WorldWideScience

Sample records for adiabatic time-dependent density

  1. Invariant Hermitian Operator and Density Operator for the Adiabatically Time-Dependent System

    YAN Feng-Li; YANG Lin-Guang

    2001-01-01

    The density operator is approximately expressed as a function of the invariant Hermitian operator for the adiabatically time-dependent system. Using this method, the calculation of the density operator for the Heisenberg spin system in a weakly time-dependent magnetic field is exemplified. By virtue of the density operator, we obtain equilibrium.``

  2. Reconstructing the adiabatic exchange-correlation kernel of time-dependent density-functional theory

    The interacting and the Kohn-Sham static density-density response functions for different one-dimensional two-electron singlet systems are reconstructed numerically. From their inverse we obtain the exact static exchange-correlation kernel. This quantity represents the adiabatically exact approximation of the frequency-dependent exchange-correlation kernel that is crucial for time-dependent linear density-response theory. We investigate its performance for nonlocal perturbations and analyze its sum rule properties. We also compute the adiabatically exact transition energies that follow from the static kernel within linear-response theory.

  3. Time-dependent density-functional and reduced density-matrix methods for few electrons: Exact versus adiabatic approximations

    Graphical abstract: We solve a 1D N-electron system, with N small, by mapping it onto an N-dimensional one-electron problem. We compare the exact solutions to the results from adiabatic density and density matrix functionals for different physical situations. Highlights: ► Static and dynamical correlations. ► Memory dependence of exchange-correlation functionals in TDDFT. ► Linear and non-linear response. ► Laser-induced population control. - Abstract: To address the impact of electron correlations in the linear and non-linear response regimes of interacting many-electron systems exposed to time-dependent external fields, we study one-dimensional (1D) systems where the interacting problem is solved exactly by exploiting the mapping of the 1D N-electron problem onto an N-dimensional single electron problem. We analyze the performance of the recently derived 1D local density approximation as well as the exact-exchange orbital functional for those systems. We show that the interaction with an external resonant laser field shows Rabi oscillations which are detuned due to the lack of memory in adiabatic approximations. To investigate situations where static correlations play a role, we consider the time-evolution of the natural occupation numbers associated to the reduced one-body density matrix. Those studies shed light on the non-locality and time-dependence of the exchange and correlation functionals in time-dependent density and density-matrix functional theories.

  4. Adiabatic approximation within time-dependent density functional theory using inversion of the ground-state spin-density Kohn–Sham formalism

    Graphical abstract: The time-dependent electron density is mapped via inversion of the ground-state Kohn–Sham formalism on two spin-densities, and thus an accurate adiabatic correlation potential is obtained. Research highlights: ► An adiabatic approximation for time-dependent density functional theory is proposed. ► Inverting static spin-density functional theory yields accurate correlation potentials. ► The derivative discontinuity is reproduced. ► Tested for strong-field ionization and molecules at large internuclear distance. - Abstract: It has recently been shown by Thiele et al. [M. Thiele, E. K. U. Gross, S. Kümmel, Phys. Rev. Lett. 100 (2008) 153004] that the exact adiabatic approximation in time-dependent density functional theory gives a good description of non-sequential double ionization in the one-dimensional helium atom. In this paper, we propose an adiabatic approximation based on the inversion of ground-state spin-density functional theory and apply it to several model systems. We demonstrate that our approach reproduces the derivative discontinuity and yields correlation potentials close to the exact correlation potentials for a strong-field ionization process as well as for the 1D H2 and LiH molecules at large internuclear distance.

  5. Scattering of a proton with the Li4 cluster: Non-adiabatic molecular dynamics description based on time-dependent density-functional theory

    Graphical abstract: Two trajectories for the collision of a proton with the Lithium tetramer. On the left, the proton is scattered away, and a Li2 molecule plus two isolated Lithium atoms result. On the right, the proton is captured and a LiH molecule is created. Highlights: ► Scattering of a proton with Lithium clusters described from first principles. ► Description based on non-adiabatic molecular dynamics. ► The electronic structure is described with time-dependent density-functional theory. ► The method allows to discern reaction channels depending on initial parameters. - Abstract: We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behavior of a proton with the Li4 cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.

  6. Challenging Adiabatic Time-dependent Density Functional Theory with a Hubbard Dimer: The Case of Time-Resolved Long-Range Charge Transfer

    Fuks, Johanna I

    2014-01-01

    We explore an asymmetric two-fermion Hubbard dimer to test the accuracy of the adiabatic approximation of time-dependent density functional theory in modelling time-resolved charge transfer. We show that the model shares essential features of a ground state long-range molecule in real-space, and by applying a resonant field we show that the model also reproduces essential traits of the CT dynamics. The simplicity of the model allows us to propagate with an "adiabatically-exact" approximation, i.e. one that uses the exact ground-state exchange-correlation functional, and compare with the exact propagation. This allows us to study the impact of the time-dependent charge-transfer step feature in the exact correlation potential of real molecules on the resulting dynamics. Tuning the parameters of the dimer allows a study both of charge-transfer between open-shell fragments and between closed-shell fragments. We find that the adiabatically-exact functional is unable to properly transfer charge, even in situations ...

  7. Adiabatic theorem for the time-dependent wave operator

    The application of time-dependent wave operator theory to the development of a quantum adiabatic perturbation theory is treated both theoretically and numerically, with emphasis on the description of field-matter interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system

  8. On the Time Dependence of Adiabatic Particle Number

    Dabrowski, Robert

    2016-01-01

    We consider quantum field theoretic systems subject to a time-dependent perturbation, and discuss the question of defining a time dependent particle number not just at asymptotic early and late times, but also during the perturbation. Naively, this is not a well-defined notion for such a non-equilibrium process, as the particle number at intermediate times depends on a basis choice of reference states with respect to which particles and anti-particles are defined, even though the final late-time particle number is independent of this basis choice. The basis choice is associated with a particular truncation of the adiabatic expansion. The adiabatic expansion is divergent, and we show that if this divergent expansion is truncated at its optimal order, a universal time dependence is obtained, confirming a general result of Dingle and Berry. This optimally truncated particle number provides a clear picture of quantum interference effects for perturbations with non-trivial temporal sub-structure. We illustrate the...

  9. Time-dependent transition density matrix

    Research highlights: ► A time-dependent generalization of the transition density matrix (TDM) is proposed. ► The time-dependent TDM is approximately calculated using Kohn–Sham wave functions. ► Numerical examples on one-dimensional lattices illustrate how the TDM works. ► Rapid formation and spreading of electron-hole pairs is observed. ► Here, electron interaction effects are less important than quantum confinement. - Abstract: The transition density matrix (TDM) is a useful tool for analyzing and interpreting electronic excitation processes in molecular systems. For any transition between two eigenstates of a many-body system, the TDM provides a characteristic spatial map which indicates the distribution of the associated electron–hole pairs and allows one to identify their delocalization and coherence lengths. This is particularly useful for characterizing charge-transfer excitations in large molecular chains or light-harvesting molecules. We here extend these concepts into the real-time domain and define the time-dependent TDM and discuss it in the context of TDDFT. An approximation is proposed in terms of the Kohn–Sham Slater determinants. This provides a new tool for the real-time visualization of electronic excitation processes such as exciton formation, diffusion, recombination, or charge separation. We illustrate the time-dependent TDM for simple one-dimensional lattice systems with two spinless electrons which are either noninteracting of fully interacting.

  10. Studies of Spuriously Time-dependent Resonances in Time-dependent Density Functional Theory

    Luo, Kai; Maitra, Neepa T

    2016-01-01

    Adiabatic approximations in time-dependent density functional theory (TDDFT) will in general yield unphysical time-dependent shifts in the resonance positions of a system driven far from its ground-state. This spurious time-dependence is rationalized in [J. I. Fuks, K. Luo, E. D. Sandoval and N. T. Maitra, Phys. Rev. Lett. {\\bf 114}, 183002 (2015)] in terms of the violation of an exact condition by the non-equilibrium exchange-correlation kernel of TDDFT. Here we give details on the derivation and discuss reformulations of the exact condition that apply in special cases. In its most general form, the condition states that when a system is left in an arbitrary state, in the absence of time-dependent external fields nor ionic motion, the TDDFT resonance position for a given transition is independent of the state. Special cases include the invariance of TDDFT resonances computed with respect to any reference interacting stationary state of a fixed potential, and with respect to any choice of appropriate stationa...

  11. Time-dependent density functional theory for quantum transport

    Zheng, Xiao; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing

    2010-01-01

    Based on our earlier works [Phys. Rev. B 75, 195127 (2007) & J. Chem. Phys. 128, 234703 (2008)], we propose a formally exact and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.

  12. A quantized adiabatic time dependent mean field theory

    Usually collective motion of the nucleus is essentially governed by a few dynamical parameters q like e.g. elongation necking etc. in case of fission. Microscopic approaches often aim to calculate, outgoing from the motion of the single nucleons, the Hamiltonian for the collective motion. To this end they use as a basic ingredient the collective path which is a set of Slater-determinants or BCS states, representing the various shapes of the system during the collective motion. In practice, the choice bears much arbitrariness in guessing the evolution of the collective deformation. It is therefore highly desirable to have a theory which extracts the collective path from a proper equation of motion rather than imposing it on the system. Such equations for the optimal collective path are derived by requiring slow motion and by defining collective coordinates by means of minimizing the coupling term. Assuming the collective path to consist out of Slater determinants this amounts to an adiabatic expansion of the TDHF equations and finally leads to a differential equation for the path. (orig./AH)

  13. Pseudospectral time-dependent density functional theory

    Ko, Chaehyuk; Malick, David K.; Braden, Dale A.; Friesner, Richard A.; Martínez, Todd J.

    2008-03-01

    Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions. The pseudospectral TDA-TDDFT method is shown to be up to ten times faster than a conventional algorithm for hybrid functionals without sacrificing chemical accuracy.

  14. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  15. Classical nuclear dynamics on a single time-dependent potential in electronic non-adiabatic processes

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T.; Gross, E. K. U.

    2015-03-01

    The Born-Oppenheimer (BO) approximation allows to visualize the coupled electron-nuclear dynamics in molecular systems as a set of nuclei moving on a single potential energy surface representing the effect of the electrons in a given eigenstate. Many interesting phenomena, however, such as vision or charge separation in organic photovoltaic materials, take place in conditions beyond its range of validity. Nevertheless, the basic construct of the adiabatic treatment, the BO potential energy surfaces, is employed to describe non-adiabatic processes and the full problem is represented in terms of adiabatic states and transitions among them in regions of strong non-adiabatic coupling. But the concept of single potential energy is lost. The alternative point of view arising in the framework of the exact factorization of the electron-nuclear wave function will be presented. A single, time-dependent, potential energy provides the force driving the nuclear motion and is adopted as starting point for the development of quantum-classical approximations to the full quantum mechanical problem.

  16. Non-adiabatic quantum effects from a Standard Model time-dependent Higgs vev

    We consider the time-dependence of the Higgs vacuum expectation value (vev) given by the dynamics of the Standard Model and study the non-adiabatic production of both bosons and fermions, which is intrinsically non-perturbative. In the Hartree approximation, we analyze the general expressions that describe the dissipative dynamics due to the back-reaction of the produced particles. In particular, we solve numerically some relevant cases for the Standard Model phenomenology in the regime of relatively small oscillations of the Higgs vev

  17. Transient energy excitation in shortcuts to adiabaticity for the time dependent harmonic oscillator

    Chen, Xi

    2010-01-01

    There is recently a surge of interest to cut down the time it takes to change the state of a quantum system adiabatically. We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes designed to reproduce the initial populations at some predetermined final frequency and time, providing lower bounds and examples. Implications for the limits imposed to the process times and for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles, are drawn.

  18. Accurate Non-adiabatic Quantum Dynamics from Pseudospectral Sampling of Time-dependent Gaussian Basis Sets

    Heaps, Charles W

    2016-01-01

    Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. In this paper, we employ pseudospectral sampling of time-dependent Gaussian basis functions for the simulation of non-adiabatic dynamics. Unlike other methods, the pseudospectral Gaussian molecular dynamics tests the Schr\\"{o}dinger equation with $N$ Dirac delta functions located at the centers of the Gaussian functions reducing the scaling of potential energy evaluations from $\\mathcal{O}(N^2)$ to $\\mathcal{O}(N)$. By projecting the Gaussian basis onto discrete points in space, the method is capable of efficiently and quantitatively describing nonadiabatic population transfer and intra-surface quantum coherence. We investigate three model systems; the photodissociation of three coupled Morse oscillators, the bound state dynamics of two coupled Morse oscillators, and a two-d...

  19. Optical response of extended systems from time-dependent Hartree-Fock and time-dependent density-functional theory

    Bernasconi, Leonardo; Webster, Ross; Tomić, Stanko; Harrison, Nicholas M.

    2012-05-01

    We describe a unified formulation of time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT) for the accurate and efficient calculation of the optical response of infinite (periodic) systems. The method is formulated within the linear-response approximation, but it can easily be extended to include higher-order response contributions, and, in TD-DFT, it can treat with comparable computational efficiency purely local, semi-local or fully non-local approximations for the ground-state exchange-correlation (XC) functional and for the response TD-DFT XC kernel in the adiabatic approximation. At variance with existing methods for computing excitation energies based on the diagonalisation of suitable coupling matrices, or on the inversion of a dielectric matrix, our approach exploits an iterative procedure similar to a standard self-consistent field calculation. This results in a particularly efficient treatment of the coupling of excitations at different k points in the Brillouin zone. As a consequence, our method has the potential to describe completely from first principles the optically induced formation of bound particle-hole pairs in wide classes of materials. This point is illustrated by computing the optical gaps of a series of representative bulk semiconductors, (non-spin polarised) oxides and ionic insulators.

  20. Computational complexity of time-dependent density functional theory

    Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn–Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn–Sham system can be efficiently obtained given the time-dependent density. We introduce a V-representability parameter which diverges at the boundary of the existence domain and serves to quantify the numerical difficulty of constructing the Kohn-Sham potential. For bounded values of V-representability, we present a polynomial time quantum algorithm to generate the time-dependent Kohn–Sham potential with controllable error bounds. (paper)

  1. Time-dependent density functional theory for open spin chains

    D. De Falco; D. Tamascelli

    2011-01-01

    The application of methods of time-dependent density functional theory (TDDFT) to systems of qubits provided the interesting possibility of simulating an assigned Hamiltonian evolution by means of an auxiliary Hamiltonian having different two-qubit interactions and hence a possibly simpler wave function evolution. In this note we extend these methods to some instances of Lindblad evolution of a spin chain.

  2. Linear-response thermal time-dependent density functional theory

    Pribram-Jones, Aurora; Burke, Kieron

    2015-01-01

    The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This produces a natural method for generating new thermal exchange-correlation (XC) approximations.

  3. Building mathematical foundations for time-dependent density functional theory

    In this presentation we study the essential mathematical structures for a rigorous foundation of time-dependent density functional theory, a reformulation of many-body quantum mechanics where the wave function as a fundamental variable is replaced by the electronic density. We introduce a new fixed-point proof of the fundamental one-to-one correspondence between densities and external potentials. Our approach not only sharpens the Theorems of Runge and Gross and van Leeuwen, as no additional time regularity is needed, but also yields interesting restrictions on the density and leads to a problem-adapted set of external potentials.

  4. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  5. Accurate non-adiabatic quantum dynamics from pseudospectral sampling of time-dependent Gaussian basis sets

    Heaps, Charles W.; Mazziotti, David A.

    2016-08-01

    Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. In this paper, we employ pseudospectral sampling of time-dependent Gaussian basis functions for the simulation of non-adiabatic dynamics. Unlike other methods, the pseudospectral Gaussian molecular dynamics tests the Schrödinger equation with N Dirac delta functions located at the centers of the Gaussian functions reducing the scaling of potential energy evaluations from O ( N 2 ) to O ( N ) . By projecting the Gaussian basis onto discrete points in space, the method is capable of efficiently and quantitatively describing the nonadiabatic population transfer and intra-surface quantum coherence. We investigate three model systems: the photodissociation of three coupled Morse oscillators, the bound state dynamics of two coupled Morse oscillators, and a two-dimensional model for collinear triatomic vibrational dynamics. In all cases, the pseudospectral Gaussian method is in quantitative agreement with numerically exact calculations. The results are promising for nonadiabatic molecular dynamics in molecular systems where strongly correlated ground or excited states require expensive electronic structure calculations.

  6. Sublinear scaling for time-dependent stochastic density functional theory

    A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (≈16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory

  7. Sublinear scaling for time-dependent stochastic density functional theory

    Gao, Yi; Baer, Roi; Rabani, Eran

    2014-01-01

    A stochastic approach to time-dependent density functional theory (TDDFT) is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are fi?rst projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is in?finite, but even a small number (? 16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals (NCs) using real-space grids and ?find that the overall scaling of the algorithm is sublinear with computational time and memory.

  8. H+ (D+, T+)–beryllium collisions studied using time-dependent density functional theory

    Highlights: • H+(D+, T+)–Be collisions are investigated by time-dependent functional theory. • A benchmark test is made for H+–He collision. • The charge transfer and energy loss cross sections are obtained. - Abstract: Charge transfer and energy loss cross section of the Be+X+ (X=H, D and T) collisions are calculated using time-dependent density functional theory (TDDFT). A detailed discussion on the reliability of our results is presented by a comparison to the well studied H+–He collision. Our calculations indicate that optimized effective potential improves the results significantly compared to conventional used adiabatic local density approximations. The isotope effect at low impact energies is well reproduced. The charge transfer and energy loss cross sections scale with the velocity of projectiles for energy larger than 5 keV. The results of quantum molecular dynamics and TDDFT are also compared in view of the charge transfer process

  9. Time-dependent density-functional theory concepts and applications

    Ullrich, Carsten A

    2011-01-01

    Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s

  10. Perspective: Fundamental aspects of time-dependent density functional theory

    Maitra, Neepa T.

    2016-06-01

    In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.

  11. Multi-configuration time-dependent density-functional theory based on range separation

    Fromager, Emmanuel; Jensen, Hans Jørgen Aa

    2012-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration-Self-Consistent Field (MCSCF) treatment with an adiabatic short-range density-functional (DFT) description, is then considered. The resulting time-dependent multi-configuration short-range DFT (TD-MC-srDFT) model is applied to the calculation of singlet excitation energies in H2, Be and ferrocene, considering both short-range local density (srLDA) and generalized gradient (srGGA) approximations. In contrast to regular TD-DFT, TD-MC-srDFT can describe double excitations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [K. Pernal, J. Chem. Phys. 136, 184105 (2012)], the description of both the 1^1D doubly-excited state in Be and the 1^1\\Sigma^+_u state in the stretch...

  12. Time-dependent density-functional description of nuclear dynamics

    Nakatsukasa, Takashi; Matsuo, Masayuki; Yabana, Kazuhiro

    2016-01-01

    We present the basic concepts and recent developments in the time-dependent density functional theory (TDDFT) for describing nuclear dynamics at low energy. The symmetry breaking is inherent in nuclear energy density functionals (EDFs), which provides a practical description of important correlations at the ground state. Properties of elementary modes of excitation are strongly influenced by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent developments in the linear response calculation have demonstrated their usefulness in description of collective modes of excitation in nuclei. Unrestricted real-time calculations have also become available in recent years, with new developments for quantitative description of nuclear collision phenomena. There are, however, limitations in the real-time approach; for instance, it cannot describe the many-body quantum tunneling. Thus, we treat the quantum fluctuations associated with slow collective motions assuming that time evolution of...

  13. Subsystem real-time Time Dependent Density Functional Theory

    Krishtal, Alisa; Pavanello, Michele

    2015-01-01

    We present the extension of Frozen Density Embedding (FDE) theory to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE a is DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na$_4$ cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  14. Fundamentals of time-dependent density functional theory

    There have been many significant advances in time-dependent density functional theory over recent years, both in enlightening the fundamental theoretical basis of the theory, as well as in computational algorithms and applications. This book, as successor to the highly successful volume Time-Dependent Density Functional Theory (Lect. Notes Phys. 706, 2006) brings together for the first time all recent developments in a systematic and coherent way. First, a thorough pedagogical presentation of the fundamental theory is given, clarifying aspects of the original proofs and theorems, as well as presenting fresh developments that extend the theory into new realms such as alternative proofs of the original Runge-Gross theorem, open quantum systems, and dispersion forces to name but a few. Next, all of the basic concepts are introduced sequentially and building in complexity, eventually reaching the level of open problems of interest. Contemporary applications of the theory are discussed, from real-time coupled-electron-ion dynamics, to excited-state dynamics and molecular transport. Last but not least, the authors introduce and review recent advances in computational implementation, including massively parallel architectures and graphical processing units. Special care has been taken in editing this volume as a multi-author textbook, following a coherent line of thought, and making all the relevant connections between chapters and concepts consistent throughout. As such it will prove to be the text of reference in this field, both for beginners as well as expert researchers and lecturers teaching advanced quantum mechanical methods to model complex physical systems, from molecules to nanostructures, from biocomplexes to surfaces, solids and liquids. (orig.)

