Laminar burning velocities of methane-hydrogen-air mixtures
Hermanns, R.T.E.; Kortendijk, J.A.; Bastiaans, R.J.M.; Goey, L.P.H. de [Eindhoven Univ. of Technology (Netherlands). Dept. of Mechnical Engineering
2003-07-01
Experimental measurements of the adiabatic burning velocities in methane-hydrogen-air mixture are presented. Non-stretched flat flames were stabilized on a perforated burner at atmospheric pressure. The hydrogen content in the fuel amounts up to 30 mole percent. The heat flux method was used to determine the burning velocities under conditions at which the net heat loss of the flame to the burner is zero. The overall error of the burning velocities is estimated to be smaller than {+-}0.9 cm/s and the overall error in the fuel equivalence ratio is estimated to be smaller than 0.07 over the entire range measured, corresponding to 95% confidence interval. Close to {phi}=1.0 however, the presently used heat flux method is very accurate. In this range the error of the burning velocity is less than 0.4 cm/s and the error in the equivalence ratio stays below 0.02. Experimental results are in good agreement with recent literature data for methane-air mixtures. At higher hydrogen contents a deviation occurs from earlier presented experimental results of other authors. One of the main reasons for the differences is the linear stretch correction in these measurements, which is not accurate enough. The comparison with detailed chemical model predictions is fairly well. (orig.)
Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures
Albin, Eric; Nawroth, Holger; Göke, Sebastian; D'Angelo, Yves; Paschereit, Christian Oliver
2013-01-01
Global burning velocities of methane-air-steam mixtures are measured on prismatic laminar Bunsen flames and lifted turbulent V-flames for various preheating temperatures, equivalence ratios and steam mixture fractions at atmospheric pressure. Experiments are conducted on a new rectangular slot-burner. Experimental burning velocities are compared to computed flame speeds of one dimensional adiabatic premixed flames using detailed mechanisms (Konnov 0.5 and GRI Mech 3.0). Mean profiles of radic...
Trushina, Veronika; Osipov, Aleksandr
2015-01-01
A mathematical method for modeling the adiabatic burning temperature depending on the molecular fuel structure is considered. The method was tested on experimental data in comparison with other methods.
Experimental and computed burning velocities of propane-air mixtures
The laminar burning velocities of propane/air mixtures with various initial concentrations, pressures and temperatures ([C3H8] = 2.50-6.20 vol.%, p0 = 0.3-1.2 bar and T0 = 298-423 K) were evaluated from pressure measurements in a spherical vessel following central ignition, using a recent correlation based on the cubic law of pressure rise during the early stage of explosion. The burning velocities of propane-air mixtures derived from experimental data are examined against values reported in literature, obtained by other methods, and against computed values, obtained with the package INSFLA for free laminar premixed flames, using an extended reaction mechanism with 592 elementary reactions and 53 species. The experimental burning velocities are correlated with temperature and pressure in the form: Su=Su,0(T/(T0) )μ(p/(p0) )ν, where the thermal and baric coefficients are: μ = 1.30, ..., 2.10 and ν = -0.13, ..., -0.30. Although the burning velocities were obtained over a restricted range of initial pressures and temperatures, the baric and thermal coefficients correspond well to the usual range of variation.
Enhancement of burning velocity by dissociated oxygen atoms
Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi
2015-09-01
Green technology, such as preventing global warming, has been developed for years. Researches on plasma assisted combustion is one of the technologies and have been done for investigating more efficient combustion, more efficient use of fossil fuel with plasmas or applying electric fields. In the ignition time delay analyses with the dissociated oxygen atoms which is generated by non-equilibrium plasma had significant effect on the ignition time. In this paper, dissociated oxygen could effect on burning velocity or not has been examined using CHEMKIN. As a result, no effect can be seen with dissociation degree of lower than 10-3. But there is an effect on the enhancement of burning velocity with higher degree of 10-3. At the dissociation degree of 5×10-2, the burning velocity is enhanced at a factor of 1.24. And it is found that the distributions of each species in front of preheat zone are completely different. The combustion process is proceeded several steps in advance, and generation of H2O, CO and CO2 can be seen before combustion in higher dissociation case. This work was supported by KAKENHI (22340170).
Zhu, Chen-Guang; Xu, Chungen; Xue, Rui
2014-10-01
The burning particles in the pyrotechnic flame play an important role in the ignition and spectral radiance of the pyrotechnic. We used particle image velocimetry (PIV) and high-speed camera (HSC) photography to investigate the 3D spatial pattern and velocity of the burning particles in the flame of pyrotechnics. The original images captured by the HSC were preprocessed through threshold selection, image bivalency, edge detection, and contour extraction and segmentation to obtain the particle coordinates and velocity. Consequently, the particle tracking model was established and the velocity and spatial distribution of the burning particles were obtained. A comparison of the flame flow field with particle image velocimetry demonstrated the typical characteristics of the two-phase flow of the pyrotechnic flame between burning particles and gas. Compared with the convergent gas flow field, the higher velocity burning particles had a discrete distribution in the "comet tail" shape region and showed the same direction of motion as the flame flow field, whereas the lower velocity burning particles had larger outlying regions and showed inconsistent directions of motion. The flow field of the burning particles was more chaotic than the flame flow field of the burning pyrotechnics.
The Role of Molecule Clustering by Hydrogen Bond in Hydrous Ethanol on Laminar Burning Velocity
I Made Suarta
2016-01-01
Full Text Available The role of hydrogen bond molecule clustering in laminar burning velocities was observed. The water in hydrous ethanol can change the interaction between water-ethanol molecules. A certain amount of water can become oxygenated which increases the burning velocity. The hydrogen bond interaction pattern of ethanol and water molecules was modeled. Based on the molecular model, azeotropic behavior emerges from ethanol-water hydrogen bond, which is at a 95.1%v composition. The interaction with water molecule causes the ethanol molecule to be clustered with centered oxygenated compound. So, it supplies extra oxygen and provides intermolecular empty spaces that are easily infiltrated by the air. In the azeotropic composition, the molecular bond chain is the shortest, so hypothetically the burning velocity is anticipated to increase. The laminar burning velocity of ethanol fuel was tested in a cylindrical explosion bomb in lean, stoichiometric, and rich mixtures. The experimental result showed that the maximum burning velocity occurred at hydrous ethanol of 95.5%v composition. This discrepancy is the result of the addition of energy from 7.7% free ethanol molecules that are not clustered. At the rich mixture, the burning velocity of this composition is higher than that of anhydrous ethanol.
Laminar burning velocities of near-flammability-limit H2-air-steam mixtures
Laminar burning velocities of lean H2-air-steam mixtures near the flammability limit were measured by using the pressure-time history of an expanding flame kernel. Although flames in these mixtures are inherently unstable, this difficulty was avoided by using the early pressure rise of the burn. A comparison of results from that method with burning velocities determined from schlieren photographs of the expanding flame kernel gave good agreement. Despite the difficulties, it is believed that the pressure trace method gives results that are useful in modelling reactor accident scenarios. 8 refs., 4 figs
Burning Velocity Measurements in Aluminum-Air Suspensions using Bunsen Type Dust Flames
Lee, John; Goroshin, Samuel; Kolbe, Massimiliano
2001-01-01
Laminar burning velocity (sometimes also referred in literature as fundamental or normal flame propagation speed) is probably the most important combustion characteristic of the premixed combustible mixture. The majority of experimental data on burning velocities in gaseous mixtures was obtained with the help of the Bunsen conical flame. The Bunsen cone method was found to be sufficiently accurate for gaseous mixtures with burning velocities higher than 10-15 cm/s at normal pressure. Hans Cassel was the first to demonstrate that suspensions of micron-size solid fuel particles in a gaseous oxidizer can also form self-sustained Bunsen flames. He was able to stabilize Bunsen flames in a number of suspensions of different nonvolatile solid fuels (aluminum, carbon, and boron). Using the Bunsen cone method he estimated burning velocities in the premixed aluminum-air mixtures (particle size less than 10 microns) to be in the range of 30-40 cm/s. Cassel also found, that the burning velocity in dust clouds is a function of the burner diameter. In our recent work, we have used the Bunsen cone method to investigate dependence of burning velocity on dust concentration in fuel-rich aluminum dust clouds. Burning velocities in stoichiometric and fuel-rich aluminum dust suspensions with average particle sizes of about 5 microns were found to be in the range of 20-25 cm/s and largely independent on dust concentration. These results raise the question to what degree burning velocities derived from Bunsen flame specifically and other dust flame configurations in general, are indeed fundamental characteristics of the mixture and to what degree are they apparatus dependent. Dust flames in comparison to gas combustion, are thicker, may be influenced by radiation heat transfer in the flame front, respond differently to heat losses, and are fundamentally influenced by the particular flow configuration due to the particles inertia. Since characteristic spatial scales of dust flames are
Bradley, Derek
2013-01-01
The implosion technique has been used to extend measurements of turbulent burning velocities over greater ranges of fuels and pressures. Measurements have been made up to 3.5 MPa and at strain rate Markstein numbers as low as 23. The implosion technique, with spark ignition at two opposite wall positions within a fan-stirred spherical bomb is capable of measuring turbulent burning velocities, at higher pressures than is possible with central ignition. Pressure records and schlieren high speed photography define the rate of burning and the smoothed area of the flame front. The first aim of the study was to extend the previous measurements with ethanol and propane-air, with further measurements over wider ranges of fuels and equivalence ratios with mixtures of hydrogen, methane, 10% hydrogen-90% methane, toluene, and i-octane, with air. The second aim was to study further the low turbulence regime in which turbulent burning co-exists with laminar flame instabilities. Correlations are presented of turbulent burning velocity normalised by the effective rms turbulent velocity acting on the flame front, ut=u0k , with the Karlovitz stretch factor, K, for different strain rate Markstein numbers, a decrease in which increases ut=u0k . Experimental correlations are presented for the present measurements, combined with previous ones. Different burning regimes are also identified, extending from that of mixed turbulence/laminar instability at low values of K to that at high values of K, in which ut=u0k is gradually reduced due to increasing localised flame extinctions. © 2012 The Combustion Institute.
Numerical studies of asymmetric adiabatic accretion flow - The effect of velocity gradients
A numerical study of the time variation of the angular momentum and mass capture rates for a central object accreting from a uniform medium with a velocity gradient transverse to the direction of the mean flow is presented, covering a range of velocity asymmetries and Mach numbers in the incident flow. It is found that the mass accretion rate in a given evolutionary sequence varies in an irregular manner, with the matter accreting onto the central object from either a continuously moving accretion wake or from an accretion disk. The implications of the results from the study of short-term fluctuations observed in the pulse period and luminosity of X-ray pulsars are discussed. 35 refs
Mannaa, Ossama
2015-06-01
The development and validation of a new gasoline surrogate using laminar flame speed as a target parameter is presented. Laminar burning velocities were measured using a constant-volume spherical vessel with ignition at the center of the vessel. Tested fuels included iso-octane, n-heptane, toluene, various mixtures of primary reference fuels (PRFs) and toluene reference fuels (TRFs) and three gasoline fuels of 70, 85 and 95 RON (FACE J, C and F) at the initial temperature of 358K and pressures up to 0.6MPa in the equivalence ratio ranging from 0.8 to 1.6. Normalized laminar burning velocity data were mapped into a tri-component mixture space at different experimental conditions to allocate different gasoline surrogates for different gasoline fuels, having RON of 70, 85 and 95. The surrogates of TRF-70-4 (17.94% iso-C8H18 +42.06% n-C7H16 +40% C7H8), TRF-85-1 (77.4% iso-C8H18 +17.6% n-C7H16 +5% C7H8), and TRF-95-1 (88.47% iso-C8H18 +6.53% n-C7H16 +5% C7H8) of RON 70, 85 and 95, respectively, are shown to successfully emulate the burning rate characteristics of the gasoline fuels associated with these RONs under the various experimental conditions investigated. An empirical correlation was derived to obtain laminar burning velocities at pressures that are experimentally unattainable as high as 3.0MPa. Laminar burning velocities were comparable to the simulated values for lean and stoichiometric flames but they were relatively higher than the simulated values for rich flames. A flame instability assessment was conducted by determining Markstein length, critical Pecklet number, and critical Karlovitz number at the onset of flame instability.
Sridhar, G.; Paul, P.J.; Mukunda, H.S.
2005-03-15
This paper discusses computational results concerning the laminar burning velocity of a biomass-derived producer gas and air mixture at pressures and temperatures typical of the unburned mixture in a reciprocating engine. The computations are based on solving conservation equations describing laminar one-dimensional, multicomponent, chemically reacting, and ideal gas mixtures that have been formulated by earlier researchers. Based on a number of calculations at varying initial pressures and temperatures, and equivalence ratios, an expression for estimating the laminar burning velocity with the recycled gas mass fraction has been obtained. Also, the effect of varying amounts of recycled gas on the burning velocity has been determined. These data on laminar burning velocities will be useful in predicting the burn rate in a spark ignition (SI) engine fuelled with a producer gas and air mixture. (Author)
... Chemical burns Burns can be the result of: House and industrial fires Car accidents Playing with matches ... hairs Burned lips and mouth Coughing Difficulty breathing Dark, black-stained mucus Voice changes Wheezing
Jabbour, T.
2004-05-15
After the Montreal and Kyoto Protocols, the choice of refrigerants has dramatically changed, and an increased interest has been shown in flammable refrigerants as alternative to the phased-out refrigerants. The current flammability classifications do not address adequately the flammability hazard, and better assessment should be provided. The burning velocity is shown to be an appropriate parameter related to flammability hazard and can be used as an additional criterion for flammability classification of refrigerants. The burning velocity is related to the parameters of combustion initiation and the main consequences of flammability hazard. Furthermore, minimum ignition energy, radiation heat flux from fires and overpressure generation from explosions are strongly dependent on the burning velocity. The derived formulations demonstrate that the burning velocity is a main parameter to be considered in the flammability classification. The vertical tube method is used to measure the burning velocity with a very well-defined measurement procedure. Burning velocities are measured for 6 pure refrigerants and 3 refrigerant blends. The results show that the burning velocity allows to differentiate flammability levels and show three burning velocity classes: a first class bounded by a maximum burning velocity of 10 cm/s, a second class with a maximum burning velocity between 10 and 30 cm/s, a third class with maximum burning velocities above 30 cm/s. The maximum burning velocity is taken as additional criterion to the lower flammability limit and heat of combustion in the flammability classification of refrigerants. (author)
Kol, Jacob
1985-01-01
The energy released by metals burning in steam has several important applications including torpedo propulsion, nuclear reactor safety, underwater vehicles, underwater ordnance, etc. For investigation of shaped charge performance, velocities and decelerations of the burning particles are important parameters that can be used for aerodynamic drag studies as well as for studies of different burning mechanisms. Wires of various metals were exploded in a steam atmosphere. The metals investig...
An experimental and modeling study of burning velocities of possible future synthetic jet fuels
Recently, the development of viable alternative aviation fuels has attracted much interest, for several reasons, with reduction of greenhouse gas (GHG) emissions and ensuring security of supply at affordable prices among them. In the present work, several alternative aviation fuels - existing and potential - are investigated by focusing on their heat release: Gas-to-Liquid (GtL: representing a Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK)), a fully synthetic jet fuel (FSJF: Coal-to-Liquid (CtL)), and blends of GtL with 20% 1-hexanol or 50% naphthenic cut, respectively. Burning velocities are measured at ambient pressures and at elevated preheat temperatures exploiting the cone-angle method; equivalence ratios are between about φ = 1.0 and φ = 1.4. The measured data are used for the validation of a detailed chemical reaction model consisting of 4642 reactions involving 1075 species developed by Dagaut et al. following the concept of a surrogate. The comparison between measured burning velocities and predicted laminar flame speeds shows reasonably good agreement with the model for the range of conditions considered in this study. The main features of the reaction model are also discussed, using sensitivity and rate of production analysis. Finally, the experimental data are compared with results obtained earlier for crude-oil kerosene. The findings support the potential of the investigated fuel mixtures to serve as alternative aviation fuels. -- Highlights: Several alternative aviation fuels are studied: a Gas-to-liquid (GtL), a fully synthetic jet fuel (CtL) and blends of GtL. ► Burning velocities are measured at ambient pressure and elevated preheat temperatures exploiting the cone-angle method. ► Measured data are used for the validation of a detailed chemical reaction model following the idea of a surrogate. ► Good agreement between measured burning velocities and predicted laminar flame speeds is achieved. ► The findings support the potential
Biogas Laminar Burning Velocity and Flammability Characteristics in Spark Ignited Premix Combustion
Spherically expanding flames propagating at constant pressure were employed to determine the laminar burning velocity and flammability characteristics of biogas-air mixtures in premixed combustion to uncover the fundamental flame propagation characteristics of a new alternative and renewable fuel. The results are compared with those from a methane-air flame. Biogas is a sustainable and renewable fuel that is produced in digestion facilities. The composition of biogas discussed in this paper consists of 66.4% methane, 30.6% carbon dioxide and 3% nitrogen. Burning velocity was measured at various equivalence ratios (φ) using a photographic technique in a high pressure fan-stirred bomb, the initial condition being at room temperature and atmospheric pressure. The flame for methane-air mixtures propagates from φ=0.6 till φ=1.3. The flame at φ ≥ 1.4 does not propagate because the combustion reaction is quenched by the larger mass of fuel. At φ≤0.5, it does not propagate as well since the heat of reaction is insufficient to burn the mixtures. The flame for biogas–air mixtures propagates in a narrower range, that is from φ=0.6 to φ=1.2. Different from the methane flame, the biogas flame does not propagate at φ≥1.3 because the heat absorbed by inhibitors strengthens the quenching effect by the larger mass of fuel. As in the methane flame, the biogas flame at φ≤0.5 does not propagate. This shows that the effect of inhibitors in extremely lean mixtures is small. Compared to a methane-air mixture, the flammability characteristic (flammable region) of biogas becomes narrower in the presence of inhibitors (carbon dioxide and nitrogen) and the presence of inhibitors causes a reduction in the laminar burning velocity. The inhibitor gases work more effectively at rich mixtures because the rich biogas-air mixtures have a higher fraction of carbon dioxide and nitrogen components compared to the lean biogas-air mixtures.
Yousif Alaeldeen Altag
2016-01-01
Full Text Available In the present work, experimental investigation on laminar combustion of iso-butane-air mixtures was conducted in constant volume explosion vessel. The experiments were conducted at wide range of equivalence ratios ranging between Ф = 0.6 and 1.4 and atmospheric pressure of 0.1 MPa and ambient temperature of 303K. Using spherically expanding flame method, flame parameters including stretched, unstretched flame propagation speeds, laminar burning velocities and Markstein length were calculated. For laminar burning velocities the method of error bars of 95% confidence level was applied. In addition, values of Markstein lengths were measured in wide range of equivalence ratios to study the influence of stretch rate on flame instability and burning velocity. It was found that the stretched flame speed and laminar burning velocities increased with equivalence ratios and the peak value was obtained at equivalence ratio of Ф = 1.1. The Markstein length decreased with the increases in equivalence ratios, which indicates that the diffusion thermal flame instability increased at high equivalence ratios in richer mixture side. However, the total deviations in the laminar burning velocities have discrepancies of 1.2-2.9% for all investigated mixtures.
Thermal Structure and Burning Velocity of Flames in Non-volatile Fuel Suspensions
Soo, Michael J; Goroshin, Samuel; Frost, David L; Bergthorson, Jeffrey M
2016-01-01
Flame propagation through a non-volatile solid-fuel suspension is studied using a simplified, time-dependent numerical model that considers the influence of both diffusional and kinetic rates on the particle combustion process. It is assumed that particles react via a single-step, first-order Arrhenius surface reaction with an oxidizer delivered to the particle surface through gas diffusion. Unlike the majority of models previously developed for flames in suspensions, no external parameters are imposed, such as particle ignition temperature, combustion time, or the assumption of either kinetic- or diffusion-limited particle combustion regimes. Instead, it is demonstrated that these parameters are characteristic values of the flame propagation problem that must be solved together with the burning velocity, and that the a priori imposition of these parameters from single-particle combustion data may result in erroneous predictions. It is also shown that both diffusive and kinetic reaction regimes can alternate ...
... touching the stove This list is not all-inclusive. You can also burn your airways if you ... extinguishers in key locations at home, work, and school. Remove electrical cords from floors and keep them ...
Xue, R.; Xu, H. Q.; Li, Y.; Zhu, C. G.
2014-11-01
Studying the burning particles in the pyrotechnic flame is important to acquire the decomposition mechanism and spectral radiance of pyrotechnics. The high speed video (HSV) and particle image velocimetry (PIV) were used in this paper to analyze the flow field and velocity of burning particles in the flame of pyrotechnics. The binary image was obtained through gray scale treatment and adaptive threshold segmentation from HSV and PIV data, by which the coordinate of each particle was marked. On the basis, the movement trajectory of each particle during combustion was pursued by the most recent guidelines algorithm of cancroids matching. Through the method proposed in this study, the velocity variation of each particle was obtained, the approximate distribution of particle quantity at each zone was visualized and the mathematical model of pyrotechnic particle velocity flow field was established.
Krause, U. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany). Labor 4.12 - Staubbraende, Staubexplosionen
1995-09-01
At the Federal Institute for Materials Research and Testing (BAM) research work is carried out, which preceeds the preparation of technical standards for explosion protection and prevention. Part of this work is dedicated to find dust explosion characteristic parameters, which - in distinction to those parameters in use now - can be measured under well-defined conditions of the flow field, preferably under excluding the influence of turbulent transport processes. By this a dominating influence of materials parameters is achieved. One out of such parameters could promisingly be the laminar burning velocity of a dust/air mixture. The present paper describes investigations on the influence of the dust concentration and the flow velocity on the laminar burning velocity. The substances considered were lycopodium powder, cornstarch and wheat flour. For all substances the laminar burning velocity showed a significant dependence from the dust concentration, from the chemical properties of the material and from the flow velocity. The highest values for the laminar burning velocity were obtained for lycopodium powder, while wheat flour reached the lowest values. (orig.). With 5 figs., 4 tabs. [Deutsch] Im Rahmen der an der Bundesanstalt fuer Materialforschung und -pruefung (BAM) betriebenen praenormativen Forschung fuer den Staubexplosionsschutz wird unter anderem nach Kenngroessen fuer den Explosionsablauf gesucht, die im Unterschied zu den bislang ueblichen Kenngroessen unter definierten Stroemungsbedingungen - moeglichst unter Ausschluss turbulenter Transportvorgaenge - zustande kommen, und so die stoffspezifischen Eigenschaften einer Substanz staerker hervortreten lassen. Eine solche Kenngroesse koennte die laminare Verbrennungsgeschwindigkeit eines Staub/Luft-Gemisches sein. Die vorliegende Arbeit beschreibt Untersuchungen in zwei Rohrversuchsstaenden zum Einfluss der Staubkonzentration und der Stroemungsgeschwindigkeit auf die laminare Verbrennungsgeschwindigkeit. Fuer
Rich methane/air flames: Burning velocities, extinction limits, and flammability limit
Bui-Pham, M.N.; Miller, J.A.
1994-12-31
A theoretical investigation has been conducted to establish a reliable chemical kinetic mechanism that can determine the extinction limit of opposed-flow, strained, rich premixed methane-air flames. In the process of developing this kinetic representation for rich methane-air flames, we found that the heat of formation of {sup 1}CH{sub 2}=102.5 kcal/mole, which is 1 kcal/mole higher than the currently available thermochemical data, gives the best agreement with experimental data on burning velocities for equivalence ratios between 0.5 and 1.7. Employing this value for {Delta}H{sub f{sup 1}CH{sub 2}} in our calculations, the extinction stretch rate, K{sub ex}, was found to be K{sub ex}=2250 sec {sup {minus}1} for {phi}=1.0, K{sub ex}=2000 sec{sup {minus}1} for {phi}=1.1, and K{sub ex}=1400 sec{sup {minus}1} for {phi}=1.2. These results agree better with experiments than those using a lower heat of formation of singlet methylene. In comparison with previous calculations made by Kee et al., our predictions are basically the same except that our extinction stretch rate is slightly higher at {phi}=1.0 and that our location of the maximum extinction stretch rate is closer to that found in experiments. In addition, we establish the rich flammability limit using two different criteria to be approximately between {phi}=1.61 and {phi}=1.68, which agrees very well with an experimental value of {phi}=1.67.
Jun, Jin Yong; Lee, Byeong Jun; Song, Dong Joo [Yeungnam University, Gyeongsan (Korea, Republic of)
2016-05-15
Combustion characteristics of a mixture of nano- and micron-sized aluminum powder in ice were experimentally studied. Round barshaped bare strand was casted with a frozen mixture of aluminum and water and then electrically ignited in the air or argon environment. Propagating flame was recorded using a camcorder with an optical filter. Burning rate, defined as the slope in the graph of average flame position movement versus time, was also evaluated. The burning velocity peaked at equivalence ratio of 0.8. Flame propagation velocity increased with a pressure exponent of 0.61 for = 0.8 and pressure range of 0.1-0.8 MPa. For nano/micro-mixture at = 0.8, flame propagation was not feasible if the mass fraction of micron-sized particles in fuel is higher than 0.5.
Udd, Eric
2013-06-01
A novel very high speed fiber grating sensor system has been used to support velocity, position, temperature and pressure measurements during burn, deflagration and detonation of energetic materials including explosives and rocket propellant in Russian DDT tests. For the first time the system has been demonstrated in card gap testing and has allowed real time measurements of the position of the blast front into the card gap and monitoring of pressure at key locations in the card gap test. Fiber grating sensors are capable of providing a continuous measurement of the position, velocity, local pressure and temperature of energetic materials during the early stages of detonation and the transition to full detonation represents a significant advance in diagnostic capabilities. These measurements provide insight into this dynamic regime detonation physics. Continuous velocity and burn back position measurements are significantly more accurate in determining this run-up in velocity relative to single point measurements which yield only the average velocity measurement between the individual pin placement points. This work describes the first demonstration of this technology to card gap testing.
HU ErJiang; HUANG ZuoHua; HE JiaJia; JIN Chun; MIAO HaiYan; WANG XiBin
2009-01-01
The laminar burning velocities and Markstein lengths of the hydrogen-air-diluent mixtures were meas-ured at different equivalence ratios (0.4-1.5), different diluents (N2, CO2 and 15%CO2+85%N2) and di-lution ratios (0, 0.05, 0.10 and 0.15) by using the outwardly expanding flame. The influences of flame stretch rate on the flame propagation characteristics were analyzed. The results show that both the laminar burning velocities and the Markstein lengths of the hydrogen-air-diluent mixtures decrease with the increase of dilution ratio. The decrease in Markstein lengths means that adding diluents into the hydrogen-air mixtures will decrease the diffusional-thermal instability of the flame front. For a specified dilution ratio, the laminar burning velocities give their maximum values at an equivalence ratio of 1.8. The Markstein lengths increase with the increase of the equivalence ratio monotonously regardless of the diluents. The study shows that CO2 as the diluent has a greater impact on the laminar flame speed and the flame front stability than N2 as the diluent.
Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.
2007-12-01
The solitary structures of the ion-acoustic waves have been considered in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having a vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field. The nonlinear dynamics of ion-acoustic waves in such a plasma is governed by the Schamel's modified Korteweg-de Vries-Zakharov-Kuznetsov (S-ZK) equation. This equation admits solitary wave solutions having a profile sech4. When the coefficient of the nonlinear term of this equation vanishes, the vortex-like velocity distribution function of electrons simply becomes the non-thermal velocity distribution function of electrons and the nonlinear behaviour of the same ion-acoustic wave is described by a Korteweg-de Vries-Zakharov-Kuznetsov (KdV-ZK) equation. This equation admits solitary wave solutions having a profile sech2. A combined S-KdV-ZK equation more efficiently describes the nonlinear behaviour of an ion-acoustic wave when the vortex-like velocity distribution function of electrons approaches the non-thermal velocity distribution function of electrons, i.e. when the contribution of trapped electrons tends to zero. This combined S-KdV-ZK equation admits an alternative solitary wave solution having a profile different from either sech4 or sech2. The condition for the existence of this alternative solitary wave solution has been derived. It is found that this alternative solitary wave solution approaches the solitary wave solution (the sech2 profile) of the KdV-ZK equation when the contribution of trapped electrons tends to zero. The three-dimensional stability of these solitary waves propagating obliquely to the external uniform and static magnetic field has been investigated by the multiple-scale perturbation expansion method of Allen and Rowlands. The instability condition and the growth
Muppala, S.P.R.; Wen, J.X. [Faculty of Engineering, Kingston University, Friars Avenue, Roehampton Vale, London, SW15 3DW (United Kingdom); Nakahara, M. [Department of Engineering for Production and Environment, Ehime University 3, Bunkyo-cho, Matsuyama 790-8577 (Japan); Aluri, N.K. [Institut fuer Technische Verbrennung, Leibniz Universitaet Hannover Welfengarten 1 A, 30167 Hannover (Germany); Kido, H. [Kyushu Polytechnic College 1665-1, Shii, Kokuraminami-ku, Kitakyushu, 802-0985 790-8577 (Japan); Papalexandris, M.V. [Departement de Mecanique, Unite de Thermodynamique, Universite catholique de Louvain Place du Levant, 2; 1348 Louvain-la-Neuve (Belgium)
2009-11-15
In this paper, we present some experimental and analytical model results of two-component fuel mixtures of methane, propane and hydrogen. Experimentally obtained turbulent burning velocity S{sub T} for outwardly propagating spherical lean turbulent premixed flames is examined with an algebraic flame surface wrinkling reaction model using 1) mean local burning velocity, and 2) the critical chemical time scale from the leading edge model by Zel'dovich and Frank-Kamenetskii. Based on the latter approach, the time scale that characterizes the effects of preferential diffusion phenomenon in critically curved spherical flames is incorporated into the reaction model. For this, a proposed simple linear model is used for estimating the effective Lewis number of the two-component fuel (CH{sub 4}-H{sub 2} and C{sub 3}H{sub 8}-H{sub 2})/Air mixtures. In general, both approaches are effective ways in achieving qualitatively consistent S{sub T} trends for both mixtures. However, in the second approach, model predictions show large S{sub T} deviation especially at high turbulence. This may be attributed to the use of approximate values of activation temperature and for the use of the effective Lewis number of both mixtures based on the simple linear model. (author)
Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.; Das
2014-02-01
Schamel's modified Korteweg-de Vries-Zakharov-Kuznetsov (S-ZK) equation, governing the behavior of long wavelength, weak nonlinear ion acoustic waves propagating obliquely to an external uniform static magnetic field in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field, admits solitary wave solutions having a sech 4 profile. The higher order stability of this solitary wave solution of the S-ZK equation has been analyzed with the help of multiple-scale perturbation expansion method of Allen and Rowlands (Allen, M. A. and Rowlands, G. 1993 J. Plasma Phys. 50, 413; 1995 J. Plasma Phys. 53, 63). The growth rate of instability is obtained correct to the order k 2, where k is the wave number of a long wavelength plane wave perturbation. It is found that the lowest order (at the order k) instability condition is strongly sensitive to the angle of propagation (δ) of the solitary wave with the external uniform static magnetic field, whereas at the next order (at the order k 2) the solitary wave solutions of the S-ZK equation are unstable irrespective of δ. It is also found that the growth rate of instability up to the order k 2 for the electrons having Boltzmann distribution is higher than that of the non-thermal electrons having vortex-like distribution for any fixed δ.
Anggono, W.; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, S.; Hamidi, N.; Hayakawa, A.
2016-03-01
Biogas is an alternative energy source that is sustainable and renewable containing more than 50% CH4 and its biggest impurity or inhibitor is CO2. Demands for replacing fossil fuels require an improved fundamental understanding of its combustion processes. Flammability limits and laminar burning velocities are important characteristics in these processes. Thus, this research focused on the effects of CO2 on biogas flammability limits and laminar burning velocities in spark ignited premixed combustion. Biogas was burned in a spark ignited spherical combustion bomb. Spherically expanding laminar premixed flames, freely propagating from spark ignition in initial, were continuously recorded by a high-speed digital camera. The combustion bomb was filled with biogas-air mixtures at various pressures, CO2 levels and equivalence ratios (ϕ) at ambient temperature. The results were also compared to those of the previous study into inhibitorless biogas (methane) at various pressures and equivalence ratios (ϕ). Either the flammable areas become narrower with increased percentages of carbon dioxide or the pressure become lower. In biogas with 50% CO2 content, there was no biogas flame propagation for any equivalence ratio at reduced pressure (0.5 atm). The results show that the laminar burning velocity at the same equivalence ratio declined in respect with the increased level of CO2. The laminar burning velocities were higher at the same equivalence ratio by reducing the initial pressure.
Lee, Jaeseo; Lee, Gwang G.; Huh, Kang Y.
