WorldWideScience

Sample records for adiabatic toroidal compressors

  1. Non Adiabatic Centrifugal Compressor Gas Dynamic Performance Definition

    Soldatova, Kristina

    2014-01-01

    Most centrifugal compressors operate in conditions with negligible heat transfer (adiabatic compression). Their plant tests conditions are similar or close to adiabatic conditions. Test regulations establish measures to diminish influence of a heat transfer “compressor body – atmospheric air” to an exit temperature. Therefore a temperature rise in a compressor is used to calculate a work input coefficient and efficiency. Unlike it high pressure centrifugal compressors of gas turbines and supe...

  2. Scalings for a traveling mirror adiabatic magnetic compressor

    Bellan, P. M.

    1982-01-01

    Detailed practical scaling relations for a traveling mirror adiabatic magnetic compressor are derived, and an example is given of how this technique could be used to translate, compress, and heat the Los Alamos FRX-C reversed field theta pinch plasma.

  3. Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Path Adiabatic Logic

    K.V.S.S. Aditya

    2014-12-01

    Full Text Available This paper presents the implementation of a novel high speed low power 15-4 Compressor for high speed multiplication applications using single phase clocked quasi static adiabatic logic namely CEPAL (Complementary Energy Path Adiabatic Logic. The main advantage of this static adiabatic logic is the minimization of the 1/2CVth2 energy dissipation occurring every cycle in the multi-phase power-clocked adiabatic circuits. The proposed Compressor uses bit sliced architecture to exploit the parallelism in the computation of sum of 15 input bits by five full adders. The newly proposed Compressor is also centered around the design of a novel 5-3 Compressor that attempts to minimize the stage delays of a conventional 5-3 Compressor that is designed using single bit full adder and half adder architectures. Firstly, the performance characteristics of CEPAL 15-3 Compressor with 14 transistor and 10 transistor adder designs are compared against the conventional static CMOS logic counterpart to identify its adiabatic power advantage. The analyses are carried out using the industry standard Tanner EDA design environment using 250 nm technology libraries. The results prove that CEPAL 14T 15-4 Compressor is 68.11% power efficient, 75.31% faster over its static CMOS counterpart.

  4. Toroidal magnet for a tokamak with a strong magnetic field and combined adiabatic compression of the pinch

    This report examines the concept and the main characteristics of the torroidal magnet in a tokamak with a strong magnetic field and combined adiabatic compression of the plasma pinch for an experiment to achieve the parameter Q = 1

  5. Generation of multi-wavelength picosecond pulses with tunable pulsewidth and channel spacing using a Raman amplification-based adiabatic soliton compressor.

    Nguyen-The, Quang; Tan, Hung Nguyen; Matsuura, Motoharu; Kishi, Naoto

    2012-01-16

    We experimentally demonstrate pulsewidth-tunable picosecond multi-wavelength pulse generation at 10 Gb/s by the use of a Raman amplification-based adiabatic soliton compressor (RA-ASC). Multi-wavelength seed pulse trains are generated by a commercially available electroabsorption modulator and then compressed by using the RA-ASC. The pulsewidths of the compressed pulses can be simultaneously controlled from 16.0 ps to 2.0 ps by adjusting Raman pump power. Operating wavelength range of our scheme are also investigated, showing the possibility for wide channel spacing operations. PMID:22274467

  6. Recirculating rotary gas compressor

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  7. Trapped particle dynamics in toroidally rotating plasmas

    A detailed single particle orbit analysis is toroidally rotating plasma yields new analytical formulas for the second adiabatic invariant, the bounce frequency, and the precession frequency up to the first order correction in ρpi(poloidal ion gyroradium)/Lv(scale length of rotation velocity), for toroidal flow values of the order of ion thermal velocity. Toroidal plasma rotation effects on the trapped ion instabilities in tokamaks are investigated in the context of local theory. Toroidal plasma rotation increases both the fraction of trapped particles and their precession drift velocity. Consequently, the growth rate of trapped ion instability increases in both dissipative and collisionless regimes

  8. Toroidal Nematics

    Fernandez-Nieves, Alberto

    We will discuss how nematic liquid crystals organize inside toroidal droplets. When the director is parallel to the bounding surface, we find spontaneous reflection symmetry breaking, which we attribute to the role played by saddle-splay contributions to the Frank free energy. When the director is perpendicular to the bounding surface, we find that the structure is reminiscent of the escape radial configuration seen in cylinders, but with a central doubly-twisted organization, which we attribute to the geometry of the torus. We will end by presenting recent experiments with active nematics on the toroidal surface. In this case, topology and activity both affect the structure and dynamics of the material.

  9. Heating of toroidal plasmas

    The limitations of ohmic heating in achieving the thermonuclear ignition of a low-β toroidal plasma can be overcome by using several heating methods. Such methods are: fast neutral beam injection (possibly combined with an adiabatic compression or any other means) and HF heating, the most interesting schemes being based on plasma resonances. The basic physical phenomena in each method are briefly explained and results obtained are given. A new heating scheme using an outer frequency of a few kHz is described, that makes it possible to locate the exciting coils outside the vacuum vessel (some of these coils can be that producing the vertical magnetic field for the plasma equilibrium)

  10. On the double adiabatic continuous spectrum

    In earlier work it has been found that the Alfven and cusp (or slow) continuous spectra can become unstable in toroidal geometry, as judged from the linearized double adiabatic equations. In this paper the validity of fluid approaches to the present problem is investigated. The physical implications of the stability conditions are discussed. (Author)

  11. Study on Efficiency Improvement of Hermetic Rotary Compressors

    Matsushima, Masatoshi; Nomura, Tomohiro; Nishimura, Nobuya; Iyota, Hiroyuki; Inaba, Koichi

    This research was conducted in order to better identify the torque loss of a hermetic rotary compressor for one revolution, and to directly obtain the actual shaft power of the compressor. A testing compressor and a gas cycle type simplified calorimeter were developed for direct measurement of the compressor torque. A strain gauge was stuck on the shaft between a compressor and a motor. Thus, the compressor torque could be measured directly by the strain gauge and data were transmitted to out of the compressor's vessel through a slip ring. Rotational speed of the compressor was measured by using a gap sensor also. From these measurement results, actual shaft power was calculated experimentally. On the other hand, effective compressive torque for compressing refrigerant gas was predicted theoretically. From both experimental and theoretical results, torque loss of the compressor was determined as the difference of the compressor torque from the effective compressive torque. Consequently, a loss of over-compression could be revealed from the torque loss experimentally. Furthermore, overall adiabatic efficiencies of compressors obtained by the actual shaft power were 1.1∼3.5% higher than former overall adiabatic efficiencies obtained by the motor output.

  12. Toroidal circular dichroism

    Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.

    2016-07-01

    We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.

  13. Supersonic compressor

    Lawlor, Shawn P.; Novaresi, Mark A.; Cornelius, Charles C.

    2008-02-26

    A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.

  14. Hydride compressor

    Powell, James R.; Salzano, Francis J.

    1978-01-01

    Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

  15. Research on Energy-Saving Operation of Screw Air Compressor

    Chong liu; Dewen Kong; Maolin Cai

    2013-01-01

    Based on analysis of a screw air compressor volumetric efficiency under different discharge pressure conditions, this study establishes the mathematic model of the adiabatic compression power consumption. Under load/unload conditions, to change the offline pressure with step of 0.01 MPa, the power consumption floats up and down with the change of unloading and loading and then the screw compressor power consumption is simulated in MATLAB. The results shows that the optimal offline pressure ex...

  16. Modeling of Compressor Performance Deterioration Due to Erosion

    Hamed, A.; W. Tabakoff; D. Singh

    1998-01-01

    This paper presents the results of a simulation of compressor performance deterioration due to blade erosion. The simulation at both design and off-design conditions is based on a mean line row by row model, which incorporates the effects of blade roughness and tip clearance. The results indicate a pronounced effect of blade erosion on the compressor adiabatic efficiency and a lesser effect on the pressure ratio. The loss in performance is mainly caused by the increased blade surface roughnes...

  17. PECULIARITIES OF THE IDEALIZED CYCLES OF VAPOR COMPRESSOR REFRIGERATING MACHINES

    Вассерман, А. А.; Лавренченко, Г. К.; Слынько, А. Г.

    2014-01-01

    Efficiency of the idealized cycles of vapor compressor refrigerating machines with adiabatic or isothermal compression of refrigerantwas investigated. To these cycles concern cycles with adiabatic compression of steam without regeneration (S-cycle) and with limiting regeneration (SR-cycle), and also with isothermal compression and limiting regeneration (T-cycle). Three characteristics of cycles are compared: refrigerating coefficient of performance e, specific-volume cooling capacity qv and t...

  18. RELAP5-3D Compressor Model

    A compressor model has been implemented in the RELAP5-3D code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power

  19. Core compressor exit stage study. 1: Aerodynamic and mechanical design

    Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.

    1979-01-01

    The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.

  20. Similarity and cascade flow characteristics of a highly loaded helium compressor

    Jiang, Bin, E-mail: jiangbin_hrbeu@163.com [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China); Chen, Zhongliang [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China); Chen, Hang [AVIG Shenyang Engine Design and Research Institute, Shenyang 110015 (China); Zhang, Hai; Zheng, Qun [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China)

    2015-05-15

    Highlights: • The deviation of different similarity criteria is analyzed theoretically. • Flow difference between helium and air compressor cascades is analyzed numerically. • The analysis of calculated results validates the theoretical derivation. • Flow characteristics of highly loaded helium compressor blade profile are computed. - Abstract: Helium compressor is a major component of the Power Conversion Unit (PCU) used in a High Temperature Gas Cooled Reactor (HTGR). Because the high cost of closed cycle test and leakage problem of helium gas, air could be used as working fluid instead of helium in compressor performance tests. However, the properties of Helium are largely different from those of air, e.g. the adiabatic exponent of Helium is 1.6, while the adiabatic exponent itself is a criterion of similarity between the two compressors. The characteristics of compressor will be different due to the effect of the adiabatic exponent of working fluid, especially for highly loaded compressor working at higher inlet Mach number. In this paper, a theoretical study on the similarity between air compressor and a highly loaded helium compressor is carried out and the deviation of similarity is analyzed. Numerical simulations are then used to confirm the theoretical analysis. The results indicate that the similarity deviation could not be neglected for highly loaded compressor cascade, which means the experience and experimental results of those conventional air compressor cannot be applied directly to the design of highly loaded helium compressor. The flow characteristics of a highly loaded helium compressor at different Reynolds numbers, attack angles, Mach numbers and cascade geometries are then investigated.

  1. Similarity and cascade flow characteristics of a highly loaded helium compressor

    Highlights: • The deviation of different similarity criteria is analyzed theoretically. • Flow difference between helium and air compressor cascades is analyzed numerically. • The analysis of calculated results validates the theoretical derivation. • Flow characteristics of highly loaded helium compressor blade profile are computed. - Abstract: Helium compressor is a major component of the Power Conversion Unit (PCU) used in a High Temperature Gas Cooled Reactor (HTGR). Because the high cost of closed cycle test and leakage problem of helium gas, air could be used as working fluid instead of helium in compressor performance tests. However, the properties of Helium are largely different from those of air, e.g. the adiabatic exponent of Helium is 1.6, while the adiabatic exponent itself is a criterion of similarity between the two compressors. The characteristics of compressor will be different due to the effect of the adiabatic exponent of working fluid, especially for highly loaded compressor working at higher inlet Mach number. In this paper, a theoretical study on the similarity between air compressor and a highly loaded helium compressor is carried out and the deviation of similarity is analyzed. Numerical simulations are then used to confirm the theoretical analysis. The results indicate that the similarity deviation could not be neglected for highly loaded compressor cascade, which means the experience and experimental results of those conventional air compressor cannot be applied directly to the design of highly loaded helium compressor. The flow characteristics of a highly loaded helium compressor at different Reynolds numbers, attack angles, Mach numbers and cascade geometries are then investigated

  2. Induced toroid structures and toroid polarizabilities

    The frequency-dependent toroid dipole polarizability γ(ω) of a (nonrelativistic, spinless) hydrogen-like atom in its ground state is calculated analytically in terms of two Gauss hypergeometric functions. The static result reads simply γ(ω=0)=(23/60)α2Z-4a05 (α - fine structure constant, Z - nucleus charge number, a0 - Bohr radius). Comparing the present evaluations for H-like atoms with previous ones for pions, one sees that the role of the induced toroid moments (as against that of the usual electric ones) increases considerably when passing from atomic to particle physics

  3. Quantum adiabatic machine learning

    Pudenz, Kristen L.; Lidar, Daniel A.

    2011-01-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this app...

  4. A toroidal magnet option

    The possibility of using, for the ALICE forward muon spectrometer, a superconducting toroidal magnet has been considered in place of the SC dipole. The study has been restricted to the acceptance calculations and to the tracking simulations of the toroidal magnet but without technical investigations. The estimated performances are found maladjusted to the physics requirements of the heavy ion runs. (author)

  5. New Toroid shielding design

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  6. Toroid magnet test facility

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  7. Supersonic compressor

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  8. Invisibility cloaks for toroids.

    You, Yu; Kattawar, George W; Yang, Ping

    2009-04-13

    The material properties of toroidal invisibility cloaks are derived based on the coordinate transformation method. The permittivity and permeability tensors for toroidal cloaks are substantially different from those for spherical cloaks, but quite similar to those for 2D cylindrical cloaks because a singularity is involved at the inner boundary in both the cases. The cloaking effect is confirmed by the electric field distribution in the vicinity of toroidal cloaks simulated from the generalized discrete-dipole approximation (DDA) method. This study extends the concept of electromagnetic cloaking of arbitrarily-shaped objects to a complex geometry. PMID:19365485

  9. Centrifugal reciprocating compressor

    High, W. H.

    1980-01-01

    Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.

  10. Quantum adiabatic machine learning

    Pudenz, Kristen L

    2011-01-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.

  11. Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag

    S. Shaaban

    2012-01-01

    Full Text Available Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.

  12. Adiabatic Markovian Dynamics

    Oreshkov, Ognyan

    2010-01-01

    We propose a theory of adiabaticity in quantum Markovian dynamics based on a structural decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of Markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the underlying Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As an application of our theory, we propose a framework for decoherence-assisted computation in noiseless codes under general Markovian noise. We also formulate a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by non-dissipative means.

  13. Approximations to toroidal harmonics

    Toroidal harmonics P/sub n-1/2/1(cosh μ) and Q/sub n-1/2/1(cosh μ) are useful in solutions to Maxwell's equations in toroidal coordinates. In order to speed their computation, a set of approximations has been developed that is valid over the range 0 -10. The simple method used to determine the approximations is described. Relative error curves are also presented, obtained by comparing approximations to the more accurate values computed by direct summation of the hypergeometric series

  14. Drift in toroidal configurations

    Evangelidis, E. A.

    1990-12-01

    This paper considers possible mechanisms involved in amplifying the drift velocity of plasma particles, under conditions of toroidal geometry. It is shown that particles constrained to move on an axisymmetric circular spheroidal surface, develop a sinusoidal motion with a characteristic frequency which depends on the energy of the particles, the value of the isoflux surface, and the value of the general momentum. It is also shown that the incorporation of the effects of toroidal geometry in the Lorentz equation produces a nonambipolar charge-dependent particle flux amplified by a factor 2(q/epsilon) squared.