  15. Simple preconditioning for time-dependent density functional perturbation theory.

    Lehtovaara, Lauri; Marques, Miguel A L

    2011-07-01

    By far, the most common use of time-dependent density functional theory is in the linear-reponse regime, where it provides information about electronic excitations. Ideally, the linear-response equations should be solved by a method that avoids the use of the unoccupied Kohn-Sham states--such as the Sternheimer method--as this reduces the complexity and increases the precision of the calculation. However, the Sternheimer equation becomes ill-conditioned near and indefinite above the first resonant frequency, seriously hindering the use of efficient iterative solution methods. To overcome this serious limitation, and to improve the general convergence properties of the iterative techniques, we propose a simple preconditioning strategy. In our method, the Sternheimer equation is solved directly as a linear equation using an iterative Krylov subspace method, i.e., no self-consistent cycle is required. Furthermore, the preconditioner uses the information of just a few unoccupied states and requires simple and minimal modifications to existing implementations. In this way, convergence can be reached faster and in a considerably wider frequency range than the traditional approach. PMID:21744884

  16. Practical methods in time-dependent density functional theory (TDDFT) at elevated temperatures

    Magyar, Rudolph; Shulenburger, Luke; Baczewski, Andrew

    2014-03-01

    There is a great need to simulate dynamic material response properties under shock conditions where experimental data is often limited due to the extreme scales involved (MBars, 1000s of K, and manifold compressed solid densities). Knowing materials properties at this scale is vital element of simulations of planetary collisions, inertial confinement fusion experiments, and the surfaces of some stars. Considerable progress has been made using density functional molecular dynamics (DFT-MD) to model thermodynamic properties of material under these conditions; however, the approach is limited to cases in which the electrons are constrained to a thermodynamic distribution within the Mermin formulation. We will explore practical schemes to generalize this method to the time-dependent case. Several challenges come up such as the role of non-adiabatic electron-electron and electron-nuclear physics and the correct choice of initial state. One of the most straightforward choices of initial state is to project the Mermin state since the original Runge-Gross proof does not make explicit choice of occupations. We will present some numerical tests of finite systems to examine this formulation. We will also explore how simple models of non-adiabatic effects might be sufficiently accurate under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  17. Troubleshooting time-dependent density-functional theory for photochemical applications: Oxirane

    The development of analytic-gradient methodology for excited states within conventional time-dependent density-functional theory (TDDFT) would seem to offer a relatively inexpensive alternative to better established quantum-chemical approaches for the modeling of photochemical reactions. However, even though TDDFT is formally exact, practical calculations involve the use of approximate functional, in particular the TDDFT adiabatic approximation, the use of which in photochemical applications must be further validated. Here, we investigate the prototypical case of the symmetric CC ring opening of oxirane. We demonstrate by direct comparison with the results of high-quality quantum Monte Carlo calculations that, far from being an approximation on TDDFT, the Tamm-Dancoff approximation is a practical necessity for avoiding triplet instabilities and singlet near instabilities, thus helping maintain energetically reasonable excited-state potential energy surfaces during bond breaking. Other difficulties one would encounter in modeling oxirane photodynamics are pointed out

  18. Time-dependent density functional studies of nuclear quantum dynamics in large amplitudes

    Wen, Kai; Fang, Ni; Nakatsukasa, Takashi

    2015-01-01

    The time-dependent density functional theory (TDDFT) provides a unified description of the structure and reaction. The linear approximation leads to the random-phase approximation (RPA) which is capable of describing a variety of collective motion in a harmonic regime. Beyond the linear regime, we present applications of the TDDFT to nuclear fusion and fission reaction. In particular, the extraction of the internuclear potential and the inertial mass parameter is performed using two different methods. A fusion hindrance mechanism for heavy systems is investigated from the microscopic point of view. The canonical collective variables are determined by the adiabatic self-consistent collective coordinate method. Preliminary results of the spontaneous fission path, the potential, and the collective mass parameter are shown for 8Be --> alpha+alpha.

  19. Time-dependent density functional theory beyond Kohn-Sham Slater determinants.

    Fuks, Johanna I; Nielsen, Søren E B; Ruggenthaler, Michael; Maitra, Neepa T

    2016-08-01

    When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50 : 50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle" contribution that we denote v, and a remainder. The single-particle contribution can be readily computed as an explicit orbital-functional, reduces to exchange in the Slater determinant case, and offers an alternative to the adiabatic approximation as a starting point for TDDFT approximations. PMID:27010732

  20. Efficient time-dependent density functional theory approximations for hybrid density functionals: Analytical gradients and parallelization

    Petrenko, Taras; Kossmann, Simone; Neese, Frank

    2011-02-01

    In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ˜26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ˜27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ˜24 on 30 processors. The

  1. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    Appel, H.

    2007-05-15

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f{sub xc} from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the

  2. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel fxc from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the propagation of

  3. Optimal control theory for quantum-classical systems: Ehrenfest molecular dynamics based on time-dependent density-functional theory

    We derive the fundamental equations of an optimal control theory for systems containing both quantum electrons and classical ions. The system is modeled with Ehrenfest dynamics, a non-adiabatic variant of molecular dynamics. The general formulation, that needs the fully correlated many-electron wavefunction, can be simplified by making use of time-dependent density-functional theory. In this case, the optimal control equations require some modifications that we will provide. The abstract general formulation is complemented with the simple example of the H2+ molecule in the presence of a laser field. (paper)

  4. Theoretical and numerical assessments of spin-flip time-dependent density functional theory

    Li, Zhendong; Liu, Wenjian

    2012-01-01

    Spin-flip time-dependent density functional theory (SF-TD-DFT) with the full noncollinear hybrid exchange-correlation kernel and its approximate variants are critically assessed, both formally and numerically. As demonstrated by the ethylene torsion and the C2v ring-opening of oxirane, SF-TD-DFT is very useful for describing nearly degenerate situations. However, it may occasionally yield unphysical results. This stems from the noncollinear form of the generalized gradient approximation, which becomes numerically instable in the presence of spin-flip excitations from the closed- to vacant-shell orbitals of an open-shell reference. To cure this defect, a simple modification, dubbed as ALDA0, is proposed in the spirit of adiabatic local density approximation (ALDA). It is applicable to all kinds of density functionals and yields stable results without too much loss of accuracy. In particular, the combination of ALDA0 with the Tamm-Dancoff approximation is a promising tool for studying global potential energy surfaces. In addition to the kernel problem, SF-TD-DFT is also rather sensitive to the choice of reference states, as demonstrated by the spin multiplet states of closed-shell molecules of H2O, CH2O, and C2H4. Surprisingly, SF-TD-DFT with pure density functionals may also fail for valance excitations with large orbital overlaps, at variance with the spin-conserving counterpart (SC-TD-DFT). In this case, the inclusion of a large amount of Hartree-Fock exchange is mandatory for quantitative results. Nonetheless, for spatially degenerate cases such as CF, CH, and NH+, SF-TD-DFT is more advantageous than SC-TD-DFT, unless the latter is also space adapted. These findings are very instructive for future development and applications of TD-DFT.

  5. Time-Dependent Density Functional Theory Beyond Kohn-Sham Slater Determinants

    Fuks, Johanna I; Ruggenthaler, Michael; Maitra, Neepa T

    2016-01-01

    When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50:50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle...

  6. A fast real time time-dependent density functional theory simulation method

    Wang, Lin-Wang; Wang, Zhi; Li, Shu-Sheng

    2015-03-01

    We have developed an efficient real-time time-dependent density functional theory (TDDFT) method that can increase the effective time step from traditional methods to 0.1 0.5 femtosecond. Our algorithm, which carries out the non-adiabatic molecular dynamics TDDFT simulations, can have comparable speed to the Born-Oppenheimer (BO) ab initio molecular dynamics (MD). As an application, we simulated the process of an energetic Cl particle colliding onto a monolayer of MoSe2. Our simulations show a significant energy transfer from the kinetic energy of the Cl particle to the electronic energy of MoSe2, and the result of TDDFT is very different from that of BO MD simulations. This new algorithm will enable the use of real-time TD-DFT for many new simulations involving carrier dynamics and electron-phonon couplings. This work is supported by the Director, Office of Science, BES/MSED, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Material Theory program in LBNL. Zhi Wang is supported by the China Scholarship Council.

  7. Accuracy and computational efficiency of real-time subspace propagation schemes for the time-dependent density functional theory

    Russakoff, Arthur; Li, Yonghui; He, Shenglai; Varga, Kalman

    2016-05-01

    Time-dependent Density Functional Theory (TDDFT) has become successful for its balance of economy and accuracy. However, the application of TDDFT to large systems or long time scales remains computationally prohibitively expensive. In this paper, we investigate the numerical stability and accuracy of two subspace propagation methods to solve the time-dependent Kohn-Sham equations with finite and periodic boundary conditions. The bases considered are the Lánczos basis and the adiabatic eigenbasis. The results are compared to a benchmark fourth-order Taylor expansion of the time propagator. Our results show that it is possible to use larger time steps with the subspace methods, leading to computational speedups by a factor of 2-3 over Taylor propagation. Accuracy is found to be maintained for certain energy regimes and small time scales.

  8. Analyzing Density Operator in Thermal State for Complicated Time-Dependent Optical Systems

    Jeong Ryeol Choi

    2014-01-01

    Full Text Available Density operator of oscillatory optical systems with time-dependent parameters is analyzed. In this case, a system is described by a time-dependent Hamiltonian. Invariant operator theory is introduced in order to describe time-varying behavior of the system. Due to the time dependence of parameters, the frequency of oscillation, so-called a modified frequency of the system, is somewhat different from the natural frequency. In general, density operator of a time-dependent optical system is represented in terms of the modified frequency. We showed how to determine density operator of complicated time-dependent optical systems in thermal state. Usually, density operator description of quantum states is more general than the one described in terms of the state vector.

  9. Calculation of the optical response of C60 and Na8 using time-dependent density functional theory and local orbitals

    Tsolakidis, Argyrios; Sanchez-Portal, Daniel; Martin, Richard M.

    2001-01-01

    We report on a general method for the calculation of the frequency-dependent optical response of clusters based upon time-dependent density functional theory (TDDFT). The implementation is done using explicit propagation in the time domain and a self-consistent program that uses a linear combination of atomic orbitals (LCAO). Our actual calculations employ the SIESTA program, which is designed to be fast and accurate for large clusters. We use the adiabatic local density approximation to acco...

  10. Operator-sum representation of time-dependent density operators and its applications

    Tong, D M; Oh, C H; Chen, J L; Ma, L; Chen, Jing-Ling

    2004-01-01

    We show that any arbitrary time-dependent density operator of an open system can always be described in terms of an operator-sum representation regardless of its initial condition and the path of its evolution in the state space, and we provide a general expression of Kraus operators for arbitrary time-dependent density operator of an $N$-dimensional system. Moreover, applications of our result are illustrated through several examples.

  11. Comparative study of many-body perturbation theory and time-dependent density functional theory in the out-of-equilibrium Anderson model

    Uimonen, A. -M.; Khosravi, E.; Stan, A.; Stefanucci, Gianluca; Kurth, S.; Van Leeuwen, R; Gross, E. K. U.

    2011-01-01

    We study time-dependent electron transport through an Anderson model. The electronic interactions on the impurity site are included via the self-energy approximations at Hartree-Fock (HF), second Born (2B), GW, and T-matrix levels as well as within a time-dependent density functional (TDDFT) scheme based on the adiabatic Bethe-ansatz local density approximation (ABALDA) for the exchange-correlation potential. The Anderson model is driven out of equilibrium by applying a bias to the leads, and...

  12. Global fixed point proof for time-dependent density functional theory

    Time-dependent density-functional theory is the extension of the highly successful ground-state density-functional theory to time-dependent phenomena. The basic theorem by Runge and Gross shows under the assumption of Taylor-expandable external potentials that every observable is in principle uniquely defined by the one-particle density of the quantum system. The van Leeuwen theorem provides under similar restrictions, that there is an auxiliary system of noninteracting particles generating the exact density of the interacting system. This so-called Kohn-Sham construction makes an ab initio solution for big quantum systems feasible. By rewriting the question whether a system is uniquely defined by its density as a fixed point question, we can proof both theorems without assumptions on the time-dependence of the potentials. We discuss implications and applications of this novel approach to fundamental questions of many-body physics.

  13. Simulation of heavy ion collision using a time-dependent density functional theory including nuclear superfluidity

    We carried out a simulation of heavy ion collision using a time-dependent density functional theory. We call it the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory (Cb-TDHFB) which can describe nuclear dynamics in three-dimensional coordinate space, treating nuclear pairing correlation. We simulate 20O+20O collision using the Cb-TDHFB with a contact-type pairing functional, and show the behavior of gap energy which is decreasing and vibrating while colliding

  14. Simulation of heavy ion collision using a time-dependent density functional theory including nuclear superfluidity

    Ebata, Shuichiro

    2012-01-01

    We carried out a simulation of heavy ion collision using a time-dependent density functional theory. We call it the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory (Cb-TDHFB) which can describe nuclear dynamics in three-dimensional coordinate space, treating nuclear pairing correlation. We simulate 20O+20O collision using the Cb-TDHFB with a contact-type pairing functional, and show the behavior of gap energy which is decreasing and vibrating while colliding.

  15. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    Rüger, Robert; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the harmonic approximation. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, excellent agreement with TD-DFT calculations using local functionals was achieved.

  16. Adiabatic density surface, neutral density surface, potential density surface, and mixing path

    HUANG Rui-xin

    2014-01-01

    In this paper, adiabatic density surface, neutral density surface and potential density surface are compared. The adiabatic density surface is defined as the surface on which a water parcellcan move adiabatically, without changing its potential temperature and salinity. For a water parcelltaken at a given station and pressure level, the corresponding adiabatic density surface can be determined through simple calculations. This family of surface is neutrally buoyant in the world ocean, and different from other surfaces that are not truly neutrally buoyant. In order to explore mixing path in the ocean, a mixing ratio m is introduced, which is defined as the portion of potential temperature and salinity of a water parcellthat has exchanged with the environment during a segment of migration in the ocean. Two extreme situations of mixing path in the ocean are m=0 (no mixing), which is represented by the adiabatic density curve, and m=1, where the original information is completely lost through mixing. The latter is represented by the neutral density curve. The reality lies in between, namely, 0

  17. Mixed quantum-classical dynamics on the exact time-dependent potential energy surface: A fresh look at non-adiabatic processes

    Agostini, Federica; Suzuki, Yasumitsu; Gross, E K U

    2013-01-01

    The exact nuclear time-dependent potential energy surface arises from the exact decomposition of electronic and nuclear motion, recently presented in [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)]. Such time-dependent potential drives nuclear motion and fully accounts for the coupling to the electronic subsystem. We investigate the features of the potential in the context of electronic non-adiabatic processes and employ it to study the performance of the classical approximation on nuclear dynamics. We observe that the potential, after the nuclear wave-packet splits at an avoided crossing, develops dynamical steps connecting different regions, along the nuclear coordinate, in which it has the same slope as one or the other adiabatic surface. A detailed analysis of these steps is presented for systems with different non-adiabatic coupling strength. The exact factorization of the electron-nuclear wave-function is at the basis of the decomposition. In particular, the nuclear par...

  18. Time-dependent density-functional theory in the projector augmented-wave method

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri; Puska, Martti; Enkovaara, Jussi; Rostgaard, Carsten; Mortensen, Jens Jørgen

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...

  19. Time-dependent density-functional theory with self-interaction correction

    Messud, J.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.

    2007-01-01

    We discuss an extension of time-dependent density-functional theory by a self-interaction correction (SIC). A strictly variational formulation is given taking care of the necessary constraints. A manageable and transparent propagation scheme using two sets of wavefunctions is proposed and applied to laser excitation with subsequent ionization of a dimer molecule.

  20. Time-dependent quantum fluid density functional theory of hydrogen molecule under intense laser fields

    Amita Wadehra; B M Deb

    2007-09-01

    A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on the femtosecond dynamics of the electron density in the hydrogen molecule interacting with high-intensity laser fields. For this purpose, the GNLSE is solved numerically for many time-steps over a total interaction time of 100 fs, by employing a finite-difference scheme. Various time-dependent (TD) quantities, namely, electron density, ground-state survival probability and dipole moment have been obtained for two laser wavelengths and four different intensities. The high-order harmonics generation (HHG) is also examined. The present approach goes beyond the linear response formalism and, in principle, calculates the TD electron density to all orders of change.

  1. Time-dependent density functional theory for many-electron systems interacting with cavity photons

    Tokatly, I. V.

    2013-01-01

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows to calculate the above basic variables by solving selfconsistent equations for noninteracting particles. We suggest possible a...

  2. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas;

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  3. The current density in quantum electrodynamics in time-dependent external potentials and the Schwinger effect

    In the framework of quantum electrodynamics (QED) in external potentials, we introduce a method to compute the time-dependence of the expectation value of the current density for time-dependent homogeneous external electric fields. We apply it to the so-called Sauter pulse. For late times, our results agree with the asymptotic value due to electron-positron pair production. We correct a general expression derived by Serber for the expectation value of the current, linearized in the external field, and compare with our results for the Sauter pulse. Based on the properties of the current density, we argue that the appearance of enhanced quasi-particle densities at intermediate times in slowly varying sub-critical potentials is generic. Also an alternative approach, which circumvents these difficulties, is sketched. (paper)

  4. Physical interpretation of time-dependent Hartree-Fock density matrix for heavy ion scattering

    We suggest a quantum mechanical interpretation of the density matrix of the time-dependent Hartree-Fock theory for heavy ion scattering. We show how with this interpretation the time-dependent Hartree-Fock equations can be derived provided we admit (i) a generalized factorization of a suitably defined average of two-body density matrix elements in terms of a sum of products of the corresponding one-particle elements and (ii) additional semiclassical approximations which convert a sum of products into an antisymmetric product of sums. These ideas, previously recognized within the framework of soliton models, are extended here to include inelastic processes with the excitation of collective modes as the mechanism for producing deep inelastic scattering. An essential feature of the approach is that it provides, in principle, a theoretical method of obtaining exclusive amplitudes. We describe how these might be calculated

  5. All-electron time-dependent density functional theory with finite elements: time-propagation approach.

    Lehtovaara, Lauri; Havu, Ville; Puska, Martti

    2011-10-21

    We present an all-electron method for time-dependent density functional theory which employs hierarchical nonuniform finite-element bases and the time-propagation approach. The method is capable of treating linear and nonlinear response of valence and core electrons to an external field. We also introduce (i) a preconditioner for the propagation equation, (ii) a stable way to implement absorbing boundary conditions, and (iii) a new kind of absorbing boundary condition inspired by perfectly matched layers. PMID:22029294

  6. Time-dependent density-functional studies on strength functions in neutron-rich nuclei

    Ebata, Shuichiro; Inakura, Tsunenori; Nakatsukasa, Takashi

    2013-01-01

    The electric dipole (E1) strength functions have been systematically calculated based on the time-dependent density functional theory (TDDFT), using the finite amplitude method and the real-time approach to the TDDFT with pairing correlations. The low-energy E1 strengths in neutron-rich isotopes show peculiar behaviors, such as sudden enhancement and reduction, as functions of the neutron numbers.They seem to be due to the interplay between the neutron shell effect and the deformation effect.

  7. Time-Dependent Density Functional Theory of Open Quantum Systems in the Linear-Response Regime

    Tempel, David Gabriel; Watson, Mark A.; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán

    2011-01-01

    Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic syste...

  8. Time-dependent relativistic density functional study of Yb and YbO

    2009-01-01

    The low-lying electronic states of Yb and YbO are investigated by using time-dependent relativistic density functional theory,which is based on the newly developed exact two-component Hamiltonian resulting from symmetrized elimination of the small component.The nature of the excited states is analyzed by using the full molecular symmetry.The calculated results support the previous experimental assignment of the ground and excited states of YbO.

  9. Optical properties of Al nanostructures from time dependent density functional theory

    Mokkath, Junais Habeeb

    2016-04-05

    The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting for increasing length and aspect ratio. For the chains the absorption is dominated by HOMO → LUMO transitions, whereas ladders and stripes reveal more complex spectra of plasmonic nature above a specific aspect ratio.

  10. Multi-configuration time-dependent density-functional theory based on range separation

    Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    -range density-functional (DFT) description, is then considered. The resulting time-dependent multi-configuration short-range DFT (TD-MC-srDFT) model is applied to the calculation of singlet excitation energies in H, Be, and ferrocene, considering both short-range local density (srLDA) and generalized gradient......-parameter Becke-Lee-Yang-Parr functional (TD-DFT/CAM-B3LYP), and superior to wave-function (TD-MCSCF, symmetry adapted cluster-configuration interaction) and TD-DFT results based on LDA, GGA, and hybrid functionals. © 2013 American Institute of Physics....

