters suitable for the selected blend operation. As the investigation requires simultaneous optimisation of three parameters, a method called Taguchi was tried in the experiment. The primary advantage of this method is to minimize the number of trails required for the optimisation. As per the taguchi method, nine trials were experimented and the results were used for optimising parameters. In addition, an ANOVA was also performed for the operating parameters to show the percentage contribution of variance over the desired output. The results of thetaguchi experiment identified that the 40T blend (40% turpentine and 60% diesel performed better at 29°BTDC injection timing and at 180 bar injection pressure than other blends and had a capacity to cold start the engine. Using the identified optimum levels, a full range experiment was conducted for 40T blend to compare its performance andemission behaviour with standard diesel operation. The results of the full range experiment showed that the 40T blend offered approximately 2.5% higher brake thermal efficiency than diesel baseline operation without much worsening the exhaust emission.

  19. Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines

    Highlights: • Water-containing ABE solution (W-ABE) in the diesel is a stable fuel blends. • W-ABE can enhance the energy efficiency of diesel engine and act as a green energy. • W-ABE can reduce the PM, NOx, and PAH emissions very significantly. • The W-ABE can be manufactured from waste bio-mass without competition with food. • The W-ABE can be produced without dehydration process and no surfactant addition. - Abstract: Acetone–Butanol–Ethanol (ABE) is considered a “green” energy resource because it emits less carbon than many other fuels and is produced from biomass that is non-edible. To simulate the use of ABE fermentation products without dehydration and no addition of surfactants, a series of water-containing ABE-diesel blends were investigated. By integrating the diesel engine generator (DEG) and diesel engine dynamometer (DED) results, it was found that a diesel emulsion with 20 vol.% ABE-solution and 0.5 vol.% water (ABE20W0.5) enhanced the brake thermal efficiencies (BTE) by 3.26–8.56%. In addition, the emissions of particulate matter (PM), nitrogen oxides (NOx), polycyclic aromatic hydrocarbons (PAHs), and the toxicity equivalency of PAHs (BaPeq) were reduced by 5.82–61.6%, 3.69–16.4%, 0.699–31.1%, and 2.58–40.2%, respectively, when compared to regular diesel. These benefits resulted from micro-explosion mechanisms, which were caused by water-in-oil droplets, the greater ABE oxygen content, and the cooling effect that is caused by the high vaporization heat of water-containing ABE. Consequently, ABE20W0.5, which is produced by environmentally benign processes (without dehydration and no addition of surfactants), can be a good alternative to diesel because it can improve energy efficiency and reduce pollutant emissions

  20. Uma Análise Prospectiva dos Efeitos da Implantação do Complexo Intermodal da Ferronorte ao Município de Rondonópolis-MT

    Luís Otávio Bau Macedo

    2015-06-01

    Full Text Available O presente artigo visa avaliar os impactos da implantação do terminal intermodal da Ferronorte que liga Santa Fé do Sul, em São Paulo a Rondonópolis, no sudeste de Mato Grosso. O terminal se tornará a principal via de escoamento da produção de grãos do estado ao porto de Santos/SP, com funcionamento iniciado em setembro de 2013. No artigo é descrito o processo operacional do terminal, incluindo armazenagem, pesagem, tombamento, classificação, recepção e estacionamento de caminhões, carregamento e expedição, entre outros. Em seguida é realizada a avaliação do cenário econômico de Rondonópolis e da evolução da produção agrícola de Mato Grosso. Após realiza-se a avaliação econômica do empreendimento focando em seus efeitos para a geração do produto adicionado fiscal ao município de Rondonópolis. A análise foi desenvolvida de um cenário de tendência central onde apenas 60% da produção seriam escoados via ferrovia. A variável que distingue os dois cenários é a previsão quanto à capacidade de tráfego de caminhões ao longo do trecho da BR163 entre a área urbana de Rondonópolis e o sítio do terminal.

  1. Production and testing of dates oil and its bio diesel

    Date palms are very famous trees in Iraq and some other countries. The date oil might use as a fuel in a compression ignition engines. Also, this oil can be used as a raw material to produce a date-bio diesel. In this paper, a new method to extract oil from dates is showed and synthesized bio diesel from this oil. Full description to extraction as well as to Transesterification methods is achieved. The main fuel properties tests are done on the oil and the date-bio diesel. The caloric values, viscosity, density, pour point, cloud point and diesel index are tested for date's oil and for its bio diesel. A comparison with diesel oil is hold to show the utility of this oil and its bio diesel for using in compression ignition engines. (author)

  2. Phytoremediation of subarctic soil contaminated with diesel fuel

    Palmroth, M.R.T.; Puhakka, J.A. [Tampere University of Technology (Finland). Institute of Environmental Engineering and Biotechnology; Pichtel, J. [Ball State University, Muncie, IN (United States). Natural Resources and Environmental Management

    2002-09-01

    The effects of several plant species, native to northern latitudes, and different soil amendments, on diesel fuel removal from soil were studied. Plant treatments included Scots Pine (Pinus sylvestris), Poplar (Populus deltoides x Wettsteinii), a grass mixture (Red fescue, Festuca rubra; Smooth meadowgrass, Poa pratensis and Perennial ryegrass, Lolium perenne) and a legume mixture (White clover, Trifolium repens and Pea, Pisum sativum). Soil amendments included NPK fertiliser, a compost extract and a microbial enrichment culture. Diesel fuel disappeared more rapidly in the legume treatment than in other plant treatments. The presence of poplar and pine enhanced removal of diesel fuel, but removal under grass was similar to that with no vegetation. Soil amendments did not enhance diesel fuel removal significantly. Grass roots accumulated diesel-range compounds. This study showed that utilisation of selected plants accelerates removal of diesel fuel in soil and may serve as a viable, low-cost remedial technology for diesel-contaminated soils in subarctic regions. (author)

  3. Switch to Diesels Cuts Transportation Costs.

    Meyer, Kay

    1982-01-01

    Since the acquisition of diesel-powered school buses for the Half Hollow Hills (New York) School District, fuel efficiency has doubled. This has helped cover the costs of refurbishing older buses and establishing a more sophisticated shop operation and more efficient recordkeeping. (Author/MLF)

  4. Jatropha bio-diesel production and use

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  5. Jatropha bio-diesel production and use

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied

  6. Exploring Low Emission Lubricants for Diesel Engines

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  7. Bioremediation of diesel fuel contaminated soils

    Bioremediation techniques were successfully employed in the cost-effective cleanup of approximately 8400 gallons of diesel fuel which had been accidentally discharged at a warehouse in New Jersey. Surrounding soils were contaminated with the diesel fuel at concentrations exceeding 1,470 mg/kg total petroleum hydrocarbons as measured by infrared spectroscopy (TPH-IR, EPA method 418.1, modified for soils). This paper reports on treatment of the contaminated soils through enhanced biological land treatment which was chosen for the soil remediation pursuant to a New Jersey Pollutant Discharge Elimination System - Discharge to Ground Water (NJPDES-DGW) permit. Biological land treatment of diesel fuel focuses on the breakdown of the hydrocarbon fractions by indigenous aerobic microorganisms in the layers of soil where oxygen is made available. Metabolism by these microorganisms can ultimately reduce the hydrocarbons to innocuous end products. The purpose of biological land treatment was to reduce the concentration of the petroleum hydrocarbon constituents of the diesel fuel in the soil to 100 ppm total petroleum hydrocarbons (TPH)

  8. Performance and Emission of Small Diesel Engine Using Diesel-Crude Palm Oil-Water Emulsion as Fuel

    Kiatsiriroat, T.; T. Deethayat; A. Permsuwan; J. Narkpakdee

    2012-01-01

    Diesel and crude palm oil (CPO) emulsion was drop-in replaced of diesel oil in a small diesel engine to test the engine performance and emission. In the study, the compositions of diesel/CPO/water of 95/0/5, 90/0/10, 90/5/5, 85/5/10, 85/10/5 and 80/10/10 by volume were used in a four-stroke single cylinder diesel engine having a pre-combustion chamber. The engine speed was in a range of 1000 – 2000 rpm.

      From the results, it could be found that the torque and the e...

  9. Caracterização química do autolisado de levedura de alambique e avaliação da aceitabilidade do pão de queijo adicionado do autolisado desidratado Chemical characterization of yeast autolysate and assessment of the acceptability of cheese buns containing dried autolysate

    Giselle Rossi Vasconcelos Ramos

    2011-06-01

    Full Text Available OBJETIVO: Esta pesquisa tem como objetivo estudar as propriedades do autolisado de levedura (Saccharomyces cerevisiae proveniente de cachaça de alambique, investigando a composição centesimal, o perfil acídico e a análise microbiológica do material, bem como realizar análise sensorial do pão de queijo adicionado com o autolisado desidratado. MÉTODOS: O autolisado foi obtido pela lavagem e autólise da biomassa. A secagem foi realizada em secador de bandeja na temperatura de 70ºC. Realizaram-se as seguintes análises: caracterização físico-química (teor lipídico, proteico, fibras totais, fibras solúveis e insolúveis, e cinzas; composição de aminoácidos; análises microbiológicas do produto desidratado; e avaliação sensorial do pão de queijo contendo o autolisado desidratado, através de escala hedônica e teste de atitude. RESULTADOS: O autolisado desidratado apresentou: 1,2% de lipídeos; 24,7% de proteínas; 51,3% de fibras totais, sendo 2,4% de fibras solúveis e 48,9% de insolúveis; e 6,2% de cinzas. As análises microbiológicas mostraram-se dentro do limite recomendado pela Agência Nacional de Vigilância Sanitária. O perfil aminoacídico mostrou deficiência de histidina e metionina+cistina. A análise sensorial do pão de queijo mostrou boa aceitação, tendo apenas cor e aparência recebido notas baixas. A maioria dos participantes disse que "gosta disto e compraria de vez em quando". CONCLUSÃO: Os valores de proteína e aminoácidos encontrados na levedura de cachaça de alambique foram inferiores ao mostrado na literatura para levedura de cervejaria e destilaria de álcool etílico. A levedura desidratada estava microbiologicamente apta para consumo humano. A baixa aceitabilidade da aparência do pão de queijo provavelmente ocorreu pelo fato de os consumidores não estarem habituados à cor escura do produto. Trabalhos futuros poderão sugerir adição em outros produtos que apresentem aparência mais

  10. Comportamento da beta-ciclodextrina adicionada ao leite de cabra submetido ao processo de desidratação por "spray-dryer" Beta-ciclodextrin's behavior added goat's milk submitted to the "spray-dryer" dehydration process

    Adriana C. P. Diniz

    2005-06-01

    Full Text Available Este trabalho avaliou o comportamento do agente encapsulante beta -ciclodextrina ( beta-CD adicionado ao leite de cabra submetido ao processo de desidratação por "spray-dryer", através de análise termogravimétrica e de cromatografia gasosa. Após a desidratação, a amostra adicionada de beta-CD apresentou um rendimento real de 10,59% com taxa de perda de 0,04% (em relação ao valor teórico esperado 10,6% ; enquanto na amostra sem adição do agente encapsulante o rendimento real foi de 9,57%, com taxa de perda de 4,27% (valor teórico esperado 10% . Através da análise termogravimétrica (TGA, verificou-se que são volatilizados 44% e 21% dos ácidos comerciais C8 e C10 , respectivamente. Os resultados cromatográficos mostraram uma perda de aproximadamente 30% dos ácidos C8 e 20% dos ácidos C10 , nas amostras de leite de cabra sem beta -CD em relação às amostras com beta-CD. Tais porcentagens estão de acordo com os valores estimados para os ácidos comerciais. Com base nos parâmetros estudados, podemos inferir que há menor perda dos ácidos graxos C8 e C10 na amostra de leite de cabra com beta-CD, provavelmente devido ao efeito encapsulante, aumentando a estabilidade térmica dos ácidos.This work evaluated the effect of the encapsulant agent beta-cyclodextrin (beta-CD added the goat milk submitted to the "spray-dryer" dehydration process, through thermogravimetric analysis and gas cromatography. After dehydration, the sample added of beta-CD presented a real yield of 10,59%, with a loss rate of 0,04% (in relation to the expected theoretical value 10,6%; while in the sample without addition of the encapsulant agent the real yield was 9,57%, with a loss rate of 4,27% (expected theoretical value 10% . It was verified that the volatilization of 44% and 21% of the commercial acids C8 and C10 , respectively, through the thermogravimetric analysis (TGA. The cromatographic results showed losses of approximately 30% of the C8 acids and

  11. Carbonyl compounds emitted by a diesel engine fuelled with diesel and biodiesel-diesel blends: Sampling optimization and emissions profile

    Guarieiro, Lílian Lefol Nani; Pereira, Pedro Afonso de Paula; Torres, Ednildo Andrade; da Rocha, Gisele Olimpio; de Andrade, Jailson B.

    Biodiesel is emerging as a renewable fuel, hence becoming a promising alternative to fossil fuels. Biodiesel can form blends with diesel in any ratio, and thus could replace partially, or even totally, diesel fuel in diesel engines what would bring a number of environmental, economical and social advantages. Although a number of studies are available on regulated substances, there is a gap of studies on unregulated substances, such as carbonyl compounds, emitted during the combustion of biodiesel, biodiesel-diesel and/or ethanol-biodiesel-diesel blends. CC is a class of hazardous pollutants known to be participating in photochemical smog formation. In this work a comparison was carried out between the two most widely used CC collection methods: C18 cartridges coated with an acid solution of 2,4-dinitrophenylhydrazine (2,4-DNPH) and impinger bottles filled in 2,4-DNPH solution. Sampling optimization was performed using a 2 2 factorial design tool. Samples were collected from the exhaust emissions of a diesel engine with biodiesel and operated by a steady-state dynamometer. In the central body of factorial design, the average of the sum of CC concentrations collected using impingers was 33.2 ppmV but it was only 6.5 ppmV for C18 cartridges. In addition, the relative standard deviation (RSD) was 4% for impingers and 37% for C18 cartridges. Clearly, the impinger system is able to collect CC more efficiently, with lower error than the C18 cartridge system. Furthermore, propionaldehyde was nearly not sampled by C18 system at all. For these reasons, the impinger system was chosen in our study. The optimized sampling conditions applied throughout this study were: two serially connected impingers each containing 10 mL of 2,4-DNPH solution at a flow rate of 0.2 L min -1 during 5 min. A profile study of the C1-C4 vapor-phase carbonyl compound emissions was obtained from exhaust of pure diesel (B0), pure biodiesel (B100) and biodiesel-diesel mixtures (B2, B5, B10, B20, B50, B

  12. AO distal radius volar plate fixation for AO type C distal radius fracture

    We applied a volar AO distal radius plate for AO type C fractures of the distal radius. The subjects included 1 man and 12 women, and their mean age at the time of surgery was 62 years. The mean follow-up period was 10 months. According to the AO classification, 3 cases were C2, 7 cases were C3-1, and 3 cases were C3-2. Union was achieved in all cases. Wrist function was evaluated using the modified Mayo wrist scoring system. The functional results were excellent in 7 cases, good in 4 cases, and fair in 2 cases. To evaluate the strength of the initial fixation and the accuracy of joint surface reduction after surgery, palmar tilt, ulnar variance, and radial inclination were measured from radiographs that were taken before surgery, immediately after surgery, and at the final follow-up examination, and from CT scan images taken at the final follow-up examination. In 3 cases, correction losses included poor initial fixation and joint surface reduction, and all 3 were AO C3-2 fractures. These cases had comminuted fragments, both volar and dorsal metaphysic, and lunate fossa fragments. A volar locking plate fixation that can support the articular surface should be applied to AO C2 and C3-1 fractures. However, in the absence of bone grafting, it should not be applied to AO C3-2 fractures because it is very difficult not only to reduce the concave lunate fossa fragments but also to fix the fragments to the volar metaphysis. (author)

  13. Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation

    In this paper, we are studying an innovative solution to reduce fuel consumption and production cost for electricity production by Diesel generators. The solution is particularly suitable for remote areas where the cost of energy is very high not only because of inherent cost of technology but also due to transportation costs. It has significant environmental benefits as the use of fossil fuels for electricity generation is a significant source of GHG (Greenhouse Gas) emissions. The use of hybrid systems that combine renewable sources, especially wind, and Diesel generators, reduces fuel consumption and operation cost and has environmental benefits. Adding a storage element to the hybrid system increases the penetration level of the renewable sources, that is the percentage of renewable energy in the overall production, and further improves fuel savings. In a previous work, we demonstrated that CAES (Compressed Air Energy Storage) has numerous advantages for hybrid wind-diesel systems due to its low cost, high power density and reliability. The pneumatic hybridization of the Diesel engine consists to introduce the CAES through the admission valve. We have proven that we can improve the combustion efficiency and therefore the fuel consumption by optimizing Air/Fuel ratio thanks to the CAES assistance. As a continuation of these previous analyses, we studied the effect of the intake pressure and temperature and the exhaust pressure on the thermodynamic cycle of the diesel engine and determined the values of these parameters that will optimize fuel consumption. -- Highlights: ► Fuel economy analysis of a simple pneumatic hybridization of the Diesel engine using stored compressed air. ► Thermodynamic analysis of the pneumatic hybridization of diesel engines for hybrid wind-diesel energy systems. ► Analysis of intake pressure and temperature of compressed air and exhaust pressure on pressure/temperature during Diesel thermodynamic cycle. ► Direct admission of

  14. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  15. Combustión sin Llama de Mezclas Pobres Metano-Aire sobre Óxido de Magnesio Adicionado con Óxido de Calcio Flameless Combustion of Lean Methane-Air Mixtures over Magnesium Oxide with Addition of Calcium Oxide

    Elías de J Gómez

    2008-01-01

    Full Text Available Se preparó material activo partiendo de óxido de magnesio (MgO grado industrial y grado reactivo adicionado con óxido de calcio (CaO. En un lecho fijo empacado con partículas de material activo, se investigó el efecto que tienen la cantidad de CaO adicionado, la temperatura de calcinación, la velocidad espacial, el exceso de oxígeno y la composición de mezcla reactiva sobre la actividad, medida como conversión porcentual de metano. Se obtuvo combustión completa de metano para composiciones menores al límite inferior de inflamabilidad lo que permite evitar la emisión de NOx producidos por mecanismo térmico. Las muestras preparadas con MgO grado industrial tuvieron actividad similar a las obtenidas con MgO grado reactivo adicionado con CaO. Los materiales, de fácil preparación y bajo costo, mostraron alta estabilidad térmica antes y después de someterlos a reacción. Las propiedades de los sólidos preparados los hacen promisorios para aplicaciones en sistemas de combustión de gas natural y depuración de emisiones gaseosas.Active material was prepared using industrial and reactive grade magnesium oxide (MgO with the addition of calcium oxide (CaO. In a fixed packed bed containing particles of active material, the effects of quantity of CaO added, calcination temperature, space velocity, oxygen excess and reactive mixture composition on activity, measured as percentage of methane conversion, were studied. Complete combustion was reached for compositions under the low limit of inflammability which allow avoiding the formation of thermal NOx. Samples prepared with industrial grade MgO showed similar activity to those prepared with reactive grade MgO with the addition of CaO. The materials, of low cost and easy preparation, showed high thermal stability before and after reaction tests. The properties of the prepared solids make them promising materials for natural gas combustion and gas emission treatment systems.

  16. Comportamento de um motor de ignição por compressão trabalhando com óleo Diesel e gás natural A dual fuel compression ignition engine performance, running with Diesel fuel and natural gas

    José F. Schlosser

    2004-12-01

    Full Text Available A previsível escassez de petróleo aliada a uma consciência ecológica está levando pesquisadores a procurar novas fontes de energia e processos de combustão mais eficientes e menos poluentes. Entre os combustíveis menos poluentes está o gás natural, cujo consumo aumenta ano a ano. Os motores de combustão interna são transformadores de energia que têm baixa eficiência de conversão. Este trabalho avaliou um motor Diesel, bicombustível, movido a Diesel e gás natural. Nesse motor, a energia provém, basicamente, da combustão do gás natural. O Diesel tem a função de produzir o início da combustão do gás, que é o combustível principal. Assim, haverá uma substituição parcial de óleo Diesel por gás natural, aumentando o rendimento da combustão. Inicialmente, foi feito um ensaio-testemunha, somente com óleo Diesel e após foram feitos ensaios, com três repetições, para variadas proporções de óleo Diesel, gás natural e ângulos de avanço da injeção. O melhor desempenho foi obtido para 22% de óleo Diesel em relação ao máximo débito da bomba injetora e 13 L min-1 de gás natural com ângulo de avanço de injeção original (21º. Nesse caso, a potência média aumentou 14%, e o consumo específico (medido em valores monetários diminuiu 46% em relação ao ensaio-testemunha.The foresight of a petroleum shortage and an ecological conscience is moving scientists to look for new sources of energy and to develop more efficient combustion processes and reduced emissions. Natural gas is a reduced emission fuel, whose consumption increases every year. The present work evaluates a dual fuel compression ignition engine. The major portion of the fuel burned is natural gas. The Diesel fuel acts as combustion starter, which ignites under the compression heat. Diesel fuel is used only as an ignition source. The partial substitution of Diesel fuel by natural gas increases the combustion efficiency and achieves significant

  17. 40 CFR 80.512 - May an importer treat diesel fuel as blendstock?

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false May an importer treat diesel fuel as..., and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.512 May an importer treat diesel... this subpart, and instead may designate such diesel fuel as diesel fuel treated as blendstock...

  18. AO Observations of Three Powerful Radio Galaxies

    de Vries, W; van Bruegel, W; Quirrenbach, A

    2002-08-01

    The host galaxies of powerful radio sources are ideal laboratories to study active galactic nuclei (AGN). The galaxies themselves are among the most massive systems in the universe, and are believed to harbor supermassive black holes (SMBH). If large galaxies are formed in a hierarchical way by multiple merger events, radio galaxies at low redshift represent the end-products of this process. However, it is not clear why some of these massive ellipticals have associated radio emission, while others do not. Both are thought to contain SMBHs, with masses proportional to the total luminous mass in the bulge. It either implies every SMBH has recurrent radio-loud phases, and the radio-quiet galaxies happen to be in the ''low'' state, or that the radio galaxy nuclei are physically different from radio-quiet ones, i.e. by having a more massive SMBH for a given bulge mass. Here we present the first results from our adaptive optics imaging and spectroscopy pilot program on three nearby powerful radio galaxies. Initiating a larger, more systematic AO survey of radio galaxies (preferentially with Laser Guide Star equipped AO systems) has the potential of furthering our understanding of the physical properties of radio sources, their triggering, and their subsequent evolution.

  19. Preparation and emission characteristics of ethanol-diesel fuel blends

    ZHANG Run-duo; HE Hong; SHI Xiao-yan; ZHANG Chang-bin; HE Bang-quan; WANG Jian-xin

    2004-01-01

    The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection(DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon(HC), and carbon monoxide(CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.

  20. Oxidant generation and toxicity enhancement of aged-diesel exhaust

    Li, Qianfeng; Wyatt, Anna; Kamens, Richard M.

    Diesel exhaust related airborne Particulate Matter (PM) has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease. The underlying toxicological mechanisms are of great scientific interest. A hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. In this study, the main objective was to determine whether aged-diesel exhaust PM has a higher oxidant generation and toxicity than fresh diesel exhaust PM. The diesel exhaust PM was generated from a 1980 Mercedes-Benz model 300SD, and a dual 270 m 3 Teflon film chamber was utilized to generate two test atmospheres. One side of the chamber is used to produce ozone-diesel exhaust PM system, and another side of the chamber was used to produce diesel exhaust PM only system. A newly optimized dithiothreitol (DTT) method was used to assess their oxidant generation and toxicity. The results of this study showed: (1) both fresh and aged-diesel exhaust PM had high oxidant generation and toxicity; (2) ozone-diesel exhaust PM had a higher toxicity response than diesel exhaust PM only; (3) the diesel exhaust PM toxicity increased with time; (4) the optimized DTT method could be used as a good quantitative chemical assay for oxidant generation and toxicity measurement.

  1. Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends

    Highlights: → Turbocharged diesel engine emissions during starting with bio-diesel or n-butanol diesel blends. → Peak pollutant emissions due to turbo-lag. → Significant bio-diesel effects on combustion behavior and stability. → Negative effects on NO emissions for both blends. → Positive effects on smoke emissions only for n-butanol blend. -- Abstract: The control of transient emissions from turbocharged diesel engines is an important objective for automotive manufacturers, as stringent criteria for exhaust emissions must be met. Starting, in particular, is a process of significant importance owing to its major contribution to the overall emissions during a transient test cycle. On the other hand, bio-fuels are getting impetus today as renewable substitutes for conventional fuels, especially in the transport sector. In the present work, experimental tests were conducted at the authors' laboratory on a bus/truck, turbocharged diesel engine in order to investigate the formation mechanisms of nitric oxide (NO), smoke, and combustion noise radiation during hot starting for various alternative fuel blends. To this aim, a fully instrumented test bed was set up, using ultra-fast response analyzers capable of capturing the instantaneous development of emissions as well as various other key engine and turbocharger parameters. The experimental test matrix included three different fuels, namely neat diesel fuel and two blends of diesel fuel with either bio-diesel (30% by vol.) or n-butanol (25% by vol.). With reference to the neat diesel fuel case during the starting event, the bio-diesel blend resulted in deterioration of both pollutant emissions as well as increased combustion instability, while the n-butanol (normal butanol) blend decreased significantly exhaust gas opacity but increased notably NO emission.

  2. Powders of kudzu, velvetbean, and pine bark added to soil increase microbial population and reduce Southern blight of soybean Pós-secos de kudzu, mucuna e casca de pinus adicionados ao solo aumentam a população microbiana e diminuem a murcha por esclerócio em soja

    Luiz E. B Blum; Rodrigo Rodríguez-Kábana

    2006-01-01

    Southern blight (Sclerotium rolfsii) of soybean (Glycine max) is an important disease throughout the world. Some soil amendments can reduce disease levels by improving soil microbial activity. The main goals of this study were to investigate the effects of soil amendments such as dried powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine bark (Pinus taeda), on soil microbial population and disease caused by S. rolfsii on soybean. Pine bark, velvetbean (mucuna) and kud...

  3. Dried powders of velvetbean and pine bark added to soil reduce Rhizoctonia solani-induced disease on soybean Pós secos de mucuna e casca de pinus adicionados ao solo reduzem a doença causada por Rhizoctonia solani em soja

    Luiz E. B Blum; Rodrígo Rodríguez-Kábana

    2006-01-01

    Diseases induced by Rhizoctonia solani, like damping-off and root and stem rot on soybean (Glycine max), are a serious problem around the world. The addition of some organic material to soil is an alternative control for these diseases. In this study, benzaldehyde and dried powders of kudzu (Pueraria lobata), velvetbean or mucuna (Mucuna deeringiana), and pine bark (Pinus spp.) were used in an attempt to improve soybean plant growth and to reduce the disease R. solani (AG-4) causes on soybean...

  4. Atividade antioxidante do extrato de sementes de limão (Citrus limon adicionado ao óleo de soja em teste de estocagem acelerada Antioxidant activity of lemon seed extract (Citrus limon added to soybean oil in accelerated incubator-storage test

    Débora Maria Moreno Luzia

    2009-01-01

    Full Text Available The aim of this work was to evaluate antioxidant activity of lemon seeds added to soybean oil, submitted to accelerated incubator-storage test and to determine its synergistic effect with the synthetic antioxidant TBHQ. The treatments Control, TBHQ (50 mg/kg, LSE (2,400 mg/kg Lemon Seed Extract, Mixture 1 (LSE + 50 mg/kg TBHQ and Mixture 2 (LSE + 25 mg/kg TBHQ were prepared and subjected to the accelerated incubator-storage test at 60 ºC for 12 days; samples were taken every 3 days and analyzed regarding peroxide value and conjugated dienes. The results showed that antioxidant activity of the tested treatments were: TBHQ = Mixture 1 = Mixture 2 > LSE > Control.

  5. Multi-zone modeling of Diesel engine fuel spray development with vegetable oil, bio-diesel or Diesel fuels

    This work presents a model of fuel sprays development in the cylinders of Diesel engines that is two-dimensional, multi-zone, with the issuing jet (from the nozzle) divided into several discrete volumes, called 'zones', formed along the direction of the fuel injection as well as across it. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber before and after wall impingement. After the jet break up time, a group of droplets is generated in each zone, with the model following their motion during heating, evaporation and mixing with the in-cylinder air. The model is applied for the interesting case of using vegetable oils or their derived bio-diesels as fuels, which recently are considered as promising alternatives to petroleum distillates since they are derived from biological sources. Although there are numerous experimental studies that show curtailment of the emitted smoke with possible increase of the emitted NO x against the use of Diesel fuel, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using these biologically derived fuels. Thus, in the present work, a theoretical detailed model of spray formation is developed that is limited to the related investigation of the physical processes by decoupling it from the chemical effects after combustion initiation. The analysis results show how the widely differing physical properties of these fuels, against the normal Diesel fuel, affect greatly the spray formation and consequently the combustion mechanism and the related emissions

  6. Effect of diesel addition on the performance of cottonseed oil fuelled DI diesel engine

    Leenus Jesu Martin. M, Edwin Geo. V, Prithviraj. D

    2011-03-01

    Full Text Available In this investigation the viscosity of cottonseed oil, which has been considered as an alternative fuel for the compression Ignition (C.I engine was decreased by blending with diesel. The blends of varying proportions of cottonseed oil and diesel were prepared, analyzed and compared with the performance of diesel fuel and studied using a single cylinder C.I. engine. Significant improvement in engine performance was observed compared to neat cottonseed oil as a fuel. The brake thermal efficiency, specific fuel consumption, volumetric efficiency, peak cylinder pressure, smoke, CO, HC, NO and the exhaust gas temperatures were analyzed. The tests showed increase in the brake thermal efficiencies of the engine as the amount of diesel in the blend increased. The volumetric efficiency of the engine also increased when compared with that of neat cottonseed oil and the exhaust gas temperature with the blends decreased. The smoke, CO and HC emissions of the engine ware also less with the blends. From the engine test results it has been established that 20–40% of cottonseed oil can be substituted for diesel without any engine modification as a fuel.

  7. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  8. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Lyes Tarabet

    2012-01-01

    Full Text Available Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v% at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  9. Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust

    Wenger, Daniela; Gerecke, Andreas C.; Heeb, Norbert V. [Laboratory for Analytical Chemistry, Empa, Swiss Federal Laboratories for Materials Testing and Research, Duebendorf (Switzerland); Naegeli, Hanspeter [University of Zurich-Vetsuisse, Institute of Pharmacology and Toxicology, Zurich (Switzerland); Zenobi, Renato [ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich (Switzerland)

    2008-04-15

    An in vitro reporter gene assay based on human breast cancer T47D cells (ER-CALUX {sup registered}) was applied to examine the ability of diesel exhaust to induce or inhibit estrogen receptor (ER)-mediated gene expression. Exhaust from a heavy-duty diesel engine was either treated by iron- or copper/iron-catalyzed diesel particulate filters (DPFs) or studied as unfiltered exhaust. Collected samples included particle-bound and semivolatile constituents of diesel exhaust. Our findings show that all of the samples contained compounds that were able to induce ER-mediated gene expression as well as compounds that suppressed the activity of the endogenous hormone 17{beta}-estradiol (E2). Estrogenic activity prevailed over antiestrogenic activity. We found an overall ER-mediated activity of 1.63 {+-} 0.31 ng E2 CALUX equivalents (E2-CEQs) per m{sup 3} of unfiltered exhaust. In filtered exhaust, we measured 0.74 {+-} 0.07 (iron-catalyzed DPF) and 0.55 {+-} 0.09 ng E2-CEQ m{sup -3} (copper/iron-catalyzed DPF), corresponding to reductions in estrogenic activity of 55 and 66%, respectively. Our study demonstrates that both catalytic DPFs lowered the ER-mediated endocrine-disrupting potential of diesel exhaust. (orig.)

