Plasma heating via adiabatic magnetic compression-expansion cycle
Avinash, K.; Sengupta, M.; Ganesh, R.
2016-06-01
Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.
Adiabatic Compression of Oxygen: Real Fluid Temperatures
Barragan, Michelle; Wilson, D. Bruce; Stoltzfus, Joel M.
2000-01-01
The adiabatic compression of oxygen has been identified as an ignition source for systems operating in enriched oxygen atmospheres. Current practice is to evaluate the temperature rise on compression by treating oxygen as an ideal gas with constant heat capacity. This paper establishes the appropriate thermodynamic analysis for the common occurrence of adiabatic compression of oxygen and in the process defines a satisfactory equation of state (EOS) for oxygen. It uses that EOS to model adiabatic compression as isentropic compression and calculates final temperatures for this system using current approaches for comparison.
Highlights: • A multi-stage AA-CAES system model is established based on thermodynamic theory. • Four Cases about pressure loss and effectiveness of heat exchanger are investigated. • The impact of pressure loss on conversion of heat energy in TES is more sensitive. • The impact of heat exchanger effectiveness in charge process on system is stronger. • Pressure loss in heat exchanger affects the change trends of system efficiency. - Abstract: Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is a large-scale energy storage system based on gas turbine technology and thermal energy storage (TES). Electrical energy can be converted into internal energy of air and heat energy in TES during the charge process, while reverse energy conversion proceeds during discharge process. The performance of AA-CAES system requires further improvement in order to increase efficiency. In this paper, a multi-stage AA-CAES system model is established, and the influence of effectiveness and pressure loss in heat exchanger on energy conversion and utilization efficiency of AA-CAES system is analyzed theoretically based on the theory of thermodynamics. Four Cases about effectiveness and pressure loss of heat exchanger are investigated and compared with each other. It is found that effectiveness and pressure loss of heat exchanger are directly related to energy conversion and utilization in AA-CAES system. System efficiency changes with the variation of heat exchanger effectiveness and the impact of pressure loss on conversion of heat energy in TES is more sensitive than that of internal energy of air. Pressure loss can cause the complexity of system efficiency change. With appropriate selection of the values of heat exchanger effectiveness for both charge and discharge processes, an AA-CAES system with a higher efficiency could be expected
Adiabatic Liquid Piston Compressed Air Energy Storage
Petersen, Tage; Elmegaard, Brian; Pedersen, Allan Schrøder
This project investigates the potential of a Compressed Air Energy Storage system (CAES system). CAES systems are used to store mechanical energy in the form of compressed air. The systems use electricity to drive the compressor at times of low electricity demand with the purpose of converting the...... compensates the added investment. •When comparing ALP-CAES to an adiabatic CAES system, where compression heat is stored in thermal oil, the ALP-CAES system is found only to be competitive under a very specific set of operating/design conditions, including very high operation pressure and the use of very...... primarily due to the investment in turbine/generator, heat exchangers, and a large quantity of thermal oil. To improve the economy, it would be relevant to investigate the possibility of replacing the thermal oil by water, for example by injecting the water directly into the air flow between the different...
Bellan, Paul; Wongwaitayakornkul, Pakorn; Chai, Kil-Byoung; Greig, Amelia; Li, Hui
2015-11-01
Magnetized inertial fusion (MIF) is based on having an imploding liner adiabatically compress a magnetized plasma to the density and temperature required for thermonuclear fusion. The goal of the Caltech research program is to determine the scaling of the temperature and density increase when an actual experimental plasma is adiabatically compressed. The plasma parameters will be more modest than a fusion-grade configuration, but in compensation, the shot repetition rate will be much higher and the experiments will be non-destructive. The non-destructive feature results from having a high-speed magnetized plasma jet impact a localized heavy gas. From the point of view of an observer in the frame of the magnetized plasma jet, it will look as if the heavy gas is impacting and compressing the magnetized plasma and so, except for some geometrical differences, the configuration is equivalent to a liner impacting and compressing a stationary magnetized plasma. The experiment will be modeled by 3D numerical MHD and PIC codes. (as of approximately September 15).
Adiabatic reversible compression: a molecular view
The adiabatic compression (or expansion) of an ideal gas has been analysed. Using the kinetic theory of gases the usual relation between temperature and volume is obtained, while textbooks follow a thermodynamic approach. In this way we show, once again, the agreement between a macroscopic view (thermodynamics) and a microscopic one (kinetic theory). (author)
Additional adiabatic heating of plasma
A theoretical possibility of a plasma additional adiabatic heating up to temperatures needed for the begin of D-T thermonuclear fusion reaction, has been found on the base of the polyenergetic conjugation expression, developed in the Thermodynamics of Accumulation Processes. TAP is a branch of the non-equilibrium thermodynamics. The thermodynamics of irreversible processes is another branch of the entire non-equilibrium thermodynamics. TAP deals with the phenomena associated with the introduction, conversion and accumulation of mass or energy or both in the affected, open or closed systems. (author) 2 refs
Adiabatic and isothermal compressibility in the liquid state
The paper reviews the work carried out on the adiabatic and isothermal compressibility of liquid alkali metals. Saturated liquid states are discussed, including thermodynamic relations, adiabatic compressibility and isothermal compressibility. Results for the compressibility, and other related quantities, for the saturated liquids: lithium, potassium, rubidium, caesium and sodium, over the temperature range approx.= 300 - 18000 K, are presented. Subcooled liquid states are also examined with respect to its thermodynamic relations, and compressibility results (and other related quantities) for the same elements are given. An assessment of errors and data reliability is briefly discussed. (U.K.)
When an Adiabatic Irreversible Expansion or Compression Becomes Reversible
Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.
2009-01-01
This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…
When an adiabatic irreversible expansion or compression becomes reversible
This paper aims to contribute to a better understanding of the concepts of a reversible process and entropy. For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure Pi to a final pressure Pf, by being placed in contact with a set of N work reservoirs with pressures decreasing (increasing) in a geometric or arithmetic progression. The gas entropy change ΔS is evaluated and it is clearly shown that ΔS > 0 for any finite N, but as the number of work reservoirs goes to infinity the entropy change goes to zero, i.e. the process becomes reversible. Additionally, this work draws attention to the work reservoir concept, which is virtually ignored in the literature, and to its analogy with the commonly used heat reservoir concept. Finally, it complements and reinforces an earlier study dealing with irreversible cooling or heating so that the synergy created by the two studies is important from both theoretical and educational standpoints
Vacuum vessel eddy current modeling for TFTR adiabatic compression experiments
DeLucia, J.; Bell, M.; Wong, K.L.
1985-07-01
A relatively simple current filament model of the TFTR vacuum vessel is described. It is used to estimate the three-dimensional structure of magnetic field perturbations in the vicinity of the plasma that arise from vacuum vessel eddy currents induced during adiabatic compression. Eddy currents are calculated self-consistently with the plasma motion. The Shafranov formula and adiabatic scaling laws are used to model the plasma. Although the specific application is to TFTR, the present model is of generation applicability.
Vacuum vessel eddy current modeling for TFTR adiabatic compression experiments
A relatively simple current filament model of the TFTR vacuum vessel is described. It is used to estimate the three-dimensional structure of magnetic field perturbations in the vicinity of the plasma that arise from vacuum vessel eddy currents induced during adiabatic compression. Eddy currents are calculated self-consistently with the plasma motion. The Shafranov formula and adiabatic scaling laws are used to model the plasma. Although the specific application is to TFTR, the present model is of generation applicability
Commercial concepts for adiabatic compressed air energy storage
Freund, Sebastian [General Electric Global Research, Garching (Germany); Schainker, Robert [Electric Power Research Institute, Palo Alto, CA (United States); Moreau, Robert [General Electric Oil and Gas, Florence (Italy)
2012-07-01
Adiabatic compressed air energy storage (ACAES) systems offer the potential for efficient large-scale energy storage, almost approaching values typical for pumped hydro. In an ACAES plant, the heat of compression is stored and utilized during the expansion of the air instead of firing natural gas like in commercial CAES. However, no ACAES plants have been commercialized due to challenges with respect to the cost and the heat storage technology. In this study, conducted by EPRI, GE Global Research and GE Oil and Gas, several concepts for ACAES plants are analyzed and their efficiency, complexity and technical risk compared. The components selected for the plants are available either off-the-shelf or near-commercial within a short development time and without the high costs associated with developing a new generation of large custom-made compressors and turbines. The most promising concept for near-term commercialization and low costs turns out to be a two-stage, low-temperature ACAES system. A regenerative (solid) and a recuperative (liquid) thermal storage system have been designed and analyzed for this concept, with the result that the liquid-recuperative system offers a much lower cost and comparable performance. Performance and cost targets for the concepts are 100 MW output per plant for 6 h with a round-trip efficiency above 60% and a capital cost of about $1000/kW. Selections of the turbomachinery for the compression and expansion train from General Electric Oil and Gas are presented for several plant options along with their expansion power range (25..100 MW), round-trip efficiency (66%..70%) and preliminary capital cost estimates (1100..1200 $/kW).
Adiabatic Liquid Piston Compressed Air Energy Storage
Petersen, Tage; Elmegaard, Brian; Pedersen, Allan Schrøder
2013-01-01
This project investigates the potential of a Compressed Air Energy Storage system (CAES system). CAES systems are used to store mechanical energy in the form of compressed air. The systems use electricity to drive the compressor at times of low electricity demand with the purpose of converting the mechanical energy into electricity at times of high electricity demand. Two such systems are currently in operation; one in Germany (Huntorf) and one in the USA (Macintosh, Alabama). In both cases, ...
Adiabatic Flame Temperature and Specific Heat of Combustion Gases
Torii, Shuichi; Yano, Toshiaki; Tsunoda, Yukio; トリイ, シュウイチ; ヤノ, トシアキ; ツノダ, ユキオ; 鳥居, 修一; 矢野, 利明; 角田, 幸男
1992-01-01
The aim of the present work is to examine adiabatic flame temperature and the specific heat of combustion gases for both hydrocarbon-air and alcohol-air mixtures by means of a method of chemical equilibrium calculation. Emphasis is placed on the elucidation of simplified correlation equations capable of predicting (i) adiabatic flame temperature at any equivalence ratio and (ii) the specific heat of combustion gases when the adiabatic flame temperature, the gas temperature and the equivalence...
Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage
Highlights: • The paper presents a thermodynamic analysis of A-CAES using packed bed regenerators. • The packed beds are used to store the compression heat. • A numerical model is developed, validated and used to simulate system operation. • The simulated efficiencies are between 70.5% and 71.1% for continuous operation. • Heat build-up in the beds reduces continuous cycle efficiency slightly. - Abstract: The majority of articles on Adiabatic Compressed Air Energy Storage (A-CAES) so far have focussed on the use of indirect-contact heat exchangers and a thermal fluid in which to store the compression heat. While packed beds have been suggested, a detailed analysis of A-CAES with packed beds is lacking in the available literature. This paper presents such an analysis. We develop a numerical model of an A-CAES system with packed beds and validate it against analytical solutions. Our results suggest that an efficiency in excess of 70% should be achievable, which is higher than many of the previous estimates for A-CAES systems using indirect-contact heat exchangers. We carry out an exergy analysis for a single charge–storage–discharge cycle to see where the main losses are likely to transpire and we find that the main losses occur in the compressors and expanders (accounting for nearly 20% of the work input) rather than in the packed beds. The system is then simulated for continuous cycling and it is found that the build-up of leftover heat from previous cycles in the packed beds results in higher steady state temperature profiles of the packed beds. This leads to a small reduction (<0.5%) in efficiency for continuous operation
Hobson, M. J.
1981-11-01
The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)
Adiabatic compression of elongated field-reversed configurations
The simplest model of plasma dynamics is the adiabatic model. In this model the plasma is assumed to be in MHD equilibrium at each instant of time. The equilibria are connected by the requirement that they all have the same entropy per unit flux, i.e., the equilibria form a sequence generated by adiabatic changes. The standard way of computing such a sequence of equilibria was developed by Grad, but its practical use requires a fairly complicated code. It would be helpful if approximately the same results could be gotten either with a much simpler code or by analytical techniques. A one-dimensional equilibrium code is described and its results are checked against a two-dimensional equilibrium. An even simpler analytic calculation is then presented
Microscopic expression for heat in the adiabatic basis.
Polkovnikov, Anatoli
2008-11-28
We derive a microscopic expression for the instantaneous diagonal elements of the density matrix rho(nn)(t) in the adiabatic basis for an arbitrary time-dependent process in a closed Hamiltonian system. If the initial density matrix is stationary (diagonal) then this expression contains only squares of absolute values of matrix elements of the evolution operator, which can be interpreted as transition probabilities. We then derive the microscopic expression for the heat defined as the energy generated due to transitions between instantaneous energy levels. If the initial density matrix is passive [diagonal with rho(nn)(0) monotonically decreasing with energy] then the heat is non-negative in agreement with basic expectations of thermodynamics. Our findings also can be used for systematic expansion of various observables around the adiabatic limit. PMID:19113464
Adiabatic compressibility of myosin subfragment-1 and heavy meromyosin with or without nucleotide.
Tamura, Y; Suzuki, N.; Mihashi, K
1993-01-01
The partial specific adiabatic compressibilities of myosin subfragment-1 (S1) and heavy meromyosin (HMM) of skeletal muscle in solution were determined by measuring the density and the sound velocity of the solution. The partial specific volumes of S1 and HMM were 0.713 and 0.711 cm3/g, respectively. The partial specific adiabatic compressibilities of S1 and HMM were 4.2 x 10(-12) and 2.9 x 10(-12) cm2/dyn, respectively. These values are in the same range as the most of globular proteins so f...
Adiabatic femtosecond pulse compression and control by using quadratic cascading nonlinearity
Zeng, Xianglong; Ashihara, Satoshi; Shimura, Tsutomu; Kuroda, Kazuo
2008-01-01
We experimentally demonstrate that adiabatic compression of femtosecond pulse can be achieved by employing the management of quadratic cascading nonlinearity in quasi-phase-matching gratings. Cascading nonlinearity is not a simple analogy with third-order optical nonlinearity in term of the engineering properties of the magnitude and focusing (or defocusing) nonlinearity. Femtosecond pulse compression is investigated based on type-I (e: o + o) collinear QPM geometry of aperiodically poled MgO-doped LiNbO 3 (MgO: LN). Group-velocity-matching condition is chosen to generate quadratic femtosecond soliton consisting of fundamental (FF) and second harmonic (SH) pulses. Adiabatic-like compression process is observed in the length of 50 mm linearly chirped QPM. Cascading nonlinearity is local managed, instead of dispersion management used in fiber adiabatic soliton compression. Quadratic soliton including FF and SH pulses are obtained from the compression of 95 fs FF pulse in the initial experiments. Dependence on the phase mismatch and group velocity mismatch, cascading nonlinearity has a flexible property and presents a new challenge for exploring femtosecond pulse shaping and control. The demonstrated pulse compression and control based on cascading nonlinearity is useful for generation of shorter pulses with clean temporal profiles, efficient femtosecond second harmonic generation and group-velocity control.
Heat transfer during piston compression
An experimental and theoretical study has been carried out to determine the unsteady heat transfer from a nonreacting gas to the end wall of a channel during the piston compression of a single stroke. A thin platinum film resistance thermometer records the surface temperature of the wall during the compression. A conduction analysis in the wall, subject to the measured surface temperature variation, then yields the unsteady heat flux. A separate analysis based on the solution of the laminar boundary layer equations in the gas provides an independent determination of the heat flux. The two results are shown to be in good agreement. This is true for measurements that were made in air and in argon. Results for the heat transfer coefficient as a function of time are also presented and exhibit a nonmonotonic variation
Hot-electron nanoscopy using adiabatic compression of surface plasmons
Giugni, Andrea
2013-10-20
Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.
Large-Strain Time-Temperature Equivalence and Adiabatic Heating of Polyethylene
Furmanski, Jevan [Los Alamos National Laboratory; Brown, Eric [Los Alamos National Laboratory; Cady, Carl M. [Los Alamos National Laboratory
2012-06-06
Time-temperature equivalence is a well-known phenomenon in time-dependent material response, where rapid events at a moderate temperature are indistinguishable from some occurring at modest rates but elevated temperatures. However, there is as-yet little elucidation of how well this equivalence holds for substantial plastic strains. In this work, we demonstrate time-temperature equivalence over a large range in a previously studied high-density polyethylene formulation (HDPE). At strain-rates exceeding 0.1/s, adiabatic heating confounds the comparison of nominally isothermal material response, apparently violating time-temperature equivalence. Strain-rate jumps can be employed to access the instantaneous true strain rate without heating. Adiabatic heating effects were isolated by comparing a locus of isothermal instantaneous flow stress measurements from strain-rate jumps up to 1/s with the predicted equivalent states at 0.01/s and 0.001/s in compression. Excellent agreement between the isothermal jump condition locus and the quasi-static tests was observed up to 50% strain, yielding one effective isothermal plastic response for each material for a given time-temperature equivalent state. These results imply that time-temperature equivalence can be effectively used to predict the deformation response of polymers during extreme mechanical events (large strain and high strain-rate) from measurements taken at reduced temperatures and nominal strain-rates in the laboratory.
This report examines the concept and the main characteristics of the torroidal magnet in a tokamak with a strong magnetic field and combined adiabatic compression of the plasma pinch for an experiment to achieve the parameter Q = 1
Intrinsic Heating and Cooling in Adiabatic Processes for Bosons in Optical Lattices
We show that by raising the lattice ''adiabatically'' as in many current optical lattice experiments on bosons, even though the temperature may decrease initially, it will eventually rise linearly with lattice height, taking the system farther away from quantum degeneracy. This increase has nothing to do with the entropy of the bulk Mott phase and is caused by the adiabatic compression of the mobile atoms between Mott layers. Our studies show that one can reverse the temperature rise to reach quantum degeneracy by adiabatic expansion, which can be achieved by a variety of methods
Presented are calculated dependences for adiabatic compressibility, isoentropy coefficient and thermodynamic sound velocity of a two-phase media with homogeneous disperse structure being in a state of equilibrium. The character of the change of the values mentioned for vapor water media at the change of vapor mass composition in the mixture from zero to 1 is shown. Comparison of the calculated data as to dependences obtained with the experimental ones for critical regimes of vapor-water flow outflow through short and long cylindrical channels with sharp entrance rims. The calculation error does not exceed approximately 12%. Analysis of the results obtained showed that at outflow through short channels of metastable vapor liquid flow the main characteristics, like at outflow through long channels, are determined by the pressure in the exit cross section, mass vapor content and specific volume of the mixture, which are calculated with account for real overheating of the liquid to the exit cross section. At critical regime of outflow through the very long channels, when one can not neglect hydraulic resistance in the channel and the process is not isoentropic, the pressure and mass vapor content in the exit cross section also unambiguously determine the value of adiabatic compressibility of two-phase media, sound velocity and isoentropy coefficient in the cross section. Conclusion is made that the dependences obtained can be used with sufficient for practical purposes accuracy when solving different engineering problems, as well as for the calculations of the mixture consumption at flow of the reactor contours NAI with WWR
Compression Pad Cavity Heating Augmentation on Orion Heat Shield
Hollis, Brian R.
2011-01-01
An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.
A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative density ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratio of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements
MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; Clark, D. S.; Haan, S. W.; Jones, O. S.; Landen, O. L.; Milovich, J. L.; Robey, H. F.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-08-15
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratio of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.
MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; Clark, D. S.; Haan, S. W.; Jones, O. S.; Landen, O. L.; Milovich, J. L.; Robey, H. F.; Smalyuk, V. A.
2015-08-01
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ˜4× compared to the original design at a convergence ratio of ˜2. Corresponding simulations give a fuel adiabat of ˜1.6, similar to the original goal and consistent with ignition requirements.
Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion
NASH,THOMAS J.
2000-11-01
The magnetic implosion of a high-Z quasi-spherical shell filled with DT fuel by the 20-MA Z accelerator can heat the fuel to near-ignition temperature. The attainable implosion velocity on Z, 13-cm/{micro}s, is fast enough that thermal losses from the fuel to the shell are small. The high-Z shell traps radiation losses from the fuel, and the fuel reaches a high enough density to reabsorb the trapped radiation. The implosion is then nearly adiabatic. In this case the temperature of the fuel increases as the square of the convergence. The initial temperature of the fuel is set by the heating of an ion acoustic wave to be about 200-eV after a convergence of 4. To reach the ignition temperature of 5-keV an additional convergence of 5 is required. The implosion dynamics of the quasi-spherical implosion is modeled with the 2-D radiation hydrodynamic code LASNEX. LASNEX shows an 8-mm diameter quasi-spherical tungsten shell on Z driving 6-atmospheres of DT fuel nearly to ignition at 3.5-keV with a convergence of 20. The convergence is limited by mass flow along the surface of the quasi-spherical shell. With a convergence of 20 the final spot size is 400-{micro}m in diameter.
QCD phase diagram : heating or compressing ?
Maire, Antonin
2011-01-01
The sketch tries to address the question of the difference between heating and compressing the baryonic matter in relativistic heavy-ion collisions, i.e. how one can reach in the laboratory "high" temperature at "low" net baryon density (baryon chemical potential) or "low" temperature at "high" net baryon density.
The tert-butyl alcohol (TBA) and dimethyl sulfoxide (DMSO) are two small molecules geometrically very similar, but having different polar groups. Taking into account the intermolecular interactions in the TBA/H2O and DMSO/H2O systems, especially in the water-rich region of concentration, the ultrasonic speeds (high accuracy resonance method at the frequency 7.5 MHz) and densities in pseudo-binary mixtures of the system: (TBA + H2O + DMSO) with the ratio (TBA + DMSO)/H2O = 1/25 have been measured. From these data, various thermodynamical parameters such as adiabatic compressibility, molar volume, thermal expansivity, and the deviation from reference system have been calculated. In addition, the isobaric molar heat capacity to convert adiabatic compressibility to the isothermal one has been measured. All these parameters have been discussed to explain solute-solvent and solute-solute interactions, especially the effect of the complexation process between TBA and DMSO molecules. The composition dependence of these deviations functions was interpreted in the light of the mixing schemes in the aqueous solutions of TBA and DMSO
Scaling-up quantum heat engines efficiently via shortcuts to adiabaticity
Beau, M; del Campo, A
2016-01-01
The finite-time operation of a quantum heat engine that uses a single particle as a working medium generally increases the output power at the expense of inducing friction that lowers the cycle efficiency. We propose to scale up a quantum heat engine utilizing a many-particle working medium in combination with the use of shortcuts to adiabaticity to boost the nonadiabatic performance by eliminating quantum friction and reducing the cycle time. To this end, we first analyze the finite-time thermodynamics of a quantum Otto cycle implemented with a quantum fluid confined in a time-dependent harmonic trap. We show that nonadiabatic effects can be controlled and tailored to match the adiabatic performance using a variety of shortcuts to adiabaticity. As a result, the nonadiabatic dynamics of the scaled-up many-particle quantum heat engine exhibits no friction and the cycle can be run at maximum efficiency with a tunable output power. We demonstrate our results with a working medium consisting of particles with inv...
Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity
Beau, Mathieu; Jaramillo, Juan; del Campo, Adolfo
2016-04-01
The finite-time operation of a quantum heat engine that uses a single particle as a working medium generally increases the output power at the expense of inducing friction that lowers the cycle efficiency. We propose to scale up a quantum heat engine utilizing a many-particle working medium in combination with the use of shortcuts to adiabaticity to boost the nonadiabatic performance by eliminating quantum friction and reducing the cycle time. To this end, we first analyze the finite-time thermodynamics of a quantum Otto cycle implemented with a quantum fluid confined in a time-dependent harmonic trap. We show that nonadiabatic effects can be controlled and tailored to match the adiabatic performance using a variety of shortcuts to adiabaticity. As a result, the nonadiabatic dynamics of the scaled-up many-particle quantum heat engine exhibits no friction and the cycle can be run at maximum efficiency with a tunable output power. We demonstrate our results with a working medium consisting of particles with inverse-square pairwise interactions, that includes noninteracting and hard-core bosons as limiting cases.
Effect of adiabatic square ribs on natural convection in an asymmetrically heated channel
Abidi-Saad, Aissa; Kadja, Mahfoud; Popa, Catalin; Polidori, Guillaume
2016-06-01
A 2-D numerical simulation is carried out to investigate the effect of two adiabatic square ribs on laminar flow and heat transfer in an asymmetrically heated channel. The two ribs are symmetrically located on each wall, exactly above the heating zone. The computational procedure is made by solving the unsteady bi-dimensional continuity, momentum and energy equations with the finite volume method. The investigations focused more specifically on the influence of ribs sizes on the flow structure and heat transfer enhancement. The results showed that the variation of ribs sizes significantly alters the heat transfer and fluid flow distribution along the channel, especially in the vicinity of protrusions. Also, the results show that streamlines, isotherms, and the number, sizes and formation of vortex structures inside the channel strongly depend on the size of protrusions. The changes in heat transfer parameters have also been presented.
Fuxi Shi
2014-01-01
Full Text Available The molecular compressibility, which is a macroscopic quantity to reveal the microcompressibility by additivity of molecular constitutions, is considered as a fixed value for specific organic liquids. In this study, we introduced two calculated expressions of molecular adiabatic compressibility to demonstrate its pressure and temperature dependency. The first one was developed from Wada’s constant expression based on experimental data of density and sound velocity. Secondly, by introducing the 2D fitting expressions and their partial derivative of pressure and temperature, molecular compressibility dependency was analyzed further, and a 3D fitting expression was obtained from the calculated data of the first one. The third was derived with introducing the pressure and temperature correction factors based on analogy to Lennard-Jones potential function and energy equipartition theorem. In wide range of temperatures (293
Ensslin, Torsten A.; Gopal-Krishna
2000-01-01
We give for a plasma with a history of several expansion and contraction phases an analytical model of the evolution of a contained relativistic electron population under synchrotron, inverse Compton and adiabatic energy losses or gains. This is applied to different scenarios for evolution of radio plasma inside the cocoons of radio galaxies, after the activity of the central engine has ceased. It is demonstrated that fossil radio plasma with an age of even up to 2 Gyr can be revived by compr...
Most modern refrigerators incorporate heat transfer between the refrigerant in a capillary tube and the refrigerant in a suction line. This heat transfer is achieved by a non-adiabatic capillary tube called a capillary tube-suction line heat exchanger and is supposed to improve the performance of the small vapor compression refrigeration cycle by removing some enthalpy of the refrigerant at the evaporator entrance. To investigate the effects of this heat transfer on the refrigeration cycle, a computer program was developed based on conservation equations of mass, momentum, and energy. The non-adiabatic capillary tube model is based on a homogeneous two-phase flow model. The simulation results show that both the location and length of the heat exchange section influence the coefficient of performance (COP) as well as the cooling capacity. It is noteworthy that the influence was not monotonic; that is, the performance may be deteriorated under certain conditions
Marquardt, Roland; Moser, Peter [RWE Power AG, Essen (Germany). Forschung und Entwicklung, Neue Technologien; Hoffmann, Stephanie [GE Global Research Europe, Garching (Germany); Pazzi, Simone [GE Infrastructure, Oil and Gas, Firenze (Italy); Klafki, Michael [ESK GmbH (RWE Group), Freiberg (Germany); Zunft, Stefan [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Stuttgart (Germany). Inst. fuer Technische Thermodynamik
2008-07-01
An expansion of CO{sub 2}-neutral energy supply is in the focus of European and national environmental policy and will be crucially supported by offshore wind power generation in future. Grid-compatible integration of these fluctuating electricity quantities will - in the medium term already - require substantial adjustments of the German grid and power plant system in order to cope with the upcoming new boundary conditions. The development of new technologies for large-scale electricity storage is a key element in future flexible European electricity transmission systems. Electricity storage in Adiabatic CAES power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. Before this concept can be implemented, however, several technical problems must be solved and technical development work done, especially in the field of turbomachinery and the required heat storage device. This paper outlines the technical possibilities and the need for development. Ongoing development activities are described and first interim results presented. (orig.)
Testing of a scanning adiabatic calorimeter with Joule effect heating of the sample
Barreiro-Rodríguez, G.; Yáñez-Limón, J. M.; Contreras-Servin, C. A.; Herrera-Gomez, A.
2008-01-01
We evaluated a scanning adiabatic resistive calorimeter (SARC) developed to measure the specific enthalpy of viscous and gel-type materials. The sample is heated employing the Joule effect. The cell is constituted by a cylindrical jacket and two pistons, and the sample is contained inside the jacket between the two pistons. The upper piston can slide to allow for thermal expansion and to keep the pressure constant. The pistons also function as electrodes for the sample. While the sample is heated through the Joule effect, the electrodes and the jacket are independently heated to the same temperature of the sample using automatic control. This minimizes the heat transport between the sample and its surroundings. The energy to the sample is supplied by applying to the electrodes an ac voltage in the kilohertz range, establishing a current in the sample and inducing electric dissipation. This energy can be measured with enough exactitude to determine the heat capacity. This apparatus also allows for the quantification of the thermal conductivity by reproducing the evolution of the temperature as heat is introduced only to one of the pistons. To this end, the system was modeled using finite element calculations. This dual capability proved to be very valuable for correction in the determination of the specific enthalpy. The performance of the SARC was evaluated by comparing the heat capacity results to those obtained by differential scanning calorimetry measurements using a commercial apparatus. The analyzed samples were zeolite, bauxite, hematite, bentonite, rice flour, corn flour, and potato starch.
Experimental results on the shock-wave compression of solid and porous bismuth samples at pressures over the range 0.4-6 Mbar are reported. The course of the supercritical decompression isentropes between a highly compressed condensed state and a low-density plasma has been determined. The experimental results are used to write a thermodynamic description of the high-energy states of a dense bismuth plasma. 11 references
Dry Block Calibrator Using Heat Flux Sensors and an Adiabatic Shield
Hohmann, M.; Marin, S.; Schalles, M.; Krapf, G.; Fröhlich, T.
2015-08-01
The main problems of conventional dry block calibrators are axial temperature gradients and calibration results which are strongly influenced by the geometry and the thermal properties of the thermometers under test. To overcome these disadvantages, a new dry block calibrator with improved homogeneity of the inner temperature field was developed for temperatures in the range from room temperature up to . The inner part of the dry block calibrator is a cylindrical normalization block which is divided into three parts in the axial direction. Between these parts, heat flux sensors are placed to measure the heat flux in the axial direction inside the normalization block. Each part is attached to a separate tube-shaped heating zone of which the heating power can be controlled in a way that the axial heat flux measured by means of the heat flux sensors is zero. Additionally, an internal reference thermometer is used to control the absolute value of the temperature inside the normalization block. To minimize the radial heat flux, an adiabatic shield is constructed which is composed of a secondary heating zone that encloses the whole assembly. For rapid changes of the set point from high to low temperatures, the design contains an additional ventilation system to cool the normalization block. The present paper shows the operating principle as well as the results of the design process, in which numerical simulations based on the finite element method were used to evaluate and optimize the design of the dry block calibrator. The final optimized design can be used to build a prototype of the dry block calibrator.
Non Adiabatic Centrifugal Compressor Gas Dynamic Performance Definition
Soldatova, Kristina
2014-01-01
Most centrifugal compressors operate in conditions with negligible heat transfer (adiabatic compression). Their plant tests conditions are similar or close to adiabatic conditions. Test regulations establish measures to diminish influence of a heat transfer “compressor body – atmospheric air” to an exit temperature. Therefore a temperature rise in a compressor is used to calculate a work input coefficient and efficiency. Unlike it high pressure centrifugal compressors of gas turbines and supe...
Milovich, J. L.; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R.
2015-12-01
Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm2, but with significantly lower total neutron yields (between 1.5 × 1014 and 5.5 × 1014) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the "high-foot" experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3-10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm2. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.
Milovich, J. L., E-mail: milovich1@llnl.gov; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-12-15
Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm{sup 2}, but with significantly lower total neutron yields (between 1.5 × 10{sup 14} and 5.5 × 10{sup 14}) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the “high-foot” experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3–10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm{sup 2}. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.
A compact, continuous adiabatic demagnetization refrigerator with high heat sink temperature
In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of 3He monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 μW of cooling at 50 mK (21 μW at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to ∼5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K
Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.
2012-12-01
This study focuses on second-year university students' explanations and reasoning related to adiabatic compression of an ideal gas. The phenomenon was new to the students, but it was one which they should have been capable of explaining using their previous upper secondary school knowledge. The students' explanations and reasoning were investigated with the aid of paper and pencil tests ( n = 86) and semi-structured interviews ( n = 5) at the start of a thermal physics course at the University of Eastern Finland. The paper and pencil test revealed that the students had difficulties in applying content taught during earlier education in a new context: only a few of them were able to produce a correct explanation for the phenomenon. A majority of the students used either explanations with invalid but physically correct models, such as the ideal gas law or a microscopic model, or erroneous dependencies between quantities. The results also indicated that students had problems in seeing deficiencies or inconsistencies in their reasoning, in both test and interview situations. We suggest in our conclusion that the contents of upper secondary school thermal physics courses should be carefully examined to locate the best emphases for different laws, principles, concepts, and models. In particular, the limitations of models should be made explicit in teaching and students should be guided towards critical scientific thinking, including metaconceptual awareness.
Thermal Behavior, Specific Heat Capacity and Adiabatic Time-to-explosion of GDN
YANG Xing-kun; XU Kang-zhen; ZHAO Feng-qi; YANG Xin; WANG Han; SONG Ji-rong; WANG Yao-yu
2009-01-01
A new compound, [(NH2)2C=NH2]+N(NO2)2-(GDN), was prepared by mixing ammonium dinitramide (ADN) and guanidine hydrochloride in water. The thermal behavior of GDN was studied under the non-isothermal conditions with DSC and TG/DTG methods. The apparent activation energy(E) and pre-exponential constant(A) of the exothermic decomposition stage of GDN were 118.75 kJ/mol and 1010.86 s-1, respectively. The critical temperature of the thermal explosion(Tb) of GDN was 164.09 ℃. The specific heat capacity of GDN was determined with the Micro-DSC method and the theoretical calculation method, and the standard molar specific heat capacity was 234.76J·mol-1·K-1 at 298.15K.The adiabatic time-to-explosion of GDN was also calculated to be a certain value between 404.80 and 454.95 s.
The numerical works presented in this paper belong to the IN-CORE (Instrumentation for Nuclear radiations and Calorimetry Online in REactor) research program. Its scientific aim is to create a new device dedicated to the online simultaneously measurements of nuclear conditions inside experimental channels of the Jules Horowitz Reactor (JHR) by coupling different sensors. This paper studies a specific one: a radiometric calorimeter used to in pile nuclear heating measurements. Numerical simulations on heat transfers taking place into this sensor under radioactive and nonradioactive conditions are carried out. The influence of the geometrical dimensions and of the energy deposit on the heat flux density, on the sensor sensitivity and on the maximum temperature is discussed. (author)
Coabsorbent and thermal recovery compression heat pumping technologies
Staicovici, Mihail-Dan
2014-01-01
This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work. Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given. The author presen...