  11. Time-dependent density-functional theory for open electronic systems

    ZHENG Xiao; WANG RuLin

    2014-01-01

    Time-dependent density-functional theory(TDDFT)has been successfully applied to predict excited-state properties of isolated and periodic systems.However,it cannot address a system coupled to an environment or whose number of electrons is not conserved.To tackle these problems,TDDFT needs to be extended to accommodate open systems.This paper provides a comprehensive account of the recent developments of TDDFT for open systems(TDDFT-OS),including both theoretical and practical aspects.The practicality and accuracy of a latest TDDFT-OS method is demonstrated with two numerical examples:the time-dependent electron transport through a series of quasi-one-dimensional atomic chains,and the real-time electronic dynamics on a two-dimensional graphene surface.The advancement of TDDFT-OS may lead to promising applications in various fields of chemistry,including energy conversion and heterogeneous catalysis.

  12. Relativistic time-dependent density functional calculations for the excited states of the cadmium dimer

    Kullie, Ossama, E-mail: kullie@uni-kassel.de [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg (France); Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel (Germany)

    2013-03-29

    Highlights: ► The achievement of CAMB3LYP functional for excited states in framework of TD-DFT. ► Relativistic 4-components calculations for the excited states of the Cd{sub 2} dimer. ► Relativistic Spin-Free calculations for the excited states of Cd{sub 2} dimer. ► A comparison of the achievements of different types of DFT approximations upon Cd{sub 2}. - Abstract: In this paper we present a time-dependent density functional study for the ground-state as well the 20-lowest laying excited states of the cadmium dimer Cd{sub 2}, we analyze its spectrum obtained from all electrons calculations performed with time-depended density functional for the relativistic Dirac-Coulomb- and relativistic spin-free-Hamiltonian as implemented in DIRAC-PACKAGE. The calculations were obtained with different density functional approximations, and a comparison with the literature is given as far as available. Our result is very encouraging, especially for the lowest excited states of this dimer, and is expected to be enlightened for similar systems. The result shows that only long-range corrected functionals such as CAMB3LYP, gives the correct asymptotic behavior for the higher states. A comparable but less satisfactory results were obtained with B3LYP and PBE0 functionals. Spin-free-Hamiltonian is shown to be very efficient for systems containing heavy elements such as Cd{sub 2} in frameworks of (time-dependent) density functional without introducing large errors.

  13. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy)3 (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition

  14. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.

  15. Critique of the foundations of time-dependent density-functional theory

    The general expectation that, in principle, the time-dependent density-functional theory (TDDFT) is an exact formulation of the time evolution of an interacting N-electron system is critically reexamined. It is demonstrated that the previous TDDFT foundation, resting on four theorems by Runge and Gross (RG) [Phys. Rev. Lett. 52, 997 (1984)], is invalid because undefined phase factors corrupt the RG action integral functionals. Our finding confirms much of a previous analysis by van Leeuwen [Int. J. Mod. Phys. B 15, 1969 (2001)]. To analyze the RG theorems and other aspects of TDDFT, an utmost simplification of the Kohn-Sham (KS) concept has been introduced, in which the ground-state density is obtained from a single KS equation for one spatial (spinless) orbital. The time-dependent (TD) form of this radical Kohn-Sham (rKS) scheme, which has the same validity status as the ordinary KS version, has proved to be a valuable tool for analysis. The rKS concept is used to clarify also the alternative nonvariational formulation of TD KS theory. We argue that it is just a formal theory, allowing one to reproduce but not predict the time development of the exact density of the interacting N-electron system. Besides the issue of the formal exactness of TDDFT, it is shown that both the static and time-dependent KS linear response equations neglect the particle-particle (p-p) and hole-hole (h-h) matrix elements of the perturbing operator. For a local (multiplicative) operator this does not lead to a loss of information due to a remarkable general property of local operators. Accordingly, no logical inconsistency arises with respect to DFT, because DFT requires any external potential to be local. For a general nonlocal operator the error resulting from the neglected matrix elements is of second order in the electronic repulsion

  16. Prediction of Excitation Energies for Conjugated Oligomers and Polymers from Time-Dependent Density Functional Theory

    Jianmin Tao

    2010-05-01

    Full Text Available With technological advances, light-emitting conjugated oligomers and polymers have become competitive candidates in the commercial market of light-emitting diodes for display and other technologies, due to the ultralow cost, light weight, and flexibility. Prediction of excitation energies of these systems plays a crucial role in the understanding of their optical properties and device design. In this review article, we discuss the calculation of excitation energies with time-dependent density functional theory, which is one of the most successful methods in the investigation of the dynamical response of molecular systems to external perturbation, owing to its high computational efficiency.

  17. Time-dependent density functional calculation of the energy loss of antiprotons colliding with metallic nanoshells

    Quijada, M. [Departamento de Fisica de Materiales, Facultad de Quimicas UPV/EHU, Apartado 1072, 20080 San Sebastian (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Borisov, A.G. [Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Universite Paris-Sud, Laboratoire des Collisions Atomiques et Moleculaires (France); CNRS, UMR 8625, Laboratoire des Collisions Atomiques et Moleculaires, LCAM, Batiment 351, UPS-11, Orsay, 91405 Orsay Cedex (France); Muino, R.D. [Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Centro de Fisica de Materiales, Centro Mixto CSIC-UPV/EHU, Edificio Korta, Avenida de Tolosa 72, 20018 San Sebastian (Spain)

    2008-06-15

    Time-dependent density functional theory is used to study the interaction between antiprotons and metallic nanoshells. The ground state electronic properties of the nanoshell are obtained in the jellium approximation. The energy lost by the antiproton during the collision is calculated and compared to that suffered by antiprotons traveling in metal clusters. The resulting energy loss per unit path length of material in thin nanoshells is larger than the corresponding quantity for clusters. It is shown that the collision process can be interpreted as the antiproton crossing of two nearly bi-dimensional independent metallic systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Time-Dependent Density Functional Theory for Open Quantum Systems with Unitary Propagation

    Yuen-Zhou, Joel; Tempel, David Gabriel; Rodríguez-Rosario, César A.; Aspuru-Guzik, Alan

    2009-01-01

    We extend the Runge-Gross theorem for a very general class of Markovian and non-Markovian open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) Time-Dependent Density Functional Theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential, thus placing the interactions between the particles of the system and the coupling to the environment on the same ...

  19. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization

    Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond

    2009-01-01

    reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...

  20. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  1. Time-dependent density functional theory with twist-averaged boundary conditions

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2016-05-01

    Background: Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, three-dimensional (3D) coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a spatial box. For finite quantum systems (atoms, molecules, nuclei, hadrons), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. Purpose: The finite-volume artifacts for finite systems can be practically cured by invoking an absorbing potential in a certain boundary region sufficiently far from the described system. However, such absorption cannot be applied in the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust), which suffer from unphysical effects stemming from a finite computational box used. Here, twist-averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we extend TABC to time-dependent modes. Method: We use the 3D time-dependent density functional framework with the Skyrme energy density functional. The practical calculations are carried out for small- and large-amplitude electric dipole and quadrupole oscillations of 16O. We apply and compare three kinds of boundary conditions: periodic, absorbing, and twist-averaged. Results: Calculations employing absorbing boundary conditions (ABC) and TABC are superior to those based on periodic boundary conditions. For low-energy excitations, TABC and ABC variants yield very similar results. With only four twist phases per spatial direction in TABC, one obtains an excellent reduction of spurious fluctuations. In the nonlinear regime, one has to deal with evaporated particles. In TABC, the floating nucleon gas remains in the box; the amount of nucleons in the gas is found to be

  2. Model atomic systems in intense laser fields. Exact time-dependent density functional and Floquet theory

    Describing the quantum dynamics in strong time-dependent external fields is challenging for at least two reasons. Firstly, the external driver has to be treated in a non-perturbative way. Secondly, correlations, responsible for phenomena such as single-photon double ionization, nonsequential double ionization, autoionization, Auger decay etc., have to be taken into account. The ab initio solution of the time-dependent Schroedinger equation for a many-body system is feasible for only a few constituents. Density functional theory (DFT) has been successful in overcoming the exponentially increasing complexity of solving the stationary Schroedinger equation in electronic structure applications. Its time-dependent extension (TDDFT) is widely applied within the linear response domain. However, its success when it comes to highly correlated electron dynamics in, for instance, strong laser fields, is very limited, reasons being the lack of a sufficiently accurate exchange-correlation potential in the Kohn-Sham equation and functionals for the relevant observables. Numerically exactly solvable model systems are hence very useful to proceed with the further development of TDDFT. In this thesis, the exact exchange-correlation potential for the highly correlated process of autoionization in a model Helium atom is constructed. Besides applying a suitable many-body technique one may try to employ the time-periodicity of external drivers such as laser fields. The Floquet theorem allows to rewrite partial differential equations with timeperiodic coefficients as sets of time-independent algebraic equations. If the Floquet theorem could also be applied to the time-dependent Kohn-Sham equation of TDDFT the time-dependent many-body problem could be reduced to a time-independent one. In this thesis, it is investigated under which circumstances this is possible. To that end a method is introduced to extract the information about light-induced states (Floquet states) and their

  3. Localized operator partitioning method for electronic excitation energies in the time-dependent density functional formalism

    Nagesh, Jayashree; Brumer, Paul; Izmaylov, Artur F

    2016-01-01

    We extend the localized operator partitioning method (LOPM) [J. Nagesh, A.F. Izmaylov, and P. Brumer, J. Chem. Phys. 142, 084114 (2015)] to the time-dependent density functional theory (TD-DFT) framework to partition molecular electronic energies of excited states in a rigorous manner. A molecular fragment is defined as a collection of atoms using Stratman-Scuseria-Frisch atomic partitioning. A numerically efficient scheme for evaluating the fragment excitation energy is derived employing a resolution of the identity to preserve standard one- and two-electron integrals in the final expressions. The utility of this partitioning approach is demonstrated by examining several excited states of two bichromophoric compounds: 9-((1-naphthyl)-methyl)-anthracene and 4-((2-naphthyl)-methyl)-benzaldehyde. The LOPM is found to provide nontrivial insights into the nature of electronic energy localization that are not accessible using simple density difference analysis.

  4. Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory

    In this work we review the mapping from densities to potentials in quantum mechanics, which is the basic building block of time-dependent density-functional theory and the Kohn–Sham construction. We first present detailed conditions such that a mapping from potentials to densities is defined by solving the time-dependent Schrödinger equation. We specifically discuss intricacies connected with the unboundedness of the Hamiltonian and derive the local-force equation. This equation is then used to set up an iterative sequence that determines a potential that generates a specified density via time propagation of an initial state. This fixed-point procedure needs the invertibility of a certain Sturm–Liouville problem, which we discuss for different situations. Based on these considerations we then present a discussion of the famous Runge–Gross theorem which provides a density-potential mapping for time-analytic potentials. Further we give conditions such that the general fixed-point approach is well-defined and converges under certain assumptions. Then the application of such a fixed-point procedure to lattice Hamiltonians is discussed and the numerical realization of the density-potential mapping is shown. We conclude by presenting an extension of the density-potential mapping to include vector-potentials and photons. (topical review)

  5. Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory.

    Ruggenthaler, Michael; Penz, Markus; van Leeuwen, Robert

    2015-05-27

    In this work we review the mapping from densities to potentials in quantum mechanics, which is the basic building block of time-dependent density-functional theory and the Kohn-Sham construction. We first present detailed conditions such that a mapping from potentials to densities is defined by solving the time-dependent Schrödinger equation. We specifically discuss intricacies connected with the unboundedness of the Hamiltonian and derive the local-force equation. This equation is then used to set up an iterative sequence that determines a potential that generates a specified density via time propagation of an initial state. This fixed-point procedure needs the invertibility of a certain Sturm-Liouville problem, which we discuss for different situations. Based on these considerations we then present a discussion of the famous Runge-Gross theorem which provides a density-potential mapping for time-analytic potentials. Further we give conditions such that the general fixed-point approach is well-defined and converges under certain assumptions. Then the application of such a fixed-point procedure to lattice Hamiltonians is discussed and the numerical realization of the density-potential mapping is shown. We conclude by presenting an extension of the density-potential mapping to include vector-potentials and photons. PMID:25921322

  6. Correlated electron dynamics and memory in time-dependent density functional theory

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  7. Correlated electron dynamics and memory in time-dependent density functional theory

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  8. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures. (topical review)

  9. Quantum electrodynamical time-dependent density functional theory for many-electron systems on a lattice

    Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team

    2015-03-01

    We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).

  10. A new time dependent density functional algorithm for large systems and plasmons in metal clusters

    A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the space of the density fitting auxiliary basis set has been developed and implemented. The method extracts the spectrum from the imaginary part of the polarizability at any given photon energy, avoiding the bottleneck of Davidson diagonalization. The original idea which made the present scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear combination of constant matrices with photon energy dependent coefficients. The method has been applied to very different systems in nature and size (from H2 to [Au147]−). In all cases, the maximum deviations found for the excitation energies with respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob plasmon scaling factor, and induced density analysis, which have been all implemented

  11. Time-dependent density functional theory with twist-averaged boundary conditions

    Schuetrumpf, B; Reinhard, P -G

    2016-01-01

    Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, 3D coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a box. For finite quantum systems (atoms, molecules, nuclei), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. These artifacts can be practically cured by introducing absorbing boundary conditions (ABC) through an absorbing potential in a certain boundary region sufficiently far from the described system. But also the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust) suffer artifacts from a finite computational box. In this regime, twist- averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we exte...

  12. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory

    Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G0W0 and G0W0+BSE approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G0W0+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G0W0 quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies

  13. Representing the thermal state in time-dependent density functional theory

    Modine, N. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1315 (United States); Hatcher, R. M. [Advanced Logic Lab, Samsung Semiconductor, Inc., Austin, Texas 78754 (United States)

    2015-05-28

    Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state by a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wavefunctions are fixed by the initial state in TDDFT. We work to address this puzzle by (A) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (B) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble.

  14. Two-electron Rabi oscillations in real-time time-dependent density-functional theory

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S0 state and the doubly-excited S2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation

  15. Multiple ionization of atoms by FEL radiation: a time-dependent density functional perspective

    One of the most fundamental quantum processes in intense laser-matter interaction is the nonlinear photoeffect where several photons are absorbed by the emitted electron. Multiphoton and tunneling ionization for laser wavelengths around 800nm have been studied since many years. Now, with more and more short-wavelengths free electron lasers (FEL) coming into operation a new parameter regime is increasingly accessible. On one hand the situation at short wavelengths seems to simplify because the ponderomotive energy (typically considered to be a measure for ''nonperturbativeness'') is negligible. On the other hand FEL experiments showed that surprisingly high charge states are also generated in this regime. A purely sequential ionization scenario was shown to underestimate the maximum charge state. Hence, electron correlation or even collective effects must play a role. Moreover, while at long wavelengths the outcome of ionization experiments is largely species-independent and rather scales with the laser parameters only, at short wavelengths the electronic structure of the target system is important. Because the time-dependent Schroedinger equation for atoms in intense laser fields can be solved only for at most two active electrons in full dimensionality alternative methods for strongly-driven many-electron systems are needed. One of the most successful may-particle method in electronic structure theory is density functional theory (DFT). It has been extended for the treatment of time-dependent problems (TDDFT) but is mostly applied in the linear-response regime there. In principle, TDDFT is also applicable to matter in strong fields (nonlinear TDDFT) but benchmark calculations showed that for strongly correlated processes standard exchange correlation potentials are insufficiently accurate and often the density functionals for the observables are unknown in terms of the density or the Kohn-Sham orbitals alone. In the talk I discuss recent progress in the

  16. Time-dependent density functional study on the excitation spectrum of point defects in semiconductors

    Gali, Adam [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, Budapest 1525 (Hungary); Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111 Budapest (Hungary)

    2011-06-15

    A common fingerprint of the electrically active point defects in semiconductors is the transition between their localized defect states upon excitation, which may result in characteristic absorption or photoluminescence spectrum. While density functional calculations have been very successful in exploring the ground-state properties like formation energies or hyperfine tensors the density functional theory (DFT), in principle, is not capable of providing reliable excitation spectrum. Time-dependent (TD)-DFT, however, addresses this issue which makes possible to study the properties of point defects associated with their excited states. In this paper, we apply the TD-DFT on two characteristic examples: the well-known nitrogen-vacancy defect in diamond and the less known divacancy in silicon carbide. The former defect is a leading candidate in solid state quantum bit applications where detailed knowledge about the excitation spectrum is extremely important. The excitation property of divacancy will be also studied and its relevance in different applications will be discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Performance of Tamm-Dancoff approximation on nonadiabatic couplings by time-dependent density functional theory

    Hu, Chunping; Sugino, Osamu; Watanabe, Kazuyuki

    2014-02-01

    The Tamm-Dancoff approximation (TDA), widely used in physics to decouple excitations and de-excitations, is well known to be good for the calculation of excitation energies but not for oscillator strengths. In particular, the sum rule is violated in the latter case. The same concern arises within the TDA in the calculation of nonadiabatic couplings (NACs) by time-dependent density functional theory (TDDFT), due to the similarities in the TDDFT formulations of NACs and oscillator strengths [C. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127, 064103 (2007)]. In this study, we present a systematic evaluation of the performance of TDDFT/TDA for the calculation of NACs. In the cases we considered, including a variety of systems possessing Jahn-Teller and Renner-Teller intersections, as well as an example with accidental conical intersections, it is found that the TDDFT/TDA performs better than the full TDDFT, contrary to the conjecture that the TDA might cause the NAC results to deteriorate and violate the sum rule. The surprisingly good performance of the TDA for NACs is probably because the TDA can partially compensate for the local-density-approximation error and give better excitation energies in the vicinity of intersections of potential energy surfaces. Our study also shows that it is important to use the TDA based on the rigorous full-TDDFT formulation of NACs, instead of using it based on an alternative approximate formulation.

  18. Time-dependent density functional theory for ion diffusion in electrochemical systems

    We introduce a generic form of time-dependent density functional theory (TDDFT) to describe ion diffusion in electrochemical systems to account for steric effects and electrostatic correlations neglected in the Poisson–Nernst–Planck equations. An efficient numerical algorithm is proposed to analyze the charging kinetics of electric double layers in model electrochemical systems that consist of spherical ions in a dielectric continuum confined between two planar electrodes. By comparing the theoretical predictions from TDDFT and conventional electrokinetic methods for constant-voltage charging of the model electrochemical cells, we demonstrate that thermodynamic non-ideality plays a pivotal role in electrodiffusion even at relatively low electrolyte concentrations, and this effect cannot be captured by the lattice-gas model for the excluded volume effects. In particular, TDDFT predicts ‘wave-like’ variation of the ionic density profiles that has not been identified in previous investigations. At conditions where there are no significant correlations between electric double layers from opposite electrodes, the charging kinetics follows an exponential behavior with a linear dependence of the relaxation time on the cell thickness in excellent agreement with the equivalent circuit model. However, the conventional electrokinetic model breaks down when the electrodes are at small separation, in particular for systems with low ionic strength or high charging voltage. We also find that ionic screening retards the charging kinetics at low salt concentrations, but has the opposite effect at large salt concentrations. (paper)

  19. Hydrogen-bonded Intramolecular Charge Transfer Excited State of Dimethylaminobenzophenone using Time Dependent Density Functional Theory

    Yu-ling Chu; Zhong Yang; Zhe-feng Pan; Jing Liu; Yue-yi Han; Yong Ding; Peng Song

    2012-01-01

    Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophenone (DMABP) and its hydrogen-bonded DMABP-MeOH dimer.It is found that,in nonpolar aprotic solvent,the transitions from S0 to S1 and S2 states of DMABP have both n→π* and π→π* characters,with the locally excited feature mainly located on the C=O group and the partial CT one characterized by electron transfer mainly from the dimethylaminophenyl group to the C=O group.But when the intermolecular hydrogen bond C=O…H-O is formed,the highly polar intramolecular charge transfer character switches over to the first excited state of DMABP-MeOH dimer and the energy difference between the two lowlying electronically excited states increases.To gain insight into the relaxation dynamics of DMABP and DMABP-MeOH dimer in the excited state,the potential energy curves for conformational relaxation are calculated.The formation of twisted intramolecular charge transfer state via diffusive twisting motion of the dimethylamino/dimethylaminophenyl groups is found to be the major relaxation process.In addition,the decay of the S1 state of DMABP-MeOH dimer to the ground state,through nonradiative intermolecular hydrogen bond stretching vibrations,is facilitated by the formation of the hydrogen bond between DMABP and alcohols.

  20. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry

    Tapavicza, Enrico; Tavernelli, Ivano; Rothlisberger, Ursula; Filippi, Claudia; Casida, Mark E.

    2008-09-01

    We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA) is important for improving the performance of TDDFT away from the equilibrium geometry. This observation is supported by the present TDDFT TDA/SH calculations which successfully confirm the main experimentally derived Gomer-Noyes mechanism for the photochemical CO ring opening of oxirane and, in addition, provide important state-specific information not easily accessible from experiments. In particular, we find that, while one of the lowest two excited states is photochemically relatively inert, excitation into the other excited state leads predominantly to rapid ring opening, cyclic-C2H4O→C•H2CH2O•. This is followed by hopping to the electronic ground state where hot (4000K) dynamics leads to further reactions, namely, C•H2CH2O•→CH3CHO→C•H3+C•HO and CH4+CO. We note that, in the dynamics, we are not limited to following minimum energy pathways and several surface hops may actually be needed before products are finally reached. The performance of different functionals is then assessed by comparison of TDDFT and diffusion Monte Carlo potential energy curves along a typical TDDFT TDA/SH reaction path. Finally, although true (S0,S1) conical intersections are expected to be absent in adiabatic TDDFT, we show that the TDDFT TDA is able to approximate a conical intersection in this system.