  10. Performance and emissions of a diesel engine fueled by biodiesel–diesel, biodiesel–diesel-additive and kerosene–biodiesel blends

    Highlights: • Various biodiesel blends are tested in a diesel engine for performance and emissions. • A new biodiesel additive, Wintro XC 30 is studied for combustion in a diesel engine. • Kerosene–biodiesel series show improved performance and emissions at high load. • NO2 at low load condition has a significant share in total NOx for all fuels. • B5A has lower cloud point, CO and HC emissions, but improved efficiency than diesel. - Abstract: This study investigates the performance and emissions of a direct injection (DI) diesel engine with three fuel series: biodiesel–diesel, biodiesel–diesel-additive and kerosene–biodiesel. Biodiesel is produced from canola oil and the effect of a new biodiesel additive, Wintron XC 30 (2 vol.%), is examined for engine performance and emissions. Systematic tests are undertaken over different blends, such as 0, 5, 10, 20, 50 and 100 volume percent of biodiesel in biodiesel–diesel and biodiesel–diesel-additive blends, and 0, 5, 10, 20, 50 and 100 volume percent of kerosene in kerosene–biodiesel blends. Engine performance and emissions at rated engine speed of 1800 rpm under three different loading conditions (low, medium and high) are investigated. Brake specific fuel consumption (bsfc) and fuel conversion efficiency (ηf) are used to compare engine performance, and emission analysis is based on parameters such as carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOx)

  11. Development of microwave-heated diesel particulate filters

    Janney, M.A.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Yonushonis, T.M.; McDonald, A.C.; Wiczynski, P.D.; Haberkamp, W.C.

    1996-06-01

    Diesel engines are a prime mover of freight in the United States. Because of legislated reductions in diesel engine emissions, considerable research has been focused on the reduction of these emissions while maintaining the durability, reliability, and fuel economy of diesel engines. The Environmental Protection Agency (EPA) has found that particulate exhaust from diesel powered vehicles represents a potential health hazard. As a result, regulations have been promulgated limiting the allowable amounts of particulate from those vehicles. The 0.1 g/bhp/hr (gram per brake horsepower per hour) particulate standard that applies to heavy-duty diesels became effective in 1994. Engine manufacturers have met those requirements with engine modifications and/or oxidation catalysts. EPA has established more stringent standards for diesel-powered urban buses because of health concerns in densely populated urban areas.

  12. Formation and emission of organic pollutants from diesel engines

    The emission of soot and polycyclic aromatic hydrocarbons (PAH) from diesel engines results from the competition between oxidative and pyrolytic routes which the fuel takes in the unsteady, heterogeneous conditions of the diesel combustion process. In-cylinder sampling and analysis of particulate (soot and condensed hydrocarbon species), light hydrocarbons and gaseous inorganic species were carried out in two locations of a single cylinder direct injection diesel engine by means of a fast sampling valve in order to follow the behaviour of a diesel fuel during the engine cycle. The effect of fuel quality (volatility, aromatic content, cetane number) and air/fuel mass feed ratio on soot, PAH, and light and heavy hydrocarbons was also investigated by direct sampling and chemical analysis of the exhausts emitted from a direct injection diesel engine (D.I.) and an indirect injection diesel engine (I.D.I.)

  13. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  14. Insulated Piston Heads for Diesel Engines

    Tricoire, A.; Kjellman, B.; Wigren, J.; Vanvolsem, M.; Aixala, L.

    2009-06-01

    Widely studied in the 1980s, the insulation of pistons in engines aimed at reducing the heat losses and thus increasing the indicated efficiency. However, those studies stopped in the beginning of the 1990s because of NO x emission legislation and also because of lower oil prices. Currently, with the improvement of exhaust after treatment systems (diesel particulate filter, selective catalytic reduction, and diesel oxidation catalyst) and engine technologies (exhaust gas recirculation), there are more trade-offs for NO x reduction. In addition, the fast rise of the oil prices tends to lead back to insulation technologies in order to save fuel. A 1 mm thick plasma sprayed thermal barrier coating with a graded transition between the topcoat and the bondcoat was deposited on top of a serial piston for heavy-duty truck engines. The effects of the insulated pistons on the engine performance are also discussed, and the coating microstructure is analyzed after engine test.

  15. Investigation and Modelling of Diesel Hydrotreating Reactions

    Boesen, Rasmus Risum

    desulfurization route due to a stronger adsorption on hydrogenation sites. Since feeds used in the hydrotreating process, usually gas-oils, are complex mixtures with a large number of compounds, analysis of the reactions of individual compounds can be difficult. In this work a model-diesel feed consisting of 13......This project consists of a series of studies, that are related to hydrotreating of diesel. Hy- drotreating is an important refinery process, in which the oil stream is upgraded to meet the required environmental specifications and physical properties. Although hydrotreating is a ma- ture technology...... reactor is governed by intrinsic kinetics, diffusion in the pores of the catalyst, mass transfer between the phases and the equilibrium between the gas and the liquid phase. In order to optimize the process and develop better simulation tools, a detailed understanding of the different processes and...

  16. Diesel Aerosol Sampling in the Atmosphere

    The University of Minnesota Center for Diesel Research along with a research team including Caterpillar, Cummins, Carnegie Mellon University, West Virginia University (WVU), Paul Scherrer Institute in Switzerland, and Tampere University in Finland have performed measurements of Diesel exhaust particle size distributions under real-world dilution conditions. A mobile aerosol emission laboratory (MEL) equipped to measure particle size distributions, number concentrations, surface area concentrations, particle bound PAHs, as well as CO 2 and NO x concentrations in real time was built and will be described. The MEL was used to follow two different Cummins powered tractors, one with an older engine (L10) and one with a state-of-the-art engine (ISM), on rural highways and measure particles in their exhaust plumes. This paper will describe the goals and objectives of the study and will describe representative particle size distributions observed in roadway experiments with the truck powered by the ISM engine

  17. An expert system for diesel generator diagnostics

    The idea of developing artificial intelligence (AI) systems to capture the knowledge of human experts is receiving much attention these days. The idea is even more attractive when important expertise resides within a single individual, especially one who is nearing retirement and who has not otherwise recorded or passed along his important knowledge and thought processes. The diesel generators at Pilgrim Nuclear Power Station have performed exceptionally well, primarily due to the care and attention of one man. Therefore, the authors are constructing an expert system for the diagnosis of diesel generator problems at Pilgrim. This paper includes a description of the expert system design and operation, examples from the knowledge base, and sample diagnoses, so the reader can observe the process in action

  18. Diesel generator trailer acceptance test procedure

    This Acceptance Test Procedure (ATP) will document compliance with the requirements of WHC-S-0252 Rev. 1 and ECNs 609271, and 609272. The equipment being tested is a 150KW Diesel Generator mounted on a trailer with switchgear. The unit was purchased as a Design and Fabrication procurement activity. The ATP was written by the Seller and will be performed by the Seller with representatives of the Westinghouse Hanford Company witnessing the test at the Seller's location

  19. Exposure Assessment of Diesel Bus Emissions

    Werner Hofmann

    2006-12-01

    Full Text Available The goal of this study was to measure ultrafine particle concentrations with diameters less than 1 μm emitted by diesel buses and to assess resulting human exposure levels. The study was conducted at the Woolloongabba Busway station in Brisbane, Australia in the winter months of 2002 during which temperature inversions frequently occurred. Most buses that utilize the station are fuelled by diesel, the exhaust of which contains a significant quantity of particle matter. Passengers waiting at the station are exposed to these particles emitted from the buses. During the course of this study, passenger census was conducted, based on video surveillance, yielding person-by-person waiting time data. Furthermore, a bus census revealed accurate information about the total number of diesel versus Compressed Natural Gas (CNG powered buses. Background (outside of the bus station and platform measurements of ultrafine particulate number size distributions were made to determine ambient aerosol concentrations. Particle number exposure concentration ranges from 10 and 40 to 60% of bus related exhaust fumes. This changes dramatically when considering the particle mass exposure concentration, where most passengers are exposed to about 50 to 80% of exhaust fumes. The obtained data can be very significant for comparison with similar work of this type because it is shown in previous studies that exhaust emissions causes cancer in laboratory animals. It was assumed that significant differences between platform and background distributions were due to bus emissions which, combined with passenger waiting times, yielded an estimate of passenger exposure to ultrafine particles from diesel buses. From an exposure point of view, the Busway station analyzed resembles a street canyon. Although the detected exhaust particle concentration at the outbound platform is found to be in the picogram range, exposure increases with the time passengers spend on the platform

  20. Microwave-Regenerated Diesel Exhaust Particulate Filter

    Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

    2001-03-05

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  1. Diesel Effect Problem Solving During Injection Moulding

    Košík Miroslav

    2014-12-01

    Full Text Available Study describes principles of diesel effect creation during thermoplastic injection moulding as a consequence of wrong injection conditions and poor venting system design. On real example, study shows sequence of all steps to eliminate this sort of material degradation with minimal costs in phase when mould is already made. As a first, process parameters were optimized by CAE simulation to minimize cavity internal gasses creation. Finally the specific mould modifications were suggested to improve the effectiveness of venting system.

  2. Ecological Impacts of Diesel Engine Emissions

    Jurić, Vanja; Županović, Dino

    2012-01-01

    This article deals with the ecological impacts of chemical substances that are found in the structure of Diesel engine exhaust gases and provides an overview of legislation that limits their maximum allowable emissions. Special consideration is given to the previously mostly neglected negative impact of particulate matter compared to the impact of carbon dioxide. Negative impact of particulates is especially noted as direct negative impact on human health whereby the expenses associated with ...

  3. Hygroscopic properties of Diesel engine soot particles

    Weingartner, E.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burtscher, H. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    The hygroscopic properties of combustion particles, freshly emitted from a Diesel engine were investigated. It was found that these particles start to grow by water condensation at a relative humidity (RH)>80%. The hygroscopicity of these particles was enhanced when the sulfur content of the fuel was increased or when the particles were artificially aged (i.e. particles were subjected to an ozone or UV pre-treatment). (author) 2 figs., 5 refs.

  4. Traffic, diesel and asthma : a literature review

    Schembri, Gabriel

    2007-01-01

    This article details the major pollutants from motor vehicle exhaust, mainly particulate matter, nitrogen dioxide and polycyclic aromatic hydrocarbons. The emphasis is on motor vehicle emissions from diesel powered engines, which have become a significant source of air pollution in urban areas. The impact of motor vehicle pollutants on respiratory health is explored, and the major studies relating asthma to high volume of traffic and proximity to major traffic arteries are reviewed.

  5. Cooling system for modern trunk diesel locomotives

    Мошенцев, Ю. Л.; Гогоренко, А. А.; Минчев, Д. С.

    2011-01-01

    The existing and alternative schemes of engine cooling system for modern trunk diesel locomotives are considered. The method for comparison of various schemes of cooling system with the purpose to find the most compact and effective of them is offered. Slow flow systems are the most appropriate as it is shown. The optimal scheme of cooling system, that permits to increase supercharging air-cooling efficiency to 0,94…0,96 it is been selected.

  6. The economics of a variable speed wind-diesel

    A remote community power supply system generating over 1,000 kWH/d will have at least one diesel generator running all the time. If one or more wind turbine generators are added to such a system, the diesel generator will produce less power when wind speeds are adequate, but its fuel efficiency will gradually decrease as load decreases. In the variable speed wind/diesel concept, the diesel rpm is reduced with decreasing load and a high fuel efficiency is maintained over virtually the full power range. The outputs of the diesel and wind turbine generators are fed into an inverter which synthesizes a desired voltage wave-shape with controlled magnitude and frequency. The variable speed wind/diesel concept may make vertical axis wind turbines suitable for remote community power supply because the inverter effectively isolates the power ripple of the wind turbine. A possible wind/diesel system configuration using the variable speed concept is illustrated. The economics of a 50-kW variable speed diesel and a 80-kW variable speed wind turbine generator was analyzed. Going from a constant speed diesel generator to a variable speed generator operating at 55% capacity factor, a 6% fuel saving was achieved. Adding one 80-kW wind turbine increased fuel savings to 32% at 5 m/s wind speed, but the unit energy cost rose 8.5%. At 7 m/s wind speed, fuel savings were 59% and energy savings were 7.8%. Economics are better for a peaking variable speed 50-kW wind/diesel system added to an existing diesel system to extend the installed capacity. At 7 m/s wind speed the fuel savings translate into ca $40,000 over 10 y and purchase of a $150,000 diesel generator is postponed. 7 figs., 1 tab

  7. Comparison of COGES and Diesel-Electric Ship Propulsion Systems

    Mrzljak, Vedran; Mrakovčić, Tomislav

    2016-01-01

    Diesel-electric ship propulsion is a frequent shipowners choice nowadays, especially on passengerships. Despite many diesel engines advantages, their primary disadvantage is emission of pollutants. As environmental standards become more stringent, the question of optimal alternative to diesel-electric propulsion arises. COGES (COmbined Gas turbine Electric and Steam) propulsion system is one of the proposals for alternative propulsion system, primarily due to significant reduction of pollu...

  8. External brand extensions impact on Diesel's brand image

    Fernandes, Miguel Pinto Valente

    2010-01-01

    A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics Diesel is a global urban brand that privileges individuality and irreverence. This project measures Diesel brand image within the different types of Portuguese consumers; the objective is to understand the main buying drivers and analyze the impact of brand licensing. It was concluded that Diesel global brand image is consensual amo...

  9. Study on Influence of Fuel Properties on Premixed Diesel Combustion

    熊, 仟

    2014-01-01

    Premixed diesel combustion, as a promising combustion concept to achieve low NOx and smoke emissions as well as high thermal efficiency, is paid much attention. Sufficiently long ignition delay is required for pre-mixture preparation to avoid over-rich mixture taking part in the combustion while the maximum pressure rise rate is suppressed to a tolerance level. Therefore, the operational load range of premixed diesel combustion with diesel fuel is limited at low and medium loads by the high p...

  10. Energy Policies Cause Unexpected Diesel Shortage in China

    2010-01-01

    @@ An unprecedented diesel shortage is sweeping through Chinese cities, as numerous enterprises have to resort to diesel fuel to generate electricity to continue operation during periods of forced power outages.For example, the diesel shortage has recently paralyzed traffic on a pivotal expressway in Northwest China, with trucks waiting in long lines to fill their fuel tanks.China's Ministry of Commerce has recently required the local bureaus to ensure ample supply of fuel amid rising inflation.

  11. Diesel emission control: Catalytic filters for particulate removal

    Debora Fino

    2007-01-01

    The European diesel engine industry represents a vital sector across the Continent, with more than 2 million direct work positions and a turnover of over 400 billion Euro. Diesel engines provide large paybacks to society since they are extensively used to transport goods, services and people. In recent years increasing attention has been paid to the emissions from diesel engines which, like gasoline engine emissions, include carbon monoxide (CO), hydrocarbons (HC) and oxides of nitrogen (NOx)...

  12. Investigation of Diesel Engine Performance Based on Simulation

    Semin; Rosli A. Bakar; Abdul R. Ismail

    2008-01-01

    The single cylinder modeling and simulation for four-stroke direct-injection diesel engine requires the use of advanced analysis and development tools to carry out of performance the diesel engine model. The simulation and computational development of modeling for the research use the commercial of GT-SUITE 6.2 software. In this research, the one dimensional modeling of single cylinder for four-stroke direct-injection diesel engine developed. The analysis of the model is combustion performanc...

  13. Bio-diesel fuels production: Feasibility studies

    This paper reviews the efforts being made by Italy's national government and private industry to develop diesel engine fuels derived from vegetable oils, in particular, sunflower seed oil. These fuels are being promoted in Italy from the environmental protection stand-point in that they don't contain any sulfur, the main cause of acid rain, and from the agricultural stand-point in that they provide Italian farmers, whose food crop production capacity is limited due to European Communities agreements, with the opportunity to use their set-aside land for the production of energy crops. This paper provides brief notes on the key performance characteristics of bio-diesel fuels, whose application doesn't require any modifications to diesel engines, apart from minor adjustments to the air/fuel mix regulating system, and assesses commercialization prospects. Brief mention is made of the problems being encountered by the Government in the establishing fair bio-fuel production tax rebates which are compatible with the marketing practices of the petroleum industry. One of the strategies being considered is to use the bio-fuels as additives to be mixed with conventional fuel oils so as to derive a fuel which meets the new European air pollution standards

  14. TRNSYS HYBRID wind diesel PV simulator

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  15. PCR+ In Diesel Fuels and Emissions Research

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  16. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    2010-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and...; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements § 80.602 What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and...

  17. Biodegradability of commercial and weathered diesel oils Biodegradabilidade de óleos diesel comercial e intemperizado

    Adriano Pinto Mariano

    2008-03-01

    Full Text Available This work aimed to evaluate the capability of different microorganisms to degrade commercial diesel oil in comparison to a weathered diesel oil collected from the groundwater at a petrol station. Two microbiological methods were used for the biodegradability assessment: the technique based on the redox indicator 2,6 - dichlorophenol indophenol (DCPIP and soil respirometric experiments using biometer flasks. In the former we tested the bacterial cultures Staphylococcus hominis, Kocuria palustris, Pseudomonas aeruginosa LBI, Ochrobactrum anthropi and Bacillus cereus, a commercial inoculum, consortia obtained from soil and groundwater contaminated with hydrocarbons and a consortium from an uncontaminated area. In the respirometric experiments it was evaluated the capability of the native microorganisms present in the soil from a petrol station to biodegrade the diesel oils. The redox indicator experiments showed that only the consortia, even that from an uncontaminated area, were able to biodegrade the weathered diesel. In 48 days, the removal of the total petroleum hydrocarbons (TPH in the respirometric experiments was approximately 2.5 times greater when the commercial diesel oil was used. This difference was caused by the consumption of labile hydrocarbons, present in greater quantities in the commercial diesel oil, as demonstrated by gas chromatographic analyses. Thus, results indicate that biodegradability studies that do not consider the weathering effect of the pollutants may over estimate biodegradation rates and when the bioaugmentation is necessary, the best strategy would be that one based on injection of consortia, because even cultures with recognised capability of biodegrading hydrocarbons may fail when applied isolated.Este trabalho objetivou avaliar a capacidade de diferentes microrganismos em degradar óleo diesel comercial em comparação com um óleo diesel intemperizado coletado da água subterrânea em um posto de combust

  18. Performance and Emission Assessment of Multi Cylinder Diesel Engine using Surfactant Enhanced Water in Diesel Emulsion

    Khan Mohammed Yahaya

    2014-07-01

    Full Text Available A four stroke, four cylinder, In-direct injection diesel engine was used to study the effect of emulsified diesel fuel with 5% water by volume on the engine performance and on the main pollutant emissions. The experiments were conducted in the speed range from 1000 to 4500 rpm at full load conditions. It was found that, in general, using emulsified fuel improves the engine performance with slight increase in emissions. While the BSFC has a minimum value for 5% water and at all rpm, the torque, the power and the BMEP are found to have maximum values under these conditions when compared conve ntional disel. CO2 was found to increase with engine speed whereas increase in CO and NOX were minimum. In this work water in diesel emulsion was prepared by a mechanical homogenizer and their physical and chemical properties were examined.

  19. The all new BMW top diesel engines; Die neuen Diesel Spitzenmotorisierungen von BMW

    Ardey, N.; Wichtl, R.; Steinmayr, T.; Kaufmann, M.; Hiemesch, D.; Stuetz, W. [BMW Motoren GmbH, Steyr (Austria)

    2012-11-01

    From the very beginning, diesel drivetrains have been important components of the BMW EfficientDynamics strategy. High levels of driving dynamics in combination with attractive fuel consumption have become features of a wide range of models. With the introduction of 2-stage turbocharging for passenger car diesel engines in 2004, BMW was able to significantly enhance the power density without increasing the number of cylinders or the cylinder capacity. In the meantime, the BMW TwinPower Turbo diesel engine variants achieve a rated power of up to 160 kW on the 2.0-litre 4-cylinder engine and 230 kW on the 3.0-litre 6-cylinder engine. In order to extend the leading position in the premium segment, a new BMW TwinPower Turbo variant has been developed. The major objectives were to achieve a range of power output, torque and comfort at least at the level of 8-cylinder competitors, but at the same time equal the lower fuel consumption and power/weight ratio that is typical for existing BMW 6-cylinder diesel engines. The new engine will be used for the first time in the emphatically sports-oriented BMW M Performance Automobiles (MPA) of the X5/X6 and 5 Series. The charging and injection technology as well as capability of high cylinder pressures in the core engine are key technologies for the enhancement of performance. The new BMW TwinPower Turbo diesel drivetrain is based on the main dimensions of the existing 3.0-litre 6-cylinder inline diesel engines. The core element of the new engine is a 2-stage turbocharging system, consisting of 3 exhaust turbochargers. A common rail injection system with a system pressure up to 2200 bar is deployed for the first time. The drive unit has been configured for a maximum cylinder pressure of 200 bar, an innovative feature is the aluminium crankcase with its screwed tension anchor connection. The cooling system contains an indirect 2-stage intercooler. The exhaust system of the new BMW diesel engine in the 5 Series is equipped as

  20. Current and future developments in diesel powered hovercraft

    Leonard, J. C.; Stevens, M. J.; Buttigieg, J. A.

    After evaluating the development status of the application of diesel power to air-cushion vehicles (ACVs) and surface-effect ships (SESs), attention is given to the AP1-88 ACV, which is both the first and largest operational diesel-powered amphibious craft of this type. An account is given of the ACV and SES features that are dictated by the need to accommodate diesel power sources; the major advantages and disadvantages of diesel (vs gas turbine) engines are discussed. Although cost reductions are achievable against gas turbine powerplant use, lower payload fractions and slightly lower performance capabilities appear to be inescapable.

  1. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    NONE

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  2. Diesel emission control: Catalytic filters for particulate removal

    Debora Fino

    2007-01-01

    Full Text Available The European diesel engine industry represents a vital sector across the Continent, with more than 2 million direct work positions and a turnover of over 400 billion Euro. Diesel engines provide large paybacks to society since they are extensively used to transport goods, services and people. In recent years increasing attention has been paid to the emissions from diesel engines which, like gasoline engine emissions, include carbon monoxide (CO, hydrocarbons (HC and oxides of nitrogen (NOx. Diesel engines also produce significant levels of particulate matter (PM, which consists mostly of carbonaceous soot and a soluble organic fraction (SOF of hydrocarbons that have condensed on the soot.

  3. Performance Test of Engine Fuelled With Diesel and Ethanol Blends.

    B.K.L.Murthy

    2015-04-01

    Full Text Available Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (ICengines. As an alternative, biodegradable and renewable fuel, ethanol is receiving increasing attention. An experimental investigation on the application of the blends of ethanol with diesel to a diesel engine was carried out. First the solubility of ethanol and diesel was conducted with and without the additive of normal butanol (n-butanol. The purpose of this project is to find the optimum percentage of ethanol that gives simultaneously better performance and lower emissions. The experiments were conducted on a water-cooled single-cylinder Direct Injection (DI diesel engine using 0% (neat diesel fuel, 10% (E10-D, 15%(E15–D, 20% (E20–D, and 25%(E25–D ethanol–diesel blended fuels. Experimental tests were carried out to study the performance of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with n-butanol to replace pure diesel as the fuel for diesel engine.

  4. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    Baring-Gould, I.; Corbus, D.

    2007-12-01

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  5. The taxation of diesel cars in Belgium – revisited

    This paper compares the current taxation of diesel and gasoline cars in Belgium with the guidelines for optimal taxation. We find that diesel cars are still taxed much less than gasoline cars, resulting in a dominant market share for diesel cars in the car stock. If the fuel tax is the main instrument to control for externalities and generate revenues, the diesel excise should be much higher than the excise on gasoline for two reasons: diesel is more polluting than gasoline and more importantly, through the better fuel efficiency, diesel cars contribute less fiscal revenues per mile. - Highlights: ► With a correct tax system the diesel excise should be higher than that on gasoline. ► When this is difficult, the fixed annual charge should be higher for diesel cars. ► The current tax structure for gasoline and diesel cars in Belgium is suboptimal. ► It implies that CO2 emissions are reduced, but in a very cost-inefficient way

  6. Crude palm oil as fuel extender for diesel engines

    In this work an investigation has been conducted into the use of Crude Palm Oil (CPO) as an extender fuel for diesel engines. Mixtures of CPO with normal diesel fuel (with a percentage of 25%, 50% and 75% CPO by volume) were used to fuel a stationary diesel engine and the engine performance variables, i.e., power output, fuel consumption, and exhaust-gas emission, were compared to those of normal diesel fuel. The results obtained, for a fixed throttle opening and variable speed, indicate that at high engine speeds, the engine performance with CP0/diesel mixtures with up to 50% CPO is comparable to that of diesel fuel. However, the results of the 75% CPO mixture showed a higher temperature and emission of CO and NO compared to the diesel fuel. At low engine speeds, the engine performance with CPO mixtures gave higher power output and lower emission of NO compared to that with diesel fuel, but showed higher specific fuel consumption and higher emission of CO. Based on these results, the study recommends that CPO can be used to extend diesel fuel in a mixture of up to 50% CPO by volume for an unmodified engine. (Author)

  7. Experimental investigation of VOCs emitted from a DI-CI engine fuelled with biodiesel, diesel and biodiesel-diesel blend

    Experimental investigation of volatile organic compounds (VOCs) emitted by a turbocharged direct injection compression ignition (DI-CI) engine, alternatively fuelled with biodiesel and its 20% blend with diesel, revealed dominancy of diesel and biodiesel in aromatic hydrocarbons, esters other oxides, respectively, in total volatile organic compounds (TVOCs). The overall brake specific emission of VOCs increased at rated speed compared to maximum torque speed. The VOCs exhibited their maxima at low load, and minima at medium load for diesel and B100. Engines with a speed of 2300 r/min and 100% load showed a reduction in BTX emissions from B20 and B100, as compared to diesel. The sum of VOC-components of B20 and B100 reduced as compared to that of the diesel, for all the engine conditions. The mean BSE of BTX-components taken from all the engine conditions decreased with B20 and B100, relative to fossil diesel. (author)

  8. Penggunaan Minyak Nabati Sebagai Bahan Bakar Alternatif Pada Motor Diesel Sistim Injeksi Langsung

    Ricky Winaya; Philip Kristanto

    2002-01-01

    Vegetable oil as an example product of agricultural engineering, has potential to be developed to renewable energy called bio-diesel. This paper describes comparison study performance from a direct injection system diesel-engine fueled with composition 20%, 30% and 40% bio-diesel, with diesel engine fueled diesel oil (solar). The test results have shown that the engine fueled with 20%, 30%, and 40% bio-diesel produce slightly lower torque and power than the same engine fueled with solar. The ...

  9. Tomorrows diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    This paper analyzes the different ways of reducing the pollutants emissions from diesel engines in order to follow the future French environmental regulations. The combustion in diesel engines is analyzed first: principle and consequences, calculated combustion, pollution units, influences of ambient air conditions on NO{sub x} production, maximum legal pollutant concentration limits (French regulation for fixed installations, NO{sub x}, CO, HC and dust limit values), influence of fuel composition. Then the existing methods for the reduction of pollutants emissions are analyzed and compared with respect to their cost: mechanical adjustment of engines, water injection, exhaust gases recirculation, treatment of fumes. (J.S.) 4 refs.

  10. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Teerawat Apichato; Gumpon Prateepchaikul1

    2003-01-01

    Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term perfor...

  11. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  12. Fueling a stationary direct injection diesel engine with diesel-used palm oil–butanol blends – An experimental study

    Highlights: • Potential of diesel-used palm oil–butanol blends as fuel for stationary diesel engine has been studied. • Reduced CO, CO2, NOX emissions and smoke opacity for blends. • Effect of blends on in-cylinder pressure has been reported. • Increased HC emission, increased heat release rate and ignition delay for blends. • Blends can be used as a suitable alternate fuel for diesel engines. - Abstract: Biomass based alternative fuels are gaining more importance in the recent years because of their reduced emission profile. In the present investigation used palm oil collected from various restaurants of Tirunelveli region of India was blended with diesel fuel and butanol in varying proportions and the effect of these blends on fuel properties and diesel engine performance, emission and combustion were studied and were compared with the diesel fuel. The fuel properties of the blends were found to be better than used palm oil. Engine tests were carried out in a constant speed (1500 rpm) DI diesel engine by varying loads from 0% to 100%. Brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) of the blends were found to be lower than diesel fuel. Brake thermal efficiency of the blends increased with increasing butanol content in the blends. CO, NOX emissions and smoke opacity of the blends decreased with increasing butanol content and were found to be lower than diesel fuel. CO2 in the exhaust for the blends containing butanol was found to be lower than the values reported with diesel fuel. HC emission of the blends containing butanol was found to be higher than diesel fuel. The blends containing butanol produced higher heat release rate than diesel fuel. Ignition delay increased with the increasing butanol content in the blends. The blend 50%D–35%UPO–15%B showed better emission, combustion and performance characteristics

  13. Jatropha and Karanj bio-fuel: an alternate fuel for diesel engine

    Surendra R. Kalbande; Subhash D. Vikhe

    2008-01-01

    The bio-diesel was produced from non-edible oils by using bio-diesel processor and the diesel engine performance for water lifting was tested on bio-diesel and bio-diesel blended with diesel. The newly developed bio-diesel processor was capable of preparing the oil esters sufficient in quantity for running the commonly used farm engines. The fuel properties of bio-diesel such as kinematic viscosity and specific gravity were found within limited of BIS standard. Operational efficiency of diese...

  14. Dazzled by diesel? The impact on carbon dioxide emissions of the shift to diesels in Europe through 2009

    This paper identifies trends in new gasoline and diesel passenger car characteristics in the European Union between 1995 and 2009. By 2009 diesels had captured over 55% of the new vehicle market. While the diesel version of a given car model may have as much as 35% lower fuel use/km and 25% lower CO2 emissions than its gasoline equivalent, diesel buyers have chosen increasingly large and more powerful cars than the gasoline market. As a result, new diesels bought in 2009 had only 2% lower average CO2 emissions than new gasoline cars, a smaller advantage than in 1995. A Laspeyres decomposition investigates which factors were important contributors to the observed emission reductions and which factors offset savings in other areas. More than 95% of the reduction in CO2 emissions per km from new vehicles arose because both diesel and gasoline new vehicle emissions/km fell, and only 5% arose because of the shift from gasoline to diesel technology. Increases in vehicle mass and power for both gasoline and diesel absorbed much of the technological efficiency improvements offered by both technologies. We also observe changes in the gasoline and diesel fleets in eight EU countries and find changes in fuel and emissions intensities consistent with the changes in new vehicles reported. While diesel cars continue to be driven far farther than gasoline cars, we attribute only some of this difference to a “rebound effect”. We conclude that while diesel technology has permitted significant fuel savings, the switch from gasoline to diesel in the new vehicle market contributed little itself to the observed reductions in CO2 emissions from new vehicles. - Highlights: ► By 2009 diesels had captured over 55% of the new car market in the EU. ► New diesels in 2009 emitted only 2% lower average CO2 than new gasoline cars. ► Diesel cars continue to be driven farther than gasoline cars. ► Overall there has been little net CO2 reduction from the switch to diesels in Europe

  15. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    R. B. Sharma,

    2014-01-01

    Full Text Available In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried out for its performance and emission analysis. The results which obtained are significantly comparable to pure diesel. It shows that biodiesel obtained from cooking oil can be used as alternative fuel with better performance and lower emissions compared with diesel and play a very vital role for the overall economic development of the country.