  15. Wireless adiabatic power transfer

    Research highlights: → Efficient and robust mid-range wireless energy transfer between two coils. → The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. → Wireless energy transfer is insensitive to any resonant constraints. → Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  16. Adiabatic Liquid Piston Compressed Air Energy Storage

    Petersen, Tage; Elmegaard, Brian; Pedersen, Allan Schrøder

    This project investigates the potential of a Compressed Air Energy Storage system (CAES system). CAES systems are used to store mechanical energy in the form of compressed air. The systems use electricity to drive the compressor at times of low electricity demand with the purpose of converting the...... compensates the added investment. •When comparing ALP-CAES to an adiabatic CAES system, where compression heat is stored in thermal oil, the ALP-CAES system is found only to be competitive under a very specific set of operating/design conditions, including very high operation pressure and the use of very...... primarily due to the investment in turbine/generator, heat exchangers, and a large quantity of thermal oil. To improve the economy, it would be relevant to investigate the possibility of replacing the thermal oil by water, for example by injecting the water directly into the air flow between the different...

  17. The Compressor Recycle System

    Barstad, Bjørn Ove

    2010-01-01

    The compressor recycle system is the main focus of this thesis. When the mass flow through a compressor becomes too low, the compressor can plunge into surge. Surge is a term that is used for axisymmetric oscillation through a compressor and is highly unwanted. The recycle system feeds compressed gas back to the intake when the mass flow becomes too low, and thereby act as a safety system.A mathematical model of the recycle system is extended and simulated in SIMULINK. The mathematical model ...

  18. Gravity Independent Compressor Project

    National Aeronautics and Space Administration — We propose to develop and demonstrate a small, gravity independent, vapor compression refrigeration system using a linear motor compressor which effectively...

  19. Adiabatically implementing quantum gates

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process

  20. Wireless adiabatic power transfer

    Rangelov, A. A.; Suchowski, H.; Silberberg, Y.; Vitanov, N. V.

    2010-01-01

    We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  1. High ratio recirculating gas compressor

    Weinbrecht, John F.

    1989-01-01

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor.

  2. Elongated toroid fusion device

    A device for achieving ignition of a plasma with ohmic heating is described comprising: means for defining a toroidal plasma chamber,a and confining gas therein, and means including electrically conductive coils for generating plasma within the chamber and for confining and shaping such plasma substantially into and filling a predetermined single region of the chamber without an axisymmetric internal separatix and ohmically heating the confined plasma to ignition. The predetermined region is toroidal with a major axis defining an axial direction parallel thereto and a transaxial direction perpendicular to the axis and having an axial cross section with an elongation, k, greater than 4, where k is the ratio of the maximum axial dimension of the cross section to the maximum transaxial dimension of the cross section

  3. Operating experiences and test results of six cold helium compressors

    Brown, D. P.; Gibbs, R. J.; Schlafke, A. P.; Sondericker, J. H.; Wu, K. C.

    Three small and three large cold helium centrifugal compressors have been operated at Brookhaven National Laboratory between 1981 and 1986. The three small cold compressors have been installed on a 1000 W refrigerator for testing a string of superconducting magnets and for R and D purposes. The three large units are components of the BNL 24.8 KW refrigerator to be used to provide cooling for the RHIC project. These compressors are used either to circulate a large amount of supercritical helium through a group of magnets or to pump on the helium bath to reduce temperature in the system. One small circulating compressor tested employs tilting-pad gas bearings and is driven by a DC motor. The two small cold vacuum pumps tested use oil bearings and are driven by oil turbines. The three large oil-bearing cold compressors are driven by DC motors through a gear box. A unique feature of the large vacuum pump is the combination of two pumps with a total of four stages on the same shaft. The adiabatic efficiencies are found to be 57% for the large vacuum pumps and close to 50% for the large circulating compressor. Good overall reliability has been experienced.

  4. Bidirectional grating compressors

    Wang, Cheng; Li, Zhaoyang; Li, Shuai; Liu, Yanqi; Leng, Yuxin; Li, Ruxin

    2016-07-01

    A bidirectional grating compressor for chirped pulse amplifiers is presented. It compresses a laser beam simultaneously in two opposite directions. The pulse compressor is shown to promote chirped pulse amplifiers' output energy without grating damages. To verify the practicability, an experiment is carried out. In addition, a crosscorrelation instrument is designed and set up to test the time synchronization between these two femtosecond pulses.

  5. Tokamak with liquid metal toroidal field coil

    Ohkawa, Tihiro; Schaffer, Michael J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  6. Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report

    Burger, G. D.; Lee, D.; Snow, D. W.

    1979-01-01

    A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.

  7. Supersonic gas compressor

    Lawlor, Shawn P.; Novaresi, Mark A.; Cornelius, Charles C.

    2007-11-13

    A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

  8. Plasma adiabatic lapse rate

    Amendt, Peter; Bellei, Claudio; Wilks, Scott

    2012-01-01

    The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient and difference in average ionization states . Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated pl...

  9. Development of a test rig for a helium twin-screw compressor

    A large helium cryogenic system is being developed for use in great science projects, such as the International Thermonuclear Experimental Reactor (ITER), Large Helical Device (LHD), and the Experimental Advanced Superconducting Tokamak (EAST). In this cryogenic system, a twin-screw compressor is a key component. Therefore, it is necessary to obtain the compressor performance. To obtain the performance characteristics, a test rig for the compressor has been built. All the important performance parameters, including adiabatic efficiency, volumetric efficiency, oil injection characteristic, and noise characteristic can be acquired with the rig when sensors are installed in the test system. With the test performance, the helium twin-screw compressor can be evaluated. Using these results, the design of the compressor can be improved

  10. Development of a test rig for a helium twin-screw compressor

    Wang, B. M.; Hu, Z. J. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, P. [School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Q. [State Key Laboratory of Technologies in Space Cryogenic Propellant(Institute of Physics and Chemistry, Chinese Academy of Sciences), Beijing 100190 (China)

    2014-01-29

    A large helium cryogenic system is being developed for use in great science projects, such as the International Thermonuclear Experimental Reactor (ITER), Large Helical Device (LHD), and the Experimental Advanced Superconducting Tokamak (EAST). In this cryogenic system, a twin-screw compressor is a key component. Therefore, it is necessary to obtain the compressor performance. To obtain the performance characteristics, a test rig for the compressor has been built. All the important performance parameters, including adiabatic efficiency, volumetric efficiency, oil injection characteristic, and noise characteristic can be acquired with the rig when sensors are installed in the test system. With the test performance, the helium twin-screw compressor can be evaluated. Using these results, the design of the compressor can be improved.

  11. Calculation procedures for oil free scroll compressors based on mathematical modelling of working process

    Paranin, Y.; Burmistrov, A.; Salikeev, S.; Fomina, M.

    2015-08-01

    Basic propositions of calculation procedures for oil free scroll compressors characteristics are presented. It is shown that mathematical modelling of working process in a scroll compressor makes it possible to take into account such factors influencing the working process as heat and mass exchange, mechanical interaction in working chambers, leakage through slots, etc. The basic mathematical model may be supplemented by taking into account external heat exchange, elastic deformation of scrolls, inlet and outlet losses, etc. To evaluate the influence of procedure on scroll compressor characteristics calculations accuracy different calculations were carried out. Internal adiabatic efficiency was chosen as a comparative parameter which evaluates the perfection of internal thermodynamic and gas-dynamic compressor processes. Calculated characteristics are compared with experimental values obtained for the compressor pilot sample.

  12. Experimental study of a thermochemical compressor for an absorption/compression hybrid cycle

    Highlights: ► Experimental study of a thermochemical compressor for absorption/compression cycle. ► Spray adiabatic absorber using NH3–LiNO3 solution working fluid. ► It is able to operate between 57 and 110 °C varying concentration between 0.46 and 0.59. ► The increase of absorber pressure decreases the circulation ratio. ► The numerical model performed agrees with the experimental results. -- Abstract: An experimental study of a thermochemical compressor with ammonia–lithium nitrate solution as working fluid has been carried out. This compressor incorporates a single-pass adiabatic absorber and all the heat exchangers are of the plate type: absorber subcooler, generator and solution heat exchanger. The thermochemical compressor has been studied as part of a single-effect absorption chiller hybridized with an in-series low-pressure compression booster. The adiabatic absorber uses fog jet injectors. The generator hot water temperatures for the external driving flow are in the range of 57–110 °C and the absorber pressures range between 429 and 945 kPa. Experimental results are compared with a numerical model showing a high agreement. The performance of the thermochemical compressor, evaluated through the circulation ratio, improves for higher absorber pressures, indicating the potential of pressure boosting. For the same circulation ratio, the driving hot water inlet temperature decreases with the rise of the absorber pressure. The thermochemical compressor, based on an adiabatic absorber, can produce refrigerant with very low driving temperatures, between 57 and 70 °C, what is interesting for solar cooling applications and very low temperature residual heat recovery. Efficiencies and cooling power are offered when this hybrid thermochemical compressor is implemented in a chiller, showing the effect of different operating parameters.

  13. Nonresonance adiabatic photon trap

    Popov, S S; Burdakov, A V; Ushkova, M Yu

    2016-01-01

    Concept of high efficiency photon storage based on adiabatic confinement between concave mirrors is presented and experimentally investigated. The approach is insensitive to typical for Fabri-Perot cells requirements on quality of accumulated radiation, tolerance of resonator elements and their stability. Experiments have been carried out with the trap, which consists from opposed concave cylindrical mirrors and conjugated with them spherical mirrors. In result, high efficiency for accumulation of radiation with large angular spread and spectrum width has been confirmed. As radiation source a commercial fiber laser has been used.

  14. Axial compressor stability enhancement

    Houghton, Timothy Oliver.

    2010-01-01

    Aircraft jet engines must operate in a stable manner at all times. One source of instability is compressor stall. Stall problems can be reduced by machining cavities into the compressor casing adjacent to the rotor blades. This ?casing treatment? is the focus of the present work. Two treatment configurations are tested: circumferential grooves cut into the casing above the rotor blades, and axial slots cut into the casing adjacent to the rotor blade leading edges. The performance of a single ...

  15. Wet Gas Compressor Performance

    Natås, Erik

    2014-01-01

    The world’s energy demand is increasing and more attention is given to increase the recovery of gas fields. Installing a compressor near the wellhead can contribute to this. Constantly changing reservoir conditions requires the system to handle small amounts of liquid water and condensate. Wet gas compression is a cost efficient and compact alternative to liquid separation on the seabed. A wet gas compressor test facility exists at NTNU`s thermal laboratory and research on wet gas fundam...

  16. Cooled spool piston compressor

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  17. Adiabatic quantum simulators

    J. D. Biamonte

    2011-06-01

    Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.

  18. Is the sech/tanh Adiabatic Pulse Really Adiabatic?

    Rosenfeld, Daniel; Zur, Yuval

    1998-05-01

    Adiabatic pulses are most conveniently studied in the frequency frame which is a frame of reference rotating at the instantaneous frequency of the pulse. In this frame the adiabatic condition ‖γBeff‖ ≫ |θ≳| sets an upper limit on the sweep rate θ≳ of the Beffvector. This, in turn, places a lower bound on the pulse duration. Adiabatic behavior is studied at the threshold duration and two pulses are examined: (i) a pulse with a constant sweep rate (CAPpulse) and (ii) a conventional sech/tanh adiabatic pulse. It is shown that the sech/tanh pulse performs robust magnetization inversion although it seems to violate the adiabatic condition. This puzzling phenomenon is solved by switching into a second-order rotating frame of reference (SORF) where it is shown that the adiabatic condition is fulfilled. This frame coincides with the frequency frame at the beginning of the pulse. Assuming an RF field along thex-axis of the frequency frame, the SORF then rotates about the commony-axis during the pulse with thez-axis of the new frame aligned with the Beffvector. It is shown that adiabatic motion may be performed in the SORF, in which the sweep rate is increased indefinitely; the adiabatic condition is violated by this motion in the frequency frame but is fulfilled in the SORF. The lower bound on the sweep rate in the frequency frame is thereby lifted.

  19. Adiabatic and non-adiabatic processes in strong Coulomb fields

    Adiabatic and non-adiabatic behaviour of relativistic electrons in external Coulomb fields of time-dependent strength is studied within the framework of a model for the description of a shell electron's behaviour during a heavy-ion collision. A classification scheme for types of non-adiabatic behaviour is suggested; its relevance for the analysis of pair production processes in strong Coulomb fields is discussed (K-Shell Ionization). An ansatz for the vacuum polarization potential is introduced and employed to demonstrate the special role of vacuum polarization for adiabatic and non-adiabatic behaviour in very strong Coulomb fields (Zα > 1). The implications of the underlaying specific features of the vacuum polarization charge density in very strong fields for pair production mechanisms are considered. (orig.)

  20. Oil-Less Swing Compressor Development

    Hugenroth, Jason James

    2014-01-01

    This paper describes the development of an oil-less swing compressor. The swing compressor, also known as a rotary piston pump, is a rotary compressor technology that is akin to the well know rolling piston compressor. The swing compressor differs from the rolling piston compressor in that the vane, which divides the suction and compression chambers is an integral part of the piston. The vane is both rotatably and slidingly supported by bushings in the compressor cylinder. Oil-less compressor...

  1. Geometry of the Adiabatic Theorem

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  2. Compressor map prediction tool

    Ravi, Arjun; Sznajder, Lukasz; Bennett, Ian

    2015-08-01

    Shell Global Solutions uses an in-house developed system for remote condition monitoring of centrifugal compressors. It requires field process data collected during operation to calculate and assess the machine's performance. Performance is assessed by comparing live results of polytropic head and efficiency versus design compressor curves provided by the Manufacturer. Typically, these design curves are given for specific suction conditions. The further these conditions on site deviate from those prescribed at design, the less accurate the health assessment of the compressor becomes. To address this specified problem, a compressor map prediction tool is proposed. The original performance curves of polytropic head against volumetric flow for varying rotational speeds are used as an input to define a range of Mach numbers within which the non-dimensional invariant performance curve of head and volume flow coefficient is generated. The new performance curves of polytropic head vs. flow for desired set of inlet conditions are then back calculated using the invariant non-dimensional curve. Within the range of Mach numbers calculated from design data, the proposed methodology can predict polytropic head curves at a new set of inlet conditions within an estimated 3% accuracy. The presented methodology does not require knowledge of detailed impeller geometry such as throat areas, blade number, blade angles, thicknesses nor other aspects of the aerodynamic design - diffusion levels, flow angles, etc. The only required mechanical design feature is the first impeller tip diameter. Described method makes centrifugal compressor surveillance activities more accurate, enabling precise problem isolation affecting machine's performance.

  3. Equivalent Linkages of Compressor Mechanisms

    Bukac, Hubert

    2014-01-01

    Frequently, the dynamics of a compressor’s mechanism can be simplified and better understood by analyzing compressor’s equivalent linkage. Although the equivalent linkage of a reciprocating piston compressor is well known, the equivalent linkages of other types of compressors are not. For example, it is not well understood that the equivalent linkage of a rolling piston compressor is also the same slider-crank mechanism as the one of a reciprocating piston compressor. The difference between r...