  1. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry

    We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA) is important for improving the performance of TDDFT away from the equilibrium geometry. This observation is supported by the present TDDFT TDA/SH calculations which successfully confirm the main experimentally derived Gomer-Noyes mechanism for the photochemical CO ring opening of oxirane and, in addition, provide important state-specific information not easily accessible from experiments. In particular, we find that, while one of the lowest two excited states is photochemically relatively inert, excitation into the other excited state leads predominantly to rapid ring opening, cyclic-C2H4O→CH2CH2O. This is followed by hopping to the electronic ground state where hot (4000 K) dynamics leads to further reactions, namely, CH2CH2O→CH3CHO→CH3+CHO and CH4+CO. We note that, in the dynamics, we are not limited to following minimum energy pathways and several surface hops may actually be needed before products are finally reached. The performance of different functionals is then assessed by comparison of TDDFT and diffusion Monte Carlo potential energy curves along a typical TDDFT TDA/SH reaction path. Finally, although true (S0,S1) conical intersections are expected to be absent in adiabatic TDDFT, we show that the TDDFT TDA is able to approximate a conical intersection in this system.

  2. Wavelet-based linear-response time-dependent density-functional theory

    Highlights: ► We has been implemented LR-TD-DFT in the pseudopotential wavelet-based program. ► We have compared the results against all-electron Gaussian-type program. ► Orbital energies converges significantly faster for BigDFT than for DEMON2K. ► We report the X-ray crystal structure of the small organic molecule flugi6. ► Measured and calculated absorption spectrum of flugi6 is also reported. - Abstract: Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  3. Accurate Ground-State Energies of Solids and Molecules from Time-Dependent Density-Functional Theory

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    We demonstrate that ground-state energies approaching chemical accuracy can be obtained by combining the adiabatic-connection fluctuation-dissipation theorem with time-dependent densityfunctional theory. The key ingredient is a renormalization scheme, which eliminates the divergence of the...... and solids. We also consider examples of barrier heights in chemical reactions, molecular adsorption, and graphene interacting with metal surfaces, which are three examples where the RPA has been successful. In these cases, the renormalized kernel provides results that are of equal quality or even...

  4. Trajectory-based nonadiabatic dynamics with time-dependent density functional theory.

    Curchod, Basile F E; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-05-10

    Understanding the fate of an electronically excited molecule constitutes an important task for theoretical chemistry, and practical implications range from the interpretation of atto- and femtosecond spectroscopy to the development of light-driven molecular machines, the control of photochemical reactions, and the possibility of capturing sunlight energy. However, many challenging conceptual and technical problems are involved in the description of these phenomena such as 1) the failure of the well-known Born-Oppenheimer approximation; 2) the need for accurate electronic properties such as potential energy surfaces, excited nuclear forces, or nonadiabatic coupling terms; and 3) the necessity of describing the dynamics of the photoexcited nuclear wavepacket. This review provides an overview of the current methods to address points 1) and 3) and shows how time-dependent density functional theory (TDDFT) and its linear-response extension can be used for point 2). First, the derivation of Ehrenfest dynamics and nonadiabatic Bohmian dynamics is discussed and linked to Tully's trajectory surface hopping. Second, the coupling of these trajectory-based nonadiabatic schemes with TDDFT is described in detail with special emphasis on the derivation of the required electronic structure properties. PMID:23625831

  5. Electron dynamics triggered by double attosecond pulses: Simulations based on time-dependent density functional theory

    In order to observe the high-field effect, the external laser field must reach its peak intensity before the electron ionization. To this end, it is important to reduce pulse duration to typical attosecond timescale. In this paper, the interaction electron dynamics between attosecond pulses and dielectric is investigated within the time-dependent density functional theory. Taking the CaF2 crystal as an example, we give a comparison of electron dynamics response between single and double pulses. Moreover, the nonlinear energy absorption and electron excitation processes are simulated by adjusting the polarization direction of the sub-pulse. Present results demonstrate that the double pulses show lower electron excitation and energy absorption than the single pulse, which is in accordance with experimental higher ablation threshold and smaller heat-affected zones of the double pulses. In addition, the curves of final excited electron number and energy absorption exhibit the quasi-symmetry about the axis of 180°, which has not been reported yet.

  6. Electron dynamics triggered by double attosecond pulses: Simulations based on time-dependent density functional theory

    Jiao, Yalong [School of Physics, Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081 (China); Wang, Feng, E-mail: wangfeng01@tsinghua.org.cn [Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Hong, Xuhai; Su, Wenyong [School of Physics, Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Zhen [School of Software, Beijing Institute of Technology, Beijing 100081 (China)

    2014-01-10

    In order to observe the high-field effect, the external laser field must reach its peak intensity before the electron ionization. To this end, it is important to reduce pulse duration to typical attosecond timescale. In this paper, the interaction electron dynamics between attosecond pulses and dielectric is investigated within the time-dependent density functional theory. Taking the CaF{sub 2} crystal as an example, we give a comparison of electron dynamics response between single and double pulses. Moreover, the nonlinear energy absorption and electron excitation processes are simulated by adjusting the polarization direction of the sub-pulse. Present results demonstrate that the double pulses show lower electron excitation and energy absorption than the single pulse, which is in accordance with experimental higher ablation threshold and smaller heat-affected zones of the double pulses. In addition, the curves of final excited electron number and energy absorption exhibit the quasi-symmetry about the axis of 180°, which has not been reported yet.

  7. Nonadiabatic dynamics with intersystem crossings: A time-dependent density functional theory implementation

    In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully’s surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO2) in gas and liquid phases

  8. Nonadiabatic dynamics with intersystem crossings: A time-dependent density functional theory implementation

    Franco de Carvalho, F. [Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Tavernelli, I. [IBM Research GmbH, Zurich Research Laboratory, 8803 Ruschlikon (Switzerland)

    2015-12-14

    In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully’s surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO{sub 2}) in gas and liquid phases.

  9. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    Rebolini, Elisa

    2015-01-01

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of four small molecules: N2, CO2, H2CO, and C2H4. The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  10. A relativistic time-dependent density functional study of the excited states of the mercury dimer

    Kullie, Ossama, E-mail: kullie@uni-kassel.de, E-mail: ossama.kullie@unistra.fr [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg, France and Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel, D-34127 Kassel (Germany)

    2014-01-14

    In previous works on Zn{sub 2} and Cd{sub 2} dimers we found that the long-range corrected CAMB3LYP gives better results than other density functional approximations for the excited states, especially in the asymptotic region. In this paper, we use it to present a time-dependent density functional (TDDFT) study for the ground-state as well as the excited states corresponding to the (6s{sup 2} + 6s6p), (6s{sup 2} + 6s7s), and (6s{sup 2} + 6s7p) atomic asymptotes for the mercury dimer Hg{sub 2}. We analyze its spectrum obtained from all-electron calculations performed with the relativistic Dirac-Coulomb and relativistic spinfree Hamiltonian as implemented in DIRAC-PACKAGE. A comparison with the literature is given as far as available. Our result is excellent for the most of the lower excited states and very encouraging for the higher excited states, it shows generally good agreements with experimental results and outperforms other theoretical results. This enables us to give a detailed analysis of the spectrum of the Hg{sub 2} including a comparative analysis with the lighter dimers of the group 12, Cd{sub 2}, and Zn{sub 2}, especially for the relativistic effects, the spin-orbit interaction, and the performance of CAMB3LYP and is enlightened for similar systems. The result shows, as expected, that spinfree Hamiltonian is less efficient than Dirac-Coulomb Hamiltonian for systems containing heavy elements such as Hg{sub 2}.

  11. Development of 3-dimensional time-dependent density functional theory and its application to gas diffusion in nanoporous materials.

    Liu, Yu

    2016-05-11

    I developed a novel time-dependent density functional theory (TDDFT) and applied it to complicated 3-dimensional systems for the first time. Superior to conventional TDDFT, the diffusion coefficient is modeled as a function of density profile, which is self-determined by the entropy scaling rule instead using an input parameter. The theory was employed to mimic gas diffusion in a nanoporous material. The TDDFT prediction on the transport diffusivity was reasonable compared to simulations. Moreover, the time-dependent density profiles gave an insight into the microscopic mechanism of the diffusion process. PMID:27121986

  12. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.;

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...... moments are computed using the same geometries (MP2/6-31G*) and basis set (TZVP) as in our previous ab initio benchmark study on electronically excited states. The results from TD-DFT (with the functionals BP86, B3LYP, and BHLYP) and from DFT/MRCI are compared against the previous high-level ab initio......-DFT/B3LYP (0.27 and 0.44 eV, respectively), whereas TD-DFT/BP86 and TD-DFT/BHLYP are significantly less accurate. The energies of singlet states with double excitation character are generally overestimated by TD-DFT, whereas triplet state energies are systematically underestimated by the currently...

  13. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory

    Demján, Tamás [Institute of Physics, Loránd Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary); Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Vörös, Márton [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest (Hungary); Palummo, Maurizia [Dipartimento di Fisica, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Gali, Adam [Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest (Hungary)

    2014-08-14

    Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G{sub 0}W{sub 0} and G{sub 0}W{sub 0}+BSE approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G{sub 0}W{sub 0}+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G{sub 0}W{sub 0} quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies.

  14. Assessment of dressed time-dependent density-functional theory for the low-lying valence states of 28 organic chromophores

    Graphical abstract: Adding a frequency dependence to the exchange-correlation kernel allows explicit coupling of one-hole/one-particle (1h1p) and two-hole/two-particle (2h2p) excitations. Highlights: ► Inclusion of hybrid exchange through the exchange-correlation kernel. ► Importance of matching 1h1p and 2h2p energies in dressed TDDFT. ► Extensive study of dressed TDDFT. - Abstract: Almost all time-dependent density-functional theory (TDDFT) calculations of excited states make use of the adiabatic approximation, which implies a frequency-independent exchange-correlation kernel that limits applications to one-hole/one-particle states. To remedy this problem, Maitra et al. [N.T. Maitra, F. Zhang, R.J. Cave, K. Burke, Double excitations within time-dependent density functional theory linear response theory, J. Chem. Phys. 120 (2004) 5932 ] proposed dressed TDDFT (D-TDDFT), which includes explicit two-hole/two-particle states by adding a frequency-dependent term to adiabatic TDDFT. This paper offers the first extensive test of D-TDDFT, and its ability to represent excitation energies in a general fashion. We present D-TDDFT excited states for 28 chromophores and compare them with the benchmark results of Schreiber et al. [M. Schreiber, M.R. Silva-Junior, S.P.A. Sauer, W. Thiel, Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3, J. Chem. Phys. 128 (2008) 134110]. We find the choice of functional used for the A-TDDFT step to be critical for positioning the 1h1p states with respect to the 2h2p states. We observe that D-TDDFT without HF exchange increases the error in excitations already underestimated by A-TDDFT. This problem is largely remedied by implementation of D-TDDFT including Hartree–Fock exchange.

  15. Dynamics of observables and exactly solvable quantum problems: Using time-dependent density-functional theory to control quantum systems

    Farzanehpour, M.; Tokatly, I. V.

    2016-05-01

    We use analytic (current) density-potential maps of time-dependent (current) density-functional theory [TD(C)DFT] to inverse engineer analytically solvable time-dependent quantum problems. In this approach the driving potential (the control signal) and the corresponding solution of the Schrödinger equation are parametrized analytically in terms of the basic TD(C)DFT observables. We describe the general reconstruction strategy and illustrate it with a number of explicit examples. First we consider the real space one-particle dynamics driven by a time-dependent electromagnetic field and recover, from the general TDDFT reconstruction formulas, the known exact solution for a driven oscillator with a time-dependent frequency. Then we use analytic maps of the lattice TD(C)DFT to control quantum dynamics in a discrete space. As a first example we construct a time-dependent potential which generates prescribed dynamics on a tight-binding chain. Then our method is applied to the dynamics of spin-1/2 driven by a time-dependent magnetic field. We design an analytic control pulse that transfers the system from the ground to excited state and vice versa. This pulse generates the spin flip thus operating as a quantum not gate.

  16. Density-constrained time-dependent Hartree-Fock calculation of $^{16}$O+$^{208}$Pb fusion cross sections

    Umar, A. S.; Oberacker, V. E.

    2008-01-01

    We present a fully microscopic study of the $^{16}$O+$^{208}$Pb fusion using the density-constrained time-dependent Hartree-Fock theory. The calculated fusion cross-sections are in good agreement with the experimental data for the entire energy range indicating that the incorporation of dynamical effects is crucial in describing heavy-ion fusion.

  17. Tuning of the excited state properties of phenylenevinylene oligomers : A time-dependent density functional theory study

    Grozema, FC; Telesca, R; Snijders, JG; Siebbeles, LDA

    2003-01-01

    This paper discusses a time-dependent density functional theory study of the effect of molecular structure on the excited state polarizability of conjugated molecules. A short phenylenevinylene oligomer containing three phenyl rings (PV2, distyryl benzene) is taken as a model system. Introduction of

  18. Isovector Giant Dipole Resonance from the 3D Time-Dependent Density Functional Theory for Superfluid Nuclei

    Stetcu, I.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2011-01-01

    A fully symmetry unrestricted Time-Dependent Density Functional Theory extended to include pairing correlations is used to calculate properties of the isovector giant dipole resonances of the deformed open-shell nuclei 172Yb (axially deformed), 188Os (triaxially deformed), and 238U (axially deformed), and to demonstrate good agreement with experimental data on nuclear photo-absorption cross-sections for two different Skyrme force parametrizations of the energy density functional: SkP and SLy4.

  19. Time-dependent density functional theory study of first excited singlet states of phenyl-5C-tetrazole derivatives

    Electronic transition energies for phenyl-5C-tetrazole and four of its p-substituted derivatives were calculated through time-dependent density functional theory using a series of hybrid density functionals. For three of the compounds, maxima of the experimental UV absorption bands could be exactly reproduced, for the remaining two - maxima of the calculated bands occurred at lower wavelengths than those of the experimental ones

  20. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals. PMID:27608987

  1. Relativistic time-dependent density functional theory, a study of the ground and excited states of the zinc dimer

    Kullie, Ossama [CNRS et Universite de Strasbourg, Institut de Chimie, Laboratoire de Chimie Quantique, 1 Rue Blaise Pascal, F- 67008 Strasbourg cedex (France)

    2012-07-01

    In this poster I present a (time-dependent) density functional study of the 20 low-lying excited states as well the ground states of the zinc dimer Zn{sub 2}. I analyze the spectrum of the dimer obtained form all electrons calculations which are performed using time-depended density functional with a relativistic 4-components-, and spin-free-Hamiltonian. I show results for different well-known density functional approximations, in comparing with literature and experimental values, the results are very encouraging, especially for the lowest excited states of these dimers. However, the results show that only the long-range corrected functionals such CAMB3LYP gives the correct asymptotic behavior for the higher states, for which the best result is obtained, and a comparable result is obtained from PBE0 functional.

  2. Strong-field ionization of Li and Be: a time-dependent density functional theory with self-interaction correction

    Highlights: ► Multiphoton ionization is calculated by time-dependent density functional theory. ►Exchange-correlation potential is built by time-dependent Krieger-Li-Iafrate method. ► Integer discontinuity of the potential improves description of ionization. ► Probabilities of single ionization of Li and double ionization of Be are presented. - Abstract: In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.

  3. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  4. Photoactivity of Molecule-TiO2 Clusters with Time-Dependent Density-Functional Theory.

    Luppi, E; Urdaneta, I; Calatayud, M

    2016-07-14

    The interaction of molecules with titanium oxide substrates may lead to substantial modifications of their optical properties, in particular a red shift of the absorption spectrum compared to that of bare titania. In the present paper we discuss the role of the interface between two molecules, catechol and dopamine, with gas-phase (TiO2)N clusters (N = 2, 4, 6). We studied, for the interface, the bidentate modes (the molecule bonded to two Ti sites via its two oxygen sites), which was the most energetically favorable, followed by the chelated modes (the molecule bonded to one Ti site via its two oxygen sites), and the monodentate mode (the molecule bonded to one Ti site via one oxygen site). The absorption spectra were calculated with time-dependent functional-theory with CAM-B3LYP for the description of charge-transfer excitations. We observe a red shift of the molecule/cluster systems with respect to the molecules and clusters alone. Moreover, the chelated mode was found to present bands at lower energies than the other modes, making it the most interesting mode to tune the absorption edge of these systems. PMID:27082739

  5. Ab-initio angle and energy resolved photoelectron spectroscopy with time-dependent density-functional theory

    De Giovannini, U; Marques, M A L; Appel, H; Gross, E K U; Rubio, A

    2012-01-01

    We present a time-dependent density-functional method able to describe the photoelectron spectrum of atoms and molecules when excited by laser pulses. This computationally feasible scheme is based on a geometrical partitioning that efficiently gives access to photoelectron spectroscopy in time-dependent density-functional calculations. By using a geometrical approach, we provide a simple description of momentum-resolved photoe- mission including multi-photon effects. The approach is validated by comparison with results in the literature and exact calculations. Furthermore, we present numerical photoelectron angular distributions for randomly oriented nitrogen molecules in a short near infrared intense laser pulse and helium-(I) angular spectra for aligned carbon monoxide and benzene.

  6. Ab initio study of the nitrogen doped Si43C44H76 nanoparticle: Time-dependent density functional theory

    Electronic and optical properties of the various nitrogen-doped Si43C44H76 nanoparticles investigated with time-dependent density functional theory. The binding energies of the nitrogen atom as an impurity in the silicon, carbon substitutional defects and also for the interstitial defects were analyzed. The changes in the energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital were discussed for various doped systems. Finally the optical excitation and exciton binding energy of the pure and stable nitrogen-doped Si43C44H76 nanoparticles derived from time-dependent density functional calculation. - Highlights: • Nitrogen-doped SiC nanocrystal can form thermodynamically stable structure. • Surface carbon substitutional defects are interesting for binding the nitrogen impurity. • The nitrogen impurity can significantly change the optical absorption

  7. First Principles Calculation of Field Emission from Nanostructures using Time-Dependent Density Functional Theory: a Simplified Approach

    Tawfik, Sherif; Sheikh, Salah El; Salem, Noha

    2010-01-01

    We introduce a new simplified method for computing the electron field emission current in short carbon nanotubes using ab-initio computation in periodic simulation cells. We computed the evolution of the wave functions using Time-Dependent Density Functional Theory, where we have utilized the Crank-Nicholson propagator. We found that in pristine carbon nanotubes, the emitted charge tends to emerge mostly from electrons that are concentrated at the nanotube tip region. The charge beam concentr...

  8. Optical and magnetic excitations of metal-encapsulating Si cages: A systematic study by time-dependent density functional theory

    Oliveira, Micael J. T.; Medeiros, Paulo V. C.; Sousa, José R. F.; Nogueira, Fernando; Gueorguiev, Gueorgui K.

    2013-01-01

    Systematic study of the optical and magnetic excitations of twelve MSi$_{12}$ and four MSi$_{10}$ transition metal encapsulating Si cages has been carried out by employing real time time-dependent density functional theory. Criteria for the choice of transition metals (M) are clusters' stability, synthesizability, and diversity. It was found that both the optical absorption and the spin-susceptibility spectra are mainly determined by, in decreasing order of importance: 1) the cage shape, 2) t...

  9. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: a systematic (time-dependent) density functional theory study

    Malloci, G.; Cappellini, G.; Mulas, G.; Mattoni, A.

    2011-01-01

    Homologous classes of Polycyclic Aromatic Hydrocarbons (PAHs) in their crystalline state are among the most promising materials for organic opto-electronics. Following previous works on oligoacenes we present a systematic comparative study of the electronic, optical, and transport properties of oligoacenes, phenacenes, circumacenes, and oligorylenes. Using density functional theory (DFT) and time-dependent DFT we computed: (i) electron affinities and first ionization energies; (ii) quasiparti...

  10. Foundations of stochastic time-dependent current-density functional theory for open quantum systems: Potential pitfalls and rigorous results

    D'Agosta, Roberto; Di Ventra, Massimiliano

    2012-01-01

    We clarify some misunderstandings on the time-dependent current density functional theory for open quantum systems we have recently introduced [M. Di Ventra and R. D'Agosta, Phys. Rev. Lett. {\\bf 98}, 226403 (2007)]. We also show that some of the recent formulations attempting to improve on this theory suffer from some inconsistencies, especially in establishing the mapping between the external potential and the quantities of interest. We offer a general argument about this mapping, showing t...

  11. Fusion and quasi-fission in heavy systems with the microscopic time-dependent energy density functional theory

    Washiyama Kouhei

    2015-01-01

    Fusion hindrance, where fusion probability in heavy systems is strongly hindered compared with that in light and medium-mass systems, is analyzed by the microscopic time-dependent energy density functional theory. From trajectories obtained for fusion reactions, we extract nucleus-nucleus potential and one-body energy dissipation for the entrance channel of fusion reactions in heavy systems. We find that a barrier structure disappears and an increase behavior is observed in the obtained poten...