  16. Exhaust emissions evaluation of Colombian commercial diesel fuels

    Ecopetrol, based on the results obtained in the study, The effect of diesel properties on the emissions of particulate matter (Bello et al 2000), reformulated the diesel fuel distributed in Bogota, becoming it lighter and with lower sulfur content. In order to evaluate the environmental benefits that the reformulation of diesel fuel generate in Bogota, Instituto Colombiano del Petroleo (ICP), with the assistance of emissions research and measurement division (ERMD) from environment Canada, arranged a research project to determine the changes in CO, THC, NOx, CO2 and particulate matter emissions. The research program was developed in two steps. First one, developed in Bogota, involved a fleet test with 15 public service buses that normally operate in Bogota's savannah, using a portable emissions sampling technology developed for ERMD (DOES2) and following a representative transient driving cycle. Second step, carried out in ERMD's Heavy-Duty engine emissions laboratory in Ottawa, tested a 1995 caterpillar 3406E 324/5 KW (435 HP) diesel truck engine on the same samples of Colombian diesel fuels used in the fleet tests performed in Bogota, baselining the tests with a Canadian commercial low sulfur diesel fuel. The two commercial Colombian diesel fuels used had the following properties: High Sulfur Diesel (HSD), with 3000 ppm (0,3 wt %) of sulfur and a final boiling point (FBP) of 633 K and the new reformulated diesel fuel, with 1000 ppm (0,1 wt %) of sulfur and FBP of 613 K, which is currently been distributed in Bogota. Fleet test show small reduction on CO, THC and TPM, and small increments on CO2 and NOx but with not statistically significant results, while engine testing shows a strong reduction of 40/8% in TPM when you use the new reformulated diesel fuel (0,1 wt % of sulfur) instead of high sulfur diesel

  17. Adesao ao guia alimentar para populacao brasileira

    Eliseu Verly Junior

    2013-12-01

    Full Text Available OBJETIVO : Analisar a adesão ao Guia Alimentar para População Brasileira. MÉTODOS : Amostra composta por participantes do Inquérito de Saúde de São Paulo (n = 1.661 que preencheram dois recordatórios de 24 horas. Foi utilizado modelo bivariado de efeito misto para a razão entre o consumo de energia do grupo de alimentos e o consumo calórico total. A razão estimada foi utilizada para calcular o percentual de indivíduos com consumo abaixo ou acima da recomendação. RESULTADOS : Pelo menos 80,0% da população consome abaixo do recomendado para: leite e derivados; frutas e sucos de frutas; e cereais, tubérculos e raízes; aproximadamente 60,0% para legumes e verduras; 30,0% para feijões; e 8,0% para carnes e ovos. Adolescentes apresentaram a maior inadequação para legumes e verduras (90,0%, e o estrato de maior renda foi associado à menor inadequação para óleos, gorduras e sementes oleaginosas (57,0%. CONCLUSÕES : Foi observado consumo inadequado dos grupos de alimentos relacionados com aumento do risco de doenças crônicas.

  18. Low-order AO system in LAMOST

    Yuan, Xiangyan; Cui, Xiangqun; Liu, Genrong; Zhang, Yong; Qi, Yongjun

    2006-06-01

    The large sky area multi-object fiber spectroscopic telescope (LAMOST) is a special reflecting Schmidt telescope with its main optical axis on the meridian plane tilted by an angle of 25° to the horizontal. The clear aperture is 4m, working in optical band. The light path is 60m long when working in observing mode and it will be doubled if work in auto-collimation mode. So the image quality is affected clearly by the ground seeing and the dome seeing. In order to improve the seeing condition of the long light path, we enclosed the spherical primary and the focus unit in a tunnel enclosure and cooled the tunnel. This is an effective but passive method. Corresponding experiments and simulations show the main part of the aberrations caused by the ground seeing and dome seeing is slowly changed low order items such as tip-tilt, defocus, astigmatism, coma and spherical aberration. Thus we plan to develop the low-order AO system based on the low-cost 37-channel OKO deformable mirror for the telescope to better the ground seeing and the dome seeing, not aimed to reach diffraction limited image. This work is being carried on now.

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  20. Role of biodiesel-diesel blends in alteration of particulate matter emanated by diesel engine

    The current study is focused on the investigation of the role of biodiesel in the alteration of particulate matter (PM) composition emitted from a direct injection-compression ignition. Two important blends of biodiesel with commercial diesel known as B20 (20% biodiesel and 80% diesel by volume) and B50 were used for the comparative analysis of their pollutants with those of 100% or traditional diesel (D). The experiments were performed under the auspices of the Chinese 8-mode steady-state cycle on a test bench by coupling the engine with an AC electrical dynamometer. As per experimental results, over-50 nm aerosols were abated by 8.7-47% and 6-51% with B20 and B50, respectively, on account of lofty nitrogen dioxide to nitrogen oxides (NO2/NO) ratios. In case of B50, sub-50 nm aerosols and sulphates were higher at maximum load modes of the test, owing to adsorption phenomenon of inorganic nuclei leading to heterogeneous nucleation. Moreover, trace metal emissions (TME) were substantially reduced reflecting the reduction rates of 42-57% and 64-80% with B20 and B50, respectively, relative to baseline measurements taken with diesel. In addition to this, individual elements such as Ca and Fe were greatly minimised, while Na was enhanced with biodiesel blended fuels. (author)

  1. Compact catalytic converter system for future diesel emissions standards; Kompaktes Katalysatorsystem fuer kuenftige Diesel-Emissionsnormen

    Harth, Klaus [BASF Corporation, Iselin, NJ (United States)

    2012-09-15

    The Euro 6 emissions standard for diesel passenger cars will broaden the application of exhaust aftertreatment systems that use selective catalytic reduction. This will mean a further increase in the volume and complexity of the exhaust aftertreatment system. BASF has developed a compact integrated catalytic converter that combines the functions of particulate filtration and NO{sub x} reduction in a single unit. (orig.)

  2. Filtres à activité catalytique pour moteur Diesel Catalytic Activity Filters for Diesel Engines

    Goldenberg E.

    2006-11-01

    Full Text Available A partir de l'examen des normes actuelles et envisagées dans le futur pour limiter les émissions de particules Diesel, et en considérant les propriétés physico-chimiques de ces particules, cet article expose les problèmes posés par la filtration des suies Diesel et leur élimination par combustion sur les différents types de filtres actuellement retenus. La régénération des filtres par combustion catalytique du dépôt est plus particulièrement discutée. From an examination of present regulations and ones being considered for the future to limit particle emissions by diesel engines, and considering the physicochemical properties of such particles, this article describes the problems raised by filtering soot from diesel engines and eliminating it by various types of filters now used. Filter regeneration by catalytic combustion of the deposit is considered in particular.

  3. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  4. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called mixed diesel-gasapproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  5. 46 CFR 169.625 - Compartments containing diesel machinery.

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel machinery. 169.625... SCHOOL VESSELS Machinery and Electrical Ventilation § 169.625 Compartments containing diesel machinery. (a) Spaces containing machinery must be fitted with adequate dripproof ventilators, trunks,...

  6. Biogas - Use in Dual Fuel Diesel Engines and Particulate Emissions

    Mustafi, Nirendra N.; Raine, Robert R.; Bansal, Pradeep K. [Univ. of Auckland (New Zealand). Dept. of Mechanical Engineering

    2006-07-15

    Biogas is an alternative renewable gaseous fuel for diesel engines and could substitute a considerable amount of diesel fuel. The aims of this study are to review the published researches on biogas-diesel dual fuel engines and to identify future research needs. Of the engine work already published, most concerns spark-ignited engines. A detailed analysis of the previous studies on biogas-operated diesel engines is presented. Significant research gaps are noticed in the area of exhaust emissions, especially the particulate matter (PM) emissions for biogas-diesel dual fuel engines. A preliminary experiment is conducted to measure the PM emissions of a direct injection (DI) diesel engine. PM emissions are measured and analyzed by filter, light scattering photometer (LSP) and visual methods. Natural gas is used as a primary fuel. The Filter method imparts slightly higher PM emissions at high load than diesel operation. However, the LSP shows lower values for dual fuel operation. The filter appearance for dual fuel operation is found to be significantly different compared to diesel operation. This indicates a significant variation in the physical and chemical characteristics of the PM formed in both cases.

  7. Application of a Biodegradable Lubricant in a Diesel Vehicle

    Schramm, Jesper

    2003-01-01

    , NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters...

  8. Diesel Exhaust in Miners Study: Q&A

    The Diesel Exhaust in Miners Study was designed to evaluate the risk of death associated with diesel exhaust exposure, particularly as it may relate to lung cancer. The researchers observed increased risk for lung cancer death with increasing levels of ex

  9. Fractal-like dimension of nanometer Diesel soot particles

    Skillas, G.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegmann, K. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    Measurements with a low-pressure impactor and a differential mobility analyser were conducted for Diesel soot at various engine loads. By means of these measurements a fractal-like dimension of Diesel soot particles, with diameters ranging from 55 up to 260 nm, was established. (author) 2 figs., 7 refs.

  10. Diesel Pollution Biodegradation: Synergetic Effect of Mycobacterium and Filamentous Fungi

    YOU-QING LI; HONG-FANG LIU; ZHEN-LE TIAN; LI-HUA ZHU; YIN-GHUI WU; HE-QING TANG

    2008-01-01

    Objective To biodegrade the diesel pollution in aqueous solution inoculated with Mycobacterium and filamentous fungi.Methods Bacteria sampled from petroleum hydrocarbons contaminated sites in Karamay Oilfield were isolated and identified as Mycobacterium hyalinum (MH) and cladosporium. Spectrophotometry and gas chromatography (GC) were used to analyze of the residual concentrations of diesel oil and its biodegradation products. Results From the GC data, the values of apparent biodegradation ratio of the bacterial strain MH to diesel oil were close to those obtained in the control experiments. Moreover, the number of MH did not increase with degradation time. However, by using n-octadecane instead of diesel oil, the real biotic degradation ratio increased to 20.9% over 5 days of degradation. Cladosporium strongly biodegraded diesel oil with a real degradation ratio of up to 34% after 5 days treatment. When the two strains were used simultaneously, a significant synergistic effect between them resulted in almost cornplete degradation of diesel off, achieving a total diesel removal of 99% over 5 days of treatment, in which one part of about 80% and another part of about 19% were attributed to biotic and abiotic processes, respectively. Conclusion The observed synergistic effect was closely related to the aromatics-degrading ability of Cladosporium, which favored the growth of MH and promoted the bioavailability of diesel oil.

  11. Visualisation of diesel injector with neutron imaging

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  12. The effect of diesel fuel sulfur content on particulate matter emissions for a nonroad diesel generator.

    Saiyasitpanich, Phirun; Lu, Mingming; Keener, Tim C; Liang, Fuyan; Khang, Soon-Jai

    2005-07-01

    The effect of sulfur content on diesel particulate matter (DPM) emissions was studied using a diesel generator (Generac Model SD080, rated at 80 kW) as the emission source to simulate nonroad diesel emissions. A load simulator was used to apply loads to the generator at 0, 25, 50, and 75 kW, respectively. Three diesel fuels containing 500, 2100, and 3700 ppm sulfur by weight were selected as generator fuels. The U.S. Environmental Protection Agency sampling Method 5 "Determination of Particulate Matter Emissions from Stationary Sources" together with Method 1A "Sample and Velocity Traverses for Stationary Sources with Small Stacks or Ducts" was adopted as a reference method for measurement of the exhaust gas flow rate and DPM mass concentration. The effects of various parameters on DPM concentration have been studied, such as fuel sulfur contents, engine loads, and fuel usage rates. The increase of average DPM concentrations from 3.9 mg/Nm3 (n cubic meter) at 0 kW to 36.8 mg/Nm3 at 75 kW is strongly correlated with the increase of applied loads and sulfur content in the diesel fuel, whereas the fuel consumption rates are only a function of applied loads. An empirical correlation for estimating DPM concentration is obtained when fuel sulfur content and engine loads are known for these types of generators: Y = Zm(alphaX + beta), where Y is the DPM concentration, mg/m3, Z is the fuel sulfur content, ppm(w) (limited to 500-3700 ppm(w)), X is the applied load, kW, m is the constant, 0.407, alpha and beta are the numerical coefficients, 0.0118 +/- 0.0028 (95% confidence interval) and 0.4535 +/- 0.1288 (95% confidence interval), respectively. PMID:16111139

  13. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  14. Volatilization behaviors of diesel oil from the soils

    LI Yu-ying; ZHENG Xi-lai; LI Bing; MA Yu-xin; CAO Jing-hua

    2004-01-01

    The volatilization of diesel oil, Shengli crude oil and 90# gasoline on glass surface of petri dishes were conducted at the ambient temperature of 25℃. Diesel oil evaporates in a power manner, where the loss of mass is approximately power with time. 90# gasoline evaporates in a logarithmic with time. Where as the volatilization of Shengli crude oil fit either the logarithmic or power equation after different time, and has similar R2. And the effects of soil type and diesel oil and water content on volatilization behavior in unsaturated soil were studied in this paper. Diesel oil and water content in the soils play a large role in volatilization from soils. Appropriate water helps the wicking action but too much water stops it. The wicking action behaves differently in four different types of soils in the same volatilization experiment of 18% diesel oil content and air-dry condition.

  15. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  16. Pemanfaatan Energi Gas Buang Motor Diesel Stasioner untuk Pemanas Air

    Rahardjo Tirtoatmodjo

    1999-01-01

    Full Text Available Exhaust gas from a diesel engine is having a big deal of energy. In a stationer diesel engine, the enthalpy of water will be increased by flowing the water in a spiral pipe which is located in the exhaust manifold of the engine. Using copper pipes in this heat exchanger, it's efficiency is found up to 69,5 %. Abstract in Bahasa Indonesia : Gas buang dari motor diesel masih memiliki sejumlah energi panas yang cukup tinggi. Pada motor diesel stasioner, dengan mengalirkan air pada pipa spiral yang diletakkan di dalam saluran buang akan dapat meningkatkan enthalpi dari air. Penggunaan pipa tembaga sebagai heat exchanger dapat mencapai efisiensi hingga 69,5 %. Kata kunci : motor diesel, energi gas buang, air, effisiensi energi

  17. Surfactant flooding of diesel-contaminated soils

    At one installation, approximately 60,000 gallons of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of this research program after initial surfactant screening of 21 surfactants. Three of the surfactants were used for the surfactant flooding studies; the results from that phase of the research program are described

  18. Diesel starting system monitor: Prototype development

    The US Department of Energy (DOE) effort to extend the operational lives of commercial nuclear power plants is examining methods for predicting the performance of specific equipment. This paper focuses on predictive monitoring as a means for reducing equipment surveillance, maintenance, and outages. Realizing these goals will result in nuclear plants that are more reliable, have lower maintenance costs, and have longer lives. This report describes a prognostic monitoring system that has been developed to predict starting performance in emergency diesels. A prototype system has been built and tested on an engine at Sandia National Laboratories. 6 refs., 8 figs

  19. Straight Vegetable Oil as a Diesel Fuel?

    None

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  20. Diesel IPP is first for Sri Lanka

    Green, Sian

    1997-10-01

    In December this year, the first of eight diesel powered generating sets will be delivered to the site of Sri Lanka`s first major independent power project (IPP). Sapugaskanda plant is being developed and constructed by a European joint venture new to the IPP market and has won the support of major international investors. The 51 MW installation will provide a much needed injection of power into the hydropower-dominated system, and will serve as an example for further private investment in the country. (Author)

  1. Heterogeneous Structure in Diesel Fuel Sprays

    Ueki, Hironobu

    2013-01-01

    A laser 2-focus velocimeter (L2F) has been applied for measurements of velocity and size of droplets in diesel sprays. The maximum data acquisition rate of 15 MHz has been achieved by using FPGA in order to capture every droplet which appears in the micro-scale measurement volume. A method of evaluating the mass flow rate of droplets was proposed, and the distance between droplets was adopted as an indicator of the number density of droplets and the heterogeneous structure of sprays. The dies...

  2. Sensibilidade de estirpes de Bradyrhizobium ao glyphosate

    Rodrigo Josemar Seminoti Jacques

    2010-02-01

    Full Text Available A aplicação do glyphosate sobre a soja resistente a este herbicida pode causar prejuízos à simbiose com o rizóbio. O objetivo deste trabalho foi avaliar a sensibilidade ao herbicida glyphosate de três estirpes de Bradyrhizobium recomendadas para a produção de inoculantes de sementes de soja no Brasil. Avaliou-se o efeito das concentrações de 0,0; 5,4; 10,8; 21,6 e 43,2 µg L-1 do ingrediente ativo do glyphosate [N-(fosfonometil glicina] no meio YM líquido sobre o crescimento de B. japonicum (estirpe SEMIA 5079 e de B. elkanii (estirpe SEMIA 5019 e estirpe SEMIA 587, por meio de leituras das densidades óticas e geração de curvas de crescimento. As reduções de crescimento na presença da menor concentração do glyphosate foram de 18% para SEMIA 5079, 29% para SEMIA 5019 e de 35% para SEMIA 587, sendo, de modo geral, quanto maior a concentração do herbicida no meio de cultura maior a inibição do crescimen­to. As estirpes apresentaram sensibilidade diferencial somente às concentrações mais baixas do glyphosate; nesse caso, foi possível determinar a seguinte ordem de sensibilidade: SEMIA 587 > SEMIA 5019 > SEMIA 5079. Essa sensibilidade diferencial é dependente da concentração do herbicida, pois na presença de 43,2 µg L-1 todas as estirpes tiveram seu crescimento severamente reduzido, não havendo diferença entre elas.

  3. Car dieselization: A solution to China's energy security?

    Recently, there is a renewed interest in car dieselization in China to address the challenge of oil security. We developed an econometric model to estimate the vehicle fuels and crude oil demands. The results indicate that if the average travel distance of cars is maintained at the level of 2010–16,000 km/yr, and if the distillation products mix of the refineries remains unchanged, China's crude oil demand in 2020 will reach 1060 million tonnes (Mt), which also results in an excess supply of 107 Mt of diesel. A new balance of diesel supply and demand can be reached and crude oil demand can be significantly reduced to 840 Mt by improving the production ratio between diesel and gasoline on the supply side and promoting passenger vehicle dieselization on the demand side. The crude oil demand will be reduced to 810 Mt in 2020, if the vehicle travel distance gradually drops to 12,000 km/yr. If so, dieselization will provide a rather limited added value—only 6% further oil saving by 2020. Dieselization is not a silver bullet but it depends on a series of key factors: growth rate of gross domestic products (GDP), vehicle sales, and vehicle annual travel distance. -- Highlights: •Econometric approach is employed to forecast fuel and oil demand. •Dieselization is a potential policy option to improve China's oil security. •In favorable conditions, dieselization will cut more than 200 Mt oil import in 2020. •In some cases; however, dieselization may have limited effect on oil saving

  4. Performance of jatropha oil blends in a diesel engine

    Forson, F.K.; Oduro, E.K.; Hammond-Donkoh, E. [Kwame Nkrumah University of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2004-06-01

    Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%120%; and 50%150% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%12.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition- accelerator additive for diesel fuel. (author)

  5. Short-term break in the French love for diesel?

    From 1980 to 1995, France was the first European country in which diesel cars became more popular than petrol cars. In addition to offering improved performance, this preference was notably due to a much cheaper cost of use, in line with the taxation on both fuel types. But the advantage of diesel technology does not clearly seem to extend to energy and CO2 savings. In this paper, French trends over the last 15 years and latest annual available statistics about both diesel car ownership and use are analysed, on the basis of the “ParcAuto” panel data source. The results notably show that, from the moment the gap between fuel prices was reduced, the annual mileage amounts of diesel cars have fallen faster than those of petrol cars. A specific section summarizes the results of our work on the behaviour of French households who chose to replace their petrol car with a diesel. Detailed examination of these switching behaviours, involving a complex set of variables, confirms that there are increases in driving associated with “new diesel motorists”. The final section of this paper briefly discusses recent evolutions of fuel expenditures. - Highlights: ► Latest figures/long-term trends about French diesel cars analysed using panel data. ► French preference for diesel was notably due to a much cheaper cost of use. ► Switching from petrol to diesel car commonly induced an increase in driving. ► Diesel sales and mileages have fallen faster when the gap between fuel prices reduced. ► Recent fuel prices sharp increase involved major changes in car use behaviours

  6. The Diesel Exhaust in Miners study: a nested case-control study of lung cancer and diesel exhaust

    Silverman, D.T.; Samanic, C.; Lubin, J.H.; Blair, A.; Stewart, P.A.; Vermeulen, R.; Schleiff, P.L.; Travis, W.D.; Ziegler, R.; Wacholder, S.; Attfield, M.D.

    2012-01-01

    BACKGROUND Most studies of the association between diesel exhaust exposure and lung cancer suggest a modest, but consistent, increased risk. However, to our knowledge, no study to date has had quantitative data on historical diesel exposure coupled with adequate sample size to evaluate the exposure-

  7. Note on the sanitary impact of diesel particulates; Note sur l'impact sanitaire des particules diesel

    NONE

    2003-10-15

    In the actual situation of scientific works, the epidemiology studies on environment do not allow to say the carcinogen contribution of diesel particulates at the concentration levels measured in the urban air. But according to the experimental data for the rat and the data observed for the personnel exposed to diesel particulates these particulates are classified as probably carcinogen. (N.C.)

  8. EFFECTS OF ETHANOL-DIESEL EMULSIONS ON THE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE

    R. Parthasarathi

    2014-01-01

    Full Text Available The main objective of this study is to analyze the different ratio of emulsified fuels on the performance, emission and combustion characteristics of four stroke single cylinder kirloskar TV-I direct injection compression ignition engine and compared with diesel fuel under different engine loads with constant engine speed of 1500 rpm. Four kinds of test fuels were prepared namely 80% diesel, 10% ethanol and 10% surfactant (Identified as D80E10; 70% diesel, 20% ethanol and 10% surfactant (denoted as D70 E20; 60% diesel 30% ethanol and 10% surfactant (denoted as D60 E30; 50% diesel, 40% ethanol and 10% surfactant (denoted as D50 E40 by volume respectively. In this test, Benzal konium chloride is added as an emulsifier to the diesel-ethanol blend to prevent layer formation and to make it a homogeneous blend. At maximum brake power, the comparison of best emulsified fuel ratio with diesel fuel results showed improvement in brake thermal efficiency with decrease in specific fuel consumption and smoke. The NOX, HC, CO2, cylinder pressure and heat release rate for D50 E40 emulsions are higher when compared to diesel fuel.

  9. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine

    An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8%, 16% and 24% (by volume) n-butanol, on the performance and exhaust emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (DI), Ricardo/Cussons 'Hydra' diesel engine located at the authors' laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at three different loads. In each test, fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emission parameters of the three butanol-diesel fuel blends from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), forms a challenging and promising bio-fuel for diesel engines. The differing physical and chemical properties of butanol against those for the diesel fuel are used to aid the correct interpretation of the observed engine behavior.

  10. First closed-loop visible AO test results for the advanced adaptive secondary AO system for the Magellan Telescope: MagAO's performance and status

    Close, Laird M.; Males, Jared R.; Kopon, Derek A.; Gasho, Victor; Follette, Katherine B.; Hinz, Phil; Morzinski, Katie; Uomoto, Alan; Hare, Tyson; Riccardi, Armando; Esposito, Simone; Puglisi, Alfio; Pinna, Enrico; Busoni, Lorenzo; Arcidiacono, Carmelo; Xompero, Marco; Briguglio, Runa; Quiros-Pacheco, Fernando; Argomedo, Javier

    2012-07-01

    The heart of the 6.5 Magellan AO system (MagAO) is a 585 actuator adaptive secondary mirror (ASM) with response times (0.7 ms typically). This adaptive secondary will allow low emissivity and high-contrast AO science. We fabricated a high order (561 mode) pyramid wavefront sensor (similar to that now successfully used at the Large Binocular Telescope). The relatively high actuator count (and small projected ~23 cm pitch) allows moderate Strehls to be obtained by MagAO in the “visible” (0.63-1.05 μm). To take advantage of this we have fabricated an AO CCD science camera called "VisAO". Complete “end-to-end” closed-loop lab tests of MagAO achieve a solid, broad-band, 37% Strehl (122 nm rms) at 0.76 μm (i’) with the VisAO camera in 0.8” simulated seeing (13 cm ro at V) with fast 33 mph winds and a 40 m Lo locked on R=8 mag artificial star. These relatively high visible wavelength Strehls are enabled by our powerful combination of a next generation ASM and a Pyramid WFS with 400 controlled modes and 1000 Hz sample speeds (similar to that used successfully on-sky at the LBT). Currently only the VisAO science camera is used for lab testing of MagAO, but this high level of measured performance (122 nm rms) promises even higher Strehls with our IR science cameras. On bright (R=8 mag) stars we should achieve very high Strehls (>70% at H) in the IR with the existing MagAO Clio2 (λ=1-5.3 μm) science camera/coronagraph or even higher (~98% Strehl) the Mid-IR (8-26 microns) with the existing BLINC/MIRAC4 science camera in the future. To eliminate non-common path vibrations, dispersions, and optical errors the VisAO science camera is fed by a common path advanced triplet ADC and is piggy-backed on the Pyramid WFS optical board itself. Also a high-speed shutter can be used to block periods of poor correction. The entire system passed CDR in June 2009, and we finished the closed-loop system level testing phase in December 2011. Final system acceptance (

  11. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be...

  12. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    2010-07-01

    ... diesel fuel, unless it also meets the standards of 40 CFR 80.520 applicable to the motor vehicle diesel.... (3) Nonroad, locomotive, or marine diesel fuel (NRLM) has the meaning given in 40 CFR 80.2. (4) Heating oil has the meaning given in 40 CFR 80.2. (b) Applicability. NRLM diesel fuel and heating oil...

  13. Mercaptans emissions in diesel and biodiesel exhaust

    Corrêa, Sérgio Machado; Arbilla, Graciela

    Biodiesel and ethanol are fuels in clear growth and evidence, basically due to its relation with the greenhouse effect reduction. There are several works regarding regulated pollutants emissions, but there is a lack of reports in non-regulated emissions. In a previous paper (Corrêa and Arbilla, 2006) the emissions of aromatic hydrocarbons were reported and in 2007 another paper was published in 2008 focusing carbonyls emissions (Corrêa and Arbilla, 2008). In this work four mercaptans (methyl, ethyl, n-propyl and n-butyl mercaptans) were evaluated for a heavy-duty diesel engine, fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were carried using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, during a real use across the city. The exhaust gases were diluted near 20 times and the mercaptans were sampled with glass fiber filters impregnated with mercuric acetate. The chemical analyses were performed by gas chromatography with mass spectrometry detection. The results indicated that the mercaptans emissions exhibit a reduction with the increase of biodiesel content, but this reduction is lower as the mercaptan molar mass increases. For B20 results the emission reduction was 18.4% for methyl mercaptan, 18.1% for ethyl mercaptan, 16.3% for n-propyl mercaptan, and 9.6% for n-butyl mercaptan.

  14. Evaluation of emergency diesel engine overhaul intervals

    Emergency diesel engines in nuclear service are normally maintained in standby condition and usually operate about 50 hours per year. These hours of operation are usually accumulated during periodic testing. Since the ratio of run time to number of starts for engines in nuclear standby service is much higher than that for engines in commercial service. However, when engines were sold for use in nuclear power plants, the engines vendors developed maintenance recommendations for nuclear standby engines based on their experience with engines in base-load operation. When these maintenance intervals were developed, the fixed-time intervals were typically adopted without regard to the number of engine operating hours anticipated during the intervals. Thus, components were regularly replaced just following or during break-in. Reliability was therefore challenged by maintenance-induced and infant mortality failure. In this paper reviewed overhaul intervals of YGN unit 3 and 4's emergency diesel engines based on operating history, vendor manual, and other plants and marin engines' maintenance programs. Result of the study, those intervals could be extended by two times

  15. Variable control system for diesel engine

    Nakahira, Toshio; Yokota, Katsuhiko

    1987-08-01

    Various variable mechanisms, aiming at smaller, lighter and low-fuel consumption diesel engine, are introduced. With the variable mechanism in the ingalation system, there are the variable nozzle vane type variable capacity turbocharger and the variable inertia supercharger using an inertia supercharging pipe. In the variable mechanism of the fuel system, there is a variable swirl for matching air flow, fuel injection system and the shape of the combustion chamber. The fuel injection system is provided with an injection rate variable pump in which prestroke of the pump is made variable by the electronic control, a DDA electronic unit injection which controls injection timing using a high-speed solenoid valve and a pressure cumulative fuel injection device with which fuel injection characteristics are completely isolated from the influence of engine revolution, etc. Other variable mechanisms, thus far developed, include the retarder of a new mechanism and an electonic governor, etc. The variable control system of diesel engine for medium and large vehicles will be modified to a comprehensive optimum control mechanisms for the engine. (10 figs, 1 tab, 15 refs)

  16. Integrated diesel engine NOx reduction technology development

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  17. Modeling pollution formation in diesel engines

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  18. Bio diesel, v. 15(58)

    The history of bio-fuels/bio-diesel is more political and economical than it is technological. The technology of the production is the same as it was 200 years ago. The economy closed the usage of bio-fuels in the middies of the 20 Th century and put it back on the agenda of the world economy at the beginning of the 21 st century. With price of more then 70 US$ per barrel of grudge oil, production and usage of bio-fuels becomes more economical category rather than political and ecological. If we, additionally, add secondary, yet nowadays very important factors, as ecological protection, recycling the emission of poisonous gasses, exploitation of agro sector, then the reincarnation of bio-fuels is very interesting, and for Macedonia a potentially strategic category. The basics of the biography is to follow in the article paying special attention on the characteristics, standards, production, processing and usage of the bio-diesel fuel as well as the blended B20 and B5. (Author)

  19. Bio diesel, v. 15(59)

    The history of bio-fuels/bio-diesel is more political and economical than it is technological. The technology of the production is the same as it was 200 years ago. The economy closed the usage of bio-fuels in the middies of the 20 Th century and put it back on the agenda of the world economy at the beginning of the 21 st century. With price of more then 70 US$ per barrel of grudge oil, production and usage of bio-fuels becomes more economical category rather than political and ecological. If we, additionally, add secondary, yet nowadays very important factors, as ecological protection, recycling the emission of poisonous gasses, exploitation of agro sector, then the reincarnation of bio-fuels is very interesting, and for Macedonia a potentially strategic category. The basics of the biography is to follow in the article paying special attention on the characteristics, standards, production, processing and usage of the bio-diesel fuel as well as the blended B20 and B5. (Author)

  20. Effect of Ferrofluid on the Performance and Emission Patterns of a Four-Stroke Diesel Engine

    2011-01-01

    Experimental tests were carried out to investigate the effects of adding water-based ferrofluid to diesel fuel in a diesel engine. These effects included the combustion performance and exhaust emission characteristics of the diesel engine. To this end, emulsified diesel fuels of 0, 0.4, and 0.8 ferrofluid/diesel ratios by volume were used in a four-stroke diesel engine, operating at 2200 rpm. The results indicate that adding ferrofluid to diesel fuel has a perceptible effect on engine perform...