  4. Wet Gas Compressor Surge Detection

    Jellum, Marie Rennemo

    2013-01-01

    The development of wet gas compressors for installation subsea is key to increase the recovery of oil and gas from the Norwegian Continental Shelf. Safe operation of the compressor depends on understanding of how wet gas affects the behavior of the machine. The compressor operating range is limited by stall and surge, and it is therefore particularly important to determine how liquid will affect the inception of these phenomena. Measuring pressure transients within the compressor or in the in...

  5. Decade Developments of Rotary Compressor

    Pravin K. Katare; Vilayat M. Kriplani

    2012-01-01

    Compressor is the single largest consumer of primary energy (usually electricity) in an industrial refrigeration system and often become a focal point for energy efficiency improvement strategies. This is achieved either through the improvement of existing compressor designs, or by the introduction of new designs that is expected to overcome the drawbacks of existing compressors. This paper presents the summery of development and innovations made in rotary compressors used in refrigeration in...

  6. Standing wave compressor

    Lucas, Timothy S.

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  7. Electrochemical Hydrogen Compressor

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  8. Hyperbolically Shaped Centrifugal Compressor

    Romuald Puzyrewski; Pawel Flaszy(n)ski

    2003-01-01

    Starting from the classical centrifugal compressor, cone shaped in meridional cross section, two modifications are considered on the basis of results from 2D and 3D flow models. The first modification is the change of the meridional cross section to hyperbolically shaped channel. The second modification, proposed on the basis of 2D axisymmetric solution, concerns the shape of blading. On the strength of this solution the blades are formed as 3D shaped blades, coinciding with the recent tendency in 3D designs. Two aims were considered for the change of meridional compressor shape. The first was to remove the separation zone which appears as the flow tums from axial to radial direction. The second aim is to uniformize the flow at exit of impeller. These two goals were considered within the frame of 2D axisymmetric model. Replacing the cone shaped compressor by a hyperbolically shaped one, the separation at the corner was removed. The disc and shroud shape of the compressor was chosen in the way which satisfies the condition of most uniform flow at the compressor exit. The uniformity of exit flow from the rotor can be considered as the factor which influences the performance of the diffuser following the rotor. In the 2D model a family of stream surfaces of S1 type is given in order to find S2 surfaces which may be identified with the midblade surfaces of compressor blading. A computation of 3D type has been performed in order to establish the relations between 2D and 3D models in the calculation of flow parameters. In the presented example the 2D model appears as the inverse model which leads to 3D shape of blading whereas the 3D model has been used for the direct solution. In the presented example the confrontation of two models, 2D and 3D, leads to a better understanding of the application of these models to the design procedure.

  9. Toroidal Multipole Confinement Experiment

    Confinement of plasma is studied in the General Atomic toroidal octopole machine. The magnetic field is produced by four current carrying rings supported inside a contoured conductor. The rings are energized by a transformer core linking the machine. The major radius of the machine is 63.5 cm with an aspect ratio of 5. The magnetic field on the minor axis is zero and increases to 3500 G at the wall between the rings. After crowbarring, the field decays in 6 msec to its half value. The MHD stability calculation has been carried out and the stability is assured up to the plasma pressure of 1016 eV cm-3. Hydrogen plasmas from either a coaxial gun or a pinch gun with ion energies of 50 to 200 eV and with densities of 1014 cm-3 are successfully injected through a port located at the outer conductor wall. After the injection, plasma spreads azimuthally, filling the machine. Electric probes, magnetic probes, and calorimetric probes have been used extensively. Optical spectrometers and particle detectors are also used. The initial plasma density of 1013 cm-'3 decays with a time constant of 700 μsec. The electron temperature decays more quickly in about 100 μsec. No electric or magnetic fluctuations have been observed on any of the probes. Since no provision is made to avoid the plasma loss to the ring supports which penetrate the plasma region, the decay of ion temperature may be attributed to the support loss. (author)

  10. PEGASUS Toroidal Experimental Facility*

    Lewicki, B.; Pegasus Group

    1998-11-01

    P EGASUS began operations in June 98 and will study the characteristics of Extremely Low-Aspect Ratio Tokamak (ELART) plasmas. The 2.0m diameter, thin-walled (6.35 mm) vacuum vessel is a continuous stainless steel shell with generous port access. Initial pump down base pressure was 5 × 10-8 torr. The high stress ohmic solenoid is powered by a 15 kV, 4.5 MJ capacitor bank and will be impedance-matched through a 10:1 step-down transformer to extend the pulse length. Operating at peak fields of 13 - 20 T, the solenoid can achieve a flux swing of up to 190mV-s over 60 ms. The toroidal field of 0.1 T on axis is powered by a 3 MVA AC/DC converter capable of 3.5 kA at 600 VDC. The equilibrium and shaping field magnets are powered by 2.2 F of commutated capacitor banks plus a 0.5 MVA programmable switching supply. Modest waveform control is available to compensate for the resistive vacuum vessel and aid in plasma shaping for elongated and diverted plasmas. Operational diagnostics include internal magnetic pickup loops, high resolution and fast framing cameras, and impurity monitoring systems. * *Supported by U.S. DoE grant No. DE-FG02-96ER54375

  11. Compact toroid formation experiments

    We present the design and experimental performance of a compact toroid (CT) formation experiment. The device has co-axial electrode diameters of 0.9 m (inner) and 1.25 m (outer), and an electrode length of ∼ 1.2 m, including an expansion/drift section. The CT is formed by a 0.1--0.2 Tesla initial radial magnetic field embedded co-axial puff gas discharge. The gas puff is injected with an array of 60 pulsed solenoid driven fast valves. The formation discharge is driven by a 108 microfarad, 40 to 100 KV, 86 to 540 kilojoule 2 to 5 megamp capacitor discharge with ∼ 20 nanohenry initial total discharge inductance. The hardware includes transmission line connections for a Shiva Star (1300 microfarad, up to 120 KV, 0.4 megajoule) capacitor bank driven acceleration discharge. Experimental measurements include current, voltage; azimuthal, radial and axial magnetic field at numerous location; fast photography, optical spectroscopy; microwave, CO2 laser, and He-Ne laser interferometry. Auxiliary experiments include Penning ionization gauge, pressure probe, and breakdown gas trigger diagnostics of gas injection, and Hall probe measurements of magnetic field injection

  12. Next generation toroidal devices

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one's view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  13. Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag

    Shaaban, S; Seume, J.

    2012-01-01

    Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The prese...

  14. MHD equilibrium of toroidal fusion plasma with stationary flows; Rownowaga MHD toroidalnej plazmy termojadrowej z przeplywami

    Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.

  15. Whispering Gallery Pulse Compressor

    A barrel-like cavity resonant at a whispering gallery mode is known as capable to provide a SLED-like rf pulse compression. To enhance the power handling capacity of the compressor, we propose to use a coupler based on a wave tunneling through a continuous slot. A modeling low power 11.4 GHz experiment proved to be consistent with theory. A preliminary technical design for an evacuated high-power compressor has also been developed. According to a theory, a twin-cavity version of the device can efficiently compress microwave pulses produced with sources of limited bandwidth, in particular frequency-chirped pulses

  16. Modeling magnetic pulse compressors

    In this paper, the author considers the problem of modeling the dynamic performance of high-average-power, high repetition-rate magnetic pulse compressors. The author is particularly concerned with developing system models suitable for studying output pulse stability in high repetition rate applications. To this end, the author presents a magnetic switch model suitable for system studies and discusses a modeling tool being developed to perform these studies. The author concludes with some preliminary results of efforts to simulate the MAG1D compressor performance

  17. Compressor surge counter

    Castleberry, Kimberly N.

    1983-01-01

    A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.

  18. Wet Gas Compressor Transients

    Owren, Bjørn Berge

    2014-01-01

    This master thesis considers three subtasks related to transient operation of wet gas compressors.HYSYS Dynamics is used to establish a dynamic simulation model in the first subtask. The model is designed to predict transient behavior of the compressor test facility at NTNU during dry and wet gas trip scenarios. Its steady state performance has been validated against test data. The deviation of polytropic head and suction volume flow is less than 1% for all test points but one.Dry and wet gas...

  19. Tests of cold helium compressors at Fermilab

    Fermilab has tested two cold helium compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Operating conditions required to obtain an overall Tevatron energy upgrade from 900 to 1000 GeV are (for each of 24 machines): 52 g/s mass flow rate, 0.7 atm inlet pressure, 1.4 atm exhaust pressure. Acceptable efficiency is in the 60% range. Both Creare, Inc., and Cryogenic Consultants, Inc. (CCI), have supplied units for evaluation. The Creare machine is a high speed centrifugal pump/compressor which yielded 60% adiabatic efficiency (including an approximately 20 watt heat leak) with a 1.0 atm inlet pressure and 55 g/s flow rate. Certain mechanical difficulties were present, chiefly the device's inability to withstand two-phase flow. CCI supplied a reciprocating unit which, after initial testing and modification, achieved 59% efficiency with an approximate 35 watt heat leak at a 0.7 atm inlet pressure and 48 g/s flow rate. Although the device lacks the smooth, quiet operating characteristics of a turbomachine, it has endured mechanically throughout testing and is entirely insensitive to two-phase flow

  20. Axisymmetric toroidal equilibrium with flow and anisotropic pressure

    Axisymmetric toroidal plasma equilibria with mass flows and anisotropic pressure are investigated. The equilibrium system is derived for a general functional form of the pressures, which includes both fluid models, such as the magnetohydrodynamic (MHD) and the double-adiabatic models, and Grad's guiding centre model. This allows for detailed comparisons between the models and clarifies how the 'first hyperbolic region', occurring in the fluid theory when the poloidal flow is of the order of the poloidal sound speed, can be eliminated in guiding centre theory. In the case of a pure toroidal rotation, macroscopic equations of state are derived from the guiding centre model, characterized by a parallel temperature that is constant on each magnetic surface and a perpendicular temperature that varies with the magnetic field. The outward centrifugal shifts of the magnetic axis and of the mass density profile, due to toroidal rotation, are increased by anisotropy. The guiding centre model shows that poloidal flow produces an inward shift of the density profile, in contrast with the MHD result. (author) 1 fig., 1 tab., 17 refs

  1. Non-adiabatic primordial fluctuations

    Noller, J

    2009-01-01

    We consider general non-adiabatic single fluid cosmological perturbations. We derive the second-order action and its curvature variables assuming only the (linearized) Einstein equations for a perfect fluid stress-energy tensor. The derivation is therefore carried out at the same level of generality that has been achieved before for adiabatic modes. We also allow for arbitrary "speed of sound" profiles in our derivation. As a result we find a new conserved super-horizon quantity and relate it to the adiabatically conserved curvature perturbation. We then use the formalism to investigate a family of non-adiabatic hydrodynamical primordial matter models and the power spectra they produce. This yields a new scale-invariant solution that can resolve the horizon problem if implemented in a contracting phase.

  2. Compressor reliability survey

    Eijk, A.; Lier, L.J. van

    2010-01-01

    The increasing demand for economic plant operation has led to a critical discussion of the equipment as to selection, design, maintenance and automation. The well-known advantages of the reciprocating compressor such as high efficiency under many different operating conditions, comparatively easy re

  3. Research on Energy-Saving Operation of Screw Air Compressor

    Chong liu

    2013-06-01

    Full Text Available Based on analysis of a screw air compressor volumetric efficiency under different discharge pressure conditions, this study establishes the mathematic model of the adiabatic compression power consumption. Under load/unload conditions, to change the offline pressure with step of 0.01 MPa, the power consumption floats up and down with the change of unloading and loading and then the screw compressor power consumption is simulated in MATLAB. The results shows that the optimal offline pressure exists at the given air consumption and meanwhile power consumption is minimal with the optimal offline pressure. It also reveals that the required optimal offline pressures will vary by air consumptions. Then, based on dynamic mechanical analysis for fluid motion in the pipe, considering that there is a causal relationship between pressure variation and gas flow variation, a method for measuring flow rate of one dimensional unsteady flow dynamically is proposed based on theory of linear approximation. In order to lower the online pressure and further reduce the energy consumption of screw air compressor, we propose a method is to calculate the rate of pressure drop and predict times for the discharge pressure dropping to the online pressure. And the further optimal control method of screw air compressor is given. It is correct and feasible, which proved by experiments.

  4. Ion ring compressor as a high-current ion accelerator

    The acceleration of large amounts of protons to several hundred MeV by adiabatic magnetic compression of low-energy ion rings are discussed. This method is to be used in the Ion Ring Compressor approach to thermonuclear fusion. Results from present experimental and theoretical investigations and estimates indicate good overall chances for a technical and economic feasibility of such a system. The method of acceleration might be used to generate efficiently the rather large amounts of several hundred MeV hydrogen ions that will be needed in any economically significant electronuclear breeding scheme

  5. Numerical design optimization of compressor blade based on ADOP

    2007-01-01

    An aerodynamic design optimization platform (ADOP) has been developed. The numerical optimization method is based on genetic algorithm (GA), Pareto ranking and fitness sharing technique. The platform was used for design optimization of the stator of an advanced transonic stage to seek high adiabatic efficiency. The compressor stage efficiency is increased by 0.502% at optimal point and the stall margin is enlarged by nearly 1.0% at design rotating speed. The flow fields of the transonic stage were simulated with FINE/Turbo software package. The optimization result indicates that the optimization platform is effective in 3D numerical design optimization problems.

  6. Heavy ion toroidal collective accelerator

    Experiments on HIPAC at Maxwell Laboratories have shown that almost all of the confined electrons are trapped and do not go around the torus. A toroidal electric field produces a negligible toroidal electron current. An ion accelerator where electrons are magnetically contained and their space charge contains ions is considered. A toroidal electric field of suitable magnitude can be applied so that it accelerates all of the ions but does not accelerate most of the electrons. This is possible if the magnetic moment of electrons μsub(e) > μsub(i)/Z, where μsub(i) is the ion magnetic moment and Z is the charge of the ion. Ions would be contained by the electron space-charge electric field E, for energies up to ZeER/2 approximately 100 GeV where Z = 60, E = 107 V/cm and the major radius of the torus is R = 3.3 metres. (author)

  7. RF breakdown by toroidal helicons

    S K P Tripathi; D Bora; M Mishra

    2001-04-01

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to the neutral background medium. After the breakdown stage, discharge is sustained by toroidal bounded whistlers. In these pulsed experiments the behaviour of the time evolution of the discharge could be studied in four distinct phases of RF breakdown, steady state attainment, decay and afterglow. In the steady state average electron density of ≈ 1012 per cc and average electron temperature of ≈ 20 eV are obtained at 10-3 mbar of argon filling pressure. Experimental results on toroidal mode structure, background effects and time evolution of the electron distribution function will be presented and their implications in understanding the breakdown mechanism are discussed.

  8. Hybrid winding concept for toroids

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold;

    2013-01-01

    This paper proposes a hybrid winding concept for toroids using the traces in a printed circuit board to make connection to bended copper foil cutouts. In a final product a number of strips with a certain thickness would be held by a former and the whole assembly could be placed by pick and...... placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...