2014-12-01
This paper presents validation of new analytical expressions for the turbulent burning velocity, ST, based on asymptotic behavior at the leading edge (LE) in turbulent premixed combustion. Reaction and density variation are assumed to be negligible at the LE to avoid the cold boundary difficulty in the statistically steady state. Good agreement is shown for the slopes, dST/du', with respect to Lc/δf at low turbulence, with both normalized by those of the reference cases. δf is the inverse of the maximum gradient of reaction progress variable through an unstretched laminar flame, and Lc is the characteristic length scale given as burner diameter or measured integral length scale. Comparison is made for thirty-five datasets involving different fuels, equivalence ratios, H2 fractions in fuel, pressures, and integral length scales from eight references [R. C. Aldredge et al., "Premixed-flame propagation in turbulent Taylor-Couette flow," Combust. Flame 115, 395 (1998); M. Lawes et al., "The turbulent burning velocity of iso-octane/air mixtures," Combust. Flame 159, 1949 (2012); H. Kido et al., "Influence of local flame displacement velocity on turbulent burning velocity," Proc. Combust. Inst. 29, 1855 (2002); J. Wang et al., "Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa," Exp. Therm. Fluid Sci. 50, 90 (2013); H. Kobayashi et al., "Experimental study on general correlation of turbulent burning velocity at high pressure," Proc. Combust. Inst. 27, 941 (1998); C. W. Chiu et al., "High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers," Int. J. Hydrogen Energy 37, 10935 (2012); P. Venkateswaran et al., "Pressure and fuel effects on turbulent consumption speeds of H2/CO blends," Proc. Combust. Inst. 34, 1527 (2013); M. Fairweather et al., "Turbulent burning rates of methane and methane-hydrogen mixtures," Combust. Flame 156, 780 (2009)]. The turbulent
Studies in Chaotic adiabatic dynamics
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the open-quotes goodnessclose quotes of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees)
On black hole spectroscopy via adiabatic invariance
Jiang Qingquan, E-mail: qqjiangphys@yeah.net [College of Physics and Electronic Information, China West Normal University, Nanchong, Sichuan 637002 (China); Han Yan [College of Mathematic and Information, China West Normal University, Nanchong, Sichuan 637002 (China)
2012-12-05
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form I{sub adia}= Contour-Integral p{sub i}dq{sub i}. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by {Delta}A=8{pi}l{sub p}{sup 2} in the Schwarzschild and Painleve coordinates.
Quantum adiabatic machine learning
Pudenz, Kristen L.; Lidar, Daniel A.
2011-01-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this app...
Adiabat-shaping in indirect drive inertial confinement fusion
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures
Adiabatic process reversibility: microscopic and macroscopic views
The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r≥1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values. (letters and comments)
Quantum adiabatic machine learning
Pudenz, Kristen L
2011-01-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.
Oreshkov, Ognyan
2010-01-01
We propose a theory of adiabaticity in quantum Markovian dynamics based on a structural decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of Markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the underlying Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As an application of our theory, we propose a framework for decoherence-assisted computation in noiseless codes under general Markovian noise. We also formulate a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by non-dissipative means.
Wireless adiabatic power transfer
Research highlights: → Efficient and robust mid-range wireless energy transfer between two coils. → The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. → Wireless energy transfer is insensitive to any resonant constraints. → Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
A quasi-adiabatic laminar flat flame burner for high temperature calibration
Flat flame burners were developed for many purposes. In this study, a new flat flame burner for the high temperature calibration of combustion product species and temperature is presented. The burner is operated on methane/air mixtures. Equivalence ratios can be varied from φ = 0.65 to φ = 1.5. A flat, laminar, premixed flame stabilizes above the flame holder that is manufactured from porous material and differently to other designs is not water cooled. Unlike most other realizations, the flame burns detached by 1.5–2.5 mm from the flame holder. This is realized by adjusting the exit speed to a value very close to the burning velocity of the corresponding equivalence ratio. As the control range between flame blow-off and attachment to the flame holder is very narrow, this strategy requires spatially very uniform porous materials and a precise mass flow control. Heat losses to the flame holder necessary for flame stabilization are minimized furthermost by these detached flames. This becomes manifested by a temperature rise of the flame holder by less than 10 K and an almost homogeneous temperature distribution within the flame holder. In consequence, flame temperatures measured by Rayleigh thermometry are observed to be close to adiabatic flame temperatures. Differences between adiabatic and measured temperatures depend on the equivalence ratio and range from 35 K to 50 K. By comparison with 1D-flame simulations with and without radiation models, it is shown that these temperature losses are mainly due to radiation but not to heat conduction to the flame holder. For this reason, flames stabilized on this burner are termed quasi-adiabatic as they exhibit exhaust gas temperatures very similar to freely propagating flames
Adiabatically implementing quantum gates
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process
Wireless adiabatic power transfer
Rangelov, A. A.; Suchowski, H.; Silberberg, Y.; Vitanov, N. V.
2010-01-01
We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
Amendt, Peter; Bellei, Claudio; Wilks, Scott
2012-01-01
The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient and difference in average ionization states . Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated pl...
张猛; 王金华; 谢永亮; 卫之龙; 金武; 黄佐华
2013-01-01
Instantaneous flame front structure and turbulent burning velocities of CH4/H2/air mixtures were measured using OH-PLIF technique. Various turbulence intensities were generated by perforated plates with different hole di-ameter and opening ratio. Stabilized turbulent premixed flames were obtained at the outlet of the Bunsen burner for long-duration OH-PLIF measurement. 500 single shot images were averaged to obtain turbulent burning velocity by conventional angel method. The effects of hydrogen addition and turbulence intensity on turbulent burning velocity were analyzed and a power law correlation of turbulent burning velocity was obtained. Results show that turbulent burning velocity increases with the increase of turbulence intensity due to the increase of flame front area. Hydrogen addition increases the flame intrinsic instability and leads to the active response of laminar flame to turbulence, resulting in the much wrinkle flame front structure,larger flame front area and subsequently the increased turbulent burning velocity. A correlation between turbulent burning velocity and turbulence intensity was derived in the form of ST/SL∝a(u′/SL)n,andn remained a constant value of 0.35.%利用OH平面激光诱导荧光技术测量CH4/H2/空气预混湍流火焰前锋面结构，得到湍流燃烧速率．采用不同孔径和开孔比的湍流发生板，产生不同湍流强度和尺度下稳定的预混湍流火焰供OH-PLIF测量．利用500张瞬时火焰结构图片得到湍流火焰前锋面的平均位置，运用角度法得到湍流燃烧速率．分析了掺氢比和湍流强度对湍流燃烧速率的影响，并给出了拟合关系式．实验结果表明，湍流燃烧速率随湍流强度的增加而增加，这是由于流场尺度减小引起火焰锋面面积增加．湍流燃烧速率随掺氢比的升高略有增加，这是由于掺氢引起火焰不稳定性增强，导致火焰对湍流流动的响应增强，增强了湍流火焰前锋
Nonresonance adiabatic photon trap
Popov, S S; Burdakov, A V; Ushkova, M Yu
2016-01-01
Concept of high efficiency photon storage based on adiabatic confinement between concave mirrors is presented and experimentally investigated. The approach is insensitive to typical for Fabri-Perot cells requirements on quality of accumulated radiation, tolerance of resonator elements and their stability. Experiments have been carried out with the trap, which consists from opposed concave cylindrical mirrors and conjugated with them spherical mirrors. In result, high efficiency for accumulation of radiation with large angular spread and spectrum width has been confirmed. As radiation source a commercial fiber laser has been used.
Power spectra in the eikonal approximation with adiabatic and non-adiabatic modes
Bernardeau, Francis; Vernizzi, Filippo
2012-01-01
We use the so-called eikonal approximation, recently introduced in the context of cosmological perturbation theory, to compute power spectra for multi-component fluids. We demonstrate that, at any given order in standard perturbation theory, multi-point power spectra do not depend on the large-scale adiabatic modes. Moreover, we employ perturbation theories to decipher how non-adiabatic modes, such as a relative velocity between two different components, damp the small-scale matter power spectrum, a mechanism recently described in the literature. In particular, we do an explicit calculation at 1-loop order of this effect. While the 1-loop result eventually breaks down, we show how the damping effect can be fully captured by the help of the eikonal approximation. A relative velocity not only induces mode damping but also creates large-scale anisotropic modulations of the matter power spectrum amplitude. We illustrate this for the Local Group environment.
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
Is the sech/tanh Adiabatic Pulse Really Adiabatic?
Rosenfeld, Daniel; Zur, Yuval
1998-05-01
Adiabatic pulses are most conveniently studied in the frequency frame which is a frame of reference rotating at the instantaneous frequency of the pulse. In this frame the adiabatic condition ‖γBeff‖ ≫ |θ≳| sets an upper limit on the sweep rate θ≳ of the Beffvector. This, in turn, places a lower bound on the pulse duration. Adiabatic behavior is studied at the threshold duration and two pulses are examined: (i) a pulse with a constant sweep rate (CAPpulse) and (ii) a conventional sech/tanh adiabatic pulse. It is shown that the sech/tanh pulse performs robust magnetization inversion although it seems to violate the adiabatic condition. This puzzling phenomenon is solved by switching into a second-order rotating frame of reference (SORF) where it is shown that the adiabatic condition is fulfilled. This frame coincides with the frequency frame at the beginning of the pulse. Assuming an RF field along thex-axis of the frequency frame, the SORF then rotates about the commony-axis during the pulse with thez-axis of the new frame aligned with the Beffvector. It is shown that adiabatic motion may be performed in the SORF, in which the sweep rate is increased indefinitely; the adiabatic condition is violated by this motion in the frequency frame but is fulfilled in the SORF. The lower bound on the sweep rate in the frequency frame is thereby lifted.
Adiabatic and non-adiabatic processes in strong Coulomb fields
Adiabatic and non-adiabatic behaviour of relativistic electrons in external Coulomb fields of time-dependent strength is studied within the framework of a model for the description of a shell electron's behaviour during a heavy-ion collision. A classification scheme for types of non-adiabatic behaviour is suggested; its relevance for the analysis of pair production processes in strong Coulomb fields is discussed (K-Shell Ionization). An ansatz for the vacuum polarization potential is introduced and employed to demonstrate the special role of vacuum polarization for adiabatic and non-adiabatic behaviour in very strong Coulomb fields (Zα > 1). The implications of the underlaying specific features of the vacuum polarization charge density in very strong fields for pair production mechanisms are considered. (orig.)
Geometry of the Adiabatic Theorem
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Koray Aydemir; Mehmet Ali Taşkaynatan
2011-01-01
Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The t...
Non-adiabatic primordial fluctuations
Noller, J
2009-01-01
We consider general non-adiabatic single fluid cosmological perturbations. We derive the second-order action and its curvature variables assuming only the (linearized) Einstein equations for a perfect fluid stress-energy tensor. The derivation is therefore carried out at the same level of generality that has been achieved before for adiabatic modes. We also allow for arbitrary "speed of sound" profiles in our derivation. As a result we find a new conserved super-horizon quantity and relate it to the adiabatically conserved curvature perturbation. We then use the formalism to investigate a family of non-adiabatic hydrodynamical primordial matter models and the power spectra they produce. This yields a new scale-invariant solution that can resolve the horizon problem if implemented in a contracting phase.
Koray Aydemir
2011-07-01
Full Text Available Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The term ‘burn rehabilitation’ incorporates the physical, physiological and social aspects of care. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Burn rehabilitation aims to prevent the possible complications, minimalize joint contractures and deformities, increase range of motion, control hypertrophic scarring, achieve the best possible functional capacity and to regain the patients vocational and recreational activities. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 70-7
Alpha Heating and TN Burn in NIF Experiments
Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Merrill, Frank; Cerjan, Charlie; Batha, Steven
2015-11-01
Sustainable TN burn requires alpha-particle energy deposition in the hot fuel. Recently, we developed an analytic model to estimate the neutron yield generated by the alpha-particle energy deposited in the hot spot, in terms of the measured total neutron yield, the adiabat of the cold fuel and the peak implosion kinetic energy of the pusher. Our alpha heating model has been applied to a number of inertial confinement fusion capsule experiments performed at the National Ignition Facility (NIF). Our model predictions are consistent with the post-shot calibrated code simulations and experimental data. We have also studied the uncertainty and sensitivities of alpha heating on various physics parameters, such as the adiabat of cold fuel, total neutron yield and peak implosion velocity. Our analysis demonstrates that the alpha particle heating was appreciable in only high-foot experiments. Based on our work, we will discuss paths and parameters to reach ignition at NIF (LA-UR-15-25507). This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
The split of a generalised Chaplygin gas with an equation of state p=−A/ρα into an interacting mixture of pressureless matter and a dark-energy component with equation of state pΛ=−ρΛ implies the existence of non-adiabatic pressure perturbations. We demonstrate that the square of the effective (non-adiabatic) sound speed cs of the medium is proportional to the ratio of the perturbations of the dark energy to those of the dark matter. Since, as demonstrated explicitly for the particular case α=−1/2, dark-energy perturbations are negligible compared with dark-matter perturbations on scales that are relevant for structure formation, we find |cs2|≪1. Consequently, there are no oscillations or instabilities which have plagued previous adiabatic Chaplygin-gas models
Optimizing adiabaticity in quantum mechanics
MacKenzie, R; Renaud-Desjardins, L
2011-01-01
A condition on the Hamiltonian of a time-dependent quantum mechanical system is derived which, if satisfied, implies optimal adiabaticity (defined below). The condition is expressed in terms of the Hamiltonian and in terms of the evolution operator related to it. Since the latter depends in a complicated way on the Hamiltonian, it is not yet clear how the condition can be used to extract useful information about the optimal Hamiltonian. The condition is tested on an exactly-soluble time-dependent problem (a spin in a magnetic field), where perfectly adiabatic evolution can be easily identified.
The adiabatic motion of charged dust grains in rotating magnetospheres
Northrop, T. G.; Hill, J. R.
1983-01-01
Adiabatic equations of motion are derived for the micrometer-sized dust grains detected in the Jovian and Saturn magnetospheres by the Pioneer 10 and 11 spacecraft. The adiabatic theory of charged particle motion is extended to the case of variable grain charge. Attention is focused on the innermost and outermost limits to the grain orbit evolution, with all orbits tending to become circular with time. The parameters such as the center equation of motion, the drift velocity, and the parallel equation of motion are obtained for grains in a rotating magnetosphere. Consideration is given to the effects of periodic grain charge-discharge, which are affected by the ambient plasma properties and the grain plasma velocity. The charge-discharge process at the gyrofrequency is determined to eliminate the invariance of the magnetic moment and cause the grain to exhibit radial movement. The magnetic moment increases or decreases as a function of the gyrophase of the charge variation.
Optimization of Adiabatic Selective Pulses
Rosenfeld, Daniel; Panfil, Shimon L.; Zur, Yuval
1997-06-01
Adiabatic RF pulses play an important role in spin inversion due to their robust behavior in presence of inhomogeneous RF fields. These pulses are characterized by the trajectory swept by the tip of theBeffvector and the rate of motion upon it. In this paper, a method is described for optimizing adiabatic inversion pulses to achieve a frequency-selective magnetization inversion over a given bandwidth in a shorter time and to improve slice profile. An efficient adiabatic pulse is used as an initial condition. This pulse allows for flexibility in choosing its parameters; in particular, the transition sharpness may be traded off against the inverted bandwidth. The considerations for selecting the parameters of the pulse according to the requirements of the design are discussed. The optimization process then improves the slice profile by optimizing the rate of motion along the trajectory of the pulse while preserving the trajectory itself. The adiabatic behavior of the optimized pulses is fully preserved over a twofold range of variation in the RF amplitude which is sufficient for imaging applications in commercial high-field MRI machines. Design examples demonstrate the superiority of the optimized pulses over the conventional sech/tanh pulse.
A Many Particle Adiabatic Invariant
Hjorth, Poul G.
For a system of N charged particles moving in a homogeneous, sufficiently strong magnetic field, a many-particle adiabatic invariant constrains the collisional exchange of energy between the degrees of freedom perpendicular to and parallel to the magnetic field. A description of the phenomenon in...
Highly stripped ions on hydrogen atoms: the adiabatic approach
The simple Lorentzian form for the adiabatic radial matrix elements which dominate low-energy charge transfer in highly stripped systems is exploited to derive the S matrix for the Asub(Z)sup(Z+) + H(1s) → Asub(Z)sup(Z-1)+ + H+ scattering process. The approximations used are discussed and the results of the theory are compared with measured He2+ + H(1s) → He+ + H+ cross sections. Agreement is satisfactory for low velocities. (author)
Digital Waveguide Adiabatic Passage Part 1: Theory
Vaitkus, Jesse A; Greentree, Andrew D
2016-01-01
Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.
Burning Issue: Handling Household Burns
... take steps to avoid household burns. Never leave cooking food unattended on the stove. Set your water heater’s thermostat to 120 °F or lower to prevent scalding burns. And install smoke alarms on every floor of your home. Keep yourself and your family safe from unexpected ...
Properties of an equilibrium hadron gas subjected to the adiabatic longitudinal expansion
We consider an ideal gas of massive hadrons in thermal and chemical equilibrium. The gas expands longitudinally in an adiabatic way. This evolution for a baryonless gas reduces to a hydrodynamic expansion. Cooling process is parametrized by the sound velocity. The sound velocity is temperature dependent and is strongly influenced by hadron mass spectrum. (orig.)
Design of Selective Adiabatic Inversion Pulses Using the Adiabatic Condition
Rosenfeld, Daniel; Panfil, Shimon L.; Zur, Yuval
1997-12-01
Adiabatic RF pulses play an important role in spin inversion due to their robust behavior in the presence of inhomogeneous RF fields. These pulses are characterized by the trajectory swept by the tip of theBeffvector and the rate of motion along it. In this paper, we describe a method by which optimized modulation functions can be constructed to render insensitivity toB1inhomogeneity over a predeterminedB1range and over a wide band of frequencies. This is accomplished by requiring that the optimized pulse fulfill the adiabatic condition over this range ofB1inhomogeneity and over the desired frequency band for the complete duration of the pulse. A trajectory similar to the well-known sech/tanh adiabatic pulse, i.e., a half-ellipse, is used. The optimization process improves the slice profile by optimizing the rate of motion along this trajectory. The optimized pulse can be tailored to the specific design requirements; in particular, the transition sharpness may be traded off against the inverted bandwidth. Two design examples, including experimental results, demonstrate the superiority of the optimized pulses over the conventional sech/tanh pulse: in the first example, a large frequency band is to be inverted using a weak RF amplitude in a short time. In the second example, a pulse with a very sharp transition is required.
Numerical studies of optical forces from adiabatic rapid passage
Stack, Daniel; Elgin, John; Metcalf, Harold [Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Anisimov, Petr M. [Hearne Institute for Theoretical Physics and Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)
2011-07-15
We present a numerical study of the properties of optical forces on moving atoms derived from purely stimulated processes produced by multiple adiabatic rapid-passage sequences. The optical Bloch equations are solved for a carefully timed sequence of frequency-swept pulses that can produce a force much larger than the ordinary radiative force. We describe the effects of the sweep range, peak intensity, sweep direction, number of pulses, atomic velocity, and spontaneous emission. Since the momentum of thermal atoms is much larger than that transferred by a single absorption-stimulated emission cycle, multiple repetitions are needed to make a significant velocity change.
Adiabatic pumping through quantum dots
A finite charge can be pumped through a mesoscopic system in the absence of an applied bias voltage by changing periodically in time some parameters of the system. If these parameters change slowly with respect to all internal time scales of the system, pumping is adiabatic. The scope of this work is to investigate adiabatic pumping through a quantum dot, in particular the influence of Coulomb interaction between electrons in the dot on the pumped charge. On one hand we develop a formalism based on Green's functions, in order to calculate the pumped charge from the weak-tunnel-coupling regime down to the Kondo regime. We extend our calculations to a system with a superconducting contact. On the other hand we use a systematic perturbation expansion for the calculation of the pumped charge, giving us the possibility to analyze processes which contribute to charge pumping and to highlight the important role of interaction-induced level renormalization. (orig.)
Adiabatic theory for the bipolaron
A translation-invariant adiabatic theory is constructed for the bipolaron. It is shown that motions in the bipolaron are divided: the relative electron coordinates describe fast electron oscillations in the induced polarization well and the center of mass coordinates represent slow electron movement followed by polarization. Nonlinear differential bipolaron equations are derived which are asymptotically exact in the adiabatic limit. Particlelike solutions of these equations correspond to the bipolaron bound state. The exact solution yields the value of the ion critical parameter η=0.31 for which the bipolaron state is stable, where η=ε∞/ε0 and ε∞,ε0 are high-frequency and static dielectric permittivities. The energy, the total energy, the effective mass, the radius, and the critical values of the electron-phonon coupling constants are calculated for the bipolaron. The results obtained are generalized to the case of two-dimensional bipolarons
... OralHealth > Topics > Burning Mouth Syndrome > Burning Mouth Syndrome Burning Mouth Syndrome Main Content Key Points Symptoms Diagnosis Primary and Secondary BMS Treatment Helpful Tips Key Points Burning mouth syndrome is burning pain in the mouth that may ...
Adiabatic Rearrangement of Hollow PV Towers
Eric A Hendricks
2010-10-01
Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane
Explosive helium burning at constant pressures
Hashimoto, M.-A.; Hanawa, T.; Sugimoto, D.
The results of numerical calculations of nucleosynthesis under adiabatic conditions, i.e., when the only heat exchange with the external regions takes place through neutrinos, are reported. Attention is focused on explosive burning associated with shell flashes, assuming that nuclear energy is deposited in a mass element, followed by expansion and density decrease. Consideration is given to three cases, the shell flash near the surface of a degenerate star, to nuclear burning concentrated in a small region of a star, and to the heat energy being deposited in intermediate layers. A reaction network of 181 nuclear species was constructed and the thermodynamic evolution was calculated assuming constant pressure and adiabatic conditions. The final products of the reactions of H-1 to Cu-62 were projected to by O-16, Mg-24, Si-28, S-32, Ca-40, Ti-44, Cr-48, and Fe-52.
Hydrodynamic stability of inverted annular flow in an adiabatic simulation
In experiments, inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from long aspect nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed-core droplet sizes were recorded at approximately 750 data points. Inverted annular flow was observed to develop into inverted slug flow at low relative velocities, and into dispersed droplet flow at high relative velocities. For both of the above transitions from inverted annular flow, a correlation for core jet length was developed by extending work done on free liquid jets to include this new, coaxial, jet disintegration phenomenon. The result, showing length dependence upon diameter, jet Reynolds number, jet Weber number, void fraction, and gas Weber number, correlates the data well, especially at moderate-to-large relative velocities
Adiabatic processes in monatomic gases
A kinetic model is used to predict the temperature evolution of a monatomic ideal gas undergoing an adiabatic expansion or compression at a constant finite rate, and it is then generalized to treat real gases. The effects of interatomic forces are considered, using as examples the gas with the square-well potential and the van der Waals gas. The model is integrated into a Carnot cycle operating at a finite rate to compare the efficiency's rate-dependent behavior with the reversible result. Limitations of the model, rate penalties, and their importance are discussed
Additional adiabatic heating of plasma
A theoretical possibility of a plasma additional adiabatic heating up to temperatures needed for the begin of D-T thermonuclear fusion reaction, has been found on the base of the polyenergetic conjugation expression, developed in the Thermodynamics of Accumulation Processes. TAP is a branch of the non-equilibrium thermodynamics. The thermodynamics of irreversible processes is another branch of the entire non-equilibrium thermodynamics. TAP deals with the phenomena associated with the introduction, conversion and accumulation of mass or energy or both in the affected, open or closed systems. (author) 2 refs
Barban C.
2013-03-01
Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.
A New Approach to the Quantum Adiabatic Condition
The quantum adiabatic theorem is the basis of adiabatic quantum computation. However, the exact necessary and sufficient conditions for adiabatic evolution are still under debate. We discuss the adiabatic condition of a system undergoing a special evolution route, and obtain an explicit formula that is necessary and sufficient for the adiabatic evolution in this route. Based on this formula, we find that the traditional adiabatic condition is neither sufficient nor necessary. Finally, we show that no adiabatic process can occur even the evolution speed goes to 0 in some examples, which is surprising since the adiabatic theorem states that if the evolution of a system is slow enough, the adiabatic process could occur
Complete Adiabatic Quantum Search in Unsorted Databases
Xu, Nanyang; Peng, Xinhua; Shi, Mingjun; Du, Jiangfeng
2008-01-01
We propose a new adiabatic algorithm for the unsorted database search problem. This algorithm saves two thirds of qubits than Grover's algorithm in realizations. Meanwhile, we analyze the time complexity of the algorithm by both perturbative method and numerical simulation. The results show it provides a better speedup than the previous adiabatic search algorithm.
Shortcut to adiabatic gate teleportation
Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.
2016-01-01
We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.
Quantum gates with controlled adiabatic evolutions
Hen, Itay
2015-02-01
We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.
On the statistical mechanics of an adiabatic ensemble
S.N.Andreev
2004-01-01
Full Text Available Different descriptions of an adiabatic process based on statistical thermodynamics and statistical mechanics are discussed. Equality of the so-called adiabatic and isolated susceptibilities and its generalization as well as adiabatic invariants are essentially used to describe adiabatic processes in the framework of quantum and classical statistical mechanics. It is shown that distribution function in adiabatic ensemble differs from a quasi-equilibrium canonical form provided the heat capacity of the system is not constant in adiabatic process.
Partial evolution based local adiabatic quantum search
Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one. Later, they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database. In the present paper, following the idea of Roland and Cerf [Roland J and Cerf N J 2002 Phys. Rev. A 65 042308], if within the small symmetric evolution interval defined by Zhang et al., a local adiabatic evolution is performed instead of the original “global” one, this “new” algorithm exhibits slightly better performance, although they are progressively equivalent with M increasing. In addition, the proof of the optimality for this partial evolution based local adiabatic search when M = 1 is also presented. Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search, which are found to have the same phenomenon above, are also discussed. (general)
Free Convective Unsteady MHD Flow of Newtonian Fluid in a Channel with Adiabatic
Dr.G.Prabhakararao
2014-07-01
Full Text Available In this paper, we investigated an unsteady free convection MHD flow of an incompressible viscous electrically conducting fluid under the action of transverse uniform magnetic field between two heated vertical plates by keeping one plate is adiabatic. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by using perturbation technique. The effects of various physical parameters on the velocity and temperature fields are discussed in detail with the help of graphs.
Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))
1990-10-01
The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.
Digital Waveguide Adiabatic Passage Part 2: Experiment
Ng, Vincent; Chaboyer, Zachary J; Nguyen, Thach; Dawes, Judith M; Withford, Michael J; Greentree, Andrew D; Steel, M J
2016-01-01
Using a femtosecond laser writing technique, we fabricate and characterise three-waveguide digital adiabatic passage devices, with the central waveguide digitised into five discrete waveguidelets. Strongly asymmetric behaviour was observed, devices operated with high fidelity in the counter-intuitive scheme while strongly suppressing transmission in the intuitive. The low differential loss of the digital adiabatic passage designs potentially offers additional functionality for adiabatic passage based devices. These devices operate with a high contrast ($>\\!90\\%$) over a 60~nm bandwidth, centered at $\\sim 823$~nm.
Adiabatic Compression of Oxygen: Real Fluid Temperatures
Barragan, Michelle; Wilson, D. Bruce; Stoltzfus, Joel M.
2000-01-01
The adiabatic compression of oxygen has been identified as an ignition source for systems operating in enriched oxygen atmospheres. Current practice is to evaluate the temperature rise on compression by treating oxygen as an ideal gas with constant heat capacity. This paper establishes the appropriate thermodynamic analysis for the common occurrence of adiabatic compression of oxygen and in the process defines a satisfactory equation of state (EOS) for oxygen. It uses that EOS to model adiabatic compression as isentropic compression and calculates final temperatures for this system using current approaches for comparison.
Thermoelectric Effects under Adiabatic Conditions
George Levy
2013-10-01
Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.
Adiabatic Invariance of Oscillons/I-balls
Kawasaki, Masahiro; Takeda, Naoyuki
2015-01-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or $I$-balls. We prove the adiabatic invariance of the oscillons/$I$-balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/$I$-balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/$I$-balls are only quasi-stable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the $I$-balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/$I$-balls is due to the adiabatic invariance.
Adiabatic hydrodynamics: The eightfold way to dissipation
Haehl, Felix M; Rangamani, Mukund
2015-01-01
We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids is quite rich, and admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. While this completes a transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics. We suggest that this symmetry is the macroscopic manifestation of the microscopic KMS invariance. We demonstrate its utility by explicitly constructing effective ac...
Adiabatic compressibility of myosin subfragment-1 and heavy meromyosin with or without nucleotide.
Tamura, Y; Suzuki, N.; Mihashi, K
1993-01-01
The partial specific adiabatic compressibilities of myosin subfragment-1 (S1) and heavy meromyosin (HMM) of skeletal muscle in solution were determined by measuring the density and the sound velocity of the solution. The partial specific volumes of S1 and HMM were 0.713 and 0.711 cm3/g, respectively. The partial specific adiabatic compressibilities of S1 and HMM were 4.2 x 10(-12) and 2.9 x 10(-12) cm2/dyn, respectively. These values are in the same range as the most of globular proteins so f...
Adiabatic Connection for Strictly-Correlated Electrons
Liu, Zhenfei; Burke, Kieron
2009-01-01
Modern density functional theory (DFT) calculations employ the Kohn-Sham (KS) system of non-interacting electrons as a reference, with all complications buried in the exchange-correlation energy (Exc). The adiabatic connection formula gives an exact expression for Exc. We consider DFT calculations that instead employ a reference of strictly-correlated electrons. We define a "decorrelation energy" that relates this reference to the real system, and derive the corresponding adiabatic connection...
Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility
Mostafazadeh, Ali
2014-01-01
arXiv:1401.4315v3 [quant-ph] 27 Feb 2014 Adiabatic Approximation, Semiclassical Scattering, and Unidirectional Invisibility Ali Mostafazadeh∗ Department of Mathematics, Ko¸c University, 34450 Sarıyer, Istanbul, Turkey Abstract The transfer matrix of a possibly complex and energy-dependent scattering potential can be identified with the S-matrix of a two-level time-dependent non-Hermitian Hamiltonian H( ). We show that the application of the adiabatic approximation ...
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei; Nakayama, Kazunori
2015-01-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is us...
Quantum and classical dynamics in adiabatic computation
Crowley, P. J. D.; Duric, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-01-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations th...
Maghsoudi, Hemmat; Aghamohammadzadeh, Naser; Khalili, Nasim
2008-01-01
CONTEXT AND AIMS: Diabetic burn patients comprise a significant population in burn centers. The purpose of this study was to determine the demographic characteristics of diabetic burn patients. MATERIALS AND METHODS: Prospective data were collected on 94 diabetic burn patients between March 20, 2000 and March 20, 2006. Of 3062 burns patients, 94 (3.1%) had diabetes; these patients were compared with 2968 nondiabetic patients with burns. Statistical analysis was performed using the statistical...
Burning Mouth Syndrome and "Burning Mouth Syndrome".
Rifkind, Jacob Bernard
2016-03-01
Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome. PMID:27209717
An Integrated Programming and Development Environment for Adiabatic Quantum Optimization
Humble, Travis S.; McCaskey, Alex J.; Bennink, Ryan S.; Billings, Jay J.; D'Azevedo, Ed F.; Sullivan, Blair D.; Klymko, Christine F.; Seddiqi, Hadayat
2013-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for adiabatic quantum optimization called JADE tha...
Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.
1989-01-01
A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.
Adiabatic mixed-field orientation of ground-state-selected carbonyl sulfide molecules
Kienitz, Jens S; Mullins, Terry; Długołęcki, Karol; González-Férez, Rosario; Küpper, Jochen
2016-01-01
We experimentally demonstrated strong adiabatic mixed-field orientation of carbonyl sulfide molecules (OCS) in their absolute ground state of $\\text{N}_{\\text{up}}/\\text{N}_{\\text{tot}}=0.882$. OCS was oriented in combined non-resonant laser and static electric fields inside a two-plate velocity map imaging spectrometer. The transition from non-adiabatic to adiabatic orientation for the rotational ground state was studied by varying the applied laser and static electric field. Above static electric field strengths of 10~kV/cm and laser intensities of $10^{11} \\text{W/cm}^2$ the observed degree of orientation reached a plateau. These results are in good agreement with computational solutions of the time-dependent Schr\\"odinger equation.
On criterion of modal adiabaticity
WANG; Ning(
2001-01-01
［1］Pierce, A. D., Extension of the method of normal modes to sound propagation in an almost-stratified medium, J. Acoust.Soc. Am., 1965, 37: 19－27.［2］Wang, D. Z. , Shang, E. C., Underwater Acoustics (in Chinese), Beijing: Science Press, 1981.［3］Zhang Renhe, Li Fenghua, Beam-displacement rya-mode theory of sound propagation in shallow water, Science in China, Ser.A, 1999, 42(7): 739－749.［4］Zhou Jixun, Zhang Xuezhen, Rogers P., Resonance interaction of sound waves with internal solitons in coastal zone, J.Acoust. Soc. Am., 1991, 90: 2042－2054.［5］Shang, E. C., Wang, Y. Y., The impact of mesoscale oceanic structure on global-scale acoustic propagation, in Theoretical and Computational Acoustics (ed. Ding Lee et al. ), Singapore: World Scientific Publishing Co. , 1996, 409－431.［6］Milder, D. M., Ray and wave invariants for SOFAR channel propagation, J. Acoust. Soc. Am., 1969, 46: 1259－1263.［7］Nag l, A., Milder, D. M., Adiabatic mode theory of underwater sound propagation in a range-dependent environment, J.Acoust. Soc. Am., 1978, 63: 739－749.［8］Brekhovskikh, L. M., Waves in Layered Media, 2nd ed., New York: Academic Press Inc., 1973.［9］Brekhovskikh, L. M., Lysanov, Yu., Fundamental of Ocean Acoustics, Ch. 7, Sec. 7.2, Berlin: Springer-Verlag, 1982.［10］Evans, R. B., A coupled mode solution for acoustic propagation in a wave-guide with stepwise depth variations of a penerable bottom, J. Acoust. Soc. A.m., 1983, 74: 188－195.［11］Jensen, F. B., Kuperman, W. A., Porter, M. B. et al., Computational Ocean Acoustics, New York: Springer-Verlag,1992.［12］Wang Ning, Inverse scattering problem for the coupled second order ODE, Journal of The Physical Society of Japan, 1995, 64(12): 4907－4915.
Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat
Melvin, J.; Lim, H.; Rana, V.; Cheng, B.; Glimm, J.; Sharp, D. H.; Wilson, D. C.
2015-02-01
We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.
Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat
Melvin, J.; Lim, H.; Rana, V.; Glimm, J. [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600 (United States); Cheng, B.; Sharp, D. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-02-15
We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.