  1. Controlling exposure to DPM : diesel particulate filters vs. biodiesel

    In order to comply with Mine Safety and Health Administration regulations, mining companies are required to reduce miners exposures to diesel particulate matter (DPM) to 160 μg/m3 of total carbon. Diesel particulate filter (DPF) systems, disposable filter elements (DFEs), and diesel oxidation catalysts (DOCs) are among the most effective strategies and technologies for curtailing DPM at its source. Substituting diesel fuel with biodiesel blends is also considered to be a plausible solution by many underground mine operators. Studies were conducted at the National Institute for Occupational Safety and Health Diesel Laboratory at Lake Lynn Experimental Mine to evaluate various control technologies and strategies available to the underground mining industry to reduce exposure to DPM. The physical, chemical and toxicological properties of diesel aerosols (DPM) emitted by engines in an underground mine were also evaluated. The DPF and DFE systems were found to be highly effective in reducing total particulate and elemental carbon mass concentrations, total aerosol surface concentrations and, in most cases, concentrations of diesel aerosols in occupational settings such as underground mines. Soy methyl ester (SME) biodiesel fuels had the potential to reduce the mine air concentrations of total DPM, although the rate of reduction varied depending on engine operating conditions. The disadvantage of using biodiesel fuels was an increase in the fraction of particle-bound volatile organics and concentration of aerosols for light-load engine operating conditions.

  2. Improving the reliability of emergency diesel generators through sustained maintenance

    In Nuclear Power Stations Emergency Diesel Generators are vital safety related equipment which ensures power supply to essential equipment during loss of power. In view of their importance Reliability of Diesel generators should be very high. Since these Diesel generators are standby equipment and operate only during demand or during surveillance checks, their demand failure probability should be very low and once they operate their operational availability should be very high. Madras Atomic Power Station at Kalpakkam, India consists two pressurised heavy water Reactors each rated at 220 MWe. To supply standby power each unit has two Diesel Generators of I 500 kW capacity each. The Diesel Engine is 16 cylinder 'V' type engine and is cranked by Air starting motor and is connected to generator whose rating at 100% load is 1500 KW. During commissioning and in the initial years of operation these Diesel Generators have encountered many problems. Major problem was Diesel Engine failing to start on demand. This was due to non engagement of air motor pinion with ring gear or continued engagement air motor even after the engine had picked up speed and failure of timer to initiate multiple starts after initial incomplete starts Apart from these there were problems like fuel oil leaks, high jacket water temperatures, low fuel oil pressure trips. Another major problem was with excitation system. How these problems were dealt with thereby reducing the demand failure probability and increasing the operational availability are discussed in this paper. (author)

  3. CNG/diesel buses for Texas school districts

    At the present time, the preponderance of trucks, buses and other heavy duty vehicles are powered by diesel engines. The reasons for the change from gasoline to diesel engines are all basically economic, due to the longer life and lower operating costs of diesel engines, as compared to gasoline engines. This provides a compelling reason to continue to use these engines, even if powered by fuel other than diesel. A major strategy within the industry has been the various attempts to adapt diesel engines to alternative fuels. These conversions have been largely to either methanol or natural gas, with propane joining the race just recently. This strategy takes advantage of the remaining life of existing vehicles by converting engines rather than purchasing a new engine (and/or vehicle) designed for and dedicated to an alternate fuel. Although diesel engines have been converted to run on natural gas, there are substantial challenges that must be met. The following describes some of the technical approaches being used for diesel engine conversions

  4. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils

    Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg-1 DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 oC day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 μmol photon m-2 s-1) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (Fv/Fm), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of crucial importance for the recovery of

  5. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils

    Barrutia, O., E-mail: oihana.barrutia@ehu.es [Department of Plant Biology and Ecology, University of the Basque Country/EHU, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, C.; Epelde, L. [NEIKER-Tecnalia, Soil Microbial Ecology Group, c/Berreaga 1, E-48160 Derio (Spain); Sampedro, M.C.; Goicolea, M.A. [Department of Analytical Chemistry, University of the Basque Country/EHU, E-01006 Vitoria (Spain); Becerril, J.M. [Department of Plant Biology and Ecology, University of the Basque Country/EHU, P.O. Box 644, E-48080 Bilbao (Spain)

    2011-09-01

    Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg{sup -1} DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 {sup o}C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 {mu}mol photon m{sup -2} s{sup -1}) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (F{sub v}/F{sub m}), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of

  6. The Robo-AO automated intelligent queue system

    Riddle, Reed L; Papadopoulos, Athanasios; Baranec, Christoph; Law, Nicholas M

    2014-01-01

    Robo-AO is the first automated laser adaptive optics instrument. In just its second year of scientific operations, it has completed the largest adaptive optics surveys to date, each comprising thousands of targets. Robo-AO uses a fully automated queue scheduling system that selects targets based on criteria entered on a per observing program or per target basis, and includes the ability to coordinate with US Strategic Command automatically to avoid lasing space assets. This enables Robo-AO to select among thousands of targets at a time, and achieve an average observation rate of approximately 20 targets per hour.

  7. Resposta de cultivares de arroz irrigado ao nitrogênio

    Freitas José Guilherme de; Azzini Luiz Ernesto; Cantarella Heitor; Bastos Cândido Ricardo; Castro Lúcia Helena Signori Melo de; Gallo Paulo Boller; Felício João Carlos

    2001-01-01

    Genótipos de arroz irrigado por inundação (Oryza sativa L.) podem apresentar variabilidade de resposta ao nitrogênio. O objetivo deste trabalho foi avaliar a resposta de três cultivares de arroz ao nitrogênio. Os experimentos foram realizados em Mococa, SP, em 1997/98 e 1998/99, em Cambissolo Háplico Tb Eutrófico gleico. O delineamento estatístico foi em blocos ao acaso, em esquema de parcelas subdivididas, com quatro repetições. Nas parcelas foram aplicadas doses de N (0, 50, 100 e 150 kg ha...

  8. Imitating model of the electronic regulator frequencies of rotation of the automobile diesel engine

    Тырловой, С. И.

    2011-01-01

    The imitating model of an frequency electronic regulator of rotation of high-speed diesel engine an automobile diesel engine with the distributive fuel pump of Bosch company is resulted. Is executed simulation transitive modes of a diesel engine with mechanic and electronic regulators. Deterioration influence plungers steams on dinamic and economic indicators of a diesel engine is analysed. Operational indicators of a diesel engine with mechanic and electronic regulators are compared. The obt...

  9. West Virginia Diesel Study, CRADA MC96-034, Final Report

    M. Gautam

    1998-08-05

    The global objective of the recently completed Phase 1 of the West Virginia Diesel Study, at West Virginia University, was to evaluate mass emission rates of exhaust emissions from diesel powered equipment specified by the West Virginia Diesel Equipment Commission. The experimental data generated in this study has been utilized by the West Virginia Diesel Equipment Commission to promulgate initial rules, requirements and standards governing the operation of diesel equipment in underground coal mines.

  10. Price discrimination and tax incidence: Evidence from gasoline and diesel cars

    Verboven, F.L.

    1998-01-01

    The existing tax policies towards gasoline and diesel cars in European countries provide a unique opportunity to analyze quality-based price discrimination and implied tax incidence. We develop an econometric framework for the demand and pricing of gasoline and diesel cars. Consumers choose a gasoline or a diesel car based on their annual mileage. Manufacturers set gasoline and diesel car prices. Our empirical results show that the relative pricing of gasoline and diesel cars is consistent wi...

  11. Development of a Simulation Model for Fault Diagnosis of a Diesel Fuelled Engine

    Jamiu Muhammed Ambali; B. O. Shittu; F. A. Taofeek-Ibrahim; O. N. Saliu

    2014-01-01

    Several researchers including Antonic, [1,2,3] have worked on diesel engine in the area of fault diagnosis using various base data (vibration, voltage, temperature, and so on) measured from the diesel engine. However, little attention has been paid to data obtained from diesel engine exhaust gases. Diesel engine exhaust contains carbon-based particles and other gaseous components in different proportion according to the working condition of the engine with particular reference to the diesel ...

  12. A simulated study on the performance of diesel engine with ethanol-diesel blend fuel

    Zhang Zhi-Qiang

    2013-01-01

    Full Text Available This paper describes the simulated study on atomization, wall-film formation, combustion and emission forming process of ethanol-diesel blend fuels in a high speed light duty diesel engine. The result shows that increased ethanol volume percentage of the blend fuels could improve atomization and reduce wall-film formation. However, in the meanwhile, with the increased ethanol volume percentage, low heat values of blend fuels decrease, while both total heat releases and cylinder pressures drop. By adding codes into the FIRE software, the NOx and soot formation region mass fractions are outputted. The simulated results display a good correlation with the NOx and soot formation. Besides, the NOx, soot and CO emissions decrease with the increased ethanol volume percentage. The power output of engine penalize, while energy utilization of blend fuels improve and combustion noise reduce, owing to the increased ethanol volume percentage.

  13. Experimental investigation on a DI diesel engine fuelled with Madhuca Indica ester and diesel blend

    Saravanan, N. [ERC Engines, Hall 11A, Tata Motors, Pimpri, Pune 411019, Maharashtra (India); Nagarajan, G. [Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai (India); Puhan, Sukumar [Department of Mechanical Engineering, Veltech Engineering College, Avadi, Chennai (India)

    2010-06-15

    Biodiesel is a fatty acid alkyl ester, which is renewable, biodegradable and non-toxic fuel which can be derived from any vegetable oil by transesterification. One of the popularly used biodiesel in India is Mahua oil (Madhuca Indica). In the present investigation Mahua oil was transesterified using methanol in the presence of alkali catalyst and was used to study the performance and emission characteristics. The biodiesel was tested on a single cylinder, four stroke compression ignition engine. Engine performance tests showed that power loss was around 13% combined with 20% increase in fuel consumption with Mahua oil methyl ester at full load. Emissions such as carbon monoxide, hydrocarbon were lesser for Mahua ester compared to diesel by 26% and 20% respectively. Oxides of nitrogen were lesser by 4% for the ester compared to diesel. (author)

  14. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  15. Design Optimization of Diesel Particulate Filter Using CFD

    Mr. Y. Rajasekhar Reddy; Mr. K. Srinivasa Chalapathi

    2015-01-01

    The diesel particulate filter (DPF) is a device designed to remove diesel particulate matter or soot from the exhaust gas of a diesel engine. A series of tests have been performed on a downscaled DPF prototype. This prototype had high filtration efficiency. Then the next step is to study the soot and ash handling capacity of DPF system and perform tests on a full-scale prototype. In order to move forward to the next step the functionality of the filter should be investigated. More...

  16. Design and Research of the EQ6105DTAA Diesel Engine

    2002-01-01

    The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA...

  17. Application of additional diesel generators in nuclear power stations

    In order to enlarge the nuclear safety margin, ensure safe shutdown of nuclear reactors under loss of on-site and offsite power supply, and raise the unit availability through elongation of diesel fallback time under unavailability of emergency diesel generators, at present, nuclear power stations of most countries and zones in the world such as France, the U.S., south Africa, South Korea and Taiwan have been equipped with additional diesel generators, making the safety performance of above-mentioned nuclear power stations advanced in the world. The wiring procedures, power supply mode, testing methods and the power supply and connection schemes of motor control center are described

  18. Application of Rare Earth Oxides in Diesel Exhaust Purification Catalysts

    Zhang Zhaoliang; Yu Pengfei; Wang Shilong; Li Chunfeng; Dai Hua

    2004-01-01

    Diesel oxide catalysts and soot combustion catalysts were reported in this paper.The former was manufactured in mass last year, and enhanced performance is under development now.The later is screened out and further research is under way.The best soot combustion catalyst could ignite soot combustion even at 350 ℃, which is within the range of temperatures reached in diesel exhaust, and shows the catalytic combustion velocity nearly one time faster compared with non-catalytic combustion of soot, which is of benefit to rapid regeneration of diesel particulate filter, thus it might be an excellent practicable catalyst.

  19. HEALTH EFFECTS OF DIESEL EXHAUST: AN HEI PERSPECTIVE

    Warren, Jane

    2000-08-20

    Diesel engines have many advantages, including good fuel economy, power, durability, lower emissions of some pollutants (such as carbon monoxide) and of carbon dioxide (a greenhouse gas). However, there are a number of concerns that need to be addressed: (1) emissions of nitrogen oxides (which contribute to ozone formation) and of particulate matter (PM); (2) questions about cancer and other health effects from exposure to diesel PM; and (3) as efforts to decrease emissions progress, a need to understand whether the nature and toxicity of the PM emitted has changed. This paper focuses on (1) carcinogenicity data, (2) noncancer effects, and (3) diesel as part of the complex ambient mixture of PM.

  20. Light-duty diesel engine development status and engine needs

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  1. Test and Analysis for Spraying Ammonia in Diesel Engine

    周华祥; 刘敬平; 贺力克; 陈方; 申奇志; 骆锐; 周正

    2011-01-01

    A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine' s combustion chamber when the combustion temperature decreases to 1 573 - 1 073 K, NOx generated could be reduced to 1.11 g/( kW· h). Based on PRF combustion mechanism, NO was tested by using the heavy-duty diesel engine test cycle of ESC thirteen conditions , the ammonia spray angle and amount were tested and optimized in different conditions. The test results show that the thermal efficiency of Diesel engine does not decrease while NO exhaust decreases.

  2. Supply and demand of diesel engine for 2010

    This document takes stock on the diesel engine situation in France, in order to define the future policy for 2010. The first part is a state of the art concerning the description and characteristics of the diesel, the diesel production in refineries, the biofuels, the supply and demand. The second part details the evolutions, the investments and the fiscality impacts. The last part concludes on the necessity of a fiscal neutrality and on the fact that no new refinery is justified in France. It proposes different scenario of the imports evolution. (A.L.B.)

  3. Wind diesel systems - design assessment and future potential

    Infield, D.G.; Scotney, A.; Lundsager, P.; Bindner, H.; Uhlen, K.; Toftevaag, T.; Skarstein, Ø.

    1992-01-01

    Diesels are the obvious form. of back-up electricity generation in small to medium sized wind systems. High wind penetrations pose significant technical problems for the system designer, ranging from component sizing to control specification and dynamic stability. A key role is seen for proven...... system models for assessing both dynamic characteristics and overall performance and economics. An introduction is provided to the Wind Diesel Engineering Design Toolkit currently under development (for implementation on PC) by a consortium of leading wind diesel experts, representing six European...

  4. Condicionantes economicos oa adoçao de uma inovaçao por parte do consumidor: analise da compra de serviços online

    Izquierdo Yusta, Alicia; Martinez Ruiz, Maria Pilar; Jimenez Zarco, Ana Isabel

    2011-01-01

    Este  trabalho analisa a processo de adoçao de uma inovaçao concreta por parte do consumidor final -neste caso, o usa e adoçao de internet como canal de informaçao e de compra– na aquisiçao de um serviço, No caso concreto, considera-se um serviço turistico de caracteristicas muito particulares como e a reserva de um pernoite hoteleiro. A eleiçao deste produto intangivel resulta numa grande contribuçao a Iiteratura relevante, nao só pela escassez de trabalhos anteriores que tenham analisado es...

  5. Performance, Emissions and Combustion Characteristics of a Single Cylinder Diesel Engine Fuelled with Blends of Jatropha Methyl Ester and Diesel

    Debasish Padhee

    2014-05-01

    Full Text Available In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel substitute for internal combustion engines. An experimental investigation was performed to study the performance, emissions and combustion characteristics of diesel engine fuelled with blends of Jatropha methyl ester and diesel. In the present work three different fuel blends of Jatropha methyl ester (B10, B20, B40 and B100 were used. The increments in load on the engine increase the brake thermal efficiency, exhaust gas temperature and lowered the brake specific fuel consumption. The biodiesel blends produce lower carbon monoxide & unburned hydrocarbon emission and higher carbon dioxide & oxides of nitrogen than neat diesel fuel. From the results it was observed that the ignition delays decreased with increase in concentration of biodiesel in biodiesel blends with diesel. The combustion characteristics of single-fuel for biodiesel and diesel have similar combustion pressure and HRR patterns at different engine loads but it was observed that the peak cylinder pressure and heat release rate were lower for biodiesel blends compared to those of diesel fuel combustion.

  6. Bio-Diesel production and Effect of Catalytic Converter on Emission performance with Bio-Diesel Blends

    R.Murali Manohar

    2010-06-01

    Full Text Available Bio-Diesel the word itself defines almost all the features of the Bio-Diesel literary. In the Era of this Global Warming where the people are making their living more and more comfortable and they are deteriorating the environment also. The uses of the automobiles with the conventional source of fuel leads to the production of the toxic gaseous substances like carbon monoxide, carbon dioxide, oxides of nitrogen, oxide of sulphur, hydro-carbons etc. The limitation comes with the rise in the price of the fuel as well as the produce of the green house gases as the exhaust gas. In the present study, a new method has been employed to produce Bio-Diesel in a homely basis. Theproduction of the Bio-Diesel is done by using Bio-Diesel processor. It requires the used vegetable oil, methanol and the lye with the accurate proportionate. Generally, emissions of regulated compounds changed linearly with the blend level. The objective is to detect any posit ive or negative effects depending on blend levels, because conventional diesel fuel and biodiesel can be blended in every ratio. The known positive and negative effects of biodiesel varied accordingly and investigate the effect of Catalytic Converter on emission performance with Bio- Diesel Blends.

  7. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  8. EXPERIMENTAL DETERMINATION OF BRAKE THERMAL EFFICIENCY AND BRAKE SPECIFIC FUEL CONSUMPTION OF DIESEL ENGINE FUELLED WITH BIO-DIESEL

    M. SHIVA SHANKAR

    2010-10-01

    Full Text Available The rapid depletion in world petroleum reserves and uncertainty in petroleum supply due to political and economical reasons, as well as, the sharp escalations in the petroleum prices have stimulated the search for alternatives to petroleum fuels. The situation is very grave in developing countries like India which imports 70% of the required fuel, spending 30% of her total foreign exchange earnings on oil imports. Petroleum fuels are being consumed by agriculture and transport sector for which diesel engine happens to be the prime mover. Diesel fuelled vehicles discharge significant amount of pollutants like CO, HC, NOx, soot, lead compounds which are harmful to the universe. Though there are wide varieties of alternative fuels available, the research has not yet provided the right renewable fuel to replace diesel. Vegetable oils due to their properties being close to diesel fuel may be a promising alternative for its use in diesel engines. The high viscosity and low volatility are the major drawbacks of the use of vegetable oils in diesel engines. India is the second largest cotton producing country in the world today. The cotton seeds are available in India at cheaper price. Experiments were conducted on 5.2 BHP single cylinder four stroke water-cooled variable compression diesel engine. Methyl ester of cottonseed oil is blended with the commercially available Xtramile diesel. Cottonseed oil methyl ester (CSOME is blended in four different compositions varying from 10% to 40% in steps of 10 vol%. Using these four blends and Xtramile diesel brake thermal efficiency (BTE and brake specific fuel consumption (BSFC are determined at 17.5 compression ratio.

  9. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review

    Highlights: • Various low-temperature combustion strategies have been discussed briefly. • Effect on emissions has been discussed under low temperature combustion strategies. • Low-temperature combustion reduces NOx and PM simultaneously. • Higher CO, HC emissions with lower performance are the demerits of these strategies. • Biodiesels are also potential to attain low temperature combustion conditions. - Abstract: Simultaneous reduction of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel exhaust is the key to current research activities. Although various technologies have been introduced to reduce emissions from diesel engines, the in-cylinder reduction techniques of PM and NOx like low temperature combustion (LTC) will continue to be an important field in research and development of modern diesel engines. Furthermore, increasing prices and question over the availability of diesel fuel derived from crude oil have introduced a growing interest. Hence it is most likely that future diesel engines will be operated on pure biodiesel and/or blends of biodiesel and crude oil-based diesel. Being a significant technology to reduce emissions, LTC deserves a critical analysis of emission characteristics for both diesel and biodiesel. This paper critically investigates both petroleum diesel and biodiesel emissions from the view point of LTC attaining strategies. Due to a number of differences of physical and chemical properties, petroleum diesel and biodiesel emission characteristics differ a bit under LTC strategies. LTC strategies decrease NOx and PM simultaneously but increase HC and CO emissions. Recent attempts to attain LTC by biodiesel have created a hope for reduced HC and CO emissions. Decreased performance issue during LTC is also being taken care of by latest ideas. However, this paper highlights the emissions separately and analyzes the effects of significant factors thoroughly under LTC regime

  10. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  11. An efficient algorithm for generating AoA networks

    Mouhoub, Nasser Eddine

    2012-01-01

    The activities, in project scheduling, can be represented graphically in two different ways, by either assigning the activities to the nodes 'AoN' directed acyclic graph (dag) or to the arcs 'AoA dag'. In this paper, a new algorithm is proposed for generating, for a given project scheduling problem, an Activity-on-Arc dag starting from the Activity-on-Node dag using the concepts of line graphs of graphs.

  12. A Large-Telescope Natural Guide Star AO System

    Redding, David; Milman, Mark; Needels, Laura

    1994-01-01

    None given. From overview and conclusion:Keck Telescope case study. Objectives-low cost, good sky coverage. Approach--natural guide star at 0.8um, correcting at 2.2um.Concl- Good performance is possible for Keck with natural guide star AO system (SR>0.2 to mag 17+).AO-optimized CCD should b every effective. Optimizing td is very effective.Spatial Coadding is not effective except perhaps at extreme low light levels.

  13. US DOE emergency diesel performance prediction

    The US Department of Energy has been examining extension of the operational lives of commercial nuclear power plants through improved performance and continued operation beyond the initial design life term. One technique that seems promising for this task is the prediction of equipment performance through the use of innovative monitoring schemes. This technique is best applied to equipment that experiences failures that are not easily correlated with other commonly used indicators such as cumulative operating time or number of stress cycles. Such equipment often has testing and maintenance performed at periodic intervals. In response to this testing and maintenance, the performance of the equipment could be degraded. One such piece of equipment is the emergency diesel generator. 4 refs., 3 figs., 1 tab

  14. Heavy Truck Clean Diesel Cooperative Research Program

    Milam, David

    2006-12-31

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  15. THE EFFECT OF BIODIESEL AND BIOETHANOL BLENDED DIESEL FUEL ON THE PERFORMANCE AND EMISSION CHARACTERISTICS OF A DIRECT INJECTION DIESEL ENGINE

    G. Venkata Subbaiah

    2010-07-01

    Full Text Available History has seen fuel innovations being driven majorly by transportation needs rather than the overall need to revolutionize the energy needs of the society. Biofuels such as biodiesel and bioethanol are now receiving the impetus required for becoming a fuel source for the future. One of the ways to reduce the dependence on fossil diesel is the blending of bioethanol with conventional diesel. However, an emulsifier or a co-solvent is required to stabilize the blend. The ricebran oil biodiesel offers an alternative application as an emulsifier for diesel-ethanol blends to form diesel-biodiesel-ethanol blends. In the present study the rice bran oil biodiesel was used in different ways such as pure biodiesel, blending with diesel and diesel- ethanol blends. The performance and emission characteristics of a direct injection (DI diesel engine when fuelled with conventional diesel fuel, pure biodiesel, a blend of diesel and biodiesel and three blends of diesel-biodiesel-ethanol were studied over the entire range of load on the engine. The experimental results showed that the highest brake thermal efficiency was observed with 30% ethanol in diesel-biodiesel-ethanol blends. The exhaust gas temperature and sound reduced with the increase of ethanol percentage in diesel-biodiesel-ethanol blends. The Carbon monoxide, smoke, exhaust gas temperature and sound reduced with the increase of ethanol percentage in diesel-biodiesel-ethanol blends. The minimum values of Carbon monoxides, smoke, exhaust gas temperature and sound intensity were observed with the blend BE30 and were respectively 41.23%, 14.5%, 0.57% and 11.53% lower than that of the diesel fuel. The Oxides of nitrogen and carbon dioxide emissions increased with the increased percentage of ethanol in diesel-biodiesel-ethanol blends. The hydrocarbon emissions increased with ethanol but lower than that of the diesel fuel by a maximum of 35.35% with 10% ethanol in diesel-biodiesel-ethanol blend. The

  16. Propriedades tecnológicas e sensoriais de produto similar ao tofu obtido pela adição de soro de leite ao extrato de soja Sensorial and technologic properties of product similar to tofu obtained with whey and soymilk addiction

    Sueli Ciabotti

    2009-06-01

    Full Text Available Objetivou-se neste trabalho verificar a viabilidade da substituição de parte do extrato de soja por soro de leite na obtenção de um produto similar ao tofu, coagulado com adição de ácido lático e glucona-δ-lactona, quanto aos aspectos tecnológicos e sensoriais. Foram obtidos produtos, elaborados a partir de extratos de soja, adicionados de soro proveniente da elaboração do queijo Mussarela. Foram utilizadas três diferentes combinações da mistura extrato de soja (ES e soro de leite (SL 40: 60; 30: 70; 20: 80, as quais sofreram ações dos coagulantes glucona-δ-lactona (GDL e ácido lático (AL isoladamente. Observou-se que o teor de umidade dos produtos elaborados com glucona-δ-lactona foi mais elevado (p This work aimed to verify the sensorial, technological viability of replacing part of soy milk extract with whey to obtain a product similar to tofu curdled by lactic acid and glucone-δ-lactone. Some products were obtained using soy milk extract and whey from the production of mozzarella cheese. Three different combinations of a mixture of soy milk extract and whey were used (40: 60; 30: 70; 20: 80, all of which were curdled with glucone-d-lactone and lactic acid separately. Products prepared with glucone-δ-lactone presented a higher moisture content (p < 0.05 and an increased crop yield. The products made with lactic acid were richer in protein. Curdling with lactic acid resulted in more firmness, cohesiveness, gumminess, and chewiness to the products. Analyzing the color, the "L" values (luminosity of 20: 80 ratio were higher, and the yellow "b" predominated in the products with a higher proportion of soy milk. The product with better acceptance was the one with 40: 60 ratio (soy milk and whey respectively obtained with the addition of glucone-δ-lactone. The use of glucone-δ-lactone resulted in a better yield, texture characteristics, and acceptability.

  17. The effect of fuel additive SO-2E on diesel engine performance when operating on diesel fuel and shale oil

    Labeckas, Gvidonas; Pauliukas, Arvydas; Slavinskas, Stasys

    2006-01-01

    The purpose of this research is to perform comparative analysis of the effect of fuel additive SO-2E on the economical and ecological parameters of a direct-injection Diesel engine, operating on Diesel fuel and shale oil alternately. It was proved that multifunctional fuel additive SO-2E applied in proportion 0,2 vol % is more effective for improving combustion of shale oil than Diesel fuel. At light operation range the treated shale oil savings based upon fuel energy content throughout wide ...

  18. Tomorrow`s diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    After a review of the main principles governing combustion in diesel engines and the influence of ambient air conditions on pollutant emissions (and more especially NOx), emission level limits concerning NOx, CO, HC and ashes are presented and discussed according to their applications in the various types of diesel engines. The influence of fuel type is also examined and several ways to reduce NOx emissions in liquid fuel diesel engines are reported: mechanical modifications (compression ratio), water injection, exhaust gas recirculation, exhaust gas processing, fume and ash filtration. Cost issues are also discussed, through comparisons with gas turbines

  19. Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Müller, Loretta L.; Heeb, Norbert V.; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2014-01-01

    Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust...

  20. Status of the Wind-Diesel Market (Presentation)

    Baring-Gould, E. I.

    2014-02-01

    This presentation offers an overview of the wind-diesel market, including the range of power systems, recent progress, current energy situation of remote communities, operating projects, current market approaches and ongoing challenges.

  1. NOx Emissions from Diesel Passenger Cars Worsen with Age

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-04-05

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.

  2. DIESEL ENGINES' VIBROACOUSTIC SIGNATURE EXTRACTION BY WAVELET PACKET TECHNIQUE

    邹剑; 陈进; 邹军; 耿遵敏

    2002-01-01

    Multisource unstable impulsive excitations, time-varying transmission path, concentrated mode, dispersion and reverberation that are important characteristics of reciprocating machines such as diesel engines result in wide-band non-stationary vibroacoustic responses which influence the effective extraction of vibroacoustic signatures and become a key factor to limit diesel engines' vibration diagnosis. In this paper, a serial theoretical deduction on the unstable dynamic properties of diesel engines was made; the mechanism of non-stationary vibroacoustic responses was elucidated. Based upon that, the wavelet packet technique was introduced. The reason for the existence of frequency aliasing in the Paley series from wavelet packets' decomposition was analyzed, and the wavelet packet frequency-shifting algorithm was given. Experiments on 190 serial diesel engines verify the given method's significant validity in vibroacoustic signature extraction and reciprocating machines' vibration diagnosis.

  3. Combustion of soybean oil and diesel mixtures for heating purposes

    Guimaraes, Adriana Correa; Sanz, Jose Francisco [European University Miguel de Cervantes, Valladolid (Spain)], E-mail: acorrea@uemc.es; Hernandez, Salvador; Navas, Luis Manuel; Rodriguez, Elena; Ruiz, Gonzalo [University of Valladolid (Spain). Dept. of Agricultural and Forest Engineering; San Jose, Julio [University of Valladolid (Spain). Dept. of Energetic Engineering; Gomez, Jaime [University of Valladolid (Spain). Dept. of Communications and Signal Theory and Telematics Engineering

    2008-07-01

    Using blends of vegetable oils with petroleum derivates for heating purposes has several advantages over other energy application for vegetable oils. This paper presents the results of an investigation by use of soybean oil and diesel mixture as fuel for producing heat in conventional diesel installation. The paper is set out as follows: properties characterization of soybean oil as fuel and of diesel oil, as well as the mixture of both; selection of the mixture according to their physical chemical properties and how they adapt to conventional combustion installation; experimentation with the selected mixture, allowing the main combustion parameters to be measured; processing the collected data, values of combustion, efficiency and reduction of emissions. Conclusions show that the use of soybean oil and diesel mixture for producing heat energy in conventional equipment is feasible and beneficial for reduction emissions. (author)

  4. An Overview of Biodiesel and Petroleum Diesel Life Cycles

    Sheehan, J. (NREL); Camobreco, V. (Ecobalance); Duffield, J. (USDA); Shapouri, H. (USDA); Graboski, M. (CIFER); Tyson, K. S. (NREL Project Manager)

    2000-04-27

    This report presents the findings from a study of the life cycle inventories for petroleum diesel and biodiesel. It presents information on raw materials extracted from the environment, energy resources consumed, and air, water, and solid waste emissions generated.