S.V. Chuduk
2011-01-01
Full Text Available In article the review of the information on possibilities of use of recuperators of heat is presented for the warm period of year for air-conditioning system. Aim of heat exchanger work in frost-free season is indirect cooling of incoming air before its input into maintainable premises. It is possible if exhaust air is cooled before its input into heat exchanger . In the article the operational principle of air conditioning system with using of adiabatic air cooling is considered. The data concerned system functioning depending on parameters of microclimate in maintainable premises are given.
Gas-fuelled compression heat pump for Almere-haven
Menkveld, H.J.
1981-12-01
Measurements of a gas compression heat pump are described which is to serve the heating of 45 dwelling units at Almere-haven (Holland). By using the ground water as environmental energy and by the high return temperatures from the floor heating good heating values are obtained. The maximum performance of the heat pump was 250 kW. Several operating modes were tested at the VEG Gas Institute. They showed that about 91% of the annual heat demand can be supplied by the heat pump if a boiler covering 50% of the heat demand is being operated in parallel, with the annual output including the consumption of the additional boiler amounting to 200%, related to Hsub(o). Thus a gas conservation of more than 50% can be expected.
Loverude, Michael E.; Kautz, Christian H.; Heron, Paula R. L.
2002-01-01
Reports on an investigation of student understanding of the first law of thermodynamics. Involves students from a first-year university physics course and a second-year thermal physics course. Focuses on the ability of students to relate the first law to the adiabatic physics course. Discusses implications for thermal physics and mechanics…
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
This study presents an application of the artificial neural network (ANN) model using the back propagation (BP) learning algorithm to predict the performance (suction line outlet temperature and mass flow rate) of a non-adiabatic capillary tube suction line heat exchanger, basically used as a throttling device in small household refrigeration systems. Comparative studies were made by using an ANN model, experimental results and correlations to predict the performance. These studies showed that the proposed approach could successfully be used for performance prediction for the exchanger
Scalings for a traveling mirror adiabatic magnetic compressor
Bellan, P. M.
1982-01-01
Detailed practical scaling relations for a traveling mirror adiabatic magnetic compressor are derived, and an example is given of how this technique could be used to translate, compress, and heat the Los Alamos FRX-C reversed field theta pinch plasma.
The effect of compressibility on the Alfven spatial resonance heating
The effect of compressibility of magnetic field line on the damping rate of Alfven spatial resonance heating for a high beta plasma (Kinetic pressure/magnetic pressure) was analysed, using the ideal MHD (Magnetohydrodynamic) model in cylindrical geometry for a diffuse θ-pinch with conducting wall. The dispersion relation was obtained solving the equation of motion in the plasma and vacuum regions together with boundary conditions. (Author)
Development of a vapor compression heat pump for space use
Berner, F.; Savage, C. J.
1981-06-01
A heat pump is presently developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system. It is expected to feature a high coefficient of performance because its power requirement is minimized through continuous adjustment of two operating parameters of its vapor compression cycle, i.e., evaporator pressure and compressor speed, to the instantaneous cooling requirements and heat rejection conditions. The heat pump system will achieve the highest possible cooling rate as long as the temperature of the payload to be cooled is significantly above the desired level, and it will minimize the difference between actual and set heat source temperature when this difference has become small. The most complicated component of the heat pump is the reciprocating vapor compressor. This component's main features are described and its experimentally determined performance parameters are given. Based on these parameters, operating maps, showing achievable heat source temperatures and cooling rates with curves of constant power consumption included, are presented for different temperatures of the fluid to which the heat is rejected.
Modeling and integration of a heat storage tank in a compressed air electricity storage process
Highlights: • Large-scale heat storage tank behavior is explored with a two dimensional model. • Thermal storage tank efficiencies are estimated thanks to dimensionless numbers. • Abacuses of the tank efficiency are provided. • The link between tank efficiency and A-CAES global efficiency is generated. - Abstract: In an adiabatic compressed air energy storage process (A-CAES), heat storage tank operation is a key factor that determines the overall energy performance of the process. To highlight energy issues linked to a correct tank design in the specific case of an A-CAES system, a two-dimensional thermal numerical model was developed. Thermal efficiencies of the tank are presented with abacus defined from the four dimensionless numbers defining the thermal behavior of the reservoir. Cycling effects are explored with a realistic case study corresponding to an A-CAES system design to deliver an electrical power of 250 MWel for 4 h, the daily peak demand. Extended beyond the thermal reservoir, A-CAES thermodynamic analysis combined with the dynamic simulation makes it possible to generate a direct quantitative link between reservoir sizing and A-CAES global efficiency
Introduction to compressible fluid flow
Oosthuizen, Patrick H
2013-01-01
IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices
Natural convection in an adiabatic vertical channel due to a dissipated heat element
An experimental study was perfomed on natural convection heat transfer to air in a vertical channel due to an isothermal heated element attached in one of the walls of the channel. The heated element dissipates heat due to the Joule effect. To determine the heat transfer coefficient, it is necessary to evaluate the heat transferred to air by natural convenction alone. Hence, the heat lost by the element due to conduction and radiation is evaluated in order to correct the measured heat transfer. The natural-convenction heat transfer coefficient is a function of the following parameters: the temperature difference between the element and the ambient air, the position of the element in the channel, and the channel spacing. An optimal value of the channel spacing, when the heat transfer coefficient attains its maximum value, was observed for each of the temperature difference investigated. These maximum values may be up to 25% higher than the value for the case of infinite spacing. Comparisons are made with results available in the literature for similar configurations, and the values found in this work are higher. (author)
NAN, Zhaodong; ZHANG, Pingping; YU, Aijun; WEI, Chengzhen; SHI, Quan; TAN, Zhicheng
2009-01-01
A novel and facile method for preparation of stable nanofluid is introduced, in which FeCl3·6H2O and urea were used as reactants without any surfactants. The obtained solid sample was proved to be β-FeOOH by XRD technol- ogy and spindle-shaped by TEM technology. The coexisting NH3 molecules may be the main reason for the stable nanofluid. The weak bonding between nitrogen and iron atoms would be formed. The investigation on the excess heat capacity of the obtained nanofluid sustains this opinion. The heat capacities of the obtained β-FeOOH particles and the nanofluid were determined by an adiabatic calorimeter. And these obtained results will help the applications of β-FeOOH and the nanofluid to industry, and the establishment of the model of thermal conductivity of nanofluid. The thermodynamic properties of the obtained β-FeOOH particles and the nanofluid were calculated based on the obtained functions of heat capacity with respective to thermodynamic temperature and the relationships between the thermodynamic properties.
Experimental Research on Heat Transfer Characteristics of CuO Nanofluid in Adiabatic Condition
Yu Guangbin
2016-01-01
Full Text Available The laminar convective heat transfer behavior of CuO nanoparticle dispersions in glycol with the average particle sizes (about 70 nm was investigated experimentally in a flow loop with constant heat flux. To enhance heat exchange under high temperature condition and get the more accurate data, we try to improve the traditional experimental apparatus which is used to test nanofluid heat transfer characteristics. In the experiment five different nanoparticle concentrations (0.25%, 0.50%, 0.80%, 1.20%, and 1.50% were investigated in a flow loop with constant heat flux. The experimental results show that the heat transfer coefficient of nanofluid becomes higher than that of pure fluid at the same Reynolds number and increased with the increasing of the mass fraction of CuO nanoparticles. Results also indicate that at very low volume concentrations nanofluid has no major impact on heat transfer parameters and the pressure of nanofluids increased by the mass fraction increase.
Tiruselvam, R.; Raghavan, Vijay R. [Universiti Teknologi PETRONAS, Faculty of Mechanical Engineering, Tronoh (Malaysia)
2012-04-15
The study is conducted to evaluate the flow characteristics in a double tube heat exchanger using two new and versatile enhancement configurations. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Correlations are proposed for flow development length and friction factor for use in predicting fluid pumping power in thermal equipment as well as in subsequent heat transfer characterization of the surface. (orig.)
Ma, Haixia; Yan, Biao; Li, Zhaona; Guan, Yulei; Song, Jirong; Xu, Kangzhen; Hu, Rongzu
2009-09-30
NTOxDNAZ was prepared by mixing 3,3-dinitroazetidine (DNAZ) and 3-nitro-1,2,4-triazol-5-one (NTO) in ethanol solution. The thermal behavior of the title compound was studied under a non-isothermal condition by DSC and TG/DTG methods. The kinetic parameters were obtained from analysis of the DSC and TG/DTG curves by Kissinger method, Ozawa method, the differential method and the integral method. The main exothermic decomposition reaction mechanism of NTOxDNAZ is classified as chemical reaction, and the kinetic parameters of the reaction are E(a)=149.68 kJ mol(-1) and A=10(15.81)s(-1). The specific heat capacity of the title compound was determined with continuous C(p) mode of microcalorimeter. The standard mole specific heat capacity of NTOxDNAZ was 352.56 J mol(-1)K(-1) in 298.15K. Using the relationship between C(p) and T and the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion) was obtained. PMID:19446396
Erickson, Lisa R.; Ungar, Eugene K.
2013-01-01
Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.
Optimized design for micro Wankel compressor used in space-borne vapor compression heat pump
Wu, Yuting; Ma, Chongfang; Chen, Xia; Du, Chunxu
2014-01-01
For aerospace applications, vapor compression heat pump can be used as thermal control system to collect the heat from electronic devices and transport heat to radiator by which heat can be rejected to space. Heat pumps can be used in two cases. The first consists of raising the temperature of heat energy so that the amount of radiator surface required is reduced. The second involves situations where heat cannot be directly rejected by radiators, because the heat sink temperature is higher th...
Compressible Turbulent Boundary Layers on a Strongly Heated Wall
无
1993-01-01
This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on its capability to correctly represent complex aerothermic viscous flows near the wall.The paper presents a constructed numerical method with particular attention given to the turbulence modelling at low Reynolds number and comparisons with supersonic and transonic experimental data.For the transonic experiment,very high wall temperature(Tw=1100K)is realized.The method of this difficult experimental set up is discussed.The comparison between experimental and computational data conducts to the first conclusion and gives some indications for the future work.
An isentropic compression-heated Ludweig tube transient wind tunnel
Magari, Patrick J.; Lagraff, John E.
1991-01-01
Theoretical development and experimental results show that the Ludweig tube with isentropic heating (LICH) transient wind tunnel described is a viable means of producing flow conditions that are suitable for a variety of experimental investigations. A complete analysis of the wave dynamics of the pump tube compression process is presented. The LICH tube operating conditions are very steady and run times are greater than those of other types of transient facilities such as shock tubes and gas tunnels. This facility is well suited for producing flow conditions that are dynamically similar to those found in a gas turbine, i.e., transonic Mach number, gas-to-wall temperature ratios of about 1.5, and Reynolds numbers greater than 10 to the 6th.
Natural convection in an asymmetrically heated vertical channel with an adiabatic auxiliary plate
The effect of an auxiliary plate on natural convection in an asymmetrically heated channel is studied numerically in laminar regime. The computational procedure is made by solving the unsteady two dimensional Navier-Stokes and energy equations. This nonlinear system is integrated by a finite volume approach and then solved in time using the projection method, allowing the decoupling pressure from velocity. More than hundred simulations are performed to determine the best positions of the auxiliary plate that enhance the induced mass flow and the heat transfer rate for modified Rayleigh numbers ranging from Ram = 102 to Ram = 105. Contour maps are plotted and then used to precise the enhancement rates of the mass flow and the heat transfer for any position of the auxiliary plate in the channel. The numerical results (velocity, pressure and temperature fields) provide detailed information about the evolution of the flow structure according to the geometry considered in this study. In addition, they permit to explain why the mass flow rate and Nusselt number are enhanced for certain positions of the auxiliary plate and are on the contrary deteriorated for others. (authors)
Bartlett, J.; Hardy, G.; Hepburn, I. D.
2015-12-01
The performance of a fast thermal response miniature Adiabatic Demagnetisation Refrigerator (ADR) is presented. The miniature ADR is comprised of a fast thermal response Chromium Potassium Alum (CPA) salt pill, two superconducting magnets and unconventionally, a single crystal tungsten magnetoresistive (MR) heat switch. The development of this ADR is a result of the ongoing development of a continuously operating millikelvin cryocooler (mKCC), which will use only magnetoresistive heat switches. The design and performance of the MR heat switch developed for the mKCC and used in the miniature ADR is presented in this paper; the heat switch has a measured Residual Resistivity Ratio of 32,000 ± 3000 and an estimated switching ratio (on thermal conductivity divided by the off thermal conductivity) of 15,200 at 3.6 K and 38,800 at 0.2 K when using a 3 T magnetic field. The performance of the miniature ADR operating from a 3.6 K bath is presented, demonstrating that a complete cycle (magnetisation, cooling to the bath and demagnetisation) can be accomplished in 82 s. A magnet current step test, conducted when the ADR is cold and fully demagnetised, has shown the thermal response of the ADR to be sub-second. The measured hold times of the ADR with just parasitic heat load are given, ranging from 3 min at 0.2 K with 13.14 μW of parasitics, to 924 min at 3 K with 4.55 μW of parasitics. The cooling power has been measured for operating temperatures in the range 0.25-3 K by applying an additional heat load to the ADR via a heater, in order to reduce the hold time to 3 min (i.e. approximately double the recycle time); the maximum cooling power of the miniature ADR (in addition to parasitic load) when operating at 250 mK is 20 μW, which increases to 45 μW at 300 mK and continues to increase linearly to nearly 1.1 mW at 3 K. To conclude, the predicted performance of a tandem continuous ADR utilising two of the miniature ADRs is presented.
A simulation model consisting of wind speed, wind turbine and AA-CAES (advanced adiabatic compressed air energy storage) system is developed in this paper, and thermodynamic analysis on energy conversion and transfer in hybrid system is carried out. The impacts of stable wind speed and unstable wind speed on the hybrid system are analyzed and compared from the viewpoint of energy conversion and system efficiency. Besides, energy conversion relationship between wind turbine and AA-CAES system is investigated on the basis of process analysis. The results show that there are several different forms of energy in hybrid system, which have distinct conversion relationship. As to wind turbine, power coefficient determines wind energy utilization efficiency, and in AA-CAES system, it is compressor efficiency that mainly affects energy conversion efficiencies of other components. The strength and fluctuation of wind speed have a direct impact on energy conversion efficiencies of components of hybrid system, and within proper wind speed scope, the maximum of system efficiency could be expected. - Highlights: • A hybrid system consisting of wind, wind turbine and AA-CAES system is established. • Energy conversion in hybrid system with stable and unstable wind speed is analyzed. • Maximum efficiency of hybrid system can be reached within proper wind speed scope. • Thermal energy change in hybrid system is more sensitive to wind speed change. • Compressor efficiency can affect other efficiencies in AA-CAES system
In fire engineering analysis, one of the open problem is the transfer of thermal parameters obtained by fire CFD model to FEM models for structural analysis. In this study the new useful concept of “Adiabatic Surface Temperature” or more commonly known as AST, introduced by Wickström, is investigated. The adiabatic surface temperature offers the opportunity to transfer both thermal information of the gas and the net heat flux to the solid phase model, obtained by CFD analysis. In this study two CFD analyses are carried out in order to evaluate the effect of emissivity and of convective heat transfer coefficient to determine the AST. First one CFD analysis simulating a fire scenario, “conjugate heat transfer”, with a square steel beam exposed to hot surface is carried out to calculate AST, heat convective coefficient and temperature field in the beam. Second one, a conductive analysis is carried out on “standalone beam” imposing a third type boundary condition on its boundaries assuming the AST, evaluated in the conjugate analysis, as external temperature. Different heat convective coefficients are imposed on the beam walls. The comparison between results obtained by means of the two proposed analyses shows the use of AST as transfer thermal parameter between CFD (Computational Fluid Dynamic) and FEM (Finite Element Method) models is appropriate when the convective heat transfer coefficient is properly evaluated. -- Highlights: ► An open problem is to transfer parameters obtained by thermal to structural models. ► The useful concept of “Adiabatic Surface Temperature” (AST) is investigated. ► The AST use is right for properly evaluated convective heat transfer coefficient
AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER
Muhammad Asmail Eleiwi
2013-01-01
Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle. Two cases of vapor compression refrigeration cycle were takenin this paper: the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin the second case the vapor compressionrefrigeration cycle with heat...
Integrating energy storage system into wind system can mitigate the negative effects caused by the intermittent wind. In addition, the spectrum analysis of wind power implies that the hybrid energy storage system may have better performance on smoothing out the wind power fluctuations than the independent energy storage system. The main advantage of the hybrid energy storage system is the multi-response speeds. Also, the hybrid energy storage system often operates in the modes switch, partial load and frequent start/stop conditions. Thus, the dynamic behaviors of each devices and the assembly of hybrid energy storage system are important for the system operation and control system design. The design, off-design analysis and parametric analysis of a wind-hybrid energy storage system consisting an A-CAES (adiabatic compressed air energy storage) system and a FESS (flywheel energy storage system) based on spectrum analysis method are carried out in the previous paper (P Zhao et al., 2014). This paper will conduct a preliminary dynamic behaviors analysis of the proposed wind-hybrid energy storage system based on the dynamic models. The simulation results indicate that the total power of wind-hybrid energy storage system can fit the load requirement well, providing an efficient power management for wind power penetration. - Highlights: • A hybrid energy storage system based on A-CAES and FESS is proposed. • Dynamic model of a wind-hybrid energy storage system is laid out. • Dynamic behaviors of wind-hybrid energy storage system are investigated. • The power output of wind-hybrid energy storage system can fit the load well
Chen, Wei-Chun; Wang, Yih-Wen; Shu, Chi-Min
2016-06-01
Use of adiabatic calorimetry to characterise thermal runaway of Li-ion cells is a crucial technique in battery safety testing. Various states of charge (SoC) of Li-ion cells were investigated to ascertain their thermal runaway features using a Vent Sizing Package 2 (VSP2) adiabatic calorimeter. To evaluate the thermal runaway characteristics, the temperature-pressure-time trajectories of commercial cylindrical cells were tested, and it was found that cells at a SoC of greater than 50% were subject to thermal explosion at elevated temperatures. Calorimetry data from various 18650 Li-ion cells with different SoC were used to calculate the thermal explosion energies and chemical kinetics; furthermore, a novel self-heating model based on a pseudo-zero-order reaction that follows the Arrhenius equation was found to be applicable for studying the exothermic reaction of a charged cell.
Ke TANG; Juan YU; Tao JIN; Zhi-hua GAN
2013-01-01
Compression and expansion of a working gas due to the pressure oscillation of an oscillating flow can lead to a temperature variation of the working gas,which will affect the heat transfer in the oscillating flow.This study focuses on the impact of the compression-expansion effect,indicated by the pressure ratio,on the heat transfer in a finned heat exchanger under practical operating conditions of the ambient-temperature heat exchangers in Stirling-type pulse tube refrigerators.The experimental results summarized as the Nusselt number are presented for analysis.An increase in the pressure ratio can result in a marked rise in the Nussclt number,which indicates that the compression-expansion effect should be considered in characterizing the heat transfer of the oscillating flow,especially in the cases with a higher Valensi number and a lower maximum Reynolds number.
On the statistical mechanics of an adiabatic ensemble
S.N.Andreev
2004-01-01
Full Text Available Different descriptions of an adiabatic process based on statistical thermodynamics and statistical mechanics are discussed. Equality of the so-called adiabatic and isolated susceptibilities and its generalization as well as adiabatic invariants are essentially used to describe adiabatic processes in the framework of quantum and classical statistical mechanics. It is shown that distribution function in adiabatic ensemble differs from a quasi-equilibrium canonical form provided the heat capacity of the system is not constant in adiabatic process.
Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars; Elmegaard, Brian
2015-01-01
Spray-drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 C yielding a heat load of 6.1 MW. The exhaust air from the drying process is 80 C. The implementation of anammonia–water hybrid absorption–compression heat pump to partly cover the heat load is investigated. A thermod...
Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix;
2014-01-01
The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change of the ze......, all with economical benefits for the investor....
Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix;
2015-01-01
The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phas...... up to 60 K, all with economical benefits for the investor....
谭志诚; 张际标; 孟霜鹤; 李莉
1999-01-01
An automatic adiabatic calorimeter for measuring heat capacities in the temperature range 70—580 K, equipped with a small sample cell of 7.4 cm~3 in the internal volume has been developed. In order to obtain a good adiabatic condition of the calorimeter at high temperature, the calorimeter was surrounded in sequence by two adiabatic shields, three radiation shields and an auxiliary temperature-controlled sheath. The main body of the cell made of copper and the lid made of brass are silver-soldered and the cell is sealed with a copper screw cap. A sealing gasket made of Pb-Sn alloy is put between the cap and the lid to ensure a high vacuum sealing of the cell in the whole experimental temperature range. All the leads are insulated and fixed with W30-11 varnish, thus a good electric insulation is obtained at high temperature. All the experimental data, including those for energy and temperature are collected and processed automatically with a personal computer using a predetermined program. To verify the
Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix; Reinholdt, L.; Elmegaard, Brian
2015-01-01
The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated base...
Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and 3He ions, respectively. When the plasma was compressed, the d(d,n)3He fusion reaction rate increased a factor of five, and the 3He(d,p)4He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling
EFFECTS OF COMPRESSED AIR FOAM APPLICATION ON HEAT
Adam THOMITZEK
2015-12-01
Full Text Available This article evaluates the knowledge obtained in firefighting tests using compressed air foam system (CAFS within a confined space. Six experiments were conducted for verification during the cooling of rooms and the self-extinguishing effect. The simulation was for a fully developed fire within a room. The fuel was chosen to simulate ordinary combustible materials utilized in residential areas. Mantel thermocouples were placed in the rooms to record the temperature changes. Compressed air foam was first applied with a standard fire hose nozzle to the ceiling and then to the epicenter of fire. Fire extinguishing was initiated after reaching the desired temperature in the room. The temperature for the start of fire extinguishing matched the third phase of development of a fire. Fire extinguishing was terminated after no obvious signs of fire were shown in epicenter of fire. The outputs of the experiments were evaluated on the basis of the amount of time passed for the temperature to drop below the suggested limit. Individual experiments were also conducted with various different admixing foaming agents over different locations. In the experiments, it has been verified that the application of compressed air foam has a positive effect on room cooling. Use of a compressed air foaming agent does not allow for the development of steam that can scald firefighters and reduce visibility. Furthermore, the extinguishing agent used is more efficient utilizing less water flow out of the fire area.
HEAT OF COMPRESSION AND OPPORTUNITY OF ITS USE FOR INCREASE OF EFFICIENCY OF AIR SEPARATION PLANTS
Лавренченко, Г. К.; Швец, С. Г.; Копытин, А. В.
2015-01-01
The analysis of possible directions useful utilization of heat of compression for production of the cold water in the heat-utilizing refrigerating machine and for organization heating vacuum regeneration of the adsorbent bloc of the desiccation and the purification of the air. Mark expediency of the application absorption lithium bromide refrigerating machines for organization preliminary cooling of the air in the air separation plant large productivity.
A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows
Du, Lili; Wang, Yongfu
2015-09-01
In this paper, we proved a blowup criterion for the two-dimensional (2D) viscous, compressible, and heat-conducting magnetohydrodynamic (MHD) flows for Cauchy problem, which depends only on the divergence of the velocity vector field, as well as for the case of bounded domain with Dirichlet boundary conditions. This result indicates that the nature of the blowup for compressible models of viscous media in 2D space is similar to the barotropic compressible Navier-Stokes equations and does not depend on further sophistication of the MHD model. More precisely, taking into account the magnetic effects and heat conductivity does not introduce any new features in the blowup mechanism of full MHD flows, especially, which is independent of the temperature and the magnetic field. The results also imply the global regularity of the strong solution to compressible MHD flows, provided that velocity divergence remains bounded.
Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix; Elmegaard, Brian
2014-01-01
The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour pressures. Using standard refrigeration components (28 bar) HACHP up to 100 °C are commercially available. Components developed for high pressure NH3 (52 bar) and transcritical CO2 (140 bar) increase th...
Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments
Jeanloz, R.
2015-12-01
Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed
AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER
Muhammad Asmail Eleiwi
2013-05-01
Full Text Available Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle. Two cases of vapor compression refrigeration cycle were takenin this paper: the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin the second case the vapor compressionrefrigeration cycle with heat exchanger ; in these two cases, the temperatureat each point of a vapor compressionrefrigeration cycle, the low and the high pressure ,the indoor temperature andthe outdoor temperature were measured at each time at compressor speed 1450 rpmand 2900 rpm for each blower speed 1, blower speed 2 and blower speed 3.Therefrigerant fluid was used in the vapor compression refrigeration cycle withoutIHE and with IHE is R134a..
Fractal Loop Heat Pipe Performance Comparisons of a Soda Lime Glass and Compressed Carbon Foam Wick
Myre, David; Silk, Eric A.
2014-01-01
This study compares heat flux performance of a Loop Heat Pipe (LHP) wick structure fabricated from compressed carbon foam with that of a wick structure fabricated from sintered soda lime glass. Each wick was used in an LHP containing a fractal based evaporator. The Fractal Loop Heat Pipe (FLHP) was designed and manufactured by Mikros Manufacturing Inc. The compressed carbon foam wick structure was manufactured by ERG Aerospace Inc., and machined to specifications comparable to that of the initial soda lime glass wick structure. Machining of the compressed foam as well as performance testing was conducted at the United States Naval Academy. Performance testing with the sintered soda lime glass wick structures was conducted at NASA Goddard Space Flight Center. Heat input for both wick structures was supplied via cartridge heaters mounted in a copper block. The copper heater block was placed in contact with the FLHP evaporator which had a circular cross-sectional area of 0.88 cm(sup 2). Twice distilled, deionized water was used as the working fluid in both sets of experiments. Thermal performance data was obtained for three different Condenser/Subcooler temperatures under degassed conditions. Both wicks demonstrated comparable heat flux performance with a maximum of 75 W/cm observed for the soda lime glass wick and 70 W /cm(sup 2) for the compressed carbon foam wick.
DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION
Shen, Bo [ORNL; Rice, C Keith [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL
2015-01-01
This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.
Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix;
2014-01-01
using these components. A technically and economically feasible solution is defined as one that satisfies constraints on the coefficient of performance (COP), low and high pressure, compressor discharge temperature and volumetric heat capacity. The ammonia mass fraction of the rich solution......The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour...
Changes of Chemical Composition and Crystalline of Compressed Chinese Fir Wood in Heating Fixation
Tang Xiaoshu; Zhao Guangjie; Nakao Tetsuya
2004-01-01
The changes in relative crystalline, chemical composition and internal structure of compressed Chinese fir wood after different heating fixations were found strictly related to fixation conditions. The compressed wood powders were fixed either by heating at different temperatures all resulting in a 10% recovery, or by incubating at 180 °C for different periods with subsequent recovery levels. Both X-ray diffraction and infrared absorption of those samples have been measured. Relative crystalline increases at early stage of heating fixation, and then decreased gradually. Hemicellulose and lignin decomposition were induced by the fixation process, especially at 180 °C, and lignin was degraded actively. Furthermore, absorbed water was lost after heating, but cellulose did not change markedly. Although different fixation pathways can result in the same recovery level, the major chemical reactions underlying them vary, which is consistent with the difference of fixation mechanisms.
Heat deposition rate measurements are made by an extremely sensitive quasi-adiabatic graphite calorimeter and thermoluminescent dosimeters (TLDs) in the fusion environment of the LOTUS facility. The reproducibility of these measurements is found to be better than 1% for a dose rate more than 60 cGy/min and better than 3.8% for dose rates in the range of 6 to 60 cGy/min. The heating rates are found to vary linearly with neutron source strength. The calculation to experiment (C/E) for the bare calorimeter is found to be 1.05, whereas inside the graphite block, C/E varies from 1.11 to 1.32. These measurements are analyzed by the MCNP Monte Carlo neutron and photon transport code using the BMCCS2, PHOTXS2, and EL2 cross-section libraries. The influence of wall-returned neutrons and gammas is found to be negligible. A detailed data treatment is done with the TLD outputs to arrive at the gamma heating component at different locations in the graphite by employing the Burlin theory. The gamma production is found to be well represented in the calculations. On the other hand, measured and calculated net nuclear heating in the graphite differ considerably. A downward revision of the neutron kerma factor would be desirable. 23 refs., 8 figs., 4 tabs
CHEN Jing-tao; DI You-ying; TAN Zhi-cheng; CHEN San-ping; GAO Sheng-li
2008-01-01
Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K,with an automated adiabatic calorimeter.A solid-to-solid phase transition occurred in the temperature range of 295-322 K.The peak temperature,the enthalpy,and entropy of the phase transition were experimental values of the molar heat capacities in the temperature regions of 78-295 K and 322-374 K were fitted to two polynomial equations of heat capacities(Cp,m) with reduced temperatures(X) and [X=f(T)],with the help of the least squares method,respectively.The smoothed molar heat capacities and thermodynamic functions of the compound,relative to that of the standard reference temperature 293.15 K,were calculated on the basis of the fitted polynomials and tabulated with an interval of 5 K.In addition,the possible mechanism of thermal decomposition of the compound was inferred by the result of TG-DTG analysis.
Study on Gravity Independence of Compressor Performance for Space-borne Vapor Compression Heat Pump
Chen, Xia; Wu, Yuting; Liu, Gang; Ma, Rui; Ma, Chongfang
2014-01-01
Aerospace technology plays an important role in the modern scientific research and engineering applications. Most energy consumed by equipment inside the spacecraft is converted into waste heat. Current thermal control and management technology research for international aerospace has made considerable progress. Vapor compression heat pump is an important aerospace thermal control means to lunar probe program and deep space exploration. Compressors are the most important components in vapor c...
Compressible Heating in the Condense Phase due to Pore Collapse in HMX
Zhang, Ju; Jackson, Thomas
Axisymmetric pore collapse in HMX is studied numerically by solving multi-phase reactive Euler equations. The generation of hot spots in the condense phase due to compressible heating is examined. The motivation is to improve the understanding of the role of embedded cavities in the initiation of reaction in explosives, and to investigate the effect of hot spots in the condense phase due to compressible heating alone, complementing previous study on hot spots due to the reaction in the gas phase and at the interface. It is found that the shock-cavity interaction results in pressures and thus temperatures that are substantially higher than the post-shock values in the condense phase. However, these hot spots in the condense phase due to compressible heating alone do not seem to be sufficiently hot to lead to ignition at shock pressures of 1-3 GPa. Thus, compressible heating in the condense phase may be excluded as a mechanism for initiation of explosives. It should be pointed out that the ignition threshold for the temperature, the so-called ``switch-on'' temperature, of hot spots depend on chemistry kinetics parameters. Switch-on temperature is lower for faster reaction rate. The current chemistry kinetics parameters are based on previous experimental work. This work was supported in part by the Defense Threat Reduction Agency and by the U.S. Department of Energy.
Compressed air energy storage with waste heat export: An Alberta case study
Highlights: • Export of compression waste heat from CAES facilities for municipal heating can be profitable. • D-CAES concept has a negative abatement cost of −$40/tCO2e under the studied circumstances. • Economic viability of D-CAES highly depends on distance between air storage site and heat load. - Abstract: Interest in compressed air energy storage (CAES) technology has been renewed driven by the need to manage variability form rapidly growing wind and solar capacity. Distributed CAES (D-CAES) design aims to improve the efficiency of conventional CAES through locating the compressor near concentrated heating loads so capturing additional revenue through sales of compression waste heat. A pipeline transports compressed air to the storage facility and expander, co-located at some distance from the compressor. The economics of CAES are strongly dependant on electricity and gas markets in which they are embedded. As a case study, we evaluated the economics of two hypothetical merchant CAES and D-CAES facilities performing energy arbitrage in Alberta, Canada using market data from 2002 to 2011. The annual profit of the D-CAES plant was $1.3 million more on average at a distance of 50 km between the heat load and air storage sites. Superior economic and environmental performance of D-CAES led to a negative abatement cost of −$40/tCO2e. We performed a suite of sensitivity analyses to evaluate the impact of size of heat load, size of air storage, ratio of expander to compressor size, and length of pipeline on the economic feasibility of D-CAES
Highlights: • Optimal compression ratio of CASAHP is obtained for the maximum energy saving rate. • Annual performance is improved by 10–20% compared to ASAHP without compression. • Energy saving rate is 17.7–29.2% and investment is reduced to 30–60% for CASAHP. • Both compression and partial-design enhance the economy with given energy saving. • Payback time is reduced from 12–32 to 3–6 years by compression and partial-design. - Abstract: The compression-assisted air source absorption heat pump (CASAHP) is a promising alternative heating system in severe operating conditions. In this research, parameter studies on the annual performance under various compression ratios (CRs) and source temperatures are performed to achieve the maximum energy saving rates (ESRs). Economic analyses of the CASAHP under different CRs and partial-design ratios are conducted to obtain an optimal design that considers both energy savings and economy improvements. The results show that the optimal CR becomes higher in colder regions and with lower heat source temperatures. For a source temperature of 130 °C, the optimal CR values in all of the cities are within 2.0. For source temperatures from 100 to 130 °C, the maximum ESR is in the range of 17.7–29.2% in the studied cities. The efficiency improvement rate (EIR) caused by compression in a severe source condition can reach 10.0–20.0%. From the viewpoint of economy, the relative investment of CASAHP is reduced to 30–60% with a CR of 2.0–3.0. With a 2–6% sacrifice in ESR, the payback period can be reduced from 12–32 to 5–9 years using compression. Partial-design of the CASAHP can further reduce the payback period to 3–6 years with a partial-design ratio of 50% and a CR of 2.8. Additionally, CRs and partial-design ratios are designed comprehensively by seeking the maximum ESR for a given acceptable payback period
Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas
Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.
2004-01-01
An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.
Fast electron heating of shock compressed solids at high intensities relevant to fast ignition
This report describes the experiment entitled 'Fast electron heating of shock compressed solids at high intensities relevant to fast ignition'; carried out at the Central Laser Facility (CLF) from the 5th January to the 15th February 1997. The experiment, funded by the Framework IV Large-Scale Facilities Access Scheme, was proposed by Dr. D. Batani, University of Milan, Italy and carried out by visiting researchers from the University and Ecole Polytechnique, Palaiseau, France. They were supported by UK researchers from the University of Essex, the University of Bristol and the Central Laser Facility, Rutherford Appleton Laboratory. Experimental results: (i) The experiment demonstrated the first results for fast electron deposition in compressed matter. The irradiances used in these experiments are lower than would be used in the fast ignitor scheme but the significance of the results is, nevertheless very relevant to this scheme. (ii) It is shown that in the experiments presented here that ionised, compressed plastic is less effective at stopping the fast electrons than uncompressed, unionised plastic. The stopping power of the compressed material is reduced by a factor of two (in areal density units) over the uncompressed materials. (iii) These experiments are the first measurements of electron stopping power in compressed plasmas but further experiments with more highly compressed plasmas are necessary before the results may be safely extrapolated to fast ignitor conditions. (author)
Shornikov, A; Wolf, A
2014-01-01
We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.