Burn Injuries: Burn Depth, Physiopathology and Type of Burns
Kemalettin Koltka
2011-01-01
A significant burn injury is a serious and mortal event. The most important threat to life is hypovolemic shock with complex pathophysiologic mechanisms. Burn depth is classified as first, second, or third degree. Local inflammatory response results a vasodilatation and an increase in vascular permeability. A burn injury is a three dimensional ischemic wound. Zone of coagulation is the zone with maximum damage. Zone of stasis consists of damaged but viable tissues, the tissue is salvageable. ...
Makin, Alexis David James
2011-01-01
This Thesis, entitled ‘Velocity Memory’ is submitted to the University of Manchester by Alexis David James Makin (30/09/2010) for the degree of Doctor of Philosophy. It is known that primates are sensitive to the velocity of moving objects. We can also remember velocity information after moving objects disappear. This cognitive faculty has been investigated before, however, the literature on velocity memory to date has been fragmented. For example, velocity memory has been disparately descri...
Exploring adiabatic quantum trajectories via optimal control
Adiabatic quantum computation employs a slow change of a time-dependent control function (or functions) to interpolate between an initial and final Hamiltonian, which helps to keep the system in the instantaneous ground state. When the evolution time is finite, the degree of adiabaticity (quantified in this work as the average ground-state population during evolution) depends on the particulars of a dynamic trajectory associated with a given set of control functions. We use quantum optimal control theory with a composite objective functional to numerically search for controls that achieve the target final state with a high fidelity while simultaneously maximizing the degree of adiabaticity. Exploring the properties of optimal adiabatic trajectories in model systems elucidates the dynamic mechanisms that suppress unwanted excitations from the ground state. Specifically, we discover that the use of multiple control functions makes it possible to access a rich set of dynamic trajectories, some of which attain a significantly improved performance (in terms of both fidelity and adiabaticity) through the increase of the energy gap during most of the evolution time. (paper)
Adiabatic cooling of a single trapped ion
Poulsen, Gregers
2012-01-01
We present experimental results on adiabatic cooling of a single 40Ca+ ion in a linear radiofrequency trap. After a period of laser cooling, the secular frequency along the rf-field-free axis is adiabatically lowered by nearly a factor of eight from 583 kHz to 75 kHz. For an ion originally Doppler laser cooled to a temperature of 0.65 +/- 0.03 mK, a temperature of 87 +/- 7 \\mu K is measured after the adiabatic expansion. Applying the same adiabatic cooling procedure to a single sideband cooled ion in the ground state (P0 = 0.978 +/- 0.002) resulted in a final ground state occupation of 0.947 +/- 0.005. Both results are in excellent agreement with an essentially fully adiabatic behavior. The results have a wide range of perspectives within such diverse fields as ion based quantum information science, high resolution molecular ion spectroscopy and ion chemistry at ultra-low temperatures.
Symmetry-Protected Quantum Adiabatic Transistors
Williamson, Dominic J.; Bartlett, Stephen D.
2014-03-01
An essential development in the history of computing was the invention of the transistor as it allowed logic circuits to be implemented in a robust and modular way. The physical characteristics of semiconductor materials were the key to building these devices. We aim to present an analogous development for quantum computing by showing that quantum adiabatic transistors (as defined by Flammia et al.) are built upon the essential qualities of symmetry-protected (SP) quantum ordered phases in one dimension. Flammia et al. and Renes et al. have demonstrated schemes for universal adiabatic quantum computation using quantum adiabatic transistors described by interacting spin chain models with specifically chosen Hamiltonian terms. We show that these models can be understood as specific examples of the generic situation in which all SP phases lead to quantum computation on encoded edge degrees of freedom by adiabatically traversing a symmetric phase transition into a trivial symmetric phase. This point of view is advantageous as it allows us to readily see that the computational properties of a quantum adiabatic transistor arise from a phase of matter rather than due to carefully tuned interactions.
Accurate adiabatic correction in the hydrogen molecule
Pachucki, Krzysztof, E-mail: krp@fuw.edu.pl [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Komasa, Jacek, E-mail: komasa@man.poznan.pl [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland)
2014-12-14
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Adiabatic change of state of photon gas
The authors introduced and justified the k problem as a thermodynamical contradiction of photon gas. In thermodynamics of photon gas the main contradiction is called the k problem: the piezotropic-autobarotropic equation of state P = u/3 is adiabatic if k = 1 exclusively, while the adiabatic connection PV4/3 = const (or rather the Poisson equation Pρ-4/3 = const, ρ = u/c2) requires that k = 4/3. The present paper shows that the equations of state PV4/3 = const, TV1/3 = const, T-4/3P1/3 = const and P = u/3 cannot be valid for the adiabatic change of state of photon gas, simultaneously. Furthermore, the Planck's distribution -- and so the Wien's law and the Rayleigh-Jeans connection as well -- cannot be invariant in case of adiabatic change of state of photon gas. Namely, in case of adiabatic change of state of photon gas, a new type of ultraviolet catastrophe appears. These results possess a fundamental important in case of arbitrary deformation of electromagnetic radiation fields or quantum plasmas
Nonadiabatic exchange dynamics during adiabatic frequency sweeps
Barbara, Thomas M.
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.
Energy efficiency of adiabatic superconductor logic
Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2. (paper)
Experimental study on the adiabatic shear bands
Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test
Burn Injuries: Burn Depth, Physiopathology and Type of Burns
Kemalettin Koltka
2011-07-01
Full Text Available A significant burn injury is a serious and mortal event. The most important threat to life is hypovolemic shock with complex pathophysiologic mechanisms. Burn depth is classified as first, second, or third degree. Local inflammatory response results a vasodilatation and an increase in vascular permeability. A burn injury is a three dimensional ischemic wound. Zone of coagulation is the zone with maximum damage. Zone of stasis consists of damaged but viable tissues, the tissue is salvageable. In zone of hyperemia tissue perfusion is increased. At the beginning, cardiac output falls and systemic vascular resistance increases; cardiac performance improves as hypovolemia is corrected with fluid resuscitation. While cardiac output increases systemic vascular resistance falls below normal values and a hypermetabolic state develops. Pulmonary vascular resistance increases immediately after thermal injury and this is more prolonged. To avoid secondary pulmonary complications, the smallest resuscitation volume of fluids that maintains adequate tissue perfusion should be given. Changes parallel to the cardiovascular response develop in other organ systems. The reasons of burn injury can be thermal, electrical, chemical or radiation. It is important to know the exact mechanism of burn injury because of different therapies for a specific cause. In this review information about burn depth, local and systemic responses to burn injury and major causes of burn injury are presented. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl:1-6
Staying adiabatic with unknown energy gap
Nehrkorn, J; Ekert, A; Smerzi, A; Fazio, R; Calarco, T
2011-01-01
We introduce an algorithm to perform an optimal adiabatic evolution that operates without an apriori knowledge of the system spectrum. By probing the system gap locally, the algorithm maximizes the evolution speed, thus minimizing the total evolution time. We test the algorithm on the Landau-Zener transition and then apply it on the quantum adiabatic computation of 3-SAT: The result is compatible with an exponential speed-up for up to twenty qubits with respect to classical algorithms. We finally study a possible algorithm improvement by combining it with the quantum Zeno effect.
Ramsey numbers and adiabatic quantum computing
Gaitan, Frank; Clark, Lane
2011-01-01
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,n\\geq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(m,n)$. We show how the computation of $R(m,n)$ can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctl...
Superconducting system for adiabatic quantum computing
We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results
Complexity of the Quantum Adiabatic Algorithm
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
Adiabatic Flame Temperature for Combustion of Methane
Rebeca Pupo
2011-01-01
Full Text Available This project calculated the adiabatic flame temperature of a combustion reaction of pure methane and oxygen, assuming that all of the heat liberated by the combustion reaction goes into heating the resulting mixture. Mole fractions of methane to oxygen were computed from 0.05 to 0.95, in increments of 0.05, and then an integral was computed was computed with respect to temperature using the moles of product produced or leftover moles of reactants from the starting mole fraction times the specific heat of each respective gas. The highest adiabatic flame temperature evaluated, occurred at a mole fraction of 0.35.
Particle size and velocity measurement in flames by laser anemometer
Chigier, N. A.; Ungut, A.; Yule, A. J.
1979-01-01
Simultaneous droplet size and velocity measurements by a particle counting Laser Doppler Anemometer (LDA) in kerosene fuel sprays under burning and non-burning conditions are presented. Particle sizes are derived from pulse height analysis of the mean LDA signals and velocities are simultaneously determined by measuring Doppler shift frequencies. The measurements show that droplet velocity is a function of droplet diameter for burning and non-burning conditions, and spatially averaged size distributions are derived from velocity data. A comparison of results obtained under burning and non-burning conditions show changes in size distribution due to preferential vaporization of small droplets, acceleration due to thermal expansion of gases, and corresponding changes in droplet momentum.
Adiabatic motion of charged dust grains in rotating magnetospheres
Dust grains in the ring systems and rapidly rotating magnetospheres of the outer planets such as Jupiter and Saturn may be sufficiently charged that the magnetic and electric forces on them are comparable with the gravitational force. The adiabatic theory of charged particle motion has previously been applied to electrons and atomic size particles. But it is also applicable to these charged dust grains in the micrometer and smaller size range. We derive here the guiding center equation of motion, drift velocity, and parallel equation of motion for these grains in a rotating magnetosphere. The effects of periodic grain charge-discharge have not been treated previously and have been included in this analysis. Grain charge is affected by the surrounding plasma properties and by the grain plasma velocity (among other factors), both of which may vary over the gyrocircle. The resulting charge-discharge process at the gyrofrequency destroys the invariance of the magnetic moment and causes a grain to move radially. The magnetic moment may increase or decrease, depending on the gyrophase of the charge variation. If it decreases, the motion is always toward synchronous radius for an equatorial grain. But the orbit becomes circular before the grain reaches synchronous radius, a conclusion that follows from an exact constant of the motion. This circularization can be viewed as a consequence of the gradual reduction in the magnetic moment. This circularization also suggests that dust grains leaving Io could not reach the region of the Jovian ring, but several effects could change that conclusion. Excellent qualitative and quantitative agreement is obtained between adiabatic theory and detailed numerical orbit integrations
Nikola Vlacic
2010-01-01
In this project, we investigated if it is feasible for a single staged rocket with constant thrust to attain escape velocity. We derived an equation for the velocity and position of a single staged rocket that launches vertically. From this equation, we determined if an ideal model of a rocket is able to reach escape velocity.
Adiabatic transition probability for a tangential crossing
Watanabe, Takuya
2006-01-01
We consider a time-dependent Schrödinger equation whose Hamiltonian is a $2\\times 2$ real symmetric matrix. We study, using an exact WKB method, the adiabatic limit of the transition probability in the case where several complex eigenvalue crossing points accumulate to one real point.
On the double adiabatic continuous spectrum
In earlier work it has been found that the Alfven and cusp (or slow) continuous spectra can become unstable in toroidal geometry, as judged from the linearized double adiabatic equations. In this paper the validity of fluid approaches to the present problem is investigated. The physical implications of the stability conditions are discussed. (Author)
Pulsed adiabatic structure and complete population transfer
Population can be transferred between atomic or molecular energy states in a variety of ways. The basic idea of adiabatic transfer, discussed in many textbooks, is as follows. One begins with an atom that is in some single energy state (an eigenstate of an initial Hamiltonian). This energy state is one of many possible states, known variously as the unperturbed states or basis states or diabatic states. Next one begins to change the Hamiltonian very slowly. The changes may occur in either the diagonal elements (the basis state energies) or in the off-diagonal elements (interactions between basis states). If there are off-diagonal elements then the Hamiltonian will no longer commute with the original one. Because the Hamiltonian is no longer the one that was used to define the original basis states, it will cause these states to become mixed. However, if the change is sufficiently slow, the system can remain in a single eigenstate of the changing Hamiltonian -- an adiabatic state, composed of a combination of basis states. Finally, at some later time, one examines the system once again in the original basis. One finds that the population has undergone a change, and now resides in a different unperturbed state. One has produced population transfer. There are many illustrative examples of adiabatic passage, both theory and experiment. The author mentions briefly two common examples, inelastic collisions between atoms, and the static Stark effect in Rydberg atoms, before continuing with the main objective, a discussion of adiabatic passage induced by laser pulses
Adiabatic reversible compression: a molecular view
The adiabatic compression (or expansion) of an ideal gas has been analysed. Using the kinetic theory of gases the usual relation between temperature and volume is obtained, while textbooks follow a thermodynamic approach. In this way we show, once again, the agreement between a macroscopic view (thermodynamics) and a microscopic one (kinetic theory). (author)
Semi adiabatic theory of seasonal Markov processes
Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.
Recent adiabaticity results from orbit calculations
There has been much activity recently in an attempt to find a straightforward method of predicting the limits of adiabatic behavior in high-beta magnetic-mirror configurations. The particle-orbit code TIBRO was used to obtain numerical results on nonadiabatic behavior with which the predictions of theoretical expressions can be compared. These results are summarized. (MOW)
Adiabatic Excitation of Longitudinal Bunch Shape Oscillations
By modulating the rf voltage at near twice the synchrotrons frequency we are able to modulate the longitudinal bunch shape. We show experimentally that this can be done while preserving the longitudinal emittance when the rf voltage modulation is turned on adiabatically. Experimental measurements will be presented along with theoretical predictions
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-01
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.
The dynamic instability of adiabatic blast waves
Ryu, Dongsu; Vishniac, Ethan T.
1991-01-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
A `fast-burning' mechanism for magnetic diffusion
Xiao, Bo; Kan, Ming-xian; Wang, Gang-hua; Zhao, Jian-heng
2016-01-01
Fast-burning mechanism describes the rapid penetration, with a sharp-shaped wave-front, of a strong magnetic field into a conductive metal whose electric resistance poses an abrupt rise at some critical temperature. With its wave-front sweeping over a solid metal, the fast-burning can melt or vaporize the metal very rapidly. This paper derives formulas for the existence conditions and wave-front velocity of a fast-burning.
Inverse engineering rigorous adiabatic Hamiltonian for non-Hermitian system
Wu, Qi-Cheng; Chen, Ye-Hong; Huang, Bi-Hua; Xia, Yan; Song, Jie
2016-01-01
We generalize the quantum adiabatic theorem to the non-Hermitian system and build a rigorous adiabaticity condition with respect to the adiabatic phase. The non-Hermitian Hamiltonian inverse engineering method is proposed for the purpose to adiabatically drive a artificial quantum state. For the sake of clearness, we take a concrete two-level system as an example to show the usefulness of the inverse engineering method. The numerical simulation result shows that our scheme can work well even ...
Adiabatic femtosecond pulse compression and control by using quadratic cascading nonlinearity
Zeng, Xianglong; Ashihara, Satoshi; Shimura, Tsutomu; Kuroda, Kazuo
2008-01-01
We experimentally demonstrate that adiabatic compression of femtosecond pulse can be achieved by employing the management of quadratic cascading nonlinearity in quasi-phase-matching gratings. Cascading nonlinearity is not a simple analogy with third-order optical nonlinearity in term of the engineering properties of the magnitude and focusing (or defocusing) nonlinearity. Femtosecond pulse compression is investigated based on type-I (e: o + o) collinear QPM geometry of aperiodically poled MgO-doped LiNbO 3 (MgO: LN). Group-velocity-matching condition is chosen to generate quadratic femtosecond soliton consisting of fundamental (FF) and second harmonic (SH) pulses. Adiabatic-like compression process is observed in the length of 50 mm linearly chirped QPM. Cascading nonlinearity is local managed, instead of dispersion management used in fiber adiabatic soliton compression. Quadratic soliton including FF and SH pulses are obtained from the compression of 95 fs FF pulse in the initial experiments. Dependence on the phase mismatch and group velocity mismatch, cascading nonlinearity has a flexible property and presents a new challenge for exploring femtosecond pulse shaping and control. The demonstrated pulse compression and control based on cascading nonlinearity is useful for generation of shorter pulses with clean temporal profiles, efficient femtosecond second harmonic generation and group-velocity control.
Perturbation to Mei symmetry and adiabatic invariants for Hamilton systems
Ding Ning; Fang Jian-Hui
2008-01-01
Based on the concept of adiabatic invariant,this paper studies the perturbation to Mei symmetry and adiabatic invariants for Hamilton systems.The exact invaxiants of Mei symmetry for the system without perturbation are given.The perturbation to Mei symmetry is discussed and the adiabatic invariants induced from the perturbation to Mei symmetry of the system are obtained.
... Issues Listen Español Text Size Email Print Share Treating and Preventing Burns Page Content Article Body Burns ... home, out of children’s reach, and away from heat or ignition sources. Lower the temperature of your ...
... Tap water burns most often occur in the bathroom and tend to be more severe and cover a larger portion of the body than other scald burns. 9 10 11 A survey found that only 8 percent of adults felt ...
Optimization of burn referrals
Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne;
2014-01-01
INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmar...
... Story" 5 Things to Know About Zika & Pregnancy First Aid: Burns KidsHealth > For Parents > First Aid: Burns Print A A A Text Size Scald ... THIS TOPIC Kitchen: Household Safety Checklist Fireworks Safety First Aid: Sunburn Firesetting Fire Safety Burns Household Safety: Preventing ...
On the power of coherently controlled quantum adiabatic evolutions
We provide a new approach to adiabatic state preparation that uses coherent control and measurement to average different adiabatic evolutions in ways that cause their diabatic errors to cancel, allowing highly accurate state preparations using less time than conventional approaches. We show that this new model for adiabatic state preparation is polynomially equivalent to conventional adiabatic quantum computation by providing upper bounds on the cost of simulating such evolutions on a circuit-based quantum computer. Finally, we show that this approach is robust to small errors in the quantum control register and that the system remains protected against noise on the adiabatic register by the spectral gap. (paper)
A many-particle adiabatic invariant of strongly magnetized pure electron plasmas
A pure electron plasma is said to be strongly magnetized if the cyclotron radius of the electrons is much smaller than the classical distance of closest approach. In this parameter regime a many-particle adiabatic invariant constrains the collisional dynamics. For the case of a uniform magnetic field, the adiabatic invariant is the total kinetic energy associated with the electron velocity components that are perpendicular to the magnetic field (i.e., Σj mv2j perpendicular/2). Were the adiabatic invariant an exact constant of the motion, no exchange of energy would be possible between the parallel and the perpendicular degrees of freedom, and the plasma could develop and maintain two different temperatures Tparallel and T perpendicular. An adiabatic invariant, however, is not strictly conserved. In the present case, each collision produces an exponentially small exchange of energy between the parallel and the perpendicular degrees of freedom, and these act cumulatively in such a way that Tparallel and T perpendicular eventually relax to a common value. The rate of equilibrium is calculated, both in the case where the collisions are described by classical mechanics and in the case where the collisions are described by quantum mechanics, the two calculations giving essentially the same result. A molecular dynamics simulation has been carried out, verifying the existence of this unusual invariant, and verifying the theoretically predicted rate equation
Weinberg Soft Theorems from Weinberg Adiabatic Modes
Mirbabayi, Mehrdad
2016-01-01
Soft theorems for the scattering of low energy photons and gravitons and cosmological consistency conditions on the squeezed-limit correlation functions are both understood to be consequences of invariance under large gauge transformations. We apply the same method used in cosmology -- based on the identification of an infinite set of "adiabatic modes" and the corresponding conserved currents -- to derive flat space soft theorems for electrodynamics and gravity. We discuss how the recent derivations based on the asymptotic symmetry groups (BMS) can be continued to a finite size sphere surrounding the scattering event, when the soft photon or graviton has a finite momentum. We give a finite distance derivation of the antipodal matching condition previously imposed between future and past null infinities, and explain why all but one radiative degrees of freedom decouple in the soft limit. In contrast to earlier works on BMS, we work with adiabatic modes which correspond to large gauge transformations that are $...
Quantum adiabatic evolution with energy degeneracy levels
Zhang, Qi
2016-01-01
A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.
Adiabatic Quantum Optimization for Associative Memory Recall
Hadayat eSeddiqi
2014-12-01
Full Text Available Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO. Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic Quantum Simulation of Quantum Chemistry
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-10-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Robust Classification with Adiabatic Quantum Optimization
Denchev, Vasil S.; Ding, Nan; Vishwanathan, S. V. N.; Neven, Hartmut
2012-01-01
We propose a non-convex training objective for robust binary classification of data sets in which label noise is present. The design is guided by the intention of solving the resulting problem by adiabatic quantum optimization. Two requirements are imposed by the engineering constraints of existing quantum hardware: training problems are formulated as quadratic unconstrained binary optimization; and model parameters are represented as binary expansions of low bit-depth. In the present work we...
Adiabatic graph-state quantum computation
Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)
Burn wound coverage and burn wound closure
Konigová, R.; Matoušková, Eva; Brož, L.
2000. s. 9. [International Symposium and Course on Burns and Fire Desaster Management. Jerusalem Meeting /3./. 13.02.2000-16.02.2000, Jerusalem] R&D Projects: GA MZd IZ4368 Subject RIV: EB - Genetics ; Molecular Biology
Reactive burn models and ignition & growth concept
Shaw M.S.
2011-01-01
Full Text Available Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature. This leads to the Ignition & Growth concept, introduced by LeeTarver in 1980, as the basis for reactive burn models. A homo- genized burn rate needs to account for three meso-scale physical effects: (i the density of active hot spots or burn centers; (ii the growth of the burn fronts triggered by the burn centers; (iii a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable λ = g(s as a function of a dimensionless reaction length s(t = rbc/ℓbc, rather than by specifying an explicit burn rate. The length scale ℓbc(Ps = [Nbc(Ps]−1/3 is the average distance between burn centers, where Nbc is the number density of burn centers activated by the lead shock. The reaction length rbc(t = ∫t0 D(P(t′dt′ is the distance the burn front propagates from a single burn center, where D(P is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.
Adiabatic motion of a neutral spinning particle in an inhomogeneous magnetic field
Littlejohn, R.G.; Weigert, S. (Department of Physics, University of California, Berkeley, Berkeley, California 94720 (United States))
1993-08-01
The motion of a neutral particle with a magnetic moment in an inhomogeneous magnetic field is considered. This situation, occurring, for example, in a Stern-Gerlach experiment, is investigated from classical and semiclassical points of view. It is assumed that the magnetic field is strong or slowly varying in space, i.e., that adiabatic conditions hold. To the classical model, a systematic Lie-transform perturbation technique is applied up to second order in the adiabatic-expansion parameter. The averaged classical Hamiltonian contains not only terms representing fictitious electric and magnetic fields but also an additional velocity-dependent potential. The Hamiltonian of the quantum-mechanical system is diagonalized by means of a systematic WKB analysis for coupled wave equations up to second order in the adiabaticity parameter, which is coupled to Planck's constant. An exact term-by-term correspondence with the averaged classical Hamiltonian is established, thus confirming the relevance of the additional velocity-dependent second-order contribution.
On the Propagation of Blast Wave in EarthÃ¢Â€Â²s Atmosphere: Adiabatic and Isothermal Flow
Atul Sharma
2006-08-01
Full Text Available Adiabatic and isothermal propagations of spherical blast wave produced due to a nuclear explosion have been studied using the Energy hypothesis of Thomas, in the nonuniform atmosphere of the earth. The explosion is considered at different heights. Entropy production is also calculated along with the strength and velocity of the shock. In both the cases; for adiabatic and isothermal flows, it has been found that shock strength and shock velocity are larger at larger heights of explosion, in comparison to smaller heights of explosion. Isothermal propagation leads to a smaller value of shock strength and shock velocity in comparison to the adiabatic propagation. For the adiabatic case, the production of entropy is higher at higher heights of explosion, which goes on decreasing as the shock moves away from the point of explosion. However for the isothermal shock, the calculation of entropy production shows negative values. With negative values for the isothermal case, the production of entropy is smaller at higher heights of explosion, which goes on increasing as the shock moves away from the point of explosion. Directional study of the shock motion and entropy production show that in both the cases of adiabatic and isothermal flow, shock strength and shock velocity are larger in upward motion of the shock, in comparison to the downward motion of the shock. For adiabatic flow, entropy production is larger in upward motion of the shock; whereas, with negative values, entropy production is smaller in upward motion of the isothermal shock. For the adiabatic case, the profiles of shock strength, shock velocity and entropy production are smooth and have the largest value in vertically upward direction and have the lowest value in vertically downward direction, forming the oval shape. For the isothermal case, the profiles of shock strength and shock velocity show similar trend as that for adiabatic case but the profile of entropy production shows opposite
Ye, Hezhou; Yin, Yanhua; Wang, Jianfeng
2015-08-01
While commercially available computational fluid dynamic packages are employed nowadays to analyze the spraying behavior of the cold spray (CS) system and optimize the nozzle geometry design, using these packages is often prohibitive because of complex computational resource requirements and expensive copyright licenses. This paper proposes a quick and economical method for predicting the performance of the CS system, while asking for minimal computational resource. A one-dimensional adiabatic friction model with the consideration of friction was developed to calculate the critical pressure of nozzles under different expansion ratios and the gas/particle velocity at different spraying conditions. The accuracy of the critical pressure calculation was evidenced by polymeric nozzle destructive tests. The particle velocities achieved from the nozzles with different expansion ratios were measured and compared with the velocity values calculated by the model. The suggested adiabatic friction model is validated by the well-matched values between the calculated results and the experimental data.
Calum, Henrik; Høiby, Niels; Moser, Claus
2014-01-01
Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....
Berrocal, M
1997-01-01
This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group. PMID:9212488
Addition agents effects on hydrocarbon fuels burning
Larionov, V. M.; Mitrofanov, G. A.; Sakhovskii, A. V.
2016-01-01
Literature review on addition agents effects on hydrocarbon fuels burning has been conducted. The impact results in flame pattern and burning velocity change, energy efficiency increase, environmentally harmful NOx and CO emission reduction and damping of self-oscillations in flow. An assumption about water molecules dissociation phenomenon existing in a number of practical applications and being neglected in most explanations for physical- chemical processes taking place in case of injection of water/steam into combustion zone has been noted. The hypothesis about necessity of water dissociation account has been proposed. It can be useful for low temperature combustion process control and NOx emission reduction.
Ameh AEmmanuel
2004-01-01
Perineal burns are not common in childhood but when they occur, they can produce severe complications. Conservative management by open wound care and topical agents is effective in most cases. However, in deep burns and when control of infection proves problematic, diverting colostomy may be necessary to control infection and achieve wound healing and graft take. Burns wound excision and skin grafting may be required in such cases. Contractures of various forms may develop and require plastic...
Bond selective chemistry beyond the adiabatic approximation
Butler, L.J. [Univ. of Chicago, IL (United States)
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Accuracy vs run time in adiabatic quantum search
Rezakhani, A T; Lidar, D A
2010-01-01
Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance, yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm, and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: the error decreases exponentially for short times, then decreases polynomially for longer times. We show that the well known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.
Hypergraph Ramsey Numbers and Adiabatic Quantum Algorithm
Qu, Ri; Bao, Yan-ru
2012-01-01
Gaitan and Clark [Phys. Rev. Lett. 108, 010501 (2012)] have recently presented a quantum algorithm for the computation of the Ramsey numbers R(m, n) using adiabatic quantum evolution. We consider that the two-color Ramsey numbers R(m, n; r) for r-uniform hypergraphs can be computed by using the similar ways in [Phys. Rev. Lett. 108, 010501 (2012)]. In this comment, we show how the computation of R(m, n; r) can be mapped to a combinatorial optimization problem whose solution be found using adi...
Adiabatic quantum algorithm for search engine ranking
Garnerone, Silvano; Lidar, Daniel A
2011-01-01
We propose an adiabatic quantum algorithm to evaluate the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this quantum algorithm outputs any component of the PageRank vector-and thus the ranking of the corresponding webpage-in a time which scales polylogarithmically in the number of webpages. This would constitute an exponential speed-up with respect to all known classical algorithms designed to evaluate the PageRank.
Adiabatic chaos in the spin orbit problem
Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio
2008-05-01
We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P.; Kowal, M; Skalski, J.
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from ...
Brane World Dynamics and Adiabatic Matter creation
Gopakumar, P
2006-01-01
We have treated the adiabatic matter creation process in various three-brane models by applying thermodynamics of open systems. The matter creation rate is found to affect the evolution of scale factor and energy density of the universe. We find modification at early stages of cosmic dynamics. In GB and RS brane worlds, by chosing appropriate parameters we obtain standard scenario, while the warped DGP model has different Friedmann equations. During later stages, since the matter creation is negligible the evolution reduces to FRW expansion, in RS and GB models.
Dark Energy and Dark Matter from an additional adiabatic fluid
Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo
2016-01-01
The Dark Sector is described by an additional barotropic fluid which evolves adiabatically during the universe's history and whose adiabatic exponent $\\gamma$ is derived from the standard definitions of specific heats. Although in general $\\gamma$ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with $\\gamma = $ constant in a FLRW universe. The adiabatic fluid acts effectively as the sum of two distinct compone...
Adiabatic Flame Temperature and Specific Heat of Combustion Gases
Torii, Shuichi; Yano, Toshiaki; Tsunoda, Yukio; トリイ, シュウイチ; ヤノ, トシアキ; ツノダ, ユキオ; 鳥居, 修一; 矢野, 利明; 角田, 幸男
1992-01-01
The aim of the present work is to examine adiabatic flame temperature and the specific heat of combustion gases for both hydrocarbon-air and alcohol-air mixtures by means of a method of chemical equilibrium calculation. Emphasis is placed on the elucidation of simplified correlation equations capable of predicting (i) adiabatic flame temperature at any equivalence ratio and (ii) the specific heat of combustion gases when the adiabatic flame temperature, the gas temperature and the equivalence...
Adiabatic renormalization in theories with modified dispersion relations
Nacir, D. Lopez; Mazzitelli, F. D.; Simeone, C.
2007-01-01
We generalize the adiabatic renormalization to theories with dispersion relations modified at energies higher than a new scale $M_C$. We obtain explicit expressions for the mean value of the stress tensor in the adiabatic vacuum, up to the second adiabatic order. We show that for any dispersion relation the divergences can be absorbed into the bare gravitational constants of the theory. We also point out that, depending on the renormalization prescription, the renormalized stress tensor may c...
Second law analysis of convective droplet burning
In this paper the entropy generation due to burning particles in a gaseous stream is considered and the contribution to it compared. A second law analysis is undertaken in order to minimize the entropy generation and therefore the lost available work. The optimum flow conditions from this thermodynamically advantageous perspective are determined for a burning droplet at low Reynolds number and an optimum transfer number obtained. The transfer number so obtained depends directly on the square of the relative velocity, and inversely on the net enthalpy rise due to burning and the ratio of ambient to flame temperature. In realistic flows, where the transfer number and net heat release are fixed, these quantities are related to the relative velocity and ambient to flame temperature ratio in order to operate at optimum conditions. The square of the relative velocity in such flows is a small fraction of the net heat release so that, to operate at optimum thermodynamic conditions, it is determined that the droplet Reynolds number must be large suggesting a large droplet size and low gas velocity. Considerations pertaining to engineering practice are also considered and it is concluded that within constraints practice is consistent with the implications of the second law analysis
McLean, A D
2001-02-01
Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under
Symmetry of the adiabatic condition in the piston problem
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be compatible with the invariance of total entropy under a system-surroundings interchange. This paper also strengthens some recently published ideas concerning the concepts of heat and dissipative work, and is primarily intended for teachers and graduate students, as well as for all who are interested in this fascinating problem.
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators (ADRs) in space applications, it is desirable to have very light weight, small diameter, high current density...
A quantum search algorithm based on partial adiabatic evolution
Zhang Ying-Yu; Hu He-Ping; Lu Song-Feng
2011-01-01
This paper presents and implements a specified partial adiabatic search algorithm on a quantum circuit. It studies the minimum energy gap between the first excited state and the ground state of the system Hamiltonian and it finds that, in the case of M=1, the algorithm has the same performance as the local adiabatic algorithm. However, the algorithm evolves globally only within a small interval, which implies that it keeps the advantages of global adiabatic algorithms without losing the speedup of the local adiabatic search algorithm.
A quantum search algorithm based on partial adiabatic evolution
This paper presents and implements a specified partial adiabatic search algorithm on a quantum circuit. It studies the minimum energy gap between the first excited state and the ground state of the system Hamiltonian and it finds that, in the case of M = 1, the algorithm has the same performance as the local adiabatic algorithm. However, the algorithm evolves globally only within a small interval, which implies that it keeps the advantages of global adiabatic algorithms without losing the speedup of the local adiabatic search algorithm. (general)
Adiabatic collapse of rotating gas clouds
The gravitational, axisymmetric and adiabatic collapse of rotating gas clouds with various initial conditions has been calculated numerically by means of Fluid-In-Cell method. We have assumed that the gas is ideal and its change is adiabatic except for heat production by shock waves and that, initially, a cloud has no motion in a meridional plane and has spherical and polytropic distributions of mass and temperature. The results of calculations show that a cloud which has initially larger rotational energy bounced more easily, i.e., bounces at lower central density. The bounce occurs first in the direction of the rotation axis and next in direction perpendicular to it. A shock wave generated by the bounce is strong especially in the vicinity of the rotation axis. At first the shock front is nearly parallel to the equatorial plane but it becomes gradually spherical as it propagates outwards. Calculations have been performed until the mass enclosed inside the shock front becomes as large as 95 percent of the total mass. At this final stage either a rotating spheroidal core or a rotating ring is left in the central region; a ring is formed if initially a cloud is rotating more rapidly, less centrally condensed and at lower temperature. (auth.)
Adiabatic cooling of solar wind electrons
Sandbaek, Ornulf; Leer, Egil
1992-01-01
In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.
Adiabatic Mass Loss Model in Binary Stars
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the
van Gelderen, Laurens; Malmquist, Linus Mattias Valdemar; Jomaas, Grunde
2015-01-01
In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... to the predictions of four conceptual models that describe the burning mechanism of multicomponent fuels. Based on the comparisons, hydrocarbon liquids were found to be best described by the Equilibrium Flash Vaporization model, showing a constant gas composition and gasification rate. The...