  5. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  6. Bioassay-Directed Fractionation of Diesel and Biodiesel Emissions

    Biofuels are being developed as alternatives to petroleum-derived products, but published research is contradictory regarding the mutagenic activity of such emissions relative to those from petroleum diesel. We performed bioassay-directed fractionation and analyzed the polycyclic...

  7. Cold Vacuum Drying (CVD) Facility, Diesel Generator Fire Protection

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications

  8. Production of bio diesel from chicken frying oil

    Chicken fried oil was converted into different bio diesels through single step transesterification and two step transesterification, namely acid-base and base-base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The results showed that two step base catalyzed transesterification was better compared to other methods. It resulted in higher yield and better fuel properties. Transesterification of fried chicken oil was monitored by TLC technique and compared with that of the parent oil. Fuel properties of the products have been measured and found markedly enhanced compared to those of the parent oil. Also, the values satisfied the standard limits according to the ASTM standards. Blending of the better bio diesel sample with petro diesel was made using three volume percentages (10, 30 and 50% v/v). The results disclosed that blending had slight effect on the original properties of petro diesel.

  9. Cold Vacuum Drying (CVD) Facility, Diesel Generator Fire Protection

    Singh, G

    2000-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  10. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    2010-07-01

    ... production or import. (4) A record designating the batch as motor vehicle diesel fuel meeting the 500 ppm... sampling and testing for sulfur content for a batch of motor vehicle diesel fuel produced or imported and... information for each batch of motor vehicle diesel fuel produced or imported: (1) The batch volume. (2)...

  11. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    ZHUKOVYTSKYY I.V.; KLIUSHNYK I.A.; OCHKASOV O.B.; KORENIYK R.O.

    2015-01-01

    Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of...

  12. Vibration Feature Abstraction and Classification of Diesel Fault

    2003-01-01

    The feature of a periodic cyclic-nonstationary signal for a cyclic working machine such as a diesel engine is studied in the aspect of working procedure, force and vibration. On the basis of the study, a method of characteristic abstraction and classification is put forward for periodic cyclic-nonstationary vibration signal. The proposed method is applied to experimental data of an ISUZU C240 diesel engine. Experiment results show the effectiveness of the proposed method in classification of engine faults.

  13. Diesel Particulate Filter Diagnostics Using Correlation and Spectral Analysis

    Surve, Pranati R

    2008-01-01

    Diesel Particulate Filters (DPF) are used to trap the harmful particulate matter (PM) present in the exhaust of diesel engines. The particulate matter is trapped in and on a porous ceramic substrate to keep PM emissions low. The onboard diagnostics requirements enforced by Environmental Protection Agency (EPA) require that the DPF perform well to keep emissions below certain specified levels. Further, should the DPF fail in any way, resulting in higher emission levels, this event must be dete...

  14. Experimental Investigation of Performance & Emission for the Blend of Diesel

    Hitesh J. Yadav*1, Priyakant A.Vaghela2

    2014-01-01

    Due to the increasing demand for fossil fuels and environmental threat, a number of renewable sources of energy have been studied worldwide. An attempt is made to assess the suitability of vegetable oil for diesel engine operDue to the increasing demand for fossil fuels and environmental threat, a number of renewable sources of energy have been studied worldwide. An attempt is made to assess the suitability of vegetable oil for diesel engine operDue to the increasing demand fo...

  15. A CFD STUDY OF CAVITATION IN REAL SIZE DIESEL INJECTORS

    PATOUNA, STAVROULA

    2012-01-01

    In Diesel engines, the internal flow characteristics in the fuel injection nozzles, such as the turbulence level and distribution, the cavitation pattern and the velocity profile affect significantly the air-fuel mixture in the spray and subsequently the combustion process. Since the possibility to observe experimentally and measure the flow inside real size Diesel injectors is very limited, Computational Fluid Dynamics (CFD) calculations are generally used to obtain the relevant informati...

  16. Optimizing Hybrid Wind/Diesel Generator System Using BAT Algorithm

    Sudhir Sharma; Shivani Mehta

    2016-01-01

    Hybrid system comprising of Wind/Diesel generation system for a practical standalone application considers Wind turbine generators and diesel generator as primary power sources for generating electricity. Battery banks are considered as a backup power source. The total value of cost is reduced by meeting energy demand required by the customers. Bat optimization technique is implemented to optimize wind and battery modules. Wind and battery banks are considered as primary sources a...

  17. MODELING AND SIMULATION OF A HYBRID WIND-DIESEL MICROGRID

    Friedel, Vincent

    2009-01-01

    Some communities in remote locations with high wind velocities and an unreliable utility supply, will typically install small diesel powered generators and wind generators to form a microgrid. Over the past few years, microgrid projects have been developed in many parts of the world, and commercial solutions have started to appear. Such systems face specific design issues, especially when the wind penetration is high enough to affect the operation of the diesel plant. The dynamic behavior of ...

  18. Aging of HDPE Pipes Exposed to Diesel Lubricant

    Habas-Ulloa, Amelia; Moraes D'Almeida, Jose Roberto; Habas, Jean-Pierre

    2011-01-01

    The effects caused upon the physicochemical behavior of high-density polyethylene pipes by exposure to a diesel lubricant were investigated, as a function of time and temperature, by thermogravimetric and gravimetric analysis and by FT-IR. The gravimetric data were satisfactorily described using Fick's law. The fitting of the experimental points showed that diesel, which can be regarded as a model fluid to analyze the effects caused by aromatic units present in oil derivatives, has a high dif...

  19. The effect of piston bowl temperature on diesel exhaust emissions

    Ladommatos, N; Xiao, Z.; Zhao, H.

    2005-01-01

    In modern, high-speed, direct injection diesel engines for passenger vehicles, there is extensive impingement of the fuel sprays on to the piston bowl walls. Recent trends towards smaller engine sizes, equipped with high-pressure common-rail fuel injection systems, have tended to increase the spray/piston wall interaction. This paper describes tests carried out in a high-speed direct injection automotive diesel engine, during which the temperature of the piston was increased in a controlled m...

  20. Bioremediation of diesel oil contaminated soil and water

    Kauppi, Sari

    2011-01-01

    Diesel spills contaminate aquatic and terrestrial environments. To prevent the environmental and health risks, the remediation needs to be advanced. Bioremediation, i.e., degradation by microbes, is one of the suitable methods for cleaning diesel contamination. In monitored natural attenuation technique are natural processes in situ combined, including bioremediation, volatilization, sorption, dilution and dispersion. Soil bacteria are capable of adapting to degrade environmental pollutants, ...

  1. Diesel exhaust rapidly degrades floral odours used by honeybees

    Girling, Robbie D.; Inka Lusebrink; Emily Farthing; Newman, Tracey A.; Poppy, Guy M.

    2013-01-01

    Honeybees utilise floral odours when foraging for flowers; we investigated whether diesel exhaust pollution could interrupt these floral odour stimuli. A synthetic blend of eight floral chemicals, identified from oilseed rape, was exposed to diesel exhaust pollution. Within one minute of exposure the abundances of four of the chemicals were significantly lowered, with two components rendered undetectable. Honeybees were trained to recognise the full synthetic odour mix; altering the blend, by...

  2. Diesel engine exhaust and lung cancer: an unproven association.

    Muscat, J E; Wynder, E. L.

    1995-01-01

    The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, ...

  3. Contribution for Modelling and failure prediction in Marine Diesel Engine

    Moussa-Nahim, Hassan

    2016-01-01

    This work presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, allowing fast predictive simulations. The whole engine system is divided into several functional blocs: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocs are established according to engine working principles equations and experimental data collected from a marine diesel engine te...

  4. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  5. Emission characteristics of a turbocharged diesel engine fueled with gas-to-liquids

    WU Tao; ZHANG Wugao; FANG Junhua; HUANG Zhen

    2007-01-01

    Emission characteristics of a turbocharged,intercooled,heavy-duty diesel engine operating on neat gas-toliquids (GTL) and blends of GTL with conventional diesel were investigated and a comparison was made with those of diesel fuel.The results show that nitrogen oxides (NOx),smoke,and particulate matter (PM) emissions can be decreased when operating on GTL and diesel-GTL blends.Engine emissions decrease with an increase of GTL fraction in the blends.Compared with diesel fuel,an engine operatingon GTL can reduce NOx,PM,carbon monoxide (CO),and hydrocarbon (HC) by 23.7%,27.6%,16.6% and 12.9% in ECE R49 13-mode procedure,respectively.Engine speed and load have great influences on emissions when operating on diesel-GTL blends and diesel fuel in the turbocharged diesel engine.The study indicates that GTL is a promisingalternative fuel for diesel engines to reduce emissions.

  6. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    P. Venkateswara Rao, B. V. Appa Rao

    2012-01-01

    Full Text Available The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME is used with additive Triacetin (T at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load. The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  7. Efeito do nível de óleo de milho adicionado à dieta de eqüinos sobre a digestibilidade dos nutrientes Effect of level of corn oil in the diet of horses on the nutrient digestibilities

    T. Resende Júnior

    2004-02-01

    Full Text Available Avaliou-se o efeito da adição de diferentes níveis de óleo de milho sobre a digestibilidade aparente dos nutrientes da dieta de 28 eqüinos com idade e peso entre seis e 10 anos e 400 e 500kg, respectivamente. A dieta, composta de feno de coast cross(Cynodon dactylon e ração comercial, foi oferecida na proporção de 2% do peso do animal e a quantidade oferecida foi calculada a cada pesagem, sendo 50% de concentrado e 50% de feno. O delineamento experimental foi o inteiramente ao acaso, com quatro tratamentos e sete repetições, sendo T1, T2, T3 e T4 correspondentes à adição de 0, 250, 500, 750ml de óleo no concentrado diário ou 0, 2,9, 5,7 e 8,3 % de óleo na dieta total, respectivamente, e as médias foram comparadas pelo teste t de Student. A adição de óleo na dieta dos eqüinos não alterou a digestibilidade da matéria seca, proteína bruta, fibra detergente neutra e fibra detergente ácida e aumentou a digestibilidade da energia bruta e do extrato etéreo, indicando que é possível adicionar até 750ml de óleo de milho no concentrado diário dos eqüinos (8,3% na dieta total por um período de até 23 dias, visando aumentar o nível energético da dieta sem o correspondente aumento no fornecimento de matéria seca.A digestibility trial was carried out in a completely randomized design with five treatments and seven replicates to compare the effects of different levels of dietary corn oil (0, 250, 500, 750ml on nutrient apparent digestibility in horses. Twenty eight animals with age between six and 10 years and weight between 400kg and 500kg were used. The diet composition was based on coast cross hay (Cynodon dactylon and commercial concentrate. The feed dry matter was based on 2% of body weight and 1:1 forage concentrate ratio. The treatment means were compared by Student's test, at 5% level. Increasing corn oil level in the diet did not affect dry matter, crude protein, neutral detergent fiber and acid detergent fiber

  8. Performance of Untreated Waste Cooking Oil Blends in a Diesel Engine

    Md Isa Ali

    2011-01-01

    Full Text Available Untreated waste cooking oil (UWCO is not a feasible diesel fuel. The major problems in engine operation are reported mainly due to UWCO’s high viscosity. To use  UWCO's in diesel engine without modification, it is necessary to make sure that the oils properties must be similar to diesel fuel. In this study, UWCO that has been used several times for frying purposes is investigated for the utilization as an alternative fuel for diesel engines. In order to reduce the viscosity, the UWCO were blend with diesel. Two various blends of UWCO and diesel were prepared and its important properties such as viscosity, density, calorific value and flash point were  evaluated and compared with that of diesel. The blends were then tested in a direct injection diesel engine  in 10% and 30% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions. It was found that blending UWCO with diesel reduces the viscosity.  Blending of UWCO with diesel has been shown to be an effective method to reduce engine problems associated with the high viscosity of UWCO. The experimental results also show that the basic engine performance such as power output and  fuelconsumptions are comparable to diesel and the emissions of CO and NOx from the UWCO/diesel blends were also found slightly higher than that of diesel fuel.

  9. Recycled diesel carbon nanoparticles for nanostructured battery anodes

    Chen, Yuming; Liu, Chang; Sun, Xiaoxuan; Ye, Han; Cheung, Chunshun; Zhou, Limin

    2015-02-01

    Considerable attention has been devoted to using rational nanostructure design to address critical carbonaceous anode material issues for next-generation lithium-ion batteries (LIBs). However, the fabrication of nanostructured carbonaceous anode materials often involves complex processes and expensive starting materials. Diesel engine is an important source of nanostructured carbon particles with diameters ranging 20 nm-60 nm suspended in air, resulting in a serious scourge of global climate and a series of diseases such as lung cancer, asthma, and cardiovascular disease. Here, we show that diesel carbon nanoparticles collected from diesel engines can be chemically activated to create a porous structure. The resulting nanostructured carbon electrodes have a high specific capacity of 936 mAh g-1 after 40 cycles at 0.05 A/g, and excellent cycle stability while retaining a capacity of ∼210 mAh g-1 after 1200 cycles at 5 A/g. As recycled diesel carbon nanoparticles are readily available due to the several billion tons of diesel fuel consumed every year by diesel engines, their use represents an exciting source for nanostructured carbonaceous anode materials for high-performance LIBs and improves our environment and health.

  10. Hybrid technologies for the remediation of Diesel fuel polluted soil

    Pazos, M.; Alcantara, M.T.; Rosales, E.; Sanroman, M.A. [Department of Chemical Engineering, University of Vigo (Spain)

    2011-12-15

    Diesel fuel may be released into soil due to anthropogenic activities, such as accidental spills or leaks in underground storage tanks or pipelines. Since diesel fuel is mainly composed of hydrophobic organic compounds, it has low water solubility. Therefore, treating contaminated areas with conventional techniques is difficult. In this study, electrokinetic treatment of soil contaminated with diesel fuel was carried out. Two different hybrid approaches to pollutant removal were tested. A surfactant was used as a processing fluid during electrokinetic treatment to increase desorption and the solubility of diesel fuel. Additionally, a hybrid technology combining a Fenton reaction and electrokinetic remediation (EK-Fenton) was tested in an attempt to generate favorable in situ degradation of pollutants. The efficiency of each treatment was determined based on diesel fuel removal. After 30 days of treatment, the highest removal of diesel fuel was found to be achieved with the EK-Fenton process. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Bio Diesel An Alternative Vehicles Fuel; Analytical View

    Transesterification of a vegetable oil was conducted as early as 1853, by scientists E. Duffy and J. Patrick, many years before the first diesel engine became functional(1). Rudolf Diesel's prime model, a single 10 ft (3 m) iron cylinder with a flywheel at its base, ran on its own power for the first time in Augsburg, Germany on August 10, 1893(2). Diesel later demonstrated his engine at the World Fair in Paris, France in 1898. This engine stood as an example of Diesel's vision because it was powered by peanut oil-a bio fuel. He believed that the utilization of a biomass fuel was the real future of his engine. In a 1912 speech, Rudolf Diesel said, (I) the use of vegetable oils for engine fuels may seem insignificant today, but such oils may become, in the course of time, as important as petroleum and the coal-tar products of the present time. Rudolf Diesel was not the only inventor to believe that biomass fuels would be the mainstay of the transportation industry. Henry Ford designed his automobiles, beginning with the 1908 Model T(1), to use ethanol. Ford was so convinced that renewable resources were the key to the success of his automobiles that he built a plant to make ethanol in the Midwest and formed a partnership with Standard Oil to sell it in their distributing stations

  12. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation

    Ajin C. Sajeevan

    2013-01-01

    Full Text Available Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.

  13. Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness

    Selim, Mohamed Y.E. [Mech. Eng. Dept., UAE University, Al-Ain, Abu Dhabi 17555 (United Arab Emirates)

    2009-07-15

    An experimental investigation has been carried out to test two approaches to reduce the viscosity of the Jojoba Methyl Ester (JME) diesel fuel. The first approach is the heating of the fuel to two temperatures of 50 and 70 C as compared to the base ambient temperature and to diesel fuel too. The second approach is adding one chemical which is considered by its own as alternative and renewable fuel which is Diethyl Ether (DEE). The viscosity has been reduced by both methods to close to diesel values. The performance of a diesel engine using those fuels has been tested in a variable compression research engine Ricardo E6 with the engine speed constant at 1200 rpm. The measured parameters included the exhaust gas temperature, the ignition delay period, the maximum pressure rise rate, maximum pressure, and indicated mean effective pressure and maximum heat release rate. The engine performance is presented and the effects of both approaches are scrutinized. (author)

  14. Evaluation of the agricultural tractor using biofuel and diesel oil; Avaliacao de um trator agricola utilizando biocombustivel e oleo diesel

    Lopes, Reny Adilmar Prestes; Pinheiro Neto, Raimundo; Meyer, Wagner; Mendonca, Elton Costa de; Roberti, Marcelo [Universidade Estadual de Maringa (UEM), PR (Brazil)], Emails: raplopes@uem.br, rpneto@uem.br

    2009-07-01

    Test with alternative fuels is essential to evaluate the performance of machines and engines. In this paper, the performance of a tractor in chiseling operation was evaluated using oil diesel and biofuel (oil diesel + soybean vegetable oil mixture). Speed of displacement, slip wheels, force traction bar and fuel consumption was evaluated in areas under tillage and no-tillage. The speed of displacement of the set presented similar behavior in tillage and no-tillage. Bigger values mean force in the bar of traction, slip and fuel consumptions had been observed for no-tillage with the tractor operating with diesel. Bigger values mean consumption the biofuel had been observed in areas under tillage. The coverings of the soil had influenced in the values of force bar traction, slip wheels, speed of displacement and fuel consumption. In the studied conditions, the tests demonstrate that the mixture oil diesel + soybean vegetable oil had not influenced in the performance of the tractor. (author)

  15. Performance and emissions of a heavy duty diesel engine fuelled whit palm oil biodiesel and premium diesel

    Biodiesels are promoted as alternative fuels due their potential to reduce dependency on fossil fuels and carbon emissions. Research has been addressed in order to study the emissions of light duty vehicles. However, the particle matter and gaseous emissions emitted from heavy-duty diesel engines fueled with palm-biodiesel and premium diesel fuel have seldom been addressed. The objective of this study was to explore the performance and emission levels of a Cummins 4-stroke, 9.5 liter, 6-cylinder diesel engine with common rail fuel injection, and a cooled exhaust gas recirculation (EGR). The palm-biodiesel lowered maximum engine output by much as 10 %. The engine emissions data is compared to standards from 2004, and is determined to pass all standards for diesel fuel, but does not meet emissions standards for PM or NOx for palm-biodiesel.

  16. Recent Developments in BMW's Diesel Technology

    Steinparzer, F

    2003-08-24

    The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for

  17. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  18. Production of Bio-Diesel to Neem oil and its performance and emission Analysis in two stroke Diesel Engine.

    G.Mahesh BABU; VIKAS KUMAR; ANUPRASAD SG

    2013-01-01

    In India Neem tree is a widely grown up termed as a divine tree due to its wide relevance in many areas of study. This paper deals with Biodiesel production from neem oil, which is monoester produced usingtransesterification process. Biodiesel is a safe alternative fuel to replace traditional petroleum diesel. It has high lubricity, clean burning fuel and can be a fuel component for use in existing unmodified diesel engine. Neem (Azadirachita Indica) is an evergreen tree, which is endemic to ...

  19. Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine

    The injected diesel fuel used in a diesel engine was partially replaced with biomass-derived gas through the intake port, and the effect on performance and pollutant emissions was studied. The experimental work was carried out in a supercharged, common-rail injection, single-cylinder diesel engine by replacing diesel fuel up to 20% (by energy), keeping constant the engine power. Three engine loads (60, 90, 105 Nm), three different EGR (exhaust gas recirculation) ratios (0, 7.5, 15%) and two intake temperatures (45, 60 °C) were tested. Finally, some of the tested conditions were selected to replace diesel injection fuel with biodiesel injection. Although the brake thermal efficiency was decreased and hydrocarbons and carbon monoxide emissions increased with increasing fuel replacement, particulate emissions decreased significantly and NOx emissions decreased slightly at all loads and EGR ratios. Thermodynamic diagnostic results showed higher premixed ratio and lower combustion duration for increasing diesel fuel replacement. High EGR ratios improved both engine performance and emissions, especially when intake temperature was increased, which suggest removing EGR cooling when diesel fuel is replaced. Finally, when biodiesel was used instead of diesel fuel, the gas replacement improved the efficiency and reduced the hydrocarbon, carbon monoxide and particulate emissions. - Highlights: • Replacing injected fuel with gas permits an efficient valorization of waste biomass. • Inlet gas was inefficiently burned after the end of liquid fuel injection. • Engine parameters were combined to simultaneously reduce particle and NOx emissions. • Hot EGR (exhaust gas recirculation) and biodiesel injection are proposed to improve efficiency and emissions

  20. Engine test run with rape oil/diesel mixtures. Final report; Motorprueflauf mit Rapsoel-Diesel-Mischungen. Schlussbericht

    Maurer, K.

    2003-09-01

    In agriculture, there is interest in using natural rape oil as a fuel for tractors. For a disturbance-free permanent operation, however, changes in engines and vehicles must be made due to its chemical-physical characteristics which differ from normal diesel. In order to avoid the additional costs connected with these measures, sometimes the attempt is made to mix diesel fuel with rape oil. The engine test was run to find out if the addition of rape oil to diesel fuel without adjusting the engine and the vehicle is harmless. Testing this, the effects of adding different portions of cold pressed rape oil to diesel on the functioning and wear of modern tractor engines was studied. Agriculture will be informed about the results of the tests, pointing out effects and risks possible to occur if rape oil/diesel mixtures are used. [German] In der Landwirtschaft besteht an der Nutzung von naturbelassenem Rapsoel als Kraftstoff fuer Traktoren Interesse. Fuer die praktische Umsetzung sind jedoch aufgrund der von handelsueblichen Diesel abweichenden chemisch-physikalischen Eigenschaften von Rapsoel fuer einen stoerungsfreien Dauerbetrieb motor- und fahrzeugtechnische Umruestmassnahmen erforderlich. Um die damit verbundenen erheblichen Kosten zu umgehen, wird verschiedentlich in der Praxis versucht, Dieselkraftstoff mit Rapsoel zu mischen. Mit dem Motorprueflauf sollte geklaert werden, ob die Zumischung von Rapsoel zu Dieselkraftstoff ohne fahrzeug- oder motorseitige Anpassungsmassnahmen unbedenklich ist. Dabei sollte die Auswirkung der Beimischung unterschiedlicher Anteile von kaltgepresstem Rapsoel zu Diesel auf das Betriebsverhalten und den Verschleiss eines modernen Schlepperrmotors ueberprueft werden. Ueber das Ergebnis der Untersuchungen soll die Landwirtschaft informiert werden und auf moegliche Auswirkungen bei der Anwendung von Rapsoel-Diesel-Mischungen und damit verbundenen Risiken hingewiesen werden. (orig.)

  1. Experimental investigations of combustion and emission characteristics of rapeseed oil–diesel blends in a two cylinder agricultural diesel engine

    Highlights: • The main properties of rapeseed oil and diesel fuel were measure and analyzed. • The cylinder pressure of the rapeseed oil–diesel blends was measured and compared. • The heat release rate of the test fuels was calculated and the combustion process was analyzed. • The fuel consumption and emissions characteristics were measured and compared. - Abstract: The main objective of this paper was to study the performance, emissions and combustion characteristics of a diesel engine using rapeseed oil–diesel blends. The main fuel properties of rapeseed oil (RSO) were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the blends were decreased and approached to that of diesel fuel when RSO volume fraction was less than 20%. At low engine loads, the start of combustion for the blends was almost similar to that for diesel fuel, but the peak cylinder pressure and heat release rate were higher. At high engine loads, the start of combustion for the blends was slightly earlier than that for diesel fuel, but the peak cylinder pressure and heat release rate were identical. For the blends, there was slightly higher brake specific fuel consumptions (BSFC) and brake specific energy consumptions (BSEC) at low engine loads. Smoke emission was higher at low engine loads, but lower at high engine loads. Nitrogen oxide (NOx) emission was observed slightly lower at low engine loads and almost identical at high engine loads. Carbon monoxide (CO) and hydrocarbon (HC) emission were higher under all range of engine loads for the blends

  2. FTIR analysis of surface functionalities on particulate matter produced by off-road diesel engines operating on diesel and biofuel.

    Popovicheva, Olga B; Kireeva, Elena D; Shonija, Natalia K; Vojtisek-Lom, Michal; Schwarz, Jaroslav

    2015-03-01

    Fourier transform infrared spectroscopy is applied as a powerful analytic technique for the evaluation of the chemical composition of combustion aerosols emitted by off-road engines fuelled by diesel and biofuels. Particles produced by burning diesel, heated rapeseed oil (RO), RO with ethylhexylnitrate, and heated palm oil were sampled from exhausts of representative in-use diesel engines. Multicomponent composition of diesel and biofuel particles reveal the chemistry related to a variety of functional groups containing carbon, hydrogen, oxygen, sulfur, and nitrogen. The most intensive functionalities of diesel particles are saturated C-C-H and unsaturated C=C-H aliphatic groups in alkanes and alkenes, aromatic C=C and C=C-H groups in polyaromatics, as well as sulfates and nitrated ions. The distinguished features of biofuel particles were carbonyl C=O groups in carboxylic acids, ketones, aldehydes, esters, and lactones. NO2, C-N and -NH groups in nitrocompounds and amines are found to dominate biofuel particles. Group identification is confirmed by complementary measurements of organic carbon (OC), elemental carbon, and water-soluble ion species. The relationship between infrared bands of polar oxygenated and non-polar aliphatic functionalities indicates the higher extent of the surface oxidation of biofuel particles. Findings provide functional markers of organic surface structure of off-road diesel emission, allowing for a better evaluation of relation between engine, fuel, operation condition, and particle composition, thus improving the quantification of environmental impacts of alternative energy source emissions. PMID:25318418

  3. Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine

    An experimental investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two ethanol-diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. Theoretical aspects of diesel engine combustion combined with the widely differing physical and chemical properties of the ethanol against those for the diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  4. Biodegradation of Mexican Diesel for a bacteria consortium of an agricultural soil

    The biodegradation of diesel in water was done by means of the microorganisms present in an agriculture soil. The kinetics of biodegradation and adsorption of diesel were determined in order to applying the procedure in soil and water resources contaminated with diesel. The methodology and results of biodegradation and adsorption of diesel in synthetic water is presented with a soil characterization. Degradation takes place using the original microorganisms present in the soil but giving nitrogen as nutrient. As oxygen source the hydrogen peroxide was used. The kinetics of diesel volatility is presented too. Kinetics equations for degradation, adsorption and speed constant were determined with the obtained results biodegradation, diesel, agriculture soil, bacterium group

  5. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    Fairbanks, John W.

    2000-08-20

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  6. Strategy on Development of Gasoline and Diesel Standards in China with Reference to Overseas Practice for Upgrading Gasoline and Diesel Quality

    Yang Zhe; Yang Guoxun

    2004-01-01

    This article analyzes the standards for car exhaust emissions and gasoline and diesel quality in Europe and the US. As revealed by the evolution of gasoline and diesel standards in China, the gasoline and diesel compositions of China and the exhaust gas emissions standard are closely related with the specifics of the petroleum refining industry and automotive industry in China. After studying the current situations of gasoline and diesel quality in China while taking into account the commonly accepted practice in the overseas this article raises some suggestions on development of gasoline and diesel standards in compliance with the actual conditions of China.

  7. Low Emissions Aftertreatment and Diesel Emissions Reduction

    None

    2005-05-27

    Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable

  8. Nano Catalysts for Diesel Engine Emission Remediation

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  9. Capture of Heat Energy from Diesel Engine Exhaust

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  10. Particulate filter behaviour of a Diesel engine fueled with biodiesel

    Biodiesel is an alternative and renewable fuel made from plant and animal fat or cooked oil through a transesterification process to produce a short chain ester (generally methyl ester). Biodiesel fuels have been worldwide studied in Diesel engines and they were found to be compatible in blends with Diesel fuel to well operate in modern Common Rail engines. Also throughout the world the diffusion of biofuels is being promoted in order to reduce greenhouse gas emissions and the environmental impact of transport, and to increase security of supply. To meet the current exhaust emission regulations, after-treatment devices are necessary; in particular Diesel Particulate Filters (DPFs) are essential to reduce particulate emissions of Diesel engines. A critical requirement for the implementation of DPF on a modern Biodiesel powered engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. To fit within the exhaust temperature range of the exhaust line and to require a minimum of active regeneration during the engine running, the BET needs to occur at sufficiently low temperatures. In this paper, the results of an experimental campaign on a modern, electronic controlled fuel injection Diesel engine are shown. The engine was fuelled either with petroleum ultralow sulphur fuel or with Biodiesel: BET was evaluated for both fuels. Results show that on average, the BET is lower for biodiesel than for diesel fuel. The final goal was to characterize the regeneration process of the DPF device depending on the adopted fuel, taking into account the different combustion process and the different nature of the particulate matter. Overall the results suggest significant benefits for the use of biodiesel in engines equipped with DPFs. - Highlights: ► We compare Diesel Particulate Trap (DPF) performance with Biodiesel and Diesel fuel. ► The Break

  11. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  12. Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines

    Johnson, R.N.; Hayden, H.L.

    1994-01-01

    Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

  13. Development of catalyst for diesel engine; Diesel engine yo shokubai no kaihatsu

    Ueno, H.; Furutani, T.; Nagami, T. [Toyota Motor Corp., Aichi (Japan); Aono, N.; Goshima, H.; Kasahara, K. [Cataler Industrial Co. Ltd., Shizuoka (Japan)

    1997-10-01

    The new concept catalyst for diesel engine has been developed. When the exhaust temperature is low, SOF and HC are temporarily adsorbed by the adsorbent within the catalyst and are oxidized as the temperature rise. The process of this development have manifested as follows. (1) The coating material is important factor to govern the oxidation activity. (2) SOF is reduced by the coating material in low temperature less than 200degC. (3) The coating material, which has low SO2 adsorbing rate suppress the sulfate formation at high temperature. 2 refs., 11 figs., 1 tab.

  14. Vehicle Natural Gas (GNV): it is the diesel turn?; GNV: chegou a vez do diesel?

    Almeida, Edmar de; Freitas, Katia

    2007-07-01

    In Brazil, the vehicle natural gas in the diesel market can result in important economic and social benefits. First of all, it is important the highlighting the existence between the present demand profile and the petroleum derivatives supply in Brazil. On the other side, the Brazilian production presents a shortage with a total in 2001 of 33,645 millions of m{sup 3} which forced the country to import 6,606.5 millions of m{sup 3}. Also it is important to emphasize the existence of natural gas supply excess in Brazil and in region, making it possible the large scale use.