  9. Performance in Centrifugal Compressors

    K. Sato

    1999-01-01

    Full Text Available A 3-D unsteady thin-layer Navier-Stokes code has been used to calculate the flow through a centrifugal compressor stage. The validation of the code for steady flows in centrifugal compressors was conducted for the Krain’s impeller with a vaneless diffuser as a test case and the numerical results were compared with the experimental results. The predicted flow field and performance agreed well with the experimental data. An unsteady stage solution was then conducted with this impeller followed by a generic low-solidity vaned-diffuser to examine the unsteady effects on the impeller performance. The computational results showed a stabilising effect of the blade row interaction.

  10. The complex and unique ATLAS Toroid family

    2002-01-01

    Big parts for the toroid magnets that will be used in the ATLAS experiment have been continuously arriving at CERN since March. These structures will create the largest superconducting toroid magnet ever.

  11. Compressor leading edges

    Goodhand, Martin

    2011-01-01

    Compressor blades often have a small 'spike' in the surface pressure distribution at the leading edge. This may result from blade erosion, manufacture defects or compromises made in the original design process. In this thesis it is shown that these spikes will increase the loss generated by a blade only when they become large enough to initiate boundary layer transition at the leading edge through a separation bubble; this process increases profile loss by about 30%. A criterion is presen...

  12. Gas path diagnostics for compressors

    Salamat, Reza

    2012-01-01

    The use and application of compressors cannot be overemphasized in the aeronautical and oil & gas industries. Yet research works in sufficient depth has not been conducted previously to analyze their actual behaviour under degraded or even new conditions in operation. For the purpose of degradation modeling and simulation, a compressor model was set up using thermodynamic equations and affinity laws representing the characteristics of a clean compressor. HYSYS was used for degradation mode...

  13. Gas Compressor Station Economic Optimization

    Rainer Kurz; Matt Lubomirsky; Klaus Brun

    2012-01-01

    When considering gas compressor stations for pipeline projects, the economic success of the entire operation depends to a significant extent on the operation of the compressors involved. In this paper, the basic factors contributing to the economics are outlined, with particular emphasis on the interaction between the pipeline and the compressor station. Typical scenarios are described, highlighting the fact that pipeline operation has to take into account variations in load.

  14. Light intensity compressor

    Rushford, Michael C.

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  15. Intrinsic rotation of toroidally confined magnetohydrodynamics

    Morales, Jorge; Bos, Wouter; Schneider, Kai; Montgomery, David

    2012-01-01

    The spatiotemporal self-organization of viscoresistive magnetohydrodynamics (MHD) in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of t...

  16. Performance Measurement of Revolving Vane Compressor

    Tan, Kok Ming; Choo, Wei Chong; Chee, Michael; Law, Ken; Iswan, Ismail; Ooi, Kim Tiow

    2014-01-01

    Over the years, rotary compressors have gained popularity and widely used in household and automotive air-conditioning applications because of the compact nature and silent characteristics. By engaging a revolutionary concept to elevate the rotary compressor efficiency, a novel compressor mechanism, named the Revolving Vane compressor is invented. The prototype R134a compressor was designed, fabricated, instrumented and tested. Compressor tests were conducted for varying suction pressures, su...

  17. Non-adiabatic Chaplygin gas

    The split of a generalised Chaplygin gas with an equation of state p=−A/ρα into an interacting mixture of pressureless matter and a dark-energy component with equation of state pΛ=−ρΛ implies the existence of non-adiabatic pressure perturbations. We demonstrate that the square of the effective (non-adiabatic) sound speed cs of the medium is proportional to the ratio of the perturbations of the dark energy to those of the dark matter. Since, as demonstrated explicitly for the particular case α=−1/2, dark-energy perturbations are negligible compared with dark-matter perturbations on scales that are relevant for structure formation, we find |cs2|≪1. Consequently, there are no oscillations or instabilities which have plagued previous adiabatic Chaplygin-gas models

  18. The upgraded Pegasus Toroidal Experiment

    The Pegasus Toroidal Experiment was developed to explore the physics limits of plasma operation as the aspect ratio (A) approaches unity. Initial experiments on the device found that access to high normalized current and toroidal beta was limited by the presence of large-scale tearing modes. Major upgrades have been conducted of the facility to provide the control tools necessary to mitigate these resistive modes. The upgrades include new programmable power supplies, new poloidal field coils and increased, time-variable toroidal field. First ohmic operations with the upgraded system demonstrated position and current ramp-rate control, as well as improvement in ohmic flux consumption from 2.9 MA Wb-1 to 4.2 MA Wb-1. The upgraded experiment will be used to address three areas of physics interest. First, the kink and ballooning stability boundaries at low A and high normalized current will be investigated. Second, clean, high-current plasma sources will be studied as a helicity injection tool. Experiments with two such sources have produced toroidal currents three times greater than predicted by geometric field line following. Finally, the use of electron Bernstein waves to heat and drive current locally will be studied at the 1 MW level; initial modelling indicates that these experiments are feasible at a frequency of 2.45 GHz

  19. Lowering the first ATLAS toroid

    Maximilien Brice

    2004-01-01

    The ATLAS detector on the LHC at CERN will consist of eight toroid magnets, the first of which was lowered into the cavern in these images on 26 October 2004. The coils are supported on platforms where they will be attached to form a giant torus. The platforms will hold about 300 tonnes of ATLAS' muon chambers and will envelop the inner detectors.

  20. Toroidal solutions in Horava Gravity

    Ghodsi, Ahmad

    2009-01-01

    Recently a new four-dimensional non relativistic renormalizable theory of gravity was proposed by Horava. This gravity reduces to Einstein gravity at large distances. In this paper by using the new action for gravity we present different toroidal solutions to the equations of motion. Our solutions describe the near horizon geometry with slow rotating parameter.

  1. Technology of toroidal plasma devices

    After research into many different magnetic confinement systems, there is now general agreement that the most favorable ones for future fusion reactors are all based on toroidal geometry, as distinct from having open ends like mirror machines. For this reason plasma physics research, even when not aimed directly at the fusion problems, has in recent years increasingly concentrated on toroidal systems. One reason is that by using their good confinement properties the experimenter has available a range of high temperature plasma parameters in quasisteady (or even steady) state conditions not otherwise available on Earth. Despite the wide variety of both geometrical possibilities and sizes, ranging from table-top experiments with plasmas a few centimetres across to near reactor scale ones like JET with plasmas several metres across, toroidal systems have many common features, both in their physical principles and of experimental design: the purpose of this paper is to highlight those common features, using some specific examples for illustration, and emphasizing some of the more practical aspects. It will also try to point out important differences between two of the main classes of toroidal systems

  2. ATLAS superconducting toroids and solenoid

    ten Kate, H H J

    2005-01-01

    The ATLAS particle detector in the Large Hadron Collider at CERN features a hybrid system of four superconducting magnets: a Central Solenoid surrounded by 2 End-cap Toroids and a Barrel Toroid. The magnet system dimensions are 20 m in diameter and 26 m in length. With its 1.55 GJ stored energy in air, it actually is the largest superconducting magnet in the world. The construction of the magnets has started in 1998 and will end in 2006 with the completion of the installation underground. Currently, in October 2004, practically all magnet parts are manufactured and delivered to CERN for final integration. The first two out of 8 full size 25*5 m/sup 2/ size coils for the Barrel Toroid have been completed and tested while the other 6 are near to completion as well. The production of the so- called End-Cap Toroids is progressing well. The Central Solenoid is complete and ready for installation. The installation underground of the entire system including its services has commenced. In the paper the main features ...

  3. Onsager relaxation of toroidal plasmas

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author)

  4. ATLAS End Cap toroid in upstanding position

    2005-01-01

    End Cap toroid The ATLAS End Cap toroid weights 240-ton and is 12-m diameter high. The parts of this vacuum vessel had to be integrated and tested so that End Cap Toroid has no leaks. After that it could be cooled down to 80 K.

  5. Extremely high Q-factor toroidal metamaterials

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N; Ustinov, Alexey V

    2016-01-01

    We demonstrate that, owing to the unique topology of the toroidal dipolar mode, its electric/magnetic field can be spatially confined within subwavelength, externally accessible regions of the metamolecules, which makes the toroidal planar metamaterials a viable platform for high Q-factor resonators due to interfering toroidal and other dipolar modes in metamolecules.

  6. Optimizing adiabaticity in quantum mechanics

    MacKenzie, R; Renaud-Desjardins, L

    2011-01-01

    A condition on the Hamiltonian of a time-dependent quantum mechanical system is derived which, if satisfied, implies optimal adiabaticity (defined below). The condition is expressed in terms of the Hamiltonian and in terms of the evolution operator related to it. Since the latter depends in a complicated way on the Hamiltonian, it is not yet clear how the condition can be used to extract useful information about the optimal Hamiltonian. The condition is tested on an exactly-soluble time-dependent problem (a spin in a magnetic field), where perfectly adiabatic evolution can be easily identified.

  7. Intrinsic rotation of toroidally confined magnetohydrodynamics.

    Morales, Jorge A; Bos, Wouter J T; Schneider, Kai; Montgomery, David C

    2012-10-26

    The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum. PMID:23215195

  8. Indirect Evaporative Pre-Cooled Compressor Cooling System Performance under Various Outdoor Air Humidity Conditions

    Brahmanis, A; Lešinskis, A

    2013-01-01

    The present study is devoted to efficiency evaluation of a combined indirect evaporative – compressor cooling system under various outdoor air humidity conditions of temperate climate. The investigated system is located in the recently restored historical building, The Art Museum Riga Bourse, which was initially built in the middle of the 19th century. The indirect adiabatic chiller supplies cooled fluid to the conventional cooling system, consisting of ventilation cooling coils and fan-coil ...

  9. Optimization of Adiabatic Selective Pulses

    Rosenfeld, Daniel; Panfil, Shimon L.; Zur, Yuval

    1997-06-01

    Adiabatic RF pulses play an important role in spin inversion due to their robust behavior in presence of inhomogeneous RF fields. These pulses are characterized by the trajectory swept by the tip of theBeffvector and the rate of motion upon it. In this paper, a method is described for optimizing adiabatic inversion pulses to achieve a frequency-selective magnetization inversion over a given bandwidth in a shorter time and to improve slice profile. An efficient adiabatic pulse is used as an initial condition. This pulse allows for flexibility in choosing its parameters; in particular, the transition sharpness may be traded off against the inverted bandwidth. The considerations for selecting the parameters of the pulse according to the requirements of the design are discussed. The optimization process then improves the slice profile by optimizing the rate of motion along the trajectory of the pulse while preserving the trajectory itself. The adiabatic behavior of the optimized pulses is fully preserved over a twofold range of variation in the RF amplitude which is sufficient for imaging applications in commercial high-field MRI machines. Design examples demonstrate the superiority of the optimized pulses over the conventional sech/tanh pulse.

  10. A Many Particle Adiabatic Invariant

    Hjorth, Poul G.

    For a system of N charged particles moving in a homogeneous, sufficiently strong magnetic field, a many-particle adiabatic invariant constrains the collisional exchange of energy between the degrees of freedom perpendicular to and parallel to the magnetic field. A description of the phenomenon in...

  11. Design and Simulation of Toroidal Twister Model

    TIAN Huifang; LIN Xizhen; ZENG Qinqin

    2006-01-01

    Toroidal composite vessel winded with fiber is a new kind of structural pressure vessels, which not only has high structure efficiency of compound materials pressure vessel, good security and so on, but also has special shape and the property of utilizing toroidal space, and the prospect of the application of toroidal composite vessel winded with fiber is extremely broad. By introducing parameters establishment of toroidal vessel and elaborating the principle of filament winding for toroidal vessel, the design model of filament winding machine for toroidal vessel has been introduced, and the design model has been dynamically simulated by the software of ADAMS, which will give more referrence for the design of real toroidal vessel twister.

  12. Studies in Chaotic adiabatic dynamics

    Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the open-quotes goodnessclose quotes of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees)

  13. Practical experience with unstable compressors

    Malanoski, S. B.

    1980-01-01

    Using analytical mathematical modeling techniques for the system components, an attempt is made to gauge the destabilizing effects in a number of compressor designs. In particular the overhung (or cantilevered) compressor designs and the straddle-mounted (or simply supported) compressor designs are examined. Recommendations are made, based on experiences with stable and unstable compressors, which can be used as guides in future designs. High and low pressure compressors which operate well above their fundamental rotor-bearing lateral natural frequencies can suffer from destructive subsynchronous vibration. Usually the elements in the system design which contribute to this vibration, other than the shafting and the bearings, are the seals (both gas labyrinth and oil breakdown bushings) and the aerodynamic components.

  14. QRFXFreeze: Queryable Compressor for RFX.

    Senthilkumar, Radha; Nandagopal, Gomathi; Ronald, Daphne

    2015-01-01

    The verbose nature of XML has been mulled over again and again and many compression techniques for XML data have been excogitated over the years. Some of the techniques incorporate support for querying the XML database in its compressed format while others have to be decompressed before they can be queried. XML compression in which querying is directly supported instantaneously with no compromise over time is forced to compromise over space. In this paper, we propose the compressor, QRFXFreeze, which not only reduces the space of storage but also supports efficient querying. The compressor does this without decompressing the compressed XML file. The compressor supports all kinds of XML documents along with insert, update, and delete operations. The forte of QRFXFreeze is that the textual data are semantically compressed and are indexed to reduce the querying time. Experimental results show that the proposed compressor performs much better than other well-known compressors. PMID:26065027

  15. QRFXFreeze: Queryable Compressor for RFX

    Radha Senthilkumar

    2015-01-01

    Full Text Available The verbose nature of XML has been mulled over again and again and many compression techniques for XML data have been excogitated over the years. Some of the techniques incorporate support for querying the XML database in its compressed format while others have to be decompressed before they can be queried. XML compression in which querying is directly supported instantaneously with no compromise over time is forced to compromise over space. In this paper, we propose the compressor, QRFXFreeze, which not only reduces the space of storage but also supports efficient querying. The compressor does this without decompressing the compressed XML file. The compressor supports all kinds of XML documents along with insert, update, and delete operations. The forte of QRFXFreeze is that the textual data are semantically compressed and are indexed to reduce the querying time. Experimental results show that the proposed compressor performs much better than other well-known compressors.

  16. Centrifugal-reciprocating compressor

    Higa, W. H. (Inventor)

    1984-01-01

    A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.

  17. Digital Waveguide Adiabatic Passage Part 1: Theory

    Vaitkus, Jesse A; Greentree, Andrew D

    2016-01-01

    Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.