Wall-Laws for High Speed Flows over Adiabatic and Isothermal Walls
Mohammadi, Bijan; Puigt, Guillaume
2000-01-01
We present the extension of our wall-laws developed for low-speed flows to super and hypersonic configurations. In particular, we are interested in flows over isothermal walls and account for heat transfer. We recall the main steps of the development: - Obtention of generalized wall functions for low-speed fluids, valid for all $y^+$, - Taking into account transversal effects. - Accounting for the compressible feature of the flow on adiabatic walls without using informations on the local boun...
Bing Hu
2015-05-01
Full Text Available To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show that the working fluid type and the temperatures of heat source and condensation have important effects on the system performance. The system can achieve optimal performance when use R245fa as power and refrigeration medium. The ice quantity generated from per ton hot water is 86.42 kg and the ice-making rate for per kW waste heat is 2.27 kg/h, when the temperatures of hot water and condensation are respectively 100 and 40°C. A conclusion can be draw by the calculation and analysis that using organic Rankine-vapor compression system for ice making from food industry waste heat is feasible.
Erickson, Lisa R.; Ungar, Eugene K.
2012-01-01
Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.
4-Amino-1,2,4-triazole copper complex (4-ATzCu) was synthesized, and its thermal behaviors, nonisothermal decomposition reaction kinetics were studied by DSC and TG-DTG techniques. The thermal decomposition reaction kinetic equation was obtained as: dα / dt =1022.01 (1-α )[-ln(1-α )]1/3 exp(-2.75x104 /T) . The standard mole specific heat capacity of the complex was determined and the standard molar heat capacity is 305.66 J·mol-1·K-1 at 298.15 K. The entropy of activation ( ΔS ≠ ), enthalpy of activation (ΔH ≠), and Gibbs free energy of activation ( ΔG≠) are calculated as 171.88 J·mol-1·K-1, 225.81 kJ·mol-1 and 141.18 kJ·mol-1, and the adiabatic time-to-explosion of the complex was obtained as 389.20 s
Ivanov, V. A.
2010-12-01
The possibility of ensuring equivalence in operation and efficiency of real cycles with intermediate cooling (heating) and isothermal-adiabatic compressions (expansion) in ideal simple cycles formed on the T- S diagrams in the second stage of real cycles. The possibility of using the equivalence of cycles for determining the maximum efficiency of operation of real cycles is demonstrated.
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
Splitter, Derek A [ORNL; Hendricks, Terry Lee [Sandia National Laboratories (SNL); Ghandhi, Jaal B [University of Wisconsin
2014-01-01
The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integrated piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition
Tilt stability and compression heating studies of field-reversed configurations
The first observations of internal tilt instabilities in field-reversed configurations (FRCs) are reported. Detailed comparisons with theory establish that data from an array of external magnetic probes are signatures of these destructive plasma instabilities. This work reconciles theory and experiments and suggests that grossly stable FRCs are restricted to very kinetic and elongated plasmas. Self-consistent three-dimensional numerical simulations demonstrate tilt stabilization by the addition of a beam ion component. High-power compression heating experiments with stable equilibrium FRCs are also reported. Plasmas formed in a tapered theta-pinch coil have been translated along a guide magnetic field into a new single-turn compression coil where the external field is increased up to 7 times the initial value in 55 μs. Substantial heating is observed accompanied by a decrease in confinement time. 17 refs
Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas
Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)
A blow-up criterion for compressible viscous heat-conductive flows
Jiang, Song; Ou, Yaobin
2010-01-01
We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows.
Time decay rates for the equations of the compressible heat-conductive flow through porous media
Chen, Qing; Tan, Zhong; Wu, Guochun
2015-11-01
We consider the time decay rates of smooth solutions to the Cauchy problem for the equations of the compressible heat-conductive flow through porous media. We prove the global existence and uniqueness of the solutions by the standard energy method. Moreover, we establish the optimal decay rates of the solution as well as its higher-order spatial derivatives. And the damping effect on the time decay rates of the solution is studied in detail.
Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix;
2014-01-01
A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions is carried out considering the...... constraints of available refrigeration equipment and a requirement of a positive Net Present Value of the investment. The considered sink outlet temperature range is from 40 °C to 140 °C, but for the heat pumps considered in this paper, the upper limit is 100 °C. Five heat pumps are studied. For each set of...... heat sink and source temperatures the optimal solution is determined. At low sink temperature glide R717 heat pumps show best performance, while at higher sink glide transcritical R744 may become important. In a second paper, the results of the VCHP are compared to a similar study considering the...
Vilafranca Manguán, Ana
2008-01-01
Astra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CH...
Nattaporn Chaiyat; Tanongkiat Kiatsiriroat
2014-01-01
In this study, simulation and experiment studies of a 10 kW solar H2O–LiBr absorption heat transformer (AHT) integrating with a two-stage vapor compression heat pump (VCHP) were carried out. The whole system was named as compression/absorption heat transformer (CAHT). The VCHP was used to recover rejected heat at the AHT condenser which was transferred back to the AHT evaporator at a higher temperature. The AHT unit took solar heat from a set of flat-plate solar collectors in parallel connect...
Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems
Massoudi, M.C.; Tran, P.X.
2006-01-01
We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.
On the development of high temperature ammonia-water hybrid absorption-compression heat pumps
Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;
2015-01-01
and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129°C......Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...... limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content...
Xu Xinying
2012-01-01
In this paper; we prove a blow-up criterion of strong solutions to the 3-D viscous and non-resistive magnetohydrodynamic equations for compressible heat-conducting flows with initial vacuum.This blow-up criterion depends only on the gradient of velocity and the temperature,which is similar to the one for compressible Navier-Stokes equations.
无
2006-01-01
The effects of heat treatment on the dynamic compressive properties and energy absorption characteristics of open cell aluminum alloy foams (Al-Mg-Si alloy foam and Al-Cu-Mg alloy foam) produced by infiltrating process were studied. Two kinds of heat treatment were exploited: age-hardening and solution heat treating plus age-hardening (T6). The split Hopkinson pressure bar (SHPB)was used for high strain rate compression test. The results show that both age-hardened and T6-strengthened foams exhibit improved compression strength and shortened plateau region compared with tnat of foams in as-fabricated state under high strain rate compression,and the energy absorption capacity is also influenced significantly by heat treatment. It is worthy to note that omitting the solution treating can also improve the strength and energy absorbed much.
Babakhani, D. [Department of Chemical Engineering, Faculty of Engineering, University of Isfahan (Iran, Islamic Republic of)
2009-12-15
An analytical solution of simultaneous heat and mass transfer processes in a packed bed liquid desiccant dehumidifier/regenerator is developed. Various dimensionless parameters and reliable assumptions are used in order to develop this solution. The outlet parameters predicted with the analytical solution show very good agreement with the experimental data available in the literature. The results show that using a Lewis number value of Le=1.1 instead of Le=1 gives a better prediction of the performance of the dehumidifier. In addition, the use of Le=0.9 instead of Le=1 can give a better prediction of the outlet parameters of the regenerator. The benefits of the present solution are its simplicity and easy application for the simulation of air dehumidification and liquid desiccant regeneration processes. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Ramirez-Granados, Juan C.; Paez, G.; Strojnik, M.
2008-03-01
We develop a dimensionless heat transfer model to analyze pulsed thermography data for non-destructive testing (NDT) of materials. Simulated thermographic sequences are used in order to evaluate the performance of the inspection technique. Also, we inspect organic and inorganic samples, including a layered plate and two dental pieces, in search of internal defects and structural inhomogeneities. We detect cavities and the inner structure of the samples by means of reconstructed thermograms and a modified version of the differential absolute contrast (DAC). Moreover, we develop an effective data compression method that reduces a thermographic video with m frames of p × q pixels to two matrices of p × q elements. In this data reconstruction process, precision and compression ratio are independent parameters. Finally, we find that partial translucency of dental enamel, in infrared, permits imaging of the internal structure of a tooth. This inspection technique does not require a priori knowledge about a reference defect-free area.
Østergaard, Poul Alberg
2013-01-01
-temperature geothermal resources. The analyses have also demonstrated that the municipality will still rely heavily on surrounding areas for electric load balancing assistance. With a departure in a previously elaborated 100% renewable energy scenario, this article investigates how absorption heat pumps (AHP...
A study on dynamic characteristics of tuff with the triaxial compression tests on heating
To discuss mechanics and hydrological characteristics in rock at a long period, we need to refer to the change of discontinuous surface and construction with the thermal and the chemical changes. In this study, the consolidated-drained triaxial compression tests with comparatively soft tuff were conducted, and the slide-hold-slide process in a residual state was applied. These conditions of the effective confining stress and temperature, the degree of the healing at the shear band, occurring of the shear process was confirmed. As a result, we confirmed the healing, moreover, the proportion of the healing to the holding time. However, in heating, the degree of the healing became decreased. (author)
Adiabatic processes in monatomic gases
A kinetic model is used to predict the temperature evolution of a monatomic ideal gas undergoing an adiabatic expansion or compression at a constant finite rate, and it is then generalized to treat real gases. The effects of interatomic forces are considered, using as examples the gas with the square-well potential and the van der Waals gas. The model is integrated into a Carnot cycle operating at a finite rate to compare the efficiency's rate-dependent behavior with the reversible result. Limitations of the model, rate penalties, and their importance are discussed
Study on Operating Performance of Stirling Engine-Driven Vapor Compression Heat Pump System
Kagawa, Noboru
Stirling engines have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration. On the other hand, heat pump systems are very attractive for space heating and cooling, and industrial usage. There are several environmental merits of Stirling driven vapor compression (SDVC) systems. A design method for the SDVC, which is based on mathematical methods for Stirling and Ranking cycles, has been developed. The attractive SDVC performance using conventional and alternative refrigerants was shown. From the calculated Total Equivalent Warming Impact (TEWI) and operating costs, it became clear that the SDVC system with the alternative refrigerant has a higher potential as the future air-conditioning system.
He, Jiansen; Marsch, Eckart; Chen, Christopher H K; Wang, Linghua; Pei, Zhongtian; Zhang, Lei; Salem, Chadi S; Bale, Stuart D
2015-01-01
Magnetohydronamic turbulence is believed to play a crucial role in heating the laboratorial, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. Different from the traditional paradigm with counter-propagating Alfv\\'en waves, anti-sunward Alfv\\'en waves (AWs) are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond respectively to the dominant and sub-dominant populations of the imbalanced Els\\"asser variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orth...
Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars; Elmegaard, Brian
2015-01-01
The ammonia-water hybrid absorption-compression heat pump (HACHP) is a technology suitable for industrial scale heat pumps in the process industry. A helpful tool in the design of cost effective and low environmental impact energy conversion systems, such as the HACHP, is the application of an...... to allocate the initial and operational environmental impact to the system components, thus revealing the main sources of environmental impact. The application of the advanced exergoenvironmental analysis improves the level of detail attained.This is achieved by accounting for technological and...... advanced exergy-based analysis, comprised of both an advanced exergy, exergoeconomic and exergoenvironmental analysis. Recent studies have presented both the advanced exergy and advanced exergoeconmic analysis of the HACHP. Anexergoenvironmental analysis combines exergy analysis with life cycle assessment...
Isobaric Heat Capacity, Isothermal Compressibility and Fluctuational Properties of 1-Bromoalkanes
Korotkovskii, V. I.; Ryshkova, O. S.; Neruchev, Yu. A.; Goncharov, A. L.; Postnikov, E. B.
2016-06-01
We present results of the experimental measurements of the isobaric heat capacity for 1-bromohexane, 1-bromoheptane, 1-bromooctane, 1-bromononane, 1-bromodecane, 1-bromoundecane, 1-bromododecane and 1-bromotetradecane at normal pressure and the speed of sound and the density for 1-bromotetradecane within the temperature range 298.15-423.15 K. These data on the isobaric heat capacity and the literature-based reference data for the density and the speed of sound were used to calculate the isothermal compressibility and the inverse reduced fluctuations. Based on the comparison of the results for pure n-alkanes and α ,ω -dibromoalkanes, we discuss the influence of bromine atom on the volume fluctuations.
Isobaric heat capacity, isothermal compressibility and fluctuational properties of 1-bromoalkanes
Korotkovskii, V I; Neruchev, Yu A; Goncharov, A L; Postnikov, E B
2016-01-01
We present results of the experimental measurements of the isobaric heat capacity for 1-bromohexane, 1-bromoheptane, 1-bromooctane, 1-bromononane, 1-bromodecane, 1-bromoundecane, 1-bromododecane and 1-bromo-tetradecane at normal pressure and the speed of sound and the density for 1-bromotetradecane within the temperature range 298.15--423.15~K. These data on the isobaric heat capacity and the literature-based reference data for the density and the speed of sound were used to calculate the isothermal compressibility and the inverse reduced fluctuations. Based on the comparison of the results for pure n-alkanes and $\\alpha,\\omega$-dibromoalkanes, we discuss the influence of bromine atom on the volume fluctuations.
Quantum adiabatic machine learning
Pudenz, Kristen L.; Lidar, Daniel A.
2011-01-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this app...
Adiabatic Flame Temperature for Combustion of Methane
Rebeca Pupo
2011-01-01
Full Text Available This project calculated the adiabatic flame temperature of a combustion reaction of pure methane and oxygen, assuming that all of the heat liberated by the combustion reaction goes into heating the resulting mixture. Mole fractions of methane to oxygen were computed from 0.05 to 0.95, in increments of 0.05, and then an integral was computed was computed with respect to temperature using the moles of product produced or leftover moles of reactants from the starting mole fraction times the specific heat of each respective gas. The highest adiabatic flame temperature evaluated, occurred at a mole fraction of 0.35.
Adiabatic process reversibility: microscopic and macroscopic views
The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r≥1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values. (letters and comments)
Huang, Xiangdi; Li, Jing
2012-01-01
This paper establishes a blowup criterion for the three-dimensional viscous, compressible, and heat conducting magnetohydrodynamic (MHD) flows. It is essentially shown that for the Cauchy problem and the initial-boundary-value one of the three-dimensional compressible MHD flows with initial density allowed to vanish, the strong or smooth solution exists globally if the density is bounded from above and the velocity satisfies the Serrin's condition. Therefore, if the Serrin norm of the velocit...
In order to be realistic, an evaluation of the performance of helium-cooled direct-cycle reactors must be based on a preliminary study of the circuits and the architecture. This was the procedure adopted by the Department of Mechanical and Thermal Studies (Saclay Nuclear Research Centre) which recently developed a plant concept aimed at solving the various problems involved and also defined the sizes of the principal components. The circuits have been designed to obtain a good electrical generating efficiency but without prejudicing this it has also been attempted to obtain the best conditions for recovering heat from the coolants. Results are presented for the following cases: a two-compression-stage cycle with good electrical generating efficiency and non-preferential heat recovery; a two-compression-stage cycle with acceptable electrical generating efficiency and improved heat recovery; a single-compression-stage cycle for the production of electricity with recovery of heat in the form of hot water; a single-compression-stage cycle with large-scale production of heat in the form of steam and hot water. It appears that the characteristics of the hot water in the secondary recovery circuits are well suited to district heating. It should be noted that the overall performances of all the different variants are satisfactory for a helium temperature at the core outlet of 8000C, which is reasonable. (author)
Plasma heat pump and heat engine
A model system where cold charged particles are locally confined in a volume VP within a warm plasma of volume V (VPE. The law of thermodynamics involving PE and an equation of state for PE are obtained. It is shown that the expansion/compression of electrostatic fields associated with charged particles is a new mechanism that converts mechanical work into plasma heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of PE are shown to be observable in colloidal solutions.
de B. Alves Leonardo S.
2013-01-01
Full Text Available The classical thermodynamic model for near critical heat transfer is an integral-differential equation with constant coefficients. It is similar to the heat equation, except for a source term containing the time derivative of the bulk temperature. Despite its simple form, analytical methods required the use of approximations to generate solutions for it, such as an approximate Fourier transformation or a numerical Laplace inversion. Recently, the Generalized Integral Transform Technique or GITT has been successfully applied to this problem, providing a highly accurate analytical solution for it and a new expression of its relaxation time. Nevertheless, very small temperature differences, on the order of mK, have to be imposed so that constant thermal properties can be assumed very close to the critical point. The present paper generalizes this study by relaxing its restriction and accounting for the strong dependence on temperature and pressure of supercritical fluid properties, demonstrating that a the GITT can be applied to realistic nonlinear unsteady compressible heat transfer in fluids with diverging thermal properties and b temperature and pressure have opposite effects on all properties, but their variation causes no additional thermo-acoustic effect, increasing the validity range of the constant property model.
Highlights: • Thermodynamic analysis of a solar driven power plant running on the Braysson cycle. • Isothermal compression is implemented by the use of multistage intercooled compression stages. • The plant’s thermal efficiency is investigated and compared against other cycles. - Abstract: The present study develops the thermodynamic analysis for the cycle of a solar-driven, Braysson cycle based plant in the ideal limit and in the presence of process irreversibilities. The plant cycle differs from the conventional idealized Braysson cycle in that the implementation of the final isothermal compression process is substituted by a multistep intercooled compression. The cycle’s efficiency is analytically formulated after taking into account several loss (irreversibility) sources such as the non-isentropic behavior of the main compressor, the power turbine and the intercooled compressor stages as well as the actual heat transferred through countercurrent heat exchangers. All pressure losses associated with heat exchangers are related to the actual heat transfer load within each exchanger. The analysis develops a parametric evaluation for the effectiveness of the main cycle free variables on the thermal efficiency of the cycle. Such free variables include the working fluid maximum temperature, the compressor pressure ratio and the operating temperature limits of the intercooled compression stages, in addition to the polytropic coefficients of the compressor and power turbine (quasi-) isentropic processes. The results indicate that such a plant may reach efficiency levels above 30%, i.e. exceeding the efficiencies of the conventional Photovoltaic plants by a wide margin
Polymorphs of 1,1-diamino-2,2-dinitroethene (FOX-7): Isothermal compression versus isobaric heating
Dreger, Z. A.; Tao, Y.; Gupta, Y. M.
2013-10-01
Raman spectroscopy was used to examine polymorphic changes in 1,1-diamino-2,2-dinitroethene (FOX-7) single crystals under: isothermal compression to 15 GPa and isobaric heating to 500 K. Changes in the Raman spectra were observed at ˜2.0 and ˜4.5 GPa, and at ˜390 K and ˜450 K. These onsets are in general accord with previously reported onsets from IR measurements under isothermal compression and from X-ray diffraction measurements under isobaric heating, respectively. In contrast to recent suggestions, we show that the high pressure polymorphs have different vibrational structures, and likely different crystal structures, than the high temperature polymorphs.
Experimental study on the adiabatic shear bands
Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test
Dark Energy and Dark Matter from an additional adiabatic fluid
Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo
2016-01-01
The Dark Sector is described by an additional barotropic fluid which evolves adiabatically during the universe's history and whose adiabatic exponent $\\gamma$ is derived from the standard definitions of specific heats. Although in general $\\gamma$ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with $\\gamma = $ constant in a FLRW universe. The adiabatic fluid acts effectively as the sum of two distinct compone...
Quantum adiabatic machine learning
Pudenz, Kristen L
2011-01-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.
Xiaoshu Tang; Zhao Guangjie; Nakao Tetsuya
2003-01-01
The recovery of compression set (RS) of wood after dry heating or steam treatment mainly depends on the temperature and time of treatment. For quantitative elucidation, a graph of intermediate RS was built with temperature (T) and time (t) as coordinates. In this graph (abbreviated as T-t planum), a series of curves of RS were created. This leads to a conclusion that same RS can be obtained by numerous different pathways. Further research on pathway equivalency based on T-t planum indicates that a low RS of 10% can be achieved definitely by different combinations of time and temperature. However, the fixation mechanism varies at different temperatures. On the equivalent pathways of higher recovery, the influence of temperature must be taken into consideration. The actual routes must be somewhat modified to achieve an expected result. This makes it possible for us to work out a best fixation pathway among all the possibilities, to eliminate the impact of heat on the mechanical properties of wood.
Oreshkov, Ognyan
2010-01-01
We propose a theory of adiabaticity in quantum Markovian dynamics based on a structural decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of Markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the underlying Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As an application of our theory, we propose a framework for decoherence-assisted computation in noiseless codes under general Markovian noise. We also formulate a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by non-dissipative means.
On The Strategies Towards Isothermal Gas Compression And Expansion
Heidari, Mahbod; Lemofouet, Sylvain; Rufer, Alfred
2014-01-01
Isothermal compression/expansion is regarded as the most promising process in many applications and many researchers and inventors have tried different methods to achieve this goal. The current article first studies the gradual roadmap from adiabatic towards isothermal process from thermodynamics and heat transfer point of view. Different strategies are investigated to achieve this goal by evaluating different possibilities; the bottleneck of the problem is then identified and then increment ...
Shurayts Alexander
2016-01-01
Full Text Available Presents the results of studies of innovative materials in the field of renewable energy.The paper proposes a design and a formula for assessing energy efficiency of the heat pump air dryer, which uses zeotropic hydrocarbon mixtures of saturated hydrocarbons as a working agent and applies the principle of a counter-current heat exchanger with a variable temperature of both the working and the drying agents. Energy efficiency of the heat pump is achieved by means of obtaining a greater part of heat from renewable energy sources, in this case by cooling the air and condensing the water vapors in the heat pump. A conducted analysis identified correlations in establishing the marginal real coefficient of performance of the compression heat pump dryer running on zeotropic hydrocarbon mixtures and operating a cycle with variable temperatures of both the working and the drying agent in the evaporator and the condenser of the heat pump. According to the established correlations, the marginal real coefficient of performance of the compression heat pump dryers running on zeotropic hydrocarbon mixtures of 40 mol% of R600a and 60 mol% of R601 is 1.92 times higher than that of the same dryers running on only R600 (n-butane.
Symmetry of the adiabatic condition in the piston problem
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be compatible with the invariance of total entropy under a system-surroundings interchange. This paper also strengthens some recently published ideas concerning the concepts of heat and dissipative work, and is primarily intended for teachers and graduate students, as well as for all who are interested in this fascinating problem.
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Interplay between electric and magnetic effect in adiabatic polaritonic systems
Alabastri, Alessandro
2013-01-01
We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.
Batani, D.; Bernardinello, A.; Masella, V. [and others
1998-02-01
This report describes the experiment entitled 'Fast electron heating of shock compressed solids at high intensities relevant to fast ignition'; carried out at the Central Laser Facility (CLF) from the 5th January to the 15th February 1997. The experiment, funded by the Framework IV Large-Scale Facilities Access Scheme, was proposed by Dr. D. Batani, University of Milan, Italy and carried out by visiting researchers from the University and Ecole Polytechnique, Palaiseau, France. They were supported by UK researchers from the University of Essex, the University of Bristol and the Central Laser Facility, Rutherford Appleton Laboratory. Experimental results: (i) The experiment demonstrated the first results for fast electron deposition in compressed matter. The irradiances used in these experiments are lower than would be used in the fast ignitor scheme but the significance of the results is, nevertheless very relevant to this scheme. (ii) It is shown that in the experiments presented here that ionised, compressed plastic is less effective at stopping the fast electrons than uncompressed, unionised plastic. The stopping power of the compressed material is reduced by a factor of two (in areal density units) over the uncompressed materials. (iii) These experiments are the first measurements of electron stopping power in compressed plasmas but further experiments with more highly compressed plasmas are necessary before the results may be safely extrapolated to fast ignitor conditions. (author)
Magneto-rotatory compressible couple-stress fluid heated from below in porous medium
Mehta, Chander Bhan
2016-03-01
The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.
Wireless adiabatic power transfer
Research highlights: → Efficient and robust mid-range wireless energy transfer between two coils. → The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. → Wireless energy transfer is insensitive to any resonant constraints. → Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
Adiabat-shaping in indirect drive inertial confinement fusion
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures
Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;
2015-01-01
Spray-drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 C yielding a heat...
无
2002-01-01
Significant compressive stress may be induced in thin plate weldment by anti-welding heating treatment (AWHT)with a temperature difference above 350℃, and an interesting phenomenon of obvious residual stress reduction on non-treated surface was discovered. The method of AWHT has no great effect on the mechanical properties including hardness, strength and toughness of the metal material. The results in the paper prompt a possibility application in shipbuilding industry.
This study investigates the effects of adding injection–compression to rapid heat cycle molding (RHCM) (rapid heat cycle injection–compression molding (RICM)) on the physical quality and optical anisotropy of a molded light guide plate (LGP). Transcription ratio of microstructure, uniformity of part thickness and birefringence were experimentally evaluated on a 7 inch LGP of nominal thickness of 1.12 mm (including a microstructure array of 30 µm diameter and 14 µm height). The designed mold was equipped with rapid heating and compressing facilities and a microstructured nickel stamper was fabricated by UV LIGA process. In addition, to investigate the efficacy of RICM, experiments involving conventional injection molding (CIM), ICM, and RHCM were conducted in parallel with RICM using the same mold. RHCM and RICM yielded excellent transcription ratios for the microstructure, while CIM and RICM provided high thickness uniformity and low birefringence. Thus, RICM obtains high transcription ratio of microstructure, uniform thickness and low birefringence. (paper)
Adiabatically implementing quantum gates
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process
Wireless adiabatic power transfer
Rangelov, A. A.; Suchowski, H.; Silberberg, Y.; Vitanov, N. V.
2010-01-01
We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
Compression behavior of a ferritic-martensitic Cr-Mo steel
Zhang, Zhenbo; Mishin, Oleg; Pantleon, Wolfgang
2012-01-01
The compression behavior of a ferritic-martensitic Cr-Mo steel is characterized for strain rates ranging from 10-4 s-1 to 10-1 s-1 and engineering strains up to 40%. Adiabatic heating causes a reduction in flow stress during continuous compression at a strain rate of 10-1 s-1. No reduction in the...... flow stress is observed if interrupted compression tests are performed with loading and holding steps. Two work-hardening stages with work-hardening rates decreasing linearly with the flow stress are identified and interpreted in terms of the KocksMecking model. The microstructural evolution is...
Nickel Bubble Expansion in Type Ia Supernovae: Adiabatic Solutions
Wang, C Y
2006-01-01
We examine the expansion properties of the Nickel bubble in SNe Ia due to the radioactive heating from the 56Ni->56Co->56Fe decay sequence, under adiabatic, spherically symmetric approximation. We consider an exponentially -declining medium for the ejecta substrate, allowing for the density gradient as expected in a Type Ia supernova. The heating gives rise to an inflated Ni bubble, which induces a forward shock that compresses the outer ambient gas into a shell. As the heating saturates, the flow tends toward a freely-expanding state with the structure frozen into the ejecta. The thickness of the shell takes up ~ 100 in a narrow region limited by numerical resolution. The structure of the shell can be approximately described by a self-similar solution determined by its expansion rate and ambient density gradient. Compared to the case using a uniform-density medium, the density contrast of the inferred ejecta clumps is enhanced, while the interaction of the clumps with the remnant is deferred to a more advanc...
Darwish, M.A.; El-Dessouky, Hisham [Kuwait Univ., Coll. of Engineering and Petroleum, Safat (Kuwait)
1996-03-01
Technical factors affecting the choice of distillation system for desalting water are presented. In particular, the thermal vapour-compression process is compared with the predominant multi-stage flash (MSF) desalting system. It was shown that the conventional multi-effect (ME) system can produce desalted water at a lower cost than the MSF system when both are supplied with steam after its expansion in steam turbines. Mechanical or thermal vapour-compression desalting systems are more cost-effective when compared with directly boiler-operated MSF systems. Thermal analysis of the multi-effect thermo-vapour-compression system is presented with an example. (author)
Joglekar, Archis; Thomas, Alec; Ridgers, Chris; Kingham, Rob
2015-11-01
In this study, we present full-scale 2D kinetic modeling of externally imposed magnetic fields on hohlraums with laser heating. We observe magnetic field cavitation and compression due to thermal energy transport. Self-consistent modeling of the electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's Law. A complete Ohm's Law contains magnetic field advection through the Nernst mechanism that arises due to the heat flow. Magnetic field amplification by a factor of 3 occurs due to magnetic flux pile-up from Nernst convection. The magnetic field cavitates towards the hohlraum axis over a 0.5 ns time scale due to Nernst convection. This results in significantly different magnetic field profiles and slower cavitation than can be expected due to the plasma bulk flow. Non-local electrons contribute to the heat flow down the density gradient resulting in an augmented Nernst convection mechanism that is included self-consistently through kinetic modeling. In addition to showing the prevalence of non-local heat flows, we show effects such as anomalous heat flow up the density gradient induced by inverse bremsstrahlung heating. This research was supported by the DOE through Grant No. DE SC0010621 and in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor.
Operability Test Report for 241-T compressed air system and heat pump
This Operability Test Report (OTR) documents the results of functional testing performed on the operating parameters of the 241-T-701 Compressed Air System. The System was successfully installed and tested per work package 2W-92-01172
Operability Test Report for 241-U Compressed Air System and heat pump
The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The system was upgraded. The operability test showed that the system operates within its intended design parameters. System performance was monitored, recorded, and used to identify areas of concern. Exceptions to the OTP and additional items for safe system performance were minimal and have been resolved; the air system is ready for Operation's use
Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars; Elmegaard, Brian
2015-01-01
A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering the constraints of available refrigeration equipment and a requirement of a positive net present value of the investment. Six heat pump systems were considered, corresponding to an upper limit of the si...
Amendt, Peter; Bellei, Claudio; Wilks, Scott
2012-01-01
The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient and difference in average ionization states . Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated pl...
Cai, Weizhao; Katrusiak, Andrzej
2014-01-01
Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices. PMID:24993679
Efficiency of Compressed Air Energy Storage
Elmegaard, Brian; Brix, Wiebke
2011-01-01
The simplest type of a Compressed Air Energy Storage (CAES) facility would be an adiabatic process consisting only of a compressor, a storage and a turbine, compressing air into a container when storing and expanding when producing. This type of CAES would be adiabatic and would if the machines were reversible have a storage efficiency of 100%. However, due to the specific capacity of the storage and the construction materials the air is cooled during and after compression in practice, making...
Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix;
2015-01-01
A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering the...... constraints of available refrigeration equipment and a requirement of a positive net present value of the investment. Six heat pump systems were considered, corresponding to an upper limit of the sink temperature of 120 °C. For each set of heat sink and source temperatures the best available technology was...... determined. The results showed that four different heat pump systems propose the best available technology at different parts of the complete domain. Ammonia systems presented the best available technology at low sink outlet temperature. At high temperature difference between sink in- and outlet, the...
Petrenec, Martin; Kruml, Tomáš; Zemanová, Adéla; Krahula, Karel
Ostrava : Tanger s.r.o., 2010, s. 828-833. ISBN 978-80-87294-17-8. [Metal 2010. International Conference on Metallurgy and Materials /19./. Rožnov pod Radhoštěm (CZ), 18.05.2010-20.05.2010] R&D Projects: GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : graded cooling heat treatments * DTA curve * TiAl-8Nb intermetallics * fully lamellar microstructure * compression tests Subject RIV: JL - Materials Fatigue, Friction Mechanics
Zhensheng GAO; Zhong TAN; Guochun WU
2014-01-01
In this paper, we are concerned with the global existence and convergence rates of the smooth solutions for the compressible magnetohydrodynamic equations without heat conductivity, which is a hyperbolic-parabolic system. The global solutions are obtained by combining the local existence and a priori estimates if H3-norm of the initial perturbation around a constant states is small enough and its L1-norm is bounded. A priori decay-in-time estimates on the pressure, velocity and magnetic field are used to get the uniform bound of entropy. Moreover, the optimal convergence rates are also obtained.
The use of the polytropic coefficient calculation during the compression process in the thermodynamic cycle of a reciprocating internal combustion engine is an interesting tool to minimize errors in the synchronization of pressure and volume signals, and to determine heat flux transferred to the cylinder walls. The accuracy of this calculation depends on the instantaneous values for pressure, volume, trapped mass and its composition, as well as on their variations. In this work the effect of the errors in blow-by, trapped mass and its composition have been studied in detail, specially the effect of errors in the composition estimation, owing to the use of exhaust gas recirculation in typical diesel engines
Effects Of Compressed Air Foam Application On Heat Conditions In Fire Within A Closed Space
Adam Thomitzek
2016-01-01
Full Text Available This article evaluates the knowledge obtained in firefighting tests using compressed air foam system (CAFS within a confined space. Six experiments were conducted for verification during the cooling of rooms and the self-extinguishing effect. The simulation was for a fully developed fire within a room. The fuel was chosen to simulate ordinary combustible materials utilized in residential areas. Mantel thermocouples were placed in the rooms to record the temperature changes. Compressed air foam was first applied with a standard fire hose nozzle to the ceiling and then to the epicenter of fire. Fire extinguishing was initiated after reaching the desired temperature in the room. The temperature for the start of fire extinguishing matched the third phase of development of a fire. Fire extinguishing was terminated after no obvious signs of fire were shown in epicenter of fire. The outputs of the experiments were evaluated on the basis of the amount of time passed for the temperature to drop below the suggested limit. Individual experiments were also conducted with various different admixing foaming agents over different locations. In the experiments, it has been verified that the application of compressed air foam has a positive effect on room cooling. Use of a compressed air foaming agent does not allow for the development of steam that can scald firefighters and reduce visibility. Furthermore, the extinguishing agent used is more efficient utilizing less water flow out of the fire area.
MICROSTRUCTURE IN ADIABATIC SHEAR BANDS IN A PEARLITIC ULTRAHIGH CARBON STEEL
Syn, C K; Lesuer, D R; Sherby, O D
2003-09-22
Adiabatic shear bands, obtained in compression deformation at a strain rate of 4000 s{sup -1}, in a pearlitic 1.3%C steel, were investigated. Shear-bands initiated at 55% compression deformation with the width of the band equal to 14 {micro}m. Nano-indentor hardness of the shear band was 11.5 GPa in contrast to the initial matrix hardness of 3.5 GPa. The high strength of the shear band is attributed to its creation from two sequential events. First, large strain deformation, at a high strain rate, accompanied by adiabatic heating, led to phase transformation to austenite. Second, retransformation upon rapid cooling occurred by a divorced eutectoid transformation. The result is a predicted microstructure consisting of nano-size carbide particles within a matrix of fine ferrite grains. It is proposed that the divorced eutectoid transformation occurs in iron-carbon steels during high rate deformation in ball milling, ball drop tests and in commercial wire drawing.
Jiang, Ming Liu; Wu, Jing Yi; Xu, Yu.Xiong; Wang, Ru Zhu [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China)
2010-11-15
The objective of this study is to evaluate the influence of condensing heat recovery on the dynamic behavior and performance of air conditioners. The article includes a test procedure utilized to evaluate the condensing heat recovery system, relevant experimental results, a detail analysis of the mechanisms, and improvement measure on such a system. The experimental results indicate that although the condensing heat recovery has a negative effect on the cooling capacity at the start of the heat recovery process, the average cooling coefficient of performance (COP) of the system can be improved. The study also incorporates a control scheme of the electronic expansion valve (EEV) of the condensing heat recovery system. The experimental comparison between the EEV and the thermostatic expansion valve (TEV) demonstrates that the EEV has better performance in both stability and efficiency in the condensing heat recovery system. (author)
Nonresonance adiabatic photon trap
Popov, S S; Burdakov, A V; Ushkova, M Yu
2016-01-01
Concept of high efficiency photon storage based on adiabatic confinement between concave mirrors is presented and experimentally investigated. The approach is insensitive to typical for Fabri-Perot cells requirements on quality of accumulated radiation, tolerance of resonator elements and their stability. Experiments have been carried out with the trap, which consists from opposed concave cylindrical mirrors and conjugated with them spherical mirrors. In result, high efficiency for accumulation of radiation with large angular spread and spectrum width has been confirmed. As radiation source a commercial fiber laser has been used.
Laser heating and magnetic compression of plasma in a fast solenoid
A low-β plasma column a few mm in diameter by 22 cm in length is heated by an axially directed CO2 laser to a high-β state in a fast rising solenoidal field. Successful heating depends on proper timing between the laser pulse and rising field. Typical conditions attained are a line energy density of 6 J/cm, T-barapprox. =40 eV, and n/sub e/approx. =3 x 1017e-/cm3, with conditions quite uniform along the length. The heating suppresses instabilities which appear under certain conditions in the non-laser-heated case
Liu, Xianfeng; Yuan, Shengyang; Sieffert, Yannick; Fityus, Stephen; Buzzi, Olivier
2016-08-01
This study falls in the context of underground coal fires where burning coal can elevate the temperature of a rock mass in excess of 1000°. The objective of the research is to experimentally characterize the change in mechanical behaviour, mineralogy and microstructural texture of two sedimentary rocks when subjected to temperatures up to 1200 °C for 24 h. Specimens of local sandstone and mudstone were comprehensively characterized by X-ray diffraction and thermal-gravimetric analysis. These analyses were complemented by optical microscopy and scanning electron microscopy on polished thin sections. In addition, pore size distributions of these heated rocks were inferred by means of mercury intrusion porosimetry. These results were extended to an estimation of the intrinsic permeability using the Katz-Thompson model. Investigations at micro scale were followed by mechanical testing (both unconfined and confined compression tests) on cylindrical specimens of heated rocks. Results show that the unconfined compressive strength (UCS) of both rock types tends to increase when the temperatures increases up to 900 °C, beyond which the UCS tends to slightly decrease. As for the permeability, a clear increase in intrinsic permeability was observed for both rocks. The macroscopic behaviour was found to be fully consistent with the changes observed at micro scale.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
Gujrati, P D
2012-01-01
The status of heat and work in nonequilibrium thermodynamics is quite confusing and non-unique at present with conflicting interpretations even after a long history of the first law in terms of exchange heat and work, and is far from settled. Moreover, the exchange quantities lack certain symmetry. By generalizing the traditional concept to also include their time-dependent irreversible components allows us to express the first law in a symmetric form dE(t)= dQ(t)-dW(t) in which dQ(t) and work dW(t) appear on an equal footing and possess the symmetry. We prove that irreversible work turns into irreversible heat. Statistical analysis in terms of microstate probabilities p_{i}(t) uniquely identifies dW(t) as isentropic and dQ(t) as isometric (see text) change in dE(t); such a clear separation does not occur for exchange quantities. Hence, our new formulation of the first law provides tremendous advantages and results in an extremely useful formulation of non-equilibrium thermodynamics, as we have shown recently...
Wang, Tao; Zhao, Huijiang
2015-01-01
We consider the construction of global non-vacuum solutions to the one-dimensional compressible Navier-Stokes equations for a viscous and heat-conducting ideal polytropic gas whose transport coefficients depend on both the density and the temperature. A global solvability result to its Cauchy problem is obtained for general adiabatic exponent and large initial data.
Is the sech/tanh Adiabatic Pulse Really Adiabatic?
Rosenfeld, Daniel; Zur, Yuval
1998-05-01
Adiabatic pulses are most conveniently studied in the frequency frame which is a frame of reference rotating at the instantaneous frequency of the pulse. In this frame the adiabatic condition ‖γBeff‖ ≫ |θ≳| sets an upper limit on the sweep rate θ≳ of the Beffvector. This, in turn, places a lower bound on the pulse duration. Adiabatic behavior is studied at the threshold duration and two pulses are examined: (i) a pulse with a constant sweep rate (CAPpulse) and (ii) a conventional sech/tanh adiabatic pulse. It is shown that the sech/tanh pulse performs robust magnetization inversion although it seems to violate the adiabatic condition. This puzzling phenomenon is solved by switching into a second-order rotating frame of reference (SORF) where it is shown that the adiabatic condition is fulfilled. This frame coincides with the frequency frame at the beginning of the pulse. Assuming an RF field along thex-axis of the frequency frame, the SORF then rotates about the commony-axis during the pulse with thez-axis of the new frame aligned with the Beffvector. It is shown that adiabatic motion may be performed in the SORF, in which the sweep rate is increased indefinitely; the adiabatic condition is violated by this motion in the frequency frame but is fulfilled in the SORF. The lower bound on the sweep rate in the frequency frame is thereby lifted.
Adiabatic and non-adiabatic processes in strong Coulomb fields
Adiabatic and non-adiabatic behaviour of relativistic electrons in external Coulomb fields of time-dependent strength is studied within the framework of a model for the description of a shell electron's behaviour during a heavy-ion collision. A classification scheme for types of non-adiabatic behaviour is suggested; its relevance for the analysis of pair production processes in strong Coulomb fields is discussed (K-Shell Ionization). An ansatz for the vacuum polarization potential is introduced and employed to demonstrate the special role of vacuum polarization for adiabatic and non-adiabatic behaviour in very strong Coulomb fields (Zα > 1). The implications of the underlaying specific features of the vacuum polarization charge density in very strong fields for pair production mechanisms are considered. (orig.)
The limitations of ohmic heating in achieving the thermonuclear ignition of a low-β toroidal plasma can be overcome by using several heating methods. Such methods are: fast neutral beam injection (possibly combined with an adiabatic compression or any other means) and HF heating, the most interesting schemes being based on plasma resonances. The basic physical phenomena in each method are briefly explained and results obtained are given. A new heating scheme using an outer frequency of a few kHz is described, that makes it possible to locate the exciting coils outside the vacuum vessel (some of these coils can be that producing the vertical magnetic field for the plasma equilibrium)
Curry, D. M.; Cox, J. E.
1972-01-01
Coupled nonlinear partial differential equations describing heat and mass transfer in a porous matrix are solved in finite difference form with the aid of a new iterative technique (the strongly implicit procedure). Example numerical results demonstrate the characteristics of heat and mass transport in a porous matrix such as a charring ablator. It is emphasized that multidimensional flow must be considered when predicting the thermal response of a porous material subjected to nonuniform boundary conditions.
Geometry of the Adiabatic Theorem
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated
Extended adiabatic blast waves and a model of the soft x-ray background
An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. At early times when the external pressure is negligible, the structure is that of the usual self-similar solution. At later times, the structure evolves smoothly as the shock weakens, the postshock compression declines, and the gradients in pressure and density become less severe within the shocked region. The complete structure should be reliable down to a postshock compression of about 2, with conditions close inside the shock remaining well described somewhat longer. An analytical approximation is also presented for the electron-temperature distribution resulting from Coulomb collisional heating. It is shown that thermal conduction, limited by saturation at early times, fades in importance just as Coulomb collisional heating becomes significant. An estimate is made of the nonequilibrium cooling coefficient and the degree of ionization equilibrium expected by the time significant cooling sets in. From the estimates of the end point of the adiabatic era, based on the collisional equilibrium emissivity, are shown to be reasonably accurate. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E0 = 5 x 1050 ergs in a hot, low-density interstellar environment. A formulais presented for estimating the luminosity evolution of such explosions, including the effects of nonequilibrium ionization. It is shown that the B and C bands of the soft x-ray background are reproduced by such a model explosion if the ambient density is about 0.004 cm(sup -3), the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. The age of such an explosion is roughly 10(sup 5) years. This result is almost independent of whether there is apprecialy non-Coulomb heating of the electrons
Reciprocating heat-engine cycles
The performance of a generalized irreversible reciprocating heat-engine cycle model consisting of two heating branches, two cooling branches and two adiabatic branches with heat-transfer loss and friction-like term loss was analyzed using finite-time thermodynamics. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between the power output and the efficiency of the cycle are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of the cycle process on the performances of the cycles using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson, Brayton, Dual and Miller cycles
Design Point for a Spheromak Compression Experiment
Woodruff, Simon; Romero-Talamas, Carlos A.; O'Bryan, John; Stuber, James; Darpa Spheromak Team
2015-11-01
Two principal issues for the spheromak concept remain to be addressed experimentally: formation efficiency and confinement scaling. We are therefore developing a design point for a spheromak experiment that will be heated by adiabatic compression, utilizing the CORSICA and NIMROD codes as well as analytic modeling with target parameters R_initial =0.3m, R_final =0.1m, T_initial =0.2keV, T_final =1.8keV, n_initial =1019m-3 and n_final = 1021m-3, with radial convergence of C =3. This low convergence differentiates the concept from MTF with C =10 or more, since the plasma will be held in equilibrium throughout compression. We present results from CORSICA showing the placement of coils and passive structure to ensure stability during compression, and design of the capacitor bank needed to both form the target plasma and compress it. We specify target parameters for the compression in terms of plasma beta, formation efficiency and energy confinement. Work performed under DARPA grant N66001-14-1-4044.
Thermoelectric Effects under Adiabatic Conditions
George Levy
2013-10-01
Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.
Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System
Kagawa, Noboru
Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.
Simulation of heating-compressed fast-ignition cores by peta-watt laser-generated electrons
In this work, unique particle-in-cell simulations to understand the relativistic electron beam thermalization and subsequent heating of highly compressed plasmas are reported. The simulations yield heated core parameters in good agreement with the GEKKO-PW experimental measurements, given reasonable assumptions of laser-to-electron coupling efficiency and the distribution function of laser-produced electrons. The classical range of the hot electrons exceeds the mass density-core diameter product L by a factor of several. Anomalous stopping appears to be present and is created by the growth and saturation of an electromagnetic filamentation mode that generates a strong back-EMF impeding hot electrons on the injection side of the density maxima. This methodology is then applied to the design of experiments for the ZR machine coupled to the Z-Beamlet/PW laser. Sandia National Laboratories is also developing a combination of experimental and theoretical capabilities useful for the study of pulsed-power-driven fast ignition physics. In preparation for these fast ignition experiments, the theory group at Sandia is modeling various aspects of fast ignition physics. Numerical simulations of laser/plasma interaction, electron transport, and ion generation are being performed using the LSP code. LASNEX simulations of the compression of deuterium/tritium fuel in various reentrant cone geometries are being performed. Analytic and numerical modeling has been performed to determine the conditions required for fast ignition breakeven scaling. These results indicate that to achieve fusion energy output equal to the deposited energy in the core will require about 5% of the laser energy needed for ignition and might be an achievable goal with an upgraded Z-beamlet laser in short pulse mode. (authors)
Sironi, Lorenzo [NASA Einstein Postdoctoral Fellow. (United States); Narayan, Ramesh, E-mail: lsironi@cfa.harvard.edu, E-mail: rnarayan@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2015-02-20
In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P {sub ∥} because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β{sub 0i} ∼ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β{sub 0i} is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T {sub 0e}/T {sub 0i} ≳ 0.2, whereas for T {sub 0e}/T {sub 0i} ≲ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β{sub 0e} ≲ 2 m{sub e} /m{sub i} , where β{sub 0e} is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β{sub 0e} ≳ 2 m{sub e} /m{sub i}
Blarke, Morten
2011-01-01
recovered from flue gasses as the only low-temperature heat source, furthermore applying an intermediate cold storage allowing for non-concurrent operation of heat pump and cogeneration unit. The novel concept is subject to a detailed techno-economic comparative modelling and analysis, hich finds...... plants may adapt their plant design and operational strategy to improve the co-existence between cogeneration and intermittent renewables. A novel intermittency-friendly and super-efficient concept in cogeneration is presented that involves integrating a high-pressure compression heat pump using heat...
DelVescovo, Dan A.
Low temperature combustion strategies have demonstrated high thermal efficiency with low emissions of pollutants, including oxides of nitrogen and particulate matter. One such combustion strategy, called Reactivity Controlled Compression Ignition (RCCI), which involves the port injection of a low reactivity fuel such as gasoline, ethanol, or natural gas, and a direct injection of a high reactivity fuel, such as diesel, has demonstrated excellent control over the heat release event due to the introduction of in-cylinder stratification of equivalence ratio and reactivity. The RCCI strategy is inherently fuel flexible, however the direct injection strategy needs to be tailored to the combination of premixed and direct injected fuels. Experimental results demonstrate that, when comparing different premixed fuels, matching combustion phasing with premixed mass percentage or SOI timing is not sufficient to retain baseline efficiency and emissions results. If the bulk characteristics of the heat release event can be matched, however, then the efficiency and emissions can be maintained. A 0-D methodology for predicting the required fuel stratification for a desired heat release for kinetically-controlled stratified-charge combustion strategies is proposed and validated with 3-D reacting and non-reacting CFD simulations performed with KIVA3Vr2 in this work. Various heat release rate shapes, phasing, duration, and premixed and DI fuel chemistries are explored using this analysis. This methodology provides a means by which the combustion process of a stratified-charge, kinetically-controlled combustion strategy could be optimized for any fuel combination, assuming that the fuel chemistry is well characterized.
WANG Xue-bin
2008-01-01
The coexistent phenomenon of deformed and transformed adiabatic shear bands(ASBs) of ductile metal was analyzed using the JOHNSON-COOK model and gradient-dependent plasticity(GDP). The effects of melting point, density, heat capacity and work to heat conversion factor were investigated. Higher work to heat conversion factor, lower density, lower heat capacity and higher melting point lead to wider transformed ASB and higher local plastic shear deformation between deformed and transformed ASBs. Higher work to heat conversion factor, lower density, lower heat capacity and lower melting point cause higher local plastic shear deformation in the deformed ASB. Three reasons for the scatter in experimental data on the ASB width were pointed out and the advantages of the work were discussed. If the transformed ASB width is used to back-calculate the internal length parameter in the GDP, undoubtedly, the parameter will be extremely underestimated.
The growth of dry convection in the conditionally stable troposphere: Non-adiabatic effects
Kherani, E A; Sobral, J H A
2014-01-01
In this work, we study the growth characteristics of the convective instability (CI) in the dry troposphere by relaxing the adiabatic compressibility condition of Oberbeck-Boussinesq (OB) approach. We derive a new non-adiabatic-Boussinesq (NAB) expression for the modified Brunt-Vaisala frequency $(\\omega_b)$, without considering the adiabatic compressibility condition of OB approach. This NAB expression reduces to the known Oberbeck-Boussinesq (OB) expression under adiabatic compressibility condition. The NAB expression of $\\omega_b$ is found to be modified from its OB counterpart such that the stabilizing adiabatic lapse rate in OB expression is replaced by a modified non-adiabatic lapse rate given as $\\left(\\eta - 1 \\right)$ times the auto-convective lapse rate. Here $\\eta$ is the ratio of hydrostatic density to the total density. We perform numerical experiments of CI for the conditionally stable troposphere i.e for the troposphere that has the environmental lapse rate negative but smaller than the adiabat...
Taira, Shigeharu; Yazima, Ryuzaburo; Tarutani, Isamu; Koyama, Shigeru
This paper deals with an experimental study on the performance evaluation of heat pump systems using HFC alternative refrigerants. The tested heat pump systems are modified from the R22 use to alternative refrigerants. Refrigerant mixtures of R410A, R407C. R32/125 and R32/134a are tested. where R410A and R407C launched into global market recently. Pure refrigerants of R22, R32, R125 and R134a are also tested. The experimental results of alternative refrigerants are evaluated in comparison with the result of R22, and the following are confirmed : (1) the performance of R32 is the highest. (2) adding R125 to R32 and R32/134a results into the deterioration of the performance, (3) the use of counter flow-like heat exchangers for a zeotropic refrigerant mixtures are effective, and (4) in case of R410A. the modification of the compressor to fit operating pressure heightens the performance. The effects of the performance of components on the COP are also analyzed based on the measured thermodynamic states at both ends of components in the system. Then, it is clarified that the most effective factor is irreversibility of compressors and the following is the pressure drop in low pressure side including the evaporator and the suction pipe.
Reversible compression of an optical piston through Kramers dynamics
Schnoering, Gabriel
2015-01-01
We study the reversible crossover between stable and bistable phases of an over-damped Brownian bead inside an optical piston. The interaction potentials are solved developing a method based on Kramers' theory that exploits the statistical properties of the stochastic motion of the bead. We evaluate precisely the energy balance of the crossover. We show that the deformation of the optical potentials induced by the compression of the piston is related to a production of heat which measures the non-adiabatic character of the crossover. This reveals how specific thermodynamic processes can be designed and controlled with a high level of precision by tailoring the optical landscapes of the piston.
Garcia, Miguel Torres; Jiménez-Espadafor Aguilar, Francisco J.; Becerra Villanueva, José A.; Trujillo, Elisa Carvajal
2010-01-01
Abstract Homogeneous charge compression ignition (HCCI) engines produce very low NOx and soot emissions and alsoimprove engine efficiency when compare to conventional spark ignition engines. The combustion process bases on the self-ignition of a homogenous air-fuel mixture without an external ignition source. The gas temperature is very important to initiate the combustion and to promote the appropriate chemical kinetics. As a result, the heat release rate and heat transfer inside ...
Muharrem Imal; Koray Yılmaz; Ahmet Pınarbaşı
2015-01-01
Increasing attention has been given to energy utilization in Turkey. In this report, we present an energy efficiency evaluation and economic feasibility analysis of a geothermal heating and cooling system (GSHP) and a mechanical compression water chiller system (ACHP) to improve the energy utilization efﬁciency and reduce the primary energy demand for industrial use. Analyses of a mechanical water chiller unit, GSW 180, and geothermal heating and cooling system, EAR 431 SK, were conducted in ...
Non-adiabatic primordial fluctuations
Noller, J
2009-01-01
We consider general non-adiabatic single fluid cosmological perturbations. We derive the second-order action and its curvature variables assuming only the (linearized) Einstein equations for a perfect fluid stress-energy tensor. The derivation is therefore carried out at the same level of generality that has been achieved before for adiabatic modes. We also allow for arbitrary "speed of sound" profiles in our derivation. As a result we find a new conserved super-horizon quantity and relate it to the adiabatically conserved curvature perturbation. We then use the formalism to investigate a family of non-adiabatic hydrodynamical primordial matter models and the power spectra they produce. This yields a new scale-invariant solution that can resolve the horizon problem if implemented in a contracting phase.
The waste heat from exhaust gases and cooling water of Homogeneous charge compression ignition engines (HCCI) are utilized to drive an ammonia-water cogeneration cycle (AWCC) and some heating processes, respectively. The AWCC is a combination of the Rankine cycle and an absorption refrigeration cycle. Considering the chemical kinetic calculations, a single zone combustion model is developed to simulate the natural gas fueled HCCI engine. Also, the performance of AWCC is simulated using the Engineering Equation Solver software (EES). Through combining these two codes, a detailed thermodynamic analysis is performed for the proposed tri-generation system and the effects of some main parameters on the performances of both the AWCC and the tri-generation system are investigated in detail. The cycle performance is then optimized for the fuel energy saving ratio (FESR). The enhancement in the FESR could be up to 28.56%. Under optimized condition, the second law efficiency of proposed system is 5.19% higher than that of the HCCI engine while the reduction in CO2 emission is 4.067% as compared with the conventional separate thermodynamic systems. Moreover, the results indicate that the engine, in the tri-generation system and the absorber, in the bottoming cycle has the most contribution in exergy destruction. - Highlights: • A new thermodynamic tri-generation system is proposed for waste heat recovery of HCCI engine. • A single zone combustion model is developed to simulate the natural gas fueled HCCI engine. • The proposed tri-generation cycle is analyzed from the view points of both first and second laws of thermodynamics. • In the considered cycle, enhancements of 28.56% in fuel energy saving ratio and 5.19% in exergy efficiency are achieved
Linear response of galactic halos to adiabatic gravitational perturbations
Murali, Chigurupati; Tremaine, Scott
1997-01-01
We determine the response of a self-similar isothermal stellar system to small adiabatic gravitational perturbations. For odd spherical harmonics, the response is identical to the response of the analogous isothermal fluid system. For even spherical harmonics, the response can be regarded as an infinite series of wavetrains in $\\log r$, implying alternating compression and rarefaction in equal logarithmic radius intervals. Partly because of the oscillatory nature of the solutions, tidal field...
The density variance - Mach number relation in isothermal and non-isothermal adiabatic turbulence
Nolan, Chris A; Sutherland, Ralph S
2015-01-01
The density variance - Mach number relation of the turbulent interstellar medium is relevant for theoretical models of the star formation rate, efficiency, and the initial mass function of stars. Here we use high-resolution hydrodynamical simulations with grid resolutions of up to 1024^3 cells to model compressible turbulence in a regime similar to the observed interstellar medium. We use Fyris Alpha, a shock-capturing code employing a high-order Godunov scheme to track large density variations induced by shocks. We investigate the robustness of the standard relation between the logarithmic density variance (sigma_s^2) and the sonic Mach number (M) of isothermal interstellar turbulence, in the non-isothermal regime. Specifically, we test ideal gases with diatomic molecular (gamma = 7/5) and monatomic (gamma = 5/3) adiabatic indices. A periodic cube of gas is stirred with purely solenoidal forcing at low wavenumbers, leading to a fully-developed turbulent medium. We find that as the gas heats in adiabatic comp...
Adiabatic cooling of solar wind electrons
Sandbaek, Ornulf; Leer, Egil
1992-01-01
In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.
In this paper is presented a new scheme of injection into a plasma accelerator, aimed at producing a high quality beam while relaxing the demands on the bunch length of the injected beam. The beam dynamics in the injector, consisting of a high voltage pulsed photo-diode, is analyzed and optimized to produce a λp/20 long electron bunch at 2.5 MeV. This bunch is injected into a plasma wave in which it compresses down to λp/100 while simultaneously accelerating up to 250 MeV. This simultaneous bunching and acceleration of a high quality beam requires a proper combination of injection energy and injection phase. Preliminary results from simulations are shown to assess the potentials of the scheme
The split of a generalised Chaplygin gas with an equation of state p=−A/ρα into an interacting mixture of pressureless matter and a dark-energy component with equation of state pΛ=−ρΛ implies the existence of non-adiabatic pressure perturbations. We demonstrate that the square of the effective (non-adiabatic) sound speed cs of the medium is proportional to the ratio of the perturbations of the dark energy to those of the dark matter. Since, as demonstrated explicitly for the particular case α=−1/2, dark-energy perturbations are negligible compared with dark-matter perturbations on scales that are relevant for structure formation, we find |cs2|≪1. Consequently, there are no oscillations or instabilities which have plagued previous adiabatic Chaplygin-gas models
Optimizing adiabaticity in quantum mechanics
MacKenzie, R; Renaud-Desjardins, L
2011-01-01
A condition on the Hamiltonian of a time-dependent quantum mechanical system is derived which, if satisfied, implies optimal adiabaticity (defined below). The condition is expressed in terms of the Hamiltonian and in terms of the evolution operator related to it. Since the latter depends in a complicated way on the Hamiltonian, it is not yet clear how the condition can be used to extract useful information about the optimal Hamiltonian. The condition is tested on an exactly-soluble time-dependent problem (a spin in a magnetic field), where perfectly adiabatic evolution can be easily identified.
Stokes, Eric H.; Shin, E. Eugene; Sutter, James K.
2003-01-01
.e., plastization of polymeric material by water, the internal pressure generated by the volatilization of water at elevated temperatures, and hydrolytic chemical decomposition. However, moisture is lost from the material at increasing rates as temperature increases. Second, because PMCs are good thermal insulators, when they are externally heated at even mild rates large thermal gradients can develop within the material. At temperatures where a material property changes rapidly with temperature the presence of a large thermal gradient is unacceptable for intrinsic property characterization purposes. Therefore, long hold times are required to establish isothermal conditions. However, in the service environments high-heating-rates, high temperatures, high-loading rates are simultaneous present along with residual moisture. In order to capture the effects of moisture on the material, holding at- temperature until isothermal conditions are reached is unacceptable particularly in materials with small physical dimensions. Thus, the effects due to moisture on the composite's mechanical characteristics, ie., their so-called analog response, may be instructive. One approach employed in this program was rapid heat-up (approx. 200 F/sec.) and loading of both dry and wet in-plane compressive specimens to examine the effects of moisture on this resin dominated mechanical property of the material.
New Regenerative Cycle for Vapor Compression Refrigeration
Mark J. Bergander
2005-08-29
The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and
Optimization of Adiabatic Selective Pulses
Rosenfeld, Daniel; Panfil, Shimon L.; Zur, Yuval
1997-06-01
Adiabatic RF pulses play an important role in spin inversion due to their robust behavior in presence of inhomogeneous RF fields. These pulses are characterized by the trajectory swept by the tip of theBeffvector and the rate of motion upon it. In this paper, a method is described for optimizing adiabatic inversion pulses to achieve a frequency-selective magnetization inversion over a given bandwidth in a shorter time and to improve slice profile. An efficient adiabatic pulse is used as an initial condition. This pulse allows for flexibility in choosing its parameters; in particular, the transition sharpness may be traded off against the inverted bandwidth. The considerations for selecting the parameters of the pulse according to the requirements of the design are discussed. The optimization process then improves the slice profile by optimizing the rate of motion along the trajectory of the pulse while preserving the trajectory itself. The adiabatic behavior of the optimized pulses is fully preserved over a twofold range of variation in the RF amplitude which is sufficient for imaging applications in commercial high-field MRI machines. Design examples demonstrate the superiority of the optimized pulses over the conventional sech/tanh pulse.
A Many Particle Adiabatic Invariant
Hjorth, Poul G.
For a system of N charged particles moving in a homogeneous, sufficiently strong magnetic field, a many-particle adiabatic invariant constrains the collisional exchange of energy between the degrees of freedom perpendicular to and parallel to the magnetic field. A description of the phenomenon in...
Adiabatic collapse of rotating gas clouds
The gravitational, axisymmetric and adiabatic collapse of rotating gas clouds with various initial conditions has been calculated numerically by means of Fluid-In-Cell method. We have assumed that the gas is ideal and its change is adiabatic except for heat production by shock waves and that, initially, a cloud has no motion in a meridional plane and has spherical and polytropic distributions of mass and temperature. The results of calculations show that a cloud which has initially larger rotational energy bounced more easily, i.e., bounces at lower central density. The bounce occurs first in the direction of the rotation axis and next in direction perpendicular to it. A shock wave generated by the bounce is strong especially in the vicinity of the rotation axis. At first the shock front is nearly parallel to the equatorial plane but it becomes gradually spherical as it propagates outwards. Calculations have been performed until the mass enclosed inside the shock front becomes as large as 95 percent of the total mass. At this final stage either a rotating spheroidal core or a rotating ring is left in the central region; a ring is formed if initially a cloud is rotating more rapidly, less centrally condensed and at lower temperature. (auth.)
Studies in Chaotic adiabatic dynamics
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the open-quotes goodnessclose quotes of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees)
Digital Waveguide Adiabatic Passage Part 1: Theory
Vaitkus, Jesse A; Greentree, Andrew D
2016-01-01
Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.
Experimental study of a thermochemical compressor for an absorption/compression hybrid cycle
Highlights: ► Experimental study of a thermochemical compressor for absorption/compression cycle. ► Spray adiabatic absorber using NH3–LiNO3 solution working fluid. ► It is able to operate between 57 and 110 °C varying concentration between 0.46 and 0.59. ► The increase of absorber pressure decreases the circulation ratio. ► The numerical model performed agrees with the experimental results. -- Abstract: An experimental study of a thermochemical compressor with ammonia–lithium nitrate solution as working fluid has been carried out. This compressor incorporates a single-pass adiabatic absorber and all the heat exchangers are of the plate type: absorber subcooler, generator and solution heat exchanger. The thermochemical compressor has been studied as part of a single-effect absorption chiller hybridized with an in-series low-pressure compression booster. The adiabatic absorber uses fog jet injectors. The generator hot water temperatures for the external driving flow are in the range of 57–110 °C and the absorber pressures range between 429 and 945 kPa. Experimental results are compared with a numerical model showing a high agreement. The performance of the thermochemical compressor, evaluated through the circulation ratio, improves for higher absorber pressures, indicating the potential of pressure boosting. For the same circulation ratio, the driving hot water inlet temperature decreases with the rise of the absorber pressure. The thermochemical compressor, based on an adiabatic absorber, can produce refrigerant with very low driving temperatures, between 57 and 70 °C, what is interesting for solar cooling applications and very low temperature residual heat recovery. Efficiencies and cooling power are offered when this hybrid thermochemical compressor is implemented in a chiller, showing the effect of different operating parameters.
On the persistence of adiabatic shear bands
Bassim M.N.
2012-08-01
Full Text Available It is generally agreed that the initiation and development of adiabatic shear bands (ASBs are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the “scars” due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.
Improved Refrigerant Characteristics Flow Predictions in Adiabatic Capillary Tube
Shodiya Sulaimon
2012-07-01
Full Text Available This study presents improved refrigerant characteristics flow predictions using homogenous flow model in adiabatic capillary tube, used in small vapor compression refrigeration system. The model is based on fundamental equations of mass, momentum and energy. In order to improve the flow predictions, the inception of vaporization in the capillary tube is determined by evaluating initial vapor quality using enthalpy equation of refrigerant at saturation point and the inlet entrance effect of the capillary tube is also accounted for. Comparing this model with experimental data from open literature showed a reasonable agreement. Further comparison of this new model with earlier model of Bansal showed that the present model could be use to improve the performance predictions of refrigerant flow in adiabatic capillary tube.
Design of Selective Adiabatic Inversion Pulses Using the Adiabatic Condition
Rosenfeld, Daniel; Panfil, Shimon L.; Zur, Yuval
1997-12-01
Adiabatic RF pulses play an important role in spin inversion due to their robust behavior in the presence of inhomogeneous RF fields. These pulses are characterized by the trajectory swept by the tip of theBeffvector and the rate of motion along it. In this paper, we describe a method by which optimized modulation functions can be constructed to render insensitivity toB1inhomogeneity over a predeterminedB1range and over a wide band of frequencies. This is accomplished by requiring that the optimized pulse fulfill the adiabatic condition over this range ofB1inhomogeneity and over the desired frequency band for the complete duration of the pulse. A trajectory similar to the well-known sech/tanh adiabatic pulse, i.e., a half-ellipse, is used. The optimization process improves the slice profile by optimizing the rate of motion along this trajectory. The optimized pulse can be tailored to the specific design requirements; in particular, the transition sharpness may be traded off against the inverted bandwidth. Two design examples, including experimental results, demonstrate the superiority of the optimized pulses over the conventional sech/tanh pulse: in the first example, a large frequency band is to be inverted using a weak RF amplitude in a short time. In the second example, a pulse with a very sharp transition is required.
Parametric Erosion Investigation: Propellant Adiabatic Flame Temperature
P. J. Conroy
2002-01-01
Full Text Available The influence of quasi-independent parameters and their potential influence on erosion in guns have been investigated. Specifically, the effects of flame temperature and the effect of assuming that the Lewis number (ratio of mass-to-heat transport to the surface, Le = 1, has been examined. The adiabatic flame temperature for a propellant was reduced by the addition of a diluent from a high temperature of 3843 K (similar to that of M9 down to 3004 K, which is near the value for M30A1 propellant. Mass fractions of critical species at the surface with and without the assumption of Le = 1 are presented, demonstrating that certain species preferentially reach the surface providing varied conditions for the surface reactions. The results for gun tube bore surface regression qualitatively agree with previous studies and with current experimental data.
From Free Expansion to Abrupt Compression of an Ideal Gas
Anacleto, Joaquim; Pereira, Mario G.
2009-01-01
Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 [less than or equal] r [less than or equal] 1 for expansions and r [greater than or equal] 1 for compressions.…
Adiabatic pumping through quantum dots
A finite charge can be pumped through a mesoscopic system in the absence of an applied bias voltage by changing periodically in time some parameters of the system. If these parameters change slowly with respect to all internal time scales of the system, pumping is adiabatic. The scope of this work is to investigate adiabatic pumping through a quantum dot, in particular the influence of Coulomb interaction between electrons in the dot on the pumped charge. On one hand we develop a formalism based on Green's functions, in order to calculate the pumped charge from the weak-tunnel-coupling regime down to the Kondo regime. We extend our calculations to a system with a superconducting contact. On the other hand we use a systematic perturbation expansion for the calculation of the pumped charge, giving us the possibility to analyze processes which contribute to charge pumping and to highlight the important role of interaction-induced level renormalization. (orig.)
Adiabatic theory for the bipolaron
A translation-invariant adiabatic theory is constructed for the bipolaron. It is shown that motions in the bipolaron are divided: the relative electron coordinates describe fast electron oscillations in the induced polarization well and the center of mass coordinates represent slow electron movement followed by polarization. Nonlinear differential bipolaron equations are derived which are asymptotically exact in the adiabatic limit. Particlelike solutions of these equations correspond to the bipolaron bound state. The exact solution yields the value of the ion critical parameter η=0.31 for which the bipolaron state is stable, where η=ε∞/ε0 and ε∞,ε0 are high-frequency and static dielectric permittivities. The energy, the total energy, the effective mass, the radius, and the critical values of the electron-phonon coupling constants are calculated for the bipolaron. The results obtained are generalized to the case of two-dimensional bipolarons
Highlights: → Solution densities and sound speeds were measured for aqueous solutions of thymidine. → Partial molar volumetric properties at infinite dilution and T = 298.15 K were derived. → The partial molar isentropic and isothermal compressions are of opposite signs. → The partial molar heat capacity for thymidine at infinite dilution was determined. - Abstract: Solution densities have been determined for aqueous solutions of thymidine at T = (288.15, 298.15, 303.15, and 313.15) K. The partial molar volumes at infinite dilution, V20, obtained from the density data were used to derive the partial molar isobaric expansion at infinite dilution for thymidine at T = 298.15 K, E20{E20=(∂V20/∂T)p}. The partial molar heat capacity at infinite dilution for thymidine, Cp,20, at T = 298.15 K has also been determined. Sound speeds have been measured for aqueous solutions of thymidine at T = 298.15 K. The partial molar isentropic compression at infinite dilution, KS,20, and the partial molar isothermal compression at infinite dilution, KT,20{KT,20=-(∂V20/∂P)T}, have been derived from the sound speed data. The V20, E20, Cp,20, and KS,20 results for thymidine are critically compared with those available from the literature.
Highlights: • A combined heat and power system based on CAES and HAT is proposed. • The design and modeling of the CAES–HAT based CHP system are laid out. • The performance assessment of the proposed system is carried out. • The system optimization is conducted to decide the maximum conditions. - Abstract: Renewable energy based power sources have grown rapidly in the past few years owing to the dual constraint of climate change and pollution control. Compressed air energy storage (CAES), as a large-scale energy storage system (ESS) technology, has huge potential to manage the intermittent renewable energy based power sources effectively. However, the compression heat generated during charge and waste heat carried in turbine exhaust during discharge are not fully recuperated in current stage. A combined heat and power (CHP) system consisting of a CAES system and a humid air turbine (HAT) system is proposed to utilize the both types of heat energy. The proposed system can boost the power output, enhance performance and improve efficiency through a simultaneous supply of power and heat. The thermodynamic analysis shows that the expansion train power can be improved about 26% compared with the conventional CAES system. The parametric analysis reveals that the exergy efficiency increases with the turbine inlet temperature (TIT) of high pressure turbine (HPT) and inlet pressure of low pressure turbine (LPT), but decreases with the TIT of LPT, L/G ratio and dry air inlet temperature of saturator. Meanwhile, the system optimization is carried out via particle swarm optimization (PSO) to determine the maximum power and exergy efficiency conditions
Adiabatic Mass Loss Model in Binary Stars
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the
Parameters of a possible FRC adiabatic compression experiment
An experiment is described that would address the following research goals for field-reversed configurations (FRC). (a) Test FRC stability with a number of ion gyroradii relative to the plasma radius substantially greater than in present experiments. (b) Increase the electron temperature sufficiently to test the physics of electron energy confinement and of trapped-flux losses. (c) Improve confinement while remaining in a density regime (n less than or equal to 5 x 1015 cm-3) most likely to be relevant to fusion power production
Simulation of an Air-Source Heat Pump with Two-Stage Compression and Economizing for Cold Climates
Caskey, Stephen L.; Kultgen, Derek; Eckhard A. Groll; Hutzel, William; Menzi, Tobias
2012-01-01
A new air-source heat pump technology optimized for cold climates was designed and fabricated by the authors in close cooperation with three industrial partners. The constructed unit will undergo a field demonstration in a military barrack to identify heat pumps as cost effective systems that have less primary energy consumption when compared to traditional cold climate heating methods. A simulation model developed in EES predicted the designed heat pump performance at different ambient condi...
Dark Energy and Dark Matter from an additional adiabatic fluid
Dunsby, Peter K S; Reverberi, Lorenzo
2016-01-01
The Dark Sector is described by an additional barotropic fluid which evolves adiabatically during the universe's history and whose adiabatic exponent $\\gamma$ is derived from the standard definitions of specific heats. Although in general $\\gamma$ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with $\\gamma = $ constant in a FLRW universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like non-relativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both Dark Energy and Dark Matter, at least at the level of the background cosmology. The $\\Lambda$CDM model is included in this family of theories when $\\gamma = 0$. We fit our model to SNIa, $H(z)$ and BAO data, discussing the model selection criteria. The implications for the early-universe and the growth of small per...
Vapor Flow Patterns During a Start-Up Transient in Heat Pipes
Issacci, F.; Ghoniem, N, M.; Catton, I.
1996-01-01
The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.
Adiabatic Rearrangement of Hollow PV Towers
Eric A Hendricks
2010-10-01
Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane
Dou, Changsheng; Jiang, Fei; Jiang, Song; Yang, Yong-Fu
2013-01-01
We prove that there exists a strong solution to the Dirichlet boundary value problem for the steady Navier-Stokes equations of a compressible heat-conductive fluid with large external forces in a bounded domain $R^d (d = 2, 3)$, provided that the Mach number is appropriately small. At the same time, the low Mach number limit is rigorously verified. The basic idea in the proof is to split the equations into two parts, one of which is similar to the steady incompressible Navier-Stokes equations...
The performance of a solar chemical heat pipe was studied using CO2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs
Simulation of the Operating Performance for Supplementing-compressing Heat-pump%补气增焓热泵机组运行性能模拟研究
李艳; 王强
2011-01-01
Based on the operating characteristics of air-source-heat-pump in low temperatures, a single-stage air source heat pump and a supplementing-compressing air source heat pump was simulated and calculated. A calculation of heat pump with a process of refilling was presented and the most appropriate pressures in different evaporation temperatures were obtained, which would do a lot of help to improving the operating performance of air-source-heat-pump in low temperatures.%基于空气源热泵机组在低温工况下的运行特性，对单级空气源热泵机组及补气增焓热泵机组进行仿真模拟计算，提出一种带补气的热泵机组运行性能的计算方法，得出不同蒸发温度下最佳补气压力值，对改善低温环境下空气源热泵机组的运行性能具有重要意义。
Liquid desiccant systems have been proposed as energy saving alternatives to the conventional vapor compression systems for handling the latent load. This paper presents the results from a study of the performance of a counter flow liquid desiccant dehumidifier. A heat and mass transfer theoretical model of an adiabatic packed column has been developed, based on the Runge-Kutta fixed step method, to predict the performance of the device under various operating conditions. Good agreement was found between experimental tests and the theoretical model, with the maximum deviation being ±2.9% in air outlet temperature, ±15.9% in air outlet humidity ratio and ±2.8% in solution outlet temperature. Following the model validation, the rate and the efficiency of the dehumidification process were assessed under the effects of variables, such as air temperature and humidity, desiccant temperature and humidity and air and desiccant flow rates. The three most commonly used liquid desiccant solutions, namely LiCl, LiBr and CaCl2 were evaluated against each other. The results show that high absorber efficiency and system efficiency could be achieved under humid conditions, low air mass flow rates and LiCl as the desiccant solution. - Highlights: ► Development of a theoretical model for an adiabatic structured dehumidifier. ► Theoretical model results are in excellent agreement with experimental data. ► LiCl has the best dehumidifier efficiency, in comparison to LiBr and CaCl2. ► LiCl has the highest dehumidification mass rate, in comparison to LiBr and CaCl2.
Ultrafast laser experiments on metals usually induce a high electron temperature and a low ion temperature and, thus, an energy relaxation process. The electron heat capacity and electron-phonon coupling factor are crucial thermal quantities to describe this process. We perform ab initio theoretical studies to determine these thermal quantities and their dependence on density and electron temperature for the metals aluminum and beryllium. The heat capacity shows an approximately linear dependence on the temperature, similar to free electron gas, and the compression only slightly affects the capacity. The electron-phonon coupling factor increases with both temperature and density, and the change observed for beryllium is more obvious than that for aluminum. The connections between thermal quantities and electronic/atomic structures are discussed in detail, and the different behaviors of aluminum and beryllium are well explained
Caskey, Stephen Lance
2013-01-01
A Department of Defense project was established to conduct a field demonstration led by Purdue University with several industry partners. The technology investigated was an air-source, two-stage heat pump with closed-loop economizing. The field demonstration site was a military barracks on a National Guard base, Camp Atterbury, in southern Indiana. Two heat pumps were built at the Ray W. Herrick Laboratories and installed into two almost identical, barracks buildings. Data on the heat pump op...
The evolution of the microstructure of an AlMg4.7Si8 alloy is investigated by scanning electron microscopy and ex situ synchrotron tomography in as-cast condition and subsequent solution treatments for 1 h and 25 h at 540 °C, respectively. The eutectic Mg2Si phase, which presents a highly interconnected structure in the as-cast condition, undergoes significant morphological changes during the solution heat treatment. Statistical analyses of the particle distribution, the sphericity, the mean curvatures and Gaussian curvatures describe the disintegration of the interconnected seaweed-like structure followed by the rounding of the disintegrated fractions of the eutectic branches quantitatively. The ternary eutectic Si resulting from the Si-surplus to the stoichiometric Mg2Si ratio of the alloy undergoes similar changes. The morphological evolution during solution heat treatment is correlated with results of elevated temperature compression tests at 300 °C. The elevated temperature compressive strength is more sensitive to the degree of interconnectivity of the three dimensional Mg2Si network than to the shape of the individual particles
Piyadeh, F.; Abdollah-Pour, H.; Lieblich, M.
2014-07-01
AA2124/25vol%MoSi{sub 2} composites were processed by two powder metallurgy routes: high energy ball milling of the reinforcement and alloy powder (B composite) and wet blending with cyclohexane (W composite), both followed by extrusion to achieve full consolidation. As-extruded and heat treated composite bars were studied microstructurally and mechanically (hardness and compression tests under quasistatic loading). Microstructure and fracture profiles were observed by scanning electron microscopy and the reaction products formed in the matrix were identified by energy-dispersive X-ray spectroscopy and X-ray diffraction analysis. The results show that for both composites, the hardness of the specimens in solution and aged condition was higher than in the as-extruded condition. The hardness of the B composite was higher than that of the W composite whereas the age-harden ability of the B composite was significantly lower than that of the W composite. After heat treatments, small diffusion reaction phases appeared at the interface between matrix and reinforcements. Compressive yield strength and the ultimate strength of both composites improved considerably after the artificial ageing. The composite fracture surfaces exhibited microscopically a ductile appearance that consisted of dimples in the matrix and a fragile fracture of the MoS{sub i}2 particulates. (Author)
Tolnai, D., E-mail: domonkos.tolnai@hzg.de [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13/308, A-1040 Vienna (Austria); Eötvös Loránd University, Department of Materials Physics, POB 32, H-1518 Budapest (Hungary); Requena, G. [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13/308, A-1040 Vienna (Austria); Cloetens, P. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38000 Grenoble Cédex (France); Lendvai, J. [Eötvös Loránd University, Department of Materials Physics, POB 32, H-1518 Budapest (Hungary); Degischer, H.P. [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13/308, A-1040 Vienna (Austria)
2013-11-15
The evolution of the microstructure of an AlMg4.7Si8 alloy is investigated by scanning electron microscopy and ex situ synchrotron tomography in as-cast condition and subsequent solution treatments for 1 h and 25 h at 540 °C, respectively. The eutectic Mg{sub 2}Si phase, which presents a highly interconnected structure in the as-cast condition, undergoes significant morphological changes during the solution heat treatment. Statistical analyses of the particle distribution, the sphericity, the mean curvatures and Gaussian curvatures describe the disintegration of the interconnected seaweed-like structure followed by the rounding of the disintegrated fractions of the eutectic branches quantitatively. The ternary eutectic Si resulting from the Si-surplus to the stoichiometric Mg{sub 2}Si ratio of the alloy undergoes similar changes. The morphological evolution during solution heat treatment is correlated with results of elevated temperature compression tests at 300 °C. The elevated temperature compressive strength is more sensitive to the degree of interconnectivity of the three dimensional Mg{sub 2}Si network than to the shape of the individual particles.
A New Approach to the Quantum Adiabatic Condition
The quantum adiabatic theorem is the basis of adiabatic quantum computation. However, the exact necessary and sufficient conditions for adiabatic evolution are still under debate. We discuss the adiabatic condition of a system undergoing a special evolution route, and obtain an explicit formula that is necessary and sufficient for the adiabatic evolution in this route. Based on this formula, we find that the traditional adiabatic condition is neither sufficient nor necessary. Finally, we show that no adiabatic process can occur even the evolution speed goes to 0 in some examples, which is surprising since the adiabatic theorem states that if the evolution of a system is slow enough, the adiabatic process could occur
Hedwig, Gavin R., E-mail: G.Hedwig@massey.ac.nz [Institute of Fundamental Sciences-Chemistry, Massey University, Private Bag 11222, Palmerston North (New Zealand); Jameson, Geoffrey B. [Institute of Fundamental Sciences-Chemistry, Massey University, Private Bag 11222, Palmerston North (New Zealand); Hoiland, Harald [Department of Chemistry, University of Bergen, N-5020 Bergen (Norway)
2011-12-15
Highlights: > Solution densities and sound speeds were measured for aqueous solutions of thymidine. > Partial molar volumetric properties at infinite dilution and T = 298.15 K were derived. > The partial molar isentropic and isothermal compressions are of opposite signs. > The partial molar heat capacity for thymidine at infinite dilution was determined. - Abstract: Solution densities have been determined for aqueous solutions of thymidine at T = (288.15, 298.15, 303.15, and 313.15) K. The partial molar volumes at infinite dilution, V{sub 2}{sup 0}, obtained from the density data were used to derive the partial molar isobaric expansion at infinite dilution for thymidine at T = 298.15 K, E{sub 2}{sup 0}{l_brace}E{sub 2}{sup 0}=({partial_derivative}V{sub 2}{sup 0}/{partial_derivative}T){sub p}{r_brace}. The partial molar heat capacity at infinite dilution for thymidine, C{sub p,2}{sup 0}, at T = 298.15 K has also been determined. Sound speeds have been measured for aqueous solutions of thymidine at T = 298.15 K. The partial molar isentropic compression at infinite dilution, K{sub S,2}{sup 0}, and the partial molar isothermal compression at infinite dilution, K{sub T,2}{sup 0}{l_brace}K{sub T,2}{sup 0}=-({partial_derivative}V{sub 2}{sup 0}/{partial_derivative}P){sub T}{r_brace}, have been derived from the sound speed data. The V{sub 2}{sup 0}, E{sub 2}{sup 0}, C{sub p,2}{sup 0}, and K{sub S,2}{sup 0} results for thymidine are critically compared with those available from the literature.
Complete Adiabatic Quantum Search in Unsorted Databases
Xu, Nanyang; Peng, Xinhua; Shi, Mingjun; Du, Jiangfeng
2008-01-01
We propose a new adiabatic algorithm for the unsorted database search problem. This algorithm saves two thirds of qubits than Grover's algorithm in realizations. Meanwhile, we analyze the time complexity of the algorithm by both perturbative method and numerical simulation. The results show it provides a better speedup than the previous adiabatic search algorithm.
Shortcut to adiabatic gate teleportation
Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.
2016-01-01
We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.
Quantum gates with controlled adiabatic evolutions
Hen, Itay
2015-02-01
We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.
3D MHD Simulations of Spheromak Compression
Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team
2015-11-01
The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.
An adiabatic apparatus to establish the spontaneous combustion propensity of coal
Gouws, M.J.; Gibbon, G.J.; Wade, L.; Phillips, H.R. (University of the Witwatersrand, Johannesburg (South Africa))
1991-12-01
An adiabatic calorimeter has been designed to enable the spontaneous combustion propensity of coal to be established. The experiment was designed to run unattended, with a personal computer being used for measurement and control functions. All measurements are stored on a data diskette while the experiment is in progress. The calorimeter was designed to be run in both a rising temperature mode and an incubation mode. Various indicators of self-heating potential, such as total temperature rise, initial rate of heating, minimum self-heating temperature, and kinetic constants can be investigated. Results obtained from the adiabatic tests will be compared with the results of crossing-point temperature determinations and differential thermal analysis (DTA) tests for the same coals, with a view to formulating a mathematically consistent spontaneous combustion liability index. This paper describes the major components of the adiabatic calorimeter. 17 refs., 2 figs., 2 tabs.
Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R
2015-11-01
Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. PMID:26025643
Wan, Ling; Wang, Tao; Zou, Qingyang
2016-04-01
We investigate the large-time behavior of solutions to an outflow problem of the compressible Navier-Stokes equations for viscous and heat-conducting ideal polytropic gases in the half line. The non-degenerate stationary solution is shown to be asymptotically stable under large initial perturbation with no restriction on the adiabatic exponent, provided that the boundary strength is sufficiently small. The proofs are based on the nonlinear energy estimates and the crucial step is to obtain positive lower and upper bounds of the density and the temperature uniformly in time and space.
Partial evolution based local adiabatic quantum search
Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one. Later, they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database. In the present paper, following the idea of Roland and Cerf [Roland J and Cerf N J 2002 Phys. Rev. A 65 042308], if within the small symmetric evolution interval defined by Zhang et al., a local adiabatic evolution is performed instead of the original “global” one, this “new” algorithm exhibits slightly better performance, although they are progressively equivalent with M increasing. In addition, the proof of the optimality for this partial evolution based local adiabatic search when M = 1 is also presented. Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search, which are found to have the same phenomenon above, are also discussed. (general)
Morduchow, Morris
1955-01-01
A survey of integral methods in laminar-boundary-layer analysis is first given. A simple and sufficiently accurate method for practical purposes of calculating the properties (including stability) of the laminar compressible boundary layer in an axial pressure gradient with heat transfer at the wall is presented. For flow over a flat plate, the method is applicable for an arbitrarily prescribed distribution of temperature along the surface and for any given constant Prandtl number close to unity. For flow in a pressure gradient, the method is based on a Prandtl number of unity and a uniform wall temperature. A simple and accurate method of determining the separation point in a compressible flow with an adverse pressure gradient over a surface at a given uniform wall temperature is developed. The analysis is based on an extension of the Karman-Pohlhausen method to the momentum and the thermal energy equations in conjunction with fourth- and especially higher degree velocity and stagnation-enthalpy profiles.
A combined organic Rankine cycle and vapor compression cycle (ORC–VCC) system activated by low temperature heat sources was studied. Two low GWP fluids were considered as working fluids for the VCC and two different low GWP fluids for the ORC. System performance was evaluated through computational modeling over different operating conditions. The computed thermal COP of the ORC–VCC system varied between 0.30 and 1.10 over the range of operating conditions studied. The computed electrical COP of the ORC–VCC system, defined as the ratio of the rate of cooling and the ORC pump power consumption, varied between 15 and 110. The choice of VCC working fluid had only a limited influence on system thermal or electrical efficiency, with HFO-1234ze(E) presenting slightly better results. Use of HFO-1336mzz(Z) as the ORC working fluid resulted in slightly higher system thermal efficiencies and significantly higher system electrical efficiencies throughout the range of operating conditions studied. Furthermore, the system is evaluated for a typical application and the feasibility study shows good economical results. - Highlights: • A combined organic Rankine cycle and vapor compression cycle system was studied. • Low GWP fluids were considered as working fluids for the VCC and for the ORC. • The computed thermal COP of the ORC–VCC system varied between 0.30 and 1.10. • The computed electrical COP of the ORC–VCC system varied between 15 and 110
The influence of stress state on the development of adiabatic shear for uranium niobium alloys
In order to reveal the influence of stress state on the form and development of adiabatic shear, the split Hopkinson press bar (SHPB) is used to impact specimen with different shape such as cylinder, step-cylinder, dumbbell and ladder-shaped specimen. The specimens after Hopkinson bar test were investigated by optical microscopy. The deformation behavior and shear localization in four specimens of uranium niobium alloys under impact loading are simulated by the finite element code LS-DYNA. The results show that the shapes of specimens effect the tendency of the adiabatic shear band (ASB) in the single axial compress state. The location and propagations of ASB predicted by present FEM simulation show good agreement with the experimental results. The calculation results show that the stress condition has significant influence on the initiation and propagation of adiabatic shear band. (authors)
Hu, Kainan; Geng, Shaojuan
2016-01-01
A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e. the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion...
Dharma-wardana, M W C
2012-01-01
The pair-interactions U_{ij}(r) determine the thermodynamics and linear transport properties of matter via the pair-distribution functions (PDFs), i.e., g_{ij}(r). Great simplicity is achieved if U_{ij}(r) could be directly used to predict material properties via classical simulations, avoiding many-body wavefunctions. Warm dense matter (WDM) is encountered in quasi-equilibria where the electron temperature $T_e$ differs from the ion temperature T_i, as in laser-heated or in shock-compressed matter. The electron PDFs g_{ee}(r) as perturbed by the ions are used to evaluate fully non-local exchange-correlation corrections to the free energy, using Hydrogen as an example. Electron-ion potentials for ions with a bound core are discussed with Al and Si as examples, for WDM with T_e \
Fluid selection for thermodynamic cycles like refrigeration cycles, heat pumps or organic Rankine cycles remains an actual topic. Generally the search for a working fluid is based on experimental approaches or on a not very systematic trial and error approach, far from being elegant. An alternative method may be a theory based reverse engineering approach, proposed and investigated here: The design process should start with an optimal process and with (abstract) properties of the fluid needed to fit into this optimal process, best described by some general equation of state and the corresponding fluid-describing parameters. These should be analyzed and optimized with respect to the defined model process, which also has to be optimized simultaneously. From this information real fluids can be selected or even synthesized which have fluid defining properties in the optimum regime like critical temperature or ideal gas capacities of heat, allowing to find new working fluids, not considered so far. The number and kind of the fluid-defining parameters is mainly based on the choice of the used EOS (equation of state). The property model used in the present work is based on the cubic Peng–Robinson equation, chosen due to its moderate numerical expense, sufficient accuracy as well as a general availability of the fluid-defining parameters for many compounds. The considered model-process works between the temperature levels of 273.15 and 333.15 K and can be used as heat pump for supplying buildings with heat, typically. The objective functions are the COP (coefficient of performance) and the VHC (volumetric heating capacity) as a function of critical pressure, critical temperature, acentric factor and two coefficients for the temperature-dependent isobaric ideal gas heat capacity. Also, the steam quality at the compressor entrance has to be regarded as a problem variable. The results give clear hints regarding optimal fluid parameters of the analyzed process and deepen
In China, a large amount of wind power is abandoned due to the difficulty of integrating fluctuating wind power into electricity grid systems. Advanced adiabatic compressed air energy storage (AA-CAES) is regarded as a promising emission-free technology to facilitate the wind power integration, but its high capital cost has hindered its wide commercialization. In the present work, a novel hybrid system was proposed on the basis of AA-CAES. It can reduce abandoned wind power and improve the financial return per capital cost of the system by increasing power output. In the new system, which is called hybrid thermal-compressed air energy storage (HTCAES), thermal energy storage (TES) units absorb the heat released from air compression and also the thermal energy converted from reluctant wind power using electrical heaters. Theoretical thermodynamic analyses show that the HTCAES system can absorb much more wind power than an AA-CAES system with the same scale of compressors, turbines, and TES units do. And recovery efficiency of this additional wind power is about 41–47%, depending on the final storage temperature of the TES. The power output ratio of the HTCAES system to the AA-CAES system increases with the maximum TES storage temperature and decreases with the operating pressure. - Highlights: •A novel concept of adiabatic compressed air energy storage is proposed. •Heat TES using electricity heaters after TES absorbs heat from air. •Power storage capacity of the new system can be greatly increased. •Recovery efficiency of the wind power used for electric heating is about 41–47%. •Power output increase is about 19–125% depending on the TES storage temperature
Digital Waveguide Adiabatic Passage Part 2: Experiment
Ng, Vincent; Chaboyer, Zachary J; Nguyen, Thach; Dawes, Judith M; Withford, Michael J; Greentree, Andrew D; Steel, M J
2016-01-01
Using a femtosecond laser writing technique, we fabricate and characterise three-waveguide digital adiabatic passage devices, with the central waveguide digitised into five discrete waveguidelets. Strongly asymmetric behaviour was observed, devices operated with high fidelity in the counter-intuitive scheme while strongly suppressing transmission in the intuitive. The low differential loss of the digital adiabatic passage designs potentially offers additional functionality for adiabatic passage based devices. These devices operate with a high contrast ($>\\!90\\%$) over a 60~nm bandwidth, centered at $\\sim 823$~nm.
CAO Wenhua; LIU Songhao
2004-01-01
A novel scheme to compress optical pulses is proposed and demonstrated numerically, which is based on a nonlinear optical loop mirror constructed from dispersion decreasing fiber (DDF). We show that, in contrast to the conventional soliton-effect pulse compression in which compressed pulses are always accompanied by pedestals and frequency chirps owning to nonlinear effects, the proposed scheme can completely suppress pulse pedestals and frequency chirps. Unlike the adiabatic compression technique in which DDF length must increase exponentially with input pulsewidth, the proposed scheme does not require adiabatic condition and therefore can be used to compress long pulses by using reasonable fiber lengths. For input pulses with peak powers higher than a threshold value, the compressed pulses can propagate like fundamental solitons. Furthermore, the scheme is fairly insensitive to small variations in the loop length and is more robust to higher-order nonlinear effects and initial frequency chirps than the adiabatic compression technique.
Highlights: • Combined use of residual gas trapping and intake preheating is explored. • Fuel economy improvement benefits most from changed valve configuration. • Compromise between intake thermal demand and engine efficiency is analyzed. • Intake preheating by waste heat recovery decreases fuel consumption by 8–12%. • Low load boundary is effectively extended to 0.8 bar. - Abstract: Homogeneous charge compression ignition (HCCI) combustion achieved by residual gas trapping suffers from the limitation of the low load extension and fuel economy penalties whilst achieved by intake preheating alone is limited by the high intake thermal requirement and waste heat recovery. In the presented research, systematic engine experiments were carried out on a single cylinder engine on the combined use of residual gas trapping and intake preheating to achieve optimized combustion and better fuel conversion efficiency in the HCCI operational range. The effect of different combinations between residual gas trapping and intake preheating on HCCI combustion was explored and analyzed. It was indicated that the implementation transition from residual gas trapping to intake preheating significantly influenced the fuel economy and emissions. The decreased loss resulting from changed valve configuration contributed much more than half of the fuel economy improvement. The variation in emissions depended both on the combustion temperature influenced by dilution charge and the in-cylinder distribution affected by implementation form. It was also demonstrated that the increased benefit became less when the intake temperature further went up. Thus a relatively reasonable compromise between intake thermal demand and engine efficiency could be achieved to optimize the HCCI combustion by combining waste heat recovery and residual gas trapping. Compared to negative valve overlap method alone, the supplementary of intake preheating by waste heat recovery provided 8–12% fuel economy
Dharma-wardana, M. W. C.
2012-09-01
The pair interactions Uij(r) determine the thermodynamics and linear transport properties of matter via the pair-distribution functions (PDFs), i.e., gij(r). Great simplicity is achieved if Uij(r) could be directly used to predict material properties via classical simulations, avoiding many-body wave functions. Warm dense matter (WDM) is encountered in quasiequilibria where the electron temperature Te differs from the ion temperature Ti, as in laser-heated or in shock-compressed matter. The electron PDFs gee(r) as perturbed by the ions are used to evaluate fully nonlocal exchange-correlation corrections to the free energy, using hydrogen as an example. Electron-ion potentials for ions with a bound core are discussed with Al and Si as examples, for WDM with Te≠Ti, and valid for times shorter than the electron-ion relaxation time. In some cases the potentials develop attractive regions and then become repulsive and “Yukawa-like” for higher Te. These results clarify the origin of initial phonon hardening and rapid release. Pair potentials for shock-heated WDM show that phonon hardening would not occur in most such systems. Defining meaningful quasiequilibrium static transport coefficients consistent with the dynamic values is addressed. There seems to be no meaningful “static conductivity” obtainable by extrapolating experimental or theoretical σ(ω,Ti,Te) to ω→0, unless Ti→Te as well. Illustrative calculations of quasistatic resistivities R(Ti,Te) of laser-heated as well as shock-heated aluminum and silicon are presented using our pseudopotentials, pair potentials, and classical integral equations. The quasistatic resistivities display clear differences in their temperature evolutions, but are not the strict ω→0 limits of the dynamic values.
Adiabatic Invariance of Oscillons/I-balls
Kawasaki, Masahiro; Takeda, Naoyuki
2015-01-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or $I$-balls. We prove the adiabatic invariance of the oscillons/$I$-balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/$I$-balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/$I$-balls are only quasi-stable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the $I$-balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/$I$-balls is due to the adiabatic invariance.
Adiabatic hydrodynamics: The eightfold way to dissipation
Haehl, Felix M; Rangamani, Mukund
2015-01-01
We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...
Adiabatic calorimeter for measuring absorbed dose of IHEP synchrotron secondary radiation
An adiabatic calorimeter for measuring the value of absorbed dose of mixed radiation generated by 70 GeV proton synchrotron is described. The calorimetric system consists of a working body (a core) and a shell (a screen). The calorimeter adiabaticity is provided by the absence of the core-shell heat exchange by maintaining the shell temperature equal to the core temperature and, consequently, the whole energy generated in the core goes for its heating. The work showed the possibility of carrying out the adiabatic calorimetric measurements of absorbed dose of secondary radiation generated by un accelerated proton beam under the conditions of alternating magnetic and electric fields at the IHEP proton synchrotron at the average dose rate not less than 5x10-3 Wxkg-1
Hydrodynamics compression in inertial confinement fusion (ICF) plasma
The hydrodynamics compression in ICF plasma has been theoretically studied using conservation equations. The study is based on single fluid plasma model. A comparison is made between shock and adiabatic compression. It seems that the amount of energy required to compress the fusion fuel by same factor is greater for strong shocks but is nearly same for weak shocks in comparison with the adiabatic compression. It can be inferred as conclusion that weak shocks are appropriate for compression in ICF. The ratio of pressure, density and temperature are obtained in terms of shock speed, i.e., in terms of mach numbers. The limitation of achievable density of fuel in shock is calculated beyond which there is expansion rather than compression. (author)
Adiabatic Connection for Strictly-Correlated Electrons
Liu, Zhenfei; Burke, Kieron
2009-01-01
Modern density functional theory (DFT) calculations employ the Kohn-Sham (KS) system of non-interacting electrons as a reference, with all complications buried in the exchange-correlation energy (Exc). The adiabatic connection formula gives an exact expression for Exc. We consider DFT calculations that instead employ a reference of strictly-correlated electrons. We define a "decorrelation energy" that relates this reference to the real system, and derive the corresponding adiabatic connection...
Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility
Mostafazadeh, Ali
2014-01-01
arXiv:1401.4315v3 [quant-ph] 27 Feb 2014 Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility Ali Mostafazadeh∗ Department of Mathematics, Ko¸c University, 34450 Sarıyer, Istanbul, Turkey Abstract The transfer matrix of a possibly complex and energy-dependent scattering potential can be identified with the S-matrix of a two-level time-dependent non-Hermitian Hamiltonian H( ). We show that the application of the adiabatic approximation ...
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei; Nakayama, Kazunori
2015-01-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is us...
Quantum and classical dynamics in adiabatic computation
Crowley, P. J. D.; Duric, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-01-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations th...
Baofeng Yao
2014-11-01
Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.
Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do
2014-01-01
This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete. PMID:25133259
Won-Chang Choi
2014-01-01
Full Text Available This paper presents experimental results that can be applied to select a possible phase change material (PCM, such as a latent heat material (LHM, to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH2·8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.
Adiabatic nanofocusing: spectroscopy, transport and imaging investigation of the nano world
Giugni, A.; Allione, M.; Torre, B.; Das, G.; Francardi, M.; Moretti, M.; Malerba, M.; Perozziello, G.; Candeloro, P.; Di Fabrizio, E.
2014-11-01
Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.
Adiabatic nanofocusing: spectroscopy, transport and imaging investigation of the nano world
Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale. (review)
Adiabatic nanofocusing: Spectroscopy, transport and imaging investigation of the nano world
Giugni, Andrea
2014-11-01
Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.
NOVEL CONCEPTS FOR THE COMPRESSION OF LARGE VOLUMES OF CARBON DIOXIDE-PHASE III
Moore, J. Jeffrey; Allison, Timothy; Evans, Neal; Moreland, Brian; Hernandez, Augusto; Day, Meera; Ridens, Brandon
2014-06-30
successfully demonstrated good performance and mechanical behavior. In Phase III, a pilot compression plant consisting of a multi-stage centrifugal compressor with cooled diaphragm technology has been designed, constructed, and tested. Comparative testing of adiabatic and cooled tests at equivalent inlet conditions shows that the cooled diaphragms reduce power consumption by 3-8% when the compressor is operated as a back-to-back unit and by up to 9% when operated as a straight-though compressor with no intercooler. The power savings, heat exchanger effectiveness, and temperature drops for the cooled diaphragm were all slightly higher than predicted values but showed the same trends.
Rapid compressions in a captive bubble apparatus are isothermal
Yan, Wenfei; Hall, Stephen B.
2003-01-01
Captive bubbles are commonly used to determine how interfacial films of pulmonary surfactant respond to changes in surface area, achieved by varying hydrostatic pressure. Although assumed to be isothermal, the gas phase temperature (Tg) would increase by >100°C during compression from 1 to 3 atm if the process were adiabatic. To determine the actual change in temperature, we monitored pressure (P) and volume (V) during compressions lasting 10 min after the compression when the two phases shou...
Evolution Of Nonlinear Waves in Compressing Plasma
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
An Integrated Programming and Development Environment for Adiabatic Quantum Optimization
Humble, Travis S.; McCaskey, Alex J.; Bennink, Ryan S.; Billings, Jay J.; D'Azevedo, Ed F.; Sullivan, Blair D.; Klymko, Christine F.; Seddiqi, Hadayat
2013-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for adiabatic quantum optimization called JADE tha...
On criterion of modal adiabaticity
WANG; Ning(
2001-01-01
［1］Pierce, A. D., Extension of the method of normal modes to sound propagation in an almost-stratified medium, J. Acoust.Soc. Am., 1965, 37: 19－27.［2］Wang, D. Z. , Shang, E. C., Underwater Acoustics (in Chinese), Beijing: Science Press, 1981.［3］Zhang Renhe, Li Fenghua, Beam-displacement rya-mode theory of sound propagation in shallow water, Science in China, Ser.A, 1999, 42(7): 739－749.［4］Zhou Jixun, Zhang Xuezhen, Rogers P., Resonance interaction of sound waves with internal solitons in coastal zone, J.Acoust. Soc. Am., 1991, 90: 2042－2054.［5］Shang, E. C., Wang, Y. Y., The impact of mesoscale oceanic structure on global-scale acoustic propagation, in Theoretical and Computational Acoustics (ed. Ding Lee et al. ), Singapore: World Scientific Publishing Co. , 1996, 409－431.［6］Milder, D. M., Ray and wave invariants for SOFAR channel propagation, J. Acoust. Soc. Am., 1969, 46: 1259－1263.［7］Nag l, A., Milder, D. M., Adiabatic mode theory of underwater sound propagation in a range-dependent environment, J.Acoust. Soc. Am., 1978, 63: 739－749.［8］Brekhovskikh, L. M., Waves in Layered Media, 2nd ed., New York: Academic Press Inc., 1973.［9］Brekhovskikh, L. M., Lysanov, Yu., Fundamental of Ocean Acoustics, Ch. 7, Sec. 7.2, Berlin: Springer-Verlag, 1982.［10］Evans, R. B., A coupled mode solution for acoustic propagation in a wave-guide with stepwise depth variations of a penerable bottom, J. Acoust. Soc. A.m., 1983, 74: 188－195.［11］Jensen, F. B., Kuperman, W. A., Porter, M. B. et al., Computational Ocean Acoustics, New York: Springer-Verlag,1992.［12］Wang Ning, Inverse scattering problem for the coupled second order ODE, Journal of The Physical Society of Japan, 1995, 64(12): 4907－4915.
Here, I summarize the results presented in B. Kraus, Phys. Rev. Lett. 107, 250503 (2011). Recently, it has been shown that certain circuits, the so-called match gate circuits, can be compressed to an exponentially smaller universal quantum computation. We use this result to demonstrate that the simulation of a 1-D Ising chain consisting of n qubits can be performed on a universal quantum computer running on only log(n) qubits. We show how the adiabatic evolution can be simulated on this exponentially smaller system and how the magnetization can be measured. Since the Ising model displays a quantum phase transition, this result implies that a quantum phase transition of a very large system can be observed with current technology
Kraus, B. [Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)
2014-12-04
Here, I summarize the results presented in B. Kraus, Phys. Rev. Lett. 107, 250503 (2011). Recently, it has been shown that certain circuits, the so-called match gate circuits, can be compressed to an exponentially smaller universal quantum computation. We use this result to demonstrate that the simulation of a 1-D Ising chain consisting of n qubits can be performed on a universal quantum computer running on only log(n) qubits. We show how the adiabatic evolution can be simulated on this exponentially smaller system and how the magnetization can be measured. Since the Ising model displays a quantum phase transition, this result implies that a quantum phase transition of a very large system can be observed with current technology.
Exploring adiabatic quantum trajectories via optimal control
Adiabatic quantum computation employs a slow change of a time-dependent control function (or functions) to interpolate between an initial and final Hamiltonian, which helps to keep the system in the instantaneous ground state. When the evolution time is finite, the degree of adiabaticity (quantified in this work as the average ground-state population during evolution) depends on the particulars of a dynamic trajectory associated with a given set of control functions. We use quantum optimal control theory with a composite objective functional to numerically search for controls that achieve the target final state with a high fidelity while simultaneously maximizing the degree of adiabaticity. Exploring the properties of optimal adiabatic trajectories in model systems elucidates the dynamic mechanisms that suppress unwanted excitations from the ground state. Specifically, we discover that the use of multiple control functions makes it possible to access a rich set of dynamic trajectories, some of which attain a significantly improved performance (in terms of both fidelity and adiabaticity) through the increase of the energy gap during most of the evolution time. (paper)
Adiabatic cooling of a single trapped ion
Poulsen, Gregers
2012-01-01
We present experimental results on adiabatic cooling of a single 40Ca+ ion in a linear radiofrequency trap. After a period of laser cooling, the secular frequency along the rf-field-free axis is adiabatically lowered by nearly a factor of eight from 583 kHz to 75 kHz. For an ion originally Doppler laser cooled to a temperature of 0.65 +/- 0.03 mK, a temperature of 87 +/- 7 \\mu K is measured after the adiabatic expansion. Applying the same adiabatic cooling procedure to a single sideband cooled ion in the ground state (P0 = 0.978 +/- 0.002) resulted in a final ground state occupation of 0.947 +/- 0.005. Both results are in excellent agreement with an essentially fully adiabatic behavior. The results have a wide range of perspectives within such diverse fields as ion based quantum information science, high resolution molecular ion spectroscopy and ion chemistry at ultra-low temperatures.
Symmetry-Protected Quantum Adiabatic Transistors
Williamson, Dominic J.; Bartlett, Stephen D.
2014-03-01
An essential development in the history of computing was the invention of the transistor as it allowed logic circuits to be implemented in a robust and modular way. The physical characteristics of semiconductor materials were the key to building these devices. We aim to present an analogous development for quantum computing by showing that quantum adiabatic transistors (as defined by Flammia et al.) are built upon the essential qualities of symmetry-protected (SP) quantum ordered phases in one dimension. Flammia et al. and Renes et al. have demonstrated schemes for universal adiabatic quantum computation using quantum adiabatic transistors described by interacting spin chain models with specifically chosen Hamiltonian terms. We show that these models can be understood as specific examples of the generic situation in which all SP phases lead to quantum computation on encoded edge degrees of freedom by adiabatically traversing a symmetric phase transition into a trivial symmetric phase. This point of view is advantageous as it allows us to readily see that the computational properties of a quantum adiabatic transistor arise from a phase of matter rather than due to carefully tuned interactions.
Accurate adiabatic correction in the hydrogen molecule
Pachucki, Krzysztof, E-mail: krp@fuw.edu.pl [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Komasa, Jacek, E-mail: komasa@man.poznan.pl [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland)
2014-12-14
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Adiabatic change of state of photon gas
The authors introduced and justified the k problem as a thermodynamical contradiction of photon gas. In thermodynamics of photon gas the main contradiction is called the k problem: the piezotropic-autobarotropic equation of state P = u/3 is adiabatic if k = 1 exclusively, while the adiabatic connection PV4/3 = const (or rather the Poisson equation Pρ-4/3 = const, ρ = u/c2) requires that k = 4/3. The present paper shows that the equations of state PV4/3 = const, TV1/3 = const, T-4/3P1/3 = const and P = u/3 cannot be valid for the adiabatic change of state of photon gas, simultaneously. Furthermore, the Planck's distribution -- and so the Wien's law and the Rayleigh-Jeans connection as well -- cannot be invariant in case of adiabatic change of state of photon gas. Namely, in case of adiabatic change of state of photon gas, a new type of ultraviolet catastrophe appears. These results possess a fundamental important in case of arbitrary deformation of electromagnetic radiation fields or quantum plasmas
Nonadiabatic exchange dynamics during adiabatic frequency sweeps
Barbara, Thomas M.
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.
Energy efficiency of adiabatic superconductor logic
Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2. (paper)
Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag
Shaaban, S; Seume, J.
2012-01-01
Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The prese...
Staying adiabatic with unknown energy gap
Nehrkorn, J; Ekert, A; Smerzi, A; Fazio, R; Calarco, T
2011-01-01
We introduce an algorithm to perform an optimal adiabatic evolution that operates without an apriori knowledge of the system spectrum. By probing the system gap locally, the algorithm maximizes the evolution speed, thus minimizing the total evolution time. We test the algorithm on the Landau-Zener transition and then apply it on the quantum adiabatic computation of 3-SAT: The result is compatible with an exponential speed-up for up to twenty qubits with respect to classical algorithms. We finally study a possible algorithm improvement by combining it with the quantum Zeno effect.
Ramsey numbers and adiabatic quantum computing
Gaitan, Frank; Clark, Lane
2011-01-01
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,n\\geq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(m,n)$. We show how the computation of $R(m,n)$ can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctl...
Superconducting system for adiabatic quantum computing
We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results
On black hole spectroscopy via adiabatic invariance
Jiang Qingquan, E-mail: qqjiangphys@yeah.net [College of Physics and Electronic Information, China West Normal University, Nanchong, Sichuan 637002 (China); Han Yan [College of Mathematic and Information, China West Normal University, Nanchong, Sichuan 637002 (China)
2012-12-05
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form I{sub adia}= Contour-Integral p{sub i}dq{sub i}. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by {Delta}A=8{pi}l{sub p}{sup 2} in the Schwarzschild and Painleve coordinates.
Complexity of the Quantum Adiabatic Algorithm
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
Byung Jae Lee
2014-12-01
Full Text Available In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise (Q∞ and the ternary blended cement mixture had the lowest reaction factor (r. Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.
Adiabatic Improved Efficient Charge Recovery Logic for Low Power CMOS Logic
Prof. Mukesh Tiwar
2012-08-01
Full Text Available Power dissipation becoming a limiting factor in VLSI circuits and systems. Due to relatively high complexity of VLSI systems used in various applications, the power dissipation in CMOS inverter, arises from its switching activity, which is mainly influenced by the supply voltage and effective capacitance. The low-power requirements of present electronic systems have challenged the scientific research towards the study of technological, architectural and circuital solutions that allow a reduction of the energy dissipated by an electronic circuit. One of the main causes of energy dissipation in CMOS circuits is due to the charging and discharging of the node capacitances of the circuits, present both as a load and as parasitic. Such part of the total power dissipated by a circuit is called dynamic power. In order to reduce the dynamic power, an alternative approach to the traditional techniques of power consumption reduction, named adiabatic switching technique is use. Adiabatic switching is an approach to low-power digital circuits that differs fundamentally from other practical low-power techniques. The term adiabatic comes from thermodynamics, used to describe a process in which there is no exchange of heat with the environment. When adiabatic switching is used, the signal energies stored on circuit capacitances may be recycled instead of dissipated as heat. The adiabatic switching technique can achieve very low power dissipation, but at the expense of circuit complexity. Adiabatic logic offers a way to reuse the energy stored in the load capacitors rather than the traditional way of discharging the load capacitors to the ground and wasting this energy. Power reduction is achieved by recovering the energy in the recover phase of the supply clock.
Adiabatic transition probability for a tangential crossing
Watanabe, Takuya
2006-01-01
We consider a time-dependent Schrödinger equation whose Hamiltonian is a $2\\times 2$ real symmetric matrix. We study, using an exact WKB method, the adiabatic limit of the transition probability in the case where several complex eigenvalue crossing points accumulate to one real point.
On the double adiabatic continuous spectrum
In earlier work it has been found that the Alfven and cusp (or slow) continuous spectra can become unstable in toroidal geometry, as judged from the linearized double adiabatic equations. In this paper the validity of fluid approaches to the present problem is investigated. The physical implications of the stability conditions are discussed. (Author)
Pulsed adiabatic structure and complete population transfer
Population can be transferred between atomic or molecular energy states in a variety of ways. The basic idea of adiabatic transfer, discussed in many textbooks, is as follows. One begins with an atom that is in some single energy state (an eigenstate of an initial Hamiltonian). This energy state is one of many possible states, known variously as the unperturbed states or basis states or diabatic states. Next one begins to change the Hamiltonian very slowly. The changes may occur in either the diagonal elements (the basis state energies) or in the off-diagonal elements (interactions between basis states). If there are off-diagonal elements then the Hamiltonian will no longer commute with the original one. Because the Hamiltonian is no longer the one that was used to define the original basis states, it will cause these states to become mixed. However, if the change is sufficiently slow, the system can remain in a single eigenstate of the changing Hamiltonian -- an adiabatic state, composed of a combination of basis states. Finally, at some later time, one examines the system once again in the original basis. One finds that the population has undergone a change, and now resides in a different unperturbed state. One has produced population transfer. There are many illustrative examples of adiabatic passage, both theory and experiment. The author mentions briefly two common examples, inelastic collisions between atoms, and the static Stark effect in Rydberg atoms, before continuing with the main objective, a discussion of adiabatic passage induced by laser pulses
Semi adiabatic theory of seasonal Markov processes
Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.
Recent adiabaticity results from orbit calculations
There has been much activity recently in an attempt to find a straightforward method of predicting the limits of adiabatic behavior in high-beta magnetic-mirror configurations. The particle-orbit code TIBRO was used to obtain numerical results on nonadiabatic behavior with which the predictions of theoretical expressions can be compared. These results are summarized. (MOW)
Adiabatic Excitation of Longitudinal Bunch Shape Oscillations
By modulating the rf voltage at near twice the synchrotrons frequency we are able to modulate the longitudinal bunch shape. We show experimentally that this can be done while preserving the longitudinal emittance when the rf voltage modulation is turned on adiabatically. Experimental measurements will be presented along with theoretical predictions
Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion
Aadland, David; Shaffer, Sherrill
2012-01-01
Economists have generally ignored the notion that perceived time may differ from clock time. Borrowing from the behavioral psychology literature, we investigate the case of time compression whereby perceived time passes more quickly than actual time. A framework is presented to embed time compression in economic models. We then apply the principle to a standard lifecycle permanent income model with endogenous labor. Time compression provides an alternative explanation of why older indi...
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-01
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.
Beneficial Role of the Industrial Wastes to Combat Adiabatic Temperature Rise in Massive Concrete
Ashraf, M.; Goyal, A.; Anwar, A. M.; Hattori, K.; Ogata, H.; Guo, S.
An evaluation was made on the mutual beneficial role of fly ash and ground granulated blast furnace slag in combating adiabatic temperature rise. The experimental program was designed in two stages; the main experiment consisted of two massive concrete specimens with dimensions (50x50x50) cm. In first stage of experiment, an adiabatic rise in temperature of specimens was measured. In second stage, the mechanical properties of massive concrete specimens were measured at the ages of 8, 14, 28, 56 and 91 days. At the age of 91 days, surface core and central cores were extracted from the surface and the central part of massive concrete specimens to determine compressive strength and dynamic modulus of elasticity. In the massive concrete specimen without any additive, the peak temperature noted was 64.5°C at 7th h after casting. While in mineral substituted concrete the maximum adiabatic temperature was 49.6°C at 19th h after casting. Lower rate of temperature rise in mineral substituted concrete has resulted in higher value of ultrasonic pulse velocity and ultimate compressive strength of concrete.
The dynamic instability of adiabatic blast waves
Ryu, Dongsu; Vishniac, Ethan T.
1991-01-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
ADIABATIC MASS LOSS IN BINARY STARS. I. COMPUTATIONAL METHOD
The asymptotic response of donor stars in interacting binary systems to very rapid mass loss is characterized by adiabatic expansion throughout their interiors. In this limit, energy generation and heat flow through the stellar interior can be neglected. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed as mass is removed from the surface. The stellar interior remains in hydrostatic equilibrium. Luminosity profiles in these adiabatic models of mass-losing stars can be reconstructed from the specific entropy profiles and their gradients. These approximations are validated by comparison with time-dependent binary mass transfer calculations. We describe how adiabatic mass-loss sequences can be used to quantify threshold conditions for dynamical timescale mass transfer, and to establish the range of post-common envelope binaries that are allowed energetically. In dynamical timescale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main-sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal timescale mass transfer, a so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical timescale mass transfer as that ratio for which the adiabatic response of the donor star radius to mass loss matches that of its Roche lobe at some point during mass transfer; if the ratio of donor to accretor masses exceeds this critical value, dynamical timescale mass transfer ensues. In common envelope evolution, the dissipation of orbital energy of the
Piyadeh, Fatemeh
2014-12-01
Full Text Available AA2124/25vol%MoSi2 composites were processed by two powder metallurgy routes: high energy ball milling of the reinforcement and alloy powder (B composite and wet blending with cyclohexane (W composite, both followed by extrusion to achieve full consolidation. As-extruded and heat treated composite bars were studied microstructurally and mechanically (hardness and compression tests under quasistatic loading. Microstructure and fracture profiles were observed by scanning electron microscopy and the reaction products formed in the matrix were identified by energy-dispersive X-ray spectroscopy and X-ray diffraction analysis. The results show that for both composites, the hardness of the specimens in solution and aged condition was higher than in the as-extruded condition. The hardness of the B composite was higher than that of the W composite whereas the age-hardenability of the B composite was significantly lower than that of the W composite. After heat treatments, small diffusion reaction phases appeared at the interface between matrix and reinforcements. Compressive yield strength and the ultimate strength of both composites improved considerably after the artificial ageing. The composite fracture surfaces exhibited microscopically a ductile appearance that consisted of dimples in the matrix and a fragile fracture of the MoSi2 particulates.En este trabajo se procesaron materiales compuestos AA2124/25vol% MoSi2 mediante dos rutas pulvimetalúrgicas: mezcla de refuerzo y matriz mediante molino de bolas de alta energía (compuesto B y mezcla húmeda con ciclohexano (compuesto W. Ambos polvos compuestos se consolidaron por extrusión. Los materiales recién extruidos y después de tratados térmicamente se estudiaron desde el punto de vista microestructural y mecánico (dureza y compresión bajo carga cuasiestática. Las microestructuras y los perfiles de fractura se observaron por microscopía electrónica de barrido y los productos de reacci
Numerical simulation of the heating of X-ray bright points in the solar corona
The goal of this thesis work was the investigation of the physical processes involved in evolution of solar coronal Bright Points (BPs) by means of a three-dimensional magnetohydrodynamic (MHD) numerical simulation. We investigated the energy budget with emphasis on the relative role and contribution of adiabatic compression versus current dissipation to the formation of coronal BPs. We used a three-dimensional resistive MHD model, initialized with an extrapolation of the observed magnetic field from SOHO/MDI magnetograms. We showed quantitatively the small role of Joule heating in BP formation and concluded that it cannot be considered a viable process unless the diffusion regions have a much larger volume filling factor than currently thought. The results also indicate that compression is an important processes in the energy budget. After this we concentrated on radiative losses in optically thin plasmas and heat conduction in the model. (orig.)
Inverse engineering rigorous adiabatic Hamiltonian for non-Hermitian system
Wu, Qi-Cheng; Chen, Ye-Hong; Huang, Bi-Hua; Xia, Yan; Song, Jie
2016-01-01
We generalize the quantum adiabatic theorem to the non-Hermitian system and build a rigorous adiabaticity condition with respect to the adiabatic phase. The non-Hermitian Hamiltonian inverse engineering method is proposed for the purpose to adiabatically drive a artificial quantum state. For the sake of clearness, we take a concrete two-level system as an example to show the usefulness of the inverse engineering method. The numerical simulation result shows that our scheme can work well even ...
Perturbation to Mei symmetry and adiabatic invariants for Hamilton systems
Ding Ning; Fang Jian-Hui
2008-01-01
Based on the concept of adiabatic invariant,this paper studies the perturbation to Mei symmetry and adiabatic invariants for Hamilton systems.The exact invaxiants of Mei symmetry for the system without perturbation are given.The perturbation to Mei symmetry is discussed and the adiabatic invariants induced from the perturbation to Mei symmetry of the system are obtained.
Jaffe, Arthur; Wozniakowski, Alex
2016-01-01
In a previous paper we introduced holographic software for quantum networks, inspired by work on planar para algebras. This software suggests the definition of a compressed transformation. Here we utilize the software to find a CT protocol to teleport compressed transformations. This protocol serves multiple parties with multiple persons.
Properties of a two stage adiabatic demagnetization refrigerator
Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.
2015-12-01
Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.
Study of CSR longitudinal bunch compression cavity
The scheme of longitudinal bunch compression cavity for the Cooling Storage Ring (CSR)is an important issue. Plasma physics experiments require high density heavy ion beam and short pulsed bunch,which can be produced by non-adiabatic compression of bunch implemented by a fast compression with 90 degree rotation in the longitudinal phase space. The phase space rotation in fast compression is initiated by a fast jump of the RF-voltage amplitude. For this purpose, the CSR longitudinal bunch compression cavity, loaded with FINEMET-FT-1M is studied and simulated with MAFIA code. In this paper, the CSR longitudinal bunch compression cavity is simulated and the initial bunch length of 238U72+ with 250 MeV/u will be compressed from 200 ns to 50 ns.The construction and RF properties of the CSR longitudinal bunch compression cavity are simulated and calculated also with MAFIA code. The operation frequency of the cavity is 1.15 MHz with peak voltage of 80 kV, and the cavity can be used to compress heavy ions in the CSR. (authors)
Thermodynamic study of ibuprofen by adiabatic calorimetry and thermal analysis
Molar heat capacities of ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 400 K. The polynomial functions of Cp,m (J K-1 mol-1) versus T were established on the heat capacity measurements by means of the least fitting square method. The functions are as follows: for solid ibuprofen, at the temperature range of 79.105 K≤T≤333.297 K, Cp,m=144.27+77.046X+3.5171X2+10.925X3+11.224X4, where X=(T-206.201)/127.096; for liquid ibuprofen, at the temperature range of 353.406 K≤T≤378.785 K, Cp,m=325.79+8.9696X-1.6073X2-1.5145X3, where X=(T-366.095)/12.690. A fusion transition at T=348.02 K was found from the Cp-T curve. The molar enthalpy and entropy of the fusion transition were determined to be 26.65 kJ mol-1 and 76.58 J mol-1 K-1, respectively. The thermodynamic functions on the base of the reference temperature of 298.15 K, (HT-H298.15) and (ST-S298.15), were derived. Thermal characteristic of ibuprofen was studied by thermo-gravimetric analysis (TG-DTG) and differential scanning calorimeter (DSC). The temperature of fusion, the molar enthalpy and entropy of fusion obtained by DSC were well consistent with those obtained by adiabatic calorimeter. The evaporation process of ibuprofen was investigated further by TG and DTG, and the activation energy of the evaporation process was determined to be 80.3±1.4 kJ mol-1
On the power of coherently controlled quantum adiabatic evolutions
We provide a new approach to adiabatic state preparation that uses coherent control and measurement to average different adiabatic evolutions in ways that cause their diabatic errors to cancel, allowing highly accurate state preparations using less time than conventional approaches. We show that this new model for adiabatic state preparation is polynomially equivalent to conventional adiabatic quantum computation by providing upper bounds on the cost of simulating such evolutions on a circuit-based quantum computer. Finally, we show that this approach is robust to small errors in the quantum control register and that the system remains protected against noise on the adiabatic register by the spectral gap. (paper)
Weinberg Soft Theorems from Weinberg Adiabatic Modes
Mirbabayi, Mehrdad
2016-01-01
Soft theorems for the scattering of low energy photons and gravitons and cosmological consistency conditions on the squeezed-limit correlation functions are both understood to be consequences of invariance under large gauge transformations. We apply the same method used in cosmology -- based on the identification of an infinite set of "adiabatic modes" and the corresponding conserved currents -- to derive flat space soft theorems for electrodynamics and gravity. We discuss how the recent derivations based on the asymptotic symmetry groups (BMS) can be continued to a finite size sphere surrounding the scattering event, when the soft photon or graviton has a finite momentum. We give a finite distance derivation of the antipodal matching condition previously imposed between future and past null infinities, and explain why all but one radiative degrees of freedom decouple in the soft limit. In contrast to earlier works on BMS, we work with adiabatic modes which correspond to large gauge transformations that are $...
Quantum adiabatic evolution with energy degeneracy levels
Zhang, Qi
2016-01-01
A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.
Adiabatic Quantum Optimization for Associative Memory Recall
Hadayat eSeddiqi
2014-12-01
Full Text Available Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO. Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic Quantum Simulation of Quantum Chemistry
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-10-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Robust Classification with Adiabatic Quantum Optimization
Denchev, Vasil S.; Ding, Nan; Vishwanathan, S. V. N.; Neven, Hartmut
2012-01-01
We propose a non-convex training objective for robust binary classification of data sets in which label noise is present. The design is guided by the intention of solving the resulting problem by adiabatic quantum optimization. Two requirements are imposed by the engineering constraints of existing quantum hardware: training problems are formulated as quadratic unconstrained binary optimization; and model parameters are represented as binary expansions of low bit-depth. In the present work we...
Adiabatic graph-state quantum computation
Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others
2015-08-15
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
Graphical abstract: To improve the performance of the air-cooled type absorption refrigeration, a novel non-adiabatic absorber has been applied in the cycle. Simulation results show that low grade energy is applicable for NH3/NaSCN and NH3/LiNO3 absorption refrigeration system under air cooling condition and relatively high system performance can be obtained. - Highlights: • We analyze an absorption refrigeration cycle driven by low grade energy. • Working fluids thermophysical property correlations are corrected. • Influence of non-adiabatic absorber on system performance is investigated. • We propose system operation parameters under air-cooled condition. - Abstract: An air-cooled type absorption refrigeration cycle using ammonia–lithium nitrate and ammonia–sodium thiocyanate solutions as working fluids are thermodynamically studied in this paper. In the case of many occasions especially small cooling capacity occasion where water cooling is restricted or inconvenient, application of conventional adiabatic absorbers in air-cooled type absorption refrigeration system has been studied by many investigators. Comparing to the adiabatic absorber, a novel air-cooled non-adiabatic absorber is applied to the absorption refrigeration system in this study to improve system performance. It is shown that, system performance has a significant improvement when temperatures of rich ammonia solution at the outlet of absorber decrease under the effect of the heat dissipation capacity of the non-adiabatic absorber. Another advantage is that heat load of the system heat exchangers including generator, solution heat exchanger and air-cooler, decreases with the solution temperature decrease at the outlet of the absorber under the same system cooling capacity condition, which brings benefits to the system cost reduction. Variation of system performance and other system operation parameters with generator temperature, absorption temperature and absorption efficiency has
Free Convective Unsteady MHD Flow of Newtonian Fluid in a Channel with Adiabatic
Dr.G.Prabhakararao
2014-07-01
Full Text Available In this paper, we investigated an unsteady free convection MHD flow of an incompressible viscous electrically conducting fluid under the action of transverse uniform magnetic field between two heated vertical plates by keeping one plate is adiabatic. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by using perturbation technique. The effects of various physical parameters on the velocity and temperature fields are discussed in detail with the help of graphs.
王学滨
2004-01-01
A method for calculation of temperature distribution in adiabatic shear band is proposed in terms of gradient-dependent plasticity where the characteristic length describes the interactions and interplaying among microstructures. First, the increment of the plastic shear strain distribution in adiabatic shear band is obtained based on gradient-dependent plasticity. Then, the plastic work distribution is derived according to the current flow shear stress and the obtained increment of plastic shear strain distribution. In the light of the well-known assumption that 90% of plastic work is converted into the heat resulting in increase in temperature in adiabatic shear band, the increment of the temperature distribution is presented. Next, the average temperature increment in the shear band is calculated to compute the change in flow shear stress due to the thermal softening effect. After the actual flow shear stress considering the thermal softening effect is obtained according to the Johnson-Cook constitutive relation, the increment of the plastic shear strain distribution, the plastic work and the temperature in the next time step are recalculated until the total time is consumed. Summing the temperature distribution leads to rise in the total temperature distribution. The present calculated maximum temperature in adiabatic shear band in titanium agrees with the experimental observations. Moreover, the temperature profiles for different flow shear stresses are qualitatively consistent with experimental and numerical results. Effects of some related parameters on the temperature distribution are also predicted.
Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag
S. Shaaban
2012-01-01
Full Text Available Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.
Denisov, S.; Flach, S.; Ovchinnikov, A. A.;
2002-01-01
We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response...
From free expansion to abrupt compression of an ideal gas
Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 ≤ r ≤ 1 for expansions and r ≥ 1 for compressions. The particular cases of free expansion and reversible adiabatic processes correspond to r = 0 and r = 1, respectively. To conclude the interpretation of r, the relation between r and the variation of the system entropy was also obtained. Comparison between this study and one restricted to expansions following a microscopic point of view showed not only equivalent interpretations but also that our approach is more general, since it also comprises compressions, provides an objective relation between r and entropy change and considers instantaneous varying values of the adiabatic reversibility coefficient. Finally, simulations of selected adiabatic processes are performed and numerical calculations of r are presented. This paper is intended primarily for the undergraduate student, although a comparison with the aforementioned work also requires a background in thermodynamics and kinetic theory
Bond selective chemistry beyond the adiabatic approximation
Butler, L.J. [Univ. of Chicago, IL (United States)
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski
2013-01-01
Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o
Accuracy vs run time in adiabatic quantum search
Rezakhani, A T; Lidar, D A
2010-01-01
Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance, yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm, and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: the error decreases exponentially for short times, then decreases polynomially for longer times. We show that the well known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.
Hypergraph Ramsey Numbers and Adiabatic Quantum Algorithm
Qu, Ri; Bao, Yan-ru
2012-01-01
Gaitan and Clark [Phys. Rev. Lett. 108, 010501 (2012)] have recently presented a quantum algorithm for the computation of the Ramsey numbers R(m, n) using adiabatic quantum evolution. We consider that the two-color Ramsey numbers R(m, n; r) for r-uniform hypergraphs can be computed by using the similar ways in [Phys. Rev. Lett. 108, 010501 (2012)]. In this comment, we show how the computation of R(m, n; r) can be mapped to a combinatorial optimization problem whose solution be found using adi...
Adiabatic quantum algorithm for search engine ranking
Garnerone, Silvano; Lidar, Daniel A
2011-01-01
We propose an adiabatic quantum algorithm to evaluate the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this quantum algorithm outputs any component of the PageRank vector-and thus the ranking of the corresponding webpage-in a time which scales polylogarithmically in the number of webpages. This would constitute an exponential speed-up with respect to all known classical algorithms designed to evaluate the PageRank.
Adiabatic chaos in the spin orbit problem
Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio
2008-05-01
We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P.; Kowal, M; Skalski, J.
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from ...
Brane World Dynamics and Adiabatic Matter creation
Gopakumar, P
2006-01-01
We have treated the adiabatic matter creation process in various three-brane models by applying thermodynamics of open systems. The matter creation rate is found to affect the evolution of scale factor and energy density of the universe. We find modification at early stages of cosmic dynamics. In GB and RS brane worlds, by chosing appropriate parameters we obtain standard scenario, while the warped DGP model has different Friedmann equations. During later stages, since the matter creation is negligible the evolution reduces to FRW expansion, in RS and GB models.
The temperature dependences of thermal expansion and isothermal compression of (TiGaSe3)0.9(TiInS3)0.1 and (TiGaSe2)0.8(TiInS2)0.2 are investigated. The heat capacity difference at constant pressure and volume is calculated on the base of experimental data. It is established that interactions which are connected with the increase of defect number and weakening of chemical bond in lattice, increases with temperature increase and increase of tiInS2 content in composition
Adiabatic renormalization in theories with modified dispersion relations
Nacir, D. Lopez; Mazzitelli, F. D.; Simeone, C.
2007-01-01
We generalize the adiabatic renormalization to theories with dispersion relations modified at energies higher than a new scale $M_C$. We obtain explicit expressions for the mean value of the stress tensor in the adiabatic vacuum, up to the second adiabatic order. We show that for any dispersion relation the divergences can be absorbed into the bare gravitational constants of the theory. We also point out that, depending on the renormalization prescription, the renormalized stress tensor may c...
Development of a semi-adiabatic isoperibol solution calorimeter
Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K., E-mail: asivan@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India)
2014-12-15
A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.
Adiabatic calorimetry (RSST and VSP) tests with sodium acetate
Kirch, N.W.
1993-09-01
As requested in the subject reference, adiabatic calorimetry (RSST and VSP) tests have been performed with sodium acetate covering TOC concentrations from 3 to 7% with the following results: Exothermic activity noted around 200{degrees}C. Propagating reaction initiated at about 300{degrees}C. Required TOC concentration for propagation estimated at about 6 w% (dry mixture) or about 20 w% sodium acetate. Heat of reaction estimated to be 3.7 MJ per kg of sodium acetate (based on VSP test with 3 w% TOC and using a dry mixture specific heat of 1000 J kg{sup {minus}1} K{sup {minus}1}). Based upon the above results we estimate that a moisture content in excess of 14 w% would prevent a propagating reaction of a stoichiometric mixture of fuel and oxidizer ({approximately} 38 w% sodium acetate and {approximately}62 w% sodium nitrate). Assuming that the fuel can be treated as sodium acetate equivalent, and considering that the moisture content in the organic containing waste generally is believed to be in excess of 14 w%, it follows that the possibility of propagating reactions in the Hanford waste tanks can be ruled out.
Development of a semi-adiabatic isoperibol solution calorimeter
A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators (ADRs) in space applications, it is desirable to have very light weight, small diameter, high current density...
A quantum search algorithm based on partial adiabatic evolution
Zhang Ying-Yu; Hu He-Ping; Lu Song-Feng
2011-01-01
This paper presents and implements a specified partial adiabatic search algorithm on a quantum circuit. It studies the minimum energy gap between the first excited state and the ground state of the system Hamiltonian and it finds that, in the case of M=1, the algorithm has the same performance as the local adiabatic algorithm. However, the algorithm evolves globally only within a small interval, which implies that it keeps the advantages of global adiabatic algorithms without losing the speedup of the local adiabatic search algorithm.
A quantum search algorithm based on partial adiabatic evolution
This paper presents and implements a specified partial adiabatic search algorithm on a quantum circuit. It studies the minimum energy gap between the first excited state and the ground state of the system Hamiltonian and it finds that, in the case of M = 1, the algorithm has the same performance as the local adiabatic algorithm. However, the algorithm evolves globally only within a small interval, which implies that it keeps the advantages of global adiabatic algorithms without losing the speedup of the local adiabatic search algorithm. (general)
Potential and Evolution of Compressed Air Energy Storage: Energy and Exergy Analyses
Young-Min Kim
2012-08-01
Full Text Available Energy storage systems are increasingly gaining importance with regard to their role in achieving load levelling, especially for matching intermittent sources of renewable energy with customer demand, as well as for storing excess nuclear or thermal power during the daily cycle. Compressed air energy storage (CAES, with its high reliability, economic feasibility, and low environmental impact, is a promising method for large-scale energy storage. Although there are only two large-scale CAES plants in existence, recently, a number of CAES projects have been initiated around the world, and some innovative concepts of CAES have been proposed. Existing CAES plants have some disadvantages such as energy loss due to dissipation of heat of compression, use of fossil fuels, and dependence on geological formations. This paper reviews the main drawbacks of the existing CAES systems and presents some innovative concepts of CAES, such as adiabatic CAES, isothermal CAES, micro-CAES combined with air-cycle heating and cooling, and constant-pressure CAES combined with pumped hydro storage that can address such problems and widen the scope of CAES applications, by energy and exergy analyses. These analyses greatly help us to understand the characteristics of each CAES system and compare different CAES systems.
Perceau, Géraldine; Faure, Christine
2012-01-01
The compression of a venous ulcer is carried out with the use of bandages, and for less exudative ulcers, with socks, stockings or tights. The system of bandages is complex. Different forms of extension and therefore different types of models exist. PMID:22489428
Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)
2012-07-01
Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)
Thermodynamic study of ibuprofen by adiabatic calorimetry and thermal analysis
Xu Fen; Sun Lixian; Tan Zhicheng; Liang Jianguo; Li Ruilian
2004-03-23
Molar heat capacities of ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 400 K. The polynomial functions of C{sub p,m} (J K{sup -1} mol{sup -1}) versus T were established on the heat capacity measurements by means of the least fitting square method. The functions are as follows: for solid ibuprofen, at the temperature range of 79.105 K{<=}T{<=}333.297 K, C{sub p,m}=144.27+77.046X+3.5171X{sup 2}+10.925X{sup 3}+11.224X{sup 4}, where X=(T-206.201)/127.096; for liquid ibuprofen, at the temperature range of 353.406 K{<=}T{<=}378.785 K, C{sub p,m}=325.79+8.9696X-1.6073X{sup 2}-1.5145X{sup 3}, where X=(T-366.095)/12.690. A fusion transition at T=348.02 K was found from the C{sub p}-T curve. The molar enthalpy and entropy of the fusion transition were determined to be 26.65 kJ mol{sup -1} and 76.58 J mol{sup -1} K{sup -1}, respectively. The thermodynamic functions on the base of the reference temperature of 298.15 K, (H{sub T}-H{sub 298.15}) and (S{sub T}-S{sub 298.15}), were derived. Thermal characteristic of ibuprofen was studied by thermo-gravimetric analysis (TG-DTG) and differential scanning calorimeter (DSC). The temperature of fusion, the molar enthalpy and entropy of fusion obtained by DSC were well consistent with those obtained by adiabatic calorimeter. The evaporation process of ibuprofen was investigated further by TG and DTG, and the activation energy of the evaporation process was determined to be 80.3{+-}1.4 kJ mol{sup -1}.
The new useful concept of “Adiabatic Surface Temperature” or more commonly known as AST, introduced by Wickström et al. in 2007, is investigated in this study. Adiabatic surface temperature can be used for bridging the gap between fire models and temperature models; for example, it offers the opportunity to transfer both thermal information of the gas and the net heat flux to the solid phase model, obtained by CFD analysis. In this study two numerical analyses are carried out in order to evaluate the effect of wall thermal conductivity and of convective heat transfer coefficient on the adiabatic surface temperature as thermal/structural parameter in fire modeling. First one CFD analysis simulating a fire scenario, “conjugate heat transfer”, with a square beam exposed to hot surface, is carried out to calculate AST, convective heat transfer coefficient and temperature field in the beam. In the second one, a conductive analysis is carried out on “standalone beam” imposing a third type boundary condition on its boundaries assuming the AST, evaluated in the conjugate analysis, as external temperature. Different convective heat transfer coefficients are imposed on the beam walls; the beam is of concrete or steel. Results are presented in terms of net heat flux on beam surfaces, convective heat transfer coefficients and temperature profiles on the beam walls, temperature fields for the two, CFD and conductive, analyses and the relative temperature and net heat flux percent errors. Results underline that convective heat transfer coefficient profiles and adiabatic surface temperatures on the bottom and lateral beam walls are independent of the wall thermal conductivity value, whereas the net heat flux values increase as wall thermal conductivity increases, fixed the emissivity. - Highlights: •The new useful concept of “adiabatic surface temperature” (AST) is investigated. •The effect of wall thermal conductivity and of convective heat transfer
Yamasaki, Yudai; Iida, Norimasa
The present study focuses on clarifying the combustion mechanism of the homogeneous-charge compression-ignition (HCCI) engine in order to control ignition and combustion as well as to reduce HC and CO emissions and to maintain high combustion efficiency by calculating the chemical kinetics of elementary reactions. For the calculations, n-butane was selected as fuel since it is a fuel with the smallest carbon number in the alkane family that shows two-stage autoignition (heat release with low-temperature reaction (LTR) and with high-temperature reaction (HTR)) similarly to higher hydrocarbons such as gasoline. The CHEMKIN code was used for the calculations assuming zero dimensions in the combustion chamber and adiabatic change. The results reveal the heat release mechanism of the LTR and HTR, the control factor of ignition timing and combustion speed, and the condition need to reduce HC and CO emissions and to maintain high combustion efficiency.
An analysis of ullage heat transfer in the orbital refueling system
Kauffman, D.
1986-07-01
The Orbital Refueling System was an experiment flown on Shuttle Mission STS 41-G in October, 1984. Liquid hydrazine fuel was transferred back and forth from one spherical bladder tank to another using pressurized nitrogen as the driving force. Compressive heating of the ullage gas in the receiving tank could lead to a hazardous situation if any hydrazine leaked through to the ullage side of the bladder and was heated above about 175 F, where it can undergo spontaneous exothermic decomposition. Early analysis of the flight data indicated that the ullage compression process was much closer to an isothermal than an adiabatic one. In this study, a thorough review of the pertinent literature was used to make an a priori best-estimate for the ullage gas heat transfer coefficient (defining the Nusselt Number as a function of Reynolds and Rayleigh Numbers). Experimental data from the flight were analyzed in detail. It is evident that there is considerably more heat transfer than can be accounted for by conduction alone, but the observed increases do not correlate well with Reynolds Number, Rayleigh Number or vehicle acceleration. There are large gaps in the present understanding of convective heat transfer in closed containers with internal heat generation, especially in the presence of vibrations or other random disturbances. A program of experiments to fill in these gaps is suggested, covering both ground and orbital environments.
Severe plastic deformation through adiabatic shear banding in Fe-C steels
Lesuer, D; Syn, C; Sherby, O
2004-12-01
Severe plastic deformation is observed within adiabatic shear bands in iron-carbon steels. These shear bands form under high strain rate conditions, in excess of 1000 s{sup -1}, and strains in the order 5 or greater are commonly observed. Studies on shear band formation in a ultrahigh carbon steel (1.3%C) are described in the pearlitic condition. A hardness of 11.5 GPa (4600 MPa) is obtained within the band. A mechanism is described to explain the high strength based on phase transformation to austenite from adiabatic heating resulting from severe deformation. Rapid re-transformation leads to an ultra-fine ferrite grain size containing carbon principally in the form of nanosize carbides. It is proposed that the same mechanism explains the ultrahigh strength of iron-carbon steels observed in ball-milling, ball drop tests and in severely deformed wires.
Sharma, P; Quataert, E; Parrish, I J
2009-01-01
Using a linear stability analysis and two and three-dimensional nonlinear simulations, we study the physics of buoyancy instabilities in a combined thermal and relativistic (cosmic ray) plasma, motivated by the application to clusters of galaxies. We argue that cosmic ray diffusion is likely to be slow compared to the buoyancy time on large length scales, so that cosmic rays are effectively adiabatic. If the cosmic ray pressure $p_{cr}$ is $\\gtrsim 25 %$ of the thermal pressure, and the cosmic ray entropy ($p_{\\rm cr}/\\rho^{4/3}$; $\\rho$ is the thermal plasma density) decreases outwards, cosmic rays drive an adiabatic convective instability analogous to Schwarzschild convection in stars. Global simulations of galaxy cluster cores show that this instability saturates by reducing the cosmic ray entropy gradient and driving efficient convection and turbulent mixing. At larger radii in cluster cores, the thermal plasma is unstable to the heat flux-driven buoyancy instability (HBI), a convective instability genera...
In radiation damage cascade displacement spikes ions and electrons can reach very high temperatures and be out of thermal equilibrium. Correct modelling of cascades with molecular dynamics should allow for the non-adiabatic exchange of energy between ions and electrons using a consistent model for the electronic stopping, electronic temperature rise, and thermal conduction by the electrons. We present a scheme for correcting embedded atom potentials for these non-adiabatic properties at the level of the second-moment approximation, and parameterize for the bcc transition metals above the Debye temperature. We use here the Finnis–Sinclair and Derlet–Nguyen–Manh–Dudarev potentials as models for the bonding, but the corrections derived from them can be applied to any suitable empirical potential. We show with two-temperature MD simulations that computing the electronic thermal conductivity during the cascade evolution has a significant impact on the heat exchange between ions and electrons. (paper)
Isotropic polarization of compressible flows
Zhu, Jian-Zhou
2015-01-01
The helical absolute equilibrium of a compressible adiabatic flow presents not only the polarization between the two purely helical modes of opposite chiralities but also that between the vortical and acoustic modes, deviating from the equipartition predicted by {\\sc Kraichnan, R. H.} [1955 The Journal of the Acoustical Society of America {\\bf 27}, 438--441.] Due to the existence of the acoustic mode, even if all Fourier modes of one chiral sector in the sharpened Helmholtz decomposition [{\\sc Moses, H. E.} 1971 SIAM ~(Soc. Ind. Appl. Math.) J. Appl. Math. {\\bf 21}, 114--130] are thoroughly truncated, negative temperature and the corresponding large-scale concentration of vortical modes are not allowed, unlike the incompressible case.
Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter
Jhu, Can-Yong [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Wang, Yih-Wen, E-mail: g9410825@yuntech.edu.tw [Department of Occupational Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, 79-9, Sha-Luen-Hu, Xi-Zhou-Li, Houlong, Miaoli 35664, Taiwan, ROC (China); Shu, Chi-Min [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Chang, Jian-Chuang; Wu, Hung-Chun [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Rm. 222, Bldg. 77, 2F, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan, ROC (China)
2011-08-15
Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO{sub 2}) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO{sub 2} cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2 V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T{sub 0}), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T{sub max}) and pressure (P{sub max}). The T{sub max} and P{sub max} of the charged Li-ion battery during the runaway reaction reach 903.0 {sup o}C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO{sub 2} batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.
Plasmas in particle accelerators: adiabatic theories for bunched beams
Three different formalisms for discussing Vlasov's equation for bunched beam problems with anharmonic space charge forces are outlined. These correspond to the use of a drift kinetic equation averaged over random betatron motions; a fluidkinetic adiabatic regime analogous to the theory of Chew, Goldberger, and Low; and an adiabatic hydrodynamic theory
Teleportation of an Unknown Atomic State via Adiabatic Passage
无
2007-01-01
We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.
Examination of the adiabatic approximation in open systems
We examine the notion of the adiabatic approximation in open systems by applying it to closed systems. Our results shows that the notion is equivalent to the standard adiabatic approximation if the systems are initially in eigenstates, and it leads to a more general expression if the systems are in mixed states
High Fidelity Adiabatic Quantum Computation via Dynamical Decoupling
Quiroz, Gregory
2012-01-01
We introduce high-order dynamical decoupling strategies for open system adiabatic quantum computation. Our numerical results demonstrate that a judicious choice of high-order dynamical decoupling method, in conjunction with an encoding which allows computation to proceed alongside decoupling, can dramatically enhance the fidelity of adiabatic quantum computation in spite of decoherence.
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size. PMID:19113467
Van der Pal, M.; De Boer, R.; Wemmers, A.K.; Smeding, S.F.; Veldhuis, J.B.J.; Lycklama a Nijeholt, J.A.
2013-10-15
Thermally driven sorption systems can provide significant energy savings, especially in industrial applications. The driving temperature for operation of such systems limits the operating window and can be a barrier for market-introduction. By adding a compressor, the sorption cycle can be run using lower waste heat temperatures. ECN has recently started the development of such a hybrid heat pump. The final goal is to develop a hybrid heat pump for upgrading lower (<100C) temperature industrial waste heat to above pinch temperatures. The paper presents the first measurements and model calculations of a hybrid heat pump system using a water-silica gel system combined with a Roots type compressor. From the measurements can be seen that the effect of the compressor is dependent on where in the cycle it is placed. When placed between the evaporator and the sorption reactor, it has a considerable larger effect compared to the compressor placed between the sorption reactor and the condenser. The latter hardly improves the performance compared to purely heat-driven operation. This shows the importance of studying the interaction between all components of the system. The model, which shows reasonable correlation with the measurements, could proof to be a valuable tool to determine the optimal hybrid heat pump configuration.
Robust Classification with Adiabatic Quantum Optimization
Denchev, Vasil S; Vishwanathan, S V N; Neven, Hartmut
2012-01-01
We propose a non-convex training objective for robust binary classification of data sets in which label noise is present. The design is guided by the intention of solving the resulting problem by adiabatic quantum optimization. Two requirements are imposed by the engineering constraints of existing quantum hardware: training problems are formulated as quadratic unconstrained binary optimization; and model parameters are represented as binary expansions of low bit-depth. In the present work we validate this approach by using a heuristic classical solver as a stand-in for quantum hardware. Testing on several popular data sets and comparing with a number of existing losses we find substantial advantages in robustness as measured by test error under increasing label noise. Robustness is enabled by the non-convexity of our hardware-compatible loss function, which we name q-loss.
Number Partitioning via Quantum Adiabatic Computation
Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
Entropy in adiabatic regions of convection simulations
Tanner, Joel D; Demarque, Pierre
2016-01-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this paper we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of og g and log T_{eff} which holds potential for calibrating stellar models in a simple and more general manner.
Adiabatic theory for anisotropic cold molecule collisions
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment 4He(1s2s 3S) + HD(1s2) → 4He(1s2) + HD+(1s) + e− [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings
Adiabatic theory for anisotropic cold molecule collisions.
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122
Adiabatic theory for anisotropic cold molecule collisions
Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
Adiabatic approximation, semiclassical scattering, and unidirectional invisibility
The transfer matrix of a possibly complex and energy-dependent scattering potential can be identified with the S-matrix of a two-level time-dependent non-Hermitian Hamiltonian H(τ). We show that the application of the adiabatic approximation to H(τ) corresponds to the semiclassical description of the original scattering problem. In particular, the geometric part of the phase of the evolving eigenvectors of H(τ) gives the pre-exponential factor of the WKB wave functions. We use these observations to give an explicit semiclassical expression for the transfer matrix. This allows for a detailed study of the semiclassical unidirectional reflectionlessness and invisibility. We examine concrete realizations of the latter in the realm of optics. (paper)
Index Theory and Adiabatic Limit in QFT
Wawrzycki, Jaroslaw
2011-01-01
The paper has the form of a proposal concerned with the relationship between the three mathematically rigorous approaches to quantum field theory: 1) local algebraic formulation of Haag, 2) Wightman formulation and 3) the perturbative formulation based on the microlocal renormalization method. In this project we investigate the relationship between 1) and 3) and utilize the known relationships between 1) and 2). The main goal of the proposal lies in obtaining obstructions for the existence of the adiabatic limit (confinement problem in the phenomenological standard model approach). We extend the method of deformation of D\\"utsch and Fredenhagen (in the Bordeman-Waldmann sense) and apply Fedosov construction of the formal index -- an analog of the index for deformed symplectic manifolds, generalizing the Atiyah-Singer index. We present some first steps in realization of the proposal.
Index Theory and Adiabatic Limit in QFT
Wawrzycki, Jarosław
2013-08-01
The paper has the form of a proposal concerned with the relationship between the three mathematically rigorous approaches to quantum field theory: (1) local algebraic formulation of Haag, (2) Wightman formulation and (3) the perturbative formulation based on the microlocal renormalization method. In this project we investigate the relationship between (1) and (3) and utilize the known relationships between (1) and (2). The main goal of the proposal lies in obtaining obstructions for the existence of the adiabatic limit ( confinement problem in the phenomenological standard model approach). We extend the method of deformation of Dütsch and Fredenhagen (in the Bordeman-Waldmann sense) and apply Fedosov construction of the formal index—an analog of the index for deformed symplectic manifolds, generalizing the Atiyah-Singer index. We present some first steps in realization of the proposal.
The adiabatic approximation in multichannel scattering
Using two-dimensional models, an attempt has been made to get an impression of the conditions of validity of the adiabatic approximation. For a nucleon bound to a rotating nucleus the Coriolis coupling is neglected and the relation between this nuclear Coriolis coupling and the classical Coriolis force has been examined. The approximation for particle scattering from an axially symmetric rotating nucleus based on a short duration of the collision, has been combined with an approximation based on the limitation of angular momentum transfer between particle and nucleus. Numerical calculations demonstrate the validity of the new combined method. The concept of time duration for quantum mechanical collisions has also been studied, as has the collective description of permanently deformed nuclei. (C.F.)
Entropy in Adiabatic Regions of Convection Simulations
Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre
2016-05-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One-dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this Letter, we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of {log}g and {log}{T}{{eff}}, which holds potential for calibrating stellar models in a simple and more general manner.
Adiabatic and Isocurvature Perturbation Projections in Multi-Field Inflation
Gordon, Chris
2013-01-01
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the adiabatic perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic pe...
Adiabatic logic future trend and system level perspective
Teichmann, Philip
2012-01-01
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the p...
How detrimental is decoherence in adiabatic quantum computation?
Albash, Tameem
2015-01-01
Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time-scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit $T_2$ time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary canc...
Power spectra in the eikonal approximation with adiabatic and non-adiabatic modes
Bernardeau, Francis; Vernizzi, Filippo
2012-01-01
We use the so-called eikonal approximation, recently introduced in the context of cosmological perturbation theory, to compute power spectra for multi-component fluids. We demonstrate that, at any given order in standard perturbation theory, multi-point power spectra do not depend on the large-scale adiabatic modes. Moreover, we employ perturbation theories to decipher how non-adiabatic modes, such as a relative velocity between two different components, damp the small-scale matter power spectrum, a mechanism recently described in the literature. In particular, we do an explicit calculation at 1-loop order of this effect. While the 1-loop result eventually breaks down, we show how the damping effect can be fully captured by the help of the eikonal approximation. A relative velocity not only induces mode damping but also creates large-scale anisotropic modulations of the matter power spectrum amplitude. We illustrate this for the Local Group environment.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Zamstein, Noa; Tannor, David J. [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
The behavior of strong magnetosonic waves propagating perpendicular to a static field B0 is investigated within the frequency range ω/sub c/i0 results; the electrons exhibit only poor heating associated with their adiabatic compression. The dynamics of both particle species, the consequences of the wave--particle energy transfer and the particle viscosities, are studied in detail. Competitive and self-consistent effects such as space-charge effects, wave overtaking, ion trapping, and wave damping are investigated and compared with previous models; the mechanisms by which these various phenomena interact on each other are analyzed. Characteristics of nonstochastic and stochastic ion heating are also discussed. Our computations show that if sufficient intensity is reached, one is not constrained to use lower-hybrid waves or cyclotron harmonic waves to heat a plasma efficiently and that any frequency below ω/sub lh/ can be used
Stolzmann, W
2000-01-01
Starting from the Helmholtz free energy we calculate analytically first- and second-order derivatives, as internal energy and specific heats, for the ideal system and the exchange and correlation interactions covering a broad range of degeneracy and relativity. The complex physics of Coulomb interactions is expressed by Pade Approximants, which reflect the actual state of our knowledge with high accuracy. We assume complete ionization and provide a base system of thermodynamical functions from which any other thermodynamical quantities can be calculated. We chose for the base system the free energy, the pressure, the internal energy, the isothermal compressibility (or density exponent), the coefficient of strain (or temperature exponent), and the isochoric specific heat. By means of the latter potentials entropy, isobaric specific heat and adiabatic temperature gradient can be determined. We give comparisons with quantities which are composed by numerical second-order derivatives of the free energy and show t...
Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang
2014-01-01
In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check
DiPirro, M. J.; Shirron, P. J.
2014-01-01
Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper.
McHugh, P.R.
1995-10-01
Fully coupled, Newton-Krylov algorithms are investigated for solving strongly coupled, nonlinear systems of partial differential equations arising in the field of computational fluid dynamics. Primitive variable forms of the steady incompressible and compressible Navier-Stokes and energy equations that describe the flow of a laminar Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are obtained by first integrating over discrete finite volumes that compose the computational mesh. The resulting system of nonlinear algebraic equations are linearized using Newton`s method. Preconditioned Krylov subspace based iterative algorithms then solve these linear systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual (TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based additive and multiplicative Schwarz preconditioning strategies are studied. Numerical techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter continuation are used to improve the solution efficiency, while algorithm implementation is simplified using a numerical Jacobian evaluation. The capabilities of standard Newton-Krylov algorithms are demonstrated via solutions to both incompressible and compressible flow problems. Incompressible flow problems include natural convection in an enclosed cavity, and mixed/forced convection past a backward facing step.
Xenaki, Angeliki; Mosegaard, Klaus
2014-01-01
Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex...... optimization. The DOA estimation problem is formulated in the CS framework and it is shown that CS has superior performance compared to traditional DOA estimation methods especially under challenging scenarios such as coherent arrivals and single-snapshot data. An offset and resolution analysis is performed to...
Plasma Compression by a Magnetic Field in a Toroidal-Type Device
The Tuman device, a racetrack, was built to study the adiabatic compression of a plasma column by an external magnetic field increasing with time, and was designed to carry out two-stage heating of the plasma. Magnetic compression is preceded by ohmic heating of the plasma under conditions analogous to those for the operation of Tokamak. During ohmic heating the longitudinal magnetic field is essentially non-uniform. In the curved toroidal sections the maximum quasi-stationary magnetic field is approximately 40 kOe, and in the straight parts 1 to 2 kOe. The glass discharge chamber, is a magnetic force tube, that is its cross section in the curved sections is 1/20th the cross section in the straight sections. The plasma must fill the force tube, whose dimensions are set by a diaphragm in the middle of the straight section and by the ratio of field intensities in the straight and curved sections. With our column configuration considerably more power can be introduced into the plasma than in a uniform torus. The plasma volume is approximately 15 1 when the plasma column is 250 cm long. Compression must be carried out by increasing the longitudinal magnetic field in the straight sections to 30 kOe. The field build-up time may vary from 30 to 250 μs. The plasma must be compressed in the wide, straight sections to approximately the same cross-section as in the curved sections. Compression reduces the volume of plasma by a factor of 10 to 20. All the tests were carried out with hydrogen at pressures from 1 x 10-3 to 5 x 10-2 Torr. The toroidal discharge was excited by a transformer. The duration of ohmic heating was 300 μs. The current in the plasma did not normally exceed 1 to 2 kA. With a quasi-stationary magnetic field of 1 to 2 kOe in the curved sections, plasma is obtained with a conductivity of (1 to 2) x 1014esu. Measurements of the diamagnetic moment of the plasma and microwave measurements showed that.when the magnetic field in the toroidal sections was
Blarke, Morten; Yazawa, Kazuaki; Shakouri, Ali;
2012-01-01
for intermittency-friendly electricity consumption patterns. Combining hot and cold thermal storages with new high-pressure compressor technology that allows for flexible and simultaneous production of useful heat and cooling, the paper introduces and investigates the high-efficiency thermal battery (TB) concept....... In a proof-of-concept case study, the TB replaces an existing electric resistance heater used for hot water production and an electric compressor used for air refrigeration in a central air conditioning system. A mathematical model for least-cost unit dispatch is developed. Heat pump cycle components...
A heat transient model for the thermal behavior prediction of stratospheric airships
The gas temperature of a stratospheric airship plays an important role in its flight dynamics. A multi-nodes heat transient model is proposed and evaluated by the theoretical solutions of the adiabatic processes and the high altitude flight test data. A thermodynamic analysis code for stratospheric airships (TACSA) is developed to investigate the ascent subcooling induced by the thermodynamic expansion and the descent superheating induced by the thermodynamic compression. The simulation results show that the airship volume, vertical speed and the solar radiation have evident influence on the ascent subcooling descent superheating effects. - Highlights: • A multi-nodes heat transient model for stratospheric airships is proposed. • The thermal behaviors of the ascent and descent processes are predicted. • The volume, vertical speed and solar radiation have significant influence
Elsner, F
2013-01-01
We introduce the concept of compressed convolution, a technique to convolve a given data set with a large number of non-orthogonal kernels. In typical applications our technique drastically reduces the effective number of computations. The new method is applicable to convolutions with symmetric and asymmetric kernels and can be easily controlled for an optimal trade-off between speed and accuracy. It is based on linear compression of the collection of kernels into a small number of coefficients in an optimal eigenbasis. The final result can then be decompressed in constant time for each desired convolved output. The method is fully general and suitable for a wide variety of problems. We give explicit examples in the context of simulation challenges for upcoming multi-kilo-detector cosmic microwave background (CMB) missions. For a CMB experiment with O(10,000) detectors with similar beam properties, we demonstrate that the algorithm can decrease the costs of beam convolution by two to three orders of magnitude...
Are the reactions of quinones on graphite adiabatic?
Outer sphere electron transfer reactions on pure metal electrodes are often adiabatic and hence independent of the electrode material. Since it is not clear, whether adiabatic electron transfer can also occur on a semi-metal like graphite, we have re-investigated experimental data presented in a recent communication by Nissim et al. [Chemical Communications 48 (2012) 3294] on the reactions of quinones on graphite. We have supplemented their work by DFT calculations and conclude, that these reactions are indeed adiabatic. This contradicts the assertion of Nissim et al. that the rates are proportional to the density of states at the Fermi level
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
A note on the geometric phase in adiabatic approximation
Tong, D M; Kwek, L C; Oh, C H
2004-01-01
It is widely held that the Berry phase of a quantum system is the geometric phase in adiabatic approximation. However, Pati and Rajagopal recently claimed that the Berry phase vanishes under strict adiabatic evolution. In this note, we reexamine and address this issue. In particular, we show that the use of the adiabatic theorem does not lead to this inconsistency. We also examine the difference between the Berry phase and the exact geometric phase. Here we find that the Berry phase may differ appreciably from the exact geometric phase if the evolution time is large enough.
Graph isomorphism and adiabatic quantum computing
Gaitan, Frank; Clark, Lane
2014-03-01
In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P; Skalski, J
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "Imaginary Water Flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations...
Stimulated Raman Adiabatic Passage for Improved Performance of a Cold Atom Electron and Ion Source
Sparkes, B M; Taylor, R J; Spiers, R W; McCulloch, A J; Scholten, R E
2016-01-01
We experimentally implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold atom electron and ion source, leading to a peak efficiency of 85%, a 1.7 times improvement in excitation probability relative to incoherent pulsed-laser excitation. Using streak measurements and pulsed electric field ionization of the Rydberg atoms we demonstrate electron bunches with duration of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, while using coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single ion source.
Lattice Dynamics of II-VI materials using adiabatic bond charge model
Rajput, B. D.; Browne, D. A.
1995-01-01
We extend the adiabatic bond charge model, originally developed for group IV semiconductors and III-V compounds, to study phonons in more ionic II-VI compounds with a zincblende structure. Phonon spectra, density of states and specific heats are calculated for six II-VI compounds and compared with both experimental data and the results of other models. We show that the 6-parameter bond charge model gives a good description of the lattice dynamics of these materials. We also discuss trends in ...
General dynamical description of quasi-adiabatically encircling exceptional points
Milburn, Thomas J; Holmes, Catherine A; Portolan, Stefano; Rotter, Stefan; Rabl, Peter
2014-01-01
The appearance of so-called exceptional points in the complex spectra of non-Hermitian systems is often associated with phenomena that contradict our physical intuition. One example of particular interest is the state-exchange process predicted for an adiabatic encircling of an exceptional point. In this work we analyze this process for the generic system of two coupled oscillator modes with loss or gain. We identify a characteristic system evolution consisting of periods of quasi-stationarity interrupted by abrupt non-adiabatic transitions. Our findings explain the breakdown of the adiabatic theorem as well as the chiral behavior noticed previously in this context, and we provide a unified framework to describe quasi-adiabatic dynamical effects in non-Hermitian systems in a qualitative and quantitative way.
Adiabatic and isocurvature perturbation projections in multi-field inflation
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit
AN ADIABATIC APPROACH FOR LOW POWER FULL ADDER DESIGN
Prof. Dinesh Chandra
2011-09-01
Full Text Available Over the past decade, several adiabatic logic styles have been reported. This paper deals with the design of a 1-bit full adder using several adiabatic logic styles, which are derived from static CMOS logic, without a large change. The full adders are designed using 180nm technology parameters provided by predictive technology and simulated using HSPICE. The full adders designed are compared in terms of average power consumption with different values of load capacitance, temperature and input frequency. The different designs of full adder are also compared on the basis of propagation delay exhibit by them. It is found that, full adders designed with adiabatic logic styles tends to consume very low power in comparison to full adder designed with static CMOS logic. Under certain operating conditions, one of adiabatic designs of full adder achieves upto 74% power saving in comparison to the full adder designedwith static CMOS logic.
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators(ADR's) for space it is desirable to have very light weight, small diameter, high current density superconducting wires...
Application of adiabatic calorimetry to metal systems. Final report
Research on the application of adiabatic calorimetry to metal systems is described. Investigations into formation of pearlite in steels, ferromagnetic effects, cold working and annealing, solid solution alloys, pure solid metals, and pure liquid metals, are briefly described
Case Study of Indirect Adiabatic Cooling System in Historical Building
Brahmanis, A; Lešinskis, A; Krūmiņš, A
2013-01-01
The objective of the present study is to investigate the efficiency of indirect adiabatic chiller-based cooling system efficiency dependence of outdoor air humidity. The system is located in historical building, in temperate climate of Latvia.
Huijun Feng, Lingen Chen, Fengrui Sun
2010-01-01
An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP) and profit rate of the universal heat pump cycle model are derived, res...
Efficiency of Compressed Air Energy Storage
Elmegaard, Brian; Brix, Wiebke
2011-01-01
were reversible have a storage efficiency of 100%. However, due to the specific capacity of the storage and the construction materials the air is cooled during and after compression in practice, making the CAES process diabatic. The cooling involves exergy losses and thus lowers the efficiency of the...... storage significantly. The efficiency of CAES as an electricity storage may be defined in several ways, we discuss these and find that the exergetic efficiency of compression, storage and production together determine the efficiency of CAES. In the paper we find that the efficiency of the practical CAES...... electricity storage is 25-45% and thus has a quite low efficiency, which is close to the efficiency of the simple diabatic CAES-process. Adiabatic CAES would reach significantly higher storage efficiency about 70-80%....
Adiabatic instability in coupled dark energy-dark matter models
Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark
2007-01-01
We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, whi...
Hybrid adiabatic potentials in the QCD string model
Kalashnikova, Yu S; Kalashnikova, Yu.S.
2003-01-01
The short- and intermediate-distance behaviour of the hybrid adiabatic potentials is calculated in the framework of the QCD string model. The calculations are performed with the inclusion of Coulomb force. Spin-dependent force and the so-called string correction term are treated as perturbation at the leading potential-type regime. Reasonably good agreement with lattice measurements takes place for adiabatic curves excited with magnetic components of field strength correlators.
Adiabatic frequency conversion of quantum optical information in atomic vapor
Vewinger, Frank; Appel, Juergen; Figueroa, Eden; Lvovsky, A. I.
2006-01-01
We experimentally demonstrate a quantum communication protocol that enables frequency conversion and routing of quantum optical information in an adiabatic and thus robust way. The protocol is based on electromagnetically-induced transparency in systems with multiple excited levels: transfer and/or distribution of optical states between different signal modes is implemented by adiabatically changing the control fields. The proof-of-principle experiment is performed using the hyperfine levels ...
Adiabatic CMB perturbations in pre-big bang string cosmology
Enqvist, Kari; Enqvist, Kari; Sloth, Martin S.
2002-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations in the axion field can give rise to a nearly flat spectrum of adiabatic perturbations with a spectral tilt $\\Delta n$ in the range $-0.1 \\lesssim \\Delta n \\lesssim 0.3$.
Realization of adiabatic Aharonov-Bohm scattering with neutrons
Sjöqvist, Erik; Almquist, Martin; Mattsson, Ken; Gürkan, Zeynep Nilhan; Hessmo, Björn
2015-11-01
The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on a long straight current-carrying wire.
Dependence of adiabatic population transfer on pulse profile
S Dasgupta; T kushwaha; D Goswami
2006-06-01
Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends simultaneously on pulse profile as well as the frequency modulation under non-resonant conditions.
Adiabatic Invariant Treatment of a Collapsing Sphere of Quantized Dust
Roberto CasadioDipartimento di Fisica, Universita' di Bologna and INFN, Bologna; Fabio Finelli(Dipartimento di Fisica, Universita' di Bologna and INFN, Bologna); Giovanni Venturi(Department of Physics, University of Bologna, and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy)
2015-01-01
The semiclassical collapse of a sphere of quantized dust is studied. A Born-Oppenheimer decomposition is performed for the wave function of the system and the semiclassical limit is considered for the gravitational part. The method of adiabatic invariants for time dependent Hamiltonians is then employed to find (approximate) solutions to the quantum dust equations of motions. This allows us to obtain corrections to the adiabatic approximation of the dust states associated with the time evolut...
Time Development of Exponentially Small Non-Adiabatic Transitions
Hagedorn, George A.; Joye, Alain
2003-01-01
Optimal truncations of asymptotic expansions are known to yield approximations to adiabatic quantum evolutions that are accurate up to exponentially small errors. In this paper, we rigorously determine the leading order non--adiabatic corrections to these approximations for a particular family of two--level analytic Hamiltonian functions. Our results capture the time development of the exponentially small transition that takes place between optimal states by means of a particular switching fu...
Adiabatic Quantum Programming: Minor Embedding With Hard Faults
Klymko, Christine; Sullivan, Blair D.; Humble, Travis S.
2012-01-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. These methods extend with fabric growth while scaling linearly in time and quadratically in footprint. We also provi...
Adiabatic boiling of two-phase coolant in upward flow
A mathematical model of the process of adiabatic boiling (self-condensation) of a two-phase coolant in upward (downward) flow is developed. The model takes account of changes in phase properties with static pressure decrease. The process is investigated numerically. Approximate analytical formulas for design calculations are obtained. It is shown that effects of adiabatic boiling (self-condensation) should be taken into account when calculating two-phase coolant flow in stretched vertical channels
Adiabatic and non-adiabatic charge pumping in a single-level molecular motor
We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green’s function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups. (paper)
CO2双级压缩制冷热泵循环性能研究%Performance Analysis of CO2 Two-stage Compression Refrigeration Heat Pump Cycle
刘雄; 姜乔乔; 郭浩波
2011-01-01
This paper proposed a two-stage compression refrigeration heat pump cycle. It can not only recycle waste heat generated by refrigeration, but also supply cooling and domestic hot water at the same time according to the users need. Using actual cases, they are analyzed theoretically that the refrigerant mass flow rate, environment temperature, hot water temperature, high pressure compressor's exhaust pressure have influence on the new cycle's properties. In addition, the effect factors of the characteristic temperature and high pressure compressors optimum exhaust pressure are discussed.%提出了一种CO2双级压缩制冷热泵循环,它能够实现冷热量的同时独立调节；并通过实际案例,理论分析了不同制冷剂质量流量系数、不同环境温度、热水温度以及高压压缩机排气压力下,新循环的性能,考察了特征温度和最佳排气压力的影响因素.
Microstructure of adiabatic shear bands in Ti6Al4V
Microstructural deformation mechanisms in adiabatic shear bands in Ti6Al4V are studied using traditional TEM and selected area diffraction, and more advanced microstructural characterisation techniques such as energy dispersive X-ray spectroscopy, high angle annular dark field STEM and conical dark field TEM. The shear bands under investigation are induced in Ti6Al4V samples by high strain rate compression of cylindrical and hat-shaped specimens in a split Hopkinson pressure bar setup. Samples from experiments interrupted at different levels of deformation are used to study the evolution of the microstructure in and nearby the shear bands. From the early stages of adiabatic shear band formation, TEM revealed strongly elongated equiaxed grains in the shear band. These band-like grains become narrower towards the centre of the band and start to fraction even further along their elongated direction to finally result in a nano-crystalline region in the core. In fully developed shear bands, twins and a needle-like martensite morphology are observed near the shear band. - Highlights: ► CDF can resolve the nanostructure of an ASB. ► Nanometre-sized grains well below 100 nm are present in the shear band. ► Highly fractioned regions inside ASB contain both α and β phases. ► Strong deformation yields α twins and martensite morphology. ► The microstructure of the ASB in both samples is similar.
New empirical correlations for sizing adiabatic capillary tubes in refrigeration systems
Shodiya, S.; Aahar, A. A.; Henry, N.; Darus, A. N.
2012-06-01
This paper presents new empirical correlations that have been developed for sizing adiabatic capillary tubes used in small vapor compression refrigeration and air-conditioning systems. A numerical model which is based on the basic equations of conservation of mass, momentum and energy was developed. Colebrook's formulation was used to determine the single phase friction factor. The two-phase viscosity models - Cicchitti et al., Dukler et al. and McAdam et al. were used based on the recommendation from literature to determine the two-phase viscosity factor. The developed numerical model was validated using the experimental data from literature. The numerical model was used to study the effects of relevant parameters on capillary tube length and the results showed that the length of capillary tube increase with increase in condensing temperature, subcooling, and inner diameter of tube but decrease with increase in surface roughness and mass flow rate. Thereafter, empirical correlation of the capillary tube length with the five dependent variables was presented. The empirical models are validated using experimental data from literature. Different from the previous studies, the empirical models have a large set of refrigerants and wide operating conditions. The developed correlation can be used as an effective tool for sizing adiabatic capillary tube with system models working with alternative refrigerants.
Study on Jet-Compression Hybrid Refrigeration Cycle Driven by Heat and Power%热-电驱动喷射压缩复合制冷循环特性研究
王林; 谈莹莹; 梁坤峰; 安方涛; 陈宁
2014-01-01
Autocascade refrigeration can achieve lower refrigeration temperature easily,but it totally consumes high grade energy and its COP is low.Jet refrigeration can achieve the refrigeration effect by utilizing low grade heat sources.However,its refrigeration temperature is high.In order to utilize low grade heat to the domain of cryogenic freezing,jet/compression hybrid refrigeration cycle with mixed refrigerants driven by low grade heat and power was presented.The new cycle contributes to improving the efficiency of refrigeration significantly and achieving lower refrigeration temperature.On a basis of its mathematical model,the influences of compression ratio of the ejector and compressor on mechanical and thermal coefficient of performance(COPme/COPth) were analyzed.The results indicate that refrigeration efficiency of the hybrid refrigeration cycle is much higher than that of the traditional autocascade refrigeration cycle.%自复叠制冷循环具有获得制冷温度低优点,但其完全消耗的是高品位电能或机械能;喷射制冷具有利用低品位低温热源(60～100℃)制取冷量、且制冷温度较高时制冷效率高等优点,但难以获得较低制冷温度.因此,为了实现低品位热在低温冷冻领域高效利用并节省高品位电能,本文提出一种由低品位低温热源与电能联合驱动的混合工质喷射/压缩复合制冷循环.建立组成新循环各部件热力学数学模型,分析喷射器压缩比和压缩机压缩比对复合式制冷循环的热性能系数和机械性能系数影响,并与传统的自复叠制冷循环特性进行比较分析.研究表明,低品位热源与电能联合驱动喷射/压缩复合制冷循环较传统自复叠制冷循环可显著提高制冷效率并获得更低制冷温度.
Lee, Joon Sang
The compressible filtered Navier-Stokes equations were solved using a second order accurate finite volume method with low Mach number preconditioning. A dynamic subgrid-scale stress model accounted for the subgrid-scale turbulence. The study focused on the effects of buoyancy and rotation on the structure of turbulence and transport processes including heat transfer. Several different physical arrangements were studied as outlined below. The effects of buoyancy were first studied in a vertical channel using large eddy simulation (LES). The walls were maintained at constant temperatures, one heated and the other cooled. Results showed that aiding and opposing buoyancy forces emerge near the heated and cooled walls, respectively. In the aiding flow, the turbulent intensities and heat transfer were suppressed at large values of Grashof number. In the opposing flow, however, turbulence was enhanced with increased velocity fluctuations. Another buoyancy study considered turbulent flow in a vertically oriented annulus. Isoflux wall boundary conditions with low and high heating were imposed on the inner wall while the outer wall was adiabatic. The results showed that the strong heating and buoyancy force caused distortions of the flow structure resulting in reduction of turbulent intensities, shear stress, and turbulent heat flux, particularly near the heated wall. Flow in an annular pipe with and without an outer wall rotation about its axis was first investigated at moderate Reynolds numbers. When the outer pipe wall was rotated, a significant reduction of turbulent kinetic energy was realized near the rotating wall. Secondly, a large eddy simulation has been performed to investigate the effect of swirl on the heat and momentum transfer in an annular pipe flow with a rotating inner wall. The simulations indicated that the Nusselt number and the wall friction coefficient increased with increasing rotation speed of the wall. It was also observed that the axial velocity
An important feature of air heat pump cycle: Heating capacity in line with heating load
In the conventional vapor-compression heat pumps, the heating capacity and the heating load usually vary in opposite directions, which results in a mismatch of the heating capacity and the heating load at off-design conditions. Air (reversed Brayton) cycle is a potential substitute for the conventional vapor-compression cycles. This paper proved that in theory the air heat pump cycle can make the heating capacity in line with the heating load at a stable level of heating COP (coefficient of performance). A thermodynamic model for the air heat pump cycle with practical compressor and expander was developed. The optimal heating COP and the corresponding pressure ratio were derived from the model. Then the cycle performance was analytically expressed under the optimal COP conditions. The heating capacity under different operating conditions was found in line with the heating load. Comparisons between the air heat pump cycle and two typical vapor-compression heat pump cycles were numerically done for further verification. It also turned out that the energy efficiency of air heat pump is comparable to the transcritical CO2 heat pump, particularly at large temperature difference. - Highlights: • We developed a thermodynamic model for air heat pump cycle. • The optimal COP (coefficient of performance) was derived and the corresponding cycle performance was analyzed. • Comparison of air heat pump cycle and vapor-compression cycles was numerically done. • We proved air heat pump cycle can make heating capacity in line with heating load
The dynamic behaviors of tungsten heavy alloy (WHA) processed by hot-hydrostatic extrusion (HE) and hot torsion (HT) were investigated. The HE + HT WHAs exhibit significant improved susceptibility to forming adiabatic shear bands (ASBs) and a remarkably high flow stress of 2400 MPa under uniaxial dynamic compression. With increasing plastic strain of HT, an obviously increasing tendency of localized shearing was observed. Elongated subgrains with an average width of 200-300 nm bonded together and formed parallel lamellar bands within the ASBs of WHA
Dixon, G. V.; Barringer, S. R.; Gray, C. E.; Leatherman, A. D.
1975-01-01
Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers.
A quasi-adiabatic laminar flat flame burner for high temperature calibration
Flat flame burners were developed for many purposes. In this study, a new flat flame burner for the high temperature calibration of combustion product species and temperature is presented. The burner is operated on methane/air mixtures. Equivalence ratios can be varied from φ = 0.65 to φ = 1.5. A flat, laminar, premixed flame stabilizes above the flame holder that is manufactured from porous material and differently to other designs is not water cooled. Unlike most other realizations, the flame burns detached by 1.5–2.5 mm from the flame holder. This is realized by adjusting the exit speed to a value very close to the burning velocity of the corresponding equivalence ratio. As the control range between flame blow-off and attachment to the flame holder is very narrow, this strategy requires spatially very uniform porous materials and a precise mass flow control. Heat losses to the flame holder necessary for flame stabilization are minimized furthermost by these detached flames. This becomes manifested by a temperature rise of the flame holder by less than 10 K and an almost homogeneous temperature distribution within the flame holder. In consequence, flame temperatures measured by Rayleigh thermometry are observed to be close to adiabatic flame temperatures. Differences between adiabatic and measured temperatures depend on the equivalence ratio and range from 35 K to 50 K. By comparison with 1D-flame simulations with and without radiation models, it is shown that these temperature losses are mainly due to radiation but not to heat conduction to the flame holder. For this reason, flames stabilized on this burner are termed quasi-adiabatic as they exhibit exhaust gas temperatures very similar to freely propagating flames
Žemlo, Gražina
2004-01-01
One of the images compression methods – fractal image compression is analyzed in the work. After work carried out, it is possible to state, that selecting parameters of method of fractal compression depends on user’s demands.
Dynamical fluctuations in classical adiabatic processes: General description and their implications
Zhang, Qi; Gong, Jiangbin; Oh, C. H.
2010-01-01
Dynamical fluctuations in classical adiabatic processes are not considered by the conventional classical adiabatic theorem. In this work a general result is derived to describe the intrinsic dynamical fluctuations in classical adiabatic processes. Interesting implications of our general result are discussed via two subtopics, namely, an intriguing adiabatic geometric phase in a dynamical model with an adiabatically moving fixed-point solution, and the possible "pollution" to Hannay's angle or...
Compression limits in cascaded quadratic soliton compression
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;
2008-01-01
Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....
Huang, Bormin
2011-01-01
Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-
Shukla, KK
2011-01-01
Image compression is concerned with minimization of the number of information carrying units used to represent an image. Lossy compression techniques incur some loss of information which is usually imperceptible. In return for accepting this distortion, we obtain much higher compression ratios than is possible with lossless compression. Salient features of this book include: four new image compression algorithms and implementation of these algorithms; detailed discussion of fuzzy geometry measures and their application in image compression algorithms; new domain decomposition based algorithms
Thermodynamically self-consistent class of nuclear matter equations of state are considered. For two different equations of state with deconfinement phase transition the compression shock adiabats are calculated. The shock stability for mixed phase formation is studied. 17 refs.; 4 figs
Global weak solution and large-time behavior for the compressible flow of liquid crystals
Wang, Dehua
2011-01-01
The three-dimensional equations for the compressible flow of liquid crystals are considered. An initial-boundary value problem is studied in a bounded domain with large data. The existence and large-time behavior of a global weak solution are established through a three-level approximation, energy estimates, and weak convergence for the adiabatic exponent $\\gamma>\\frac32$.
Adiabatic Theorems and Reversible Isothermal Processes
Abou-Salem, W K
2005-01-01
Reversible isothermal processes of a finitely extended, driven quantum system in contact with an infinite heat bath are studied from the point of view of quantum statistical mechanics. Notions like heat flux, work and entropy are defined for trajectories of states close to, but distinct from states of joint thermal equilibrium. A theorem characterizing reversible isothermal processes as quasi-static processes ("isothermal theorem") is described. Corollaries concerning the changes of entropy and free energy in reversible isothermal processes and on the 0th law of thermodynamics are outlined.
Gonen, S.
2014-01-01
The present study was carried out with 46 teacher candidates taking the course of "Thermodynamics" in the Department of Physics Teaching. The purpose of the study was to determine the difficulties that teacher candidates experienced in explaining the heat, work and internal energy relationships in the processes of adiabatic compression…
Nguyen-The, Quang; Tan, Hung Nguyen; Matsuura, Motoharu; Kishi, Naoto
2012-01-16
We experimentally demonstrate pulsewidth-tunable picosecond multi-wavelength pulse generation at 10 Gb/s by the use of a Raman amplification-based adiabatic soliton compressor (RA-ASC). Multi-wavelength seed pulse trains are generated by a commercially available electroabsorption modulator and then compressed by using the RA-ASC. The pulsewidths of the compressed pulses can be simultaneously controlled from 16.0 ps to 2.0 ps by adjusting Raman pump power. Operating wavelength range of our scheme are also investigated, showing the possibility for wide channel spacing operations. PMID:22274467
Multi-objective optimization of Stirling engine using non-ideal adiabatic method
Highlights: • A multi-objective optimization is carried out for a Stirling engine. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. • The results are compared with the previous works for checking the model improvement. • A proper improvement is observed using TOPSIS when comparing with the others. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great numbers of studies are conducted on Stirling engines and non-ideal adiabatic method is one of them. In the present study, the efficiency and the power loss due to pressure drop into the heat exchangers are optimized for a Stirling system using non-ideal adiabatic analysis and the second-version Non-dominated Sorting Genetic Algorithm. The optimized answers are chosen from the results using three decision-making methods. The applied methods were compared at last and the best results were obtained for the technique for order preference by similarity to ideal solution decision making method
Kawahara, Mutsuto
2016-01-01
This book focuses on the finite element method in fluid flows. It is targeted at researchers, from those just starting out up to practitioners with some experience. Part I is devoted to the beginners who are already familiar with elementary calculus. Precise concepts of the finite element method remitted in the field of analysis of fluid flow are stated, starting with spring structures, which are most suitable to show the concepts of superposition/assembling. Pipeline system and potential flow sections show the linear problem. The advection–diffusion section presents the time-dependent problem; mixed interpolation is explained using creeping flows, and elementary computer programs by FORTRAN are included. Part II provides information on recent computational methods and their applications to practical problems. Theories of Streamline-Upwind/Petrov–Galerkin (SUPG) formulation, characteristic formulation, and Arbitrary Lagrangian–Eulerian (ALE) formulation and others are presented with practical results so...
Physics on the adiabatically changed Finslerian manifold and cosmology
Lipovka, Anton A
2016-01-01
In present paper we confirm our previous result [4] that Planck constant is adiabatic invariant of electromagnetic field propagating on the adiabatically changed Finslerian manifold. Direct calculation from cosmological parameters gives value h=6x10(-27) (erg s). We also confirm that Planck constant (and hence other fundamental constants which depend on h) is varied on time due to changing of geometry. As an example the variation of the fine structure constant is calculated. Its relative variation ((da/dt)/a) consist 1.0x10(-18) (1/s). We show that on the Finsler manifold characterized by adiabatically changed geometry, classical free electromagnetic field is quantized geometrically, from the properties of the manifold in such manner that adiabatic invariant of field is ET=6x10(-27)=h. Electrodynamic equations on the Finslerian manifold are suggested. It is stressed that quantization naturally appears from these equations and is provoked by adiabatically changed geometry of manifold. We consider in details tw...
Adiabatic condition and the quantum hitting time of Markov chains
We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P' where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP' and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.
Global adiabaticity and non-Gaussianity consistency condition
Romano, Antonio Enea; Sasaki, Misao
2016-01-01
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, $R_c$, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of $R_c$ holds only after the perturbation has reached the adiabatic limit where the constant mode of $R_c$ dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, $\\delta P_{nad}\\equiv\\delta P-c_w^2\\delta\\rho$ where $c_w^2=\\dot P/\\dot\\rho$, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of $R_c$ on super-horizon scales. In this paper, we consider models that satisfies $\\d...
Fewest switches adiabatic surface hopping as applied to vibrational energy relaxation.
Käb, Günter
2006-03-01
In this contribution quantum/classical surface hopping methodology is applied to vibrational energy relaxation of a quantum oscillator in a classical heat bath. The model of a linearly damped (harmonic) oscillator is chosen which can be mapped onto the Brownian motion (Caldeira-Leggett) Hamiltonian. In the simulations Tully's fewest switches surface hopping scheme is adopted with inclusion of dephasing in the adiabatic basis using a simple decoherence algorithm. The results are compared to the predictions of a Redfield-type quantum master equation modeling using the classical heat bath force correlation function as input. Thereby a link is established between both types of quantum/classical approaches. Viewed from the latter perspective, surface hopping with dephasing may be interpreted as "on-the-fly" stochastic realization of a quantum/classical Pauli master equation. PMID:16509644
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Sasaki, Misao
2015-01-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid $\\delta P_{nad}$, another is for a general matter field $\\delta P_{c,nad}$, and the last one is valid only on superhorizon scales. The first two definitions coincide if $c_s^2=c_w^2$ where $c_s$ is the propagation speed of the perturbation, while $c_w^2=\\dot P/\\dot\\rho$. Assuming the adiabaticity in the general sense, $\\delta P_{c,nad}=0$, we derive a relation between the lapse function in the comoving slicing $A_c$ and $\\delta P_{nad}$ valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as $c_s\
Integrated polarization rotator/converter by stimulated Raman adiabatic passage.
Xiong, Xiao; Zou, Chang-Ling; Ren, Xi-Feng; Guo, Guang-Can
2013-07-15
We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs. PMID:23938558
Adiabatic fluctuations from cosmic strings in a contracting universe
We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today
Non-adiabatic pumping through interacting quantum dots
Cavaliere, Fabio; Governale, Michele; König, Jürgen
2009-01-01
We study non-adiabatic two-parameter charge and spin pumping through a single-level quantum dot with Coulomb interaction. For the limit of weak tunnel coupling and in the regime of pumping frequencies up to the tunneling rates, $\\Omega \\lesssim \\Gamma/\\hbar$, we perform an exact resummation of contributions of all orders in the pumping frequency. As striking non-adiabatic signatures, we find frequency-dependent phase shifts in the charge and spin currents, which allow for an effective single-...
Adiabatic theory of ionization of atoms by intense laser pulses
As a first step towards the adiabatic theory of ionization of atoms by intense laser pulses, here we consider the simplest one-dimensional zero-range potential model. The asymptotic solution to the time-dependent Schroedinger equation in the adiabatic regime is obtained and the photoelectron spectrum is calculated. The factorization formula for the photoelectron spectrum in the back-rescattering region, first suggested by Morishita et al. [Phys. Rev. Lett. 100, 013903 (2008)] on the basis of ab initio calculations, is derived analytically.
Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots
Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro
2016-08-01
In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Agostini, Federica; Gross, E K U
2014-01-01
We present a detailed derivation and numerical tests of a new mixed quantum-classical scheme to deal with non-adiabatic processes. The method is presented as the zero-th order approximation to the exact coupled dynamics of electrons and nuclei offered by the factorization of the electron-nuclear wave function [A. Abedi, N. T. Maitra and E. K. U. Gross, Phys. Rev. Lett., 105 (2010)]. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Agostini, Federica; Abedi, Ali; Gross, E. K. U.
2014-12-01
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Agostini, Federica; Abedi, Ali; Gross, E. K. U. [Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)
2014-12-07
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations
Resonances and adiabatic invariance in classical and quantum scattering theory
Jain, S R
2004-01-01
We discover that the energy-integral of time-delay is an adiabatic invariant in quantum scattering theory and corresponds classically to the phase space volume. The integral thus found provides a quantization condition for resonances, explaining a series of results recently found in non-relativistic and relativistic regimes. Further, a connection between statistical quantities like quantal resonance-width and classical friction has been established with a classically deterministic quantity, the stability exponent of an adiabatically perturbed periodic orbit. This relation can be employed to estimate the rate of energy dissipation in finite quantum systems.
Nanoscale resolution for fluorescence microscopy via adiabatic passage
Rubio, Juan Luis; Ahufinger, Verònica; Mompart, Jordi
2015-01-01
We propose the use of the subwavelength localization via adiabatic passage technique for fluorescence microscopy with nanoscale resolution in the far field. This technique uses a {\\Lambda}-type medium coherently coupled to two laser pulses: the pump, with a node in its spatial profile, and the Stokes. The population of the {\\Lambda} system is adiabatically transferred from one ground state to the other except at the node position, yielding a narrow population peak. This coherent localization allows fluorescence imaging with nanometer lateral resolution. We derive an analytical expression to asses the resolution and perform a comparison with the coherent population trapping and the stimulated-emission-depletion techniques.
High beta lasing in micropillar cavities with adiabatic layer design
Lermer, M.; Gregersen, Niels; Lorke, M.;
2013-01-01
We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...... threshold pump power by over 2 orders of magnitude from dc = 2.25 μm down to 0.95 μm. Lasing with β factors exceeding 0.5 shows that adiabatic micropillars are operating deeply in the cavity quantum electrodynamics regime....
Adiabatic microcalorimetry in shielding benchmark experiments
The application of a newly developed microcalorimeter is described : (1) for measuring energy-deposition rates in the mixed radiation fields of zero-energy reactors and shielding benchmark experiments. Methods of calculation for energy-deposition (n + γ) are usually validated by measuring the neutron component with the aid of activation detectors and the gamma-ray component using TLDs or ion-chambers. The major limitation with the use of calorimeters in low-power radiation fields has been lack of sensitivity. The aim of the present work has been to investigate the performance of a calorimeter which can measure heating-rates in the range down to 10 μW/g by comparison with conventional dosimetry techniques in a graphite benchmark experiment conducted in the NESSUS reference field in the NESTOR reactor at Winfrith. Major problems have been encountered with the neutron sensitivity of both TLDs and gamma-ray ion-chambers. When appropriate corrections are made good agreement can be achieved between all the dosimetry techniques and the results provide a benchmark test of calculational methods for energy-deposition in graphite. In power reactors, steel-walled calorimeters are used for the dosimetry of materials such as graphite and the net effect of electron migration between the sample and steel walls significantly increases the heating rate in the specimen. In the NESSUS experiments, an increase of 18% was observed in the graphite heating rate above that expected from the enhanced gamma source, when the calorimeter wall was changed from graphite to iron. (author)
Heat transfer analysis of liquid piston compressor for hydrogen applications
Kermani, Nasrin Arjomand; Rokni, Masoud
2015-01-01
A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed ...
Three-Dimensional Molecular Dynamics Simulation on Heat Propagation in Liquid Argon
郭英奎; 过增元; 梁新刚
2001-01-01
The propagation behaviour of an initial thermal perturbation in liquid argon is simulated by the molecular dynamics method. The 12-6 Lennard-Jones potential and mirror boundary conditions are employed in the 32768particle three-dimensional simulation. Macroscopic characteristics such as the kinetic temperature, pressure and momentum profiles are monitored during the simulation in order to examine the heat propagation behaviour under a timescale comparable with the relaxation time. The results show that the behaviour is still diffusionlike; no features predicted by the Cattaneo-Vernotte model have been found. The wave-like front of the local temperature may be caused by the adiabatic compression and expansion by the pressure wave generated by the thermal expansion.
Calculational schemes enabling to go beyond crude Condon approximation in non-adiabatic electron transfer reactions are discussed with the use of continuum approximation for the solvent polarization. An algorithm for the self-consistent introduction of an effective reaction coordinate in the adiabatic transition is suggested. Effects due to deviations from the Born-Oppenheimer approximation in bridge-assisted electron transfer reactions are discussed. Interpolation formulae covering limits of coherent and sequential electron transfer in bridge-assisted processes are presented. Simple equations determining a parametric dependence of the transition probability on the reaction free energy in crude Condon approximation are included. (author)
Javidmand, Puya; Zareh, Masoud
2014-01-01
Capillary tubes are used as refrigerant controlling devices, expansion devices and also as heart of a small vapor compression refrigeration cycle. It connects outlet condenser to the inlet evaporator and balances the refrigeration cycle pressure and controls the refrigerant mass flux. Capillary tubes are relatively cheap, resulting in extensive implementations in small household refrigerators and freezers with nearly constant refrigeration load. In general, the inner diameter and length of a ...
On Models of Nonlinear Evolution Paths in Adiabatic Quantum Algorithms
In this paper, we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimensional projector Hamiltonians on the corresponding ground state. If the overlap between the initial state and final state of the quantum system is not equal to zero, both of these models can provide a constant time speedup over the usual adiabatic algorithms by increasing some another corresponding “complexity. But when the initial state has a zero overlap with the solution state in the problem, the second model leads to an infinite time complexity of the algorithm for whatever interpolating functions being applied while the first one can still provide a constant running time. However, inspired by a related reference, a variant of the first model can be constructed which also fails for the problem when the overlap is exactly equal to zero if we want to make up the 'intrinsic' fault of the second model — an increase in energy. Two concrete theorems are given to serve as explanations why neither of these two models can improve the usual adiabatic evolution algorithms for the phenomenon above. These just tell us what should be noted when using certain nonlinear evolution paths in adiabatic quantum algorithms for some special kind of problems. (general)
Adiabatic waves along interfacial layers near the critical point
Gouin, Henri
2008-01-01
Near the critical point, isothermal interfacial zones are investigated starting from a non-local density of energy. From the equations of motion of thermocapillary fluids, we point out a new kind of adiabatic waves propagating along the interfacial layers. The waves are associated with the second derivatives of densities and propagate with a celerity depending on the proximity of the critical point.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216
Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition
QIAN Shang-Wu; GU Zhi-Yu
2005-01-01
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the generaltime-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.
Adiabatic CMB perturbations in pre-big bang string cosmology
Enqvist, Kari; Sloth, Martin Snoager
2001-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations in...
Digitized adiabatic quantum computing with a superconducting circuit
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the general time-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.
Adiabatic single scan two-dimensional NMR spectrocopy.
Pelupessy, Philippe
2003-10-01
New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020
A Quantum Adiabatic Algorithm for Factorization and Its Experimental Implementation
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-01-01
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in an NMR quantum information processor and experimentally factorize the number 21. Numerical simulations indicate that the running time grows only quadratically with the number of qubits.
Adiabatic and diabatic aerosol transport to the Jungfraujoch
Lugauer, M.; Baltensperger, U.; Furger, M.; Jost, D.T.; Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-09-01
Synoptic scale vertical motion, here detected by the geopotential height of the 500 hPa surface, mainly accounts for the aerosol transport to the Jungfraujoch in winter. In summer, diabatic convection provides the dominant vertical transport mechanism. Nevertheless, synoptic scale adiabatic motion still determines whether diabatic convection can develop. (author) 2 figs., 2 refs.
On the hydrogen-air adiabatic isochoric complete combustion pressure
A simple and fast method for calculating the AICC state (adiabatic Isochoric Complete Combustion) for the hydrogen-air reaction is presented. By comparison with more detailed algorithms it is shown that the proposed method produces satisfactory results, and is thus a viable alternative in situations where the use of detailed algorithms or of tables is too time-consuming. (orig.)
Numerical study on lithium titanate battery thermal response under adiabatic condition
Highlights: • The thermal behavior of lithium titanate battery during cycling was investigated. • The temperature rate in charging was less than that of discharging in the cycling. • The temperature difference was less than 0.02 °C at 0.5 C in adiabatic condition. • The temperature distribution and thermal runaway of the battery were predicted. - Abstract: To analyze the thermal behavior of 945 mA h lithium titanate battery during charging and discharging processes, the experimental and numerical studies are performed in this work. The cathode and anode of the 945 mA h lithium titanate soft package battery are the lithium nickel–cobalt–manganese-oxide and lithium titanate, respectively. In the experiment, an Accelerating Rate Calorimeter combined with battery cycler is employed to investigate the electrochemical–thermal behavior during charge–discharge cycling under the adiabatic condition. In numerical simulation, one electrochemical-thermal model is adopted to predict the thermal response and validated with the experimental results. From both experimental and simulated results, the profile of potential and current, the heat generation, the temperature, the temperature changing rate and the temperature distribution in the cell are obtained and thermal runaway is predicted. The analysis of the electrochemical and thermal behavior is beneficial for the commercial application of lithium titanate battery in the fields of electric vehicles and hybrid electric vehicles
Fabisch, Alexander; Kassahun, Yohannes; Wöhrle, Hendrik; Kirchner, Frank
2013-06-01
We examine two methods which are used to deal with complex machine learning problems: compressed sensing and model compression. We discuss both methods in the context of feed-forward artificial neural networks and develop the backpropagation method in compressed parameter space. We further show that compressing the weights of a layer of a multilayer perceptron is equivalent to compressing the input of the layer. Based on this theoretical framework, we will use orthogonal functions and especially random projections for compression and perform experiments in supervised and reinforcement learning to demonstrate that the presented methods reduce training time significantly. PMID:23501172
Energy-efficient miniature-scale heat pumping based on shape memory alloys
Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred
2016-08-01
Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/‑16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g‑1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).
S. Venkatachalapathy; Udayakumar, M.
2010-01-01
Natural convection cooling using air as a fluid is commonly used in the cooling of electronic equipment and many other devices. In this work, a three-dimensional numerical study of natural convection heat transfer from multiple protruding heat sources simulating electronic components is conducted. Computational fluid dynamics (CFD) software, FLUENT is used in this analysis. A 4 by 5 array of heat sources are embedded in the bottom wall of an adiabatic square enclosure. The heat sources with a...
A Compressive Superresolution Display
Heide, Felix
2014-06-22
In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.
Supply temperature control concepts in heat pump heating systems
Huchtemann, Kristian
2015-01-01
In recent years, electrically driven compression heat pumps have come to be widely used for the heating of buildings. Their efficiency strongly depends on the temperature lift which is influenced by the supply temperature of the heat sink. When used with radiator heating systems it is challenging to operate heat pumps efficiently because high supply temperatures are required. Therefore, in order to efficiently operate heat pumps, this work analyses advanced control concepts for heatpump heati...
Compressing Binary Decision Diagrams
Hansen, Esben Rune; Tiedemann, Peter
2008-01-01
The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances.
Microbunching and RF Compression
Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.
Hyperspectral data compression
Motta, Giovanni; Storer, James A
2006-01-01
Provides a survey of results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. This work covers topics such as compression architecture, lossless compression, lossy techniques, and more. It also describes a lossless algorithm based on vector quantization.
Compressing Binary Decision Diagrams
Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter
The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...
Compressible turbulent mixing: Effects of compressibility
Ni, Qionglin
2016-04-01
We studied by numerical simulations the effects of compressibility on passive scalar transport in stationary compressible turbulence. The turbulent Mach number varied from zero to unity. The difference in driven forcing was the magnitude ratio of compressive to solenoidal modes. In the inertial range, the scalar spectrum followed the k-5 /3 scaling and suffered negligible influence from the compressibility. The growth of the Mach number showed (1) a first reduction and second enhancement in the transfer of scalar flux; (2) an increase in the skewness and flatness of the scalar derivative and a decrease in the mixed skewness and flatness of the velocity-scalar derivatives; (3) a first stronger and second weaker intermittency of scalar relative to that of velocity; and (4) an increase in the intermittency parameter which measures the intermittency of scalar in the dissipative range. Furthermore, the growth of the compressive mode of forcing indicated (1) a decrease in the intermittency parameter and (2) less efficiency in enhancing scalar mixing. The visualization of scalar dissipation showed that, in the solenoidal-forced flow, the field was filled with the small-scale, highly convoluted structures, while in the compressive-forced flow, the field was exhibited as the regions dominated by the large-scale motions of rarefaction and compression.
Stimulated Raman adiabatic passage for improved performance of a cold-atom electron and ion source
Sparkes, B. M.; Murphy, D.; Taylor, R. J.; Speirs, R. W.; McCulloch, A. J.; Scholten, R. E.
2016-08-01
We implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold-atom electron and ion source. We achieve an efficiency of 60% averaged over the laser excitation volume with a peak efficiency of 82%, a 1.6 times improvement relative to incoherent pulsed-laser excitation. Using pulsed electric field ionization of the Rydberg atoms we create electron bunches with durations of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, and coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single-ion source.
Non-adiabatic radiative collapse of a relativistic star under different initial conditions
Ranjan Sharma; Ramesh Tikekar
2012-09-01
We examine the role of space-time geometry in the non-adiabatic collapse of a star dissipating energy in the form of radial heat flow, studying its evolution under different initial conditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with inhomogeneous imperfect fluid under anisotropic pressure. Both the configurations are spherically symmetric. However, in the latter case, the physical space = constant of the configurations endowed with spheroidal or pseudospheroidal geometry is assumed to be inhomogeneous. It is observed that as long as the collapse is shear-free, its evolution depends only on the mass and size of the star at the onset of collapse.
Cruz-Orea, A.; Bentefour, E. H.; Jamée, P.; Chirtoc, M.; Glorieux, C.; Pitsi, G.; Thoen, J.
2003-01-01
Starch is one of the most important carbohydrate sources in human nutrition. For the thermal analysis of starch, techniques such as differential scanning calorimetry have been extensively used. As an alternative, we have applied a photopyroelectric (PPE) configuration and adiabatic scanning calorimetry (ASC) to study the thermal properties of starch-water systems. For this study we used nixtamalized corn flour and potato starch with different quantities of distilled water, in order to obtain samples with different moisture content. By using PPE and ASC methods we have measured, for each technique separately, the heat capacity by unit volume (ρcp) at room temperature for a corn flour sample at 90% moisture. The obtained values agree within experimental uncertainty. By using these techniques we also studied the thermal behavior of potato starch, at 80% moisture, in the temperature range where phase transitions occur. In this case the PPE signal phase could be used as a sensitive and versatile monitor for phase transitions.
Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter
Cox, D. P.; Anderson, P. R.
1981-01-01
An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.
Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion
The combustion of ultra-lean fuel/air mixtures provides an efficient way to convert the chemical energy of hydrocarbons and low-calorific fuels into useful power. Matrix-stabilized porous medium combustion is an advanced technique in which a solid porous medium within the combustion chamber conducts heat from the hot gaseous products in the upstream direction to preheat incoming reactants. This heat recirculation extends the standard flammability limits, allowing the burning of ultra-lean and low-calorific fuel mixtures and resulting a combustion temperature higher than the thermodynamic equilibrium temperature of the mixture (i.e., super-adiabatic combustion). The heat generated by this combustion process can be converted into electricity with thermoelectric generators, which is the goal of this study. The design of a porous media burner coupled with a thermoelectric generator and its testing are presented. The combustion zone media was a highly-porous alumina matrix interposed between upstream and downstream honeycomb structures with pore sizes smaller than the flame quenching distance, preventing the flame from propagating outside of the central section. Experimental results include temperature distributions inside the combustion chamber and across a thermoelectric generator; along with associated current, voltage and power output values. Measurements were obtained for a catalytically inert Al2O3 medium and a SiC coated medium, which was tested for the ability to catalyze the super-adiabatic combustion. The combustion efficiency was obtained for stoichiometric and ultra-lean (near the lean flammability limit) mixtures of CH4 and air. - Highlights: • Design of a porous burner coupled with a thermoelectric module. • Super-adiabatic combustion in a highly-porous ceramic matrix was investigated. • Both alumina and silicon carbide ceramic surfaces were used as porous media. • Catalytic properties of Al2O3 and SiC ceramic surfaces were studied
Microscale Regenerative Heat Exchanger
Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred
2006-01-01
The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.
Non-adiabatic dynamics of molecules in optical cavities
Kowalewski, Markus, E-mail: mkowalew@uci.edu; Bennett, Kochise; Mukamel, Shaul, E-mail: smukamel@uci.edu [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)
2016-02-07
Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.
On some issues of gravitationally induced adiabatic particle productions
Pan, Supriya; Pramanik, Souvik
2016-01-01
In this work, we investigate the current accelerating universe driven by the gravitationally induced adiabatic matter creation process. To elaborate the underlying cognitive content, here we consider three models of adiabatic particle creation and constrain the model parameters by fitting the models with the Union 2.1 data set using $\\chi^2$ minimization technique. The models are analyzed by two geometrical and model independent tests, viz., cosmography and $Om$-diagnostic, which are widely used to distinguish the cosmological models from $\\Lambda$CDM. We also compared present values of those model independent parameters with that of the flat $\\Lambda$CDM model. Finally, the validity of the generalized second law of thermodynamics and the condition of thermodynamic equilibrium for the particle production models have been tested.
Adiabatic far-field sub-diffraction imaging
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-08-01
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale.
Non-adiabatic theoretical observables in Delta Scuti stars
Moya, A; Dupret, M A
2004-01-01
Phase differences and amplitude ratios at different colour photometric bands are currently being used to discriminate pulsation modes in order to facilitate mode identification of kappa-driven non-radial pulsating stars. In addition to physical inputs (e.g., mass, T_eff, etc.), these quantities depend on the non-adiabatic treatment of the atmosphere. This paper presents theoretical results concerning Delta Scuti pulsating stars. The envelope of each of these stellar structures possesses a convection zone whose development is determined by various factors. An interacting pulsation-atmosphere physical treatment is introduced which supplies two basic non-adiabatic physical quantities: the relative effective temperature variation and the phase lag phi^T, defined as the angle between effective temperature variations and radial displacement. These quantities can be used to derive the phase differences and amplitude ratios. Numerical values for these quantities depend critically on the alpha MLT parameter used to ca...