  15. Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend

    Highlights: • A combustion simulation is conducted by using two-zone combustion model. • Effect of steam injection into engine fueled ethanol–diesel blend are investigated. • It is shown that this method improves performance and diminish NO emissions. - Abstract: The use of ethanol–diesel blends in diesel engines without any modifications negatively affects the engine performance and NOx emissions. However, steam injection method decreases NOx emissions and improves the engine performance. In this study, steam injection method is applied into a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine fueled with ethanol–diesel blend in order improve the performance and NOx emissions by using two-zone combustion model for 15% ethanol addition and 20% steam ratios at full load condition. The results obtained are compared with conventional diesel engine (D), steam injected diesel engine (D + S20), diesel engine fueled with ethanol–diesel blend (E15) and steam injected diesel engine fueled with ethanol–diesel blend (E15 + S20) in terms of performance and NO emissions. The results showed that as NO emissions considerably decrease the performance significantly increases with steam injection method

  16. Diesel exhaust pollution: chemical monitoring and cytotoxicity assessment

    Lucky Joeng

    2015-07-01

    Full Text Available Diesel engines are a significant source of nitrogen oxides (NOx and particulate matter (PM which may cause adverse health effects on the cardiovascular and pulmonary systems. There is little consistency between many studies to establish which engine parameter is a key factor to determine the toxicity of diesel exhaust. The aim of this study was to correlate engine operating systems with cytotoxicity using human cells. A dynamic direct exposure system containing human cells grown at the air liquid interface (ALI was employed to expose human derived cells to diesel exhaust emitted under a range of engine loads. To determine correlation between engine load and cytotoxicity, concentrations of NOx and carbon (organic and elemental were measured. Comparison between filtered and unfiltered exhaust was also made. To assess cytotoxicity and determine mechanisms responsible for toxic effects, various bioassays measuring a range of endpoints were used including: cell metabolism (MTS, cell energy production (ATP and cell lysosome integrity (NRU. The human cells selected in this study were lung (A549 and liver (HepG2 derived cells to detect if observed cytotoxicity was basal (i.e. affect all cell types or organ-specific. Results showed that NOx gas concentrations increased as engine load increased which resulted in significant cytotoxicity to both A549 and HepG2 cells. In contrast carbon measurements remained relatively constant across loads with no observable significant difference in cytotoxicity by filtering diesel exhaust. This result suggests that the gaseous component of diesel exhaust may contribute higher cytotoxicity than the particulate component. Post exposure incubation was an important factor to consider as only gaseous components of diesel exhaust exhibited observable immediate effects. Our findings suggest engine torque as a reliable indicator of cytotoxicity on human cells. The advantages of the dynamic direct exposure method include a more

  17. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  18. French bio-diesel demand and promoting measures analysis by 2010

    The researches presented aim at assessing bio-diesel promoting measures under consideration in France by 2010. This assessment is based on a deep study of French bio-diesel demand. The use of a linear model for optimizing the whole French refining industry costs allow us to take into account the physicochemical characteristics of bio-diesel useful for gas oil blending operation. This researches show that bio-diesel can be incorporated up to 27% blend in volume to diesel fuel without major technical problem. A decomposition of the value allotted to the bio-diesel by French refiners according to its physicochemical characteristics shows that energy content is the most disadvantageous characteristics for bio-diesel incorporation and, up to 17%, density become also constraining. However, the low bio-diesel sulphur content could become interesting from now to 2010. On the basis of this bio-diesel demand analysis, we proceed to an external coupling of an agro-industrial model of bio-diesel supply with the French refining model. Thus, we study the impact of the 2010 French bio-diesel consumption objective on agricultural surface need, the competitiveness of the bio-diesel, the reduction of greenhouse gases emissions and the trade balance of the petroleum products. On this basis, we propose a critical analysis of French bio-diesel promoting measures under consideration by 2010. (author)

  19. Second generation Robo-AO instruments and systems

    Baranec, Christoph; Law, Nicholas M; Chun, Mark R; Lu, Jessica R; Connelley, Michael S; Hall, Donald; Atkinson, Dani; Jacobson, Shane

    2014-01-01

    The prototype Robo-AO system at the Palomar Observatory 1.5-m telescope is the world's first fully automated laser adaptive optics instrument. Scientific operations commenced in June 2012 and more than 12,000 observations have since been performed at the ~0.12" visible-light diffraction limit. Two new infrared cameras providing high-speed tip-tilt sensing and a 2' field-of-view will be integrated in 2014. In addition to a Robo-AO clone for the 2-m IGO and the natural guide star variant KAPAO at the 1-m Table Mountain telescope, a second generation of facility-class Robo-AO systems are in development for the 2.2-m University of Hawai'i and 3-m IRTF telescopes which will provide higher Strehl ratios, sharper imaging, ~0.07", and correction to {\\lambda} = 400 nm.

  20. TECHNICAL AND ENERGY PARAMETERS IMPROVEMENT OF DIESEL LOCOMOTIVES THROUGH THE INTRODUCTION OF AUTOMATED CONTROL SYSTEMS OF A DIESEL

    M. I. Kapitsa

    2015-04-01

    Full Text Available Purpose. Today the issue, connected with diesel traction remains relevant for the majority of industrial enterprises and Ukrainian railways and diesel engine continues to be the subject of extensive research and improvements. Despite the intensive process of electrification, which accompanies Railway Transport of Ukraine the last few years, diesel traction continues to play an important role both in the main and in the industrial railway traction rolling stock. Anyway, all kinds of maneuvering and chores are for locomotives, they are improved and upgraded relentlessly and hourly. This paper is focused on finding the opportunities to improve technical and energy parameters of diesels due to the development of modern control method of the fuel equipment in the diesel engine. Methodology. The proposed method increases the power of locomotives diesel engines in the range of crankshaft rotation (from idle running to maximum one. It was based on approach of mixture ignition timing up to the top «dead» center of piston position. Findings. The paper provides a brief historical background of research in the area of operating cycle in the internal combustion engine (ICE. The factors affecting the process of mixing and its quality were analyzed. The requirements for fuel feed system in to the cylinder and the «weak points» of the process were presented. A variant of the modification the fuel pump drive, which allows approaching to the regulation of fuel feed system from the other hand and to improve it was proposed. Represents a variant of embodiment of the complex system with specification of mechanical features and control circuits. The algorithm of the system operation was presented and its impact on the performance of diesel was made. Originality. The angle regulating system of fuel supply allows automating the process of fuel injection advance angle into the cylinder. Practical value. At implementation the angle regulating system of fuel supply

  1. Diffraction-limited Visible Light Images of Orion Trapezium Cluster With the Magellan Adaptive Secondary AO System (MagAO)

    Close, L M; Morzinski, K; Kopon, D; Follette, K; Rodigas, T J; Hinz, P; Wu, Y-L; Puglisi, A; Esposito, S; Riccardi, A; Pinna, E; Xompero, M; Briguglio, R; Uomoto, A; Hare, T

    2013-01-01

    We utilized the new high-order (250-378 mode) Magellan Adaptive Optics system (MagAO) to obtain very high spatial resolution observations in "visible light" with MagAO's VisAO CCD camera. In the good-median seeing conditions of Magellan (0.5-0.7") we find MagAO delivers individual short exposure images as good as 19 mas optical resolution. Due to telescope vibrations, long exposure (60s) r' (0.63 micron) images are slightly coarser at FWHM=23-29 mas (Strehl ~28%) with bright (R<9 mag) guide stars. These are the highest resolution filled-aperture images published to date. Images of the young (~1 Myr) Orion Trapezium Theta 1 Ori A, B, and C cluster members were obtained with VisAO. In particular, the 32 mas binary Theta 1 Ori C1/C2 was easily resolved in non-interferometric images for the first time. Relative positions of the bright trapezium binary stars were measured with ~0.6-5 mas accuracy. We now are sensitive to relative proper motions of just ~0.2 mas/yr (~0.4 km/s at 414 pc) - this is a ~2-10x improv...

  2. Wood pyrolysis oil for diesel engines

    Paro, D.; Gros, S.; Hellen, G.; Jay, D.; Maekelae, T.; Rantanen, O.; Tanska, T. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)

    1996-12-01

    Wood Pyrolysis oil (WPO) has been identified by the Technical Research Centre of Finland (VTT) as the most competitive biofuel product which can be produced from biomass. The fuel is produced by a fast pyrolysis technique, using wood chipping`s or sawdust. The process can be applied to other recycling products such as straw etc. The use of WPO as a Diesel power plant fuel has been studied, and a fuel specification has been developed. The fuel characteristics have been analysed. There are several fuel properties addressed in the paper which have had to be overcome. New materials have been used in the fuel injection system. The fuel injection system development has progressed from a pump-line-pipe system to a common rail system. The fuel requires a pilot fuel oil injection to initiate combustion. The targets for the fuel injection system have been 1500 bar and 30 deg C injection period with a fuel of 15 MJ/kg lower heating value and 1220 Kg/m{sup 3} density. The combustion characteristics from both a small 80 mm bore engine initially, and then later with a single cylinder test of a 320 mm bore Waertsilae engine, have been evaluated. (author)

  3. Diesel Catalytic Converters As Emission Control Devices

    Internal combustion engines are devices that generate work from combustion reactions. Combustion products under high pressure produce work by expansion through a turbine or piston. The combustion reactions inside these engines are not necessarily neutralizing or complete and air pollutants are produced. There are three major types of internal combustion engine(l) in use today: I) the spark ignition engine, which is used primarily in automobiles; 2) the diesel engine, which is used in large vehicles and industrial systems where cycle efficiency offers advantages over the more compact and lighter-weight spark ignition engine and; 3) the gas turbine, which is used in aircraft due to its high power/weight ratio and is also used for stationary power generation. Each of these types of engine is an important source of atmospheric pollutants. Automobiles are the one of the major source of carbon monoxide, unburned hydrocarbons, and nitrogen oxides. Probably more than any other combustion system, the design of automobile engines is now being guided by requirements to reduce emissions of these pollutants. While substantial progress has been made in emission reduction, automobiles remain important sources of air pollutants

  4. Neural network application to diesel generator diagnostics

    Diagnostic problems typically begin with the observation of some system behavior which is recognized as a deviation from the expected. The fundamental underlying process is one involving pattern matching cf observed symptoms to a set of compiled symptoms belonging to a fault-symptom mapping. Pattern recognition is often relied upon for initial fault detection and diagnosis. Parallel distributed processing (PDP) models employing neural network paradigms are known to be good pattern recognition devices. This paper describes the application of neural network processing techniques to the malfunction diagnosis of subsystems within a typical diesel generator configuration. Neural network models employing backpropagation learning were developed to correctly recognize fault conditions from the input diagnostic symptom patterns pertaining to various engine subsystems. The resulting network models proved to be excellent pattern recognizers for malfunction examples within the training set. The motivation for employing network models in lieu of a rule-based expert system, however, is related to the network's potential for generalizing malfunctions outside of the training set, as in the case of noisy or partial symptom patterns

  5. Aggregation of Diesel Contaminated Soil for Bioremediation

    Yu Ying; Shi Xiu-hong; Li Song; Xu Jing-gang

    2014-01-01

    Diesel contaminated soil (DCS) contained a large amount of the hydrocarbons and salt which was dominated by soluble sodium chloride. Aggregation process which made the desired aggregate size distribution could speed up the degradation rate of the hydrocarbons since the aggregated DCS had better physical characteristics than the non-aggregated material. Artificial aggregation increased pores >30 µm by approximately 5% and reduced pores <1 µm by 5%, but did not change the percentage of the pores between 1 and 30 µm. The saturated hydraulic conductivity of non-aggregated DCS was 5×10-6 m• s-l, but it increased to 1×10-5 m• s-l after aggregation. The compression index of the non-aggregated DCS was 0.0186; however, the artificial aggregates with and without lime were 0.031 and 0.028, respectively. DCS could be piled 0.2 m deep without artificial aggregation; however, it could be applied 0.28 m deep when artificial aggregates were formed without limiting O2 transport.

  6. Low Cost Autothermal Diesel Reforming Catalyst Development

    Shihadeh, J.; Liu, D.

    2004-01-01

    Catalytic autothermal reforming (ATR) represents an important step of converting fossil fuel to hydrogen rich reformate for use in solid oxide fuel cell (SOFC) stacks. The state-of-the-art reforming catalyst, at present, is a Rh based material which is effective but costly. The objective of our current research is to reduce the catalyst cost by finding an efficient ATR catalyst containing no rhodium. A group of perovskite based catalysts have been synthesized and evaluated under the reforming condition of a diesel surrogate fuel. Hydrogen yield, reforming efficiency, and conversion selectivity to carbon oxides of the catalyst ATR reaction are calculated and compared with the benchmark Rh based material. Several catalyst synthesis improvements were carried out including: 1) selectively doping metals on the A-site and B-site of the perovskite structure, 2) changing the support from perovskite to alumina, 3) altering the method of metal addition, and 4) using transition metals instead of noble metals. It was found that the catalytic activity changed little with modification of the A-site metal, while it displayed considerable dependence on the B-site metal. Perovskite supports performed much better than alumina based supports.

  7. All About Portugal - Website dedicado ao turismo externo em Portugal

    Martins, Rui Manuel da Silva

    2015-01-01

    Grande parte do tráfego online tem origem em páginas de resultados de motores de de pesquisa. Estes constituem hoje uma ferramenta fundamental de que os turistas se socorrem para pesquisar e filtrar a informação necessária ao planeamento das suas viagens, sendo, por isso, bastante tidos em conta pelas entidades ligadas ao turismo no momento da definição das suas estratégias de marketing. No presente documento é descrita a investigação feita em torno do modo de funcionamento ...

  8. Isuzu`s approach to small DI diesel engine; Joyoshayo kogata chokufun diesel engine

    Ishida, S. [Isuzu Motors Ltd., Tokyo (Japan)

    1997-09-01

    The paper introduced a low-fuel proto engine developed as diesel engine which is clean and low in fuel consumption. The low-fuel proto car equipped with Isuzu`s 17DIT proto engine which was on show in fall 1995 was reduced about 38% in fuel consumption from Opel`s Corsa equipped with Isuzu`s existing 15DIT diesel engine. Emission of the proto engine cleared Euro 2 regulation. To clear Euro 3 regulation, however, it is needed to make further reduction in emission. For it, technology for the following is necessary: electronic controlling of injection system and EGR, oxidation catalyst, improvement of combustion chamber, pilot injection for reduction of combustion noise, etc. For reduction of NOx and particulates, a lot of research institutes are making efforts for R and D of oxidation catalyst, particulate filter, and De-NOx catalyst. As to DI engines, of which exhaust gas temperature is low, a development is needed of a catalyst with low-temperature activity. 3 refs., 15 figs., 1 tab.

  9. Two-zone modeling of diesel / biodiesel blended fuel operated ceramic coated direct injection diesel engine

    B. Rajendra Prasath, P. Tamil Porai, Mohd. F. Shabir

    2010-11-01

    Full Text Available A comprehensive computer code using ”C” language was developed for compression ignition (C.I engine cycle and modified in to low heat rejection (LHR engine through wall heat transfer model. Combustion characteristics such as cylinder pressure, heat release, heat transfer and performance characteristics such as work done, specific fuel consumption (SFC and brake thermal efficiency (BTE were analysed. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. The effect of coating on engine heat transfer was analysed using a gas-wall heat transfer calculations and total heat transfer was based on ANNAND’s combined heat transfer model. The predicted results are validated through the experiments on the test engine under identical operating conditions on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha seed oil blended with diesel was used in both conventional and LHR engine. The simulated combustion and performance characteristics are found satisfactory with the experimental results.

  10. Thermophysical and rheological properties of dulce de leche with and without coconut flakes as a function of temperature Propriedades termofísicas e reológicas de doces de leite puro e adicionado de flocos de coco em função da temperatura

    Vanessa Camarinha Barbosa

    2013-03-01

    Full Text Available Dulce de leche (DL, a dairy dessert highly appreciated in Brazil, is a concentrated product containing about 70% m/m of total solids. Thermophysical and rheological properties of two industrial Brazilian Dulce de leche formulations (classic Dulce de leche and Dulce de leche added with coconut flakes 1.5% m/m were determined at temperatures comprised between 28.4 and 76.4 °C. In general, no significant differences (p Doce de leite é uma sobremesa láctea concentrada (cerca de 70% de sólidos muito apreciada no Brasil. Propriedades termofísicas e reológicas de duas formulações de doce de leite brasileiro (puro e adicionado de coco ralado a 1,5% em massa foram determinadas a temperaturas compreendidas entre 28,4 e 76,4 °C. No geral, a presença de flocos de coco não acarretou diferenças significativas (p < 0,05 nestas propriedades das duas formulações. A capacidade calorífica variou entre (2633,2 e 3101,8 J/kg.°C; a condutividade térmica entre (0,383 e 0,452 W/m°C; a massa específica entre (1350,7 e 1310,7 kg/m³; e enfim, a difusividade térmica entre (1,082 × 10-7 e 1,130 × 10-7 m²/s. O modelo de Bingham descreveu adequadamente o comportamento não Newtoniano dos dois produtos, com tensão crítica de escoamento variando entre (27,3 e 17,6 Pa e a viscosidade plástica de (19,9 a 5,9 Pa.s.

  11. Optimization of diesel engine performances for a hybrid wind-diesel system with compressed air energy storage

    Electricity supply in remote areas around the world is mostly guaranteed by diesel generators. This relatively inefficient and expensive method is responsible for 1.2 million tons of greenhouse gas (GHG) emission in Canada annually. Some low- and high-penetration wind-diesel hybrid systems (WDS) have been experimented in order to reduce the diesel consumption. We explore the re-engineering of current diesel power plants with the introduction of high-penetration wind systems together with compressed air energy storage (CAES). This is a viable alternative to major the overall percentage of renewable energy and reduce the cost of electricity. In this paper, we present the operative principle of this hybrid system, its economic benefits and advantages and we finally propose a numerical model of each of its components. Moreover, we are demonstrating the energy efficiency of the system, particularly in terms of the increase of the engine performance and the reduction of its fuel consumption illustrated and supported by a village in northern Quebec. -- Highlights: → The Wind-Diesel-Compressed Air Storage System (WDCAS) has a very important commercial potential for remote areas. → The WDCAS is conceived like the adaptation of the existing engines at the level of the intake system. → A wind turbine and an air compression and storage system are added on the diesel plant. → This study demonstrates the potential of WDCAS to reduce fuel consumption and increase the efficiency of the diesel engine. → This study demonstrates that we can expect savings which can reach 50%.

  12. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  13. Recent Progress in the Development of Diesel Surrogate Fuels

    Pitz, W J

    2009-09-04

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel

  14. Recent Progress in the Development of Diesel Surrogate Fuels

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real

  15. Selective catalytic reduction of NOx from diesel engine exhaust using injection of urea. Doctoral thesis

    Hultermans, R.J.

    1995-09-25

    ;Contents: Diesel exhaust NOx formation and abatement (Diesel DeNOxing literature, System Considerations, Summary); Catalytic testing (Experimental facilities for testing catalysts, transport phenomena in steady state fixed bed reactors, Catalyst testing); Development of a urea injection system.

  16. NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...

  17. Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans

    Lammert, M.

    2009-12-01

    Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

  18. AN OVERVIEW OF EFFECT OF AUTOMOTIVE DIESEL ENGINES IN FUTURE

    K.M.Venkatesh

    2012-06-01

    Full Text Available The roll of the vehicle for the transportation of people and goods will become more important all over the world. The reciprocating engine, burning petroleum, will continue to be demanded in the future as the most practical power plant to power the vehicle. The diesel engine, which has the highest thermal efficiency among engines, will become more valuable, considering the increasing threat of the limited energy resources and global warming due to CO2 emission. Therefore, diesel engine technology must be one of the most important technological fields for the future. The current status of performance, fuel economy and exhaust emissions of vehicle diesel engines is summarized in this paper, and the possibility of further technological advancement is discussed. In this discussion, various technologies focusing on the simultaneous reduction of fuel consumption and exhaust emissions by combustion and cycle efficiency improvement are reviewed. Direct injection passenger car diesel engines incorporating those technologies are built and achieved very low fuel consumption and exhaust emissions. The result of these studies shows the diesel engines high potential of further improvement in fuel economy and exhaust emissions in the future, meeting social demand of the world.

  19. The analysis ofdevelopment tendencies of the diesel fuelmarket

    V.V. Klimenko

    2013-03-01

    Full Text Available The aim of the article.The purpose of the research is to analyzethe tendencies of dieselfuel market and detection of existing opportunities for innovation for concrete manufacturer in this sphere. This will enableto choose the better variant of administrative decision and to receive the maximal economic benefit in industrial, marketing and investment activity of the appropriate enterprises in the sphere of raw materials and diesel fuel.The results of the analysis.The functions of diesel fuel marketing at industrial enterprises have been analysed. There have been suggested approaches for carrying out the development of marketing mix.Analysis of market trends in themarket of diesel fuel gives us opportunity to use methodical approach assessment of internal capabilities of the manufacturer external requirements. Targeted research is to understand the market situation in the process of innovative project implementation for production of new diesel improving further marketing activities development of industrial raw materials producers and semi-manufactured products.Conclusions and directions of futher researches.The results of research can be used by domestic oil refining companies to make their own marketing policies more competitive. Oil market is unique. This market has properties for raw materials.Further study of marketing activities in the sphere of diesel fuel, appropriate marketing mix, development of marketing management tools and communication policy in this sphere of activity is very popular.

  20. Evaluation of risk effective STIs with specific application to diesels

    From a risk standpoint, the objective of surveillance tests is to control the risk arising from failures which can occur while the component is on standby. At the same time, risks caused by the test from test-caused failures and test-caused degradations need also to be controlled. Risk-acceptable test intervals balance these risks in an attempt to achieve an acceptable low, overall risk. Risk and reliability approaches are presented which allow risk-acceptable test intervals to be determined for any component. To provide focus for the approaches, diesels are specifically evaluated, however, the approaches can be applied not only to diesels, but to any component with suitable data. Incorporation of the approaches in personal computer (PC) software is discussed, which can provide tools for the regulator or plant personnel for determining acceptable diesel test intervals for any plant specific or generic application. The FRANTIC III computer code was run to validate the approaches and to evaluate specific issues associated with determining risk effective test intervals for diesels. Using the approaches presented, diesel accident unavailability can be more effectively monitored and be controlled on a plant-specific or generic basis. Test intervals can be made more risk effective than they are now, producing more acceptable accident unavailabilities. The methods presented are one step toward performance-based technical specifications, which more directly control risks

  1. Measuring global gasoline and diesel price and income elasticities

    Price and income elasticities of transport fuel demand have numerous applications. They help forecast increases in fuel consumption as countries get richer, they help develop appropriate tax policies to curtail consumption, help determine how the transport fuel mix might evolve, and show the price response to a fuel disruption. Given their usefulness, it is understandable why hundreds of studies have focused on measuring such elasticities for gasoline and diesel fuel consumption. In this paper, I focus my attention on price and income elasticities in the existing studies to see what can be learned from them. I summarize the elasticities from these historical studies. I use statistical analysis to investigate whether income and price elasticities seem to be constant across countries with different incomes and prices. Although income and price elasticities for gasoline and diesel fuel are not found to be the same at high and low incomes and at high and low prices, patterns emerge that allow me to develop suggested price and income elasticities for gasoline and diesel demand for over one hundred countries. I adjust these elasticities for recent fuel mix policies, and suggest an agenda of future research topics. - Research highlights: ► Surveyed econometric studies of transport fuel demand. ► Developed price elasticities of demand for gasoline and diesel fuel for 120 countries. ► Developed income elasticities of demand for gasoline and diesel fuel for 120 countries. ► Suggested a research agenda for future work.

  2. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    Saddam H. Al-lwayzy

    2015-12-01

    Full Text Available Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD. Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10% and ethanol (10% have been mixed and added to (80% diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel (MOE20% has been found to be homogenous and stable without using surfactant. The presence of microalgae oil improved the ethanol fuel demerits such as low density and viscosity. The transesterification process was not required for oil viscosity reduction due to the presence of ethanol. The MOE20% fuel has been tested in a variable compression ratio diesel engine at different speed. The engine test results with MOE20% showed a very comparable engine performance of in-cylinder pressure, brake power, torque and brake specific fuel consumption (BSFC to that of PD. The NOx emission and HC have been improved while CO and CO2 were found to be lower than those from PD at low engine speed.

  3. Definition method signal filtering irregularity crankshaft speed of diesel

    B.Ye.Bodnar

    2013-02-01

    Full Text Available Purpose. Determination of signal processing techniques uneven angular velocity of the crankshaft of diesel locomotive for the release of the signal from the noise. Methodology. One of the implementations of strategy development and implementation of folding diagnosing diesel engines in service is a method of folding diagnostics and condition monitoring of diesel locomotive for uneven speed of the crankshaft. The disadvantages of the method of averaging the data and the technique of non-repeatable evaluation cycles diesel are analyzed. Findings. Signal receiving of uneven speed is achieved by using angular velocity sensor, which is used as an incremental encoder. The block diagram of the device and the parameters of the received signal have been shown. Typical graphic interpretations of the angular velocity signal are presented. Using of FIR filter was proposed and its parameters were dimensioned. The analysis of the spectrograms of the signals in both measurement modes speed signal was carried out and the filter cut-off frequency was selected. The solution of the problem of the phase shift filtering results is presented. Originality.The importance of the digital filter is substantiated. The approach, which allows the use of non-repeatable indicator cycles as an additional indicator of the diesel engine is developed. Practical value.Problem solving of signal processing allows receiving a useful signal not taking into account noise impact, which distorts the true picture of the physical process.

  4. Diesel fueled ship propulsion fuel cell demonstration project

    Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  5. An Overview of Effect of Automotive Diesel Engines in Future

    K. M. Venkatesh

    2012-08-01

    Full Text Available The roll of the vehicle for the transportation of people and goods will become more important all over the world. The reciprocating engine, burning petroleum, will continue to be demanded in the future as the most practical power plant to power the vehicle. The diesel engine, which has the highest thermal efficiency among engines, will become more valuable, considering the increasing threat of the limited energy resources and global warming due to CO2 emission. Therefore, diesel engine technology must be one of the most important technological fields for the future. The current status of performance, fuel economy and exhaust emissions of vehicle diesel engines is summarized in this paper, and the possibility of further technological advancement is discussed. In this discussion, various technologies focusing on the simultaneous reduction of fuel consumption and exhaust emissions by combustion and cycle efficiency improvement are reviewed. Direct injection passenger car diesel engines incorporating those technologies are built and achieved very low fuel consumption and exhaust emissions. The result of these studies shows the diesel engines high potential of further improvement in fuel economy and exhaust emissions in the future, meeting social demand of the world.

  6. Trace and minor element characterization of diesel soot

    Concentrations of 20 trace and minor components, such as metals, nitrogen and sulphur, were determined in representative diesel soot samples corresponding to various driving patterns of an old and a new type of Mercedes-Benz diesel engine for passenger cars. The samples were analysed by instrumental neutron activation analysis, and after decomposition, by flame and graphite furnace atomic absorption spectrometry. The content of sulphur was determined by a method based on the formation of hydrogen sulphide and precipitation micro-titrimetry. The concentrations of the elements Au, La, Sb, Sc and V were at the sub-μg/g level; As, Ba, Cd, Co, Cr, Mn, Ni and Se were at the lower μg/g level; and Ca, Cu, Fe, N, Na, Pb, S, and Zn ranged from the upper μg/g to lower percent levels. The emission of several elements was likely the result of different factors such as utilization of organometallic additives (Ca, Na, Zn) in diesel fuel or lubrication oil, contamination of diesel fuel by alkyllead compounds, wear and corrosion of the engine and exhaust system parts. The concentration of elemental components in diesel soot, generally, varied with operating conditions, which affected fuel and oil consumption, combustion efficiency (soot production), and mechanical strain. (orig.)

  7. Coal-fueled diesel engines for locomotive applications

    Hsu, B.D.; Najewicz, D.J.; Cook, C.S.

    1993-11-01

    GE Transportation Systems (GE/TS) completed a two and one half year study into the economic viability of a coal fueled locomotive. The coal fueled diesel engine was deemed to be one of the most attractive options. Building on the BN-NS study, a proposal was submitted to DOE to continue researching economic and technical feasibility of a coal fueled diesel engine for locomotives. The contract DE-AC21-85MC22181 was awarded to GE Corporate Research and Development (GE/CRD) for a three year program that began in March 1985. This program included an economic assessment and a technical feasibility study. The economic assessment study examined seven areas and their economic impact on the use of coal fueled diesels. These areas included impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The results of the study indicated the merits for development of a coal-water slurry (CWS) fueled diesel engine. The technical feasibility study examined the combustion of CWS through lab and bench scale experiments. The major accomplishments from this study have been the development of CWS injection hardware, the successful testing of CWS fuel in a full size, single cylinder, medium speed diesel engine, evaluation of full scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions.

  8. Effect of carbon coating on scuffing performance in diesel fuels

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  9. Adsorption Process of Sulfur Removal from Diesel Oil Using Sorbent Materials

    Isam A. H. Al Zubaidy; Fatma Bin Tarsh; Noora Naif Darwish; Balsam Sweidan Sana Abdul Majeed; Aysha Al Sharafi; Lamis Abu Chacra

    2013-01-01

    The removal of organo-sulfur compounds (ORS) from diesel fuel is an important aspect of all countries to reduce air pollution by reducing the emission of toxic gases such as sulfur oxides and other polluted materials. One of the easily and fast method to remove sulfur from diesel oil is the adsorption desulfurization process. Adsorption-desulfurization process of diesel fuel was proposed and examined. Local diesel fuel of 410 ppm sulfur content was treated with commercial activated carbon and...

  10. Influence of Diesel Nozzle Geometry on Cavitation Using Eulerian Multi-Fluid Method

    张军; 杜青; 杨延相

    2010-01-01

    Dependent on automatically generated unstructured grids, a comprehensive computational fluid dynamics(CFD)numerical simulation is performed to analyze the influence of nozzle geometry on the internal flow characteristics of a multi-hole diesel injector with the multi-phase flow model based on Eulerian multi-fluid method.The diesel components in nozzle are considered as two continuous phases, diesel liquid and diesel vapor respectively.Considering that both of them are fully coupled and interpenetrated, sepa...

  11. Resposta ao estresse: II. Resiliência e vulnerabilidade

    Nicole Leite Galvão-Coelho

    2015-06-01

    Full Text Available ResumoA crescente exposição a estressores na vida cotidiana aumentou significativamente a investigação da resposta ao estresse nas duas últimas décadas. Embora associada a consequências negativas, pois muitas patologias físicas e mentais são desencadeadas por exposição crônica a estressores, esta resposta é indispensável para sobrevivencia do indivíduo e é extremamente adaptativa quando ativada de forma aguda. Na parte I desta revisão foram abordados os conceitos de homestase e alostase e os sistemas fisiológicos ativados durante a resposta ao estresse. Na parte II serão discutidos fatores que modulam a resposta ao estresse tais como sexo, temperamento, períodos críticos do desenvolvimento e a presença ou ausência de suporte social. A interação entre os fatores genéticos e ambientais gera os perfis da resposta psicofisiológica que caracterizam os fenótipos de susceptibilidade e resiliência frente aos estressores e sua relação com uma patologia mental cada vez mais presente na sociedade moderna, o transtorno de estresse pós-traumático.

  12. On some Polychaetous Annelids from Curaçao

    Horst, R.