  18. Time-Dependent of Accretion Flow with Toroidal Magnetic Field

    Khesali, Alireza

    2008-01-01

    In the present study time evolution of quasi-spherical polytropic accretion flow with toroidal magnetic field was investigated. The study especially focused the astrophysically important case in which the adiabatic exponent $\\gamma=5/3$. In this scenario, it was assumed that the angular momentum transport is due to viscous turbulence and used $\\alpha$-prescription for kinematic coefficient of viscosity. The equations of accretion flow are solved in a simplified one-dimensional model that neglects the latitudinal dependence of the flow. In order to solve the integrated equations which govern the dynamical behavior of the accretion flow, self-similar solution was used. The solution provides some insight into the dynamics of quasi-spherical accretion flow and avoids many of the strictures of the steady self-similar solution. The effect of the toroidal magnetic field is considered with additional variable $\\beta[=p_{mag}/p_{gas}]$, where $p_{mag}$ and $p_{gas}$ are the magnetic and gas pressure, respectively. The...

  19. Prospects for toroidal fusion reactors

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, ∼2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges

  20. Classification of symmetric toroidal orbifolds

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  1. TFTR toroidal field coil design

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 180 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  2. Hollow nanotubular toroidal polymer microrings

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  3. 30 CFR 75.344 - Compressors.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressors. 75.344 Section 75.344 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.344 Compressors. (a) Except compressors that are components of equipment such as locomotives and rock dusting machines and compressors of less than...

  4. 40 CFR 264.1053 - Standards: Compressors.

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Compressors. 264.1053... Air Emission Standards for Equipment Leaks § 264.1053 Standards: Compressors. (a) Each compressor.... (b) Each compressor seal system as required in paragraph (a) of this section shall be: (1)...

  5. Design of Selective Adiabatic Inversion Pulses Using the Adiabatic Condition

    Rosenfeld, Daniel; Panfil, Shimon L.; Zur, Yuval

    1997-12-01

    Adiabatic RF pulses play an important role in spin inversion due to their robust behavior in the presence of inhomogeneous RF fields. These pulses are characterized by the trajectory swept by the tip of theBeffvector and the rate of motion along it. In this paper, we describe a method by which optimized modulation functions can be constructed to render insensitivity toB1inhomogeneity over a predeterminedB1range and over a wide band of frequencies. This is accomplished by requiring that the optimized pulse fulfill the adiabatic condition over this range ofB1inhomogeneity and over the desired frequency band for the complete duration of the pulse. A trajectory similar to the well-known sech/tanh adiabatic pulse, i.e., a half-ellipse, is used. The optimization process improves the slice profile by optimizing the rate of motion along this trajectory. The optimized pulse can be tailored to the specific design requirements; in particular, the transition sharpness may be traded off against the inverted bandwidth. Two design examples, including experimental results, demonstrate the superiority of the optimized pulses over the conventional sech/tanh pulse: in the first example, a large frequency band is to be inverted using a weak RF amplitude in a short time. In the second example, a pulse with a very sharp transition is required.

  6. Magnetic Properties of 3D Printed Toroids

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  7. Centrifugal Compressor Aeroelastic Analysis Code

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  8. Adiabatic pumping through quantum dots

    A finite charge can be pumped through a mesoscopic system in the absence of an applied bias voltage by changing periodically in time some parameters of the system. If these parameters change slowly with respect to all internal time scales of the system, pumping is adiabatic. The scope of this work is to investigate adiabatic pumping through a quantum dot, in particular the influence of Coulomb interaction between electrons in the dot on the pumped charge. On one hand we develop a formalism based on Green's functions, in order to calculate the pumped charge from the weak-tunnel-coupling regime down to the Kondo regime. We extend our calculations to a system with a superconducting contact. On the other hand we use a systematic perturbation expansion for the calculation of the pumped charge, giving us the possibility to analyze processes which contribute to charge pumping and to highlight the important role of interaction-induced level renormalization. (orig.)

  9. Adiabatic theory for the bipolaron

    A translation-invariant adiabatic theory is constructed for the bipolaron. It is shown that motions in the bipolaron are divided: the relative electron coordinates describe fast electron oscillations in the induced polarization well and the center of mass coordinates represent slow electron movement followed by polarization. Nonlinear differential bipolaron equations are derived which are asymptotically exact in the adiabatic limit. Particlelike solutions of these equations correspond to the bipolaron bound state. The exact solution yields the value of the ion critical parameter η=0.31 for which the bipolaron state is stable, where η=ε∞/ε0 and ε∞,ε0 are high-frequency and static dielectric permittivities. The energy, the total energy, the effective mass, the radius, and the critical values of the electron-phonon coupling constants are calculated for the bipolaron. The results obtained are generalized to the case of two-dimensional bipolarons

  10. Empirical Design Considerations for Industrial Centrifugal Compressors

    Cheng Xu; Amano, Ryoichi S.

    2012-01-01

    Computational Fluid Dynamics (CFD) has been extensively used in centrifugal compressor design. CFD provides further optimisation opportunities for the compressor design rather than designing the centrifugal compressor. The experience-based design process still plays an important role for new compressor developments. The wide variety of design subjects represents a very complex design world for centrifugal compressor designers. Therefore, some basic information for centrifugal design is still ...

  11. Development of a miniature Twin Rotary Compressor

    Lee, Jeong-Bae; Lee, Ui-Yoon; Chung, Jin-Ah; Lee, Un-Seop

    2014-01-01

    In this paper, we will introduce the miniature compressor, which is designed for various applications. Twin rotary compressor structure was adopted to reduced in size and minimize vibration. The weight of the miniature rotary compressor is about 20% that of the reciprocating compressor which has equivalent cooling capacity. To minimize the noise and vibration, the muffler and the cylinder are optimized and torque control algorithm is used for the compressor controller. For a variety of applic...

  12. Theoretical Analysis of Revolving Vane Compressor Vibrations

    Aw, Kuan Thai; Ooi, Kim Tiow

    2014-01-01

    The revolving vane (RV) compressor is a relatively new rotary compressor design and many of its performance characteristics would have to be evaluated. Vibration of compressors is one of these aspects and this paper presents the theoretical analysis for the vibration characteristics of the RV compressor. The analysis is done by dividing the compressor into two components – the rotational vibration of the cylinder-rotor assembly, and the resulting torsional twist of the stationary shell housin...

  13. Characterization of Multiflux Axial Compressors

    In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant

  14. Beam Transport in Toroidal Magnetic Field

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  15. Dual capacity reciprocating compressor

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  16. Free piston inertia compressor

    Richards, William D. C.; Bilodeau, Denis; Marusak, Thomas; Dutram, Jr., Leonard; Brady, Joseph

    1981-01-01

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to excape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  17. Free piston inertia compressor

    Richards, W.D.C.; Bilodeau, D.; Marusak, T.; Dutram, L. Jr.; Brady, J.

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to escape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  18. Computational modelling of compact toroidal plasmas

    Preliminary simulations of the formation of compact toroids are presented. This work is in support of current experiments in which compact toroids - a minimum magnetic energy configuration with linked toroidal and poloidal flux - are being formed, accelerated and compressed. Simulations were performed using MACH2, a 2D magnetohydrodynamic code with a newly implemented Van Lear transport scheme. Simulations also include a detailed modelling of the initial poloidal flux distribution produced by the external solenoidal coils, which is through to significantly effect the toroid's formation

  19. A one kPa centrifugal cold compressor for the 1.8 K helium refrigeration system of LHC

    Saji, N; Yoshinaga, S; Itoh, K; Nogaku, T; Bézaguet, Alain-Arthur; Casas-Cubillos, J; Lebrun, P; Tavian, L

    1998-01-01

    CERN placed an order for a cold compressor prototype (CCP) with IHI for the LHC project. The CCP is supported by the oil-free magnetic bearings, driven by an induction motor. The compressor has the characteristics of high efficiency and wide operation range, thanks to the optimum design for the impeller and diffuser. The result of the performance tests at CERN showed that static heat in-leaks could be controlled at approx. 7.3 W, and an adiabatic efficiency is 75at a nominal flow of 18 g's with suction temperature of 4.4 K and suction pressure of 1 kPa. (4 refs).

  20. Pellet injection and toroidal confinement

    The proceedings of a technical committee meeting on pellet injection and toroidal confinement, held in Gut Ising, Federal Republic of Germany, 24-26 October, 1988, are given in this report. Most of the major fusion experiments are using pellet injectors; these were reported at this meeting. Studies of confinement, which is favorably affected, impurity transport, radiative energy losses, and affects on the ion temperature gradient instability were given. Studies of pellet ablation and effects on plasma profiles were presented. Finally, several papers described present and proposed injection guns. Refs, figs and tabs

  1. Semi-active compressor valve

    Brun, Klaus; Gernentz, Ryan S.

    2010-07-27

    A method and system for fine-tuning the motion of suction or discharge valves associated with cylinders of a reciprocating gas compressor, such as the large compressors used for natural gas transmission. The valve's primary driving force is conventional, but the valve also uses an electromagnetic coil to sense position of the plate (or other plugging element) and to provide an opposing force prior to impact.

  2. Suction muffler for refrigeration compressor

    Nelson, Richard T.; Middleton, Marc G.

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  3. One and two-particle systems in toroidal quantum nanorings under adiabatic approximation

    Rincón Fulla, Marlon

    2011-01-01

    En este trabajo se presenta un estudio teórico de varios sistemas bi-particulares, como es el caso de un sistema electrón-electrón y electrón-hueco (asumiendo masas efectivas iguales para ambas partículas) restringidos a moverse en anillos cuánticos semiconductores dentro de un régimen de confinamiento infinito. El estudio de estos sistemas nano-estructurados fue hecho bajo la aproximación de masa efectiva y se centró en el cálculo e interpretación del espectro energético del sistema. Con el ...

  4. Design and application of robust rf pulses for toroid cavity NMR spectroscopy

    Skinner, Thomas E; Woelk, Klaus; Gershenzon, Naum I; Glaser, Steffen J

    2010-01-01

    We present robust radio frequency (rf) pulses that tolerate a factor of six inhomogeneity in the B1 field, significantly enhancing the potential of toroid cavity resonators for NMR spectroscopic applications. Both point-to-point (PP) and unitary rotation (UR) pulses were optimized for excitation, inversion, and refocusing using the gradient ascent pulse engineering (GRAPE) algorithm based on optimal control theory. In addition, the optimized parameterization (OP) algorithm applied to the adiabatic BIR-4 UR pulse scheme enabled ultra-short (50 microsec) pulses with acceptable performance compared to standard implementations. OP also discovered a new class of non-adiabatic pulse shapes with improved performance within the BIR-4 framework. However, none of the OP-BIR4 pulses are competitive with the more generally optimized UR pulses. The advantages of the new pulses are demonstrated in simulations and experiments. In particular, the DQF COSY result presented here represents the first implementation of 2D NMR sp...

  5. Global kink and ballooning modes in high-beta systems and stability of toroidal drift modes

    A numerical code (HBT) has been developed which solves for the equilibrium, global stability and high-n stability of plasmas with arbitrary cross-section. Various plasmas are analysed for their stability to these modes in the high-beta limit. Screw-pinch equilibria are stable to high-n ballooning modes up to betas of 18%. The eigenmode equation for drift waves is analysed numerically. The toroidal branch is shown to be destabilized by the non-adiabatic response of trapped and circulating particles. (author)

  6. Toroidal Theory of MHD Instabilities

    We continue with the adventures of the Alfven wave and its two magnetosonic companions as they travel in the curved space of magnetic surfaces and field lines (Sec. 2), find themselves trapped in singularities of an unprecedented richness (Sec. 3), decide to get themselves better maps of the landscape to do the required twisting while some of their youthful energy is leaking away (Sec. 4), cause trouble at the edge of a powerful empire (Sec. 5), and finally see the light in a distant future (Sec. 6). Needed on the trip are the evolution equations of both ideal and resistive MHD 'derived' in reference [1], the solutions to the toroidal equilibrium equations discussed in reference [2], the general background on spectral theory of inhomogeneous plasmas presented in reference [3], which is extended in the two directions of toroidal geometry and resistivity in this lecture [4]. This leads to such intricate dynamics that numerical techniques are virtually the only way to proceed. This aspect is further elaborated in reference [5] on numerical techniques

  7. Compressor bleed cooling fluid feed system

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  8. Adiabatic processes in monatomic gases

    A kinetic model is used to predict the temperature evolution of a monatomic ideal gas undergoing an adiabatic expansion or compression at a constant finite rate, and it is then generalized to treat real gases. The effects of interatomic forces are considered, using as examples the gas with the square-well potential and the van der Waals gas. The model is integrated into a Carnot cycle operating at a finite rate to compare the efficiency's rate-dependent behavior with the reversible result. Limitations of the model, rate penalties, and their importance are discussed

  9. Additional adiabatic heating of plasma

    A theoretical possibility of a plasma additional adiabatic heating up to temperatures needed for the begin of D-T thermonuclear fusion reaction, has been found on the base of the polyenergetic conjugation expression, developed in the Thermodynamics of Accumulation Processes. TAP is a branch of the non-equilibrium thermodynamics. The thermodynamics of irreversible processes is another branch of the entire non-equilibrium thermodynamics. TAP deals with the phenomena associated with the introduction, conversion and accumulation of mass or energy or both in the affected, open or closed systems. (author) 2 refs

  10. Toroidal Alfven wave stability in ignited tokamaks

    Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.

    1989-01-01

    The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.

  11. Electrostatics of a Family of Conducting Toroids

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  12. Asymmetric Magnon Excitation by Spontaneous Toroidal Ordering

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2016-05-01

    The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky-Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin-orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb lattice gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. The implications regarding candidate materials for asymmetric magnon excitations are presented.

  13. Cutoff frequency of toroidal plasma waveguide

    The cutoff frequencies of E and H-modes of empty and plasma filled toroidal waveguides are evaluated. The effects of space curvature and plasma density on cutoff frequencies for both modes are investigated. Using a suitable variable change, a scalar wave equation in the direction of propagation was obtained. The study indicates that the curvature in the direction of wave propagation in toroidal waveguide has an analogous effect as a straight waveguide filled with anisotropic media. The Rayleigh-Schrodinger perturbation method was employed to solve for cutoff frequencies in the first order of approximation. In the limit of small space curvature, the toroidal waveguide cutoff frequencies for both E and H-modes approach those of TM and TE modes of empty cylindrical waveguide with a radius equal to toroidal waveguide minor radius. The analysis shows that the curvature in the direction of propagation in toroidal waveguides leads to the removal of the degeneracy between E and H-modes

  14. Toroidal Vortices in Resistive Magnetohydrodynamic Equilibria

    Montgomery, D C; Li, S; Montgomery, David; Bates, Jason W.; Li, Shuojun

    1996-01-01

    Resistive steady states in toroidal magnetohydrodynamics (MHD), where Ohm's law must be taken into account, differ considerably from ideal ones. Only for special (and probably unphysical) resistivity profiles can the Lorentz force, in the static force-balance equation, be expressed as the gradient of a scalar and thus cancel the gradient of a scalar pressure. In general, the Lorentz force has a curl directed so as to generate toroidal vorticity. Here, we calculate, for a collisional, highly viscous magnetofluid, the flows that are required for an axisymmetric toroidal steady state, assuming uniform scalar resistivity and viscosity. The flows originate from paired toroidal vortices (in what might be called a ``double smoke ring'' configuration), and are thought likely to be ubiquitous in the interior of toroidally driven magnetofluids of this type. The existence of such vortices is conjectured to characterize magnetofluids beyond the high-viscosity limit in which they are readily calculable.

  15. Development of Toroidal Core Transformers

    Leon, Francisco

    2014-05-31

    The original objective of this project was to design, build and test a few prototypes of singlephase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014.The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  16. Tokamak with mechanical compression of toroidal magnetic field

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A collapsible toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. A toroidal magnetic field is developed within the toroidal space about the major axis thereof. A toroidal plasma is developed within the toroidal space about the major axis thereof. Pressure is applied to the liquid metal to collapse the liner and reduce the volume of the toroidal space, thereby increasing the toroidal magnetic flux density therein.

  17. Electrochemical Hydrogen Compressor

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to

  18. A New Approach to the Quantum Adiabatic Condition

    The quantum adiabatic theorem is the basis of adiabatic quantum computation. However, the exact necessary and sufficient conditions for adiabatic evolution are still under debate. We discuss the adiabatic condition of a system undergoing a special evolution route, and obtain an explicit formula that is necessary and sufficient for the adiabatic evolution in this route. Based on this formula, we find that the traditional adiabatic condition is neither sufficient nor necessary. Finally, we show that no adiabatic process can occur even the evolution speed goes to 0 in some examples, which is surprising since the adiabatic theorem states that if the evolution of a system is slow enough, the adiabatic process could occur

  19. Empirical Design Considerations for Industrial Centrifugal Compressors

    Cheng Xu

    2012-01-01

    Full Text Available Computational Fluid Dynamics (CFD has been extensively used in centrifugal compressor design. CFD provides further optimisation opportunities for the compressor design rather than designing the centrifugal compressor. The experience-based design process still plays an important role for new compressor developments. The wide variety of design subjects represents a very complex design world for centrifugal compressor designers. Therefore, some basic information for centrifugal design is still very important. The impeller is the key part of the centrifugal stage. Designing a highly efficiency impeller with a wide operation range can ensure overall stage design success. This paper provides some empirical information for designing industrial centrifugal compressors with a focus on the impeller. A ported shroud compressor basic design guideline is also discussed for improving the compressor range.

  20. Efficient Vent Unloading of Air Compressors

    Muhonen, Alvin J.

    1987-01-01

    Method for unloading one-and two-stage reciprocating air compressors increases energy efficiency and inhibits deterioration of components. In new unloader configuration, compressor vented to atmosphere on downstream side. Method implemented expeditiously as modification of existing systems.

  1. NCSX Toroidal Field Coil Design

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  2. Compact toroid fueling for ITER

    Experimental and theoretical work indicates that deep fueling of ITER may be possible by Compact Toroid (CT) injection. CT velocities sufficient for center fueling of a reactor have been demonstrated in the RACE device. CT injections into the TdeV tokamak have achieved central penetration at 1.4 T, and have increased the particle inventory by more than 30% without disruption. Tests on the MARAUDER device have achieved CT mass-densities suitable for injection into 5 T tokamaks. Techniques for producing multiple-shot CT's with passive electric switching are being tested on CTIX. The advantages of deep fueling by CT injection include profile peaking to reach ignition, profile control, low tritium inventory and others. In this paper, the CT experimental results are summarized, a conceptual design of a CT fueler for ITER is presented, and the implications on ITER operation and fuel cycle are discussed. 16 refs., 2 figs., 1 tab

  3. Designing compressor installations for reliability

    Greenfield, S.D.; Howes, B.C.; Robinson, A.; Eckert, W.

    2000-07-01

    The best approach to the design of a new centrifugal or reciprocating compressor that will ensure reliability, performance and maintenance of the equipment involves the use of analytical tools. One must understand the sources of the potential problems and consequences along with the availability of design services. At that point risk assessment can be performed. The objective is to keep pulsations, vibration levels and dynamic stresses low, so as to minimally impact on the performance and reliability and maintain control over costs. The consideration of forcing functions, natural frequencies, mode shapes and dynamic stiffness is essential, as they apply to rotor dynamics, torsional vibration, piping vibration, skid and foundation vibration. It also applies to the interaction of the piping geometry with pressure pulsations which can produce significant forces and stresses for both reciprocating and centrifugal compressors and lead to a decrease in performance. The authors described the considerations that help determine which analytical tool is best to develop a computer model that can be used to avoid problems. Three cases were introduced to better illustrate the advantages of adequate design modeling and optimization. Each case deals with a different problem: (1) a lateral critical and a structural resonance in a centrifugal compressor installation, (2) a piping failure in a reciprocating compressor installation, and (3) a torsional failure in a reciprocating compressor installation. 1 ref., 2 tabs., 3 figs.

  4. New coatings extend compressor service life

    Chow, R. [Novacor Chemicals, Red Deer, Alberta (Canada); McMordie, B. [Sermatech International, Inc., Limerick, PA (United States); Wiegand, R. [Elliot Company, Jennetta, PA (United States)

    1995-10-01

    To lengthen production runs, a Canadian ethylene operator experimented with a coating system to protect a critical compressor`s rotor from hydrocarbon-polymerization/fouling. In ethylene manufacturing, compressor fouling is an accepted ``fact of life.`` Past attempts to minimize fouling in the crack-gas compression train were unsuccessful or marginally cost-effective. Applying protective coatings to a critical-service ethylene compressor rotor slowed oiling, thus lengthening the production run time by one year.

  5. Meridional Considerations of the Centrifugal Compressor Development

    Xu, C.; Amano, R. S.

    2012-01-01

    Centrifugal compressor developments are interested in using optimization procedures that enable compressor high efficiency and wide operating ranges. Recently, high pressure ratio and efficiency of the centrifugal compressors require impeller design to pay attention to both the blade angle distribution and the meridional profile. The geometry of the blades and the meridional profile are very important contributions of compressor performance and structure reliability. This paper presents some ...

  6. Water injected fuel cell system compressor

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  7. Positive Displacement Compressor Technology for Refrigeration

    Nagatomo, Shigemi

    Trends of compressor technologies for refrigerators, freezers and condensing units are presented in this paper. HFC refrigerants such as R134a and R404C are promising candidates as an altemative for R12. Performance of reciprocating and rotary compressors in the operation with R134A is described. In addition, compressor technologies such as efficiency improvement are described in the cases of reciprocating, rotary and scroll compressors.

  8. Investigation Of Compressor Heat Dispersion Model

    Shi, Da; Tao, Hong; Yang, Min

    2014-01-01

    This paper represents a method for calculate the heat dissipation capacity and discharge temperature for rotary compressors. The proposed heat dissipation model is used for calculating heat dissipating capacity of compressor in forced-convection/natural-convection and radiation heat transfer mode. The comparison between calculated result and experimental result for both constant speed compressors and variable speed compressors shows that the average heat dissipating capacity error is below 20...

  9. Small Radial Compressors: Aerodynamic Design and Analysis

    K. A. R. Ismail; Rosolen, C. V. A. G.; Benevenuto, F. J.; Lucato, D.

    1998-01-01

    This paper presents a computational procedure for the analysis of steady one-dimensional centrifugal compressor. The numerical model is based on the conservation principles of mass, momentum and energy, and has been utilized to predict the operational and aerodynamic characteristics of a small centrifugal compressor as well as determining the performance and geometry of compressor blades, both straight and curved.

  10. Small Radial Compressors: Aerodynamic Design and Analysis

    K. A. R. Ismail

    1998-01-01

    Full Text Available This paper presents a computational procedure for the analysis of steady one-dimensional centrifugal compressor. The numerical model is based on the conservation principles of mass, momentum and energy, and has been utilized to predict the operational and aerodynamic characteristics of a small centrifugal compressor as well as determining the performance and geometry of compressor blades, both straight and curved.

  11. 40 CFR 63.164 - Standards: Compressors.

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Compressors. 63.164 Section... for Organic Hazardous Air Pollutants for Equipment Leaks § 63.164 Standards: Compressors. (a) Each compressor shall be equipped with a seal system that includes a barrier fluid system and that...

  12. 40 CFR 265.1053 - Standards: Compressors.

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Compressors. 265.1053... DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1053 Standards: Compressors. (a) Each compressor shall be equipped with a seal system that includes a barrier fluid system and that...

  13. 40 CFR 65.112 - Standards: Compressors.

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Compressors. 65.112 Section...) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.112 Standards: Compressors. (a) Compliance schedule. The....1(f). (b) Seal system standard. Each compressor shall be equipped with a seal system that includes...

  14. 46 CFR 154.1415 - Air compressor.

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for...

  15. Complete Adiabatic Quantum Search in Unsorted Databases

    Xu, Nanyang; Peng, Xinhua; Shi, Mingjun; Du, Jiangfeng

    2008-01-01

    We propose a new adiabatic algorithm for the unsorted database search problem. This algorithm saves two thirds of qubits than Grover's algorithm in realizations. Meanwhile, we analyze the time complexity of the algorithm by both perturbative method and numerical simulation. The results show it provides a better speedup than the previous adiabatic search algorithm.

  16. Shortcut to adiabatic gate teleportation

    Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.

    2016-01-01

    We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.

  17. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system

    Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham

    2013-10-01

    According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.

  18. Quantum gates with controlled adiabatic evolutions

    Hen, Itay

    2015-02-01

    We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.

  19. The toroid moment of Majorana neutrino

    The total set of electromagnetic characteristics of Majorana neutrinos is considered. It is shown that in the static limit (mi=mf=mν) the Majorana neutrinos possess only one electromagnetic characteristic, the toroidal dipole moment (anapole). We have calculated the diagonal toroidal moment (form factor) of the Majorana neutrino in the one-loop approximation of the Standard Model by the dispersion method. All external particles are on the mass shells and there are no problems with the physical interpretation of the final result. Different applications of the toroidal moment of Majorana neutrino are also discussed. 12 refs., 2 figs., 1 tab

  20. On the statistical mechanics of an adiabatic ensemble

    S.N.Andreev

    2004-01-01

    Full Text Available Different descriptions of an adiabatic process based on statistical thermodynamics and statistical mechanics are discussed. Equality of the so-called adiabatic and isolated susceptibilities and its generalization as well as adiabatic invariants are essentially used to describe adiabatic processes in the framework of quantum and classical statistical mechanics. It is shown that distribution function in adiabatic ensemble differs from a quasi-equilibrium canonical form provided the heat capacity of the system is not constant in adiabatic process.

  1. New technology of subsea and offshore compressor

    Almasi, Amin

    2012-09-15

    Subsea compressor is a hot topic. Subsea compressor offers tremendous potentials, but also some obstacles. Active magnetic bearings installed inside the process gas allow the elimination of lubrication and seal systems. High-speed permanent- magnet motor directly drives centrifugal compressor to meet optimum speed, eliminating gear box. This design offers inherent machinery health monitoring features and very compact and reliable train. New technology of hermitically sealed direct drive centrifugal compressor for offshore and subsea applications are discussed and case studies for horizontal and vertical compressor train arrangements are presented. (orig.)

  2. Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field

    Schaffer, Michael J.

    1986-01-01

    A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  3. Toroidal Horizons in Binary Black Hole Mergers

    Bohn, Andy; Teukolsky, Saul A

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  4. LASL toroidal reversed-field pinch programme

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)

  5. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the β limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR

  6. Meridional Considerations of the Centrifugal Compressor Development

    C. Xu

    2012-01-01

    Full Text Available Centrifugal compressor developments are interested in using optimization procedures that enable compressor high efficiency and wide operating ranges. Recently, high pressure ratio and efficiency of the centrifugal compressors require impeller design to pay attention to both the blade angle distribution and the meridional profile. The geometry of the blades and the meridional profile are very important contributions of compressor performance and structure reliability. This paper presents some recent studies of meridional impacts of the compressor. Studies indicated that the meridional profiles of the impeller impact the overall compressor efficiency and pressure ratio at the same rotational speed. Proper meridional profiles can improve the compressor efficiency and increase the overall pressure ratio at the same blade back curvature.

  7. Performance test of 100 W linear compressor

    In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

  8. Performance test of 100 W linear compressor

    Ko, J; Ko, D. Y.; Park, S. J.; Kim, H. B.; Hong, Y. J.; Yeom, H. K. [Korea Institute of Machinery and Materials, Daejeon(Korea, Republic of)

    2013-09-15

    In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

  9. PIV-Analysis of collapsing toroidal droplets

    Pairam, Ekapop; Berger, Eric; Fernandez-Nieves, Alberto; Georgia Tech Team

    2012-11-01

    Toroidal droplets are unstable and always undergo a transformation into spherical droplets driven by surface tension. They either break ala Rayleigh-Plateau if the torus is thin or grow fatter to become a single spherical droplet if the torus is fat. We analyze the velocity field inside and outside the toroidal droplet as it transforms into spherical droplets using the particle image velocimetry (PIV) method and compare with recent theoretical calculations for this process. NSF CAREER.

  10. Partial evolution based local adiabatic quantum search

    Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one. Later, they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database. In the present paper, following the idea of Roland and Cerf [Roland J and Cerf N J 2002 Phys. Rev. A 65 042308], if within the small symmetric evolution interval defined by Zhang et al., a local adiabatic evolution is performed instead of the original “global” one, this “new” algorithm exhibits slightly better performance, although they are progressively equivalent with M increasing. In addition, the proof of the optimality for this partial evolution based local adiabatic search when M = 1 is also presented. Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search, which are found to have the same phenomenon above, are also discussed. (general)

  11. Plasma Spraying Reclaims Compressor Housings

    Leissler, George W.; Yuhas, John S.

    1991-01-01

    Plasma-spraying process used to build up material in worn and pitted areas. Newly applied material remachined to specified surface contours. Effective technique for addition of metal to out-of-tolerance magnesium-alloy turbine-engine compressor housings.

  12. Anomalous transport in toroidal plasmas

    When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II

  13. Celebrating the Barrel Toroid commissioning

    Peter Jenni

    ATLAS invited Funding Agency representatives and Laboratory Heads directly related to the funding and construction of the Barrel Toroid for a small ceremony on 13th December 2006 at Point 1, in order to mark the successful first full excitation of the BT (see last eNews). On that date, which was during the December CERN Council week, several of the Funding Agency Heads or their representatives could be present, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. Speeches were delivered by the ATLAS spokesperson Peter Jenni thanking the Funding Partners in the name of the Collaboration, by Magnet Project Leader Herman ten Kate tracing the BT construction history, and by the CERN Director-General Robert Aymar congratulating all those who have contributed to the successful project. Herman ten Kate addressing the delegates. The text of the introductory address by Peter Jenni is reproduced here. "It is a great pleasure for me to welcome you all here...

  14. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  15. The thermal-flow behavior of the working chamber in an oil-free scroll compressor

    Rak, Józef

    2013-09-01

    The paper presents the full transient, two-dimensional finite volume method numerical calculations of the classical involute scroll compressor geometry. The purpose of the study was to develop and evaluate an adaptable implementation of numerical fluid mechanics and thermodynamics modeling procedure with a mesh deformation. The methodology consisting in the compression chamber geometry preparation, mesh generation and governing equations solving was described. The evaluation was carried by simulating an adiabatic compression process and the results were compared with the theoretical zero-dimensional model and the existing research concerning the scroll chamber computational fluid dynamics modeling. It has been shown that the proposed modeling routine results in good accuracy for the scroll compressors study applications.

  16. Digital Waveguide Adiabatic Passage Part 2: Experiment

    Ng, Vincent; Chaboyer, Zachary J; Nguyen, Thach; Dawes, Judith M; Withford, Michael J; Greentree, Andrew D; Steel, M J

    2016-01-01

    Using a femtosecond laser writing technique, we fabricate and characterise three-waveguide digital adiabatic passage devices, with the central waveguide digitised into five discrete waveguidelets. Strongly asymmetric behaviour was observed, devices operated with high fidelity in the counter-intuitive scheme while strongly suppressing transmission in the intuitive. The low differential loss of the digital adiabatic passage designs potentially offers additional functionality for adiabatic passage based devices. These devices operate with a high contrast ($>\\!90\\%$) over a 60~nm bandwidth, centered at $\\sim 823$~nm.

  17. Adiabatic Compression of Oxygen: Real Fluid Temperatures

    Barragan, Michelle; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    The adiabatic compression of oxygen has been identified as an ignition source for systems operating in enriched oxygen atmospheres. Current practice is to evaluate the temperature rise on compression by treating oxygen as an ideal gas with constant heat capacity. This paper establishes the appropriate thermodynamic analysis for the common occurrence of adiabatic compression of oxygen and in the process defines a satisfactory equation of state (EOS) for oxygen. It uses that EOS to model adiabatic compression as isentropic compression and calculates final temperatures for this system using current approaches for comparison.

  18. Thermoelectric Effects under Adiabatic Conditions

    George Levy

    2013-10-01

    Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.

  19. Resistive instabilities in toroidal confinement

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this paper, the stability criteria for representative current profiles with q(0) values in the vicinity of unity are reviewed; sawtooth reconnection to q(0) values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 2 and m = 3, n = 2 modes and limits the range of stable profile shapes. Major disruptions can be produced by the simultaneous growth of m = 2, n = 1 and m = 3, n = 2 magnetic islands, leading to destabilization of higher-order modes and to the overlapping of several island chains. Internal disruptions---or sawteeth---arise in a variety of forms other than that produced by the classically reconnecting m = 1 mode. In some case, the q(r) value is apparently close to unity over a large central part of the plasma; in other cases, the q(0) value remains substantially below unity throughout a sawtooth cycle. Toroidal effects are sufficient to stabilize the resistive m = 1 mode in the latter case. Feedback stabilization of m ≥ 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much more efficient, in terms of the radio-frequency power required, than feedback by island heating. Feedback stabilization of the m = 1 resistive mode---although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0) values substantially below unity---is more problematical, unless the m = 1 ideal MHD mode can be given sufficient positive stability. This appears possible, however, either by strong triangular shaping of the central flux surfaces or by appropriate tailoring of the current profile in the vicinity of the q = 1 surface

  20. Performance of J33-A-23 Turbojet-Engine Compressor. Part 1; Over-All Performance Characteristics of Compressor with 17-Blade Impeller

    Beede, William L.; Kottas, Harry

    1948-01-01

    The production-model 333-A-23 turbojet-engine compressor with a 17-blade impeller was operated at ambient and 0 F inlet temperatures and at inlet pressures of 14 and 5 inches mercury absolute for equivalent impeller speeds from 6000 to 12,750 rpm. The results of this investigation are compared with those of the 533-A-21 compressor. At the design equivalent speed of 11,750 rpm the maximum pressure ratio was 4.39. This occurred at the surge point at which the equivalent weight flow was 80.8 pounds per second, ana the adiabatic temperature-rise efficiency was 0.757. The maximum flow at the design equivalent speed was 88.0 pounds per second. The maximum adiabatic temperature-rise efficiency of 0.799 was obtained at an equivalent speed of 10,000 rpm, and equivalent weight flow of 62.9 pounds per second, and a pressure ratio of 3.20. At the maximum equivalent speed investigated (12,750 rpm), a peak pressure ratio of 4.90 was attained at an equivalent weight flow of 85.4 pounds per second and an efficiency of 0.680.

  1. Adiabatic Invariance of Oscillons/I-balls

    Kawasaki, Masahiro; Takeda, Naoyuki

    2015-01-01

    Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or $I$-balls. We prove the adiabatic invariance of the oscillons/$I$-balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/$I$-balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/$I$-balls are only quasi-stable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the $I$-balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/$I$-balls is due to the adiabatic invariance.

  2. Adiabatic hydrodynamics: The eightfold way to dissipation

    Haehl, Felix M; Rangamani, Mukund

    2015-01-01

    We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...

  3. On adiabatic invariant in generalized Galileon theories

    Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei; Nakayama, Kazunori

    2015-01-01

    We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is us...

  4. Quantum and classical dynamics in adiabatic computation

    Crowley, P. J. D.; Duric, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-01-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations th...

  5. Adiabatic Connection for Strictly-Correlated Electrons

    Liu, Zhenfei; Burke, Kieron

    2009-01-01

    Modern density functional theory (DFT) calculations employ the Kohn-Sham (KS) system of non-interacting electrons as a reference, with all complications buried in the exchange-correlation energy (Exc). The adiabatic connection formula gives an exact expression for Exc. We consider DFT calculations that instead employ a reference of strictly-correlated electrons. We define a "decorrelation energy" that relates this reference to the real system, and derive the corresponding adiabatic connection...

  6. Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility

    Mostafazadeh, Ali

    2014-01-01

    arXiv:1401.4315v3 [quant-ph] 27 Feb 2014 Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility Ali Mostafazadeh∗ Department of Mathematics, Ko¸c University, 34450 Sarıyer, Istanbul, Turkey Abstract The transfer matrix of a possibly complex and energy-dependent scattering potential can be identified with the S-matrix of a two-level time-dependent non-Hermitian Hamiltonian H( ). We show that the application of the adiabatic approximation ...

  7. Modelling fluid flow in a reciprocating compressor

    Tuhovcak, Jan; Hejčík, Jiří; Jícha, Miroslav

    2015-05-01

    Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  8. Modelling fluid flow in a reciprocating compressor

    Tuhovcak Jan

    2015-01-01

    Full Text Available Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  9. Long-wavelength microinstabilities in toroidal plasmas

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in TFTR L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  10. Double-yoke balanced compressor

    A double-yoke balanced compressor for a cryogenic cooler that has only linear motion imparted to balanced piston and cylinder masses. A piston yoke is driven in the linear stroke direction by a piston axially offset crankshaft cam and a cylinder yoke is driven linearly by a cylinder axially offset crankshaft cam that is exactly offset 1800 from the other cam. A large circular bushing in the compressor housing covers the entire outer cylinder head during linear operation to prevent blow by and to guide the cylinder linearly. The lower portion of the piston and cylinder connecting rods fit into linear guides that are further comprised of low molecular weight gas filled cavities to provide additional air bearing smoothness to the linear motion of the piston and cylinder

  11. ORNL Levitated Toroidal Multipole Program

    We are studying confinement of gun-injected and microwave-produced plasmas in a levitated toroidal quadrupole in which internal hoop supports are not present to limit plasma confinement. Electromagnetic levitation is made possible by reducing the 60 Hz skin depth in the copper walls with liquid nitrogen cooling. The cooling also increases the magnetic field lifetime so that an e-folding time of 17 ms was measured after crowbarring. Computations indicate that in a properly designed, larger device, an e-folding time of 100 ms can be reached. Washer-gun hydrogen plasmas and Bostick-type lithium gun plasmas were injected into the levitated quadrupole with typical parameters: B ≥ 3 kG, Te ≈ 3 eV, ni ≈ 109 cm-3, and 1 i i ≈ 1010 cm-3, Te ≈ 30 eV, and τ/τBohm ≈ 30. Density fluctuations (Δn/n) in the region of good field curvature were less than 0.05 and in the region of bad curvature 0.10-0.25. With the removal of the magnetic well (by removing the inner hoop), τ/τBohm and ni each dropped a factor of 4 and Δn/n became greater than 0.25. Recent experiments using 200 W at λ = 3 cm have produced plasmas with higher densities (n > 1011 cm-3 assuming Te ≈ 100 eV), higher temperatures (Te ≈ 100 eV) and longer lifetimes (τ ≈ 80 μs ≈ 40 τBohm) than in the λ = 12 cm experiments. Detailed probe measurements of density and temperature are consistent with models for plasma behaviour based on computed magnetic field plots. Probe data show clear evidence of the changes in heating zones during the variation of the sinusoidal magnetic field and a large obstacle intercepting all flux lines effectively prevents the formation of the plasma. We are also studying a levitated helical hexapole, whose advantages over the quadrupole are a better ratio of connection length to radius of bad curvature and more confinement volume. (author)

  12. QRFXFreeze: Queryable Compressor for RFX

    2015-01-01

    The verbose nature of XML has been mulled over again and again and many compression techniques for XML data have been excogitated over the years. Some of the techniques incorporate support for querying the XML database in its compressed format while others have to be decompressed before they can be queried. XML compression in which querying is directly supported instantaneously with no compromise over time is forced to compromise over space. In this paper, we propose the compressor, QRFXFreez...

  13. Diffusion models for Knudsen compressors

    Aoki, Kazuo; Degond, Pierre; Takata, Shigeru; Yoshida, Hiroaki

    2007-01-01

    A rarefied gas in a long straight pipe with a periodic structure consisting of alternately arranged narrow and wide pipes and with periodic temperature distribution, which is known as the Knudsen compressor (or pump), is considered. Under the assumption that the pipe is much thinner than the period, a diffusion model that describes the pressure distribution and mass flux of the gas in each pipe element is derived, together with the connection conditions at the junctions of the narrow and wide...

  14. Subsea Wet Gas Compressor Dynamics

    Perez Aguilera, Luber Carlui

    2013-01-01

    In this Thesis the Aspen HYSYS dynamic functionalities were explored in order to build a dynamic Wet Gas Compressor model. In particular the Automation feature was used to implement two different correction methods, interpolation and Wood?s correction, that accounts for wet gas impact on compression performance, in dynamic-state. This was done through the creation of a VBA script in Microsoft Excel. The implementation of the correction methods showed to be fast and effective.The HYSYS dynamic...

  15. Numerical simulation of radial compressor stage

    Luňáček O.; Syka T.

    2013-01-01

    Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  16. Electrical drive for compressor on turbocharged engine

    Novák, Jaroslav; Čeřovský, Zdeněk

    2010-01-01

    Turbochargers are usually driven by turbine powered by exhausted gases. This conception is relatively simple but the compressor is not able to overcharge the compressed air or fuel-air mixture into the cylinder in the total revolution range and power regimes. Next disadvantage of turbine driven compressor is the low dynamic response of the turbine and compressor at quick fuel supply increase. There are two possible solutions. First - the “electrocharger”, that is the fully electric driv...

  17. Update on Scroll Compressor Chamber Geometry

    Bell, Ian; Groll, Eckhard; Braun, James; King, Galen

    2010-01-01

    The geometry of the scroll compressor determines the efficiency of the scroll compressor and controls all elements of its operation. It is therefore critical to be able to accurately model the volumes of the compressor over the course of a revolution. This paper proposes a novel quasi-analytic formulation of the suction, compression and discharge chambers based on a change of variables from involute angle to polar integration angle. This solution has been compared against a reference polyg...

  18. Superconducting toroid design for the ATLAS experiment at LHC

    The ATLAS Experiment proposed for LHC will use toroidal magnet systems to achieve high muon momentum resolution. The proposal is based on an air-cored superconducting toroid magnet system consisting of a long barrel toroid with a pair of end cap toroids to provide high resolution at large rapidity. Each end cap toroid will have an outer diameter of approximately 11m and an axis length of 5m and will provide field integrals in the range 4-8Tm over the rapidity span η = 1.5--2.8. This paper presents the magnetic, mechanical and cryogenic design of the end cap toroid magnet systems

  19. Tokamak with liquid metal for inducing toroidal electrical field

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.

  20. An Integrated Programming and Development Environment for Adiabatic Quantum Optimization

    Humble, Travis S.; McCaskey, Alex J.; Bennink, Ryan S.; Billings, Jay J.; D'Azevedo, Ed F.; Sullivan, Blair D.; Klymko, Christine F.; Seddiqi, Hadayat

    2013-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for adiabatic quantum optimization called JADE tha...

  1. Oil cooled, hermetic refrigerant compressor

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  2. Linear Motor Free Piston Compressor

    Bloomfield, David P.

    1995-02-01

    A Linear Motor Free Piston Compressor (LMFPC), a free piston pressure recovery system for fuel cell powerplants was developed. The LMFPC consists of a reciprocating compressor and a reciprocating expander which are separated by a piston. In the past energy efficient turbochargers have been used for pressure large (over 50 kW) fuel cell powerplants by recovering pressure energy from the powerplant exhaust. A free piston compressor allows pressurizing 3 - 5 kW sized fuel cell powerplants. The motivation for pressurizing PEM fuel cell powerplants is to improve fuel cell performance. Pressurization of direct methanol fuel cells will be required if PEM membranes are to be used Direct methanol oxidation anode catalysts require high temperatures to operate at reasonable power densities. The elevated temperatures above 80 C will cause high water loss from conventional PEM membranes unless pressurization is employed. Because pressurization is an energy intensive process, recovery of the pressure energy is required to permit high efficiency in fuel cell powerplants. A complete LMFPC which can pressurize a 3 kW fuel cell stack was built. This unit is one of several that were constructed during the course of the program.

  3. Aspirated Compressors for High Altitude Engines Project

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been...

  4. Development of Scroll Compressor for 16HP VRF System

    Nagaoka, Fumikazu; Myogahara, Masashi; Kato, Taro

    2014-01-01

    Usage of multiple compressors is applied for general VRF system at more than 12HP capacity because it is difficult to keep capacity and performance by usage of one compressor for such large capacity system. But usage of multiple compressors has problem controlling cost and keeping oil level in each compressor. In this paper, new scroll compressor which can reduce oil circulation in refrigerant circuit, keep oil level in the compressor, keep high capacity and performance and operate in a wide ...

  5. Twenty Years of Compressor Innovation at NTU, Singapore

    Ooi, Kim Tiow

    2014-01-01

    In this paper, innovations in refrigeration compressors and their mechanisms which were conceptualised (and some of these were commercialised) at Nanyang Technological University in Singapore over the past twenty years are discussed and presented. These innovations include piezo compressor [1-3], sliding cam compressor [4], rotaprocating compressor [5], revolving vane compressor and its variants [6-14], revolving vane expander [15] and cross-vane mechanism for expander-compressor unit [16]. T...

  6. Toroidal mode-conversion in the ICRF

    Mode-conversion is studied in the ion-cyclotron range of frequencies (ICRF) taking into account the toroidal geometry relevant for tokamaks. The global wavefields obtained using the gyrokinetic toroidal PENN code illustrate how the fast wave propagates to the neighborhood of the ion-ion hybrid resonance, where it is converted to a slow wave which deposits the wave energy through resonant interactions with the particles. The power deposition profiles obtained are dramatically different from the toroidal resonance absorption, showing that Budden's model is not a good approximation in the torus. Radially and poloidally localized wavefield structures characteristic of slow wave eigenmodes are predicted and could in experiments be driven to large amplitudes so as to interact efficiently with fast particles. (author) 5 figs., 1 tab., 48 refs

  7. Toroidal mode conversion in the ICRF

    Mode conversion is studied in the ion cyclotron range of frequencies (ICRF), taking into account the toroidal geometry relevant for tokamaks. The global wavefields obtained using the gyrokinetic toroidal PENN code illustrate how the fast wave propagates to the neighbourhood of the ion-ion hybrid resonance, where it is converted to a slow wave that deposits the wave energy through resonant Landau and cyclotron interactions with the particles. The power deposition profiles obtained are dramatically different from the toroidal resonance absorption, showing that Budden's fluid model is not a good approximation in the torus. Radially and poloidally localized wavefield structures characteristic of slow wave eigenmodes are predicted, which could be used in experiments to form transport barriers and to interact with fast particles. (author)

  8. A Classification Scheme For Toroidal Molecules

    Berger, J; Berger, Jorge; Avron, Joseph E.

    1995-01-01

    We construct a class of periodic tilings of the plane, which corresponds to toroidal arrangements of trivalent atoms, with pentagonal, hexagonal and heptagonal rings. Each tiling is characterized by a set of four integers and determines a toroidal molecule. The tiling rules are motivated by geometric considerations and the tiling patterns are rich enough to describe a wide class of toroidal carbon molecules, with a broad range of shapes and numbers of atoms. The molecular dimensions are simply related to the integers that determine the tiling. The configurational energy and the delocalisation energy of several molecules obtained in this way were computed for Tersoff and H\\"uckel models. The results indicate that many of these molecules are not strained, and may be expected to be stable. We studied the influence of size on the H\\"{u}ckel spectrum: it bears both similarities and differences as compared with the case of tubules.

  9. Toroidal high temperature superconducting coils for ISTTOK

    Fernandes, H., E-mail: hf@ipfn.ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Goemoery, F. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Corte, A. della; Celentano, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Souc, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Silva, C.; Carvalho, I.; Gomes, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Di Zenobio, A.; Messina, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)

    2011-10-15

    High temperature superconductors (HTS) are very attractive to be used in fusion devices mainly due to lower operations costs. The HTS technology has reached a point where the construction of toroidal field coils for a tokamak is possible. The feasibility of a tokamak operating with HTS is extremely relevant and ISTTOK is the ideal candidate for a meaningful test due to its small size (and consequently lower cost) and the possibility to operate in a steady-state inductive regime. In this paper, a conceptual study of the ISTTOK upgrade to a superconducting device is presented, along with the relevant boundary conditions to achieve a permanent toroidal field with HTS. It is shown that the actual state of the art in HTS allows the design of a toroidal field coil capable of generating the appropriate field on plasma axis while respecting the structural specification of the machine.

  10. Toroidal high temperature superconducting coils for ISTTOK

    High temperature superconductors (HTS) are very attractive to be used in fusion devices mainly due to lower operations costs. The HTS technology has reached a point where the construction of toroidal field coils for a tokamak is possible. The feasibility of a tokamak operating with HTS is extremely relevant and ISTTOK is the ideal candidate for a meaningful test due to its small size (and consequently lower cost) and the possibility to operate in a steady-state inductive regime. In this paper, a conceptual study of the ISTTOK upgrade to a superconducting device is presented, along with the relevant boundary conditions to achieve a permanent toroidal field with HTS. It is shown that the actual state of the art in HTS allows the design of a toroidal field coil capable of generating the appropriate field on plasma axis while respecting the structural specification of the machine.

  11. Quasisymmetric toroidal plasmas with large mean flows

    Geometric condition for quasisymmetric toroidal plasmas with large mean flows on the order of the ion thermal speed are investigated. Equilibrium momentum balance equations including the inertia term due to the large flow velocity are used to show that, for rotating quasisymmetic plasmas with no local currents crossing flux surfaces, all components of the metric tensor should be independent of the toroidal angle in the Boozer coordinates, and consequently these systems need to be rigorously axisymmetric. Unless the local radial currents vanish, the Boozer coordinates do not exist and the toroidal flow velocity cannot take any value other than a very limited class of eigenvalues corresponding to very rapid rotation especially for low beta plasmas. (author)

  12. On criterion of modal adiabaticity

    WANG; Ning(

    2001-01-01

    [1]Pierce, A. D., Extension of the method of normal modes to sound propagation in an almost-stratified medium, J. Acoust.Soc. Am., 1965, 37: 19-27.[2]Wang, D. Z. , Shang, E. C., Underwater Acoustics (in Chinese), Beijing: Science Press, 1981.[3]Zhang Renhe, Li Fenghua, Beam-displacement rya-mode theory of sound propagation in shallow water, Science in China, Ser.A, 1999, 42(7): 739-749.[4]Zhou Jixun, Zhang Xuezhen, Rogers P., Resonance interaction of sound waves with internal solitons in coastal zone, J.Acoust. Soc. Am., 1991, 90: 2042-2054.[5]Shang, E. C., Wang, Y. Y., The impact of mesoscale oceanic structure on global-scale acoustic propagation, in Theoretical and Computational Acoustics (ed. Ding Lee et al. ), Singapore: World Scientific Publishing Co. , 1996, 409-431.[6]Milder, D. M., Ray and wave invariants for SOFAR channel propagation, J. Acoust. Soc. Am., 1969, 46: 1259-1263.[7]Nag l, A., Milder, D. M., Adiabatic mode theory of underwater sound propagation in a range-dependent environment, J.Acoust. Soc. Am., 1978, 63: 739-749.[8]Brekhovskikh, L. M., Waves in Layered Media, 2nd ed., New York: Academic Press Inc., 1973.[9]Brekhovskikh, L. M., Lysanov, Yu., Fundamental of Ocean Acoustics, Ch. 7, Sec. 7.2, Berlin: Springer-Verlag, 1982.[10]Evans, R. B., A coupled mode solution for acoustic propagation in a wave-guide with stepwise depth variations of a penerable bottom, J. Acoust. Soc. A.m., 1983, 74: 188-195.[11]Jensen, F. B., Kuperman, W. A., Porter, M. B. et al., Computational Ocean Acoustics, New York: Springer-Verlag,1992.[12]Wang Ning, Inverse scattering problem for the coupled second order ODE, Journal of The Physical Society of Japan, 1995, 64(12): 4907-4915.

  13. Models for large superconducting toroidal magnet systems

    Prior to the design of large GJ toroidal magnet systems it is appropriate to procure small scale models, which can simulate their pertinent properties and allow to investigate their relevant phenomena. The important feature of the model is to show under which circumstances the system performance can be extrapolated to large magnets. Based on parameters such as the maximum magnetic field and the current density, the maximum tolerable magneto-mechanical stresses, a simple method of designing model magnets is presented. It is shown how pertinent design parameters are changed when the toroidal dimensions are altered. In addition some conductor cost estimations are given based on reactor power output and wall loading

  14. Toroidal Horizons in Binary Black Hole Mergers

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. ...

  15. Toroidal Precession as a Geometric Phase

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  16. Some properties of toroidal isodynamic magnetostatic equilibria

    Aly, J.-J. [AIM, Unite Mixte de Recherche CEA, CNRS, Universite Paris VII, UMR no 7158, Centre d' Etudes de Saclay, F-91191 Gif sur Yvette Cedex (France)

    2011-09-15

    We establish some general properties of a 3D isodynamic magnetostatic equilibrium admitting a family of nested toroidal flux surfaces. In particular, we use the virial theorem to prove a simple relation between the total pressure (magnetic + thermal) and the magnetic pressure on each flux surface, and we derive some useful consequences of the latter. We also show the constancy on each rational surface of two integrals along magnetic lines. As a simple application of our results, we show the nonexistence of an equilibrium with vanishing toroidal current, and of an equilibrium with closed lines.

  17. Optical spectroscopic analysis of compact toroids

    Time- and space-resolved plasma emission spectra from the Weapons Laboratory compact toroid (MARAUDER) experiment have been recorded using an optical multichannel analyzer (OMA). The OMA is optically coupled to the emitting plasmas using fiber optic cables. Results are presented in terms of the composition and purity of plasma species and ionization states for compact toroids formed of hydrogen and argon. The authors use relative line strengths with a collisional radiative equilibrium (CRE) model to estimate the plasma temperature and density. Electron density has also been determined from line profile analysis of the Hβ line in hydrogen

  18. Anomalous transport equations in toroidal plasmas

    Reduced transport equations for a toroidal plasma with fluctuations are derived. These equations include the effects of both anomalous and standard neoclassical transport, and allow clarification of the structure of convective fluxes caused by electrostatic and magnetic fluctuations. Special attention is paid to the combined effects of fluctuations and toroidicity on the transport. The formulation retains the effects of a magnetic field inhomogeneity on the anomalous transport. It is shown that phase space diffusion caused by the gradient in the equilibrium magnetic field appears as a pinch flux in the real space

  19. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    Hegna, C. C.

    2016-05-01

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  20. Symmetry-Protected Quantum Adiabatic Transistors

    Williamson, Dominic J.; Bartlett, Stephen D.

    2014-03-01

    An essential development in the history of computing was the invention of the transistor as it allowed logic circuits to be implemented in a robust and modular way. The physical characteristics of semiconductor materials were the key to building these devices. We aim to present an analogous development for quantum computing by showing that quantum adiabatic transistors (as defined by Flammia et al.) are built upon the essential qualities of symmetry-protected (SP) quantum ordered phases in one dimension. Flammia et al. and Renes et al. have demonstrated schemes for universal adiabatic quantum computation using quantum adiabatic transistors described by interacting spin chain models with specifically chosen Hamiltonian terms. We show that these models can be understood as specific examples of the generic situation in which all SP phases lead to quantum computation on encoded edge degrees of freedom by adiabatically traversing a symmetric phase transition into a trivial symmetric phase. This point of view is advantageous as it allows us to readily see that the computational properties of a quantum adiabatic transistor arise from a phase of matter rather than due to carefully tuned interactions.

  1. Accurate adiabatic correction in the hydrogen molecule

    Pachucki, Krzysztof, E-mail: krp@fuw.edu.pl [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Komasa, Jacek, E-mail: komasa@man.poznan.pl [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland)

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  2. Exploring adiabatic quantum trajectories via optimal control

    Adiabatic quantum computation employs a slow change of a time-dependent control function (or functions) to interpolate between an initial and final Hamiltonian, which helps to keep the system in the instantaneous ground state. When the evolution time is finite, the degree of adiabaticity (quantified in this work as the average ground-state population during evolution) depends on the particulars of a dynamic trajectory associated with a given set of control functions. We use quantum optimal control theory with a composite objective functional to numerically search for controls that achieve the target final state with a high fidelity while simultaneously maximizing the degree of adiabaticity. Exploring the properties of optimal adiabatic trajectories in model systems elucidates the dynamic mechanisms that suppress unwanted excitations from the ground state. Specifically, we discover that the use of multiple control functions makes it possible to access a rich set of dynamic trajectories, some of which attain a significantly improved performance (in terms of both fidelity and adiabaticity) through the increase of the energy gap during most of the evolution time. (paper)

  3. Adiabatic cooling of a single trapped ion

    Poulsen, Gregers

    2012-01-01

    We present experimental results on adiabatic cooling of a single 40Ca+ ion in a linear radiofrequency trap. After a period of laser cooling, the secular frequency along the rf-field-free axis is adiabatically lowered by nearly a factor of eight from 583 kHz to 75 kHz. For an ion originally Doppler laser cooled to a temperature of 0.65 +/- 0.03 mK, a temperature of 87 +/- 7 \\mu K is measured after the adiabatic expansion. Applying the same adiabatic cooling procedure to a single sideband cooled ion in the ground state (P0 = 0.978 +/- 0.002) resulted in a final ground state occupation of 0.947 +/- 0.005. Both results are in excellent agreement with an essentially fully adiabatic behavior. The results have a wide range of perspectives within such diverse fields as ion based quantum information science, high resolution molecular ion spectroscopy and ion chemistry at ultra-low temperatures.

  4. Adiabatic process reversibility: microscopic and macroscopic views

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r≥1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values. (letters and comments)

  5. Adiabatic change of state of photon gas

    The authors introduced and justified the k problem as a thermodynamical contradiction of photon gas. In thermodynamics of photon gas the main contradiction is called the k problem: the piezotropic-autobarotropic equation of state P = u/3 is adiabatic if k = 1 exclusively, while the adiabatic connection PV4/3 = const (or rather the Poisson equation Pρ-4/3 = const, ρ = u/c2) requires that k = 4/3. The present paper shows that the equations of state PV4/3 = const, TV1/3 = const, T-4/3P1/3 = const and P = u/3 cannot be valid for the adiabatic change of state of photon gas, simultaneously. Furthermore, the Planck's distribution -- and so the Wien's law and the Rayleigh-Jeans connection as well -- cannot be invariant in case of adiabatic change of state of photon gas. Namely, in case of adiabatic change of state of photon gas, a new type of ultraviolet catastrophe appears. These results possess a fundamental important in case of arbitrary deformation of electromagnetic radiation fields or quantum plasmas

  6. Compressor Flow Control Concepts. 2; UEET Compressor Flow Control Modeling

    Chima, Rodrick V.

    2001-01-01

    Several passive flow control devices have been modeled computationally in the Swift CFD code. The models were applied to the first stage rotor and stator of the baseline UEET compressor in an attempt to improve efficiency and/or stall margin. The devices included suction surface bleed, tip injection, self-aspirated rotors, area-ruled casing, and vortex generators. The models and computed results will be described in the presentation. None of the results have shown significant gains in efficiency; however, casing vortex generators have shown potential improvements in stall margin.

  7. New material equations for electromagnetism with toroid polarizations

    With regard to the toroid contributions, a modified system of equations of electrodynamics moving continuous media has been obtained. Alternative formalisms to introduce the toroid moment contributions in the equations of electromagnetism has been worked out. The two four-potential formalism has been developed. Lorentz transformation laws for the toroid polarizations has been given. Covariant form of equations of electrodynamics of continuous media with toroid polarizations has been written. (author)

  8. Applications of numerical optimization techniques to design of axial compressor blades

    Choon-Man Jang; Kwang-Yong Kim

    2007-01-01

    This paper describes the shape optimization of NASA rotor 37 and rotor and stator blades in a single-stage transonic axial compressor.Shape optimization of the blades operating at the design flow condition has been performed using the response surface method and three-dimensional Navier-Stokes analysis.Thin-layer approximation is introduced to the Navier-Stokes equations,and an explicit Runge-Kutta scheme is used to solve the governing equations.The three design variables,blade sweep,lean and skew,are introduced to optimize the three-dimensional stacking line of the blades.The objective function of the shape optimization is an adiabatic efficiency.Throughout the optimization of rotor and stator blades, optimal blade shape can be obtained.It is noted the increase of adiabatic efficiency by optimization of the blade shape with the stacking line in the single-stage transonic axial compressor is more effective in a rotor blade rather than a stator blade because of the large deformation of blade shape in the stator blade.

  9. Nonadiabatic exchange dynamics during adiabatic frequency sweeps

    Barbara, Thomas M.

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  10. Energy efficiency of adiabatic superconductor logic

    Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2. (paper)