  12. Communication: Exciton analysis in time-dependent density functional theory: How functionals shape excited-state characters

    Mewes, Stefanie A.; Plasser, Felix; Dreuw, Andreas

    2015-11-01

    Excited-state descriptors based on the one-particle transition density matrix referring to the exciton picture have been implemented for time-dependent density functional theory. State characters such as local, extended ππ∗, Rydberg, or charge transfer can be intuitively classified by simple comparison of these descriptors. Strong effects of the choice of the exchange-correlation kernel on the physical nature of excited states can be found and decomposed in detail leading to a new perspective on functional performance and the design of new functionals.

  13. Numerical implementation of time-dependent density functional theory for extended systems in extreme environments

    Baczewski, Andrew David; Shulenburger, Luke; Desjarlais, Michael Paul; Magyar, Rudolph J.

    2014-02-01

    In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.

  14. Relaxation and Dephasing in Open Quantum Systems Time-Dependent Density Functional Theory: Properties of Exact Functionals from an Exactly-Solvable Model System

    Tempel, David Gabriel; Aspuru-Guzik, Alán

    2011-01-01

    The dissipative dynamics of many-electron systems interacting with a thermal environment has remained a long-standing challenge within time-dependent density functional theory (TDDFT). Recently, the formal foundations of open quantum systems time-dependent density functional theory (OQS-TDDFT) within the master equation approach were established. It was proven that the exact time-dependent density of a many-electron open quantum system evolving under a master equation can be reproduced with a...

  15. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-01

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.

  16. Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self- consistent field wave functions

    Hedegård, Erik D.; Jensen, Hans Jørgen Aagaard; Knecht, Stefan;

    2013-01-01

    Charge transfer excitations can be described within Time-Dependent Density Functional Theory (TD-DFT), not only by means of the Coulomb Attenuated Method (CAM) but also with a combination of wave function theory and TD-DFT based on range separation. The latter approach enables a rigorous formulat......Charge transfer excitations can be described within Time-Dependent Density Functional Theory (TD-DFT), not only by means of the Coulomb Attenuated Method (CAM) but also with a combination of wave function theory and TD-DFT based on range separation. The latter approach enables a rigorous...... displays multireference character in the ground state and both excited states exhibit considerable double excitation character, which in turn cannot be described within standard TD-DFT, due to the adiabatic approximation. However, a TD-MC-srDFT approach can account for the multireference character, and...

  17. Analysis of double hybrid density-functionals along the adiabatic connection

    Cornaton, Yann; Teale, Andrew M; Fromager, Emmanuel

    2013-01-01

    We present a graphical analysis of the adiabatic connections underlying double-hybrid density-functional methods that employ second-order perturbation theory. Approximate adiabatic connection formulae relevant to the construction of these functionals are derived and compared directly with those calculated using accurate ab initio methods. The discontinuous nature of the approximate adiabatic integrands is emphasized, the discontinuities occurring at interaction strengths which mark the transitions between regions that are: (i) described predominantly by second- order perturbation theory (ii) described by a mixture of density-functional and second-order perturbation theory contributions and (iii) described purely by density-functional theory. Numerical examples are presented for a selection of small molecular systems and van der Waals dimers. The impacts of commonly used approximations in each of the three sections of the adiabatic connection are discussed along with possible routes for the development of impr...

  18. Application of object-oriented programming in a time-dependent density-functional theory calculation of exciton binding energies

    Yang, Zeng-hui

    2013-01-01

    This paper discusses the benefits of object-oriented programming to scientific computing, using our recent calculations of exciton binding energies with time-dependent density-functional theory (arXiv: 1302.6972) as a case study. We find that an object-oriented approach greatly facilitates the development, the debugging, and the future extension of the code by promoting code reusing. We show that parallelism is added easily in our code in a object-oriented fashion with ScaLAPACK, Boost::MPI and OpenMP.

  19. Evaluation of intramolecular charge transfer state of 4-, -dimethylamino cinnamaldehyde using time-dependent density functional theory

    Surajit Ghosh; K V S Girish; Subhadip Ghosh

    2013-07-01

    Intramolecular charge transfer of 4-,-dimethylamino cinnamaldehyde (DMACA) in vacuum and in five different aprotic solvents has been studied by using time-dependent density functional theory (TDDFT). Polarizable continuum model (PCM) was employed to consider solvent-solute interactions. The potential energy curves were constructed at different torsional angle of ,-dimethylamino moiety with respect to the adjacent phenyl ring. A large bathochromic shift in our calculated emission and absorption energies for polar solvents is a clear reminiscent of charge transfer nature of the excited state. Finally, the reported results are in agreement with experimental findings.

  20. Time-dependent density-functional theory simulation of local currents in pristine and single-defect zigzag graphene nanoribbons

    He, Shenglai; Russakoff, Arthur; Li, Yonghui; Varga, Kálmán

    2016-07-01

    The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductance observed in recent experiments.

  1. Generalized Floquet formulation of time-dependent density functional theory for many-electron systems in intense laser fields

    We present some recent new developments of the generalized Floquet formulation of time-dependent density functional theory (TDDFT) for nonperturbative treatment of multiphoton processes of many-electron quantum systems in intense monochromatic or multi-color laser fields. It is shown that the periodically or quasi-periodically (polychromatic) time-dependent Kohn-Sham equations can be exactly transformed into an equivalent time-independent Floquet Hamiltonian matrix eigenvalue problems. A procedure is presented for the treatment of bound-bound transitions. For the bound-free transitions, such as multiphoton ionization (MPI) or multiphoton dissociation processes, we introduce the notion of 'complex density' and present a non-Hermitian Floquet formalism for the treatment of complex quasi-energies of individual spin-orbitals and total many-electron systems. The procedure is demonstrated by a case study of photoionization of He atoms in the photon energy range of 25 to 50 eV. Good agreement with recent experimental data is obtained. We also perform some MPI study of He and Be atoms in intense monochromatic and two-color laser fields

  2. Modified linear response for time-dependent density-functional theory: Application to Rydberg and charge-transfer excitations

    We present an improved ab initio time-dependent density-functional theory (TDDFT) approach to electronic excitations. A conventional TDDFT scheme within the local-density approximation (LDA) inaccurately predicts Rydberg and charge-transfer excitation energies, mainly because the electron-hole (e-h) interaction is inappropriately described in these excitations, as can be found by analyzing the linear response formula [M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996)]. When the formula is averaged over the electron occupation, the inappropriate e-h interaction within LDA is corrected to become explicitly similar to that of the exact exchange system. As anticipated from the similarity, our proposed scheme of modified linear response greatly improves the prediction of the problematic excitations, which are exemplified for typical molecules

  3. Electrons as probes of dynamics in molecules and clusters : a contribution from Time Dependent Density Functional Theory

    Wopperer, P; Reinhard, P -G; Suraud, E

    2014-01-01

    Various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations exist. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers total ionization, Photo-Electron Spectra, Photoelectron Angular Distributions, and ideally combined PES/PAD, with a long history in molecular physics, also increasingly used in cluster physics. Recent progress in the design of new light sources (high intensity and/or frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on the analysis of dynamical scenarios through these observables, well beyond a simple access to a density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters. A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real tim...

  4. Density functional approaches to collective phenomena in nuclei: Time-dependent density-functional theory for perturbative and non-perturbative nuclear dynamics

    Nakatsukasa, Takashi

    2012-01-01

    We present the basic concepts and our recent developments in the density functional approaches with the Skyrme functionals for describing nuclear dynamics at low energy. The time-dependent density-functional theory (TDDFT) is utilized for the exact linear response with an external perturbation. For description of collective dynamics beyond the perturbative regime, we present a theory of a decoupled collective submanifold to describe for a slow motion based on the TDDFT. Selected applications ...

  5. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold

    Casida, Mark E.; Jamorski, Christine; Casida, Kim C.; Salahub, Dennis R.

    1998-03-01

    This paper presents an evaluation of the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules. TD-DFRT excitation energies are reported for a large number of states for each of four molecules: N2, CO, CH2O, and C2H4. In contrast to the good results obtained for low-lying states within the time-dependent local density approximation (TDLDA), there is a marked deterioration of the results for high-lying bound states. This is manifested as a collapse of the states above the TDLDA ionization threshold, which is at -ɛHOMOLDA (the negative of the highest occupied molecular orbital energy in the LDA). The -ɛHOMOLDA is much lower than the true ionization potential because the LDA exchange-correlation potential has the wrong asymptotic behavior. For this reason, the excitation energies were also calculated using the asymptotically correct potential of van Leeuwen and Baerends (LB94) in the self-consistent field step. This was found to correct the collapse of the high-lying states that was observed with the LDA. Nevertheless, further improvement of the functional is desirable. For low-lying states the asymptotic behavior of the exchange-correlation potential is not critical and the LDA potential does remarkably well. We propose criteria delineating for which states the TDLDA can be expected to be used without serious impact from the incorrect asymptotic behavior of the LDA potential.

  6. Electronic and Optical Properties of Small Hydrogenated Silicon Quantum Dots Using Time-Dependent Density Functional Theory

    Muhammad Mus-’ab Anas

    2015-01-01

    Full Text Available This paper presents a systematic study of the absorption spectrum of various sizes of small hydrogenated silicon quantum dots of quasi-spherical symmetry using the time-dependent density functional theory (TDDFT. In this study, real-time and real-space implementation of TDDFT involving full propagation of the time-dependent Kohn-Sham equations were used. The experimental results for SiH4 and Si5H12 showed good agreement with other earlier calculations and experimental data. Then these calculations were extended to study larger hydrogenated silicon quantum dots with diameter up to 1.6 nm. It was found that, for small quantum dots, the absorption spectrum is atomic-like while, for relatively larger (1.6 nm structure, it shows bulk-like behavior with continuous plateau with noticeable peak. This paper also studied the absorption coefficient of silicon quantum dots as a function of their size. Precisely, the dependence of dot size on the absorption threshold is elucidated. It was found that the silicon quantum dots exhibit direct transition of electron from HOMO to LUMO states; hence this theoretical contribution can be very valuable in discerning the microscopic processes for the future realization of optoelectronic devices.

  7. Efficient Semi-numerical Implementation of Global and Local Hybrid Functionals for Time-Dependent Density Functional Theory.

    Maier, Toni M; Bahmann, Hilke; Kaupp, Martin

    2015-09-01

    Local hybrid functionals with position-dependent exact-exchange admixture offer increased flexibility compared to global hybrids. For sufficiently advanced functionals of this type, this is expected to hold also for a wide range of electronic excitations within time-dependent density functional theory (TDDFT). Following a recent semi-numerical implementation of local hybrid functionals for ground-state self-consistent-field calculations (Bahmann, H.; Kaupp, M. J. Chem. Theory Comput. 2015, 11, 1540-1548), the first linear-response TDDFT implementation of local hybrids is reported, using a semi-numerical integration technique. The timings and accuracy of the semi-numerical implementation are evaluated by comparison with analytical schemes for time-dependent Hartree-Fock (TDHF) and for the TPSSh global hybrid. In combination with the RI approximation to the Coulomb part of the kernel, the semi-numerical implementation is faster than the existing analytical TDDFT/TDHF implementation of global hybrid functionals in the TURBOMOLE code, even for small systems and moderate basis sets. Moreover, timings for global and local hybrids are practically equal for the semi-numerical scheme. The way to TDDFT calculations with local hybrid functionals for large systems is thus now open, and more sophisticated parametrizations of local hybrids may be evaluated. PMID:26575918

  8. Modeling atoms in laser fields using time-dependent density functional theory: Applicability of the frozen-core approximation

    We check the validity of the frozen-core approximation (FCA) in time-dependent density functional theory (TDDFT) for an atom interacting with a laser field. For this purpose we investigate an exactly solvable 1D model for Li with the help of TDDFT considering different exchange-correlation (XC) functionals. Observables such as the ionisation rate, the energy absorption rate and the dipole expectation value are obtained with and without FCA. Comparisons among the different TDDFT results on one hand and with the exact numerical solution of the time-dependent Schroedinger equation on the other hand show that the propagation of core electrons in time does significantly affect the observables of the valence electron. Additionally, we find a strong dependency of TDDFT observables on the XC functional used even though the values for the ionisation potentials are equal. We conclude that pseudopotentials (which apply the FCA or even bolder approximations) must yield inaccurate results in TDDFT simulations of strong-field ionization even for an otherwise exact XC functional.

  9. Time-dependent Ginzburg–Landau equation of charge-density-waves and numerical simulation of the sliding

    Time-dependent Ginzburg–Landau equation (TDGL) for charge-density-wave (CDW) conductors is discussed. At first, we study a purely one-dimensional case, where the current electrodes are attached from the sides. One of the characteristics of our TDGL is that the non-equilibrium chemical potential for right-moving and left-moving electrons are taken into account as dynamical variables. Then the dynamical interaction between the condensate and the quasiparticles is demonstrated in an apparent form. We present some results of the numerical simulation of the sliding of CDW based on our TDGL. Possible extension to quasi-one dimensional (three-dimensional) systems is also discussed

  10. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    Wang, RuLin [Beijing Computational Science Research Center, No. 3 He-Qing Road, Beijing 100084 (China); Zheng, Xiao, E-mail: xz58@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Kwok, YanHo; Xie, Hang; Chen, GuanHua [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yam, ChiYung, E-mail: yamcy@csrc.ac.cn [Beijing Computational Science Research Center, No. 3 He-Qing Road, Beijing 100084 (China); Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  11. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene

  12. Time-dependent Ginzburg–Landau equation of charge-density-waves and numerical simulation of the sliding

    Hayashi, Masahiko, E-mail: m-hayashi@ed.akita-u.ac.jp [Faculty of Education and Human Studies, Akita University, Akita 010-8502 (Japan); Takane, Yositake [Department of Quantum Matter, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Ebisawa, Hiromichi [Institute of Liberal Arts and Sciences, Tohoku University, Sendai 980-8576 (Japan)

    2015-03-01

    Time-dependent Ginzburg–Landau equation (TDGL) for charge-density-wave (CDW) conductors is discussed. At first, we study a purely one-dimensional case, where the current electrodes are attached from the sides. One of the characteristics of our TDGL is that the non-equilibrium chemical potential for right-moving and left-moving electrons are taken into account as dynamical variables. Then the dynamical interaction between the condensate and the quasiparticles is demonstrated in an apparent form. We present some results of the numerical simulation of the sliding of CDW based on our TDGL. Possible extension to quasi-one dimensional (three-dimensional) systems is also discussed.

  13. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-01

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  14. Fission fragment charge and mass distributions in 239Pu(n,f) in the adiabatic nuclear energy density functional theory

    Regnier, D; Schunck, N; Verriere, M

    2016-01-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear energy density functional (EDF) method, where large amplitude collective motion is treated adiabatically using the time dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in tw...

  15. Analytical Hessian of electronic excited states in time-dependent density functional theory with Tamm-Dancoff approximation.

    Liu, Jie; Liang, WanZhen

    2011-07-01

    We present the analytical expression and computer implementation for the second-order energy derivatives of the electronic excited state with respect to the nuclear coordinates in the time-dependent density functional theory (TDDFT) with Gaussian atomic orbital basis sets. Here, the Tamm-Dancoff approximation to the full TDDFT is adopted, and therefore the formulation process of TDDFT excited-state Hessian is similar to that of configuration interaction singles (CIS) Hessian. However, due to the replacement of the Hartree-Fock exchange integrals in CIS with the exchange-correlation kernels in TDDFT, many quantitative changes in the derived equations are arisen. The replacement also causes additional technical difficulties associated with the calculation of a large number of multiple-order functional derivatives with respect to the density variables and the nuclear coordinates. Numerical tests on a set of test molecules are performed. The simulated excited-state vibrational frequencies by the analytical Hessian approach are compared with those computed by CIS and the finite-difference method. It is found that the analytical Hessian method is superior to the finite-difference method in terms of the computational accuracy and efficiency. The numerical differentiation can be difficult due to root flipping for excited states that are close in energy. TDDFT yields more exact excited-state vibrational frequencies than CIS, which usually overestimates the values. PMID:21744894

  16. Phosphorescence lifetimes of organic light-emitting diodes from two-component time-dependent density functional theory

    “Spin-forbidden” transitions are calculated for an eight-membered set of iridium-containing candidate molecules for organic light-emitting diodes (OLEDs) using two-component time-dependent density functional theory. Phosphorescence lifetimes (obtained from averaging over relevant excitations) are compared to experimental data. Assessment of parameters like non-distorted and distorted geometric structures, density functionals, relativistic Hamiltonians, and basis sets was done by a thorough study for Ir(ppy)3 focussing not only on averaged phosphorescence lifetimes, but also on the agreement of the triplet substate structure with experimental data. The most favorable methods were applied to an eight-membered test set of OLED candidate molecules; Boltzmann-averaged phosphorescence lifetimes were investigated concerning the convergence with the number of excited states and the changes when including solvent effects. Finally, a simple model for sorting out molecules with long averaged phosphorescence lifetimes is developed by visual inspection of computationally easily achievable one-component frontier orbitals

  17. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    Goings, Joshua J.; Li, Xiaosong

    2016-06-01

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  18. Solution of the time-dependent Schroedinger equation employing a basis of explicit discrete-coordinate eigenfunctions: Spherical and azimuthal symmetry, adiabaticity, and multiphoton excitation of a rotating Morse oscillator

    We have recently presented a method for solving the time-dependent Schroedinger equation by collocation on various members of a family of spatial grids and have shown that this method is interpretable in terms of the expansion of the wave function in a basis of discrete coordinate eigenfunctions. The method is applicable to molecular systems with one or multiple spatial dimensions, and also to bound or unbound molecular systems. We now place the method in the more general setting of spatial grids belonging to the family of scaled Gauss-Markov quadrature points. Further, we now treat molecular systems described in terms of the more general case of a curvilinear coordinate system. This allows us to treat, for example, a system with spherical or azimuthal symmetry and to employ the information regarding the symmetry, i.e. transform from Cartesian coordinates to spherical polar coordinates and obtain the Schroedinger equation for a wave function for a configuration space with a lower number of dimensions. In addition, we describe a modified adiabatic aproach for decreasing the number of spatial dimensions in the Hamiltonian appearing in the time-dependent Schroedinger equation for the wave function. We then obtain a coupled set of differential equations describing the time evolution of the molecular system, including the time-dependent Schroedinger equation in terms of the Hamiltonian with the lower number of spatial dimensions, and we apply our method for solving the time-evolution problem for the wave function by employing the Hamiltonian with that smaller number of spatial dimensions. Finally, we demonstrate the application of this extension of our collocation method to the nonlinear problem of multiple-photon excitation of a rotating anharmonic diatomic molecule by the explicitly time-dependent term describing irradiation of the molecule by an intense classical electromagnetic field. (orig./HSI)

  19. Analytical approach for the excited-state Hessian in time-dependent density functional theory: Formalism, implementation, and performance

    Liu, Jie; Liang, WanZhen

    2011-11-01

    The paper presents the formalism, implementation, and performance of the analytical approach for the excited-state Hessian in the time-dependent density functional theory (TDDFT) that extends our previous work [J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011)] on the analytical Hessian in TDDFT within Tamm-Dancoff approximation (TDA) to full TDDFT. In contrast to TDA-TDDFT, an appreciable advantage of full TDDFT is that it maintains the oscillator strength sum rule, and therefore yields more precise results for the oscillator strength and other related physical quantities. For the excited-state harmonic vibrational frequency calculation, however, full TDDFT does not seem to be advantageous since the numerical tests demonstrate that the accuracy of TDDFT with and without TDA are comparable to each other. As a common practice, the computed harmonic vibrational frequencies are scaled by a suitable scale factor to yield good agreement with the experimental fundamental frequencies. Here we apply both the optimized ground-state and excited-state scale factors to scale the calculated excited-state harmonic frequencies and find that the scaling decreases the root-mean-square errors. The optimized scale factors derived from the excited-state calculations are slightly smaller than those from the ground-state calculations.

  20. Direct determination of exciton couplings from subsystem time-dependent density-functional theory within the Tamm-Dancoff approximation

    König, Carolin; Schlüter, Nicolas; Neugebauer, Johannes

    2013-01-01

    In subsystem time-dependent density functional theory (TDDFT) [J. Neugebauer, J. Chem. Phys. 126, 134116 (2007), 10.1063/1.2713754] localized excitations are used to calculate delocalized excitations in large chromophore aggregates. We have extended this formalism to allow for the Tamm-Dancoff approximation (TDA). The resulting response equations have a form similar to a perturbative configuration interaction singles (CIS) approach. Thus, the inter-subsystem matrix elements in subsystem TDA can, in contrast to the full subsystem-TDDFT case, directly be interpreted as exciton coupling matrix elements. Here, we present the underlying theory of subsystem TDDFT within the TDA as well as first applications. Since for some classes of pigments, such as linear polyenes and carotenoids, TDA has been reported to perform better than full TDDFT, we also report applications of this formalism to exciton couplings in dimers of such pigments and in mixed bacteriochlorophyll-carotenoid systems. The improved description of the exciton couplings can be traced back to a more balanced description of the involved local excitations.