    1922-01-01

    Though we know already a rather large number of Polychaetous Annelids from the Caribbean Sea, hitherto, as far as I know, no Annelids have been described from the coast of the island Curaçao and I therefore was very glad, that my colleague Dr. VAN DER HORST kindly placed in my hands for identificati

  13. Performance and emission characteristics of an agricultural diesel engine fueled with blends of Sal methyl esters and diesel

    Highlights: • Sal seed oil is unexplored biodiesel feedstock which is abundantly found in India. • Sal seed oil has good oxidation stability. • Performance and emission characteristics of the blends of Sal methyl esters with diesel evaluated. • At higher loads, CO, HC and smoke emissions of SME blends were lower than diesel. - Abstract: The present work deals with an underutilized vegetable oil; Sal seed oil (Shorea robusta) as a feedstock for biodiesel production. The production potential of Sal seed oil is very promising (1.5 million tons in a year) in India. The pressure filtered Sal seed oil was transesterified into Sal Methyl Ester (SME). The kinematic viscosity (5.89 cSt), density (0.8764 g/cc) and calorific value (39.65 MJ/kg) of the SME were well within the ASTM/EN standard limits. Various test fuels were prepared for the engine trials by blending 10%, 20%, 30% and 40% of SME in diesel on volumetric basis and designated as SME10, SME20, SME30 and SME40 respectively. The BTE, in general, was found to be decreased with increased volume fraction of SME in the blends. At full load, BSEC for SME10, SME20, SME30 and SME40 were 13.6 MJ/kW h, 14.3 MJ/kW h, 14.7 MJ/kW h and 14.8 MJ/kW h respectively as compared to 13.9 MJ/kW h in case of diesel. At higher load conditions, CO, UHC and smoke emissions were found lower for all SME blends in comparison to neat diesel due to oxygenated nature of fuel. SME10, SME20, SME30 and SME40 showed 51 ppm, 44 ppm, 46 ppm and 48 ppm of UHC emissions respectively as compared to 60 ppm of diesel. The NOx emissions were found to be increased for SME based fuel in comparison to neat diesel operation. At peak load condition, SME10, SME20, SME30 and SME40 had NOx emissions of 612 ppm, 644 ppm, 689 ppm and 816 ppm as compared to 499 ppm for diesel. It may be concluded from the experimental investigations that Sal seed biodiesel is a potential alternative to diesel fuel for reducing dependence on crude petroleum derived fuels and

  14. Increase of Performance and Smoke Emission by Increasing ERG Rate in IDI Diesel Engine using Jatropha Oil and Diesel Fuel Blends

    Syaiful MSK Tony Suryo Utomo

    2013-01-01

    Full Text Available Recently, a study of biodiesel fuel use as a substitute of diesel fuel becomes an interesting topic due to critical fossil fuel availability. The use of biodiesel fuel directly into diesel engine without the change of fuel injector parameter causes the problems because of different properties of biodiesel fuel compared with that of diesel fuel. The aim of present study is to investigate experimentally the effect of exhaust gas recirculation (EGR on the diesel engine performance and smoke emissions by using jatropha oil and diesel fuel blends as the fuel. EGR is one of methods to increase the fuel efficiency of diesel engine. The use of EGR method on diesel engine may also reduce NOx emissions. In this research, EGR temperature is varied to study its effect on the diesel engine consumption and smoke emissions. Jatropha oil blend is in the range of 10 to 30 %. It is found that the high EGR rate expressed the low fuel consumption compared with that of the low EGR rate by using diesel fuel or jatropha oil - diesel fuel blends. The present paper also shows that the high EGR rate results the high smoke emissions for both cases.

  15. 46 CFR 119.465 - Ventilation of spaces containing diesel machinery.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.465 Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with adequate means, such as...

  16. 40 CFR 86.341-79 - Diesel engine dynamometer test run.

    2010-07-01

    ... general test data as specified in § 86.337(b); (4) Start cooling system; (5) Precondition the engine in... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine dynamometer test run. 86....341-79 Diesel engine dynamometer test run. (a) This section applies to Diesel engines only....

  17. Effect of upgraded diesel fuels and oxidation catalysts on emission properties, especially PAH and genotoxicity

    Johansen, Keld; Gabrielsson, Pär; Stavnsbjerg, Peter;

    1997-01-01

    Test samples of two different “advanced” diesel fuels were prepared from the raw diesel of North Sea Light Gas Oil. A commercial “Ultralight” diesel fuel was used as a reference. The three fuels were tested on two engines with and without an oxidation catalyst: 1) a VOLVO 10.0 1 DI was mounted in...

  18. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    Geiger, Gail E. [Delphi Automotive Systems, LLC., Gillingham (United Kingdom)

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  19. Analysis of the Mechanism and the Current Situation of the Plasma Purification Technology for Diesel Exhaust

    Xiuli Guo

    2013-01-01

    In this study, the mechanism and the current situation of the plasma purification technology for diesel exhaust is introduced. Research indicates that cleaning the diesel exhaust with the plasma produced by corona discharge or dielectric barrier discharge has too high energy consumption to direct use without catalyst. To solve this problem, the study gives some new ways about cleaning diesel exhaust with arc discharge.

  20. 26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.

    2010-04-01

    ... fuel. (a) Exemption. Tax is not imposed by section 4081 on the removal, entry, or sale of any diesel... case of a removal from a terminal, the terminal is an approved terminal; and (3) The diesel fuel or... if the diesel fuel or kerosene contains— (1) The dye Solvent Red 164 (and no other dye) at...

  1. Replacing diesel by solar in the Amazon: short-term economic feasibility of PV-diesel hybrid systems

    Energy planning in the Brazilian Amazon faces two major challenges. One is that of helping the off-grid population improve a situation of discomfort, environmental risks and high lighting costs. Another is that of cutting fuel subsidies in the local utility grids supplied by diesel generators. Simulation shows that PV systems with energy storage connected to existing diesel generators, allowing them to be turned of during the day, provide the lowest energy costs. Implementation potential of that choice is evaluated for local grids up to 100 kW, where transportation costs cause maximal wholesale diesel prices for Northern Brazil to be increased of 15% and more, it is economical to convert diesel systems up to 50 kW peak power into hybrid systems. In locations where the costs increase is of 45% and more, systems up to 100 kW turn economical. A new legal mechanism for subrogation of diesel subsidies to renewable energy projects changes those limits to 0% and 21%, respectively. Therefore, the actors in power generation are motivated to consider solar energy. A program with the scope described should give the Brazilian photovoltaic industry a relevant push and launch a transition towards a sustainable power supply for the region

  2. COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH NEEM OIL METHYL ESTER AND ITS DIESEL BLENDS

    L. Prabhu

    2013-01-01

    Full Text Available Biodiesel, an alternative fuel is derived from the fats of animals and plants. As energy demands increase and fossil fuels are limited, research is directed towards alternative renewable fuels. The main advantages of using this alternative fuel are its renewability, biodegradability and better quality of exhaust gases. It is technically competitive and environmentally friendly alternative to conventional petro-diesel fuel for use in Compression Ignition (CI engines. The use of biodiesel reduces the dependence on imported fossil fuels which continue to decrease in availability and affordability. An experimental investigation has been carried out to evaluate the combustion, performance and emission characteristics of a diesel engine with the effect of using neem oil methyl ester and its diesel blends at different loads. The results showed that maximum cylinder pressure and maximum rate of heat release increased with the increase in bio diesel blends. The carbon monoxide (CO and smoke emissions were found significantly lower when operating on biodiesel-diesel blends, but Nitrogen Oxide (NOx emissions are found to be higher at full load.

  3. Performance and Emission Characteristics of an IDI Diesel Engine Fuelled Biodiesel (Rubber Seed Oil and Palm Oil Mix Diesel Blends

    Adam Ibrahim K.

    2014-07-01

    Full Text Available In this study crude rubber seed oil and palm oil were mixed at 50: 50 vol.feedstock’s blending methods is motivated by cost reduction and properties enhancement. Biodiesel was produced and thermo physical properties are studied. Blends of B5, B10 and B20 of biodiesel to diesel were prepared. Engine performance (torque, brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and emission (CO, NOx and exhaust gas temperature were evaluated in a 4 cylinder, natural aspirated, indirect injection (IDI diesel engine. The results indicated that at rated engine speed of 2500 rpm torque obtained were 87, 86, 85.3 and 85 Nm for neat diesel, B5, B10 and B20 respectively. Torque in all blends case yield between 0 to 5% lower than neat diesel. BTE were 27.58, 28.52, and 26.45% for B5, B10 and B20 compared to neat diesel 26.99%. At lower blends ratio BSFC was found to be lower and increased proportional to the blends ratio. The CO emission reduced but the exhaust gas temperature and NOx increased as blends ratio increases.

  4. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine

    Highlights: • Potential of biodiesel production from crude Moringa oleifera oil. • Characterization of M. oleifera biodiesel and its blend with diesel fuel. • Evaluation of M. oleifera biodiesel blend in a diesel engine. - Abstract: Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. This study aims to evaluate the physico-chemical properties of Moringa oleifera biodiesel and its 10% and 20% by-volume blends (B10 and B20) in comparison with diesel fuel (B0). The performance and emission of M. oleifera biodiesel and its blends in a multi-cylinder diesel engine were determined at various speeds and full load conditions. The properties of M. oleifera biodiesel and its blends complied with ASTM D6751 standards. Over the entire range of speeds, B10 and B20 fuels reduced brake power and increased brake specific fuel consumption compared with B0. In engine emissions, B10 and B20 fuels reduced carbon monoxide emission by 10.60% and 22.93% as well as hydrocarbon emission by 9.21% and 23.68%, but slightly increased nitric oxide emission by 8.46% and 18.56%, respectively, compared with B0. Therefore, M. oleifera is a potential feedstock for biodiesel production, and its blends B10 and B20 can be used as diesel fuel substitutes

  5. PERFORMANCE ANALYSIS OF 1,4 DIOXANE-ETHANOL-DIESEL BLENDS ON DIESEL ENGINES WITH AND WITHOUT THERMAL BARRIER COATING

    Chockalingam Sundar Raj

    2010-01-01

    Full Text Available 1,4 dioxane, a new additive allows the splash blending of ethanol in diesel in a clear solution. The objective of this investigation is to first create a stable ethanol-diesel blended fuel with 10% 1,4 dioxane additive, and then to generate performance, combustion and emissions data for evaluation of different ethanol content on a single cylinder diesel engine with and without thermal barrier coating. Results show improved performance with blends compared to neat fuel for all conditions of the engine. Drastic reduction in smoke density is found with the blends as compared to neat diesel and the reduction is still better for coated engine. NOx emissions were found to be high for coated engines than the normal engine for the blends. The oxygen enriched fuel increases the peak pressure and rate of pressure rise with increase in ethanol ratio and is still superior for coated engine. Heat release pattern shows higher premixed combustion rate with the blends. Longer ignition delay and shorter combustion duration are found with all blends than neat diesel fuel.

  6. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  7. Reducing emissions of persistent organic pollutants from a diesel engine by fueling with water-containing butanol diesel blends.

    Chang, Yu-Cheng; Lee, Wen-Jhy; Yang, Hsi-Hsien; Wang, Lin-Chi; Lu, Jau-Huai; Tsai, Ying I; Cheng, Man-Ting; Young, Li-Hao; Chiang, Chia-Jui

    2014-05-20

    The manufacture of water-containing butanol diesel blends requires no excess dehydration and surfactant addition. Therefore, compared with the manufacture of conventional bio-alcohols, the energy consumption for the manufacture of water-containing butanol diesel blends is reduced, and the costs are lowered. In this study, we verified that using water-containing butanol diesel blends not only solves the tradeoff problem between nitrogen oxides (NOx) and particulate matter emissions from diesel engines, but it also reduces the emissions of persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polychlorinated diphenyl ethers, polybrominated dibenzo-p-dioxins and dibenzofurans, polybrominated biphenyls and polybrominated diphenyl ethers. After using blends of B2 with 10% and 20% water-containing butanol, the POP emission factors were decreased by amounts in the range of 22.6%-42.3% and 38.0%-65.5% on a mass basis, as well as 18.7%-78.1% and 51.0%-84.9% on a toxicity basis. The addition of water-containing butanol introduced a lower content of aromatic compounds and most importantly, lead to more complete combustion, thus resulting in a great reduction in the POP emissions. Not only did the self-provided oxygen of butanol promote complete oxidation but also the water content in butanol diesel blends could cause a microexplosion mechanism, which provided a better turbulence and well-mixed environment for complete combustion. PMID:24738886

  8. Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Popovicheva, Olga; Kireeva, Elena; Müller, Loretta; Heeb, Norbert; Mayer, Andreas; Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air-liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that - at least RME - can be considered a valuable alternative to pure fossil diesel.

  9. Chemical Kinetic Models for HCCI and Diesel Combustion

    Pitz, W J; Westbook, C K; Mehl, M

    2008-10-30

    Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  10. Planar velocity analysis of diesel spray shadow images

    Sedarsky, David; Blaisot, J-B; Rozé, C

    2012-01-01

    The focus of this work is to demonstrate how spatially resolved image information from diesel fuel injection events can be obtained using a forward-scatter imaging geometry, and used to calculate the velocities of liquid structures on the periphery of the spray. In order to obtain accurate velocities directly from individual diesel spray structures, those features need to be spatially resolved in the measurement. The distributed structures measured in a direct shadowgraphy arrangement cannot be reliably analyzed for this kind of velocity information. However, by utilizing an intense collimated light source and adding imaging optics which modify the signal collection, spatially resolved optical information can be retrieved from spray edge regions within a chosen object plane. This work discusses a set of measurements where a diesel spray is illuminated in rapid succession by two ultrafast laser pulses generated by a mode-locked Ti-Sapphire oscillator seeding a matched pair of regenerative amplifiers. Light fro...

  11. Control of autothermal reforming reactor of diesel fuel

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther

    2016-05-01

    In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).

  12. City transport diesel performance on modified rape oil

    Bialostocki, S.; Jankowski, A. [Institute of Aeronautics, Warswaw (Poland); Reksa, M. [Wroclaw Univ. (Poland)

    1996-08-01

    Research concerning the application of rape oil derived fuels in Diesel engines of city buses is reported in this paper. The results of testing a Diesel engine of rated power 141 kW on a test bed are quoted. The fuel used was a methyl ester of rape seed oil (RME). The testing comprised engine performance and exhaust emissions measurement in compliance with EEC 49 procedures. The results have been compared with those obtained for Diesel fuel (DF). Also road testing of buses fed with RME fuel was conducted. The engine performance when fed with RME was not affected adversely. As to the emissions, there was a reduction of NO{sub x} (about 15%), HC (about 12%), and soot (about 40%). (author)

  13. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

    2004-05-01

    The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break

  14. "Diesel siphoner's lung": Exogenous lipoid pneumonia following hydrocarbon aspiration.

    Venkatnarayan, Kavitha; Madan, Karan; Walia, Ritika; Kumar, Jaya; Jain, Deepali; Guleria, Randeep

    2014-01-01

    Lipoid pneumonia is an unusual and uncommon form of pneumonia caused by aspiration of fatty substances. Hydrocarbon pneumonitis following aspiration of diesel is a form of exogenous lipoid pneumonia wherein, aspirated diesel reaches the alveoli rapidly without evoking any significant cough, but initiates an intense inflammatory reaction in the pulmonary parenchyma. This is a rarely described clinical scenario, although the practice of diesel siphonage from automobiles is a common practice in developing countries. We herein describe a 40-year-old male patient, in whom the diagnosis of lipoid pneumonia was delayed for a long duration and highlight the importance of taking a detailed occupational exposure history in patients with non-resolving pneumonia to rule out the underlying possibility of this rare clinical entity. PMID:24669087

  15. Lubricity Additives and Wear with DME in Diesel Injection Pumps

    Nielsen, Kasper; Sorenson, Spencer C.

    1999-01-01

    Ether as well as its low viscosity compared with conventional fuels. A test rig consisting of conventional fuel injection equipment was developed in order to test the wear-reducing effects of different boundary additives added to a 99.9 % pure Dimethyl Ether fuel base stock. Attempts to characterize...... wear of standard diesel jerk pump plungers elements were made with weight measurements, diameter measurements, 2-D and 3-D surface roughness measurements, and photography by a Michelson interferometer. Several lubricity additives were tested, but none reduced wear levels to those for diesel fuel......In recent years it has been demonstrated that Dimethyl Ether (DME) possess many characteristics that could make it a successful alternative to diesel in the next century. High wear of the fuel injection system has been reported. This is caused by lack of natural protective constituents of Dimethyl...

  16. Fault detection and diagnosis of diesel engine valve trains

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  17. Vehicular Diesel control emissions benefit assessment in Mexico City

    Garcia-Reynoso, J.; Jazcilevich, A. D.; Ruiz-Suarez, L.; Cruz-Nuñez, X.; Rojas, A. R.; Tripp, M. R.

    2013-12-01

    Diesel vehicles contribute in an important proportion to the particle and black carbon (BC) ambient concentrations in urban areas. These pollutants can effect the climate and health. The average age of the Diesel fleet in Mexico is 15 year-old. An introduction of new technologies and retrofit systems can reduce emissions from this type of vehicles. A set of policies were selected and applied in order to identify their economic benefits in health. An air quality model was used to obtain ambient concentrations from the emissions and specific methodology for emissions inventory adjustment was developed for this project. Preliminary results show an important benefit due to the improvement of the emissions reduction from the Diesel fleet. PM2.5 differences for reduction scenario case 1 and base case. Output from WRF-chem using 2005 Naional Emissions Inventory Reductions obtained using data from the initial fleet, fleet temporal variation and substitution policies.

  18. Simulation of homogeneous diesel combustion processes; Simulation homogener Diesel-Brennverfahren

    Bauer, Clemens

    2008-07-01

    For the modeling of ignition and combustion of homogeneous Diesel combustion processes two modeling approaches were developed. In both approaches the heat release during the cool flame phase as the first phase of the homogeneous combustion process is considered. The first approach is called Multi-SR approach within this work and is based on the coupling of a system of stochastic reactors with a 3d-CFD-code. The stochastic reactors are modeled in a langrangian way by particles which are moved convectively with the flow field. Depending on the local position they represent their surrounding area in the combustion chamber. Information concerning convection, evaporation, wall heat transfer as well as the turbulent timescale needed for the turbulent mixing process are transferred from the 3d-CFC-Code to the stochastic reactors. With this modeling approach ignition and combustion are implicitly considered. The second approach is a progress variable one with the reaction time as progress variable used for the turbulent description of the ignition phase of homogeneous Diesel combustion processes. The model is based on an online-generated library. Within this library the laminar heat release rates are calculated depending on the reaction time. Based on the library the turbulent released energy during the ignition phase is calculated. In the end the turbulent released energy is coupled to the 3d-CFC-Code based on a simple chemical reaction. After reaching a predefined criterion the ignition model is switched to a conventional Diesel combustion model. With this model the main combustion part is simulated then. The Multi-SR-approach as well as the progress variable approach were implemented in the three-dimensional CFD-Code KIVA [87] and validated with single cylinder data. In most cases the Multi-SR-approach showed a good agreement respect to start of the cool flame and main combustion, maximum pressure and post flame behaviour. The heat release rate during the cool flame

  19. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES

    Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

    2003-08-24

    Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

  20. Peningkatan Unjuk Kerja Motor Diesel dengan Penambahan Pemanas Solar

    Willyanto Anggono

    1999-01-01

    Full Text Available The imperfect combustion process will be a problem in the development effort of diesel engine's performance. Nonhomogen air-fuel mixing process is one of the factors which cause the imperfect combustion. By heating up the diesel fuel up to a certain temperature before it goes through the high pressure injection pump will lower its density and viscosity. Therefore, when injected in the combustion chamber, it will formed smaller droplets of fuel spray which result in a more homogenious air-fuel mixture. Also by using higher temperature will make the diesel fuel easier to ignite in order to compensate the limited time which is available in high speed operating conditions. Diesel fuel heating can improve the combustion process to increase the power and decrease the fuel consumption optimally. Abstract in Bahasa Indonesia : Tidak sempurnanya proses pembakaran merupakan masalah yang akan dijumpai dalam usaha peningkatan kinerja motor diesel. Proses pencampuran udara dan bahan bakar yang kurang baik menjadi salah satu faktor penyebab ketidak sempurnaan tersebut. Dengan melakukan pemanasan terhadap solar sampai temperatur tertentu sebelum masuk ke dalam pompa tekanan tinggi akan menyebabkan penurunan density dan viskositas solar, sehingga bila diinjeksikan ke dalam ruang bakar akan membentuk butiran kabut bahan bakar yang lebih halus yang akan menyebabkan proses pencampuran bahan bakar dan udara menjadi lebih homogen. Disamping itu, dengan temperatur yang lebih tinggi akan membuat solar menjadi lebih mudah terbakar sehingga dapat mengimbangi singkatnya waktu yang tersedia untuk pembakaran pada putaran tinggi. Pemanasan solar dapat dipergunakan sebagai salah satu cara untuk menyempurnakan proses pembakaran sehingga dihasilkan peningkatan daya dan penurunan konsumsi bahan bakar yang optimal. Kata kunci : peningkatan daya, penurunan konsumsi bahan bakar, motor diesel, proses pembakaran

  1. A Review on Diesel Soot Emission, its Effect and Control

    R. Prasad

    2011-01-01

    Full Text Available The diesel engines are energy efficient, but their particulate (soot emissions are responsible of severe environmental and health problems. This review provides a survey on published information regarding diesel soot emission, its adverse effects on the human health, environment, vegetations, climate, etc. The legislations to limit diesel emissions and ways to minimize soot emission are also summarized. Soot particles are suspected to the development of cancer; cardiovascular and respiratory health effects; pollution of air, water, and soil; impact agriculture productivity, soiling of buildings; reductions in visibility; and global climate change. The review covers important recent developments on technologies for control of particulate matter (PM; diesel particulate filters (DPFs, summarizing new filter and catalyst materials and DPM measurement. DPF technology is in a state of optimization and cost reduction. New DPF regeneration strategies (active, passive and plasma-assisted regenerations as well as the new learning on the fundamentals of soot/catalyst interaction are described. Recent developments in diesel oxidation catalysts (DOC are also summarized showing potential issues with advanced combustion strategies, important interactions on NO2 formation, and new formulations for durability. Finally, systematic compilation of the concerned newer literature on catalytic oxidation of soot in a well conceivable tabular form is given. A total of 156 references are cited. ©2010 BCREC UNDIP. All rights reserved(Received: 2nd June 2010, Revised: 17th June 2010; Accepted: 24th June 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Review on Diesel Soot Emission, its Effect and Control. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 69-86. doi:10.9767/bcrec.5.2.794.69-86][DOI: http://dx.doi.org/10.9767/bcrec.5.2.794.69-86 || or local:   http://ejournal.undip.ac.id/index.php/bcrec/article/view/794 ]Cited by in: ACS 1 |

  2. Measurement of Gas-phase Acids in Diesel Exhaust

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  3. Effect of ethanol fuel additive on diesel emissions.; TOPICAL

    Engine-out emissions from a Volkswagen model TDI engine were measured for three different fuels: neat diesel fuel, a blend of diesel fuel and additives containing 10% ethanol, and a blend of diesel fuel and additives containing 15% ethanol. The test matrix covered five speeds from 1,320 to 3,000 rpm, five torques from 15 Nm to maximum plus the 900-rpm idle condition, and most of the points in the FTP-75 and US-06 vehicle tests. Emissions of particulate matter (PM), nitrogen oxides (NO(sub x)), unburned hydrocarbons (HCs), and carbon monoxide (CO) were measured at each point, as were fuel consumption, exhaust oxygen, and carbon dioxide output. PM emissions were reduced up to 75% when ethanol-diesel blends were used instead of neat diesel fuel. Significant reductions in PM emissions occurred over one-half to two-thirds of the test matrix. NO(sub x) emissions were reduced by up to 84%. Although the regions of reduced NO(sub x) emissions were much smaller than the regions of reduced PM emissions, there was considerable overlap between the two regions where PM emissions were reduced by up to 75% and NO(sub x) emissions were reduced by up to 84%. Such simultaneous reduction of both PM and NO(sub x) emissions would be difficult to achieve by any other means. HC and CO emissions were also reduced in the regions of reduced PM and NO(sub x) emissions that overlapped. Because the ethanol-diesel blends contain less energy on both a per-unit-mass basis and a per-unit-volume basis, there was a reduction in maximum torque of up to 10% and an increase in brake-specific fuel consumption of up to 7% when these blends were used

  4. An experimental investigation on DI diesel engine with hydrogen fuel

    Saravanan, N.; Nagarajan, G.; Narayanasamy, S. [Internal Combustion Engineering Division, Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai 600 025 (India)

    2008-03-15

    The internal combustion engines have already become an indispensable and integral part of our present day life style, particularly in the transportation and agricultural sectors [Nagalingam B. Properties of hydrogen. In: Proceedings of the summer school of hydrogen energy, IIT Madras, 1984]. Unfortunately the survival of these engines has, of late, been threatened due to the problems of fuel crisis and environmental pollution. Therefore, to sustain the present growth rate of civilization, a nondepletable, clean fuel must be expeditiously sought. Hydrogen exactly caters to the specified needs. Hydrogen, even though ''renewable'' and ''clean burning'', does give rise to some undesirable combustion problems in an engine operation, such as backfire, pre-ignition, knocking and rapid rate of pressure rise [Srinivasa Rao P. Utilization of hydrogen in a dual fueled engine. In: Proceedings of the summer school of hydrogen energy, IIT Madras, 1984; Siebers DL. Hydrogen combustion under diesel engine conditions. Hydrogen Energy 1998;23:363-71]. The present investigation compares the performance and emission characteristics of a DI diesel engine with gaseous hydrogen as a fuel inducted by means of carburation technique and timed port injection technique (TPI) along with diesel as a source of ignition [Swain N, Design and testing of dedicated hydrogen-fueled engine. SAE 961077, 1996]. In the present study the specific energy consumption, NO{sub x} emission and the exhaust gas temperature increased by 6%, 8% and 14%, respectively, and brake thermal efficiency and smoke level reduced by 5% and 8%, respectively, using carburation technique compared to baseline diesel. But in the TPI technique, the specific energy consumption, exhaust gas temperature and smoke level reduced by 15%, 45% and 18%, respectively. The brake thermal efficiency and NO{sub x} increased by 17% and 34%, respectively, compared to baseline diesel. The emissions such as HC

  5. A study to reduce DPM(Diesel Particulate Matter) emission

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research commenced in 1994 for the purpose of providing safety and environmental measures of underground mines where the mobile diesel equipment are operating. In this last research year, research on filtering of DPM(diesel particulate matter) has been carried out. Through the research, it was known that water scrubber is only one practical way to reduce DPM emission as of now. There are several kinds of the sophisticated DPM filters, but it is not practical yet to be used in underground equipment due to the many adverse effects of the devices such as tremendous increase of SOx, NOx and back pressure etc. (author). 1 tab., 3 figs.

  6. Biosorption of diesel and lubricating oil on algal biomass

    Mishra, Praveen Kumar; Mukherji, Suparna

    2012-01-01

    Algae are widely used as biosorbent for the sorption of heavy metals, however sorption of oil on algae has not been explored. Algae in marine and fresh water environment may affect the fate and transport of spilled oil. Sorption of diesel and lubricating oil was studied using dead biomass of Spirulina sp. and Scenedesmus abundans. The rate and extent of sorption was studied in well mixed batch systems containing oil (0.1–2 %, v/v) and biomass (0.1 %) suspended in water. Sorption of diesel on ...

  7. An Overview of Biodiesel and Petroleum Diesel Life Cycles

    Sheehan, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Camobreco, Vince [National Renewable Energy Lab. (NREL), Golden, CO (United States); Duffield, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Graboski, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapouri, Housein [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-05-01

    This overview is extracted from a detailed, comprehensive report entitled Life Cycle Inventories of Biodiesel and Petroleum Diesel for Use in an Urban Bus. This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI comprehensively quantifies all the energy and environmental flows associated with a product from “cradle to grave.” It provides information on raw materials extracted from the environment; energy resources consumed; and air, water, and solid waste emissions generated.

  8. Electron beam treatment of simulated marine diesel exhaust gases

    Licki Janusz; Pawelec Andrzej; Zimek Zbigniew; Witman-Zając Sylwia

    2015-01-01

    The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high...

  9. US braces itself for gasoline and diesel shortages

    New fuel regulations that are progressively being introduced in the US from the beginning of this year are likely to lead to radical changes in the gasoline and diesel fuel markets. The main change for gasoline is the replacement of methyl tertiary butyl ether (MTBE) by ethanol, whilst for diesel the principal development is the reduction in the permitted sulphur content. A shortage of the new fuels could increase price volatility and drive up prices. This is not a pleasant prospect for the White House, already under criticism for another energy plan: to cut imports of crude oil from the Middle East. (author)

  10. Diesel characterization by high-resolution mass spectrometry - gas chromatography

    High-resolution mass spectrometry-gas chromatography is combined with the HC22 method in order to obtain detailed information about the chemical composition of diesel and the distribution of different compound types in terms of its final boiling temperature from a single analysis. The total time elapsed from sample injection and signal processing to obtain final results is 90 minutes. This fact makes this methodology a new and very important tool for the decision making process concerning the most suitable final boiling temperature and the type of treatment of the product in order to obtain diesel that fulfills the international standards. The consistency and repeatability of the experimental results are demonstrated

  11. Characteristics and utilization of vegetable derivatives as diesel fuels

    The use mono-esters, obtainable from vegetables oils as diesel fuels is a potential alternative, derived from renewable sources, to petroleum derivatives. Apart from economical considerations, competitivity with conventional fuel oils, gasoil is favoured if the chemical-physical properties of these innovative products do not require alterations of the engine fuel systems. This paper discusses some considerations about the characterization of different vegetable oil derivatives to be used as diesel fuels and reports on tests carried out to determine engine performance when fuelled with vegetable oil products

  12. Coal-fueled diesel: Technology development: Final report

    Leonard, G.; Hsu, B.; Flynn, P.

    1989-03-01

    This project consisted of four tasks: (1) to determine if CWM could be ignited and burned rapidly enough for operation in a 1000-rpm diesel engine, (2) to demonstrate that a durable CWM-fueled engine could in principle be developed, (3) to assess current emissions control technology to determine the feasibility of cleaning the exhaust of a CWM-fueled diesel locomotive, and (4) to conduct an economic analysis to determine the attractiveness of powering US locomotives with CWM. 34 refs., 125 figs., 28 tabs.

  13. Thermal barrier coatings for gas turbine and diesel engines

    Miller, Robert A.; Brindley, William J.; Bailey, M. Murray

    1989-01-01

    The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.

  14. Study on the Testing Method for Marine Diesel Engine

    Miaofen Zhu; Guojin Chen; Zhongmin Liu; Tingting Liu; Shaohui Su; Yijiang Cao

    2013-01-01

    For the high-power low-speed diesel engine’s performance and reliability evaluation, this paper studies the engine’s running-in norms, presents the Test Scheme about the combustion process, the Inlet swirl control, the cooling system control, and the distribution and emission. The whole engine’s test methods and systems are established. By using the combined method of the test platform research and the theoretical model analysis, the diesel engine’s performance and reliability tests are made ...