K A Kamala
2016-01-01
Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.
Modestino, Giuseppina
2016-01-01
The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.
Adiabatic nonlinear waves with trapped particles. III. Wave dynamics
Dodin, I. Y.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)
2012-01-15
The evolution of adiabatic waves with autoresonant trapped particles is described within the Lagrangian model developed in Paper I, under the assumption that the action distribution of these particles is conserved, and, in particular, that their number within each wavelength is a fixed independent parameter of the problem. One-dimensional nonlinear Langmuir waves with deeply trapped electrons are addressed as a paradigmatic example. For a stationary wave, tunneling into overcritical plasma is explained from the standpoint of the action conservation theorem. For a nonstationary wave, qualitatively different regimes are realized depending on the initial parameter S, which is the ratio of the energy flux carried by trapped particles to that carried by passing particles. At S < 1/2, a wave is stable and exhibits group velocity splitting. At S > 1/2, the trapped-particle modulational instability (TPMI) develops, in contrast with the existing theories of the TPMI yet in agreement with the general sideband instability theory. Remarkably, these effects are not captured by the nonlinear Schroedinger equation, which is traditionally considered as a universal model of wave self-action but misses the trapped-particle oscillation-center inertia.
Plasmas in particle accelerators: adiabatic theories for bunched beams
Three different formalisms for discussing Vlasov's equation for bunched beam problems with anharmonic space charge forces are outlined. These correspond to the use of a drift kinetic equation averaged over random betatron motions; a fluidkinetic adiabatic regime analogous to the theory of Chew, Goldberger, and Low; and an adiabatic hydrodynamic theory
Teleportation of an Unknown Atomic State via Adiabatic Passage
无
2007-01-01
We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.
Examination of the adiabatic approximation in open systems
We examine the notion of the adiabatic approximation in open systems by applying it to closed systems. Our results shows that the notion is equivalent to the standard adiabatic approximation if the systems are initially in eigenstates, and it leads to a more general expression if the systems are in mixed states
High Fidelity Adiabatic Quantum Computation via Dynamical Decoupling
Quiroz, Gregory
2012-01-01
We introduce high-order dynamical decoupling strategies for open system adiabatic quantum computation. Our numerical results demonstrate that a judicious choice of high-order dynamical decoupling method, in conjunction with an encoding which allows computation to proceed alongside decoupling, can dramatically enhance the fidelity of adiabatic quantum computation in spite of decoherence.
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size. PMID:19113467
Beneficial Role of the Industrial Wastes to Combat Adiabatic Temperature Rise in Massive Concrete
Ashraf, M.; Goyal, A.; Anwar, A. M.; Hattori, K.; Ogata, H.; Guo, S.
An evaluation was made on the mutual beneficial role of fly ash and ground granulated blast furnace slag in combating adiabatic temperature rise. The experimental program was designed in two stages; the main experiment consisted of two massive concrete specimens with dimensions (50x50x50) cm. In first stage of experiment, an adiabatic rise in temperature of specimens was measured. In second stage, the mechanical properties of massive concrete specimens were measured at the ages of 8, 14, 28, 56 and 91 days. At the age of 91 days, surface core and central cores were extracted from the surface and the central part of massive concrete specimens to determine compressive strength and dynamic modulus of elasticity. In the massive concrete specimen without any additive, the peak temperature noted was 64.5°C at 7th h after casting. While in mineral substituted concrete the maximum adiabatic temperature was 49.6°C at 19th h after casting. Lower rate of temperature rise in mineral substituted concrete has resulted in higher value of ultrasonic pulse velocity and ultimate compressive strength of concrete.
Robust Classification with Adiabatic Quantum Optimization
Denchev, Vasil S; Vishwanathan, S V N; Neven, Hartmut
2012-01-01
We propose a non-convex training objective for robust binary classification of data sets in which label noise is present. The design is guided by the intention of solving the resulting problem by adiabatic quantum optimization. Two requirements are imposed by the engineering constraints of existing quantum hardware: training problems are formulated as quadratic unconstrained binary optimization; and model parameters are represented as binary expansions of low bit-depth. In the present work we validate this approach by using a heuristic classical solver as a stand-in for quantum hardware. Testing on several popular data sets and comparing with a number of existing losses we find substantial advantages in robustness as measured by test error under increasing label noise. Robustness is enabled by the non-convexity of our hardware-compatible loss function, which we name q-loss.
Number Partitioning via Quantum Adiabatic Computation
Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
Entropy in adiabatic regions of convection simulations
Tanner, Joel D; Demarque, Pierre
2016-01-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this paper we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of og g and log T_{eff} which holds potential for calibrating stellar models in a simple and more general manner.
Adiabatic theory for anisotropic cold molecule collisions
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment 4He(1s2s 3S) + HD(1s2) → 4He(1s2) + HD+(1s) + e− [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings
Adiabatic theory for anisotropic cold molecule collisions.
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122
Adiabatic theory for anisotropic cold molecule collisions
Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
Adiabatic Liquid Piston Compressed Air Energy Storage
Petersen, Tage; Elmegaard, Brian; Pedersen, Allan Schrøder
This project investigates the potential of a Compressed Air Energy Storage system (CAES system). CAES systems are used to store mechanical energy in the form of compressed air. The systems use electricity to drive the compressor at times of low electricity demand with the purpose of converting the...... compensates the added investment. •When comparing ALP-CAES to an adiabatic CAES system, where compression heat is stored in thermal oil, the ALP-CAES system is found only to be competitive under a very specific set of operating/design conditions, including very high operation pressure and the use of very...... primarily due to the investment in turbine/generator, heat exchangers, and a large quantity of thermal oil. To improve the economy, it would be relevant to investigate the possibility of replacing the thermal oil by water, for example by injecting the water directly into the air flow between the different...
Adiabatic approximation, semiclassical scattering, and unidirectional invisibility
The transfer matrix of a possibly complex and energy-dependent scattering potential can be identified with the S-matrix of a two-level time-dependent non-Hermitian Hamiltonian H(τ). We show that the application of the adiabatic approximation to H(τ) corresponds to the semiclassical description of the original scattering problem. In particular, the geometric part of the phase of the evolving eigenvectors of H(τ) gives the pre-exponential factor of the WKB wave functions. We use these observations to give an explicit semiclassical expression for the transfer matrix. This allows for a detailed study of the semiclassical unidirectional reflectionlessness and invisibility. We examine concrete realizations of the latter in the realm of optics. (paper)
Parametric Erosion Investigation: Propellant Adiabatic Flame Temperature
P. J. Conroy
2002-01-01
Full Text Available The influence of quasi-independent parameters and their potential influence on erosion in guns have been investigated. Specifically, the effects of flame temperature and the effect of assuming that the Lewis number (ratio of mass-to-heat transport to the surface, Le = 1, has been examined. The adiabatic flame temperature for a propellant was reduced by the addition of a diluent from a high temperature of 3843 K (similar to that of M9 down to 3004 K, which is near the value for M30A1 propellant. Mass fractions of critical species at the surface with and without the assumption of Le = 1 are presented, demonstrating that certain species preferentially reach the surface providing varied conditions for the surface reactions. The results for gun tube bore surface regression qualitatively agree with previous studies and with current experimental data.
Index Theory and Adiabatic Limit in QFT
Wawrzycki, Jaroslaw
2011-01-01
The paper has the form of a proposal concerned with the relationship between the three mathematically rigorous approaches to quantum field theory: 1) local algebraic formulation of Haag, 2) Wightman formulation and 3) the perturbative formulation based on the microlocal renormalization method. In this project we investigate the relationship between 1) and 3) and utilize the known relationships between 1) and 2). The main goal of the proposal lies in obtaining obstructions for the existence of the adiabatic limit (confinement problem in the phenomenological standard model approach). We extend the method of deformation of D\\"utsch and Fredenhagen (in the Bordeman-Waldmann sense) and apply Fedosov construction of the formal index -- an analog of the index for deformed symplectic manifolds, generalizing the Atiyah-Singer index. We present some first steps in realization of the proposal.
Index Theory and Adiabatic Limit in QFT
Wawrzycki, Jarosław
2013-08-01
The paper has the form of a proposal concerned with the relationship between the three mathematically rigorous approaches to quantum field theory: (1) local algebraic formulation of Haag, (2) Wightman formulation and (3) the perturbative formulation based on the microlocal renormalization method. In this project we investigate the relationship between (1) and (3) and utilize the known relationships between (1) and (2). The main goal of the proposal lies in obtaining obstructions for the existence of the adiabatic limit ( confinement problem in the phenomenological standard model approach). We extend the method of deformation of Dütsch and Fredenhagen (in the Bordeman-Waldmann sense) and apply Fedosov construction of the formal index—an analog of the index for deformed symplectic manifolds, generalizing the Atiyah-Singer index. We present some first steps in realization of the proposal.
The adiabatic approximation in multichannel scattering
Using two-dimensional models, an attempt has been made to get an impression of the conditions of validity of the adiabatic approximation. For a nucleon bound to a rotating nucleus the Coriolis coupling is neglected and the relation between this nuclear Coriolis coupling and the classical Coriolis force has been examined. The approximation for particle scattering from an axially symmetric rotating nucleus based on a short duration of the collision, has been combined with an approximation based on the limitation of angular momentum transfer between particle and nucleus. Numerical calculations demonstrate the validity of the new combined method. The concept of time duration for quantum mechanical collisions has also been studied, as has the collective description of permanently deformed nuclei. (C.F.)
Entropy in Adiabatic Regions of Convection Simulations
Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre
2016-05-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One-dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this Letter, we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of {log}g and {log}{T}{{eff}}, which holds potential for calibrating stellar models in a simple and more general manner.
Adiabatic and Isocurvature Perturbation Projections in Multi-Field Inflation
Gordon, Chris
2013-01-01
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the adiabatic perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic pe...
Adiabatic logic future trend and system level perspective
Teichmann, Philip
2012-01-01
Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the p...
How detrimental is decoherence in adiabatic quantum computation?
Albash, Tameem
2015-01-01
Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time-scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit $T_2$ time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary canc...
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Zamstein, Noa; Tannor, David J. [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
A supersonic beam of Rydberg hydrogen atoms has been adiabatically deflected by 90 deg., decelerated to zero velocity in less than 25 μs, and loaded into an electric trap. The deflection has allowed the suppression of collisions with atoms in the trailing part of the gas pulse. The processes leading to trap losses, i.e., fluorescence to the ground state, and transitions and ionization induced by blackbody radiation have been monitored over several milliseconds and quantitatively analyzed.
Prescribed burning plan : Stillwater NWR : de Braga Burn Unit 67
US Fish and Wildlife Service, Department of the Interior — This 1991 Annual Prescribed Burning Plan for Stillwater NWR calls for all 67 acres of the de Braga burn unit to be burned. The objective of this burn is to remove...
Marakulin, A. O.; Sazhina, O. S.; Sazhin, M. V.
2012-07-01
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of Λ-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
Marakulin, A. O., E-mail: marakulin@physics.msu.ru; Sazhina, O. S.; Sazhin, M. V. [Moscow State University (Russian Federation)
2012-07-15
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of {Lambda}-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of Λ-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde
2015-01-01
In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....
LAN XINZHEN
2010-01-01
@@ As heaping piles of garbage grow in cities and communities across China,a divide has formed over two possible solutions to this smelly problem: Should excessive mounds of trash be burned,or should it be buried?
Lahoda, LU; Vogt, PM
2006-01-01
The German-speaking burn specialist, organized in the DAV (Deutsche Arbeitsgemeinschaft für Verbrennungsmedizin) held their yearly meeting in 2004 in Rottach-Egern, Bavaria. Participants from Switzerland, Germany and Austria found a high standing, very well organized and thorough program summoned by the host, Dr. Guido Graf Henckel von Donnersmarck, Munich. The topics consisted of reconstructive surgery, skin substitutes and replacement, advances in burn medicine over the last 10 years and bu...
Sudha Jimson; Rajesh, E.; R Jayasri Krupaa; M. Kasthuri
2016-01-01
Burning mouth syndrome is a debilitating medical condition affecting nearly 1.3 million of Americans. Its common features include a burning painful sensation in the mouth, often associated with dysgeusia and xerostomia, despite normal salivation. Classically, symptoms are better in the morning, worsen during the day and typically subside at night. Its etiology is largely multifactorial, and associated medical conditions may include gastrointestinal, urogenital, psychiatric, neurologic and met...
The media glorifying burns: a hindrance to burn prevention.
Greenhalgh, David G; Palmieri, Tina L
2003-01-01
The media have a profound influence on the actions of children and adults. Burns and burn prevention tend to be ignored or even mocked. The purpose of this presentation is to reveal the callousness of the media in its dealings with burns and burn prevention. Printed materials with a relationship to burns, risk of burning, or disrespect for the consequences of burns were collected. The materials were tabulated into four categories: comics, advertisements (ads), articles that made light of burns, and television shows that portrayed behavior that would risk burn injury. Most burn-related materials were found in comics or advertisements. Several comics made light of high-risk behavior with flames, scald injury, contact injury, or burns. In addition, several advertisements showed people on fire or actions that could easily lead to burns. Several articles and televisions shows portrayed high-risk behavior that, in some instances, led to copycat injuries. Flames are frequently used to sell items that target adolescent boys or young men. The high incidence injuries that frequent this population parallel the high-risk behaviors portrayed by the media. The media portrays flames and high-risk behavior for burn injury as being cool, funny, and without consequence. The use of flames on clothing and recreational equipment (skateboards, hot rods) particularly targets the high-risk adolescent male. The burn community should make the media aware of the harm it causes with its callous depiction and glorification of burns. PMID:12792237
Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models
L. M. Zelenyi
2000-01-01
Full Text Available Thin anisotropic current sheets (CSs are phenomena of the general occurrence in the magnetospheric tail. We develop an analytical theory of the self-consistent thin CSs. General solitions of the Grad-Shafranov equation are obtained in a quasi-adiabatic approximation which neglects the jumps of the sheet adiabatic invariant Iz This is possible if the anisotropy of the initial distribution function is not too strong. The resulting structure of the thin CSs is interpreted as a sum of negative dia- and positive paramagnetic currents flowing near the neutral plane. In the immediate vicinity of the magnetic field reversal region the paramagnetic current arising from the meandering motion of the ions on Speiser orbits dominates. The maximum CS thick-ness is achieved in the case of weak plasma anisotropy and is of the order of the thermal ion gyroradius outside the sheet. A unified picture of thin CS scalings includes both the quasi-adiabatic regimes of weak and strong anisotropies and the nonadiabatic limit of super-strong anisotropy of the source ion distribution. The later limit corresponds to the case of almost field-aligned initial distribution, when the ratio of the drift velocity outside the CS to the thermal ion velocity exceeds the ratio of the magnetic field outside the CS to its value in-side the CS (vD/vT> B0/Bn. In this regime the jumps of Iz, become essential, and the current sheet thickness is approaching to some small but finite value, which depends upon the parameter Bn /B0. Convective electric field increases the effective anisotropy of the source distribution and might produce the essential CS thinning which could have important implications for the sub-storm dynamics.
Are the reactions of quinones on graphite adiabatic?
Outer sphere electron transfer reactions on pure metal electrodes are often adiabatic and hence independent of the electrode material. Since it is not clear, whether adiabatic electron transfer can also occur on a semi-metal like graphite, we have re-investigated experimental data presented in a recent communication by Nissim et al. [Chemical Communications 48 (2012) 3294] on the reactions of quinones on graphite. We have supplemented their work by DFT calculations and conclude, that these reactions are indeed adiabatic. This contradicts the assertion of Nissim et al. that the rates are proportional to the density of states at the Fermi level
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
A note on the geometric phase in adiabatic approximation
Tong, D M; Kwek, L C; Oh, C H
2004-01-01
It is widely held that the Berry phase of a quantum system is the geometric phase in adiabatic approximation. However, Pati and Rajagopal recently claimed that the Berry phase vanishes under strict adiabatic evolution. In this note, we reexamine and address this issue. In particular, we show that the use of the adiabatic theorem does not lead to this inconsistency. We also examine the difference between the Berry phase and the exact geometric phase. Here we find that the Berry phase may differ appreciably from the exact geometric phase if the evolution time is large enough.
Moll, Jochen
2016-09-01
This work is based on the experimental observation that the phase and group velocity of the fundamental antisymmetric wave mode in a composite structure with linearly varying thickness changes as it propagates along the nonuniform waveguide (Moll et al., 2015). This adiabatic wave motion leads to systematic damage localization errors of conventional algorithms because a constant wave velocity is assumed in the reconstruction process. This paper presents a generalized beamforming approach for composite structures with nonuniform cross section that eliminates this systematic error. Damage localization results will be presented and discussed in comparison to existing techniques. PMID:27317966
Hydrogen (H2) is a clean burning component, but relatively expensive. Mixing a small amount of hydrogen with other fuels is an effective way to use H2. H2 enriched combustion significantly improves fuel efficiency and reduces pollutant (nitrogen oxide and particulate matter) emissions. This presentation discussed the effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames. The presentation discussed flame configuration; the experimental methodology using laser tomography; and results for typical images, burning velocity, ratio of turbulent to laminar burning velocities, flame surface density, curvature, flame brush thickness, and integrated flame surface area. It was concluded that the increase of turbulent burning velocity was faster than that of laminar burning velocity, which contradicted traditional theory. figs.
On the persistence of adiabatic shear bands
Bassim M.N.
2012-08-01
Full Text Available It is generally agreed that the initiation and development of adiabatic shear bands (ASBs are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the “scars” due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.
Graph isomorphism and adiabatic quantum computing
Gaitan, Frank; Clark, Lane
2014-03-01
In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P; Skalski, J
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "Imaginary Water Flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations...
The thermodynamic supersonic expansion acceleration mechanism associated with the spontaneous fast magnetic reconnection is studied by two-dimensional magnetohydrodynamic (MHD) simulations and the Rankine-Hugoniot analysis. The reconnection outflow jet can steadily exceed the Alfven velocity measured in the upstream magnetic field region. Such a high speed jet cannot be explained by the Petschek model. According to previous studies, when supersonic (superfast) plasma jets generated by a pair of slow shocks expand in the direction normal to the jet, the jets can be further accelerated beyond the Alfven velocity by the adiabatic supersonic expansion process. The expansion process is caused by the swelling of the plasmoid (magnetic loop). In this paper, it is theoretically shown that the sound Mach number of the reconnection jet generated by slow shocks is determined by the plasma density and beta value in the upstream magnetic field region, in which asymmetric reconnection models are also studied. Then, the theoretical prediction of the Mach number is related to the onset of the supersonic expansion acceleration process in MHD simulations. In addition, it is shown that, also when the reconnection jet is subsonic, the jet is further accelerated by the adiabatic subsonic expansion mechanism
Adiabatic hydrodynamic modes in dielectric environment in a random electric field
Stupka, Anton
2016-01-01
Dielectric is considered in the electric field that has equal to zero the first moment and different from zero the second moment of strength in an equilibrium. The equations of ideal hydrodynamics are obtained in such a field for the case of the neglect of dissipative effects. A new variable - the second moment of electric field strength is included in the Euler equation. A temporal equation for this variable is obtained on the basis of Maxwell equations in the hydrodynamic approximation. Adiabatic one-dimensional waves of small amplitude are studied in this system. Proceeding from the theoretical estimation of the intracrystalline field in an ionic crystal the good consent of the obtained numerical values of transversal velocity of this wave with transversal velocity of sound for isotropic crystals of alkali halides is found.
One-dimensional flame models are often used to predict the pressure transients caused by hydrogen combustion in containments during postulated severe accidents. In the absence of data, these models account for prevailing flame acceleration mechanisms, such as initial turbulence, venting and obstacle-induced turbulence, by using arbitrarily large burning velocities that are much higher than laminar burning velocities. Using an intermediate-scale test facility at the Whiteshell Nuclear Research Establishment we have obtained necessary data on the effects of flame acceleration mechanisms, to estimate the safety margin in the buring velocities used in the models. So far, data have been analyzed, with a one-dimensional model, to determine effective burning velocities and burning-rate enhancement factors. The results of the analyses indicate that the effect of initial turbulence on the burning rate can be bounded only if the effect of flame-generated turbulence is included. The effect of venting can be accounted for by using two burning velocities, one for the pre-vent duration and a second increased value during the vented-combustion stage. The enhancement factors due to these two mechanisms, for the different conditions analyzed, varied up to 5.4, and the effective burning velocities varied up to 8.4 m/s
General dynamical description of quasi-adiabatically encircling exceptional points
Milburn, Thomas J; Holmes, Catherine A; Portolan, Stefano; Rotter, Stefan; Rabl, Peter
2014-01-01
The appearance of so-called exceptional points in the complex spectra of non-Hermitian systems is often associated with phenomena that contradict our physical intuition. One example of particular interest is the state-exchange process predicted for an adiabatic encircling of an exceptional point. In this work we analyze this process for the generic system of two coupled oscillator modes with loss or gain. We identify a characteristic system evolution consisting of periods of quasi-stationarity interrupted by abrupt non-adiabatic transitions. Our findings explain the breakdown of the adiabatic theorem as well as the chiral behavior noticed previously in this context, and we provide a unified framework to describe quasi-adiabatic dynamical effects in non-Hermitian systems in a qualitative and quantitative way.
Adiabatic and isocurvature perturbation projections in multi-field inflation
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit
AN ADIABATIC APPROACH FOR LOW POWER FULL ADDER DESIGN
Prof. Dinesh Chandra
2011-09-01
Full Text Available Over the past decade, several adiabatic logic styles have been reported. This paper deals with the design of a 1-bit full adder using several adiabatic logic styles, which are derived from static CMOS logic, without a large change. The full adders are designed using 180nm technology parameters provided by predictive technology and simulated using HSPICE. The full adders designed are compared in terms of average power consumption with different values of load capacitance, temperature and input frequency. The different designs of full adder are also compared on the basis of propagation delay exhibit by them. It is found that, full adders designed with adiabatic logic styles tends to consume very low power in comparison to full adder designed with static CMOS logic. Under certain operating conditions, one of adiabatic designs of full adder achieves upto 74% power saving in comparison to the full adder designedwith static CMOS logic.
Magnesium Diboride Superconducting Coils for Adiabatic Demagnetization Refrigerators (ADR's) Project
National Aeronautics and Space Administration — For Adiabatic Demagnetization Refrigerators(ADR's) for space it is desirable to have very light weight, small diameter, high current density superconducting wires...
Application of adiabatic calorimetry to metal systems. Final report
Research on the application of adiabatic calorimetry to metal systems is described. Investigations into formation of pearlite in steels, ferromagnetic effects, cold working and annealing, solid solution alloys, pure solid metals, and pure liquid metals, are briefly described
Case Study of Indirect Adiabatic Cooling System in Historical Building
Brahmanis, A; Lešinskis, A; Krūmiņš, A
2013-01-01
The objective of the present study is to investigate the efficiency of indirect adiabatic chiller-based cooling system efficiency dependence of outdoor air humidity. The system is located in historical building, in temperate climate of Latvia.
Dalal P
2010-10-01
Full Text Available Burn injuries and their subsequent treatment cause one of the most excruciating forms of pain imaginable. The psychological aspects of burn injury have been researched in different parts of the world, producing different outcomes. Studies have shown that greater levels of acute pain are associated with negative long-term psychological effects such as acute stress disorder, depression, suicidal ideation, and post-traumatic stress disorder for as long as 2 years after the initial burn injury. The concept of allostatic load is presented as a potential explanation for the relationship between acute pain and subsequent psychological outcomes. A biopsychosocial model is also presented as a means of obtaining better inpatient pain management and helping to mediate this relationship.
Adiabatic instability in coupled dark energy-dark matter models
Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark
2007-01-01
We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, whi...
Hybrid adiabatic potentials in the QCD string model
Kalashnikova, Yu S; Kalashnikova, Yu.S.
2003-01-01
The short- and intermediate-distance behaviour of the hybrid adiabatic potentials is calculated in the framework of the QCD string model. The calculations are performed with the inclusion of Coulomb force. Spin-dependent force and the so-called string correction term are treated as perturbation at the leading potential-type regime. Reasonably good agreement with lattice measurements takes place for adiabatic curves excited with magnetic components of field strength correlators.
Adiabatic frequency conversion of quantum optical information in atomic vapor
Vewinger, Frank; Appel, Juergen; Figueroa, Eden; Lvovsky, A. I.
2006-01-01
We experimentally demonstrate a quantum communication protocol that enables frequency conversion and routing of quantum optical information in an adiabatic and thus robust way. The protocol is based on electromagnetically-induced transparency in systems with multiple excited levels: transfer and/or distribution of optical states between different signal modes is implemented by adiabatically changing the control fields. The proof-of-principle experiment is performed using the hyperfine levels ...
Adiabatic CMB perturbations in pre-big bang string cosmology
Enqvist, Kari; Enqvist, Kari; Sloth, Martin S.
2002-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations in the axion field can give rise to a nearly flat spectrum of adiabatic perturbations with a spectral tilt $\\Delta n$ in the range $-0.1 \\lesssim \\Delta n \\lesssim 0.3$.
Realization of adiabatic Aharonov-Bohm scattering with neutrons
Sjöqvist, Erik; Almquist, Martin; Mattsson, Ken; Gürkan, Zeynep Nilhan; Hessmo, Björn
2015-11-01
The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on a long straight current-carrying wire.
Dependence of adiabatic population transfer on pulse profile
S Dasgupta; T kushwaha; D Goswami
2006-06-01
Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends simultaneously on pulse profile as well as the frequency modulation under non-resonant conditions.
Adiabatic Invariant Treatment of a Collapsing Sphere of Quantized Dust
Roberto CasadioDipartimento di Fisica, Universita' di Bologna and INFN, Bologna; Fabio Finelli(Dipartimento di Fisica, Universita' di Bologna and INFN, Bologna); Giovanni Venturi(Department of Physics, University of Bologna, and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy)
2015-01-01
The semiclassical collapse of a sphere of quantized dust is studied. A Born-Oppenheimer decomposition is performed for the wave function of the system and the semiclassical limit is considered for the gravitational part. The method of adiabatic invariants for time dependent Hamiltonians is then employed to find (approximate) solutions to the quantum dust equations of motions. This allows us to obtain corrections to the adiabatic approximation of the dust states associated with the time evolut...
Time Development of Exponentially Small Non-Adiabatic Transitions
Hagedorn, George A.; Joye, Alain
2003-01-01
Optimal truncations of asymptotic expansions are known to yield approximations to adiabatic quantum evolutions that are accurate up to exponentially small errors. In this paper, we rigorously determine the leading order non--adiabatic corrections to these approximations for a particular family of two--level analytic Hamiltonian functions. Our results capture the time development of the exponentially small transition that takes place between optimal states by means of a particular switching fu...
Adiabatic Quantum Programming: Minor Embedding With Hard Faults
Klymko, Christine; Sullivan, Blair D.; Humble, Travis S.
2012-01-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. These methods extend with fabric growth while scaling linearly in time and quadratically in footprint. We also provi...
Vacuum vessel eddy current modeling for TFTR adiabatic compression experiments
DeLucia, J.; Bell, M.; Wong, K.L.
1985-07-01
A relatively simple current filament model of the TFTR vacuum vessel is described. It is used to estimate the three-dimensional structure of magnetic field perturbations in the vicinity of the plasma that arise from vacuum vessel eddy currents induced during adiabatic compression. Eddy currents are calculated self-consistently with the plasma motion. The Shafranov formula and adiabatic scaling laws are used to model the plasma. Although the specific application is to TFTR, the present model is of generation applicability.
Vacuum vessel eddy current modeling for TFTR adiabatic compression experiments
A relatively simple current filament model of the TFTR vacuum vessel is described. It is used to estimate the three-dimensional structure of magnetic field perturbations in the vicinity of the plasma that arise from vacuum vessel eddy currents induced during adiabatic compression. Eddy currents are calculated self-consistently with the plasma motion. The Shafranov formula and adiabatic scaling laws are used to model the plasma. Although the specific application is to TFTR, the present model is of generation applicability
Non Adiabatic Centrifugal Compressor Gas Dynamic Performance Definition
Soldatova, Kristina
2014-01-01
Most centrifugal compressors operate in conditions with negligible heat transfer (adiabatic compression). Their plant tests conditions are similar or close to adiabatic conditions. Test regulations establish measures to diminish influence of a heat transfer “compressor body – atmospheric air” to an exit temperature. Therefore a temperature rise in a compressor is used to calculate a work input coefficient and efficiency. Unlike it high pressure centrifugal compressors of gas turbines and supe...
Adiabatic boiling of two-phase coolant in upward flow
A mathematical model of the process of adiabatic boiling (self-condensation) of a two-phase coolant in upward (downward) flow is developed. The model takes account of changes in phase properties with static pressure decrease. The process is investigated numerically. Approximate analytical formulas for design calculations are obtained. It is shown that effects of adiabatic boiling (self-condensation) should be taken into account when calculating two-phase coolant flow in stretched vertical channels
Yakup Çil; Hamza Yıldız; Özlem Karabudak Abuaf
2012-01-01
Low-voltage fountainheads such as car, tractor or motorcycle batteries are predisposed to produce large currents. Any metal object that comes into contact with these batteries may result in short-circuit. This may result in rapid and excessive heating of metal object and an electrothermal burn. Herein we presented a motorcycle driver who was 28-year-old man with electrothermal ring burn which was caused by metal chain that was used as a ring. (Turk J Dermatol 2012; 6: 106-7)
Yakup Çil
2012-09-01
Full Text Available Low-voltage fountainheads such as car, tractor or motorcycle batteries are predisposed to produce large currents. Any metal object that comes into contact with these batteries may result in short-circuit. This may result in rapid and excessive heating of metal object and an electrothermal burn. Herein we presented a motorcycle driver who was 28-year-old man with electrothermal ring burn which was caused by metal chain that was used as a ring. (Turk J Dermatol 2012; 6: 106-7
Sudha Jimson
2015-01-01
Full Text Available Burning mouth syndrome (BMS is a complex disorder that is characterized by warm or burning sensation in the oral mucosa without changes on physical examination. It occurs more commonly in middle-aged and elderly women and often affects the tip of the tongue, lateral borders, lips, hard and soft palate. This condition is probably of multi-factorial origin, often idiopathic, and its etiopathogensis is unknown. BMS can be classified into two clinical forms namely primary and secondary BMS. As a result, a multidisciplinary approach is required for better control of the symptoms. In addition, psychotherapy and behavioral feedback may also help eliminate the BMS symptoms.
Adiabatic and non-adiabatic charge pumping in a single-level molecular motor
We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green’s function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups. (paper)
Burn Safety Awareness on Playgrounds: Thermal Burns from Playground Equipment
... Safety Awareness on Playgrounds Thermal Burns from Playground Equipment The U.S. Consumer Product Safety Commission CPSC wants ... of the risk of thermal burns from playground equipment. You may remember the metal slides of your ...
Management of acute burns and burn shock resuscitation.
Faldmo, L; Kravitz, M
1993-05-01
Initial management of minor and moderate, uncomplicated burn injury focuses on wound management and patient comfort. Initial management of patients with major burn injury requires airway support, fluid resuscitation for burn shock, treatment for associated trauma and preexisting medical conditions, management of adynamic ileus, and initial wound treatment. Fluid resuscitation, based on assessment of the extent and depth of burn injury, requires administration of intravenous fluids using resuscitation formula guidelines for the initial 24 hours after injury. Inhalation injury complicates flame burns and increases morbidity and mortality. Electrical injury places patients at risk for cardiac arrest, metabolic acidosis, and myoglobinuria. Circumferential full-thickness burns to extremities compromise circulation and require escharotomy or fasciotomy. Circumferential torso burns compromise air exchange and cardiac return. Loss of skin function places patients at risk for hypothermia, fluid and electrolyte imbalances, and systemic sepsis. The first 24 hours after burn injury require aggressive medical management to assure survival and minimize complications. PMID:8489882
Fat burn X: burning more than fat.
Hannabass, Kyle; Olsen, Kevin Robert
2016-01-01
A 50-year-old man presented with a 2-day history of bilateral lower extremity cramping and dark urine. The patient was found to have a creatine phosphokinase (CPK) elevated of up to 2306 U/L, a serum uric acid of 9.7 mg/dL and 101 red blood cell's per high-powered field on urinalysis. On questioning, the patient endorsed daily exercise with free weights. There were no changes in his regular exercise and medication regimen, no muscle trauma, no recent drug use and no illness. The patient did mention using a new fat burner known as 'Fat Burn X', which he had begun taking 2 days prior to the onset of his muscle cramps. The patient was given normal saline intravenous fluid resuscitation for 48 h with resultant normalisation of his CPK and creatinine, and was discharged with primary care follow-up. PMID:26811412
A new style of oil burner has been developed for use on exploration platforms offshore. The design improves oil combustion through enhanced air induction, producing stable flames in the clean burn region which do not generate smoke and oil fallout. Successful tests have led to it now being ready for commercial exploitation. (UK)
Accumulative eschar after burn.
Ma, Fushun
2016-02-01
Eschar formation is a potential sequela of burn injuries. Definitive management may include escharectomy and eschar debridement. After eschar removal, the wound can be covered with a skin graft or reepithelialization. For prolonged refractory eschar on the fingertips, topical use of rb-bFGF after debridement can achieve an optimal outcome. PMID:26862412
Accumulative eschar after burn
Ma, Fushun
2015-01-01
Key Clinical Message Eschar formation is a potential sequela of burn injuries. Definitive management may include escharectomy and eschar debridement. After eschar removal, the wound can be covered with a skin graft or reepithelialization. For prolonged refractory eschar on the fingertips, topical use of rb‐bFGF after debridement can achieve an optimal outcome.
An assessment of burn care professionals' attitudes to major burn.
Murphy, A D
2008-06-01
The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.
Dynamical fluctuations in classical adiabatic processes: General description and their implications
Zhang, Qi; Gong, Jiangbin; Oh, C. H.
2010-01-01
Dynamical fluctuations in classical adiabatic processes are not considered by the conventional classical adiabatic theorem. In this work a general result is derived to describe the intrinsic dynamical fluctuations in classical adiabatic processes. Interesting implications of our general result are discussed via two subtopics, namely, an intriguing adiabatic geometric phase in a dynamical model with an adiabatically moving fixed-point solution, and the possible "pollution" to Hannay's angle or...
Back Bay Wilderness burning support
US Fish and Wildlife Service, Department of the Interior — This document is a memorandum concerning prescribed burns between members of the Bureau of Sport Fisheries and Wildlife. It states that burning should be supported...
Treatment of hydrofluoric acid burns
Thiele, B.; Winter, U.J.; Mahrle, G.; Steigleder, G.K.
1986-01-31
A chemical-plant worker sustained hydrofluoric acid burns during cleaning procedures. Intra-arterial perfusion and intralesional injections of calcium gluconate solution prevented progression of the burns into deeper tissue layers.
[Treatment of hydrofluoric acid burns].
Thiele, B; Winter, U J; Mahrle, G; Steigleder, G K
1986-01-31
A chemical-plant worker sustained hydrofluoric acid burns during cleaning procedures. Intra-arterial perfusion and intralesional injections of calcium gluconate solution prevented progression of the burns into deeper tissue layers. PMID:3943470
[Burn injuries and mental health].
Palmu, Raimo; Vuola, Jyrki
2016-01-01
Currently a large proportion of patients with severe burn injuries survive. This gives increasing challenges also for psychological recovery after the trauma. More than half of burn patients have mental disorders already before the burn injury but also patients who previously had no mental disorders may suffer from them. Some of the hospitalize burn patients have injuries due to suicidal attempts. Only a small proportion of burn patients receive appropriate psychiatric care although psychosocial interventions specifically planned for burn victims exist. More frequent screening of symtoms of mental disorders and psychiatric consultation, also after acute care in hospital, could lead to better management of post-burn psychiatric care as well as better management of the burn treatment and rehabilitation itself. PMID:27089616
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others
2015-08-15
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
Systemic Responses to Burn Injury
ÇAKIR, Barış; YEĞEN, Berrak Ç.
2004-01-01
The major causes of death in burn patients include multiple organ failure and infection. It is important for the clinician to understand the pathophysiology of burn injury and the effects it will have on the pharmacokinetics of a drug. The local and systemic inflammatory response to thermal injury is extremely complex, resulting in both local burn tissue damage and deleterious systemic effects on all other organ systems distant from the burn area itself. Thermal injury initiates systemic infl...
Friction Burns: Epidemiology and Prevention
Agrawal, A; Raibagkar, S.C.; Vora, H.J.
2008-01-01
This epidemiological study deals with 60 patients with friction burns between January 2004 and January 2006. The age group most affected was that between 21 and 30 years, with male predominance. Road traffic accidents were the commonest cause of friction burns (56 patients), and the lower limb was the most frequently affected part of the body. Patient management was performed according to the degree of the burn injury. It is suggested that most friction burn injuries are neglected on admissio...
Is proportion burned severely related to daily area burned?
The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day. (letters)
WANG Xue-bin
2008-01-01
The coexistent phenomenon of deformed and transformed adiabatic shear bands(ASBs) of ductile metal was analyzed using the JOHNSON-COOK model and gradient-dependent plasticity(GDP). The effects of melting point, density, heat capacity and work to heat conversion factor were investigated. Higher work to heat conversion factor, lower density, lower heat capacity and higher melting point lead to wider transformed ASB and higher local plastic shear deformation between deformed and transformed ASBs. Higher work to heat conversion factor, lower density, lower heat capacity and lower melting point cause higher local plastic shear deformation in the deformed ASB. Three reasons for the scatter in experimental data on the ASB width were pointed out and the advantages of the work were discussed. If the transformed ASB width is used to back-calculate the internal length parameter in the GDP, undoubtedly, the parameter will be extremely underestimated.
Burn Teams and Burn Centers: The Importance of a Comprehensive Team Approach to Burn Care
Al-Mousawi, Ahmed M.; Mecott-Rivera, Gabriel A.; Jeschke, Marc G.; Herndon, David N
2009-01-01
Advances in burn care have been colossal, but while extra work is needed, it is clear that the organized effort of burn teams can continue making improvements in survival rates and quality of life possible for patients. Burn patients are unique, representing the most severe model of trauma,33 and hence this necessitates treatment in the best facilities available for that endeavor. Burn centers have developed to meet these intricate needs but can only function productively and most efficiently...
Reactive burn models and ignition & growth concept
Menikoff, Ralph S [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory
2010-01-01
Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.
Physics on the adiabatically changed Finslerian manifold and cosmology
Lipovka, Anton A
2016-01-01
In present paper we confirm our previous result [4] that Planck constant is adiabatic invariant of electromagnetic field propagating on the adiabatically changed Finslerian manifold. Direct calculation from cosmological parameters gives value h=6x10(-27) (erg s). We also confirm that Planck constant (and hence other fundamental constants which depend on h) is varied on time due to changing of geometry. As an example the variation of the fine structure constant is calculated. Its relative variation ((da/dt)/a) consist 1.0x10(-18) (1/s). We show that on the Finsler manifold characterized by adiabatically changed geometry, classical free electromagnetic field is quantized geometrically, from the properties of the manifold in such manner that adiabatic invariant of field is ET=6x10(-27)=h. Electrodynamic equations on the Finslerian manifold are suggested. It is stressed that quantization naturally appears from these equations and is provoked by adiabatically changed geometry of manifold. We consider in details tw...
Adiabatic condition and the quantum hitting time of Markov chains
We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P' where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP' and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.
Global adiabaticity and non-Gaussianity consistency condition
Romano, Antonio Enea; Sasaki, Misao
2016-01-01
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, $R_c$, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of $R_c$ holds only after the perturbation has reached the adiabatic limit where the constant mode of $R_c$ dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, $\\delta P_{nad}\\equiv\\delta P-c_w^2\\delta\\rho$ where $c_w^2=\\dot P/\\dot\\rho$, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of $R_c$ on super-horizon scales. In this paper, we consider models that satisfies $\\d...
Interplay between electric and magnetic effect in adiabatic polaritonic systems
Alabastri, Alessandro
2013-01-01
We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.
Bélanger, Richard E; Marcotte, Marie-Eve; Bégin, François
2013-01-01
A case involving a five-month-old girl brought to the emergency department with burns over her abdomen is described. The child was reported to have spilled two small bottles of beauty nail adhesive on her clothes while her mother was preparing dinner. After undressing the infant, the mother discovered several lesions on the child’s abdomen and quickly sought medical attention. Given the unusual circumstances of the presentation, the child was hospitalized for both treatment and supervision. The beauty nail adhesive contained cyanoacrylate. In addition to its well-appreciated adhesive capacity, cyanoacrylate, in the presence of cotton or other tissues, is known to produce an exothermic reaction that may cause burns. Cyanoacrylate-based products, due to their possible adverse effects, should be kept away from children as advised. Odd injuries should always raise concerns about the possibility of inflicted injury. PMID:24421671
Xygalatas, Dimitris
The Anastenaria are Orthodox Christians in Northern Greece who observe a unique annual ritual cycle focused on two festivals, dedicated to Saint Constantine and Saint Helen. The festivals involve processions, music, dancing, animal sacrifices, and culminate in an electrifying fire-walking ritual....... Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context of the...... Greek fire-walking rituals. As a cognitive ethnography, the book aims to identify the social, psychological and neurobiological factors which may be involved and to explore the role of emotional and physiological arousal in the performance of such ritual. A study of participation, experience and meaning...
[Chemical and electrical burns].
Sanchez, Raymond
2002-12-15
Chemical burns are less frequent in routine practice, but could be very serious owing to the complexity and severity of their actions. Influx of casualty after a civil disaster (industrial explosion) or military (war or terrorism) is possible. The action of these agents could be prolonged and deep. In addition to the skin, respiratory lesions and general intoxication could be observed. The urgent local treatment rely essentially on prolonged washing. Prevention and adequate emergency care could limit the serious consequences of these accidents. Accidents (thermal burns or electrisations) due to high or low voltage electricity are frequent. The severity is linked with the affected skin but especially with internal lesions, muscular, neurological or cardiac lesions. All cases of electrisation need hospital care. Locally, the lesions are often deep with difficult surgical repairs and often require amputation. Aesthetic and functional sequela are therefore frequent. Secondary complications could appear several months after the accident: cataract, dysesthesia and hypotonia. PMID:12621941
Richard E. Bélanger; Marcotte, Marie-Eve; Bégin, François
2013-01-01
A case involving a five-month-old girl brought to the emergency department with burns over her abdomen is described. The child was reported to have spilled two small bottles of beauty nail adhesive on her clothes while her mother was preparing dinner. After undressing the infant, the mother discovered several lesions on the child’s abdomen and quickly sought medical attention. Given the unusual circumstances of the presentation, the child was hospitalized for both treatment and supervision. T...
Burd, Andrew
2010-01-01
Burns can cause extensive and devastating injuries of the head and neck. Prevention of the initial injury must always be a priority, but once an injury has occurred, then prevention of progression of the damage together with survival of the patient must be the immediate goals. The acute care will have a major influence on the subsequent scarring, reconstructive need, and long-term outcome. In the majority of cases, the reconstruction will involve restoration of form and function to the soft t...
The paper deals with the example of application of straw as fuel for a power plant with capacity of 1 MW, which is reconstructed from an old coal power plant. The article shows the advantages of straw as a source of energy, analyses the physical and chemical characteristics and temperature parameters, typical for straw. Moreover it indicates the specific circumstances of the straw burning processes. The paper focuses also on preparation and storing of straw for public use and in the energy sector. Comparing with fossil fuel, straw is a low-caloric natural source, whose energy value reached to 14-19 MJ/kg. This value depends partly on the kind of straw and its water or moisture content (MC). To the basic characteristics of energy aspects belong: - energy or heating value (HV) MJ/kg (in LPG it is MJ/ m3); - burning temperature; - melting point - temperature of ash; - weight kg/m3; - density; - Energy density MWh /m3; - Energy potential GJ/t; - Size-homogeneity of straw; - Water or Moisture Content (MC). The above mentioned characteristics have an influence on technical parameters of straw-burning boiler. These parameters define conditions process of straw preparation. (author)
Ideal quantum gas in expanding cavity: nature of non-adiabatic force
Nakamura, K; Sobirov, Z A; Matrasulov, D U; Monnai, T
2011-01-01
We consider a quantum gas of non-interacting particles confined in the expanding cavity, and investigate the nature of the non-adiabatic force which is generated from the gas and acts on the cavity wall. Firstly, with use of the time-dependent canonical transformation which transforms the expanding cavity to the non-expanding one, we can define the force operator. Secondly, applying the perturbative theory which works when the cavity wall begins to move at time origin, we find that the non-adiabatic force is quadratic in the wall velocity and thereby does not break the time-reversal symmetry, in contrast with the general belief. Finally, using an assembly of the transitionless quantum states, we obtain the nonadiabatic force exactly. The exact result justifies the validity of both the definition of force operator and the issue of the perturbative theory. The mysterious mechanism of nonadiabatic transition with use of transitionless quantum states is also explained. The study is done on both cases of the hard-...
Characterization of adiabatic shear bands in AM60B magnesium alloy under ballistic impact
Adiabatic shear bands in Mg alloy under ballistic impact at a velocity of 0.5 km.s-1 were characterized by means of optical microscope, scanning electron microscope, transmission electron microscope and indenter technique. The results show that adiabatic shear bands were formed around the impacted crater, and the deformed and transformed bands were distinguished by etching colors in metallographic observation. TEM observation shows that the deformed bands were composed of the elongated grains and high density dislocations, while the transformed bands composed of the ultrafine and equiaxed grains were confirmed. In initial stage, the severe localized plastic deformation led to the formation of elongated grains in the deformed bands. With localized strain increasing, the severe localized deformation assisted with the plastic temperature rising led to the severe deformation grains evolved into the ultrafine and equiaxed grains, while the deformed bands were developed into transformed bands. The formation of the ultrafine and equiaxed grains in the transformed bands should be attributed to the twinning-induced rotational dynamic recrystallization mechanism. High microhardness in the bands was obtained because of the strain hardening, grain refining and content concentration. - Research Highlights: → Deformed and transformed bands are found in Mg alloy under ballistic impact. → The microstructures in the deformed and transformed bands are characterized. → The evolution process of the microstructure in the bands is discussed.
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Sasaki, Misao
2015-01-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid $\\delta P_{nad}$, another is for a general matter field $\\delta P_{c,nad}$, and the last one is valid only on superhorizon scales. The first two definitions coincide if $c_s^2=c_w^2$ where $c_s$ is the propagation speed of the perturbation, while $c_w^2=\\dot P/\\dot\\rho$. Assuming the adiabaticity in the general sense, $\\delta P_{c,nad}=0$, we derive a relation between the lapse function in the comoving slicing $A_c$ and $\\delta P_{nad}$ valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as $c_s\
Integrated polarization rotator/converter by stimulated Raman adiabatic passage.
Xiong, Xiao; Zou, Chang-Ling; Ren, Xi-Feng; Guo, Guang-Can
2013-07-15
We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs. PMID:23938558
Adiabatic fluctuations from cosmic strings in a contracting universe
We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today
Non-adiabatic pumping through interacting quantum dots
Cavaliere, Fabio; Governale, Michele; König, Jürgen
2009-01-01
We study non-adiabatic two-parameter charge and spin pumping through a single-level quantum dot with Coulomb interaction. For the limit of weak tunnel coupling and in the regime of pumping frequencies up to the tunneling rates, $\\Omega \\lesssim \\Gamma/\\hbar$, we perform an exact resummation of contributions of all orders in the pumping frequency. As striking non-adiabatic signatures, we find frequency-dependent phase shifts in the charge and spin currents, which allow for an effective single-...
Adiabatic theory of ionization of atoms by intense laser pulses
As a first step towards the adiabatic theory of ionization of atoms by intense laser pulses, here we consider the simplest one-dimensional zero-range potential model. The asymptotic solution to the time-dependent Schroedinger equation in the adiabatic regime is obtained and the photoelectron spectrum is calculated. The factorization formula for the photoelectron spectrum in the back-rescattering region, first suggested by Morishita et al. [Phys. Rev. Lett. 100, 013903 (2008)] on the basis of ab initio calculations, is derived analytically.
Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots
Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro
2016-08-01
In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Agostini, Federica; Gross, E K U
2014-01-01
We present a detailed derivation and numerical tests of a new mixed quantum-classical scheme to deal with non-adiabatic processes. The method is presented as the zero-th order approximation to the exact coupled dynamics of electrons and nuclei offered by the factorization of the electron-nuclear wave function [A. Abedi, N. T. Maitra and E. K. U. Gross, Phys. Rev. Lett., 105 (2010)]. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Agostini, Federica; Abedi, Ali; Gross, E. K. U.
2014-12-01
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Agostini, Federica; Abedi, Ali; Gross, E. K. U. [Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)
2014-12-07
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations
Resonances and adiabatic invariance in classical and quantum scattering theory
Jain, S R
2004-01-01
We discover that the energy-integral of time-delay is an adiabatic invariant in quantum scattering theory and corresponds classically to the phase space volume. The integral thus found provides a quantization condition for resonances, explaining a series of results recently found in non-relativistic and relativistic regimes. Further, a connection between statistical quantities like quantal resonance-width and classical friction has been established with a classically deterministic quantity, the stability exponent of an adiabatically perturbed periodic orbit. This relation can be employed to estimate the rate of energy dissipation in finite quantum systems.
Nanoscale resolution for fluorescence microscopy via adiabatic passage
Rubio, Juan Luis; Ahufinger, Verònica; Mompart, Jordi
2015-01-01
We propose the use of the subwavelength localization via adiabatic passage technique for fluorescence microscopy with nanoscale resolution in the far field. This technique uses a {\\Lambda}-type medium coherently coupled to two laser pulses: the pump, with a node in its spatial profile, and the Stokes. The population of the {\\Lambda} system is adiabatically transferred from one ground state to the other except at the node position, yielding a narrow population peak. This coherent localization allows fluorescence imaging with nanometer lateral resolution. We derive an analytical expression to asses the resolution and perform a comparison with the coherent population trapping and the stimulated-emission-depletion techniques.
Adiabatic and isothermal compressibility in the liquid state
The paper reviews the work carried out on the adiabatic and isothermal compressibility of liquid alkali metals. Saturated liquid states are discussed, including thermodynamic relations, adiabatic compressibility and isothermal compressibility. Results for the compressibility, and other related quantities, for the saturated liquids: lithium, potassium, rubidium, caesium and sodium, over the temperature range approx.= 300 - 18000 K, are presented. Subcooled liquid states are also examined with respect to its thermodynamic relations, and compressibility results (and other related quantities) for the same elements are given. An assessment of errors and data reliability is briefly discussed. (U.K.)
High beta lasing in micropillar cavities with adiabatic layer design
Lermer, M.; Gregersen, Niels; Lorke, M.;
2013-01-01
We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...... threshold pump power by over 2 orders of magnitude from dc = 2.25 μm down to 0.95 μm. Lasing with β factors exceeding 0.5 shows that adiabatic micropillars are operating deeply in the cavity quantum electrodynamics regime....
The exact forces on classical nuclei in non-adiabatic charge transfer
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Gross, E. K. U. [Max-Planck-Institut of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Maitra, Neepa T. [Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)
2015-02-28
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.
The exact forces on classical nuclei in non-adiabatic charge transfer
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T.; Gross, E. K. U.
2015-02-01
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.
Critical stability of almost adiabatic convection in a rapidly rotating thick spherical shell
In this work, the convection equations in the almost adiabatic approximation is studied for which the choice of physical parameters is primarily based on possible applications to the hydrodynamics of the deep interiors of the Earth and planets and moons of the terrestrial group. The initial system of partial differential equations (PDEs) was simplified to a single second-order ordinary differential equation for the pressure or vertical velocity component to investigate the linear stability of convection. The critical frequencies, modified Rayleigh numbers, and distributions of convection are obtained at various possible Prandtl numbers and in different thick fluid shells. An analytical WKB-type solution was obtained for the case when the inner radius of the shell is much smaller than the outer radius and convective sources are concentrated along the inner boundary.
We present numerical solutions to both the standard and modified two-dimensional Fokker-Planck equations with adiabatic focusing and isotropic pitch-angle scattering. With the numerical solution of the particle distribution function, we then discuss the related numerical issues, calculate the parallel diffusion coefficient using several different methods, and compare our numerical solutions for the parallel diffusion coefficient to the analytical forms derived earlier. We find the numerical solution to the diffusion coefficient for both the standard and modified Fokker-Planck equations agrees with that of Shalchi for the mean squared displacement method of computing the diffusion coefficient. However, we also show the numerical solution agrees with that of Litvinenko and Shalchi and Danos when calculating the diffusion coefficient via the velocity correlation function
Acoustic emission strand burning technique for motor burning rate prediction
Christensen, W. N.
1978-01-01
An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.
Presented are calculated dependences for adiabatic compressibility, isoentropy coefficient and thermodynamic sound velocity of a two-phase media with homogeneous disperse structure being in a state of equilibrium. The character of the change of the values mentioned for vapor water media at the change of vapor mass composition in the mixture from zero to 1 is shown. Comparison of the calculated data as to dependences obtained with the experimental ones for critical regimes of vapor-water flow outflow through short and long cylindrical channels with sharp entrance rims. The calculation error does not exceed approximately 12%. Analysis of the results obtained showed that at outflow through short channels of metastable vapor liquid flow the main characteristics, like at outflow through long channels, are determined by the pressure in the exit cross section, mass vapor content and specific volume of the mixture, which are calculated with account for real overheating of the liquid to the exit cross section. At critical regime of outflow through the very long channels, when one can not neglect hydraulic resistance in the channel and the process is not isoentropic, the pressure and mass vapor content in the exit cross section also unambiguously determine the value of adiabatic compressibility of two-phase media, sound velocity and isoentropy coefficient in the cross section. Conclusion is made that the dependences obtained can be used with sufficient for practical purposes accuracy when solving different engineering problems, as well as for the calculations of the mixture consumption at flow of the reactor contours NAI with WWR
Calculational schemes enabling to go beyond crude Condon approximation in non-adiabatic electron transfer reactions are discussed with the use of continuum approximation for the solvent polarization. An algorithm for the self-consistent introduction of an effective reaction coordinate in the adiabatic transition is suggested. Effects due to deviations from the Born-Oppenheimer approximation in bridge-assisted electron transfer reactions are discussed. Interpolation formulae covering limits of coherent and sequential electron transfer in bridge-assisted processes are presented. Simple equations determining a parametric dependence of the transition probability on the reaction free energy in crude Condon approximation are included. (author)
Research of the fusion plasma thermal instability and its control is reviewed. General models of the thermonuclear plasma are developed. Techniques of stability analysis commonly employed in burn control research are discussed. Methods for controlling the plasma against the thermal instability are reviewed. Emphasis is placed on applications to tokamak confinement concepts. Additional research which extends the results of previous research is suggested. Issues specific to the development of control strategies for mid-term engineering test reactors are identified and addressed. 100 refs., 24 figs., 10 tabs
Although an impressive quantity of work has been devoted to understanding nucleosynthesis during explosive hydrogen burning, much work remain to be done. Reactions which occur in novae, x-ray bursts, and supernovae are discussed. Much attention is given to the reactions of hot CNO cycles and of reactions in the rp-process. The many reactions described in this review are not all of the reactions which may be of interest to nuclear physicists, although the rates of those reactions not discussed are essentially unknown. 123 refs., 9 figs
Complicated Burn Resuscitation.
Harrington, David T
2016-10-01
More than 4 decades after the creation of the Brooke and Parkland formulas, burn practitioners still argue about which formula is the best. So it is no surprise that there is no consensus about how to resuscitate a thermally injured patient with a significant comorbidity such as heart failure or cirrhosis or how to resuscitate a patient after an electrical or inhalation injury or a patient whose resuscitation is complicated by renal failure. All of these scenarios share a common theme in that the standard rule book does not apply. All will require highly individualized resuscitations. PMID:27600129
Seiler, Ch; Hogan, S D; Schmutz, H; Agner, J A; Merkt, F
2011-02-18
A supersonic beam of Rydberg hydrogen atoms has been adiabatically deflected by 90°, decelerated to zero velocity in less than 25 μs, and loaded into an electric trap. The deflection has allowed the suppression of collisions with atoms in the trailing part of the gas pulse. The processes leading to trap losses, i.e., fluorescence to the ground state, and transitions and ionization induced by blackbody radiation have been monitored over several milliseconds and quantitatively analyzed. PMID:21405512
Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy
ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui
2004-01-01
Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.
Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy
ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui
2004-01-01
Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.
The CREST reactive-burn model for explosives
Maheswaran M-A.; Lambourn B.; James H.; Whitworth N.; Handley C.
2011-01-01
CREST is an innovative reactive-burn model that has been developed at AWE for simulating shock initiation and detonation propagation behaviour in explosives. The model has a different basis from other reactive-burn models in that its reaction rate is independent of local flow variables behind the shock wave e.g. pressure and temperature. The foundation for CREST, based on a detailed analysis of data from particle-velocity gauge experiments, is that the reaction rate depends only on the local ...
On Models of Nonlinear Evolution Paths in Adiabatic Quantum Algorithms
In this paper, we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimensional projector Hamiltonians on the corresponding ground state. If the overlap between the initial state and final state of the quantum system is not equal to zero, both of these models can provide a constant time speedup over the usual adiabatic algorithms by increasing some another corresponding “complexity. But when the initial state has a zero overlap with the solution state in the problem, the second model leads to an infinite time complexity of the algorithm for whatever interpolating functions being applied while the first one can still provide a constant running time. However, inspired by a related reference, a variant of the first model can be constructed which also fails for the problem when the overlap is exactly equal to zero if we want to make up the 'intrinsic' fault of the second model — an increase in energy. Two concrete theorems are given to serve as explanations why neither of these two models can improve the usual adiabatic evolution algorithms for the phenomenon above. These just tell us what should be noted when using certain nonlinear evolution paths in adiabatic quantum algorithms for some special kind of problems. (general)
Scalings for a traveling mirror adiabatic magnetic compressor
Bellan, P. M.
1982-01-01
Detailed practical scaling relations for a traveling mirror adiabatic magnetic compressor are derived, and an example is given of how this technique could be used to translate, compress, and heat the Los Alamos FRX-C reversed field theta pinch plasma.
Adiabatic waves along interfacial layers near the critical point
Gouin, Henri
2008-01-01
Near the critical point, isothermal interfacial zones are investigated starting from a non-local density of energy. From the equations of motion of thermocapillary fluids, we point out a new kind of adiabatic waves propagating along the interfacial layers. The waves are associated with the second derivatives of densities and propagate with a celerity depending on the proximity of the critical point.
When an Adiabatic Irreversible Expansion or Compression Becomes Reversible
Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.
2009-01-01
This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216
Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition
QIAN Shang-Wu; GU Zhi-Yu
2005-01-01
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the generaltime-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.
Adiabatic CMB perturbations in pre-big bang string cosmology
Enqvist, Kari; Sloth, Martin Snoager
2001-01-01
We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations in...
Digitized adiabatic quantum computing with a superconducting circuit
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the general time-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.
Adiabatic single scan two-dimensional NMR spectrocopy.
Pelupessy, Philippe
2003-10-01
New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020
A Quantum Adiabatic Algorithm for Factorization and Its Experimental Implementation
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-01-01
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in an NMR quantum information processor and experimentally factorize the number 21. Numerical simulations indicate that the running time grows only quadratically with the number of qubits.
Adiabatic and diabatic aerosol transport to the Jungfraujoch
Lugauer, M.; Baltensperger, U.; Furger, M.; Jost, D.T.; Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-09-01
Synoptic scale vertical motion, here detected by the geopotential height of the 500 hPa surface, mainly accounts for the aerosol transport to the Jungfraujoch in winter. In summer, diabatic convection provides the dominant vertical transport mechanism. Nevertheless, synoptic scale adiabatic motion still determines whether diabatic convection can develop. (author) 2 figs., 2 refs.
Dark Energy and Dark Matter from an additional adiabatic fluid
Dunsby, Peter K S; Reverberi, Lorenzo
2016-01-01
The Dark Sector is described by an additional barotropic fluid which evolves adiabatically during the universe's history and whose adiabatic exponent $\\gamma$ is derived from the standard definitions of specific heats. Although in general $\\gamma$ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with $\\gamma = $ constant in a FLRW universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like non-relativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both Dark Energy and Dark Matter, at least at the level of the background cosmology. The $\\Lambda$CDM model is included in this family of theories when $\\gamma = 0$. We fit our model to SNIa, $H(z)$ and BAO data, discussing the model selection criteria. The implications for the early-universe and the growth of small per...
On the hydrogen-air adiabatic isochoric complete combustion pressure
A simple and fast method for calculating the AICC state (adiabatic Isochoric Complete Combustion) for the hydrogen-air reaction is presented. By comparison with more detailed algorithms it is shown that the proposed method produces satisfactory results, and is thus a viable alternative in situations where the use of detailed algorithms or of tables is too time-consuming. (orig.)
Prognosis and treatment of burns.
Mann, R; Heimbach, D
1996-01-01
Survival rates for burn patients in general have improved markedly over the past several decades. The development of topical antibiotic therapy for burn wounds, the institution of the practice of early excision and grafting, and major advances in intensive care management have all contributed to this success. In this review we address these 3 important advances in the modern treatment of burn injuries and provide a brief historical overview of these accomplishments and others, emphasizing spe...
Momčilović Dragan
2002-01-01
Introduction Understanding of fluid shifts and recognition of the importance of early and appropriate fluid replacement therapy have significantly reduced mortality in the early post burn period. After the bum patient successfully passes the resuscitation period, the burn wound represents the greatest threat to survival. History Since the dawn of civilization, man has been trying to find an agent which would help burn wounds heal, and at the same time, not harm general condition of the injure...
Animal Models in Burn Research
Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G
2014-01-01
Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the...
Rehabilitation of the burn patient
Procter Fiona
2010-01-01
Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ′Burns...
BACTERIOLOGICAL STUDY OF BURNS INFECTION
Shareen; Basavarajappa; Hanumanthappa
2015-01-01
A burn is a wound in which there is coagulative necrosis of the tissue, majority of which are caused by heat. Burn injury is a major public health problem in many areas of the world. Burns predispose to infection by damaging the protective barrier function of the skin, thus facilitating the entry of pa thogenic microorganisms and by inducing systemic immunosuppression . (1) OBJECTIVE : The present study was therefore undertaken to isolate and identify the a...
Makoto Kohga
2012-01-01
Full Text Available Ammonium-nitrate-(AN- based composite propellants prepared with a hydroxyl-terminated polybutadiene (HTPB/polytetrahydrofuran (PTHF blend binder have unique thermal decomposition characteristics. In this study, the burning characteristics of AN/HTPB/PTHF propellants are investigated. The specific impulse and adiabatic flame temperature of an AN-based propellant theoretically increases with an increase in the proportion of PTHF in the HTPB/PTHF blend. With an AN/HTPB propellant, a solid residue is left on the burning surface of the propellant, and the shape of this residue is similar to that of the propellant. On the other hand, an AN/HTPB/PTHF propellant does not leave a solid residue. The burning rates of the AN/HTPB/PTHF propellant are not markedly different from those of the AN/HTPB propellant because some of the liquefied HTPB/PTHF binder cover the burning surface and impede decomposition and combustion. The burning rates of an AN/HTPB/PTHF propellant with a burning catalyst are higher than those of an AN/HTPB propellant supplemented with a catalyst. The beneficial effect of the blend binder on the burning characteristics is clarified upon the addition of a catalyst. The catalyst suppresses the negative influence of the liquefied binder that covers the burning surface. Thus, HTPB/PTHF blend binders are useful in improving the performance of AN-based propellants.
Vitamin C in Burn Resuscitation.
Rizzo, Julie A; Rowan, Matthew P; Driscoll, Ian R; Chung, Kevin K; Friedman, Bruce C
2016-10-01
The inflammatory state after burn injury is characterized by an increase in capillary permeability that results in protein and fluid leakage into the interstitial space, increasing resuscitative requirements. Although the mechanisms underlying increased capillary permeability are complex, damage from reactive oxygen species plays a major role and has been successfully attenuated with antioxidant therapy in several disease processes. However, the utility of antioxidants in burn treatment remains unclear. Vitamin C is a promising antioxidant candidate that has been examined in burn resuscitation studies and shows efficacy in reducing the fluid requirements in the acute phase after burn injury. PMID:27600125
Nutrition Support in Burn Patients
Cem Aydoğan
2012-08-01
Full Text Available Severe burn trauma causes serious metabolic derangements. Increased metabolic rate which is apart of a pathophysiologic characteristic of burn trauma results in protein-energy malnutrition. This situation causes impaired wound healing, muscle and fat tissue’s breakdown, growth retardation in children and infections. Nutrition support is vital in the treatment strategies of burn victims to prevent high mortal and disabling complications in this devastating trauma. Our aim in this study is to review management of nutrition in burn victims. (Journal of the Turkish Society Intensive Care 2012; 10: 74-83
Makoto Kohga; Tomoki Naya; Kayoko Okamoto
2012-01-01
Ammonium-nitrate-(AN-) based composite propellants prepared with a hydroxyl-terminated polybutadiene (HTPB)/polytetrahydrofuran (PTHF) blend binder have unique thermal decomposition characteristics. In this study, the burning characteristics of AN/HTPB/PTHF propellants are investigated. The specific impulse and adiabatic flame temperature of an AN-based propellant theoretically increases with an increase in the proportion of PTHF in the HTPB/PTHF blend. With an AN/HTPB propellant, a solid res...
Characteristics of horizontal two-phase helium flow at low mass velocities
Two-phase helium flows experimental and theoretical exploration results, including data on flow regimes, pressure drop, and void fraction, are presented. The circular, annular, and slot channels are examined. All the considered data are for low mass velocities and near-adiabatic conditions
Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion
The combustion of ultra-lean fuel/air mixtures provides an efficient way to convert the chemical energy of hydrocarbons and low-calorific fuels into useful power. Matrix-stabilized porous medium combustion is an advanced technique in which a solid porous medium within the combustion chamber conducts heat from the hot gaseous products in the upstream direction to preheat incoming reactants. This heat recirculation extends the standard flammability limits, allowing the burning of ultra-lean and low-calorific fuel mixtures and resulting a combustion temperature higher than the thermodynamic equilibrium temperature of the mixture (i.e., super-adiabatic combustion). The heat generated by this combustion process can be converted into electricity with thermoelectric generators, which is the goal of this study. The design of a porous media burner coupled with a thermoelectric generator and its testing are presented. The combustion zone media was a highly-porous alumina matrix interposed between upstream and downstream honeycomb structures with pore sizes smaller than the flame quenching distance, preventing the flame from propagating outside of the central section. Experimental results include temperature distributions inside the combustion chamber and across a thermoelectric generator; along with associated current, voltage and power output values. Measurements were obtained for a catalytically inert Al2O3 medium and a SiC coated medium, which was tested for the ability to catalyze the super-adiabatic combustion. The combustion efficiency was obtained for stoichiometric and ultra-lean (near the lean flammability limit) mixtures of CH4 and air. - Highlights: • Design of a porous burner coupled with a thermoelectric module. • Super-adiabatic combustion in a highly-porous ceramic matrix was investigated. • Both alumina and silicon carbide ceramic surfaces were used as porous media. • Catalytic properties of Al2O3 and SiC ceramic surfaces were studied
A numerical study of Li-SF6 wick combustion - Forced and mixed convective burning
Damaso, R. C.; Chen, L.-D.
1992-01-01
A numerical study is conducted to study Li-SF6 wick diffusion flames under mixed convective burning conditions at a pressure of 0.01 MPa. Both planar and cylindrical wicks are considered. The model is based on a conserved scalar approach. The objective of this study is to assess the effects of particular parameters on the burning rate and heat transfer. The flat-plate solution yields a fuel mass burning rate per unit surface area following the x exp -1/2 dependence of the classical similarity solution, where x is the streamwise distance. Cylindrical wick geometries yield enhanced burning rates over planar wicks. For the case of mixed convective burning, the burning rate results approach either the forced or natural convective burning limits as ambient streamwise velocity is changed. Critical Richardson numbers specifying these burning limits are determined for a given condition. Reducing gravity results in a lower burning rate because the influence of natural convection is diminished. Under reduced gravity of 1/1000 of the sea-level value, mixed convective burning nearly resembles forced convection.
Oral Rehydration Therapy in Burn Patients
2014-04-24
Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface
In-situ burning of Orimulsion : small scale burns
This study examined the feasibility of burning Orimulsion. In-situ burning has always been a viable method for cleaning oil spills on water because it can effectively reduce the amount of spilled oil and eliminate the need to collect, store, transport and dispose of recovered oil. Orimulsion, however, behaves very differently from conventional oil when it is spilled because of its composition of 70 per cent bitumen in 30 per cent water. In-situ burning of this surfactant-stablized oil-in-water emulsion has never been seriously considered because of the perception that Orimulsion could not be ignited, and if it could, ignition would not be sustained. In this study, burn tests were conducted on 3 scales in a Cleveland Open Cup apparatus of 5 cm, 10 cm and 50 cm diameters. Larger scale burns were conducted in specially built pans. All tests were conducted on salt water which caused the bitumen to separate from the water. The objective was to determine if sufficient vapours could be generated to ignite the Orimulsion. The study also measured if a sustained flame would result in successful combustion. Both objectives were successfully accomplished. Diesel fuel was used to ignite the Orimulsion in the specially designed pan for large scale combustion. Quantitative removal of Orimulsion was achieved in all cases, but in some burns it was necessary to re-ignite the Orimulsion. It was noted that when Orimulsion burns, some trapped water droplets in the bitumen explode with enough force to extinguish a small flame. This did not occur on large-scale burns. It was concluded that the potential for successful in-situ burning increases with size. It was determined that approximately 1 mm in thickness of diesel fuel is needed to ignite a burn. 5 refs., 3 tabs., 4 figs
Pore Velocity Estimation Uncertainties
Devary, J. L.; Doctor, P. G.
1982-08-01
Geostatistical data analysis techniques were used to stochastically model the spatial variability of groundwater pore velocity in a potential waste repository site. Kriging algorithms were applied to Hanford Reservation data to estimate hydraulic conductivities, hydraulic head gradients, and pore velocities. A first-order Taylor series expansion for pore velocity was used to statistically combine hydraulic conductivity, hydraulic head gradient, and effective porosity surfaces and uncertainties to characterize the pore velocity uncertainty. Use of these techniques permits the estimation of pore velocity uncertainties when pore velocity measurements do not exist. Large pore velocity estimation uncertainties were found to be located in the region where the hydraulic head gradient relative uncertainty was maximal.
Emission of soot particles and other air pollution indoors constitutes a considerable health hazard for a major part of the population in many developing countries, one of them being China. In these countries problems relating to poverty are the most important risk factors, undernourishment being the dominating reason. Number four on the list of the most serious health hazards is indoor air pollution caused by burning of coal and biomass in the households. Very high levels of soot particles occur indoors because of incomplete combustion in old-fashioned stoves and by use of low quality fuel such as sticks and twigs and straw and other waste from agriculture. This leads to an increase in a series of acute and chronic respiratory diseases, including lung cancer. It has been pointed out in recent years that emissions due to incomplete combustion of coal and biomass can contribute considerably to climate changes
Wanted： Clean Coal Burning Technology
无
2005-01-01
China is intent on developing clean coal burning technology, an objective it can achieve through installing desulfurization facilities at coal-burning power plants that will control SO2 emissions and environmental pollution. According to kuo Yi, deputy director general of the Department of Science and Technology of the State Environmental Protection Agency, China is a major coal-buming country:
Fires and Burns Involving Home Medical Oxygen
... nfpa.org Fires and Burns Involving Home Medical Oxygen The air is normally 21% oxygen. Oxygen is not flammable, but fire needs it to burn. ¾ When more oxygen is present, any fire that starts will burn ...
Ion kinetic effects on the ignition and burn of ICF targets
Peigney, Benjamin-Edouard; Larroche, O.; Tikhonchuk, Vladimir
2014-01-01
In this Article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal {\\alpha}-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. Compare...
Non-adiabatic dynamics of molecules in optical cavities
Kowalewski, Markus, E-mail: mkowalew@uci.edu; Bennett, Kochise; Mukamel, Shaul, E-mail: smukamel@uci.edu [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)
2016-02-07
Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.
On some issues of gravitationally induced adiabatic particle productions
Pan, Supriya; Pramanik, Souvik
2016-01-01
In this work, we investigate the current accelerating universe driven by the gravitationally induced adiabatic matter creation process. To elaborate the underlying cognitive content, here we consider three models of adiabatic particle creation and constrain the model parameters by fitting the models with the Union 2.1 data set using $\\chi^2$ minimization technique. The models are analyzed by two geometrical and model independent tests, viz., cosmography and $Om$-diagnostic, which are widely used to distinguish the cosmological models from $\\Lambda$CDM. We also compared present values of those model independent parameters with that of the flat $\\Lambda$CDM model. Finally, the validity of the generalized second law of thermodynamics and the condition of thermodynamic equilibrium for the particle production models have been tested.
Adiabatic far-field sub-diffraction imaging
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-08-01
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale.
Improved Refrigerant Characteristics Flow Predictions in Adiabatic Capillary Tube
Shodiya Sulaimon
2012-07-01
Full Text Available This study presents improved refrigerant characteristics flow predictions using homogenous flow model in adiabatic capillary tube, used in small vapor compression refrigeration system. The model is based on fundamental equations of mass, momentum and energy. In order to improve the flow predictions, the inception of vaporization in the capillary tube is determined by evaluating initial vapor quality using enthalpy equation of refrigerant at saturation point and the inlet entrance effect of the capillary tube is also accounted for. Comparing this model with experimental data from open literature showed a reasonable agreement. Further comparison of this new model with earlier model of Bansal showed that the present model could be use to improve the performance predictions of refrigerant flow in adiabatic capillary tube.
Non-adiabatic theoretical observables in Delta Scuti stars
Moya, A; Dupret, M A
2004-01-01
Phase differences and amplitude ratios at different colour photometric bands are currently being used to discriminate pulsation modes in order to facilitate mode identification of kappa-driven non-radial pulsating stars. In addition to physical inputs (e.g., mass, T_eff, etc.), these quantities depend on the non-adiabatic treatment of the atmosphere. This paper presents theoretical results concerning Delta Scuti pulsating stars. The envelope of each of these stellar structures possesses a convection zone whose development is determined by various factors. An interacting pulsation-atmosphere physical treatment is introduced which supplies two basic non-adiabatic physical quantities: the relative effective temperature variation and the phase lag phi^T, defined as the angle between effective temperature variations and radial displacement. These quantities can be used to derive the phase differences and amplitude ratios. Numerical values for these quantities depend critically on the alpha MLT parameter used to ca...
Crack propagation of Ti alloy via adiabatic shear bands
This study was focused on the characterization of the origin and mechanism of crack propagation as a result of hot induction bending of Ti alloy. Plates of Ti–6Al–4V alloy with 12.5 mm of thickness were submitted to hot induction bending below the beta transus temperature. Optical and scanning electron microscopy analysis showed crack formation in the tensile zone. Microstructural evidence showed that cracks propagate through the adiabatic shear bands by Dimple-Void mechanism. However, voids formation before shear banding also occurred. In both mechanisms adiabatic shear bands are formed via dynamic recrystallization where the alpha–beta interphase works as stress concentrator promoting the formation of dimples and voids
Stellar oscillations. II The non-adiabatic case
Samadi, R; Sonoi, T
2015-01-01
A leap forward has been performed due to the space-borne missions, MOST, CoRoT and Kepler. They provided a wealth of observational data, and more precisely oscillation spectra, which have been (and are still) exploited to infer the internal structure of stars. While an adiabatic approach is often sufficient to get information on the stellar equilibrium structures it is not sufficient to get a full understanding of the physics of the oscillation. Indeed, it does not permit one to answer some fundamental questions about the oscillations, such as: What are the physical mechanisms responsible for the pulsations inside stars? What determines the amplitudes? To what extent the adiabatic approximation is valid? All these questions can only be addressed by considering the energy exchanges between the oscillations and the surrounding medium. This lecture therefore aims at considering the energetical aspects of stellar pulsations with particular emphasis on the driving and damping mechanisms. To this end, the full non-...
Excitation energies along a range-separated adiabatic connection
Rebolini, Elisa; Teale, Andrew M; Helgaker, Trygve; Savin, Andreas
2014-01-01
We present a study of the variation of total energies and excitationenergies along a range-separated adiabatic connection. This connectionlinks the non-interacting Kohn-Sham electronic system to the physicalinteracting system by progressively switching on theelectron-electron interactions whilst simultaneously adjusting aone-electron effective potential so as to keep the ground-statedensity constant. The interactions are introduced in arange-dependent manner, first introducing predominantly long-range,and then all-range, interactions as the physical system is approached,as opposed to the conventional adiabatic connection where theinteractions are introduced by globally scaling the standard Coulomb interaction.Reference data are reported for the He and Be atoms and the H2molecule, obtained by calculating the short-range effective potentialat the full configuration-interaction level using Lieb'sLegendre-transform approach. As the strength of the electron-electroninteractions increases, the excitation energies, ...
Crack propagation of Ti alloy via adiabatic shear bands
Mendoza, I., E-mail: ivanmendozabravo@gmail.com [Instituto Tecnológico de Veracruz (Mexico); Villalobos, D. [Instituto Tecnológico de Veracruz (Mexico); Alexandrov, B.T. [The Ohio State University (United States)
2015-10-01
This study was focused on the characterization of the origin and mechanism of crack propagation as a result of hot induction bending of Ti alloy. Plates of Ti–6Al–4V alloy with 12.5 mm of thickness were submitted to hot induction bending below the beta transus temperature. Optical and scanning electron microscopy analysis showed crack formation in the tensile zone. Microstructural evidence showed that cracks propagate through the adiabatic shear bands by Dimple-Void mechanism. However, voids formation before shear banding also occurred. In both mechanisms adiabatic shear bands are formed via dynamic recrystallization where the alpha–beta interphase works as stress concentrator promoting the formation of dimples and voids.
Non-adiabatic dynamics of molecules in optical cavities
Kowalewski, Markus; Mukamel, Shaul
2016-01-01
Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.
Adiabatic compression of elongated field-reversed configurations
The simplest model of plasma dynamics is the adiabatic model. In this model the plasma is assumed to be in MHD equilibrium at each instant of time. The equilibria are connected by the requirement that they all have the same entropy per unit flux, i.e., the equilibria form a sequence generated by adiabatic changes. The standard way of computing such a sequence of equilibria was developed by Grad, but its practical use requires a fairly complicated code. It would be helpful if approximately the same results could be gotten either with a much simpler code or by analytical techniques. A one-dimensional equilibrium code is described and its results are checked against a two-dimensional equilibrium. An even simpler analytic calculation is then presented
Adiabatic theorem for the time-dependent wave operator
The application of time-dependent wave operator theory to the development of a quantum adiabatic perturbation theory is treated both theoretically and numerically, with emphasis on the description of field-matter interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system
Microscopic expression for heat in the adiabatic basis.
Polkovnikov, Anatoli
2008-11-28
We derive a microscopic expression for the instantaneous diagonal elements of the density matrix rho(nn)(t) in the adiabatic basis for an arbitrary time-dependent process in a closed Hamiltonian system. If the initial density matrix is stationary (diagonal) then this expression contains only squares of absolute values of matrix elements of the evolution operator, which can be interpreted as transition probabilities. We then derive the microscopic expression for the heat defined as the energy generated due to transitions between instantaneous energy levels. If the initial density matrix is passive [diagonal with rho(nn)(0) monotonically decreasing with energy] then the heat is non-negative in agreement with basic expectations of thermodynamics. Our findings also can be used for systematic expansion of various observables around the adiabatic limit. PMID:19113464
Influence of viscosity and the adiabatic index on planetary migration
Bitsch, B; Kley, W
2013-01-01
The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state, where the internal dissipation is balanced by radiative transport, and the migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. In this paper we investigate the influence of different viscosity prescriptions (alpha-type and constant) and adiabatic indices on disk structures and how this affects the migration rate of planets embedded in such disks. We perform 3D numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20Earthmass planets is studied. Low-viscosity disks...
DESIGN OF TERNARY COUNTER BASED ON ADIABATIC DOMINO CIRCUIT
Yang Qiankun; Wang Pengjun; Zheng Xuesong
2013-01-01
By researching the ternary counter and low power circuit design method,a novel design of low power ternary Domino counter on switch-level is proposed.Firstly,the switch-level structure expression of ternary loop operation circuit with enable pin is derived according to the switch-signal theory,and the one bit ternary counter is obtained combining the ternary adiabatic Domino literal operation circuit and buffer.Then the switch-level structure expression of enable signal circuit is derived,and the four bits ternary counter is obtained by cascade connection.Finally,the circuit is simulated by Spice tool and the output waveforms transform in proper order indicating that the logic function is correct.The energy consumption of the four bits ternary adiabatic Domino counter is 63％ less than the conventional Domino counterpart.
The Adiabatic Piston and the Second Law of Thermodynamics
Crosignani, B; Conti, C
2002-01-01
A detailed analysis of the adiabatic-piston problem reveals peculiar dynamical features that challenge the general belief that isolated systems necessarily reach a static equilibrium state. In particular, the fact that the piston behaves like a perpetuum mobile, i.e., it never stops but keeps wandering, undergoing sizable oscillations, around the position corresponding to maximum entropy, has remarkable implications on the entropy variations of the system and on the validity of the second law when dealing with systems of mesoscopic dimensions.
Single-parameter adiabatic charge pumping in carbon nanotube resonators
Perroni, C. A.; Nocera, A.; Cataudella, V.
2013-01-01
Single-parameter adiabatic charge pumping, induced by a nearby radio-frequency antenna, is achieved in suspended carbon nanotubes close to the mechanical resonance. The charge pumping is due to an important dynamic adjustment of the oscillating motion to the antenna signal and it is different from the mechanism active in the two-parameter pumping. Finally, the second harmonic oscillator response shows an interesting relationship with the first harmonic that should be experimentally observed.
Quantum pumping with adiabatically modulated barriers in graphene
Zhu, Rui; Chen, Huiming
2009-01-01
We study the adiabatic quantum pumping characteristics in the graphene modulated by two oscillating gate potentials out of phase. The angular and energy dependence of the pumped current is presented. The direction of the pumped current can be reversed when a high barrier demonstrates stronger transparency than a low one, which results from the Klein paradox. The underlying physics of the pumping process is illuminated.
Geometry of adiabatic Hamiltonians for two-level quantum systems
We present the formulation of the problem of the coherent dynamics of quantum mechanical two-level systems in the adiabatic region in terms of the differential geometry of plane curves. We show that there is a natural plane curve corresponding to the Hamiltonian of the system for which the geometrical quantities have a simple physical interpretation. In particular, the curvature of the curve has the role of the nonadiabatic coupling. (paper)
High-Fidelity Entangled Bell States via Shortcuts to Adiabaticity
Paul, Koushik
2016-01-01
We present a couple of protocols based on shortcut to adiabaticity techniques for rapid generation of robust entangled Bell states in a system of two two-state systems. Our protocols rely on the so-called transitionless quantum driving (TQD) algorithm and Lewis-Riesenfeld invariant (LRI) method. Both TQD and LRI methods result in high fidelity in population transfer.Our study shows that it is possible to prepare an entangled state in infinitely short time without losing robustness and efficiency.
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-04-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
Adiabatic Hyperspherical Approach to the Problems of Muon Catalyzed Fusion
The adiabatic hyperspherical approach (AHSA) is applied for the numerical investigation of the scattering processes and resonances in Coulomb three-body mesic atomic systems. The results of the calculations of elastic and inelastic cross sections in low-energy collisions aμ + b (a, b = p, d, t), energies, lifetimes and local characteristics of resonant states of mesic molecular ions nHeaμ+ (n = 3, 4) are presented.
Linear response of galactic halos to adiabatic gravitational perturbations
Murali, Chigurupati; Tremaine, Scott
1997-01-01
We determine the response of a self-similar isothermal stellar system to small adiabatic gravitational perturbations. For odd spherical harmonics, the response is identical to the response of the analogous isothermal fluid system. For even spherical harmonics, the response can be regarded as an infinite series of wavetrains in $\\log r$, implying alternating compression and rarefaction in equal logarithmic radius intervals. Partly because of the oscillatory nature of the solutions, tidal field...
The Adiabatic Piston and the Second Law of Thermodynamics
Crosignani, B.; Di Porto, P.; de Conti, C.
2002-01-01
A detailed analysis of the adiabatic-piston problem reveals peculiar dynamical features that challenge the general belief that isolated systems necessarily reach a static equilibrium state. In particular, the fact that the piston behaves like a perpetuum mobile, i.e., it never stops but keeps wandering, undergoing sizable oscillations, around the position corresponding to maximum entropy, has remarkable implications on the entropy variations of the system and on the validity of the second law...
An analysis of irreversibilities generated due to combustion in an adiabatic combustor burning wood was conducted. This was done for a reactant mixture varying from a rich to a lean mixture. A non-adiabatic non-premixed combustion model of a numerical code was used to simulate the combustion process where the solid fuel was modelled by using the ultimate analysis data. The entropy generation rates due to the combustion and frictional pressure drop processes were computed to eventually arrive at the irreversibilities generated. It was found that the entropy generation rate due to frictional pressure drop was negligible when compared to that due to combustion. It was also found that a minimum in irreversibilities generated was achieved when the Air–Fuel mass ratio was 4.9, which corresponds to an equivalence ratio of 1.64, which are lower than the respective Air–Fuel mass ratio and equivalence ratio for complete combustion with theoretical amount of air of 8.02 and 1. - Highlights: • Entropy generation rate in an adiabatic combustor firing pine wood was investigated. • Most entropy generation rate due to combustion process. • Minimum entropy generation rate was found to occur for an Air–Fuel mass ratio of 4.9. • Molar fractions of species H2 and H2O are equal at minimum entropy generation rate
NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.
Mitra, Avik; Mahesh, T S; Kumar, Anil
2008-03-28
NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR. PMID:18376911
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems
Non-adiabatic energy dissipation in metal homoepitaxy
Hagemann, Ulrich; Huba, Kornelia; Krix, David; Nienhaus, Hermann [Experimental Physics, University of Duisburg-Essen (Germany)
2009-07-01
The growth of metal films releases energies of typically a few eV per metal atom. By now, the energy is believed to be dissipated adiabatically by direct excitation of phonons. We present data which give strong evidence for the creation of electron-hole pairs during Mg homoepitaxy, i.e., for a non-adiabatic dissipation channel. To detect the generated hot charge carriers, large-area ultrathin metal film Mg/p-Si(001) Schottky diodes were fabricated. The homogeneous Schottky barrier height was determined as 0.52 eV and the reverse current could be reduced to below 1 nA at low temperatures. During exposure of the diodes to a thermal Mg atom beam internal currents in the 100 pA range are observed. The currents can be attributed to two mechanisms: first the internal exoemission process (chemicurrent effect) due to non-adiabatic energy dissipation and second the photocurrent due to the infrared radiation of the evaporator. By varying the evaporator temperature and the Mg film thickness the two current contributions can be distinguished. The chemicurrent during Mg homoepitaxy depends exponentially on the evaporation temperature yielding the Mg evaporation enthalpy of 1.3 eV. The strong exponential attenuation of the chemicurrent with increasing Mg film thickness further supports the concept of generation of ballistic charge carriers by the metal formation process.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems
Analysis of adiabatic transfer in cavity quantum electrodynamics
Joyee Ghosh; R Ghosh; Deepak Kumar
2011-10-01
A three-level atom in a conﬁguration trapped in an optical cavity forms a basic unit in a number of proposed protocols for quantum information processing. This system allows for efﬁcient storage of cavity photons into long-lived atomic excitations, and their retrieval with high ﬁdelity, in an adiabatic transfer process through the ‘dark state’ by a slow variation of the control laser intensity. We study the full quantum mechanics of this transfer process with a view to examine the non-adiabatic effects arising from inevitable excitations of the system to states involving the upper level of , which is radiative. We ﬁnd that the ﬁdelity of storage is better, the stronger the control ﬁeld and the slower the rate of its switching off. On the contrary, unlike the adiabatic notion, retrieval is better with faster rates of switching on of an optimal control ﬁeld. Also, for retrieval, the behaviour with dissipation is non-monotonic. These results lend themselves to experimental tests. Our exact computations, when applied to slow variations of the control intensity for strong atom–photon couplings, are in very good agreement with Berry’s superadiabatic transfer results without dissipation.
Adiabatic Shear Mechanisms for the Hard Cutting Process
YUE Caixu; WANG Bo; LIU Xianli; FENG Huize; CAI Chunbin
2015-01-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remalns some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high straln domaln caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
Irreconcilable difference between quantum walks and adiabatic quantum computing
Wong, Thomas G.; Meyer, David A.
2016-06-01
Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.
Adiabatic shear mechanisms for the hard cutting process
Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin
2015-05-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
Sedation and Analgesia in Burn
Özkan Akıncı
2011-07-01
Full Text Available Burn injury is one of the most serious injuries that mankind may face. In addition to serious inflammation, excessive fluid loss, presence of hemodynamic instability due to intercurrent factors such as debridements, infections and organ failure, very different levels and intensities of pain, psychological problems such as traumatic stress disorder, depression, delirium at different levels that occur in patient with severe burn are the factors which make it difficult to provide the patient comfort. In addition to a mild to moderate level of baseline permanent pain in burn patients, which is due to tissue damage, there is procedural pain as well, which occurs by treatments such as grafting and dressings, that are severe, short-term burst style 'breakthrough' pain. Movement and tactile stimuli are also seen in burn injury as an effect to sensitize the peripheral and central nervous system. Even though many burn centers have established protocols to struggle with the pain, studies show that pain relief still inadequate in burn patients. Therefore, the treatment of burn pain and the prevention of possible emergence of future psychiatric problems suc as post-traumatic stress disorder, the sedative and anxiolytic agents should be used as a recommendation according to the needs and hemodynamic status of individual patient. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 26-30
Jones, J D; Barber, B; Engrav, L; Heimbach, D
1991-01-01
Charts of 108 consecutive adult patients with flame burns of 20% to 70% total body surface area were reviewed to determine the incidence of acute alcohol intoxication and the likelihood that intoxicated patients were chronic alcohol abusers, to assess morbidity and mortality in the alcoholic patient with burns, and to characterize the intervention used in postdischarge treatment of the alcoholic patient with burns who survives. Twenty-seven percent of patients were acutely intoxicated at the time of injury. Evidence for chronic alcohol abuse was apparent in 90% of intoxicated patients, compared to only 11% of nonintoxicated patients (p = 0.0001). Alcoholic patients with burns not only had an overall mortality rate three times that of nonalcoholics (p = 0.001) but also died of smaller burns (p less than 0.05). Surviving alcoholic patients with burns required significantly more intravenous antibiotics and a longer hospitalization. Social service evaluation of use of alcohol was made in 84% of the cases of surviving intoxicated burn victims. Further intervention was undertaken in two thirds of these cases, usually involving an outpatient treatment program. PMID:2050723
Momčilović Dragan
2002-01-01
Full Text Available Introduction Understanding of fluid shifts and recognition of the importance of early and appropriate fluid replacement therapy have significantly reduced mortality in the early post burn period. After the bum patient successfully passes the resuscitation period, the burn wound represents the greatest threat to survival. History Since the dawn of civilization, man has been trying to find an agent which would help burn wounds heal, and at the same time, not harm general condition of the injured. It was not until the XX century, after the discovery of antibiotics, when this condition was fulfilled. In 1968, combining silver and sulfadiazine, fox made silver-sulfadiazine, which is a 1% hydro-soluble cream and a superior agent in topical treatment of burns today. Current topical agents None of the topical antimicrobial agents available today, alone or combined, have the characteristics of ideal prophylactic agents, but they eliminate colonization of burn wound, and invasive infections are infrequent. With an excellent spectrum of activity, low toxicity, and ease of application with minimal pain, silver-sulfadiazine is still the most frequently used topical agent. Conclusion The incidence of invasive infections and overall mortality have been significantly reduced after introduction of topical burn wound antimicrobial agents into practice. In most burn patients the drug of choice for prophylaxis is silver sulfadiazine. Other agents may be useful in certain clinical situations.
Rehabilitation of the burn patient
Procter Fiona
2010-10-01
Full Text Available Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ′Burns Rehabilitation′ incorporates the physical, psychological and social aspects of care and it is common for burn patients to experience difficulties in one or all of these areas following a burn injury. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. The aims of burn rehabilitation are to minimise the adverse effects caused by the injury in terms of maintaining range of movement, minimising contracture development and impact of scarring, maximising functional ability, maximising psychological wellbeing, maximising social integration
Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?
H. J. Fahr
2008-01-01
Full Text Available We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.
Protocolized Resuscitation of Burn Patients.
Cancio, Leopoldo C; Salinas, Jose; Kramer, George C
2016-10-01
Fluid resuscitation of burn patients is commonly initiated using modified Brooke or Parkland formula. The fluid infusion rate is titrated up or down hourly to maintain adequate urine output and other endpoints. Over-resuscitation leads to morbid complications. Adherence to paper-based protocols, flow sheets, and clinical practice guidelines is associated with decreased fluid resuscitation volumes and complications. Computerized tools assist providers. Although completely autonomous closed-loop control of resuscitation has been demonstrated in animal models of burn shock, the major advantages of open-loop and decision-support systems are identifying trends, enhancing situational awareness, and encouraging burn team communication. PMID:27600131
Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques
de Ranieri, E.; Roy, P. E.; Fang, D.; Vehsthedt, E. K.; Irvine, A. C.; Heiss, D.; Casiraghi, A.; Campion, R. P.; Gallagher, B. L.; Jungwirth, T.; Wunderlich, J.
2013-09-01
The rich internal degrees of freedom of magnetic domain walls make them an attractive complement to electron charge for exploring new concepts of storage, transport and processing of information. Here we use the tunable internal structure of a domain wall in a perpendicularly magnetized GaMnAsP/GaAs ferromagnetic semiconductor and demonstrate devices in which piezoelectrically controlled magnetic anisotropy yields up to 500% mobility variations for an electrical-current-driven domain wall. We observe current-induced domain wall motion over a wide range of current-pulse amplitudes and report a direct observation and the piezoelectric control of the Walker breakdown separating two regimes with different mobilities. Our work demonstrates that in spin-orbit-coupled ferromagnets with weak extrinsic domain wall pinning, the piezoelectric control allows one to experimentally assess the upper and lower boundaries of the characteristic ratio of adiabatic and non-adiabatic spin-transfer torques in the current-driven domain wall motion.
Rajinder Pal
2016-01-01
Entropy generation, and hence exergy destruction, in adiabatic flow of unstable and surfactant-stabilized emulsions was investigated experimentally in different diameter pipes. Four types of emulsion systems are investigated covering a broad range of the dispersed-phase concentration: (a) unstable oil-in-water (O/W) emulsions without surfactant; (b) surfactant-stabilized O/W emulsions; (c) unstable water-in-oil (W/O) emulsions without surfactant; and (d) surfactant-stabilized W/O emulsions. T...
Large-scale vertical motion calculations in the AVE IV Experiment. [of atmospheric wind velocity
Wilson, G. S.
1976-01-01
Using 3- and 6-h consecutive rawinsonde and surface data from NASA's AVE IV Experiment, synoptic-scale vertical motion calculations are made using an adiabatic technique and three variations of the kinematic technique. Both subjective and objective comparisons in space and time between the sign and magnitude of the computed vertical velocities and precipitation intensities are made. These comparisons are conducted to determine which method would consistently produce realistic magnitudes, patterns, and vertical profiles of vertical velocity essential to the diagnostic study of the relationship between severe convective storms and their environment in AVE IV. The kinematic method, adjusted to the adiabatic value at 100 mb, proved to produce the best overall vertical velocities.
Phoenix Society for Burn Survivors
... Learn More For First Responders & Medical Professionals Phoenix Society is the leader in connecting the burn recovery ... It can be a... Continue Reading The Phoenix Society, Inc. 1835 RW Berends Dr. SW Grand Rapids, ...
Burns, hypertrophic scar and galactorrhea
Hamid Karimi
2013-07-01
Full Text Available An 18-year old woman was admitted to Motahari Burn Center suffering from 30% burns. Treatment modalities were carried out for the patient and she was discharged after 20 days. Three to four months later she developed hypertrophic scar on her chest and upper limbs .At the same time she developed galactorrhea in both breasts and had a disturbed menstrual cycle four months post-burn. On investigation, we found hyperprolactinemia and no other reasons for the high level of prolactin were detected. She received treatment for both the hypertrophic scar and the severe itching she was experiencing. After seven months, her prolactin level had decreased but had not returned to the normal level. It seems that refractory hypertrophic scar is related to the high level of prolactin in burns patients.
Orhan Çizmeci; Samet Vasfi Kuvat
2011-01-01
Wound care in one of the most important prognostic factors in burn victims. Open wound carries risks for infection due to hypothermia, protein and fluid losses. In addition, unhealed wounds are the major risk factors for acute-subacute or chronic complications in burn patients. Although no exact algorithm exists for open wound treatment, early escarectomy or debridement together with grafting is the best option. Ointments together with topical epithelizing agents without dressings are generea...
DIFFERENTIATING PERIMORTEM AND POSTMORTEM BURNING
Brahmaji Master
2015-01-01
Full Text Available One of the most challenging cases in forensic medicine is ascertaining the cause of death of burnt bodies under suspicious circumstances. The key questions that arise at the time of investigation include: 1 Was the person alive or dead prior to fire accident? Did the victim die because of burn? If death was not related to burns, could burns play a role in causing death? Were the burns sustained accidentally, did the person commit suicide or was the person murdered? Are the circumstances suggesting an attempt to conceal crime? How was the fire started? How was the victim identified? In case of mass fatalities, who died first? Postmortem burning of corpses is supposed to be one of the ways to hide a crime. Differentiating the actual cause of death in burn patients is therefore important. Medical examiners usually focus on the defining the changes that occur in tissues while forensic anthropologists deal with the changes related to the bone with or without any the influence of other tissues. Under the circumstances of fire, differentiating the perimortem trauma from that of postmortem cause of bone fractures is vital in determining the cause and motive of death
Heat capacity and sound velocities of low dimensional Fermi gases
Salas, P.; Solis, M. A.
2014-03-01
We report the heat capacity ratio and sound velocities for an interactionless Fermi gas immersed in periodic structures such as penetrable multilayers or multitubes created by one (planes) or two perpendicular (tubes) external Dirac comb potentials. The isobaric specific heat of the fermion gas presents the dimensional crossover previously observed in the isochoric specific heat - from 3D to 2D or to 1D -. The quotient between the two quantities has a prominent bump related to the confinement, and as the temperature increases, it goes towards the monoatomic classical gas value 5/3. We present the isothermal and the adiabatic sound velocities of the fermion gas which show anomalous behavior at temperatures below TF due to the dimensionality of the system, while at higher temperatures again we recover the behavior of a classical Fermi gas. Furthermore, as the temperature goes to zero the sound velocity has a finite value, as expected.
2000-01-01
Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...... estimator automatically compensates for the axial velocity, when determining the transverse velocity by using fourth order moments rather than second order moments. The estimation is optimized by using a lag different from one in the estimation process, and noise artifacts are reduced by using averaging of...... RF samples. Further, compensation for the axial velocity can be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce spatial velocity dispersion....
ADIABATIC MASS LOSS IN BINARY STARS. I. COMPUTATIONAL METHOD
The asymptotic response of donor stars in interacting binary systems to very rapid mass loss is characterized by adiabatic expansion throughout their interiors. In this limit, energy generation and heat flow through the stellar interior can be neglected. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed as mass is removed from the surface. The stellar interior remains in hydrostatic equilibrium. Luminosity profiles in these adiabatic models of mass-losing stars can be reconstructed from the specific entropy profiles and their gradients. These approximations are validated by comparison with time-dependent binary mass transfer calculations. We describe how adiabatic mass-loss sequences can be used to quantify threshold conditions for dynamical timescale mass transfer, and to establish the range of post-common envelope binaries that are allowed energetically. In dynamical timescale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main-sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal timescale mass transfer, a so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical timescale mass transfer as that ratio for which the adiabatic response of the donor star radius to mass loss matches that of its Roche lobe at some point during mass transfer; if the ratio of donor to accretor masses exceeds this critical value, dynamical timescale mass transfer ensues. In common envelope evolution, the dissipation of orbital energy of the
Influence of viscosity and the adiabatic index on planetary migration
Bitsch, B.; Boley, A.; Kley, W.
2013-02-01
Context. The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state. It has been shown that in active disks, where the internal dissipation is balanced by radiative transport, migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. Aims: In this paper we investigate the influence of different viscosity prescriptions (α-type and constant) and adiabatic indices on disk structures. We then determine how this affects the migration rate of planets embedded in such disks. Methods: We perform three-dimensional numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20 MEarth planets is studied. Results: Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. Hence, in these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. Conclusions: For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20-MEarth planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing
Review of Burn Research for Year 2014.
Sen, Soman; Palmieri, Tina; Greenhalgh, David
2015-01-01
Management of burn injuries requires treatments and interventions from many disciplines. Worldwide, burn patients suffer from physical and psychological challenges that impact their lives socially and economically. In this review, we will highlight a handful of the numerous articles published in multiple areas of burn care. The areas of burn care addressed in the article are: epidemiology; burn resuscitation, critical care, and infection; nutrition and metabolism; pain and rehabilitation; prevention and firefighter safety; psychology; and reconstruction and wounds. PMID:26204384
Applications of Adiabatic Approximation to One- and Two-electron Phenomena in Strong Laser Fields
Bondar, Denys
2010-01-01
The adiabatic approximation is a natural approach for the description of phenomena induced by low frequency laser radiation because the ratio of the laser frequency to the characteristic frequency of an atom or a molecule is a small parameter. Since the main aim of this work is the study of ionization phenomena, the version of the adiabatic approximation that can account for the transition from a bound state to the continuum must be employed. Despite much work in this topic, a universally accepted adiabatic approach of bound-free transitions is lacking. Hence, based on Savichev's modified adiabatic approximation [Sov. Phys. JETP 73, 803 (1991)], we first of all derive the most convenient form of the adiabatic approximation for the problems at hand. Connections of the obtained result with the quasiclassical approximation and other previous investigations are discussed. Then, such an adiabatic approximation is applied to single-electron ionization and non-sequential double ionization of atoms in a strong low fr...
Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-ion Transport
An, Shuoming; del Campo, Adolfo; Kim, Kihwan
2016-01-01
Adiabatic dynamics plays an essential role in quantum technologies. By driving a quantum system slowly, the quantum evolution can be engineered with suppressed excitation. Yet, environmentally-induced decoherence limits the implementation of adiabatic protocols. Shortcuts to adiabaticity (STA) have the potential to revolutionize quantum technologies by speeding up the time evolution while mimicking adiabatic dynamics. These nonadiabatic protocols can be engineered by means an auxiliary control field is used to tailor excitations. Here we present the first experimental realization of counterdiabatic driving in a continuous variable system, implementing a shortcut to the adiabatic transport of a trapped ion, in which nonadiabatic transitions are suppressed during all stages of the process. The resulting dynamics is equivalent to a "fast-motion video" of the adiabatic trajectory. We experimentally demonstrate the enhanced robustness of the protocol with respect to alternative approaches based on classical local ...
Nonlinear effects generation in non-adiabatically tapered fibres
Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier
2015-12-01
Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.
Non-adiabatic study of the Kepler subgiant KIC 6442183
Grosjean M.
2015-01-01
Full Text Available Thanks to the precision of Kepler observations, [3] were able to measure the linewidth and amplitude of individual modes (including mixed modes in several subgiant power spectra. We perform a forward modelling of a Kepler subgiant based on surface properties and observed frequencies. Non-adiabatic computations including a time- dependent treatment of convection give the lifetimes of radial and non-radial modes. Next, combining the lifetimes and inertias with a stochastic excitation model gives the amplitudes of the modes. We can now directly compare theoretical and observed linewidths and amplitudes of mixed-modes to obtain new constraints on our theoretical models.
Landau-Zener Transitions in an Adiabatic Quantum Computer
Johansson, J; Amin, M. H. S.; Berkley, A. J.; Bunyk, P.; Choi, V.; Harris, R.; Johnson, M. W.; Lanting, T. M.; Lloyd, Seth; ROSE, G
2008-01-01
We report an experimental measurement of Landau-Zener transitions on an individual flux qubit within a multi-qubit superconducting chip designed for adiabatic quantum computation. The method used isolates a single qubit, tunes its tunneling amplitude Delta into the limit where Delta is much less than both the temperature T and the decoherence-induced energy level broadening, and forces it to undergo a Landau-Zener transition. We find that the behavior of the qubit agrees to a high degree of a...
Modeling of the Adiabatic and Isothermal Methanation Process
Porubova, Jekaterina; Bazbauers, Gatis; Markova, Darja
2011-01-01
Increased use of biomass offers one of the ways to reduce anthropogenic impact on the environment. Using various biomass conversion processes, it is possible to obtain different types of fuels: • solid, e.g. bio-carbon; • liquid, e.g. biodiesel and ethanol; • gaseous, e.g. biomethane. Biomethane can be used in the transport and energy sector, and the total methane production efficiency can reach 65%. By modeling adiabatic and isothermal methanation processes, the most effective one from the methane production point of view is defined. Influence of the process parameters on the overall efficiency of the methane production is determined.
Adiabatic transport of qubits around a black hole
Viennot, David
2016-01-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
Adiabatic quantum computation and quantum annealing theory and practice
McGeoch, Catherine C
2014-01-01
Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'''' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a nov
Adiabatic regularisation of power spectra in nonminimally coupled chaotic inflation
Alinea, Allan L
2016-01-01
We investigate the effect of adiabatic regularisation on both the tensor- and scalar-perturbation power spectra in \\textit{nonminimally} coupled chaotic inflation. Similar to that of the \\textit{minimally} coupled general single-field inflation, we find that the subtraction term is suppressed by an exponentially decaying factor involving the number of $ e $-folds. By following the subtraction term long enough beyond horizon crossing, the regularised power spectrum tends to the "bare" power spectrum. This study justifies the use of the unregularised ("bare") power spectrum in standard calculations.
On the rotating wave approximation in the adiabatic limit
I revisit a longstanding question in quantum optics; when is the rotating wave approximation justified? In terms of the Jaynes–Cummings and Rabi models I demonstrate that the approximation in general breaks down in the adiabatic limit regardless of system parameters. This is explicitly shown by comparing Berry phases of the two models, where it is found that this geometrical phase is strictly zero in the Rabi model contrary to the non-trivial Berry phase of the Jaynes–Cummings model. The source of this surprising result is traced back to different topologies in the two models. (paper)
Adiabatic collapse and explosion of small mass iron nuclei
Adiabatic collapse of iron nuclei with 1.5 and 1.7 Msun masses is investigated using the equation of state and electron capture rate in the Fermi-gas approximation, derived at the Illinois University. Reduction of lepton number in the collapse process leads to the fact that under quite different presupernova nucleus parameters the calculated mass of homologie nucleus is only about 1 Msun. Therefore the mass of the above lying layers through which the shock wave should pass, becomes quite high loosing the energy for dissociation, which hampers any sufficient mass and kinetic energy losses. 17 refs.; 8 figs.; 2 tabs
Plasma heating via adiabatic magnetic compression-expansion cycle
Avinash, K.; Sengupta, M.; Ganesh, R.
2016-06-01
Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.
Relativistic blast waves in two dimensions. I - The adiabatic case
Shapiro, P. R.
1979-01-01
Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.
Quantum pumping in closed systems, adiabatic transport, and the Kubo formula
Cohen, Doron
2003-01-01
Quantum pumping in closed systems is considered. We explain that the Kubo formula contains all the physically relevant ingredients for the calculation of the pumped charge ($Q$) within the framework of linear response theory. The relation to the common formulations of adiabatic transport and ``geometric magnetism" is clarified. We distinguish between adiabatic and dissipative contributions to $Q$. On the one hand we observe that adiabatic pumping does not have to be quantized. On the other ha...
Adiabatic heavy-ion fusion potentials for fusion at deep sub-barrier energies
S V S Sastry; S Kailas; A K Mohanty; A Saxena
2005-01-01
The recently reported unusual behaviour of fusion cross-sections at extreme sub-barrier energies has been examined. The adiabatic limit of fusion barriers has been determined from experimental data using the barrier penetration model. These adiabatic barriers are consistent with the adiabatic fusion barriers derived from the modified Wilzynska–Wilzynski prescription. The fusion barrier systematics has been obtained for a wide range of heavy-ion systems.
Wójcik, P.; Zegrodnik, M.; Rzeszotarski, B.; Adamowski, J.
2016-09-01
The tunneling conductance through the half-metal/conical magnet/superconductor (HM/CM/SC) junctions is investigated with the use of the Bogoliubov-de Gennes equations in the framework of Blonder-Tinkham-Klapwijk formalism. Due to the spin band separation in the HM, the conductance in the subgap region is mainly determined by the anomalous Andreev reflection, the probability of which strongly depends on the spin transmission in the CM layer. We show that the spins of electrons injected from the HM can be transmitted through the CM to the SC either adiabatically or non-adiabatically depending on the period of the spatial modulation of the exchange field. We find that the conductance in the subgap region oscillates as a function of the CM layer thickness wherein the oscillations transform from the irregular pattern in the non-adiabatic regime to the regular one in the adiabatic regime. For both adiabatic and non-adiabatic transport regimes the conductance is studied over a broad range of parameters determining the spiral magnetization in the CM. We find that in the non-adiabatic regime, the decrease of the exchange field amplitude in the CM leads to the emergence of the conductance peak for the particular CM thickness in agreement with recent experiments.
Burning mouth syndrome: Current concepts.
Nasri-Heir, Cibele; Zagury, Julyana Gomes; Thomas, Davis; Ananthan, Sowmya
2015-01-01
Burning mouth syndrome (BMS) is a chronic pain condition. It has been described by the International Headache Society as "an intra-oral burning or dysesthetic sensation, recurring daily for more than 2 h/day for more than 3 months, without clinically evident causative lesions." BMS is frequently seen in women in the peri-menopausal and menopausal age group in an average female/male ratio of 7:1. The site most commonly affected is the anterior two-thirds of the tongue. The patient may also report taste alterations and oral dryness along with the burning. The etiopathogenesis is complex and is not well-comprehended. The more accepted theories point toward a neuropathic etiology, but the gustatory system has also been implicated in this condition. BMS is frequently mismanaged, partly because it is not well-known among healthcare providers. Diagnosis of BMS is made after other local and systemic causes of burning have been ruled out as then; the oral burning is the disease itself. The management of BMS still remains a challenge. Benzodiazepines have been used in clinical practice as the first-line medication in the pharmacological management of BMS. Nonpharmacological management includes cognitive behavioral therapy and complementary and alternative medicine (CAM). The aim of this review is to familiarize healthcare providers with the diagnosis, pathogenesis, and general characteristics of primary BMS while updating them with the current treatment options to better manage this group of patients. PMID:26929531
On the theory of turbulent flame velocity
Bychkov, Vitaly; Petchenko, Arkady; 10.1080/00102200600808466
2012-01-01
The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much larger than the cut off wavelength of the instability. The developed theory is used to analyse recent experiments on turbulent flames propagating in tubes. It is demonstrated that most of the flame velocity increase measured experimentally is provided by the large scale effects like the flame instability, and not by the small-scale external turbulence.
Adiabatic invariants of generalized Lutzky type for disturbed holonomic nonconservative systems
Based on the definition of higher-order adiabatic invariants of a mechanical system, a new type of adiabatic invariants, i.e. generalized Lutzky adiabatic invariants, of a disturbed holonomic nonconservative mechanical system are obtained by investigating the perturbation of Lie symmetries for a holonomic nonconservative mechanical system with the action of small disturbance. The adiabatic invariants and the exact invariants of the Lutzky type of some special cases, for example, the Lie point symmetrical transformations, the special Lie symmetrical transformations, and the Lagrange system, are given. And an example is given to illustrate the application of the method and results. (general)
Adiabatic regularization and particle creation for scalar and spin one-half fields
Landete, Aitor; Torrenti, Francisco
2013-01-01
The extension of the adiabatic regularization method to spin-$1/2$ fields requires a self-consistent adiabatic expansion of the field modes. We provide here the details of such expansion, which differs from the WKB ansatz that works well for scalars, to firmly establish the generalization of the adiabatic renormalization scheme to spin-$1/2$ fields. We also provide a general overview of the adiabatic method to analyze particle creation and perform renormalization of relevant expectation values. We focus on the computation of particle production in de Sitter spacetime and obtain an analytic expression of the renormalized stress-energy tensor for Dirac fermions.
Angular velocity discrimination
Kaiser, Mary K.
1990-01-01
Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.
Incinerated, transformed into fuel or a gas, waste is a versatile source of energy. It is as once a problem and a resource that is increasingly the focus of green policies. According to the 2009 World Waste Survey, between 3.4 and 4 billion tons of waste are produced each year worldwide. Leading the pack is China, with 300 million tons produced in 2005, followed closely by the United States, with 238 million tons. But the United States wins the per capita count with 760 kg of waste produced per year per inhabitant; Australia comes in second. In Europe, 500 kg of waste is produced per capita per year for a total of 2 billion tons generated annually, and a growth rate of 10% in ten years' time. Between 2/3 and 3/4 of these waste materials are sorted, and a portion of them is recycled. The rest is either carted away to a dumping ground, or incinerated. But this waste is primarily domestic, and still contains energy, energy that can be recovered. The added bonus is two-fold: an additional source of energy is created by transforming waste, called waste-to- wheel or waste-to-energy (WTE), and the decomposition of organic waste does not give off GHGs. Two ways are known today to transform wastes into energy: the thermal process, where heat is extracted from the waste (and sometimes converted into electricity), and the non-thermal process, which comprises collecting energy in a chemical form (biogas, biofuel). Both technologies depend on the type of waste to be treated: plastic materials, household refuse, fermentable elements, sludge residue from sewage treatment plants, agricultural waste, forestry industry waste, etc. The thermal process is by far the most widely employed. 74% of waste is incinerated in Japan, and around 30 to 55% in most European countries. The second process does not burn waste and is better suited to wet and organic matter, i.e., to waste that contains quantities of biomass: fermentable waste, sludge, agricultural waste and the gas given off at
Ever since pulsars were found to have significant proper motions, the origin of the velocities has been an intriguing question. The more recent finding that the velocities display a significant correlation with the derived magnetic moments of the pulsars has made the origin of the velocities appear even more mysterious. Arguments are given to show that the above correlation is not causal, but accidental. Pulsar velocities are determined by their binary histories and not governed in any way by their magnetic fields. 10 references, 4 figures
About measuring velocity dispersions
Fellhauer, M.
A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.
Schedule path optimization for adiabatic quantum computing and optimization
Zeng, Lishan; Zhang, Jun; Sarovar, Mohan
2016-04-01
Adiabatic quantum computing and optimization have garnered much attention recently as possible models for achieving a quantum advantage over classical approaches to optimization and other special purpose computations. Both techniques are probabilistic in nature and the minimum gap between the ground state and first excited state of the system during evolution is a major factor in determining the success probability. In this work we investigate a strategy for increasing the minimum gap and success probability by introducing intermediate Hamiltonians that modify the evolution path between initial and final Hamiltonians. We focus on an optimization problem relevant to recent hardware implementations and present numerical evidence for the existence of a purely local intermediate Hamiltonian that achieve the optimum performance in terms of pushing the minimum gap to one of the end points of the evolution. As a part of this study we develop a convex optimization formulation of the search for optimal adiabatic schedules that makes this computation more tractable, and which may be of independent interest. We further study the effectiveness of random intermediate Hamiltonians on the minimum gap and success probability, and empirically find that random Hamiltonians have a significant probability of increasing the success probability, but only by a modest amount.
Stimulated Raman Adiabatic Passage (STIRAP) Among Degenerate-Level Manifolds
Kis, Z; Shore, B W; Vitanov, N V; Kis, Zsolt; Karpati, Attila; Shore, Bruce W.; Vitanov, Nikolay V.
2004-01-01
We examine the conditions needed to accomplish stimulated Raman adiabatic passage (STIRAP) when the three levels (g, e and f) are degenerate, with arbitrary couplings contributing to the pump-pulse interaction (g - e) and to the Stokes-pulse interaction (e-f). We show that in general a sufficient condition for complete population removal from the g set of degenerate states for arbitrary, pure or mixed, initial state is that the degeneracies should not decrease along the sequence g, e and f. We show that when this condition holds it is possible to achieve the degenerate counterpart of conventional STIRAP, whereby adiabatic passage produces complete population transfer. Indeed, the system is equivalent to a set of independent three-state systems, in each of which a STIRAP procedure can be implemented. We describe a scheme of unitary transformations that produces this result. We also examine the cases when this degeneracy constraint does not hold, and show what can be accomplished in those cases. For example, fo...
Adiabatic creation of coherent superposition states via multiple intermediate states
Karpati, A
2003-01-01
We consider an adiabatic population transfer process that resembles the well established stimulated Raman adiabatic passage (STIRAP). In our system, the states have nonzero angular momentums $J$, therefore, the coupling laser fields induce transitions among the magnetic sublevels of the states. In particular, we discuss the possibility of creating coherent superposition states in a system with coupling pattern $J=0\\Leftrightarrow J=1$ and $J=1\\Leftrightarrow J=2$. Initially, the system is in the J=0 state. We show that by two delayed, overlapping laser pulses it is possible to create any final superposition state of the magnetic sublevels $|2,-2>$, $|2,0>$, $|2,+2>$. Moreover, we find that the relative phases of the applied pulses influence not only the phases of the final superposition state but the probability amplitudes as well. We show that if we fix the shape and the time-delay between the pulses, the final state space can be entirely covered by varying the polarizations and relative phases of the two pu...
Optimization using quantum mechanics: quantum annealing through adiabatic evolution
We review here some recent work in the field of quantum annealing, alias adiabatic quantum computation. The idea of quantum annealing is to perform optimization by a quantum adiabatic evolution which tracks the ground state of a suitable time-dependent Hamiltonian, where 'ℎ' is slowly switched off. We illustrate several applications of quantum annealing strategies, starting from textbook toy-models-double-well potentials and other one-dimensional examples, with and without disorder. These examples display in a clear way the crucial differences between classical and quantum annealing. We then discuss applications of quantum annealing to challenging hard optimization problems, such as the random Ising model, the travelling salesman problem and Boolean satisfiability problems. The techniques used to implement quantum annealing are either deterministic Schroedinger's evolutions, for the toy models, or path-integral Monte Carlo and Green's function Monte Carlo approaches, for the hard optimization problems. The crucial role played by disorder and the associated non-trivial Landau-Zener tunnelling phenomena is discussed and emphasized. (topical review)
Observational tests of non-adiabatic Chaplygin gas
Carneiro, S
2014-01-01
In a previous paper it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter $\\omega = -1$. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the ...
The 0.1K bolometers cooled by adiabatic demagnetization
Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.
1983-01-01
The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
General background conditions for K-bounce and adiabaticity
Romano, Antonio Enea
2016-01-01
We study the background conditions for a bounce in a single scalar field model with a generalized kinetic term $K(X)$. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter $H$ changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for $K(X)$ and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic $K$, and the other on a $K$ which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces. In models where the bounce occurs when the potential is not constant, large non adiabatic perturbations are produced, which can in turn source the growth of anisotropies. In the region where these models have a constant potential they became adiabatic on any scale and because of thi...
Primeval adiabatic perturbations: constraints from the mass distribution
The autocorrelation function of the mass distribution after decoupling of matter and radiation is computed under the assumption of linear primeval adiabatic perturbations using a new numerical method, and the results are compared to what is inferred from the present galaxy distribution. The computations are based on a Friedmann-Lemaitre model with Λ = 0 containing radiation, zero-mass neutrinos, hydrogen, and helium. The primeval power spectrum of density fluctuations is taken to approximate a power law k/sup v/. If the density parameter is Ω0 = 2q0< or approx. =0.1; or, if ν< or approx. =2, then the coherence length of the residual mass distribution is too large: when the amplitude is adjusted to make the first generation of objects form at z< or approx. =2, there are unacceptably large fluctuations in the mass distribution now on scales approx.12 to 40 Mpc. If ν = 3 to 4, this problem is avoided, but to prevent diverging curvature fluctuations the power law k/sup v/ must be truncated at a rather large comoving wavelength, lambda/sub x/approx.1 Mpc. The parameters thus are tightly limited, but it appears that one still can find a consistent scenario for the development of galaxies out of linear primeval adiabatic perturbations
On the Time Dependence of Adiabatic Particle Number
Dabrowski, Robert
2016-01-01
We consider quantum field theoretic systems subject to a time-dependent perturbation, and discuss the question of defining a time dependent particle number not just at asymptotic early and late times, but also during the perturbation. Naively, this is not a well-defined notion for such a non-equilibrium process, as the particle number at intermediate times depends on a basis choice of reference states with respect to which particles and anti-particles are defined, even though the final late-time particle number is independent of this basis choice. The basis choice is associated with a particular truncation of the adiabatic expansion. The adiabatic expansion is divergent, and we show that if this divergent expansion is truncated at its optimal order, a universal time dependence is obtained, confirming a general result of Dingle and Berry. This optimally truncated particle number provides a clear picture of quantum interference effects for perturbations with non-trivial temporal sub-structure. We illustrate the...
Schedule path optimization for adiabatic quantum computing and optimization
Adiabatic quantum computing and optimization have garnered much attention recently as possible models for achieving a quantum advantage over classical approaches to optimization and other special purpose computations. Both techniques are probabilistic in nature and the minimum gap between the ground state and first excited state of the system during evolution is a major factor in determining the success probability. In this work we investigate a strategy for increasing the minimum gap and success probability by introducing intermediate Hamiltonians that modify the evolution path between initial and final Hamiltonians. We focus on an optimization problem relevant to recent hardware implementations and present numerical evidence for the existence of a purely local intermediate Hamiltonian that achieve the optimum performance in terms of pushing the minimum gap to one of the end points of the evolution. As a part of this study we develop a convex optimization formulation of the search for optimal adiabatic schedules that makes this computation more tractable, and which may be of independent interest. We further study the effectiveness of random intermediate Hamiltonians on the minimum gap and success probability, and empirically find that random Hamiltonians have a significant probability of increasing the success probability, but only by a modest amount. (paper)
FRW-type cosmologies with adiabatic matter creation
Some properties of cosmological models with matter creation are investigated in the framework of the Friedmann-Robertson-Walker line element. For adiabatic matter creation, as developed by Prigogine and co-workers, we derive a simple expression relating the particle number density n and energy density ρ which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate ψ=3βnH, where β is a pure number of the order of unity and H is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index γ of the equation of state by an effective parameter γ*=γ(1-β). The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of H suggested by recent measurements. copyright 1996 The American Physical Society
Advanced tokamak burning plasma experiment
A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)
Burn Control Mechanisms in Tokamaks
Hill, Maxwell; Stacey, Weston
2013-10-01
Burn control and passive safety in accident scenarios will be an important design consideration in future tokamaks, especially those used as a neutron source for fusion-fission hybrid reactors, such as the Subcritical Advanced Burner Reactor (SABR) concept. At Georgia Tech, we are developing a new burning plasma dynamics code to investigate passive safety mechanisms that could prevent power excursions in tokamak reactors. This code solves the coupled set of balance equations governing burning plasmas in conjunction with a two-point SOL-divertor model. Predictions have been benchmarked against data from DIII-D. We are examining several potential negative feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instabilities, iii) the degradation of alpha-particle confinement resulting from ripples in the toroidal field, iv) modifications to the radial current profile, v) ``divertor choking'' and vi) Type 1 ELMs.
Epidemiology of severe burn injuries in a Tertiary Burn Centre in Tehran, Iran
Mohammadi-Barzelighi, H.; Alaghehbandan, R.; Motevallian, A.; Alinejad, F.; Soleimanzadeh-Moghadam, S.; Sattari, M.; A R Lari
2011-01-01
The aim of the study was to examine the epidemiological characteristics of hospitalized burn patients in a tertiary burn centre in Tehran, Iran. A hospital-based cross-sectional study of all hospitalized patients with burn injuries was conducted in Motahari Burn and Reconstruction Center in Tehran from August to December 2010. Medical records of all hospitalized burn patients were reviewed and pertinent information was captured. A total of 135 patients with severe burns requiring hospitalizat...
EXTRACORPOREAL SHOCKWAVE THERAPY FOR POST BURN CARPAL TUNNEL SYNDROME
Hesham Galal Mahran
2015-04-01
Full Text Available Background: Carpal tunnel syndrome is considered the most common compression neuropathy of the upper extremity. It may lead to work disability and functional impairment. Burns are associated with swelling and eschar which forms a tight band constricting the circulation distally. Purpose: To investigate the effect of shockwave therapy on the carpal tunnel syndrome post burn. Subjects: Thirty male and female patients selected with manifestation of carpal tunnel syndrome post burn evaluated by electromyography, patients were divided randomly into two equal groups (A & B; group (A received shockwave therapy plus traditional physical therapy, while group (B received only traditional physical therapy (heating and stretching; Shock wave therapy protocol was two sessions per week for 12 weeks. Traditional physiotherapy was applied for both groups, 20 min for session 3times per week for 12 weeks. Evaluation: Electro diagnostic evaluation was done before treatment, one and three months post treatment. Results: There were improvement and significant increase in motor and sensory conduction velocities in shockwave group compared to those in the control group (p<0.05, also there were improvement and significant decrease in motor and sensory latencies in shockwave group compared to those in control group (p<0.05. Conclusion: Extracorporeal shockwave therapy provided a non-invasive, satisfied treatment option for carpal tunnel syndrome post burn.
BACTERIOLOGICAL STUDY OF BURNS INFECTION
Shareen
2015-10-01
Full Text Available A burn is a wound in which there is coagulative necrosis of the tissue, majority of which are caused by heat. Burn injury is a major public health problem in many areas of the world. Burns predispose to infection by damaging the protective barrier function of the skin, thus facilitating the entry of pa thogenic microorganisms and by inducing systemic immunosuppression . (1 OBJECTIVE : The present study was therefore undertaken to isolate and identify the aerobic bacterial flora in burn patients and its antibiotic susceptibility pattern. MATERIAL & METHODS : A total of 100 patients admitted with different degree of burns were studied. Wound swabs were taken with aseptic precautions by dry sterile cotton swab sticks. These swabs were transported to the microbiology laboratory and the isolates were identified based on standard microbiological methods. Antibiotic susceptibility testing was done by Kirby Bauer’s disc diffusion method. RESULT : A total of 127 bacterial pathogens were isolated from 100 patients. Of these, 69% were monomicrobial in nature and 28% wer e polymicrobial. The most frequent cause of infection was found to be Staphylococcus aureus (39.4%, followed by Pseudomonas aeruginosa (14.2%, Klebsiella pneumonia (13.4%, E.coli (8.7% and Acinetobacter species (7.9%.Out of the total Staphylococcus au reus isolates, 19 were Methicillin sensitive and 31 were Methicillin resistant (MRSA. All the MRSA strains were 100% sensitive to Vancomycin and Linezolid. The Pseudomonas aeruginosa isolates were most sensitive to Amikacin (9 4.4%, Fluroquinolones (61.1% . CONCLUSION : Staphylococcus aureus and Pseudomonas aeruginosa were major causes of infection in burn wounds. Therefore it is necessary to implement urgent measures for restriction of nosocomial infections, sensible limitation on the use of antimicrobial agents, strict disinfection and hygiene.
Global burned area and biomass burning emissions from small fires
Randerson, J.T; Chen, Y.; Werf, van der G.R.; Rogers, B.M.; Morton, D.C.
2012-01-01
[1] In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires ofte
Park, H-S; Hurricane, O A; Callahan, D A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; Ma, T; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Kline, J L
2014-02-01
This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot. Indeed, the observed hot spot mix in these implosions was low and the measured neutron yields were typically 50% (or higher) of the yields predicted by simulation. On one high performing shot (N130812), 1.7 MJ of laser energy at a peak power of 350 TW was used to obtain a peak hohlraum radiation temperature of ∼300 eV. The resulting experimental neutron yield was (2.4±0.05)×10(15) DT, the fuel ρR was (0.86±0.063) g/cm2, and the measured Tion was (4.2±0.16) keV, corresponding to 8 kJ of fusion yield, with ∼1/3 of the yield caused by self-heating of the fuel by α particles emitted in the initial reactions. The generalized Lawson criteria, an ignition metric, was 0.43 and the neutron yield was ∼70% of the value predicted by simulations that include α-particle self-heating. PMID:24580603
Flow regimes of adiabatic gas-liquid two-phase under rolling conditions
Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui
2013-07-01
Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.
Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion
NASH,THOMAS J.
2000-11-01
The magnetic implosion of a high-Z quasi-spherical shell filled with DT fuel by the 20-MA Z accelerator can heat the fuel to near-ignition temperature. The attainable implosion velocity on Z, 13-cm/{micro}s, is fast enough that thermal losses from the fuel to the shell are small. The high-Z shell traps radiation losses from the fuel, and the fuel reaches a high enough density to reabsorb the trapped radiation. The implosion is then nearly adiabatic. In this case the temperature of the fuel increases as the square of the convergence. The initial temperature of the fuel is set by the heating of an ion acoustic wave to be about 200-eV after a convergence of 4. To reach the ignition temperature of 5-keV an additional convergence of 5 is required. The implosion dynamics of the quasi-spherical implosion is modeled with the 2-D radiation hydrodynamic code LASNEX. LASNEX shows an 8-mm diameter quasi-spherical tungsten shell on Z driving 6-atmospheres of DT fuel nearly to ignition at 3.5-keV with a convergence of 20. The convergence is limited by mass flow along the surface of the quasi-spherical shell. With a convergence of 20 the final spot size is 400-{micro}m in diameter.
Primordial carriers of missing mass in the universe, such as finite-mass neutrinos, heavy (m/sub L/> or approx. =1 GeV) neutral leptons, or black holes, may have contributed to the evolution of pregalactic adiabatic irregularities during the cosmological era of hydrogen recombination. Equations previously derived by the authors are applied to a three-component (baryons, radiation, heavy but weakly interacting particles) model medium; dissipative effects are analyzed numerically, and the plasma velocity field is calculated at the epoch of decoupling. In a model with three massive-neutrino species (ν/sub e/, ν/sub μ/, ν/sub tau/) of equal mass (roughly-equal30 eV) and thermodynamic number density, the perturbations in the plasma density when the redshift zroughly-equal103 would amount to 0.1% at most. If instead the gravitating-particle background consists of stable heavy leptons or primordial black holes, the maximum density contrast will be an order of magnitude lower. The gravitation of any density fluctuations in the ordinary collisional matter during the recombination and post-recombination eras will serve to modulate the amplitude of the small-scale part of the spectrum of inhomogeneities occurring in a background of massive neutrinos
Demographics of pediatric burns in Vellore, India.
Light, Timothy D; Latenser, Barbara A; Heinle, Jackie A; Stolpen, Margaret S; Quinn, Keely A; Ravindran, Vinitha; Chacko, Jacob
2009-01-01
The American Burn Association, Children's Burn Foundation, and Christian Medical College in Vellore, India have partnered together to improve pediatric burn care in Southern India. We report the demographics and outcomes of burns in this center, and create a benchmark to measure the effect of the partnership. A comparison to the National Burn Repository is made to allow for generalization and assessment to other burn centers, and to control for known confounders such as burn size, age, and mechanism. Charts from the pediatric burn center in Vellore, India were retrospectively reviewed and compared with data in the American Burn Association National Burn Registry (NBR) for patients younger than 16 years. One hundred nineteen pediatric patients with burns were admitted from January 2004 through April 2007. Average age was 3.8 years; average total body surface area burn was 24%: 64% scald, 30% flame, 6% electric. Annual death rate was 10%, with average fatal total body surface area burn was 40%. Average lengths of stay for survivors was 15 days. Delay of presentation was common (45% of all patients). Thirty-five of 119 patients received operations (29%). Flame burn patients were older (6.1 years vs 2.6 years), larger (30 vs 21%), had a higher fatality rate (19.4 vs 7.7%), and more of them were female (55 vs 47%) compared with scald burn patients. Electric burn patients were oldest (8.3 years) and all male. When compared with data in the NBR, average burn size was larger in Vellore (24 vs 9%). The mortality rate was higher in Vellore (10.1 vs 0.5%). The average mortal burn size in Vellore was smaller (40 vs 51%). Electric burns were more common in Vellore (6.0 vs 1.6%). Contact burns were almost nonexistent in Vellore (0.9 vs 13.1%). The differences in pediatric burn care from developing health care systems to burn centers in the US are manifold. Nonpresentation of smaller cases, and incomplete data in the NBR explain many of the differences. However, burns at this
Wakker, Bart P.; Woerden, Hugo van; Oswalt, Terry D.; Gilmore, Gerard
2013-01-01
The high-velocity clouds (HVCs) are gaseous objects that do not partake in differential galactic rotation, but instead have anomalous velocities. They trace energetic processes on the interface between the interstellar material in the Galactic disk and intergalactic space. Three different processes
Critical ionization velocity interaction
Different problems of current interest regarding the critical ionization velocity (CIV) phenomenon are discussed. The article is divided into five sections corresponding to different aspects of the interaction: velocity, magnetic field strength, geometry, neutral gas density, and time duration. In each section, experiments and theories - microscopic and macroscopic - are discussed
Low and high velocity clouds produced by young stellar clusters
Rodríguez-Gónzalez, A; Canto, J
2009-01-01
Intermediate and high velocity HI clouds rain onto the plane of our Galaxy. They are observed at heights of between 500 and 1500 pc, falling onto the Galactic plane at velocities from 50 to 140 km s$^{-1}$. To explain the origin of these clouds, we present a galactic fountain model, driven by the wind from a super stellar cluster (SSC). We solve the equations for a steady, radiative de Laval nozzle flow. We consider two effects not considered previously in astrophysical nozzle flow models: cooling functions for different metallicities, and the direct action of the galactic gravitational field on the gas flowing along the nozzle. For an adiabatic nozzle flow, the gravity acting directly on the gas within the nozzle "stalls" the nozzle flow for initial wind velocities lower than the escape velocity from the Galaxy. For the same wind velocity, a radiative nozzle flow stalls at lower altitudes above the galactic plane. We find that SSC winds with velocities of $v_w=500 - 800$ km s$^{-1}$ produce nozzles stall at ...
Absract: In view of the world-wide problem of energy sustainability and greenhouse gas production (carbon dioxide), it is timely to review the issues involved in generating heat and power from all fuels and especially new (to the UK) solid fuels, including high moisture fuels such as wood, SRF, oil shale, tar sands and brown coal, which will become major international fuels as oil and gas become depleted. The combustion properties of some of these materials are significantly different from traditional coal, oil and gas fuels, however the technology proposed herein is also applicable to these conventional fuels. This paper presents some innovative combustion system options and the associated technical factors that must be considered for their implementation. For clarity of understanding, the novel concepts will be largely presented in terms of a currently developing solid fuel market; biomass wood chips. One of the most important characteristics of many solid fuels to be used in the future (including oil shale and brown coal) is their high moisture content of up to 60%. This could be removed by utilising low grade waste heat that is widely available in industry to dry the fuel and thus reduce transport costs. Burning such dried wood for power generation also increases the energy available from combustion and thus acts as a thermal transformer by upgrading the low grade heat to heat available at combustion temperatures. The alternative approach presented here is to recover the latent heat by condensing the extrinsic moisture and the water formed during combustion. For atmospheric combustion, the temperature of the condensed combustion products is below the dew point at about 55-65 oC and is only suitable for recovery in an efficient district heating system. However, in order to generate power from the latent heat, the condensation temperature must be increased to the level where the heat can be used in the thermodynamic power cycle. This can be achieved by increasing
Epidemiology of U.K. military burns.
Foster, Mark Anthony; Moledina, Jamil; Jeffery, Steve L A
2011-01-01
The authors review the etiology of U.K. military burns in light of increasing hybrid warfare. Analysis of the nature of these injured personnel will provide commanders with the evidence to plan for on-going and future operations. Case notes of all U.K. Armed Forces burn injured patients who were evacuated to the Royal Centre for Defence Medicine were reviewed. Demographics, burn severity, pattern, and mortality details were included. There were 134 U.K. military personnel with burns requiring return to the United Kingdom during 2001-2007. The median age was 27 (20-62) years. Overall, 60% of burns seen were "accidental." Burning waste, misuse or disrespect of fuel, and scalds were the most prevalent noncombat burns. Areas commonly burned were the face, legs, and hands. During 2006-2007 in the two major conflicts, more than 59% (n = 36) of the burned patients evacuated to the United Kingdom were injured during combat. Burns sustained in combat represent 5.8% of all combat casualties and were commonly associated with other injuries. Improvised explosive device, minestrike, and rocket-propelled grenade were common causes. The mean TBSA affected for both groups was 5% (1-70). The majority of combat burn injuries have been small in size. Greater provision of flame retardant equipment and clothing may reduce the extent and number of combat burns in the future. The numbers of noncombat burns are being reduced by good military discipline. PMID:21422938
To Burn or not to Burn: Making the Burning of Chocolate Hills of Bohol, Philippines Carbon Neutral
Nathaniel T. Bantayan; Margaret M Calderon; Flocencia B. Pulhin; Canesio D. Predo; Rose Ann C. Baruga
2013-01-01
This study was conducted to evaluate the current management regime of burning vis-à-vis burning with carbon offsets for the Chocolate Hills Natural Monument (CHNM) in Bohol, Philippines. The current scheme of burning to maintain the grass-covered (tree-less) and brown hills to sustain tourist arrivals is seen as environmentally unsound and inconsistent with existing environmental laws. The study estimated the carbon loss from burning and compared the carbon loss value with the tourism income ...
The Bali burn disaster: implications and lessons learned.
Kennedy, Peter J; Haertsch, Peter A; Maitz, Peter K
2005-01-01
In October 2002, a terrorist attack on a nightclub in Bali resulted in an explosion and fire, causing the deaths of more than 200 people, including 88 Australian citizens. After first aid and primary care, the injured were repatriated to Darwin for triage and continued treatment and were then disseminated to various burn units throughout Australia. At the Repatriation General Hospital Concord Sydney, we received 12 patients with burns and a variety of blast injuries. Their treatment was complicated by infection with multiresistant organisms that were previously unseen in our unit and the presence of complex shrapnel wounds. There were no deaths and, with two exceptions, all patients were discharged within 6 weeks. This incident had profound effects on our unit, particularly related to the management of high-velocity shrapnel injuries, serious ongoing septic complications, and the psychological effects on both patients and staff, all of which are detailed and discussed. PMID:15756113
Chorioretinal burn: body temperature dependence
Irradiance thresholds for chorioretinal damage in rhesus monkeys vary linearly with core temperatures between 34 and 390C. Damage results from the combined thermal effects of retinal irradiation and the body temperature. Visible damage is calculated to occur at a tissue temperature of 42.50C. Fever increases the retina's susceptibility to burns from the sun, lasers, and other radiant energy sources
Antibiotics and the burn patient.
Ravat, François; Le-Floch, Ronan; Vinsonneau, Christophe; Ainaud, Pierre; Bertin-Maghit, Marc; Carsin, Hervé; Perro, Gérard
2011-02-01
Infection is a major problem in burn care and especially when it is due to bacteria with hospital-acquired multi-resistance to antibiotics. Moreover, when these bacteria are Gram-negative organisms, the most effective molecules are 20 years old and there is little hope of any new product available even in the distant future. Therefore, it is obvious that currently available antibiotics should not be misused. With this aim in mind, the following review was conducted by a group of experts from the French Society for Burn Injuries (SFETB). It examined key points addressing the management of antibiotics for burn patients: when to use or not, time of onset, bactericidia, combination, adaptation, de-escalation, treatment duration and regimen based on pharmacokinetic and pharmacodynamic characteristics of these compounds. The authors also considered antibioprophylaxis and some other key points such as: infection diagnosis criteria, bacterial inoculae and local treatment. French guidelines for the use of antibiotics in burn patients have been designed up from this work. PMID:20510518
Chan, R C; Burd, A
2012-09-01
The aim of our study is to review our experience in the management of patients who sustained burns associated with suicidal attempts over a 10-year period. In particular, we look into the outcome and incidence of self-harm/suicide after discharge among the survivors. Thirty-one patients with median age 36 years, ranging from 10 to 74, were included. Twenty-three (74%) were males and eight (26%) were females. Nearly three quarters (74%) of our patients had a known history of psychiatric illness: 11 had known history of substance abuse; 3 of them had drug-induced psychosis; 6 had schizophrenia; 5 had depression; 4 had personality disorders; 1 had pathological gambling and another one had adjustment disorder. Relationship problems and work/financial difficulties were the commonest reason for the suicidal attempts. Self-inflicted flame burn was the most frequent (39%; 12 patients) method of burning. Six patients (19%) died. The remaining 25 patients healed and were discharged. Seventeen patients required ICU care. The median length of stay in ICU was 7 days. The overall median length of stay was 35 days. The median follow up time for those survived is 63 months. Only 4 of these patients had further suicidal/parasuicidal attempts. Despite the high mortality, once these patients survived the initial injury, they are unlikely to commit suicide again. Thus, we believe that aggressive resuscitation should therefore be advocated for all suicidal burn patients. PMID:22360959
Burning mouth syndrome and menopause
Parveen Dahiya
2013-01-01
Full Text Available Menopause is a physiological process typically occurring in the fifth decade of life. One of the most annoying oral symptoms in this age group is the burning mouth syndrome (BMS, which may be defined as an intraoral burning sensation occurring in the absence of identifiable oral lesion or laboratory findings. Pain in burning mouth syndrome may be described as burning, tender, tingling, hot, scalding, and numb sensation in the oral mucosa. Multiple oral sites may be involved, but the anterior two-third part and the tip of tongue are most commonly affected site. There is no definite etiology for BMS other than the precipitating causative factors, and it is still considered idiopathic. Various treatment options like use of benzodiazepine, anti-depressants, analgesics, capsaicin, alpha lipoic acids, and cognitive behavioral therapy are found to be effective, but definite treatment is still unknown. The present article discusses some of the recent concepts of etiopathogenesis of BMS as well as the role of pharmacotherapeutic management in this disorder.
Burning mouth syndrome: Present perspective
Ramesh Parajuli
2015-07-01
Full Text Available Introduction: Burning mouth syndrome is characterized by chronic oral pain or burning sensation affecting the oral mucosa in the absence of obvious visible mucosal lesions. Patient presenting with the burning mouth sensation or pain is frequently encountered in clinical practice which poses a challenge to the treating clinician. Its exact etiology remains unknown which probably has multifactorial origin. It often affects middle or old age women and it may be accompanied by xerostomia and altered taste. Objective: To review the current concepts regarding etiopathogenesis, diagnosis and management of this disorder. Methods and methodology: A literature review was conducted on PubMed/Medline and Google scholar about the burning mouth syndrome and the representative articles were selected and reviewed. Conclusion: There is no universal consensus regarding diagnosis, etiology and treatment of BMS. BMS is a diagnosis of exclusion which probably has multifactorial origin. Various pharmacological and non pharmacological treatments are available but it is difficult to achieve curative treatment so reassurance is of great importance while treating the patients. Combination of cognitive behavioral therapy, alpha lipoic acid and/or clonazepam has shown promising results.
MHD control in burning plasmas MHD control in burning plasmas
Donné, Tony; Liang, Yunfeng
2012-07-01
Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge
Assessment of Several Moist Adiabatic Processes Associated with Convective Energy Calculation
李耀东; 高守亭; 刘健文
2004-01-01
Several methods dealing with the moist adiabatic process are described in this paper. They are based on static energy conservation, pseudo-equivalent potential temperature conservation, the strict pseudoadiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parameters, which are closely related to the moist adiabatic process and which reflect the gravitational effects of condensed liquid water, are reintroduced or defined, including MCAPE [Modified-CAPE (convective available potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modified-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does affect the calculated results of CAPE and the gravitational effects of condensed liquid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidification of liquid water in the reversible adiabatic process.
On the adiabatic stability of solitons and the matching of conservation laws
Lochak, Pierre
1984-08-01
We derive a series of identities which generalize and simplify the results obtained for adiabatically modulated solitons in the case of perturbed specific integrable equations. It stresses the importance of the variational properties of the solitons, which make an adiabatic theorem plausible. A precise conjecture is made and its validity discussed from different points of view.
A note on the non-adiabatic geometric phase and quantum computation
Blais, A
2003-01-01
We consider the non-adiabatic, or Aharonov-Anandan, geometric phase as a tool for intrinsically fault-tolerant quantum computation. While this phase seems to answer many of the issues related to the adiabatic version of the geometric gate, we show that it is not straightforward to implement and that it is sensitive to small errors.
What lies between a free adiabatic expansion and a quasi-static one?
Miranda, E. N.
2012-01-01
An expression is found that relates the initial and final volumes and temperatures for any adiabatic process. It is given in terms of a parameter r that smoothly interpolates between a free adiabatic expansion (r = 0) and a quasi-static one (r = 1). The parameter has to be evaluated numerically, but an approximate expression is given.
Milovich, J. L.; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R.
2015-12-01
Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm2, but with significantly lower total neutron yields (between 1.5 × 1014 and 5.5 × 1014) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the "high-foot" experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3-10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm2. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.
Milovich, J. L., E-mail: milovich1@llnl.gov; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-12-15
Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm{sup 2}, but with significantly lower total neutron yields (between 1.5 × 10{sup 14} and 5.5 × 10{sup 14}) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the “high-foot” experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3–10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm{sup 2}. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.
A review of hydrofluoric acid burn management.
McKee, Daniel; Thoma, Achilleas; Bailey, Kristy; Fish, Joel
2014-01-01
Hydrofluoric acid (HF) causes a unique chemical burn. Much of the current treatment knowledge of HF burns is derived from case reports, small case series, animal studies and anecdotal evidence. The management can be challenging because clinical presentation and severity of these burns vary widely. Plastic surgeons managing burn patients must have a basic understanding of the pathophysiology, the range of severity in presentation and the current treatment options available for HF burns. The present article reviews the current understanding of the pathophysiology and systemic effects associated with severe HF burns. Furthermore, it distinguishes between minor and life-threatening HF burns and describes several of the basic techniques that are available to treat patients with HF burns. PMID:25114621
Reversibility and Adiabatic Computation Trading Time and Space for Energy
Li, Maozhen; Li, Ming; Vitanyi, Paul
1996-01-01
Future miniaturization and mobilization of computing devices requires energy parsimonious `adiabatic' computation. This is contingent on logical reversibility of computation. An example is the idea of quantum computations which are reversible except for the irreversible observation steps. We propose to study quantitatively the exchange of computational resources like time and space for irreversibility in computations. Reversible simulations of irreversible computations are memory intensive. Such (polynomial time) simulations are analysed here in terms of `reversible' pebble games. We show that Bennett's pebbling strategy uses least additional space for the greatest number of simulated steps. We derive a trade-off for storage space versus irreversible erasure. Next we consider reversible computation itself. An alternative proof is provided for the precise expression of the ultimate irreversibility cost of an otherwise reversible computation without restrictions on time and space use. A time-irreversibility tra...
Influence of coherent adiabatic excitation on femtosecond transient signals
Conde, A Peralta; Longarte, A
2016-01-01
The transient signals derived from femtosecond pump-probe experiments are analyzed in terms of the coherent evolution of the energy levels perturbed by the excitation pulse. The model system is treated as the sum of independent two-level subsystems that evolve adiabatically or are permanently excited, depending on the detuning from the central wavelength of the excitation laser. This approach will allow us to explain numerically and analytically the convergence between the coherent and incoherent (rate equations) treatments for complex multi-level systems. It will be also shown that the parameter that determines the validity of the incoherent treatment is the distribution of states outside and inside the laser bandwidth, rather than the density of states as it is commonly accepted.
Differential geometric treewidth estimation in adiabatic quantum computation
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-07-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Non-adiabatic perturbations in decaying vacuum cosmology
We investigate a spatially flat Friedmann-Lemaître-Robertson-Walker cosmology in which a decaying vacuum term causes matter production at late times. Assuming a decay proportional to the Hubble rate, the ratio of the background energy densities of dark matter and dark energy changes with the cosmic scale factor as a−3/2. The intrinsically non-adiabatic two-component perturbation dynamics of this model is reduced to a single second-order equation. Perturbations of the vacuum term are shown to be negligible on scales that are relevant for structure formation. On larger scales, dark-energy perturbations give a somewhat higher contribution but remain always smaller than the dark-matter perturbations
Adiabatic quantum-flux-parametron cell library adopting minimalist design
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits
Adiabatic quantum-flux-parametron cell library adopting minimalist design
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-05-01
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
Controlled Rapid Adiabatic Passage in a V-Type System
Song, Yunheung; Lee, Han-Gyeol; Jo, Hanlae; Ahn, Jaewook
2016-05-01
In chirped rapid adiabatic passage (RAP), chirp sign determines the final state to which the complete population transfer (CPT) occurs in a three-level V-type system. In this study, we show that laser intensity can be alternatively used as a control means in RAP, when the laser pulse is chirped and of a spectral hole resonant to one of the excited states. We verified such excitation selectivity in the experiment performed as-shaped femtosecond laser pulses interacting with the lowest three levels (5S, 5 P1/2, and 5 P3/2) of atomic rubidium. The successful demonstration implies that this intensity-dependent RAP in conjunction with laser beam profile programming may allow excitation selectivity for atoms or ions arranged in space.
Adiabatic quantum-flux-parametron cell library adopting minimalist design
Takeuchi, Naoki, E-mail: takeuchi-naoki-kx@ynu.jp [Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Yamanashi, Yuki; Yoshikawa, Nobuyuki [Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Department of Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)
2015-05-07
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
Adiabatic Floquet model for the optical response in femtosecond filaments
Hofmann, Michael
2016-01-01
The standard model of femtosecond filamentation is based on phenomenological assumptions which suggest that the ionization-induced carriers can be treated as free according to the Drude model, while the nonlinear response of the bound carriers follows the all-optical Kerr effect. Here, we demonstrate that the additional plasma generated at a multiphoton resonance dominates the saturation of the nonlinear refractive index. Since resonances are not captured by the standard model, we propose a modification of the latter in which ionization enhancements can be accounted for by an ionization rate obtained from non-Hermitian Floquet theory. In the adiabatic regime of long pulse envelopes, this augmented standard model is in excellent agreement with direct quantum mechanical simulations. Since our proposal maintains the structure of the standard model, it can be easily incorporated into existing codes of filament simulation.
Properties of a two stage adiabatic demagnetization refrigerator
Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.
2015-12-01
Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.
Adiabatic quantum pump in a zigzag graphene nanoribbon junction
张林
2015-01-01
The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p–n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device.
Nucleon-deuteron scattering using the adiabatic projection method
Elhatisari, Serdar; Meißner, Ulf-G; Rupak, Gautam
2016-01-01
In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the methods for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-particle scattering on the lattice. Then we benchmark the accuracy and efficiency of the numerical methods by applying these to calculate fermion-dimer scattering in lattice effective field theory with and without a long-range Coulomb potential. The fermion-dimer calculations correspond to neutron-deuteron and proton-deuteron scattering in the spin-quartet channel at leading order in pionless effective field theory.
Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics
Hoover, W.G.
1980-05-28
Although Hamiltonians of various kinds have previously been used to derive Green-Kubo relations for the transport coefficients, the particular choice described is uniquely related to thermodynamics. This nonequilibrium Hamiltonian formulation of fluid flow provides pedagogically simple routes to nonequilibrium fluxes and distribution functions, to theoretical understanding of long-time effects, and to new numerical methods for simulating systems far from equilibrium. The same methods are now being applied to solid-phase problems. At the relatively high frequencies used in the viscous fluid calculations described, solids typically behave elastically. Lower frequencies lead to the formation of dislocations and other defects, making it possible to study plastic flow. A property of the nonequilibrium equations of motion which might be profitably explored is their effective irreversibility. Because only a few particles are necessary to generate irreversible behavior, simulations using adiabatic deformations of the kind described here could perhaps elucidate the instability in the equations of motion responsible for irreversibility.
Cosmological consequences of an adiabatic matter creation process
Nunes, Rafael C
2016-01-01
In this paper we investigate the cosmological consequences of a continuous matter creation associated with the production of particles by the gravitational field acting on the quantum vacuum. To illustrate this, three phenomenological models are considered. An equivalent scalar field description is presented for each models. The effects on the cosmic microwave background power spectrum are analyzed for the first time in the context of adiabatic matter creation cosmology. Further, we introduce a model independent treatment, $Om$, which depends only on the Hubble expansion rate and the cosmological redshift to distinguish any cosmological model from $\\Lambda$CDM by providing a null test for the cosmological constant, meaning that, for any two redshifts $z_1$, $z_2$, $Om (z)$ is same, i.e. $Om (z_1)- Om (z_2)= 0$. Also, this diagnostic can differentiate between several cosmological models by indicating their quintessential/ phantom behavior without knowing the accurate value of the matter density, and the presen...
Optical waveguide device with an adiabatically-varying width
Watts; Michael R. , Nielson; Gregory N.
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
Some properties of adiabatic blast waves in preexisting cavities
Cox, D. P.; Franco, J.
1981-01-01
Cox and Anderson (1982) have conducted an investigation regarding an adiabatic blast wave in a region of uniform density and finite external pressure. In connection with an application of the results of the investigation to a study of interstellar blast waves in the very hot, low-density matrix, it was found that it would be desirable to examine situations with a positive radial density gradient in the ambient medium. Information concerning such situations is needed to learn about the behavior of blast waves occurring within preexisting, presumably supernova-induced cavities in the interstellar mass distribution. The present investigation is concerned with the first steps of a study conducted to obtain the required information. A review is conducted of Sedov's (1959) similarity solutions for the dynamical structure of any explosion in a medium with negligible pressure and power law density dependence on radius.
Dynamics of adiabatic blast waves in media of finite mass
A basic formulation is developed to describe the mass motion for nonrelativistic, spherically symmetric blast waves. The formulation is quite general in the sense that it applies to blast waves generated by either a strong explosion or a continuous energy injection, and in that it applies to an arbitrary density distribution. A simple method is developed to describe the motion of the shock by modifying the Kompaneets approximation. The formulation is applied to blast waves in specific density distributions, including an exponential medium, a Gaussian medium, and a medium with density distribution which asymptotically approaches a power law. Comparisons with numerical results for spherically symmetric blast waves are made. The one-dimensional formulation is generalized to nonspherically symmetric blast waves by making the assumption that the blast wave expands radially. Comparisons are made with numerical results for an adiabatic supershell in a plane-parallel medium. 32 refs
Entrained liquid fraction prediction in adiabatic and evaporating annular two-phase flow
Highlights: ► New method to predict the entrained liquid fraction in annular two-phase flow. ► Circular and non-circular tubes, adiabatic and evaporating conditions covered. ► Large underlying experimental database (2460 points). ► New method explicit and fully stand-alone. ► New method based on just 1 dimensionless group: the core flow Weber number. - Abstract: A new method to predict the entrained liquid fraction in annular two-phase flow is presented. The underlying experimental database contains 2460 data points collected from 38 different literature studies for 8 different gas–liquid or vapor–liquid combinations (R12, R113, water–steam, water–air, genklene–air, ethanol–air, water–helium, silicon–air), tube diameters from 5.0 mm to 95.3 mm, pressures from 0.1 to 20.0 MPa and covers both adiabatic and evaporating flow conditions, circular and non-circular channels and vertical upflow, vertical downflow and horizontal flow conditions. Annular flows are regarded here as a special form of a liquid atomization process, where a high velocity confined spray, composed by the gas phase and entrained liquid droplets, flows in the center of the channel dragging and atomizing the annular liquid film that streams along the channel wall. Correspondingly, the liquid film flow is assumed to be shear-driven and the energy required to drive the liquid atomization is assumed to be provided in the form of kinetic energy of the droplet-laden gas core flow, so that the liquid film–gas core aerodynamic interaction is ultimately assumed to control the liquid disintegration process. As such, the new prediction method is based on the core flow Weber number, representing the ratio of the disrupting aerodynamic force to the surface tension retaining force, a single and physically plausible dimensionless group. The new prediction method is explicit, fully stand-alone and reproduces the available data better than existing empirical correlations, including in
Salim, S.; Gould, A.
2000-12-01
Full-Sky Astrometric Mapping Explorer (FAME) belongs to a new generation of astrometry satellites and will probe the surrounding space some 20 times deeper than its predecessor Hipparcos. As a result we will acquire precise knowledge of 5 out of 6 components of phase-space for millions of stars. The remaining coordinate, radial velocity, will remain unknown. In this study, we look at how the knowledge of radial velocity affects the determination of the structure of the Galaxy, and its gravitational potential. We therefore propose a radial velocity survey of FAME stars, and discuss its feasibility and technical requirements.
Bai Ziyang
2014-01-01
Full Text Available Adiabatic fixed-bed reactor has proven commercially successful in large scale production of catalytic dehydration of methanol to dimethyl ether. A one dimensional pseudo-homogeneous model of an industrial reactor of dimethyl ether synthesis has been established. To verify the proposed model, the simulation results have been compared to available data from an industrial reactor. A good agreement has been found between them. The distribution of the catalyst bed temperature and concentration of each component was obtained under conditions of inlet temperature 260°C, reaction pressure 1.2MPa and gaseous hourly space velocity 950.7 h-1. With inlet catalyst bed temperature 240-280°C, operating pressure 0.6-1.8MPa and gaseous hourly space velocity 831.8-1069.5 h-1, the influence of these reaction conditions on temperature distribution of the reactor catalytic bed, outlet methanol conversion and the dimethyl ether yield were calculated. The results show that, with the rise of inlet temperature (240-280°C and operating pressure (0.6-1.8MPa, the outlet conversion of methanol, the hot spot temperature and the DME yield increased. The increase of gaseous hourly space velocity (831.8-1069.5 h-1 leads to a decrease in the hot spot temperature of catalytic bed and the outlet conversion of methanol. But the DME yield rise initially and then descend.
Adiabatic principles in atom-diatom collisional energy transfer
This work describes the application of numerical methods to the solution of the time dependent Schroedinger equation for non-reactive atom-diatom collisions in which only one of the degrees of freedom has been removed. The basic method involves expanding the wave function in a basis set in two of the diatomic coordinates in a body-fixed frame (with respect to the triatomic complex) and defining the coefficients in that expansion as functions on a grid in the collision coordinate. The wave function is then propagated in time using a split operator method. The bulk of this work is devoted to the application of this formalism to the study of internal rotational predissociation in NeHF, in which quasibound states of the triatom predissociate through the transfer of energy from rotation of the diatom into translational energy in the atom-diatom separation coordinate. The author analyzes the computed time dependent wave functions to calculate the lifetimes for several quasibound states; these are in agreement with time independent quantum calculations using the same potential. Moreover, the time dependent behavior of the wave functions themselves sheds light on the dynamics of the predissociation processes. Finally, the partial cross sections of the products in those processes is determined with multiple exit channels. These show strong selectivity in the orbital angular momentum of the outgoing fragments, which the author explains with an adiabatic channel interpretation of the wave function's dynamics. The author also suggests that the same formalism might profitably be used to investigate the quantum dynamics of open-quotes quasiresonant vibration-rotation transferclose quotes, in which remarkably strong propensity rules in certain inelastic atom-diatom collision arise from classical adiabatic invariance theory
Observational tests of non-adiabatic Chaplygin gas
Carneiro, S.; Pigozzo, C.
2014-10-01
In a previous paper [1] it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter ω = -1. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter α. The joint analysis best fit gives α ≈ - 0.5, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The ΛCDM model, equivalent to α = 0, stands outside the 3σ confidence interval.
Observational tests of non-adiabatic Chaplygin gas
In a previous paper [1] it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter ω = -1. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter α. The joint analysis best fit gives α ≈ - 0.5, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The ΛCDM model, equivalent to α = 0, stands outside the 3σ confidence interval
Wigner phase space distribution via classical adiabatic switching
Bose, Amartya [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Makri, Nancy [Department of Chemistry, University of Illinois, 600 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, Illinois 61801 (United States)
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
Wigner phase space distribution via classical adiabatic switching
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations
Phase relations and adiabats in boiling seafloor geothermal systems
Bischoff, James L.; Pitzer, Kenneth S.
1985-11-01
Observations of large salinity variations and vent temperatures in the range of 380-400°C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385°C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415°C, 330 bar. A 400°C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500°C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor.
Observational tests of non-adiabatic Chaplygin gas
Carneiro, S.; Pigozzo, C., E-mail: saulo.carneiro@pq.cnpq.br, E-mail: cpigozzo@ufba.br [Instituto de Física, Universidade Federal da Bahia, Campus de Ondina, Salvador, BA 40210-340 (Brazil)
2014-10-01
In a previous paper [1] it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter ω = -1. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter α. The joint analysis best fit gives α ≈ - 0.5, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The ΛCDM model, equivalent to α = 0, stands outside the 3σ confidence interval.
Thermodynamic study of ibuprofen by adiabatic calorimetry and thermal analysis
Molar heat capacities of ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 400 K. The polynomial functions of Cp,m (J K-1 mol-1) versus T were established on the heat capacity measurements by means of the least fitting square method. The functions are as follows: for solid ibuprofen, at the temperature range of 79.105 K≤T≤333.297 K, Cp,m=144.27+77.046X+3.5171X2+10.925X3+11.224X4, where X=(T-206.201)/127.096; for liquid ibuprofen, at the temperature range of 353.406 K≤T≤378.785 K, Cp,m=325.79+8.9696X-1.6073X2-1.5145X3, where X=(T-366.095)/12.690. A fusion transition at T=348.02 K was found from the Cp-T curve. The molar enthalpy and entropy of the fusion transition were determined to be 26.65 kJ mol-1 and 76.58 J mol-1 K-1, respectively. The thermodynamic functions on the base of the reference temperature of 298.15 K, (HT-H298.15) and (ST-S298.15), were derived. Thermal characteristic of ibuprofen was studied by thermo-gravimetric analysis (TG-DTG) and differential scanning calorimeter (DSC). The temperature of fusion, the molar enthalpy and entropy of fusion obtained by DSC were well consistent with those obtained by adiabatic calorimeter. The evaporation process of ibuprofen was investigated further by TG and DTG, and the activation energy of the evaporation process was determined to be 80.3±1.4 kJ mol-1
Correlated adiabatic and isocurvature CMB fluctuations in the wake of WMAP
Valiviita, J; Valiviita, Jussi; Muhonen, Vesa
2003-01-01
In the general correlated models, in addition to the usual adiabatic component with a spectral index n_ad1 there is another adiabatic component with a spectral index n_ad2 generated by the entropy perturbation during inflation. We extend the analysis of a correlated mixture of adiabatic and isocurvature CMB fluctuations of the WMAP group, who set the two adiabatic spectral indices equal. Allowing n_ad1 and n_ad2 to vary independently we find that the WMAP data favor models where the two adiabatic components have opposite spectral tilts. Using the WMAP data only, the 2-sigma upper bound for the isocurvature fraction f_iso of the initial power spectrum at k_0=0.05 Mpc^{-1} increases somewhat, e.g., from 0.76 of n_ad2 = n_ad1 models to 0.84 with a prior n_iso < 1.84 for the isocurvature spectral index.
On the observability and asymmetry of adiabatic state flips generated by exceptional points
Uzdin, Raam; Moiseyev, Nimrod [Physics Department and Minerva Center for Nonlinear Physics of Complex Systems, Technion-Israel Institute of Technology (Israel); Mailybaev, Alexei, E-mail: raam@technion.ac.il [Institute of Mechanics, Lomonosov Moscow State University (Russian Federation)
2011-10-28
In open quantum systems where the effective Hamiltonian is not Hermitian, it is known that the adiabatic (or instantaneous) basis can be multivalued: by adiabatically transporting an eigenstate along a closed loop in the parameter space of the Hamiltonian, it is possible to end up in an eigenstate different from the initial eigenstate. This 'adiabatic flip' effect is an outcome of the appearance of a degeneracy known as an 'exceptional point' inside the loop. We show that contrary to what is expected of the transport properties of the eigenstate basis, the interplay between gain/loss and non-adiabatic couplings imposes fundamental limitations on the observability of this adiabatic flip effect. (paper)
Stimulated Raman adiabatic passage in a three-level superconducting circuit
Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.
2016-02-01
The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering--enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic-adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level.
Pediatric burn rehabilitation: Philosophy and strategies
Shohei Ohgi; Shouzhi Gu
2013-01-01
Burn injuries are a huge public health issue for children throughout the world, with the majority occurring in developing countries. Burn injuries can leave a pediatric patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Rehabilitation is an essential and integral part of pediatric burn treatment. The aim of this article was to review the literature on pediatric burn rehabilitation from the Medline, CINAHL, and Web of Sc...
Clinical profile of burn injured patients
Efstathiou, Flora; Svardagalou, Paraskevi
2016-01-01
Abstract Introduction: Burn injury is a severe systemic disease with social implications. Aim: The recording of patient’s clinical profile with burn injury worldwide and in Greece, the outcome and impact of the injury on the patient’s mental health and social, professional and family life. Methods: There were collected surveys and reports concerned burn victims, men and women, teenagers and adults of all types and severities of burns in the world and in Greece. The inf...
Burn healing plants in Iranian Traditional Medicine
Sh. Fahimi; H. Hajimehdipoor; Abdollahi, M.; S.A. Mortazavi
2015-01-01
Burns are known as one of the most common forms of injury with devastating consequences. Despite the discovery of several antiseptics, burn wound healing has still remained a challenge to modern medicine. Herbal products seem to possess moderate efficacy with no or less toxicity and are less expensive compared to synthetic drugs. Burn is a well-known disorder in Iranian Traditional Medicine (ITM). Iranian physicians have divided burns into various types based on the cause and recommended trea...
A computational prediction for the effective drug and stem cell treatment of human airway burns.
Park, Seungman
2016-08-01
Burns in the airway from inhaling hot gases lead to one of the most common causes of death in the United States. In order to navigate tissues with large burn areas, the velocity, temperature, and heat flux distributions throughout the human airway system are computed for the inhalation of hot air using the finite-element method. From there, the depth of burned tissue is estimated for a range of exposure times. Additionally, the effectiveness of drug or stem cell delivery to the burned airway tissue is considered for a range of drug or cell sizes. Results showed that the highest temperature and lowest heat flux regions are observed near the pharynx and just upstream of the glottis. It was found that large particles such as stem cells (>20 μm) are effective for treatment of the upper airways, whereas small particles (<10 μm) such as drug nanoparticles are effective in the lower airways. PMID:26513000
Early Enteral Nutrition for Burn Injury
Mandell, Samuel P.; Gibran, Nicole S.
2014-01-01
Significance: Nutrition has been recognized as a critical component of acute burn care and ultimate wound healing. Debate remains over the appropriate timing of enteral nutrition and the benefit of supplemental trace elements, antioxidants, and immunonutrition for critically ill burn patients. Pharmacotherapy to blunt the metabolic response to burn injury plays a critical role in effective nutritional support.
Aggregation of erythrocytes in burn disease
Levin, Grigory Y; Egorihina, Marpha N
2011-01-01
The manuscript describes experiments designed to examine factors that influence erythrocytes aggregation within the blood of burn patients. Results showed that the rate and degree of erythrocytes aggregation increased significantly in burn patients, and what is especially unfavorable for microcirculation, erythrocytes disaggregation decreased. We show that normalization of blood plasma contents completely restores erythrocytes aggregation and disaggregation of burn patients. The rate and degr...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste utilization. 816.87 Section 816.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste utilization. 817.87 Section 817.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...
The critical ionization velocity
The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)
Investigation of Slipstream Velocity
Crowley, J W , Jr
1925-01-01
These experiments were made at the request of the Bureau of Aeronautics, Navy Department, to investigate the velocity of the air in the slipstream in horizontal and climbing flight to determine the form of expression giving the slipstream velocity in terms of the airspeed of the airplane. The method used consisted in flying the airplane both on a level course and in climb at full throttle and measuring the slipstream velocity at seven points in the slipstream for the whole speed range of the airplane in both conditions. In general the results show that for both condition, horizontal and climbing flights, the slipstream velocity v subscript 3 and airspeed v can be represented by straight lines and consequently the equations are of the form: v subscript s = mv+b where m and b are constant. (author)
Nerve conduction velocity (NCV) is a test to see how fast electrical signals move through a nerve. ... surface electrodes are placed on the skin over nerves at different spots. Each patch gives off a ...