  1. A (time-dependent) density functional theory study of the optoelectronic properties of bis-triisopropylsilylethynyl-functionalized acenes

    Malloci, G., E-mail: giuliano.malloci@dsf.unica.it [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Cappellini, G. [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Mulas, G. [INAF-Osservatorio Astronomico di Cagliari, Strada 54, Località Poggio dei Pini, I-09012 Capoterra (Italy); Mattoni, A. [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy)

    2013-09-30

    We report a comparative study of the optoelectronic properties of small acenes (benzene, anthracene, and pentacene) and their bis-triisopropylsilylethynyl (TIPS) functionalized counterparts. We computed the fundamental gap using density functional theory (DFT) in the framework of the ΔSCF scheme, and the optical absorption spectra by means of time-dependent DFT. Upon TIPS functionalization we observed a lowering of the ionization energy and a rise of the electron affinity; we consequently predict a systematic reduction of the fundamental electronic gap which decreases from ∼ 40% for benzene to ∼ 16% for pentacene. This trend is reflected in the computed optical absorption spectra: for all TIPS-molecules the onset of absorption is red-shifted as compared to their plain precursors. In the case of TIPS-pentacene, in particular, the computed spectrum agrees with the available experimental data. - Highlights: • We evaluate the effect of triisopropylsilylethynyl (TIPS)-substitution on acenes. • We compared the fundamental gap and the optical absorption as a function of size. • We found a general gap reduction following TIPS functionalization. • The gap reduction decreases at increasing size, from 40% for n = 1 to 16% for n = 5. • The onset of absorption is red-shifted as compared to TIPS precursors.

  2. Optical and magnetic excitations of metal-encapsulating Si cages: A systematic study by time-dependent density functional theory

    Oliveira, Micael J T; Sousa, José R F; Nogueira, Fernando; Gueorguiev, Gueorgui K

    2013-01-01

    Systematic study of the optical and magnetic excitations of twelve MSi$_{12}$ and four MSi$_{10}$ transition metal encapsulating Si cages has been carried out by employing real time time-dependent density functional theory. Criteria for the choice of transition metals (M) are clusters' stability, synthesizability, and diversity. It was found that both the optical absorption and the spin-susceptibility spectra are mainly determined by, in decreasing order of importance: 1) the cage shape, 2) the group in the Periodic Table M belongs to, and 3) the period of M in the Periodic Table. Cages with similar structures and metal species that are close to each other in the Periodic Table possess spectra sharing many similarities, e. g., the optical absorption spectra of the MSi$_{12}$ (M = V, Nb, Ta, Cr, Mo, and W), which are highly symmetric and belong to groups 4 and 5 of the Periodic Table, all share a very distinctive peak at around 4 eV. In all cases, although some of the observed transitions are located at the Si...

  3. Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

    Walkenhorst, Jessica; De Giovannini, Umberto; Castro, Alberto; Rubio, Angel

    2016-05-01

    Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

  4. Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework

    Morzan, Uriel N.; Ramírez, Francisco F.; Scherlis, Damián A., E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA) (Argentina); Oviedo, M. Belén; Sánchez, Cristián G. [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Lebrero, Mariano C. González, E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)

    2014-04-28

    This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.

  5. Adiabatic electronic flux density: a Born-Oppenheimer Broken Symmetry ansatz

    Pohl, Vincent

    2016-01-01

    The Born-Oppenheimer approximation leads to the counterintuitive result of a vanishing electronic flux density upon vibrational dynamics in the electronic ground state. To circumvent this long known issue, we propose using pairwise anti-symmetrically translated vibronic densities to generate a symmetric electronic density that can be forced to satisfy the continuity equation approximately. The so-called Born-Oppenheimer broken symmetry ansatz yields all components of the flux density simultaneously while requiring only knowledge about the nuclear quantum dynamics on the electronic adiabatic ground state potential energy surface. The underlying minimization procedure is transparent and computationally inexpensive, and the solution can be computed from the standard output of any quantum chemistry program. Taylor series expansion reveals that the implicit electron dynamics originates from non-adiabatic coupling to the explicit Born-Oppenheimer nuclear dynamics. The new approach is applied to the ${\\rm H}_2^+$ mo...

  6. Adiabatic and non-adiabatic processes in strong Coulomb fields

    Adiabatic and non-adiabatic behaviour of relativistic electrons in external Coulomb fields of time-dependent strength is studied within the framework of a model for the description of a shell electron's behaviour during a heavy-ion collision. A classification scheme for types of non-adiabatic behaviour is suggested; its relevance for the analysis of pair production processes in strong Coulomb fields is discussed (K-Shell Ionization). An ansatz for the vacuum polarization potential is introduced and employed to demonstrate the special role of vacuum polarization for adiabatic and non-adiabatic behaviour in very strong Coulomb fields (Zα > 1). The implications of the underlaying specific features of the vacuum polarization charge density in very strong fields for pair production mechanisms are considered. (orig.)

  7. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density functional theory study

    Malloci, G., E-mail: giuliano.malloci@dsf.unica.it [CNR-IOM and Dipartimento di Fisica, Universita degli Studi di Cagliari, Cittadella Universitaria, Strada Prov. le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy); Cappellini, G. [CNR-IOM and Dipartimento di Fisica, Universita degli Studi di Cagliari, Cittadella Universitaria, Strada Prov. le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy); INAF-Osservatorio Astronomico di Cagliari-Astrochemistry Group, Strada 54, Localita Poggio dei Pini, I-09012 Capoterra (Italy); Mulas, G. [INAF-Osservatorio Astronomico di Cagliari-Astrochemistry Group, Strada 54, Localita Poggio dei Pini, I-09012 Capoterra (Italy); Mattoni, A. [CNR-IOM and Dipartimento di Fisica, Universita degli Studi di Cagliari, Cittadella Universitaria, Strada Prov. le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy)

    2011-06-16

    Graphical abstract: Electronic absorption spectra of the neutral molecules of the four PAH classes considered, as computed using the real-time real-space TD-DFT. Highlights: {yields}We present a systematic comparative study of families of PAHs. {yields} We computed electronic, optical, and transport properties as a function of size. {yields} We considered oligoacenes, phenacenes, circumacenes, and oligorylenes. {yields} Circumacenes have the best transport properties compared to the other classes. {yields} Oligorylenes are much more efficient in absorbing low-energy photons. - Abstract: Homologous classes of polycyclic aromatic hydrocarbons (PAHs) in their crystalline state are among the most promising materials for organic opto-electronics. Following previous works on oligoacenes we present a systematic comparative study of the electronic, optical, and transport properties of oligoacenes, phenacenes, circumacenes, and oligorylenes. Using density functional theory (DFT) and time-dependent DFT we computed: (i) electron affinities and first ionization energies; (ii) quasiparticle correction to the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap; (iii) molecular reorganization energies and (iv) electronic absorption spectra of neutral and {+-}1 charged systems. The excitonic effects are estimated by comparing the optical gap and the quasiparticle corrected HOMO-LUMO energy gap. For each molecular property computed, general trends as a function of molecular size and charge state are discussed. Overall, we find that circumacenes have the best transport properties, displaying a steeper decrease of the molecular reorganization energy at increasing sizes, while oligorylenes are much more efficient in absorbing low-energy photons in comparison to the other classes.

  8. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density functional theory study

    Graphical abstract: Electronic absorption spectra of the neutral molecules of the four PAH classes considered, as computed using the real-time real-space TD-DFT. Highlights: →We present a systematic comparative study of families of PAHs. → We computed electronic, optical, and transport properties as a function of size. → We considered oligoacenes, phenacenes, circumacenes, and oligorylenes. → Circumacenes have the best transport properties compared to the other classes. → Oligorylenes are much more efficient in absorbing low-energy photons. - Abstract: Homologous classes of polycyclic aromatic hydrocarbons (PAHs) in their crystalline state are among the most promising materials for organic opto-electronics. Following previous works on oligoacenes we present a systematic comparative study of the electronic, optical, and transport properties of oligoacenes, phenacenes, circumacenes, and oligorylenes. Using density functional theory (DFT) and time-dependent DFT we computed: (i) electron affinities and first ionization energies; (ii) quasiparticle correction to the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap; (iii) molecular reorganization energies and (iv) electronic absorption spectra of neutral and ±1 charged systems. The excitonic effects are estimated by comparing the optical gap and the quasiparticle corrected HOMO-LUMO energy gap. For each molecular property computed, general trends as a function of molecular size and charge state are discussed. Overall, we find that circumacenes have the best transport properties, displaying a steeper decrease of the molecular reorganization energy at increasing sizes, while oligorylenes are much more efficient in absorbing low-energy photons in comparison to the other classes.

  9. Time-dependent density functional study of the electronic potential energy curves and excitation spectrum of the oxygen molecule

    Guan, Jingang; Wang, Fan; Ziegler, Tom; Cox, Hazel

    2006-07-01

    Orbital energies, ionization potentials, molecular constants, potential energy curves, and the excitation spectrum of O2 are calculated using time-dependent density functional theory (TDDFT) with Tamm-Dancoff approximation (TDA). The calculated negative highest occupied molecular orbital energy (-ɛHOMO) is compared with the energy difference ionization potential for five exchange correlation functionals consisting of the local density approximation (LDAxc), gradient corrected Becke exchange plus Perdew correlation (B88X+P86C), gradient regulated asymptotic correction (GRAC), statistical average of orbital potentials (SAOP), and van Leeuwen and Baerends asymptotically correct potential (LB94). The potential energy curves calculated using TDDFT with the TDA at internuclear distances from 1.0to1.8Å are divided into three groups according to the electron configurations. The 1πu41πg2 electron configuration gives rise to the XΣg-3, aΔg1, and bΣg +1 states; the 1πu31πg3 electron configuration gives rise to the cΣu -1, CΔu3, and AΣu +3 states; and the BΣu -3, AΔu1, and fΣu +1 states are determined by the mixing of two or more electron configurations. The excitation spectrum of the oxygen molecule, calculated with the aforementioned exchange correlation functionals, shows that the results are quite sensitive to the choice of functional. The LDAxc and the B88X+P86C functionals produce similar spectroscopic patterns with a single strongly absorbing band positioned at 19.82 and 19.72eV, respectively, while the asymptotically corrected exchange correlation functionals of the SAOP and the LB94 varieties yield similar excitation spectra where the computed strongly absorbing band is located at 16.09 and 16.42eV, respectively. However, all of the exchange correlation functionals yield only one strongly absorbing band (oscillator strength greater than 0.1) in the energy interval of 0-20eV, which is assigned to a XΣg -3 to Σu-3 transition. Furthermore, the oxygen

  10. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments. PMID:24811926

  11. Effects of fluorination on iridium(III) complex phosphorescence: magnetic circular dichroism and relativistic time-dependent density functional theory.

    Smith, A R G; Riley, M J; Burn, P L; Gentle, I R; Lo, S-C; Powell, B J

    2012-03-01

    We use a combination of low temperature, high field magnetic circular dichroism, absorption, and emission spectroscopy with relativistic time-dependent density functional calculations to reveal a subtle interplay between the effects of chemical substitution and spin-orbit coupling (SOC) in a family of iridium(III) complexes. Fluorination at the ortho and para positions of the phenyl group of fac-tris(1-methyl-5-phenyl-3-n-propyl-[1,2,4]triazolyl)iridium(III) cause changes that are independent of whether the other position is fluorinated or protonated. This is demonstrated by a simple linear relationship found for a range of measured and calculated properties of these complexes. Further, we show that the phosphorescent radiative rate, k(r), is determined by the degree to which SOC is able to hybridize T(1) to S(3) and that k(r) is proportional to the inverse fourth power of the energy gap between these excitations. We show that fluorination in the para position leads to a much larger increase of the energy gap than fluorination at the ortho position. Theory is used to trace this back to the fact that fluorination at the para position increases the difference in electron density between the phenyl and triazolyl groups, which distorts the complex further from octahedral symmetry, and increases the energy separation between the highest occupied molecular orbital (HOMO) and the HOMO-1. This provides a new design criterion for phosphorescent iridium(III) complexes for organic optoelectronic applications. In contrast, the nonradiative rate is greatly enhanced by fluorination at the ortho position. This may be connected to a significant redistribution of spectral weight. We also show that the lowest energy excitation, 1A, has almost no oscillator strength; therefore, the second lowest excitation, 2E, is the dominant emissive state at room temperature. Nevertheless the mirror image rule between absorption and emission is obeyed, as 2E is responsible for both absorption and

  12. Excitation energies,for a benchmark set of molecules obtained within time-dependent current-density functional theory using the Vignale-Kohn functional

    van Faassen, M.; de Boeij, PL

    2004-01-01

    In this article we explain how the existing linear response theory of time-dependent density-functional theory can be extended to. obtain excitation.,energies in the framework of time-dependent current-density-functional theory. We use the Vignale-Kohn current-functional [G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996)] which has proven to be successful for describing ultranonlocal exchange-correlation effects in the case of the axial polarizability of molecular chains [M. van Faasse...

  13. Adiabatic density perturbations and matter generation from the minimal supersymmetric standard model

    We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small

  14. Electrons as probes of dynamics in molecules and clusters: A contribution from Time Dependent Density Functional Theory

    Wopperer, P. [CNRS, LPT (IRSAMC), 118 route de Narbonne, F-31062 Toulouse Cédex (France); Université de Toulouse, UPS, Laboratoire de Physique Théorique (IRSAMC), 118 route de Narbonne, F-31062 Toulouse Cédex (France); Dinh, P.M., E-mail: dinh@irsamc.ups-tlse.fr [CNRS, LPT (IRSAMC), 118 route de Narbonne, F-31062 Toulouse Cédex (France); Université de Toulouse, UPS, Laboratoire de Physique Théorique (IRSAMC), 118 route de Narbonne, F-31062 Toulouse Cédex (France); Reinhard, P.-G. [Institut für Theoretische Physik, Universität Erlangen, Staudtstrasse 7, D-91058 Erlangen (Germany); Suraud, E. [CNRS, LPT (IRSAMC), 118 route de Narbonne, F-31062 Toulouse Cédex (France); Université de Toulouse, UPS, Laboratoire de Physique Théorique (IRSAMC), 118 route de Narbonne, F-31062 Toulouse Cédex (France); Physics Department, University at Buffalo, The State University New York, Buffalo, NY 14260 (United States)

    2015-02-28

    There are various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers observables such as total ionization, Photo-Electron Spectra (PES), Photoelectron Angular Distributions (PAD), and ideally combined PES/PAD. It has a long history in molecular physics and was increasingly used in cluster physics as well. Recent progress in the design of new light sources (high intensity, high frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on these observables, especially for the analysis of various dynamical scenarios, well beyond a simple access to electronic density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters up to such a complex and interesting system as C{sub 60}. A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real time and on a spatial grid, and augmented by a Self-Interaction Correction (SIC). This provides a pertinent, robust, and efficient description of electronic emission including the detailed pattern of PES and PAD. A direct comparison between experiments and well founded elaborate microscopic theories is thus readily possible, at variance with more demanding observables such as for example fragmentation or dissociation cross sections. The purpose of this paper is to describe the theoretical tools developed on the basis of real-time and real-space TDDFT and to address in a realistic manner the analysis of electronic emission following irradiation of clusters and molecules by various laser pulses. After a general introduction, we shall present in a second part the available experimental results motivating such studies, starting from the

  15. Electrons as probes of dynamics in molecules and clusters: A contribution from Time Dependent Density Functional Theory

    There are various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers observables such as total ionization, Photo-Electron Spectra (PES), Photoelectron Angular Distributions (PAD), and ideally combined PES/PAD. It has a long history in molecular physics and was increasingly used in cluster physics as well. Recent progress in the design of new light sources (high intensity, high frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on these observables, especially for the analysis of various dynamical scenarios, well beyond a simple access to electronic density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters up to such a complex and interesting system as C60. A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real time and on a spatial grid, and augmented by a Self-Interaction Correction (SIC). This provides a pertinent, robust, and efficient description of electronic emission including the detailed pattern of PES and PAD. A direct comparison between experiments and well founded elaborate microscopic theories is thus readily possible, at variance with more demanding observables such as for example fragmentation or dissociation cross sections. The purpose of this paper is to describe the theoretical tools developed on the basis of real-time and real-space TDDFT and to address in a realistic manner the analysis of electronic emission following irradiation of clusters and molecules by various laser pulses. After a general introduction, we shall present in a second part the available experimental results motivating such studies, starting from the simplest

  16. Quantum Monte Carlo, time-dependent density functional theory, and density functional theory calculations of diamondoid excitation energies and Stokes shifts

    Marsusi, F; Drummond, N D

    2011-01-01

    We have computed the absorption and emission energies and hence Stokes shifts of small diamondoids as a function of size using different theoretical approaches, including density functional theory and quantum Monte Carlo (QMC) calculations. The absorption spectra of these molecules were also investigated by time-dependent density functional theory (TD-DFT) and compared with experiment. We have analyzed the structural distortion and formation of a self-trapped exciton in the excited state, and we have studied the effects of these on the Stokes shift as a function of size. Compared to recent experiments, QMC overestimates the excitation energies by about 0.8(1) eV on average. Benefiting from a cancellation of errors, the optical gaps obtained in DFT calculations with the B3LYP functional are in better agreement with experiment. It is also shown that TD-B3LYP calculations can reproduce most of the features found in the experimental spectra. According to our calculations, the structures of diamondoids in the exci...

  17. Tight-Binding Approximations to Time-Dependent Density Functional Theory - a fast approach for the calculation of electronically excited states

    Rüger, Robert; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We propose a new method of calculating electronically excited states that combines a density functional theory (DFT) based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive time-dependent density functional theory (TD-DFT) calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  18. Tight-binding approximations to time-dependent density functional theory - A fast approach for the calculation of electronically excited states.

    Rüger, Robert; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-05-14

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB. PMID:27179467

  19. Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

    Rüger, Robert; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-05-01

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  20. The density variance - Mach number relation in isothermal and non-isothermal adiabatic turbulence

    Nolan, Chris A; Sutherland, Ralph S

    2015-01-01

    The density variance - Mach number relation of the turbulent interstellar medium is relevant for theoretical models of the star formation rate, efficiency, and the initial mass function of stars. Here we use high-resolution hydrodynamical simulations with grid resolutions of up to 1024^3 cells to model compressible turbulence in a regime similar to the observed interstellar medium. We use Fyris Alpha, a shock-capturing code employing a high-order Godunov scheme to track large density variations induced by shocks. We investigate the robustness of the standard relation between the logarithmic density variance (sigma_s^2) and the sonic Mach number (M) of isothermal interstellar turbulence, in the non-isothermal regime. Specifically, we test ideal gases with diatomic molecular (gamma = 7/5) and monatomic (gamma = 5/3) adiabatic indices. A periodic cube of gas is stirred with purely solenoidal forcing at low wavenumbers, leading to a fully-developed turbulent medium. We find that as the gas heats in adiabatic comp...

  1. Time-dependent Dyson orbital theory.

    Gritsenko, O V; Baerends, E J

    2016-08-21

    Although time-dependent density functional theory (TDDFT) has become the tool of choice for real-time propagation of the electron density ρ(N)(t) of N-electron systems, it also encounters problems in this application. The first problem is the neglect of memory effects stemming from the, in TDDFT virtually unavoidable, adiabatic approximation, the second problem is the reliable evaluation of the probabilities P(n)(t) of multiple photoinduced ionization, while the third problem (which TDDFT shares with other approaches) is the reliable description of continuum states of the electrons ejected in the process of ionization. In this paper time-dependent Dyson orbital theory (TDDOT) is proposed. Exact TDDOT equations of motion (EOMs) for time-dependent Dyson orbitals are derived, which are linear differential equations with just static, feasible potentials of the electron-electron interaction. No adiabatic approximation is used, which formally resolves the first TDDFT problem. TDDOT offers formally exact expressions for the complete evolution in time of the wavefunction of the outgoing electron. This leads to the correlated probability of single ionization P(1)(t) as well as the probabilities of no ionization (P(0)(t)) and multiple ionization of n electrons, P(n)(t), which formally solves the second problem of TDDFT. For two-electron systems a proper description of the required continuum states appears to be rather straightforward, and both P(1)(t) and P(2)(t) can be calculated. Because of the exact formulation, TDDOT is expected to reproduce a notorious memory effect, the "knee structure" of the non-sequential double ionization of the He atom. PMID:26987972

  2. H+-H2O collisions studied by time-dependent density-functional theory combined with the molecular dynamics method

    Hong, Xuhai; Wang, Feng; Wu, Yong; Gou, Bingcong; Wang, Jianguo

    2016-06-01

    H+-H2O collisions are investigated using the time-dependent density-functional theory combined with the molecular dynamics method, in which the electrons are described quantum mechanically within the framework of time-dependent density-functional theory and the ionic cores are described classically by Newton's equations. The feedback between quantum electrons and classical ions is self-consistently coupled by Ehrenfest's method. The electron capture, electron loss, and ionization cross sections are obtained in the energy range of 1-1000 keV and excellent agreements are achieved with available experimental and theoretical data. The orientation effects of the H2O target are found to be significant in the collision processes, especially in low-energy collisions.

  3. Electronically Excited States of Vitamin B12: Benchmark Calculations Including Time-Dependent Density Functional Theory and Correlated Ab Initio Methods

    Kornobis, Karina; Kumar, Neeraj; Wong, Bryan M.; Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Rudd, Kenneth; Kozlowski, Pawel M.

    2011-01-01

    Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to the electronically excited states of vitamin B12 (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to predict the electronic p...

  4. The evolution of dark energy density parameter with the time depend gravitational constant in the Ho$\\check{r}$ava-Lifshitz cosmology

    Saaidi, Kh

    2010-01-01

    We study the holographic dark energy on the subject of Ho$\\check{r}$ava-Lifshitz gravity with a time dependent gravitational constant (G(t)), in the non-flat space-time. We obtain the differential equation that specify the evolution of the dark energy density parameter based on varying gravitational constant. we find out a relation for the state parameter of the dark energy equation to low redshifts which containing varying $G$ correction.

  5. Relaxation and dephasing in open quantum systems time-dependent density functional theory: Properties of exact functionals from an exactly-solvable model system

    Graphical abstract: An exactly solvable model system is used to guide the development of functionals for relaxation and dephasing in open quantum systems time-dependent density functional theory. We compare our exact solution with the approximate MBF functional derived in previous work and discuss future directions of functional development. Highlights: ► The master equation approach to open quantum systems TDDFT (OQS-TDDFT) is reviewed. ► Limits of relaxation and dephasing of the master equation are studied. ► Properties of dissipation functionals are analyzed with an exactly solvable system. - Abstract: The dissipative dynamics of many-electron systems interacting with a thermal environment has remained a long-standing challenge within time-dependent density functional theory (TDDFT). Recently, the formal foundations of open quantum systems time-dependent density functional theory (OQS-TDDFT) within the master equation approach were established. It was proven that the exact time-dependent density of a many-electron open quantum system evolving under a master equation can be reproduced with a closed (unitarily evolving) and non-interacting Kohn–Sham system. This potentially offers a great advantage over previous approaches to OQS-TDDFT, since with suitable functionals one could obtain the dissipative open-systems dynamics by simply propagating a set of Kohn–Sham orbitals as in usual TDDFT. However, the properties and exact conditions of such open-systems functionals are largely unknown. In the present article, we examine a simple and exactly-solvable model open quantum system: one electron in a harmonic well evolving under the Lindblad master equation. We examine two different representitive limits of the Lindblad equation (relaxation and pure dephasing) and are able to deduce a number of properties of the exact OQS-TDDFT functional. Challenges associated with developing approximate functionals for many-electron open quantum systems are also discussed.

  6. Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    First-principles calculations of the conventional and acoustic surface plasmons (CSPs and ASPs) on the (111) surfaces of Cu, Ag, and Au are presented. The effect of s-d interband transitions on both types of plasmons is investigated by comparing results from the local density approximation and an...

  7. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  8. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account. PMID:26627715

  9. Communication: Satisfying fermionic statistics in the modeling of open time-dependent quantum systems with one-electron reduced density matrices

    Head-Marsden, Kade; Mazziotti, David A.

    2015-02-01

    For an open, time-dependent quantum system, Lindblad derived the most general modification of the quantum Liouville equation in the Markovian approximation that models environmental effects while preserving the non-negativity of the system's density matrix. While Lindblad's modification is correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle. Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains N-representable for all time. The theory is illustrated by considering the relaxation of an excitation in several molecules F2, N2, CO, and BeH2 subject to environmental noise.

  10. Communication: Satisfying fermionic statistics in the modeling of open time-dependent quantum systems with one-electron reduced density matrices

    For an open, time-dependent quantum system, Lindblad derived the most general modification of the quantum Liouville equation in the Markovian approximation that models environmental effects while preserving the non-negativity of the system’s density matrix. While Lindblad’s modification is correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle. Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains N-representable for all time. The theory is illustrated by considering the relaxation of an excitation in several molecules F2, N2, CO, and BeH2 subject to environmental noise

  11. Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory

    Jensen, Lasse; Govind, Niranjan

    2009-08-01

    In this work, we present a study of the excitation energies of adenine, cytosine, guanine, thymine, and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC functionals, BNL, CAM-B3LYP, and LC-PBE0, with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement, a smaller attenuation parameter is needed, which leads to nonoptimum performance for ground-state properties. B3LYP, on the other hand, severely underestimates the charge-transfer (CT) transitions in the base pairs. Surprisingly, we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance is obtained with the LC-PBE0 functional, which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange. Thus, this work highlights the difficulties in obtained LC functionals, which provides a good description of both ground- and excited-state properties.

  12. Calculation of van der Walls coefficients of alkali metal clusters by hydrodynamic approach to time-dependent density-functional theory

    Banerjee, A; Banerjee, Arup; Harbola, Manoj K.

    2004-01-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waal coefficients $C_{6}$ and $C_{8}$ of alkali-metal clusters of various sizes including very large clusters. Such calculation becomes computationally very demanding in the orbital-based Kohn-Sham formalism, but quite simple in the hydrodynamic approach. We show that for interactions between the clusters of same sizes, $C_{6}$ and $C_{8}$ sale as the sixth and the eighth power of the cluster radius rsepectively, and approach the respective classically predicted values for the large size clusters.

  13. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.; Alonso, J. A.

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number of...... layers, including infinite chains, are considered. The lowest excitation energy peaks in the spectra are characteristic of the robust bonding in these complexes. The excitation energies vary in a systematic way with the metal atoms and with the cluster size, and so these materials could be used to tune...

  14. Time-dependent density-functional study of the ionization and fragmentation of C2H2 and H2 by strong circularly polarized laser pulses

    Russakoff, Arthur; Varga, Kálmán

    2015-11-01

    The ionization and fragmentation dynamics of acetylene and the hydrogen molecule driven by strong short circularly polarized laser pulses are investigated within the framework of the time-dependent density-functional theory coupled with the Ehrenfest dynamics. The effects of alignment are considered and the dynamics is compared to that driven by linearly polarized pulses. It is found that the coupled ion-electron dynamics of both molecules driven by circularly polarized pulses follows the enhanced ionization mechanism, as was found in previous theoretical studies with linearly polarized pulses. A moderate localization asymmetry in the ionization dynamics of the hydrogen molecule was also found, in qualitative agreement with previous experimental investigations.

  15. Efficient real-time time-dependent density functional theory method and its application to a collision of an ion with a 2D material.

    Wang, Zhi; Li, Shu-Shen; Wang, Lin-Wang

    2015-02-13

    We have developed an efficient real-time time-dependent density functional theory (TDDFT) method that can increase the effective time step from algorithm, the TDDFT simulation can have comparable speed to the Born-Oppenheimer (BO) ab initio molecular dynamics (MD). As an application, we simulated the process of an energetic Cl particle colliding onto a monolayer of MoSe(2). Our simulations show a significant energy transfer from the kinetic energy of the Cl particle to the electronic energy of MoSe(2), and the result of TDDFT is very different from that of BO-MD simulations. PMID:25723218

  16. Molecular properties of excited electronic state: Formalism, implementation, and applications of analytical second energy derivatives within the framework of the time-dependent density functional theory/molecular mechanics

    This work extends our previous works [J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011); J. Liu and W. Z. Liang, J. Chem. Phys. 135, 184111 (2011)] on analytical excited-state energy Hessian within the framework of time-dependent density functional theory (TDDFT) to couple with molecular mechanics (MM). The formalism, implementation, and applications of analytical first and second energy derivatives of TDDFT/MM excited state with respect to the nuclear and electric perturbations are presented. Their performances are demonstrated by the calculations of adiabatic excitation energies, and excited-state geometries, harmonic vibrational frequencies, and infrared intensities for a number of benchmark systems. The consistent results with the full quantum mechanical method and other hybrid theoretical methods indicate the reliability of the current numerical implementation of developed algorithms. The computational accuracy and efficiency of the current analytical approach are also checked and the computational efficient strategies are suggested to speed up the calculations of complex systems with many MM degrees of freedom. Finally, we apply the current analytical approach in TDDFT/MM to a realistic system, a red fluorescent protein chromophore together with part of its nearby protein matrix. The calculated results indicate that the rearrangement of the hydrogen bond interactions between the chromophore and the protein matrix is responsible for the large Stokes shift

  17. Nonperturbative time-dependent density-functional theory of ionization and harmonic generation in OCS and CS2 molecules with ultrashort intense laser pulses: Intensity and orientational effects

    Molecular high-order harmonic generation (MHOHG) and molecular orbital ionization rates are calculated for the nonsymmetric OCS and symmetric CS2 molecules using numerical solutions of Kohn-Sham (KS) equations of time-dependent density functional theory in the nonlinear nonperturbative regime of laser-molecule interactions for different laser-molecule orientations and intensities. It is found that the ionization of inner-shell KS molecular orbitals contributes significantly to the ionization and MHOHG processes for intensities I≥ 3.5 x 1014 W/cm2. Ionization rate maxima correspond to the alignment of maximum KS orbital densities with the laser pulse polarization instead of orbital ionization potentials. Furthermore, degeneracies of orbitals are removed as a function of laser-molecule angle, thus affecting ionization rates, the MHOHG spectra, and their polarizations, the latter allowing for identifying inner-orbital ionization.

  18. Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

    Lee, Sang Uck [Univ. of Ulsan, Ulsan (Korea, Republic of)

    2013-08-15

    The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry.

  19. Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory

    Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan

    2015-11-09

    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a power- ful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with con- ventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We con- sider seven low- and high-spin model complexes involving chromium, manganese and iron transition metal centers. Our results are in good agreement with experiment.

  20. Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

    The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry

  1. Examining the specific entropy (density of adiabatic invariants) of the outer electron radiation belt

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

    2008-01-01

    Using temperature and number-density measurements of the energetic-electron population from multiple spacecraft in geosynchronous orbit, the specific entropy S = T/n{sup 2/3} of the outer electron radiation belt is calculated. Then 955,527 half-hour-long data intervals are statistically analyzed. Local-time and solar-cycle variations in S are examined. The median value of the specific entropy (2.8 x 10{sup 7} eVcm{sup 2}) is much larger than the specific entropy of other particle populations in and around the magnetosphere. The evolution of the specific entropy through high-speed-stream-driven geomagnetic storms and through magnetic-cloud-driven geomagnetic storms is studied using superposed-epoch analysis. For high-speed-stream-driven storms, systematic variations in the entropy associated with electron loss and gain and with radiation-belt heating are observed in the various storm phases. For magnetic-cloud-driven storms, multiple trigger choices for the data superpositions reveal the effects of interplanetary shock arrival, sheath driving, cloud driving, and recovery phase. The specific entropy S = T/n{sup 2/3} is algebraically expressed in terms of the first and second adiabatic invariants of the electrons: this allows a relativistic expression for S in terms of T and n to be derived. For the outer electron radiation belt at geosynchronous orbit, the relativistic corrections to the specific entropy expression are -15%.

  2. Generalized adiabatic connection in ensemble density-functional theory for excited states: example of the H2 molecule

    Franck, Odile

    2013-01-01

    A generalized adiabatic connection for ensembles (GACE) is presented. In contrast to the traditional adiabatic connection formulation, both ensemble weights and interaction strength can vary along a GACE path while the ensemble density is held fixed. The theory is presented for non-degenerate two-state ensembles but it can in principle be extended to any ensemble of fractionally occupied excited states. Within such a formalism an exact expression for the ensemble exchange-correlation density-functional energy, in terms of the conventional ground-state exchange-correlation energy, is obtained by integration over the ensemble weight. Stringent constraints on the functional are thus obtained when expanding the ensemble exchange-correlation energy through second order in the ensemble weight. For illustration purposes, the analytical derivation of the GACE is presented for the H2 model system in a minimal basis, leading thus to a simple density-functional approximation to the ensemble exchange-correlation energy. ...

  3. Photoabsorption Spectra of (SiO2)n (n≤5) Clusters on the Basis of Time-Dependent Density Functional Theory

    LIU Dan-Dan; ZHANG Hong

    2010-01-01

    @@ The photoabsorption spectra of (SiO2)n (n= 2-5) clusters[including isomers (D3h,D2d) structures of (SiO2)3 and (C2v,D2h,D4h ) structures of (SiO2)4]are calculated by using time-dependent density-function theory.The equilibrium geometries,the binding energy,the gap between the highest occupied and lowest unoccupied molecular orbitals and vertical ionization potential for corresponding structures are computed using several methods with different types of the basis functions.It is found that the polarizability functions are necessary for the basis functions when optimize the structures of silicon oxide clusters.For different geometries of various clusters and the related isomers,their spectra are very different.Meanwhile,the comparison between using local-density generalized-gradient approximations for exchange-correlation potentials shows that both the calculated spectra present the same spectral feature.We suggest that the calculated photoabsorption spectra could be taken as a tool to elucidate the isomers and clusters structure.

  4. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  5. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    Sato, Shunsuke A.; Taniguchi, Yasutaka; Shinohara, Yasushi; Yabana, Kazuhiro

    2015-12-01

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  6. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases

  7. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree-Fock and density functional theory via linear response.

    Yanai, Takeshi; Fann, George I; Beylkin, Gregory; Harrison, Robert J

    2015-12-21

    A fully numerical method for the time-dependent Hartree-Fock and density functional theory (TD-HF/DFT) with the Tamm-Dancoff (TD) approximation is presented in a multiresolution analysis (MRA) approach. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. The integral equation is efficiently and adaptively solved using a numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H2, Be, N2, H2O, and C2H4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. We introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound. PMID:25711489

  8. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.

    Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A

    2016-06-15

    We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G

  9. Recursive formulation of the multiconfigurational time-dependent Hartree method for fermions, bosons and mixtures thereof in terms of one-body density operators

    Highlights: ► The MCTDH method is specified for mixtures with three kinds of identical particles. ► All four possible cases with fermions and bosons are presented in a unified manner. ► Combinadic-based mapping and one-body density operators are utilized recursively. ► Explicit equations-of-motion with up to three-body interactions are provided. ► Implementation to the non-equilibrium dynamics of mixtures is briefly discussed. - Abstract: The multiconfigurational time-dependent Hartree method (MCTDH) [H.-D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990); U. Manthe, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 97, 3199 (1992)] is celebrating nowadays entering its third decade of tackling numerically-exactly a broad range of correlated multi-dimensional non-equilibrium quantum dynamical systems. Taking in recent years particles’ statistics explicitly into account, within the MCTDH for fermions (MCTDHF) and for bosons (MCTDHB), has opened up further opportunities to treat larger systems of interacting identical particles, primarily in laser-atom and cold-atom physics. With the increase of experimental capabilities to simultaneously trap mixtures of two, three, and possibly even multiple kinds of interacting composite identical particles together, we set up the stage in the present work and specify the MCTDH method for such cases. Explicitly, the MCTDH method for systems with three kinds of identical particles interacting via all combinations of two- and three-body forces is presented, and the resulting equations-of-motion are briefly discussed. All four possible mixtures (Fermi–Fermi–Fermi, Bose–Fermi–Fermi, Bose–Bose–Fermi and Bose–Bose–Bose) are presented in a unified manner. Particular attention is paid to represent the coefficients’ part of the equations-of-motion in a compact recursive form in terms of one-body density operators only. The recursion utilizes the recently proposed Combinadic-based mapping for

  10. First-principles molecular-dynamics simulation of biphenyl under strong laser pulses by time-dependent density-functional theory

    Haruyama, Jun; Hu, Chunping; Watanabe, Kazuyuki

    2012-06-01

    The femtosecond laser reaction dynamics of the 3,5-difluoro-3',5'-dibromo-biphenyl (DFDBrBPh) molecule is investigated using time-dependent density-functional theory combined with molecular-dynamics (TDDFT-MD) simulation. This work is based on a recent experiment that monitored torsional motion of the DFDBrBPh molecule by femtosecond time-resolved Coulomb explosion imaging [Madsen , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.073007 102, 073007 (2009)]. The results confirm that the probe pulse triggers a Coulomb explosion and the kick pulse induces the torsional motion of two phenyl rings, using the experimental settings of the lasers. The Coulomb explosion dynamics simulation verifies that the F and Br atoms dissociate to the ion detector while maintaining their initial alignment with respect to the phenyl rings, which is the fundamental basis of Coulomb explosion imaging of molecular torsion. Furthermore, the period and amplitude of the torsional motion obtained by the simulation are consistent with the experimental values. This validates the ability of the TDDFT-MD method to reveal the underlying mechanism of experimentally observed molecular torsional dynamics.

  11. Electronically Excited States of Vitamin B12: Benchmark Calculations Including Time-Dependent Density Functional Theory and Correlated Ab Initio Methods

    Kornobis, Karina; Wong, Bryan M; Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Rudd, Kenneth; Kozlowski, Pawel M; 10.1021/jp110914y

    2011-01-01

    Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to the electronically excited states of vitamin B12 (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to predict the electronic properties of these fairly complex molecules. However, the description of excited states is strongly dependent on the type of functional used in the calculations. In the present contribution, the choice of a proper functional for vitamin B12 was evaluated in terms of its agreement with both experimental results and correlated ab initio calculations. Three different functionals, i.e. B3LYP, BP86, and LC-BLYP, were tested. In addition, the effect of relative contributions of DFT and HF to the exchange-correlation functional ...

  12. Time-dependent density functional study of the electronic spectra of oligoacenes in the charge states -1, 0, +1, and +2

    Malloci, G; Cappellini, G; Joblin, C

    2007-01-01

    We present a systematic theoretical study of the five smallest oligoacenes (naphthalene, anthracene, tetracene, pentacene, and hexacene) in their anionic,neutral, cationic, and dicationic charge states. We used density functional theory (DFT) to obtain the ground-state optimised geometries, and time-dependent DFT (TD-DFT) to evaluate the electronic absorption spectra. Total-energy differences enabled us to evaluate the electron affinities and first and second ionisation energies, the quasiparticle correction to the HOMO-LUMO energy gap and an estimate of the excitonic effects in the neutral molecules. Electronic absorption spectra have been computed by combining two different implementations of TD-DFT: the frequency-space method to study general trends as a function of charge-state and molecular size for the lowest-lying in-plane long-polarised and short-polarised $\\pi\\to\\pi^\\star$ electronic transitions, and the real-time propagation scheme to obtain the whole photo-absorption cross-section up to the far-UV....

  13. Spin-orbit relativistic long-range corrected time-dependent density functional theory for investigating spin-forbidden transitions in photochemical reactions

    A long-range corrected (LC) time-dependent density functional theory (TDDFT) incorporating relativistic effects with spin-orbit couplings is presented. The relativistic effects are based on the two-component zeroth-order regular approximation Hamiltonian. Before calculating the electronic excitations, we calculated the ionization potentials (IPs) of alkaline metal, alkaline-earth metal, group 12 transition metal, and rare gas atoms as the minus orbital (spinor) energies on the basis of Koopmans' theorem. We found that both long-range exchange and spin-orbit coupling effects are required to obtain Koopmans' IPs, i.e., the orbital (spinor) energies, quantitatively in DFT calculations even for first-row transition metals and systems containing large short-range exchange effects. We then calculated the valence excitations of group 12 transition metal atoms and the Rydberg excitations of rare gas atoms using spin-orbit relativistic LC-TDDFT. We found that the long-range exchange and spin-orbit coupling effects significantly contribute to the electronic spectra of even light atoms if the atoms have low-lying excitations between orbital spinors of quite different electron distributions.

  14. Role of resonance-enhanced multiphoton excitation in high-harmonic generation of N2: A time-dependent density-functional-theory study

    Chu, Xi; Groenenboom, Gerrit C.

    2013-01-01

    A minimum at ˜39 eV is observed in the high-harmonic-generation spectra of N2 for several laser intensities and frequencies. This minimum appears to be invariant for different molecular orientations. We reproduce this minimum for a set of laser parameters and orientations in time-dependent density-functional-theory calculations, which also render orientation-dependent maxima at 23-26 eV. Photon energies of these maxima overlap with ionization potentials of excited states observed in photoelectron spectra. Time profile analysis shows that these maxima are caused by resonance-enhanced multiphoton excitation. We propose a four-step mechanism, in which an additional excitation step is added to the well-accepted three-step model. Excitation to a linear combination of Rydberg states c4'1Σu+ and c31Πu gives rise to an orientation-invariant minimum analogous to the “Cooper minimum” in argon. When the molecular axis is parallel to the polarization direction of the field, a radial node goes through the atomic centers, and hence the Cooper-like minimum coincides with the minimum predicted by a modified two-center interference model that considers the de-excitation of the ion and symmetry of the Rydberg orbital.

  15. Time-dependent density functional study on the electronic excitation energies of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene, pyrene, and perylene

    Time-dependent density functional theory (TDDFT) and its modification, the Tamm - Dancoff approximation to TDDFT, are employed to calculate the electronic excitation energies and oscillator strengths for a series of polycyclic aromatic hydrocarbon radical cations. For the radical cations of naphthalene and anthracene, TDDFT using the Becke - Lee - Yang - Parr functional and the 6-31G** basis set provides the excitation energies that are roughly within 0.3 eV of the experimental data. The assignments of the electron transitions proposed by TDDFT accord with the previous assignments made by accurate ab initio calculations, except that TDDFT indicates the existence of a few additional transitions of π*left-arrow σ character among the several low-lying transitions. The calculated energies for these π*left-arrow σ transitions are found to be consistent with the onset of a σ electron ionization manifold in the photoelectron spectra. For the pyrene radical cation, TDDFT supports the previous assignments made by semiempirical calculations, whereas for the perylene radical cation, TDDFT suggests the energy ordering of the three lowest-lying excited states be changed from those of the semiempirical results. copyright 1999 American Institute of Physics

  16. Magnetic circular dichroism of porphyrins containing M = Ca, Ni, and Zn. A computational study based on time-dependent density functional theory.

    Peralta, G A; Seth, Michael; Ziegler, Tom

    2007-10-29

    A theoretical study is presented on the magnetic circular dichroism (MCD) exhibited by the porphyrin complexes MP (M = Mg,Ni,Zn), MTPP (M = Mg,Ni,Zn), and NiOEP, where P = porphyrin, TPP = tetraphenylporphyrin, and OEP = octaethylporphyrin. The study makes use of a newly implemented method for the calculation of A and B terms from the theory of MCD and is based on time-dependent density functional theory (TD-DFT). It is shown that the MCD spectrum is dominated by a single positive A term in the Q-band region in agreement with experiment where available. The band can be fully explained as the first transition in Gouterman's four-orbital model for the type of porphyrins studied here. For the Soret band, the experimental MCD spectrum appears as a single positive A term. This is also what is found computationally for NiP and NiTPP, where the second transition in Gouterman's four-orbital model give rise to a positive A term. However, for the remaining systems, the simulated MCD spectrum is actually due to two B terms that have the appearance of one positive pseudo A term. The two B terms appear because the second Gouterman state is coupled strongly to a second excited state (b(2u) --> 2e(g)) of nearly the same energy by the external magnetic field. PMID:17914806

  17. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-08-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules.

  18. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals

    Zuehlsdorff, T. J.; Hine, N. D. M.; Payne, M. C.; Haynes, P. D.

    2015-11-01

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

  19. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment

  20. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals.

    Zuehlsdorff, T J; Hine, N D M; Payne, M C; Haynes, P D

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment. PMID:26627950

  1. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals

    Zuehlsdorff, T. J., E-mail: tjz21@cam.ac.uk; Payne, M. C. [Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Hine, N. D. M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Haynes, P. D. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

  2. Extending the random-phase approximation for electronic correlation energies: the renormalized adiabatic local density approximation

    Olsen, Thomas; Thygesen, Kristian S.

    2012-01-01

    The adiabatic connection fluctuation-dissipation theorem with the random phase approximation (RPA) has recently been applied with success to obtain correlation energies of a variety of chemical and solid state systems. The main merit of this approach is the improved description of dispersive forces...

  3. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.

    Li, Zhendong; Liu, Wenjian

    2016-06-14

    Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems. PMID

  4. Time-dependent density functional theory applied to ligand-field excitations and their circular dichroism in some transition metal complexes

    Graphical abstract: Ligand-field (LF) transitions in [Co(en)3]3+ and [Rh(en)3]2+ and the low-energy part of the electronic circular dichroism (CD) spectrum of [Fe(phen)3]2+ are investigated with time-dependent density functional theory (TDDFT). There is a strong functional dependence for [Co(en)3]3+ and [Fe(phen)3]2+. ΔSCF methods reproduce the ligand-field singlet excitation energies of [Co(en)3]3+ and [Rh(en)3]2+ well. For the LF transitions of [Co(en)3]3+ TDDFT with a hybrid functional with around 25correction/Coulomb attenuation offers little improvement for the LF transitions in [Co(en)3]3+ because the occupied and unoccupied orbitals involved are in close spatial proximity. Highlights: ► TDDFT Ligand-field (LF) excitations in 3d metal complexes are functional dependent. ► Study of Co(en)3(3+) links sensitivity to correlation/self-interaction balance. ► Correlation effects on the LF spectra are very large. ► Range separated functionals offer limited improvement due to spatial proximity of orbitals. - Abstract: Ligand-field transitions in [Co(en)3]3+ and [Rh(en)3]3+ as well as the low-energy part of the electronic spectrum of [Fe(phen)3]2+ are investigated with time-dependent density functional theory (TDDFT). There is a strong functional dependence for [Co(en)3]3+ and [Fe(phen)3]2+. ΔSCF methods reproduce the ligand-field singlet excitation energies of [Co(en)3]3+ and [Rh(en)3]3+ very well. The case of [Co(en)3]3+ is analyzed in some detail, in particular regarding the possibility of applying a charge-transfer (CT) correction [M.E. Casida, F. Gutierrez, J. Guan, F.-X. Gadea, D.R. Salahub, J.-P. Daudey, J. Chem. Phys. 113 (2000) 7062]. A simple CT correction would not be sufficient, but the magnitude of the charge transfer correction term in comparison with the calculated excitation energy appears to be indicative of self-interaction problems in the ground state electronic structure and in the calculated excitation energies. For the ligand

  5. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: Linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation

    Isegawa, Miho; Truhlar, Donald G.

    2013-04-01

    Time-dependent density functional theory (TDDFT) holds great promise for studying photochemistry because of its affordable cost for large systems and for repeated calculations as required for direct dynamics. The chief obstacle is uncertain accuracy. There have been many validation studies, but there are also many formulations, and there have been few studies where several formulations were applied systematically to the same problems. Another issue, when TDDFT is applied with only a single exchange-correlation functional, is that errors in the functional may mask successes or failures of the formulation. Here, to try to sort out some of the issues, we apply eight formulations of adiabatic TDDFT to the first valence excitations of ten molecules with 18 density functionals of diverse types. The formulations examined are linear response from the ground state (LR-TDDFT), linear response from the ground state with the Tamm-Dancoff approximation (TDDFT-TDA), the original collinear spin-flip approximation with the Tamm-Dancoff (TD) approximation (SF1-TDDFT-TDA), the original noncollinear spin-flip approximation with the TDA approximation (SF1-NC-TDDFT-TDA), combined self-consistent-field (SCF) and collinear spin-flip calculations in the original spin-projected form (SF2-TDDFT-TDA) or non-spin-projected (NSF2-TDDFT-TDA), and combined SCF and noncollinear spin-flip calculations (SF2-NC-TDDFT-TDA and NSF2-NC-TDDFT-TDA). Comparing LR-TDDFT to TDDFT-TDA, we observed that the excitation energy is raised by the TDA; this brings the excitation energies underestimated by full linear response closer to experiment, but sometimes it makes the results worse. For ethylene and butadiene, the excitation energies are underestimated by LR-TDDFT, and the error becomes smaller making the TDA. Neither SF1-TDDFT-TDA nor SF2-TDDFT-TDA provides a lower mean unsigned error than LR-TDDFT or TDDFT-TDA. The comparison between collinear and noncollinear kernels shows that the noncollinear kernel

  6. Simulating Ru L3-Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    Kuiken, Benjamin E. Van; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-04-26

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  7. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory

    Valsson, Omar [Department of Chemistry and Applied Biosciences, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computationali, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Filippi, Claudia, E-mail: c.filippi@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Casida, Mark E., E-mail: mark.casida@ujf-grenoble.fr [Laboratoire de Chimie Théorique, Département de Chimie Moléculaire (DCM), Institut de Chimie Moléculaire de Grenoble (ICMG), Université Joseph Fourier, Grenoble I, F-3801 Grenoble (France)

    2015-04-14

    The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate the performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer Λ criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction.

  8. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.

    Herbert, John M; Zhang, Xing; Morrison, Adrian F; Liu, Jie

    2016-05-17

    Single-excitation methods, namely, configuration interaction singles and time-dependent density functional theory (TDDFT), along with semiempirical versions thereof, represent the most computationally affordable electronic structure methods for describing electronically excited states, scaling as [Formula: see text] absent further approximations. This relatively low cost, combined with a treatment of electron correlation, has made TDDFT the most widely used excited-state quantum chemistry method over the past 20+ years. Nevertheless, certain inherent problems (beyond just the accuracy of this or that exchange-correlation functional) limit the utility of traditional TDDFT. For one, it affords potential energy surfaces whose topology is incorrect in the vicinity of any conical intersection (CI) that involves the ground state. Since CIs are the conduits for transitions between electronic states, the TDDFT description of photochemistry (internal conversion and intersystem crossing) is therefore suspect. Second, the [Formula: see text] cost can become prohibitive in large systems, especially those that involve multiple electronically coupled chromophores, for example, the antennae structures of light-harvesting complexes or the conjugated polymers used in organic photovoltaics. In such cases, the smallest realistic mimics might already be quite large from the standpoint of ab initio quantum chemistry. This Account describes several new computational methods that address these problems. Topology around a CI can be rigorously corrected using a "spin-flip" version of TDDFT, which involves an α → β spin-flipping transition in addition to occupied → virtual excitation of one electron. Within this formalism, singlet states are generated via excitation from a high-spin triplet reference state, doublets from a quartet, etc. This provides a more balanced treatment of electron correlation between ground and excited states. Spin contamination is problematic away from the

  9. Integrated Logistics Support Analysis of the International Space Station Alpha, Background and Summary of Mathematical Modeling and Failure Density Distributions Pertaining to Maintenance Time Dependent Parameters

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The process of predicting the values of maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability and maintenance support costs. There are two types of parameters in the logistics and maintenance world: a. Fixed; b. Variable Fixed parameters, such as cost per man hour, are relatively easy to predict and forecast. These parameters normally follow a linear path and they do not change randomly. However, the variable parameters subject to the study in this report such as MTBF do not follow a linear path and they normally fall within the distribution curves which are discussed in this publication. The very challenging task then becomes the utilization of statistical techniques to accurately forecast the future non-linear time dependent variable arisings and events with a high confidence level. This, in turn, shall translate in tremendous cost savings and improved availability all around.

  10. Time Dependent Resonance Theory

    Soffer, A.; Weinstein, M. I.

    1998-01-01

    An important class of resonance problems involves the study of perturbations of systems having embedded eigenvalues in their continuous spectrum. Problems with this mathematical structure arise in the study of many physical systems, e.g. the coupling of an atom or molecule to a photon-radiation field, and Auger states of the helium atom, as well as in spectral geometry and number theory. We present a dynamic (time-dependent) theory of such quantum resonances. The key hypotheses are (i) a reso...

  11. The density variance - Mach number relation in isothermal and non-isothermal adiabatic turbulence

    Nolan, Christopher A.; Federrath, Christoph; Sutherland, Ralph S.

    2015-01-01

    The density variance - Mach number relation of the turbulent interstellar medium is relevant for theoretical models of the star formation rate, efficiency, and the initial mass function of stars. Here we use high-resolution hydrodynamical simulations with grid resolutions of up to 1024^3 cells to model compressible turbulence in a regime similar to the observed interstellar medium. We use Fyris Alpha, a shock-capturing code employing a high-order Godunov scheme to track large density variatio...

  12. Steps in the exact time-dependent potential energy surface

    Abedi, Ali; Suzuki, Yasumitsu; Gross, E K U

    2013-01-01

    We study the exact Time-Dependent Potential Energy Surface (TDPES) in the presence of strong non-adiabatic coupling between the electronic and nuclear motion. The concept of the TDPES emerges from the exact factorization of the full electron-nuclear wave-function [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. \\textbf{105}, 123002 (2010)]. Employing a 1D model-system, we show that the TDPES exhibits a dynamical step that bridges between piecewise adiabatic shapes. We analytically investigate the position of the steps and the nature of the switching between the adiabatic pieces of the TDPES.

  13. Entropy density of an adiabatic relativistic Bose-Einstein condensate star

    Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of T due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT3-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition

  14. Entropy density of an adiabatic relativistic Bose-Einstein condensate star

    Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza [Theoretical Physics Lab., Department of Physics, Faculty of Science Building, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of T due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.

  15. The influence of C2H2 and dust formation on the time dependence of metastable argon density in pulsed plasmas

    Stefanovic, Ilija; Sadeghi, Nader; Winter, Jörg

    2010-01-01

    Abstract Diode laser absorption at 772.38 nm is used to measure the time resolved density of Ar*(3 P 2) metastable atoms in a capacitively coupled radio-frequency (RF) discharge running in argon/acetylene mixture at 0.1 mbar. The RF power is pulsed at 100 Hz and the density of Ar*(3 P 2) atoms in the 5 ms ON time and in the afterglow are recorded. Different plasma conditions, namely: 1) pure argon, 2) argon + 7% acetylene before powder formation, 3) argon + 7% acetylene after dust particle...

  16. Shock compression and adiabatic decompression of a dense bismuth plasma at extreme thermal energy densities

    Experimental results on the shock-wave compression of solid and porous bismuth samples at pressures over the range 0.4-6 Mbar are reported. The course of the supercritical decompression isentropes between a highly compressed condensed state and a low-density plasma has been determined. The experimental results are used to write a thermodynamic description of the high-energy states of a dense bismuth plasma. 11 references

  17. Boundedness and permanence in a class of periodic time-dependent predator-prey system with prey dispersal and predator density-independence

    Zhang Long [College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046 (China)], E-mail: longzhang_xj@sohu.com; Teng Zhidong [College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046 (China)], E-mail: zhidong@xju.edu.cn

    2008-05-15

    In this paper, we study two species predator-prey Lotka-Volterra type dispersal system with periodic coefficients, in which the prey species can disperse among n patches, while the density-independent predator species is confined to one of the patches and cannot disperse. Sufficient conditions on the boundedness, permanence and existence of positive periodic solution for this system are established. The theoretical results are confirmed by a special example and numerical simulations.

  18. Measurement of the electric-field and time dependence of the effective oxide-charge density of the Si-SiO2 system

    The surface radiation damage of SiO2 grown on high-ohmic n-type Si, as used for the fabrication of segmented silicon sensors, has been investigated. A circular p-MOSFET, biased in inversion at a field in the SiO2 of about 500 kV/cm, has been irradiated by X-rays up to a dose of about 17 kGy(SiO2) in different irradiation steps. Before and after each irradiation, the gate voltage has been cycled from inversion to accumulation conditions and back, and the threshold voltage of the MOSFET and the hole mobility at the Si-SiO2 interface determined. From the threshold voltage, the effective oxide-charge density is calculated. The measurement of the drain-source current during the irradiation allows the study of the change of the oxide-charge density during irradiation. Results on the dose dependence of the effective oxide-charge density, the charging-up and discharging of border traps when changing the gate voltage, and the hole mobility at the Si-SiO2 interface are presented

  19. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    Welch, E. C.; Zhang, P.; He, Z.-H. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Dollar, F. [JILA, University of Colorado, Boulder, Colorado 80309 (United States); Krushelnick, K.; Thomas, A. G. R., E-mail: agrt@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States)

    2015-05-15

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.

  20. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a0 with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely

  1. Study of local response effects in interatomic collisions with two active electrons in the framework of time-dependent density functional theory; Untersuchung lokaler Responseffekte in interatomaren Stoessen mit zwei aktiven Elektronen im Rahmen zeitabhaengiger Dichtefunktionaltheorie

    Keim, M.

    2005-07-01

    In the present thesis response effects in interatomic collisions with two active electrons are studied in the range of non-relativistic collision energies. The starting point is the mapping of the time-dependent interacting many-electron sytem on an effective one-particle picture on the base of the time-dependent density functional theory (TDDFT). By means of the basis generator method the one-particle equations aring in the framework of the TDDFT concept are solved in a finite-dimensional model space. In the study of ionization cross section in the collisional systeem anti p+He it is shown that by response effects an essential diminuishing of the cross sections in comparison to the no-response case is reached. Analoguously the ionization cross sections for the collisional systems p-He, He{sup 2+}-He, Li{sup 3+}-He and p-Li{sup +} behave.

  2. Linear-scaling time-dependent density-functional theory (TDDFT) beyond the Tamm-Dancoff approximation: obtaining efficiency and accuracy with in situ optimised local orbitals

    Zuehlsdorff, Tim J; Payne, Mike C; Haynes, Peter D

    2015-01-01

    We present a solution of the full TDDFT eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspace with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate-gradients algorithm that is very memory-efficient. The algorithm is validated on a test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll (BChl) i...

  3. Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...

  4. Electronic Absorption Spectra of Neutral Perylene (C20H12), Terrylene (C30H16), and Quaterrylene (C40H20) and their Positive and Negative Ions: Ne Matrix-Isolation Spectroscopy and Time Dependent Density Functional Theory Calculations

    Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.

  5. Time-Dependent BPS Skyrmions

    Ioannidou, Theodora

    2016-01-01

    An extended version of the BPS Skyrme model that admits time-dependent solutions is discussed. Initially, by introducing a power law at the original potential term of the BPS Skyrme model the existence, stability and structure of the corresponding solutions is investigated. Then, the frequencies and half-lifes of the radial oscillations of the constructed time-dependent solutions are determined.

  6. Optimizing adiabaticity in quantum mechanics

    MacKenzie, R; Renaud-Desjardins, L

    2011-01-01

    A condition on the Hamiltonian of a time-dependent quantum mechanical system is derived which, if satisfied, implies optimal adiabaticity (defined below). The condition is expressed in terms of the Hamiltonian and in terms of the evolution operator related to it. Since the latter depends in a complicated way on the Hamiltonian, it is not yet clear how the condition can be used to extract useful information about the optimal Hamiltonian. The condition is tested on an exactly-soluble time-dependent problem (a spin in a magnetic field), where perfectly adiabatic evolution can be easily identified.

  7. Time-Dependent Transport in Nanoscale Devices

    CHEN Zhi-Dong; ZHANG Jin-Yu; YU Zhi-Ping

    2009-01-01

    A method for simulating ballistic time-dependent device transport,which solves the time-dependent SchrSdinger equation using the finite difference time domain (FDTD) method together with Poisson's equation,is described in detail The effective mass SchrSdinger equation is solved. The continuous energy spectrum of the system is discretized using adaptive mesh,resulting in energy levels that sample the density-of-states.By calculating time evolution of wavefunctions at sampled energies,time-dependent transport characteristics such as current and charge density distributions are obtained.Simulation results in a uanowire and a coaxially gated carbon nanotube field-effect transistor (CNTFET) are presented.Transient effects,e.g.,finite rising time,are investigated in these devices.

  8. Microscopic expression for heat in the adiabatic basis.

    Polkovnikov, Anatoli

    2008-11-28

    We derive a microscopic expression for the instantaneous diagonal elements of the density matrix rho(nn)(t) in the adiabatic basis for an arbitrary time-dependent process in a closed Hamiltonian system. If the initial density matrix is stationary (diagonal) then this expression contains only squares of absolute values of matrix elements of the evolution operator, which can be interpreted as transition probabilities. We then derive the microscopic expression for the heat defined as the energy generated due to transitions between instantaneous energy levels. If the initial density matrix is passive [diagonal with rho(nn)(0) monotonically decreasing with energy] then the heat is non-negative in agreement with basic expectations of thermodynamics. Our findings also can be used for systematic expansion of various observables around the adiabatic limit. PMID:19113464

  9. Time-dependent renormalized natural orbital theory applied to the two-electron spin-singlet case: ground state, linear response, and autoionization

    Brics, M

    2013-01-01

    Favorably scaling numerical time-dependent many-electron techniques such as time-dependent density functional theory (TDDFT) with adiabatic exchange-correlation potentials typically fail in capturing highly correlated electron dynamics. We propose a method based on natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix, that is almost as inexpensive numerically as adiabatic TDDFT, but which is capable of describing correlated phenomena such as doubly excited states, autoionization, Fano profiles in the photoelectron spectra, and strong-field ionization in general. Equations of motion (EOM) for natural orbitals and their occupation numbers have been derived earlier. We show that by using renormalized natural orbitals (RNO) both can be combined into one equation governed by a hermitian effective Hamiltonian. We specialize on the two-electron spin-singlet system, known as being a "worst case" testing ground for TDDFT, and employ the widely used, numerically exactly solvable, one-dimens...

  10. Attosecond electronic and nuclear quantum photodynamics of ozone: time-dependent Dyson orbitals and dipole

    Perveaux, A; Lasorne, B; Gatti, F; Robb, M A; Halász, G J; Vibók, Á

    2014-01-01

    A nonadiabatic scheme for the description of the coupled electron and nuclear motions in the ozone molecule was proposed recently. An initial coherent nonstationary state was prepared as a superposition of the ground state and the excited Hartley band. In this situation neither the electrons nor the nuclei are in a stationary state. The multiconfiguration time dependent Hartree method was used to solve the coupled nuclear quantum dynamics in the framework of the adiabatic separation of the time-dependent Schr\\"odinger equation. The resulting wave packet shows an oscillation of the electron density between the two chemical bonds. As a first step for probing the electronic motion we computed the time-dependent molecular dipole and the Dyson orbitals. The latter play an important role in the explanation of the photoelectron angular distribution. Calculations of the Dyson orbitals are presented both for the time-independent as well as the time-dependent situations. We limited our description of the electronic mot...