  15. Experimental Study on Diesel Spray Characteristics and Autoignition Process

    Taşkiran, Özgür Oğuz; Ergeneman, Metin

    2011-01-01

    The main goal of this study is to get the temporal and spatial spray evolution under diesel-like conditions and to investigate autoignition process of sprays which are injected from different nozzle geometries. A constant volume combustion chamber was manufactured and heated internally up to 825 K at 3.5 MPa for experiments. Macroscopic properties of diesel spray were recorded via a high-speed CCD camera by using shadowgraphy technique, and the images were analyzed by using a digital image pr...

  16. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  17. Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism

    Ng, Hoon Kiat; Gan, Suyin; Ng, Jo-Han;

    2013-01-01

    This computational fluid dynamics (CFD) study is performed to investigate the combustion characteristics and emissions formation processes of biodiesel fuels in a light-duty diesel engine. A compact reaction mechanism with 80 species and 303 reactions is used to account for the effects of chemical...... kinetics. Here, the mechanism is capable of emulating biodiesel–diesel mixture of different blending levels and biodiesel produced from different feedstock. The integrated CFD-kinetic model was validated against a test matrix which covers the entire saturated–unsaturated methyl ester range typical...... of biodiesel fuels, as well as the biodiesel–diesel blending levels. The simulated cases were then validated for in-cylinder pressure profiles and peak pressure values/timings. Errors in the peak pressure values did not exceed 1%, while the variations in peak pressure timings were kept within 1.5 crank angle...

  18. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    P. K. Bose, Rahul Banerjee, Madhujit Deb

    2013-01-01

    Full Text Available Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg in the engine.

  19. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    Stringent emission policy has put automotive research and development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R and D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  20. Environmental Pollution Assessment of Different Diesel Injector Location Of Direct-Injection Diesel Engines: Theoretical Study

    Eyad S.M. Abu-Nameh

    2008-01-01

    Full Text Available An Analytical investigation on the effect of injector location of a four-stroke DI diesel engine on its pollutants’ emissions was carried out under different injector locations ranging from central to peripheral at different engine speeds ranging from 1000 rpm to 3000 rpm. The simulation results clearly indicated the advantages and disadvantages of the central location over the peripheral one. It revealed that near central location gave less carbon dioxide, smoke level and particulate matter on one hand, and higher levels of NOx, cylinder temperature and pressure (hence increased the mechanical and thermal stresses on the other hand. Further, near central location resulted in more rapid rate of burning and less duration of combustion and rapid rate of NOx formation per crank angle.

  1. STUDY OF PERFORMANCE CHARACTERISTICS OF VARIABLE COMPRESSION RATIO DIESEL ENGINE USING ETHANOL BLENDS WITH DIESEL

    NILESH MOHITE

    2012-06-01

    Full Text Available As the population of the world increases consumption of the energy also increases tremendously. With the current consumption rate if it has been quoted that there will be great shortage of petroleum products in upcoming decades, it will not be wrong. For this reason people are looking for alternative fuels. As ethanol is the main bio-product in the many industries now-a-days, it is better to develop the engine which can work on pure ethanol or one can add ethanol in the petrol or diesel and use the blends of that. For this purpose, it is necessary to check the performance characteristics and emissions of the blends of ethanol and also necessary to compare with the pure form of fuels. Again it is necessary to check the effect of compression ratio on the blends of ethanol. So in this paper the same has been conducted at basic level.

  2. Behavior of diesel spray penetrating along a wall; Hekimen ni sotte seichosuru diesel funmu no kyodo

    Ebara, T.; Amagai, K.; Arai, M. [Gunma University, Gunma (Japan). Faculty of Engineering

    1996-03-25

    In this paper behaviors of diesel spray injected along a wall were experimentally investigated. In order to clarify the wall effect on spray structure the geometry of the wall and its relative position to the spray axis were varied. Structures of spray injected into a high-pressure atmosphere were recorded by high-speed photographs. Results shows that the asymmetrically large vortexes in the spray were induced by the wall effect, and the spray penetrating along the wall was deviated to the wall surface. This phenomenon is called the Coanda effect in the field of fluid dynamics. The growth orientation of spray was defined by image analysis. Maldistribution ratio of spray area was defined for the quantitative estimation of the spray deviation behavior. The spray deviating conditions such as the geometry of the wall and its relative position to the spray axis were fined. 11 refs., 14 figs., 1 tab.

  3. Sampling for diesel particulate matter in mines : Diesel Emissions Evaluation Program (DEEP), technology transfer initiative, October 2001

    The physical and chemical characteristics of diesel particulate matter (DPM) from exhaust gases from diesel powered mining equipment were presented along with guidelines and regulation for exposure monitoring in the workplace. The report addresses issues related to personal and direct exhaust sampling in mines and presents evidence about potential carcinogenicity of the solid fraction of diesel exhaust. The incomplete combustion of diesel fuel results in the formation of solid and liquid particles in the exhaust. DPM is defined as being the portion of diesel exhaust which is made up of solid carbon particles and the attached chemicals such as polycyclic aromatic hydrocarbons and inorganics such as sulphate compounds. DPM is a submicron aerosol and as such, it is a respirable dust which penetrates deep into the lungs. In addition, DPMs are not easily removed from the air stream because of their small size. Control of DPM is crucial because once they are airborne, they are likely to remain that way and will affect the workplace where they are produced as well as workplaces downwind. In January 2001, the Mine Safety and Health Administration issued a ruling for U.S. metal and non-metal mines requiring that mines meet a limit of exposure of 0.40 mg/m3. Mines are expected to reduce exposure to meet a 0.16 mg/m3 limit of exposure by January 2006. European mines and tunnel construction projects must also meet DPM exposure limits. DPM sampling in Canada has been regulated for nearly one decade. Sampling protocols in Canada and the United States were described with reference to equipment and procedures testing DPM filtration efficiency of after-treatment modules and to evaluate the impact of diesel equipment maintenance on gaseous particulate emissions. 23 refs., 1 tab., 7 figs

  4. Preparation of diesel emulsion using auxiliary emulsifier mono ethylene glycol and utilization in a turbocharged diesel engine

    Highlights: • Mono-ethylene glycol was used as an auxiliary emulsifier. • Using mono ethylene glycol prolonged precipitation duration of emulsions. • With using E5 and E10 fuels engine torque averagely increased by 0.35% and 1.73% respectively. • It was found that specific fuel consumption of emulsions is lower than diesel. • Using E10 fuel reduced CO, NOx and soot emissions 44%, 47% and 5% respectively. - Abstract: Diesel engines are used widely as they have lower fuel consumption and higher thermal efficiency in transportation sector. However, the emitted high NOx, CO and soot emissions have led researchers to search different alternative fuels. At this point, diesel fuels emulsions help to reduce exhaust emissions. In this study, the effects of diesel fuel emulsions containing 5% (E5) and 10% (E10) water on engine performance an exhaust emissions has been investigated. Mono ethylene glycol was used as an auxiliary emulsifier in the preparation of the emulsion. Use of the mono ethylene glycol reduced the subsidence rate of the E5 and E10 about 34.5% and 47.1% respectively. The experiments were conducted at full load condition and at 2500, 3250 and 4000 rpm engine speeds. Engine torque and power increased according to diesel fuel between 2400 and 3600 engine speed range when emulsified fuels were used. But significant reductions were observed after that engine speed range. It was observed that the nitrogenoxide (NOx) emission reduced 5.42% and 11.01% with using E5 and E10 fuel respectively according to diesel fuel at 2500 rpm. Also the soot emissions reduced 12.39% and 22.97% with using E5 and E10

  5. Physico-Chemical Properties of Bio-diesel from Wild Grape Seeds Oil and Petro-Diesel Blends

    M. U. Kaisan

    2013-10-01

    Full Text Available The swiftly depleting conventional fossil fuel resources and increasing environmental distress has considerably popped up research curiosity in renewable energy fuel for internal combustion engines. Accordingly, in this research work, biodiesel from wild grape seed (Lannea Microcarpa was blended with petro-diesel in a ratio of 5:95, 10:90, 15:85 and 20:80 and pure fossil diesel designated B5, B10, B15, B20 and B0 respectively. The physico chemical properties of the biodiesel/petro diesel blends were determined. The properties are specific gravity, viscosity, flash point, calorific value, sulphur content, copper strip corrosion, colour, diesel index, cetane number, and cloud point. It was observed that, 9 out of the 10 properties determined conform to ASTM standards except for the colour which was dark brown for the oil and biodiesel, and brown for the automotive gasoline oil. The specific gravity and viscosity increase with percentage increase of biodiesel in the blends. The sulphur content, calorific values, cetane number and diesel index decrease with increase in the percentage biodiesel from the blends. The colour of the samples does not conform to the ASTM standards. All the samples have the best ASTM value for copper strip corrosion and as such, they could be run in any diesel engine without any fear of corrosion tendencies. Whence, Wild Grape seed biodiesel is physically okay, chemically stable, environmentally friendly and economically viable for use in compression ignition engine as a blend to partly replace the automotive gasoline oil.

  6. Theoretical investigation of heat balance in direct injection (DI) diesel engines for neat diesel fuel and gasoline fumigation

    The main purpose of the presented study is to evaluate energy balance theoretically in direct injection (DI) diesel engines at different conditions. To analyze energy balance, a zero-dimensional multi-zone thermodynamic model has been developed and used. In this thermodynamic model, zero-dimensional intake and exhaust approximations given by Durgun, zero-dimensional compression and expansion model given by Heywood and quasi-dimensional phenomenological combustion model developed by Shahed and then improved Ottikkutti have been used and developed with new approximations and assumptions. By using the developed model, complete diesel engine cycle, engine performance parameters and exhaust emissions can be determined easily. Also, by using this model energy balance can be analyzed for neat diesel fuel and for light fuel fumigation easily. In the presented study, heat balance has been investigated theoretically for three different engines and various numerical applications have been conducted. In the numerical applications two different turbocharged DI diesel engines and a naturally aspirated DI diesel engine have been used. From these numerical applications, it is determined that, what portion of available fuel energy is converted to useful work, what amount of fuel energy is lost by exhaust gases or lost by heat transfer. In addition, heat balance has been analyzed for gasoline fumigation and some numerical results have been given. Brake effective power and brake specific fuel consumption increase and brake effective efficiency decreases for gasoline fumigation for turbocharged diesel engines used in numerical applications. Combustion duration increases with increasing fumigation ratio and thus heat transfer to the walls increases. Because exhaust temperature increases, exhaust losses also increases for fumigation case

  7. Teor, rendimento e composição química do óleo essencial de plantas de manjericão submetidas ao estresse salino com NaCl

    L.S. ALVES

    2015-01-01

    Full Text Available RESUMO O objetivo do presente trabalho foi avaliar o teor, o rendimento e a composição química do óleo essencial de manjericão (Ocimum basilicum L. submetido ao estresse salino por NaCl. Para tanto, o experimento foi conduzido em casa de vegetação, sob delineamento inteiramente casualizado, caracterizado por 5 (cinco tratamentos de NaCl, adicionados à água de irrigação (0,01 - controle,T1; 1,2 - T2; 2,3 – T3; 3,4 – T4 e 4,5 dS m-1– T5, correspondendo respectivamente a 0,1; 12,0; 23,0; 34,0 e 45,0 mM , com 4 (quatro repetições. Aos 55 dias após o transplantio, as plantas foram colhidas, colocadas em sacos de papel e levadas a estufa de secagem com fluxo de ar forçado a 45 °C, por 10 dias até atingirem massas constantes. Após a secagem, foi realizada a pesagem da biomassa seca da parte aérea, misturada, moída em triturador elétrico de facas e posteriormente realizada a extração do óleo essencial para análise do teor, rendimento e composição química. O aumento do estresse por NaCl não alterou o teor e a composição química do óleo essencial, cujo rendimento reduziu 12,93% a cada acréscimo unitário dos níveis de salinidade. O cinamato de metila, cujo teor médio encontrado foi de 55%, e o metil chavicol, com 12%, foram os principais compostos identificados nas plantas de manjericão.

  8. Optimisation of the 2.2 liter high speed diesel engine for proposed Bharat stage 5 emission norms in India

    Ghodk Pundlik R.; Suryawanshi Jiwak G.

    2014-01-01

    Direct injection diesel engine combustion system offers improvements in performance and fuel economy benefits. 4 valves per cylinder, turbocharged and intercooled diesel engine became trustworthy for automobile application. Electronic diesel control, use of common rail with increase in injection pressures, and flexibility in injection control has changed the image of diesel engine. Evolutions in piston crown shape, intake ports with different swirl level he...

  9. Baumot BA-B Diesel Particulate Filter with Pre-Catalyst (ETV Mobile Source Emissions Control Devices) Verification Report

    The Baumot BA-B Diesel Particulate Filter with Pre-Catalyst is a diesel engine retrofit device for light, medium, and heavy heavy-duty diesel on-highway engines for use with commercial ultra-low-sulfur diesel (ULSD) fuel. The BA-B particulate filter is composed of a pre-catalyst ...

  10. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    2010-07-01

    ... requirements for NRLM diesel fuel and ECA marine fuel? 80.510 Section 80.510 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.510 What are the standards and marker requirements for NRLM diesel fuel and ECA marine...

  11. Diesel and gas engines: evolution facing new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Daverat, Ph. [Bergetat Monnoyeur (France)

    1997-12-31

    This paper analyzes the influence of new pollution regulations on the new design of diesel and gas engines with the example of Caterpillar`s experience, one of the leaders of diesel and gas engines manufacturers worldwide. The technical problems to solve are introduced first (reduction of NO{sub x}, SO{sub 2}, CO, unburned compounds and dusts), and then the evolution of engines and of exhaust gas treatment systems are described (fuel injection systems, combustion and ignition control, sensors, catalytic conversion and filtering systems). (J.S.)

  12. Trial operation of rape oil / diesel fuel mixes in tractor diesel engines; Erprobung von Rapsoel-Dieselkraftstoff-Gemischen in Traktordieselmotoren

    Maack, H.H. [Univ. Rostock, Inst. fuer Antriebstechnik und Mechatronik, Rostock (Germany)

    2003-07-01

    On a large agricultural farm a mixture of rape oil (RO) and diesel fuel (DK) for the use in tractors was tested. During the first period a mixture of 30% rape oil and 70% diesel fuel was tested. Momentary tests are conducted with a fuel blend of 50/50% RO/DK. The fuel mixture is produced in the special mixture station before fuelling the tractors. Four tractors from the producer CASE with the engine power of 150 to 250 hp were tested during the field work. Failure and condition of the engine were monitored. (orig.)

  13. Bio-Diesel production and Effect of Catalytic Converter on Emission performance with Bio-Diesel Blends

    R.Murali Manohar; M.Prabhahar; Dr.S.Sendil velan

    2010-01-01

    Bio-Diesel the word itself defines almost all the features of the Bio-Diesel literary. In the Era of this Global Warming where the people are making their living more and more comfortable and they are deteriorating the environment also. The uses of the automobiles with the conventional source of fuel leads to the production of the toxic gaseous substances like carbon monoxide, carbon dioxide, oxides of nitrogen, oxide of sulphur, hydro-carbons etc. The limitation comes with the rise in the pr...

  14. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  15. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE).

    Hesterberg, Thomas W; Long, Christopher M; Sax, Sonja N; Lapin, Charles A; McClellan, Roger O; Bunn, William B; Valberg, Peter A

    2011-09-01

    Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health

  16. Effects of fuel properties and oxidation catalyst on diesel exhaust emissions; Keiyu seijo oyobi sanka shokubai no diesel haishutsu gas eno eikyo

    Aihara, S.; Morihisa, H.; Tamanouchi, M.; Araki, H.; Yamada, S. [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    Effects of fuel properties (T90 and Poly-Aromatic Hydrocarbons: PAH) and oxidation catalyst on diesel exhaust emissions were studied using three DI diesel engines and two diesel passenger cars. (IDI engine) PM emissions were found to increase as T90 and PAH increased and could be decreased considerably for each fuel if an oxidation catalyst was installed. 5 refs., 9 figs., 3 tabs.

  17. Evaluation of engine performance, emissions, of a twin cylinder diesel engine fuelled with waste plastic oil and diesel blends with a fraction of methanol

    Y. Tarun

    2014-03-01

    Full Text Available A comprehensive study on the methanol and waste plastic oil as an alternative fuel has been carried out. This report deals with the exhaust emission of waste plastic fuel on twin cylinder diesel engine. The objectives of this report are to analyse the fuel consumption and the emission characteristic of a twin cylinder diesel engine that are using waste plastic oil compared to usage of ordinary diesel that are available in the market. This report describes the setups and the procedures for the experiment which is to analyse the emission characteristics and fuel consumption of diesel engine due to usage of the both fuels. Detail studies about the experimental setup and components have been done before the experiment started. Data that are required for the analysis is observed from the experiments. Calculations and analysis have been done after all the required data needed for the thesis is obtained. The experiment used diesel engine with no load which means no load exerted on it. A four stroke Twin cylinder diesel engine was adopted to study the brake thermal efficiency, brake specific energy consumption, mechanical efficiency, brake power, volumetric efficiency, indicated thermal efficiency and emissions at full load with the fuel of fraction methanol in bio-diesel. In this study, the diesel engine was tested using methanol blended with bio-diesel at certain mixing ratios of (WPO: Diesel 20:80, 40:60 and 60:40 methanol to bio-diesel respectively. By the end of the report, the successful of the project have been started which is Kirloskar engine is able to run with waste plastic oil (WPO but the engine needs to run by using diesel fuel first, then followed by waste plastic oil and finished with diesel fuel as the last fuel usage before the engine turned off. The performance of the engine using blended fuel compared to the performance of engine with diesel fuel. Experimental results of blended fuel and diesel fuel are also compared.   Keywords

  18. TA Research on Determining Some Performance Values by Using Proportional Mixture of Vegetable Oils and Diesel Fuel at a Diesel Engine

    B. Kayisoglu

    2006-01-01

    Full Text Available The purpose of this particular study was to research the effects on characteristics of a diesel engine by using different diesel fuel and vegetable oil blends. As experimental material 6 LD 360 type diesel engine with single cylinder, direct injection, four cycles, 5.52 kW defined power was used. Nothing was changed on the diesel engine parts and refined vegetable oils were chosen to add into fuel oil. In this research, depending on the number of revaluation and time, the air intake inlet temperature, exhaust gas outlet temperature, fuel consumption, volume efficiency, engine oil pressure, cylinder indicated pressure, the quantity of soot were determined. The results in the of sunflower oil and diesel fuel blends were found better than the soybean oil and diesel fuel blends. In addition, lubrication oil of the engine by using the soybean and diesel fuel blends were get dirty excessively and viscosity of the engine lubrication oil was reduced more than the others. The results by using 75% diesel fuel+25% sunflower oil blend showed nearly the same results by using diesel fuel.

  19. TA Research on Determining Some Performance Values by Using Proportional Mixture of Vegetable Oils and Diesel Fuel at a Diesel Engine

    B. Kayisoglu; P. Ulger; B. Akdemir; Aytac, S

    2006-01-01

    The purpose of this particular study was to research the effects on characteristics of a diesel engine by using different diesel fuel and vegetable oil blends. As experimental material 6 LD 360 type diesel engine with single cylinder, direct injection, four cycles, 5.52 kW defined power was used. Nothing was changed on the diesel engine parts and refined vegetable oils were chosen to add into fuel oil. In this research, depending on the number of revaluation and time, the air intake inlet tem...

  20. Particulate emissions from road transportation (gasoline and diesel). Chemical and granulometric characteristics; relative contribution; Emissions particulaires par les transports routiers (essence et diesel) caracteristiques chimiques et granulometriques contribution relative

    Belot, G. [PSA-Peugiot-Citroen, 92 - La Garenne-Colombes (France)

    1996-12-31

    The formation process and chemical composition of diesel, leaded and lead-free gasoline combustion particulates are presented, and the effects of engine technology, post-treatments (oxidative catalysis), automobile speed and fuel type (more especially diesel type), on the granulometry of gasoline and diesel automotive particulates are studied. The emission contributions from the various diesel vehicle types (automobiles, trucks, buses), gasoline and diesel automobiles and other natural and anthropogenic particulate sources, are presented and compared

  1. Sobre a viagem de Enrico Fermi ao Brasil em 1934

    Caruso, Francisco

    2014-01-01

    Enrico Fermi was one of the greater physicists of the XX century. In 1934, he gave several lectures in Brazil. Invited by Theodoro Ramos to work in S\\~ao Paulo, he preferred to stay in Rome and went to the USA in 1938. However, Fermi recommended Gleb Wataghin to come in his place. Wataghin made history in Brazil, becoming one of the first Professors of the future S\\~ao Paulo University. Besides his relevance to the History of Science, Fermi eventually leaved an indelible mark on the creation and institutionalization of national scientific research due to the indication of Wataghin. Despite this fact, very little is known about Fermi's trip to Brazil. This work tries to reconstruct the fullest possible steps of the famous Italian physicist in our lands.

  2. O prazer associado ao consumo de alimentos e factores influenciadores

    Gomes, Filipe Gonçalo Ferreira

    2013-01-01

    Os indivíduos quando sujeitos a várias sensações transmitem respostas que surgem de reacções fisiológicas resultantes de certos estímulos, gerando a interpretação das propriedades intrínsecas aos alimentos, sendo a análise sensorial realizada em função dessas respostas individuais. As sensações são medidas por efeitos psicológicos, podendo dimensionar a intensidade, extensão, qualidade, duração, gosto ou desgosto em relação ao alimento avaliado, e os estímulos são medidos por processos físico...

  3. Diffraction limited operation with ARGOS: a hybrid AO system

    Bonaglia, M.; Busoni, L.; Quirós-Pacheco, F.; Esposito, S.

    2010-07-01

    ARGOS, the Laser Guide Star (LGS) facility of the Large Binocular Telescope (LBT), implements a Ground Layer Adaptive Optics (GLAO) system, using 3 low-altitude beacons, to improve the resolution over the 4'×4' FoV of the imager and Multi Object Spectrograph (MOS) LUCIFER. In this paper we discuss the performance and the reconstruction scheme of an hybrid AO system using the ARGOS Rayleigh beacons complemented with a single faint high-altitude star (NGS or sodium beacon) to sense the turbulence of the upper atmosphere allowing an high degree of on-axis correction. With the ARGOS system, the NGS-upgrade can be immediately implemented at LBT using the already existing Pyramid WFS offering performance similar to the NGS AO system with the advantage of a larger sky coverage.

  4. Acute aqueous toxicities of diesel-biodiesel blends

    Hollebone, B.P.; Ho, N.; Landriault, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Science and Technology Branch, Environmental Science and Technology Centre; Harrison, S. [Science Applications International Corp., SAIC Canada, Ottawa, ON (Canada); Doe, K.; Jackman, P. [Environment Canada, Moncton, NB (Canada). Toxicology Laboratory, Environmental Science Centre

    2008-07-01

    The renewed interest in biodiesels as a new transportation fuel was discussed. Although there are several advantages to using biodiesels, their environmental behaviours and effects need to be evaluated along with the risks associated with their use, such as accidental releases of these biodiesels to the environment. The wide variability of biodiesels may result in different toxicological impacts, depending on the fuel feedstock. This study evaluated the aqueous effects of biodiesels from several commonly available feedstocks and their blends with petroleum diesel. Since most of the commercial uses of these products are currently focused on road-use, this study focused on the effects of these fuels in fresh-water. Biodiesels derived from soy, canola and waste restaurant oil feedstocks were used in the study. The acute toxicities of these biodiesels and biodiesel/petroleum diesel fuel blends were reported for 3 test species used by Environment Canada for toxicological evaluation, notably rainbow trout, the water flea, and a luminescent bacterium. The correlations between acute toxicity, water accommodated fractions (WAF) concentrations and fuel property data were examined. The study revealed that biodiesel is significantly less acutely toxic than petroleum diesels in potential ecological impacts. However, the biodiesel-diesel blends were found to be more acutely toxic than a linear dilution model predicts. 11 refs., 6 tabs., 3 figs.

  5. Oxidation stability of rapeseed biodiesel/petroleum diesel blends

    Østerstrøm, Freja From; Anderson, James E.; Mueller, Sherry A.;

    2016-01-01

    oxidation of a biodiesel fuel blend consisting of 30% (v/v) rapeseed methyl ester in petroleum diesel (B30) was conducted at 70 and 90 °C with three aeration rates. Oxidation rates increased with increasing temperature as indicated by decreases in induction period (Rancimat), concentrations of unsaturated...

  6. Single bank NOx adsorber for heavy duty diesel engines

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of stea

  7. Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust

    Casal, Carina S.; Arbilla, Graciela; Corrêa, Sergio M.

    2014-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely studied in environmental matrices, such as air, water, soil and sediment, because of their toxicity, mutagenicity and carcinogenicity. Because of these properties, the environmental agencies of developed countries have listed sixteen PAHs as priority pollutants. Few countries have limits for these compounds for ambient air, but they only limit emissions from stationary and mobile sources and occupational areas. There are several studies to specifically address the 16 priority PAHs and very little for the alkyl PAHs. These compounds are more abundant, more persistent and frequently more toxic than the non-alkylated PAHs, and the toxicity increases with the number of alkyl substitutions on the aromatic ring. In this study, a method was developed for the analysis of PAHs and alkyl PAHs by using a GC-MS and large injection volume injection coupled with program temperature vaporisation, which allows for limits of detection below 1.0 ng μL-1. Several variables were tested, such as the injection volume, injection velocity, injector initial temperature, duration of the solvent split and others. This method was evaluated in samples from particulate matter from the emissions of engines employing standard diesel, commercial diesel and biodiesel B20. Samples were collected on a dynamometer bench for a diesel engine cycle and the results ranged from 0.5 to 96.9 ng mL-1, indicating that diesel/biodiesel makes a significant contribution to the formation of PAHs and alkyl PAHs.

  8. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  9. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT I, UNDERSTANDING MECHANICAL CLUTCHES.

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    ONE OF A 25-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINENANCE MECHANICS THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO DEVELOP AN UNDERSTANDING OF COMPONENTS, OPERATION, AND ADJUSTMENTS…

  10. Dimethyl Ether as a Fuel for Diesel Engines

    Sorenson, Spencer C.

    1999-01-01

    DME has recently been shown to be an attractive high cetane fuel for diesel engines, offering the advantages of soot free operation, with low engine noise, the potential for low NOx emissions, and low reactivity emissions of hydrocarbons and unburned fuel. DME has physical characteristics similar...

  11. Advanced catalytic converter system for natural gas powered diesel engines

    Strots, V.O.; Bunimovich, G.A.; Matros, Y.S. [Matros Technologies Inc., Chesterfield, Missouri (United States); Zheng, M.; Mirosh, E.A. [Alternative Fuel Systems Inc., Calgary, Alberta (Canada)

    1998-12-31

    The paper discusses the development of catalytic converter for aftertreatment of exhaust gas from diesel engines powered with natural gas. The converter, operated with periodical reversals of the flow, ensures destruction of CO and hydrocarbons, including methane. Both computer simulation and engine testing results are presented. 8 refs.

  12. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  13. Mutagenicity of Diesel and Soy Biodiesel Exhaust Particles

    Mutagenicity Of Diesel And Soy Biodiesel Exhaust Particles E Mutlua,b' SH Warrenb, PP Matthewsb, CJ Kingb, B Prestonc, MD Haysb, DG Nashb,ct, WP Linakb, MI Gilmourb, and DM DeMarinib aUniversity of North Carolina, Chapel Hill, NC bU.S. Environmental Agency, Research Triangle Pa...

  14. Swirling flow in a two-stroke marine diesel engine

    Hemmingsen, Casper Schytte; Ingvorsen, Kristian Mark; Walther, Jens Honore; Mayer, Stefan

    2013-01-01

    Computational fluid dynamic simulations are performed for the turbulent swirling flow in a scale model of a low-speed two-stroke diesel engine with a moving piston. The purpose of the work is to investigate the accuracy of different turbulence models including two-equation Reynolds- Averaged Navier...

  15. Aspen Simulation of Diesel-Biodiesel Blends Combustion

    Pérez-Sánchez Armando

    2015-01-01

    Full Text Available Biodiesel is a fuel produced by transesterification of vegetable oils or animal fats, which currently is gaining attention as a diesel substitute. It represents an opportunity to reduce CO2, SO2, CO, HC, PAH and PM emissions and contributes to the diversification of fuels in Mexico's energetic matrix. The results of the simulation of the combustion process are presented in this paper with reference to an engine specification KUBOTA D600-B, operated with diesel-biodiesel blends. The physicochemical properties of the compounds and the operating conditions of equipment were developed using the simulator Aspen® and supplementary information. The main aspects of the engine working conditions were considered such as diesel-biodiesel ratio, air/fuel mixture, temperature of the combustion gases and heat load. Diesel physicochemical specifications were taken from reports of PEMEX and SENER. Methyl esters corresponding to the transesterification of fatty acids that comprise castor oil were regarded as representative molecules of biodiesel obtained from chromatographic analysis. The results include CO2, water vapor, combustion efficiency, power and lower calorific value of fuels.

  16. Diesel Technology: Brakes. Teacher Edition [and] Student Edition.

    Hilley, Robert; Scarberry, Terry; Kellum, Mary

    This document contains teacher and student materials for a course on brakes in the diesel technology curriculum. The course consists of 12 units organized in three sections. The three units of the introductory section cover: (1) brakes; (2) wheel bearings and seals; and (3) antilock brake systems. The second section, Hydraulic Brakes, contains the…

  17. Combustion and Emission Investigation of Diesel Fuel and Kerosene Blends

    Bilal A. Akash

    2015-06-01

    Full Text Available This study presents experimental investigation of combustion of diesel fuel, kerosene and their blends. The objective of this study is to determine the combustion performance and gas emission of diesel fuel, kerosene and various mixtures of diesel fuel and kerosene in a horizontally positioned cylindrical furnace. Heat was removed from the system by the use of water around a jacket of the combustion unit. The combustion unit is capable of burning most types of liquid and gaseous hydrocarbon fuels. Results on combustion performance and gas emissions are presented for a wide range of air-fuel equivalence ratios. The results of exhaust gas analyses of carbon monoxide, carbon dioxide and oxygen are presented. Combustion efficiency and the effect of blending of fuels on its performance are also presented. In general, some improvements in exhaust gas emission and combustion efficiency were obtained upon using mixtures of fuels. The best results were obtained when a fuel blend of 75% kerosene and 25% diesel was prepared and burned in the unit.

  18. Performance monitoring system for emergency diesel generator in nuclear facility

    Bae, Sang Min; Kim, Kil Jeong; Jeong, Kyung Hwan; Kim, Tae Woon; Jung, Hoan Sung

    1998-12-01

    Hardware and software of performance monitoring system of emergency diesel generator in nuclear facility were studied, designed, fabricated to represent control performance parameters and engine performance parameters for field engineer through system analysis, decision of parameters, parameter change analysis, which will improve safety and economy of nuclear facility. (author). 15 refs., 3 tabs., 12 figs.

  19. Performance monitoring system for emergency diesel generator in nuclear facility

    Hardware and software of performance monitoring system of emergency diesel generator in nuclear facility were studied, designed, fabricated to represent control performance parameters and engine performance parameters for field engineer through system analysis, decision of parameters, parameter change analysis, which will improve safety and economy of nuclear facility. (author). 15 refs., 3 tabs., 12 figs

  20. A mixing based model for DME combustion in diesel engines

    Bek, Bjarne Hjort; Sorenson, Spencer C

    2001-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combustion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel...